慶應義塾大学学術情報リポジトリ(KOARA)KeiO Associated Repository of Academic resources

慶應義塾大学学術情報リポジトリ(KOARA)

Home  »»  Listing item  »»  Detail

Detail

Item Type Article
ID
2018000005-20180028  
Preview
Image
thumbnail  
Caption  
Full text
2018000005-20180028.pdf
Type :application/pdf Download
Size :123.0 KB
Last updated :Oct 24, 2022
Downloads : 152

Total downloads since Oct 24, 2022 : 152
 
Release Date
 
Title
Title ディープラーニングを用いた画像診断支援システムの研究  
Kana ディープ ラーニング オ モチイタ ガゾウ シンダン シエン システム ノ ケンキュウ  
Romanization Dīpu rāningu o mochiita gazō shindan shien shisutemu no kenkyū  
Other Title
Title Diagnosis supporting system of medical images by deep learning  
Kana  
Romanization  
Creator
Name 田中, 敏幸  
Kana タナカ, トシユキ  
Romanization Tanaka, Toshiyuki  
Affiliation 慶應義塾大学理工学部教授  
Affiliation (Translated)  
Role Research team head  
Link  
Edition
 
Place
 
Publisher
Name 慶應義塾大学  
Kana ケイオウ ギジュク ダイガク  
Romanization Keiō gijuku daigaku  
Date
Issued (from:yyyy) 2019  
Issued (to:yyyy)  
Created (yyyy-mm-dd)  
Updated (yyyy-mm-dd)  
Captured (yyyy-mm-dd)  
Physical description
1 pdf  
Source Title
Name 学事振興資金研究成果実績報告書  
Name (Translated)  
Volume  
Issue  
Year 2018  
Month  
Start page  
End page  
ISSN
 
ISBN
 
DOI
URI
JaLCDOI
NII Article ID
 
Ichushi ID
 
Other ID
 
Doctoral dissertation
Dissertation Number  
Date of granted  
Degree name  
Degree grantor  
Abstract
日本における癌の罹患数・死亡数は増加傾向にあるといわれているが,診断を行う病理医の数は必要とされる数に満たず,病理医1人あたりの負担は大きい.その結果,病理医が常駐しない病院も存在し,病院による医療サービスの格差が生じ問題となっている.また,生体組織診断(生検)は病理医が目視で行う作業であり,人為的過誤の防止や診断の客観化といった観点から本来であればダブルチェックが必要であるが,上述の病理医不足によりそれが実現しない現状もある.そこで,コンピュータ診断支援によるこれらの問題解消が求められている.
病理組織学的意味に基づき生検画像の領域分割を行っている研究があるが,最終的な判別までは行われていないために実用上不十分であり,腺管の形状を留めない低分化腺癌(浸潤癌)に対応できていない.また,正常組織と癌を鑑別する2値分類を行っている研究もあるが,実際の病理診断で取り扱う生検を網羅できておらず,汎化能力に乏しい.また,病理組織学的指標を再現した特徴量により正常・腺腫・癌の分類を行っている先行研究では,画像中に良性と悪性とが混在する場合に判別結果が過小評価され,診断結果が良性側に偏るという問題があった.
そこで本研究では,画像全体を正方形小領域に分割し,分割領域(パッチ)単位で正常・腺腫・癌の3クラス分類を行った.解析の対象領域を局所化することにより,正常組織を多分に含む画像に対しても腫瘍を看過することなく指摘できると考えた.畳み込みニューラルネットワークによるディープラーニングを採用し,パッチ単位の判別結果を原画像に対応させることで,画像内における異型度の分布を可視化した.パッチベースでのGroup1, Group3, Group5のF値はそれぞれ97.6%,76.1%,67.4%となった.また,症例ベース判別率は100%となり,スクリーニング機能を達成できた.今後は,Group3とGroup5の精度改善に取り組む.
Although the number of cancer patients increase in step with the aging of population in Japan, the number of pathologists is still less than required. In addition to the shortage of pathological doctors, the histopathological diagnosis skills are different in each hospital, because one pathologist has to examine numerous biopsy samples in the hospital, or a doctor who does not specialize in histopathology may study tissues. The burdens of pathological doctors reach to a decrease of medical service quality. In order to reduce burdens of pathologists, it is necessary to develop a computer-aided diagnosis system of cancer biopsy.
In the previous work, it is supposed that each image of hematoxylin-and-eosin stained biopsy has one type of atypia. However, when it has 2 or more types of atypia, for example a sample image labeled as cancer with both cancerous and benign areas, extracted features will not be adequate, which causes to underestimate its malignancy.
In this study, we divide a sample image into smaller square regions (patches) and classify them into the histopathological classes. The deep learning by convolutional neural network (CNN) is used as an image recognition method. The patch-based classification is performed for small regions of biopsy image with CNN. The F-measures of Group1, 3 and 5 patches, which are calculated from sensitivity and positive predictive value, reach 97.6%,76.1%,67.4% respectively. Next, the patch-based classification results are rearranged on an original image and the distribution of its atypia is displayed. A post-processing on the rearrangement results is performed based on histopathological knowledge.
 
Table of contents

 
Keyword
 
NDC
 
Note

 
Language
日本語  

英語  
Type of resource
text  
Genre
Research Paper  
Text version
publisher  
Related DOI
Access conditions

 
Last modified date
Oct 24, 2022 13:35:33  
Creation date
Oct 24, 2022 13:35:33  
Registerd by
mediacenter
 
History
Oct 24, 2022    インデックス を変更
 
Index
/ Public / Internal Research Fund / Keio Gijuku Academic Development Funds Report / Academic year 2018
 
Related to
 

Ranking

most accessed items
1st ジャッフェ『ワル... (1350) 1st
2nd 丸山眞男学派の家... (775)
3rd 国際政治と現実を... (607)
4th 新自由主義に抗す... (600)
5th Rituximab therap... (440)

most downloaded items
1st ジャッフェ『ワル... (1870) 1st
2nd セマンティックマ... (1841)
3rd Rituximab therap... (1178)
4th 中和滴定と酸塩基... (682)
5th 中国古代の声と文... (668)

LINK

慶應義塾ホームページへ
慶應義塾大学メディアセンターデジタルコレクション
慶應義塾大学メディアセンター本部
慶應義塾研究者情報データベース