アイテムタイプ |
Article |
ID |
|
プレビュー |
画像 |
|
キャプション |
|
|
本文 |
KAKEN_18K17394seika.pdf
Type |
:application/pdf |
Download
|
Size |
:246.1 KB
|
Last updated |
:May 17, 2022 |
Downloads |
: 436 |
Total downloads since May 17, 2022 : 436
|
|
本文公開日 |
|
タイトル |
タイトル |
腎機能低下を早期に予測するメタボロミクス・バイオマーカーの解明と予防医療への展開
|
カナ |
ジンキノウ テイカ オ ソウキ ニ ヨソクスル メタボロミクス・バイオマーカー ノ カイメイ ト ヨボウ イリョウ エノ テンカイ
|
ローマ字 |
Jinkinō teika o sōki ni yosokusuru metaboromikusu baiomākā no kaimei to yobō iryō eno tenkai
|
|
別タイトル |
名前 |
Metabolomics biomarkers for predicting renal function decline
|
カナ |
|
ローマ字 |
|
|
著者 |
名前 |
原田, 成
|
カナ |
ハラダ, セイ
|
ローマ字 |
Harada, Sei
|
所属 |
慶應義塾大学・医学部 (信濃町) ・講師
|
所属(翻訳) |
|
役割 |
Research team head
|
外部リンク |
科研費研究者番号 : 10738090
|
|
版 |
|
出版地 |
|
出版者 |
|
日付 |
出版年(from:yyyy) |
2021
|
出版年(to:yyyy) |
|
作成日(yyyy-mm-dd) |
|
更新日(yyyy-mm-dd) |
|
記録日(yyyy-mm-dd) |
|
|
形態 |
|
上位タイトル |
名前 |
科学研究費補助金研究成果報告書
|
翻訳 |
|
巻 |
|
号 |
|
年 |
2020
|
月 |
|
開始ページ |
|
終了ページ |
|
|
ISSN |
|
ISBN |
|
DOI |
|
URI |
|
JaLCDOI |
|
NII論文ID |
|
医中誌ID |
|
その他ID |
|
博士論文情報 |
学位授与番号 |
|
学位授与年月日 |
|
学位名 |
|
学位授与機関 |
|
|
抄録 |
60-74歳の一般市民1,672人に対し、調査開始時の腎機能測定(血清クレアチニン、血清シスタチンC、尿中アルブミン)と血漿・尿メタボローム測定を行った。また同じ参加者に対して、6年後も同様に評価した。
機械学習的手法(OPLS-DA)を用いて、6年間での腎機能低下を予測した結果、古典的な腎機能指標に加えて、血漿・尿メタボロームを用いることで、より正確な予測モデルが構築できた。さらに別の機械学習的手法(SVM)を用いてROCカーブを作成したところ、3種類の代謝物を含む上位5つの変数を選択した場合にもっとも精度が高く、AUC 0.904(95%CI 0.871-0.944)と好成績であった。
Renal function measurements (serum creatinine, serum cystatin C, and urine albumin) and plasma and urine metabolomics were performed on 1,672 participants aged 60-74 years at the beginning of the study. The same participants were also evaluated in the same way after 6 years.
A machine learning method (OPLS-DA) was used to predict the decline in renal function over 6 years, and a more accurate prediction model was constructed by using plasma and urine metabolome in addition to classical renal function indicators. Furthermore, another machine-learning approach (SVM) was used to create ROC curves, which were most accurate when the top five variables including three metabolites were selected, with a good performance of AUC 0.904 (95%CI 0.871-0.944).
|
|
目次 |
|
キーワード |
|
NDC |
|
注記 |
研究種目 : 若手研究
研究期間 : 2018~2020
課題番号 : 18K17394
研究分野 : メタボロミクス疫学
|
|
言語 |
|
資源タイプ |
|
ジャンル |
|
著者版フラグ |
|
関連DOI |
|
アクセス条件 |
|
最終更新日 |
|
作成日 |
|
所有者 |
|
更新履歴 |
|
インデックス |
|
関連アイテム |
|