慶應義塾大学学術情報リポジトリ(KOARA)KeiO Associated Repository of Academic resources

慶應義塾大学学術情報リポジトリ(KOARA)

ホーム  »»  アイテム一覧  »»  アイテム詳細

アイテム詳細

アイテムタイプ Article
ID
2017000001-20170119  
プレビュー
画像
thumbnail  
キャプション  
本文
2017000001-20170119.pdf
Type :application/pdf Download
Size :115.0 KB
Last updated :Feb 21, 2019
Downloads : 432

Total downloads since Feb 21, 2019 : 432
 
本文公開日
 
タイトル
タイトル 顧客分析のためのデータ統合手法の開発に関する研究  
カナ コキャク ブンセキ ノ タメ ノ データ トウゴウ シュホウ ノ カイハツ ニ カンスル ケンキュウ  
ローマ字 Kokyaku bunseki no tame no dēta tōgō shuhō no kaihatsu ni kansuru kenkyū  
別タイトル
名前 Data integration approaches for customer analysis  
カナ  
ローマ字  
著者
名前 里村, 卓也  
カナ サトムラ, タクヤ  
ローマ字 Satomura, Takuya  
所属 慶應義塾大学商学部教授  
所属(翻訳)  
役割 Research team head  
外部リンク  
 
出版地
 
出版者
名前 慶應義塾大学  
カナ ケイオウ ギジュク ダイガク  
ローマ字 Keiō gijuku daigaku  
日付
出版年(from:yyyy) 2018  
出版年(to:yyyy)  
作成日(yyyy-mm-dd)  
更新日(yyyy-mm-dd)  
記録日(yyyy-mm-dd)  
形態
1 pdf  
上位タイトル
名前 学事振興資金研究成果実績報告書  
翻訳  
 
 
2017  
 
開始ページ  
終了ページ  
ISSN
 
ISBN
 
DOI
URI
JaLCDOI
NII論文ID
 
医中誌ID
 
その他ID
 
博士論文情報
学位授与番号  
学位授与年月日  
学位名  
学位授与機関  
抄録
本研究では顧客購買履歴データと顧客調査データを結びつけることで顧客分析を行う潜在変数モデルの開発を行った。多くのオンライン小売業者は様々な種類の顧客に関するデータをビジネス活動において収集している。そのような小売業者の中には顧客の購買履歴データだけでなく, 顧客のライフスタイルや意識, 興味などの調査データも収集しているものもある。そして小売業者はこれらのデータを統合して顧客インサイトを得ることに興味がある。そこで本研究では購買商品と顧客ライフスタイルを同時に分析して統合的な顧客インサイトを獲得することのできる潜在変数モデルを提案する。
提案手法はジョイント・トピック・モデルをもとにしたものである。ジョイント・トピック・モデルはLDA(Latent Dirichlet Allocation)を拡張したものであり, 異なる種類のデータを統合して扱うことが可能である。ジョイント・トピック・モデルでは異なるデータ・タイプ間で共通の潜在トピックスを利用してデータを結合することができる。
提案手法の特徴としては以下の3点が挙げられる。一つ目は購入商品とサイコグラフィックス属性を結びつける潜在的特性を抽出して顧客インサイトの獲得を行うことができる点である。二つ目は潜在的な共起関係から, 購入可能性の高い商品と発現可能性の高い顧客サイコグラフィックス属性を予測し, この結果から得られる潜在力をもとにした商品や生活活動のレコメンデーションを行うことができる点である。三つ目は購入商品の分布から, 顧客サイコグラフィックス属性の分布を予測できるため, アンケート調査を実施していない顧客についてもサイコグラフィックス属性の個人別推定を行うことが可能となる点である。
実証分析ではファッションECサイトの顧客の購買履歴およびアンケートデータを利用し, 提案手法の有用性についての検証を行った。その結果, 提案手法は複数データを統合的に利用することで統一した顧客インサイトを得られることを示すことができた。
The author proposes latent variable models which obtain profiles of customers by analyzing the customer purchase data and customer survey data at the same time. Many online retailers have been collecting a wide variety of customer data in their business activities. Not only customer purchase data but also customer survey data, e.g., customers' lifestyles, opinions, and interests, are collected in those processes. Retailers have interests in methods for gaining customer insights by integrating and analyzing those data. The author proposes latent variable models which can extract the unified view of the customers by integrating the customer purchase data and customer survey data.
The proposed approaches are based on the Joint Topic Model, which is the extension of the LDA (Latent Dirichlet Allocation) model and can handle different types of data. In the Joint Topic Model, latent topics are considered to be common topics between different types of data, and latent topics serve to combine these data.
There are three advantages of the proposed method. Firstly, the proposed method can obtain the hidden features which simultaneously represent the underlying motivation of purchasing and the lifestyle of customers. This way, the proposed method to extract the unified view of the customer from the combination of the customer purchasing and customer lifestyle. Secondly, the proposed method can evaluate the prospect of purchasing new items and changing lifestyle from the latent co-occurrence relation of items and lifestyles. Tertiary, the proposed method can predict the customer lifestyle by only using the purchase data.
In an empirical analysis, the author applied the proposed method to the data provided by an online retailer. These data consist of customer purchase data and customer survey data. From the empirical analysis, the author demonstrated that the proposed models are useful for acquiring the customer insight from the multiple data sets.
 
目次

 
キーワード
 
NDC
 
注記

 
言語
日本語  

英語  
資源タイプ
text  
ジャンル
Research Paper  
著者版フラグ
publisher  
関連DOI
アクセス条件

 
最終更新日
Feb 21, 2019 13:10:03  
作成日
Feb 21, 2019 13:10:03  
所有者
mediacenter
 
更新履歴
Feb 21, 2019    インデックス を変更
 
インデックス
/ Public / 塾内助成報告書 / 学事振興資金研究成果実績報告書 / 2017年度
 
関連アイテム
 

ランキング

最も多く閲覧されたアイテム
1位 慶應義塾大学日吉... (948) 1st
2位 「危険の予見可能... (867)
3位 故意犯と過失犯の... (595)
4位 731部隊と細菌戦 ... (419)
5位 新自由主義に抗す... (395)

最も多くダウンロードされたアイテム
1位 アセトアニリドの... (886) 1st
2位 酢酸エステル類の... (673)
3位 731部隊と細菌戦 ... (666)
4位 インフルエンサー... (575)
5位 刑法における因果... (571)

LINK

慶應義塾ホームページへ
慶應義塾大学メディアセンターデジタルコレクション
慶應義塾大学メディアセンター本部
慶應義塾研究者情報データベース