| Item Type |
Article |
| ID |
|
| Preview |
| Image |
|
| Caption |
|
|
| Full text |
0402-0702-1000.pdf
| Type |
:application/pdf |
Download
|
| Size |
:214.1 KB
|
| Last updated |
:Feb 27, 2024 |
| Downloads |
: 1683 |
Total downloads since Feb 27, 2024 : 1683
|
|
| Release Date |
|
| Title |
| Title |
Linear ordinary differential equations and fermat equations
|
| Kana |
|
| Romanization |
|
|
| Other Title |
| Title |
線形常微分方程式とフェルマ方程式
|
| Kana |
センケイ ジョウビブン ホウテイシキ ト フェルマ ホウテイシキ
|
| Romanization |
Senkei jobibun hoteishiki to Feruma hoteishiki
|
|
| Creator |
| Name |
西岡, 啓二
 |
| Kana |
ニシオカ, ケイジ
|
| Romanization |
Nishioka, Keiji
|
| Affiliation |
慶應義塾大学環境情報学部教授
|
| Affiliation (Translated) |
Professor, Faculty of Environment and Information Studies, Keio University
|
| Role |
|
| Link |
|
|
| Edition |
|
| Place |
|
| Publisher |
| Name |
慶應義塾大学湘南藤沢学会
|
| Kana |
ケイオウ ギジュク ダイガク ショウナン フジサワ ガッカイ
|
| Romanization |
Keio gijuku daigaku shonan fujisawa gakkai
|
|
| Date |
| Issued (from:yyyy) |
2007
|
| Issued (to:yyyy) |
|
| Created (yyyy-mm-dd) |
|
| Updated (yyyy-mm-dd) |
|
| Captured (yyyy-mm-dd) |
|
|
| Physical description |
|
| Source Title |
| Name |
Keio SFC journal
|
| Name (Translated) |
|
| Volume |
7
|
| Issue |
2
|
| Year |
2007
|
| Month |
|
| Start page |
126
|
| End page |
129
|
|
| ISSN |
|
| ISBN |
|
| DOI |
|
| URI |
|
| JaLCDOI |
|
| NII Article ID |
|
| Ichushi ID |
|
| Other ID |
|
| Doctoral dissertation |
| Dissertation Number |
|
| Date of granted |
|
| Degree name |
|
| Degree grantor |
|
|
| Abstract |
A theorem analogous to Picard's theorem on representation of a plane algebraic curve of genus greater than 1 with meromorphic functions will be proved. Its enunciation will be done for elements in a Fuchsian extension defined in this note instead of considering for meromorphic functions. As seen straightforwardly, a differential extension generated with solutions of linear ordinary differential equations turns out to be Fuchsian, hence the theorem deduces a corollary that solutions of linear ordinary differential equations substaintially satisfy no Fermat equations.
種数>1の平面代数曲線の有理型関数による表現に関するピカールの定理の類似が証明される。命題は有理型関数に対してではなく、このノートで定義されるフックス拡大の要素に対して記述される。線形常微分方程式の解で生成される微分拡大はフックス拡大であり、この定理は系として、線形常微分方程式の解はフェルマ方程式を本質的に満足しないという結果を導く。
|
|
| Table of contents |
|
| Keyword |
| Linear Ordinary Differential Equation
|
| Strongly Normal Extension
|
|
| NDC |
|
| Note |
|
| Language |
|
| Type of resource |
|
| Genre |
|
| Text version |
|
| Related DOI |
|
| Access conditions |
|
| Last modified date |
|
| Creation date |
|
| Registerd by |
|
| History |
| Jan 20, 2009 | | コメント, フリーキーワード, 抄録, 本文, キーワード を変更 |
| Feb 27, 2024 | | JaLCDOI,Note 注記 を変更 |
|
|
| Index |
|
| Related to |
|