慶應義塾大学学術情報リポジトリ(KOARA)KeiO Associated Repository of Academic resources

慶應義塾大学学術情報リポジトリ(KOARA)

ホーム  »»  アイテム一覧  »»  アイテム詳細

アイテム詳細

アイテムタイプ Article
ID
2017000002-20170351  
プレビュー
画像
thumbnail  
キャプション  
本文
2017000002-20170351.pdf
Type :application/pdf Download
Size :129.0 KB
Last updated :Feb 22, 2019
Downloads : 149

Total downloads since Feb 22, 2019 : 149
 
タイトル
タイトル 高次元データ解析法の開発とそのマーケティング分析への応用  
カナ コウジゲン データ カイセキホウ ノ カイハツ ト ソノ マーケティング ブンセキ エノ オウヨウ  
ローマ字 Kōjigen dēta kaisekihō no kaihatsu to sono māketingu bunseki eno ōyō  
別タイトル
名前 Development of high dimensional data analysis methods and its applications to marketing analysis  
カナ  
ローマ字  
著者
名前 鈴木, 秀男  
カナ スズキ, ヒデオ  
ローマ字 Suzuki, Hideo  
所属 慶應義塾大学理工学部教授  
所属(翻訳)  
役割 Research team head  
外部リンク  
Publisher  
出版地
 
出版者
名前 慶應義塾大学  
カナ ケイオウ ギジュク ダイガク  
ローマ字 Keiō gijuku daigaku  
日付
出版年(from:yyyy) 2018  
出版年(to:yyyy)  
作成日(yyyy-mm-dd)  
更新日(yyyy-mm-dd)  
記録日(yyyy-mm-dd)  
形態
1 pdf  
上位タイトル
名前 学事振興資金研究成果実績報告書  
翻訳  
 
 
2017  
 
開始ページ  
終了ページ  
ISSN
 
ISBN
 
DOI
URI
 
JaLCDOI
NII論文ID
 
医中誌ID
 
その他ID
 
博士論文情報
学位授与番号  
学位授与年月日  
学位名  
学位授与機関  
抄録
近年, インターネットの普及とITの進化により大容量かつ多様なデータが取得できるようになり, 例えばマーケティングの分野において, 大量で多様な購買履歴データの活用が望まれている。このような多様なデータは, 大量の属性や変数を持つ高次元データとして扱うことができる。
本研究では, オンラインかつ, 多変数のアクセスログデータの解析を行う場面を想定し, 多変量時系列データの構造変化をオンラインで分析するための効果的な手法を提案した。具体的には, Yu et al.(2015)の逐次的アルゴリズムを Jerome et al.(2008)のgraphical lassoを用いた結合ベースのベイジアンネットワークに組み込むことでアクセスログデータを対象とした構造変化検知手法を構築した。本提案手法について, ゴルフ関連ECサイトのアクセスログータへの適用だけでなく, 構造が分かっている人工データを適用する実験も行い, 計算時間, 変化検出力に関して優れていることを示した。他の提案手法として, 密度クラスタリング手法(DBSCAN)におけるパラメータ設定が自動化されたAutoEpsDBSCANをさらに拡張し, 完全自動化したShirai-DBSCANを提案した。数値実験や実データによる検証により, Shirai-DBSCANは任意のクラスタ構造や外れ値への対応を可能とすることを示した。
さらに, 高次元データ解析の基礎・理論研究として, 2つの母集団の分散共分散行列が定数倍の関係にあるという帰無仮説を検定するための統計量について, その高次元条件下での漸近的挙動を調べた。また, 多母集団が想定される場合のクラスタリングを伴う回帰分析について議論した。
In recent years, the widespread use of the Internet and the evolution of Information technology enable us to acquire large volumes of various data, where for example, it is desired to utilize a large variety of purchase history data in the field of marketing. Such various data can be handled as high dimensional data that have a large number of attributes and variables.
In this research, we proposed an effective method for online analysis for detecting the structural change of multivariate time series data by assuming the situation where online and multivariate access log data was analyzed. Particularly, a method for detecting structural changes for access log data was constructed by incorporating the sequential algorithm (Yu et al. (2015)) into a joint-based Bayesian network with graphical lasso (Jerome et al. (2008)). As for the proposed method, in addition to the application to the access log data of the golf related EC site, an experiment was also conducted by applying to artificial data whose structure was known for the proposed method, which indicated that the proposed method performs better in terms of the computation time and the power of change detections. As for another proposed method, we expanded AutoEps DBSCAN in the density clustering method (DBSCAN) that automates parameter settings, and then proposed fully automated Shirai-DBSCAN. It was shown that Shirai-DBSCAN can deal with arbitrary cluster structures and outliers though numerical experiments and verifications by real data.
Furthermore, as a fundamental and theoretical study of high dimensional data analysis, statistical testing for the null hypothesis that two population covariance matrices are proportional to each other was investigated under a high dimensional setting, and the asymptotic behavior of its test statistic was discussed. Regression analysis with clustering was also studied under multiple populations.
 
目次

 
キーワード
 
NDC
 
注記

 
言語
日本語  

英語  
資源タイプ
text  
ジャンル
Research Paper  
著者版フラグ
 
本文URI
 
アクセス条件

 
最終更新日
Feb 22, 2019 13:24:31  
作成日
Feb 21, 2019 16:15:09  
所有者
mediacenter
 
更新履歴
Feb 21, 2019    インデックス を変更
Feb 22, 2019    上位タイトル 名前,抄録 内容,著者 を変更
 
インデックス
/ Public / 塾内助成報告書 / 学事振興資金研究成果実績報告書 / 2017年度
 
関連アイテム
 

ランキング

最も多く閲覧されたアイテム
1位 徹底的行動主義に... (629) 1st
2位 ASMRに基づく身体... (384)
3位 ジャニーズのアイ... (314)
4位 新自由主義に抗す... (289)
5位 ユーザの写真・位... (261)

最も多くダウンロードされたアイテム
1位 ジャニーズのアイ... (685) 1st
2位 Instagram解析に... (390)
3位 アセトアニリドの... (347)
4位 都市空間における... (333)
5位 新参ファンと古参... (323)

LINK

慶應義塾ホームページへ
慶應義塾大学メディアセンターデジタルコレクション
慶應義塾大学メディアセンター本部
慶應義塾研究者情報データベース