| Item Type |
Article |
| ID |
|
| Preview |
| Image |
|
| Caption |
|
|
| Full text |
2020000008-20200226.pdf
| Type |
:application/pdf |
Download
|
| Size |
:105.8 KB
|
| Last updated |
:Feb 16, 2024 |
| Downloads |
: 109 |
Total downloads since Feb 16, 2024 : 109
|
|
| Release Date |
|
| Title |
| Title |
機械学習による転位挙動のfew-show detection
|
| Kana |
キカイ ガクシュウ ニ ヨル テンイ キョドウ ノ few-show detection
|
| Romanization |
Kikai gakushū ni yoru ten'i kyodō no few-show detection
|
|
| Other Title |
| Title |
Dislocation detection and velocity measurement using machine learning and particle filters
|
| Kana |
|
| Romanization |
|
|
| Creator |
| Name |
村松, 眞由
 |
| Kana |
ムラマツ, マユ
|
| Romanization |
Muramatsu, Mayu
|
| Affiliation |
慶應義塾大学理工学部専任講師
|
| Affiliation (Translated) |
|
| Role |
Research team head
|
| Link |
|
|
| Edition |
|
| Place |
|
| Publisher |
| Name |
慶應義塾大学
|
| Kana |
ケイオウ ギジュク ダイガク
|
| Romanization |
Keiō gijuku daigaku
|
|
| Date |
| Issued (from:yyyy) |
2021
|
| Issued (to:yyyy) |
|
| Created (yyyy-mm-dd) |
|
| Updated (yyyy-mm-dd) |
|
| Captured (yyyy-mm-dd) |
|
|
| Physical description |
|
| Source Title |
| Name |
学事振興資金研究成果実績報告書
|
| Name (Translated) |
|
| Volume |
|
| Issue |
|
| Year |
2020
|
| Month |
|
| Start page |
|
| End page |
|
|
| ISSN |
|
| ISBN |
|
| DOI |
|
| URI |
|
| JaLCDOI |
|
| NII Article ID |
|
| Ichushi ID |
|
| Other ID |
|
| Doctoral dissertation |
| Dissertation Number |
|
| Date of granted |
|
| Degree name |
|
| Degree grantor |
|
|
| Abstract |
本研究では,引張変形を受けたFe-31Mn-3Al-3Siを透過型電子顕微鏡(TEM)で観察した動画中の転位の速度を定量的に測定する方法を提案している。透過型電子顕微鏡(TEM)で撮影された動画は、視野の移動や不要な線の存在などの問題があり、転位の定量的な分析には適していない。これらの問題を解決するために、機械学習とパーティクルフィルターを採用した。転位の速度を自動で定量的に測定する方法を開発し、これにより、間欠動作などの転位挙動を定量的に評価できるようになった。
In this study, we propose a method to quantitatively measure the velocities of dislocations in the movieobserved by transmission electron microscopy (TEM) of Fe-31Mn-3Al-3Si subjected to the tensile defor-mation. The original TEM movies are not suitable for quantitative analysis of dislocations, because thereare problems such as the movement of fields and the existence of unnecessary lines. In order to solve theseproblems we employ machine learning and particle filter. By the use of them, we developed a method forautomatic and quantitative measurement of the dislocation velocity. As the result, quantitive evaluation ofdislocation behavior, e.g., intermittent motion is achieved.
|
|
| Table of contents |
|
| Keyword |
|
| NDC |
|
| Note |
|
| Language |
|
| Type of resource |
|
| Genre |
|
| Text version |
|
| Related DOI |
|
| Access conditions |
|
| Last modified date |
|
| Creation date |
|
| Registerd by |
|
| History |
|
| Index |
|
| Related to |
|