| アイテムタイプ |
Article |
| ID |
|
| プレビュー |
| 画像 |
|
| キャプション |
|
|
| 本文 |
KAKEN_22540149seika.pdf
| Type |
:application/pdf |
Download
|
| Size |
:105.1 KB
|
| Last updated |
:Dec 11, 2014 |
| Downloads |
: 824 |
Total downloads since Dec 11, 2014 : 824
|
|
| 本文公開日 |
|
| タイトル |
| タイトル |
ヘッジを考慮した凸リスク測度による価格付け理論と関連する確率過程論の研究
|
| カナ |
ヘッジ オ コウリョ シタ トツリスク ソクド ニ ヨル カカクズケ リロン ト カンレンスル カクリツ カテイロン ノ ケンキュウ
|
| ローマ字 |
Hejji o koryo shita totsurisuku sokudo ni yoru kakakuzuke riron to kanrensuru kakuritsu kateiron no kenkyu
|
|
| 別タイトル |
| 名前 |
Research on pricing theory by convex risk measures taking account of hedging, and its related stochastic analysis
|
| カナ |
|
| ローマ字 |
|
|
| 著者 |
| 名前 |
新井, 拓児
 |
| カナ |
アライ, タクジ
|
| ローマ字 |
Arai, Takuji
|
| 所属 |
慶應義塾大学・経済学部・教授
|
| 所属(翻訳) |
|
| 役割 |
Research team head
|
| 外部リンク |
科研費研究者番号 : 20349830
|
|
| 版 |
|
| 出版地 |
|
| 出版者 |
|
| 日付 |
| 出版年(from:yyyy) |
2014
|
| 出版年(to:yyyy) |
|
| 作成日(yyyy-mm-dd) |
|
| 更新日(yyyy-mm-dd) |
|
| 記録日(yyyy-mm-dd) |
|
|
| 形態 |
|
| 上位タイトル |
| 名前 |
科学研究費補助金研究成果報告書
|
| 翻訳 |
|
| 巻 |
|
| 号 |
|
| 年 |
2013
|
| 月 |
|
| 開始ページ |
|
| 終了ページ |
|
|
| ISSN |
|
| ISBN |
|
| DOI |
|
| URI |
|
| JaLCDOI |
|
| NII論文ID |
|
| 医中誌ID |
|
| その他ID |
|
| 博士論文情報 |
| 学位授与番号 |
|
| 学位授与年月日 |
|
| 学位名 |
|
| 学位授与機関 |
|
|
| 抄録 |
アメリカンオプションに対するショートフォールリスクを考えるため、確率過程上の凸リスク測度の研究を行った。特に、確率過程の最大値がOrlicz空間に入るような空間を導入し、凸リスク測度の表現定理を導出した。次に、凸リスク測度とgood deal boundの関係について研究した。市場が凸錘であるときに、(1) superhedging costの諸性質、(2) 凸リスク測度があるgood deal boundの上下限を与えることとrisk indifference priceであることの同値性、(3) 価格付け理論の基本定理の拡張、について調べた。さらに、市場が単に凸である場合へ拡張した。
I have studied convex risk measures on stochastic processes in order to deal with shortfall risk measures for American options. In particular, I introduced spaces of stochastic processes whose maximum belongs to an Orlicz space; and obtained representation results for convex risk measures defined on such spaces. Next, I have researched on relationship between convex risk measures and good deal bounds. Supposing the market is a convex cone, I investigated (1) properties of superhedging cost, (2) the equivalence for a convex risk measure between that it represent upper and lower bounds of a good deal bound and that it is given as a risk indifference price, (3) extensions of the fundamental theorem of asset pricing. In addition, I extended the above results to the case where the market is merely convex.
|
|
| 目次 |
|
| キーワード |
|
| NDC |
|
| 注記 |
研究種目 : 基盤研究(C)
研究期間 : 2010~2013
課題番号 : 22540149
研究分野 : 数物系科学
科研費の分科・細目 : 数学・数学一般(含確率論・統計数学)
|
|
| 言語 |
|
| 資源タイプ |
|
| ジャンル |
|
| 著者版フラグ |
|
| 関連DOI |
|
| アクセス条件 |
|
| 最終更新日 |
|
| 作成日 |
|
| 所有者 |
|
| 更新履歴 |
|
| インデックス |
|
| 関連アイテム |
|