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Abstract

The forty-year history of quantum computers has taken us through initial curiosity,
naive optimism, then dismay at the scale of proposed error-corrected systems, and
into today’s excitement over the availability of real, but still small and error-prone,
systems [1, 2, 3]. Algorithms have followed a similar roller coaster, arriving at the point
where a demonstration of the implementation of algorithms originally defined as abstract
equations in theory papers are now commonly represented as circuit diagrams [4]. The
challenge now is, for both the hardware and software is scalability, how can we have
more qubits and build larger and more sophisticated programs.

This thesis introduces a collection of software functions (Cirquo), a packaged testing
suite aiming to address the complex challenges of quantum circuit development as
quantum programs scale up to the complexities of classical software. As the field
of quantum software engineering evolves, the need for sophisticated tools that can
handle the nuances of quantum computing becomes imperative. Cirquo stands out by
offering tailored debugging strategies and comprehensive testing capabilities specifically
designed to manage the unique aspects of quantum computation.

In this thesis we discuss the three main types of quantum circuit blocks: Ampli-
tude Permutation, Phase Modulation, and Amplitude Redistribution. Each type presents
specific challenges that we proposed different approaches to address. For Amplitude
Permutation Circuits, we provide techniques to correct amplitude permutations, effec-
tively mimicking classical operations and ensuring circuit accuracy. In the realm of
Phase Modulation Circuits, the suite offers precise calibration tools for phase alterations,
which are critical for the successful execution of quantum algorithms. The most complex
Amplitude Redistribution Circuits benefit from advanced methods that adjust probability
amplitudes to maintain the integrity of quantum states.

The suite enhances quantum circuit debugging by allowing developers to divide cir-

cuits into manageable slices, either vertically or horizontally, categorize these slices,
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and perform targeted tests. This slicing mechanism is vital for isolating problematic
sections and applying focused debugging strategies without disrupting the circuit’s over-
all functionality. Additionally, Cirquo facilitates gate tracking within each circuit slice,
providing developers with detailed insights into gate behavior and interactions.

One of the main features of Cirquo is its automated test generation, which supports six
common subroutines used in quantum algorithms. This feature streamlines the testing
process and enhances the efficiency of detecting and resolving bugs. Moreover, the
suite’s capability to simulate or execute tests on current quantum devices ensures that
developers can optimize circuits for real-world applications.

This thesis also offers strategic advice on creating efficient test cases for different
circuit categories. These test cases are instrumental in pinpointing the location of bugs,
thus significantly reducing debugging time and improving circuit reliability.

In conclusion, this research significantly advances the field of quantum computing
by providing a robust framework for debugging quantum circuits. The introduction of
Cirquo is a pivotal step towards developing reliable quantum computing systems, which
are expected to have profound implications across various domains. The empirical evi-
dence confirms the effectiveness of Cirquo in optimizing quantum circuit performance,
marking a significant milestone in the maturation of quantum software engineering.
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Chapter 1

Introduction

Technology, in general, has become an essential part of today’s world. It plays a vital role
in our daily lives, from medicine to business and education. Every day, new technologies
are created and researched. The more we depend on technology to ease our lives, the
more data technology must process, which will require more computation power.

Technology has grown exponentially over the past decade, as has the size of data and
the complexity of problems it needs to solve. However, the more we advance technology,
the closer we approach the limits of Moore’s law [5]. This growth led many scientists
and industries to invest in quantum computing to answer the question, "What must we
do once we reach the limit of Moore’s Law?" Quantum computing does not only answer
that question; quantum computers will be able to solve problems our computers today
would take a very long time to solve [6]. Quantum computing, however, will not displace
existing classical technology.

One example of a challenging problem for classical computers that quantum com-
puters can solve is factoring of large numbers. Factoring large numbers is a fundamental
problem in cryptography, and traditional encryption methods rely on the difficulty of
factoring large numbers to provide security. For example, the RSA algorithm [7] is built
on the difficulty of factoring large numbers. Classical computers use superpolynomial
running time algorithms for factoring large numbers [8, 9, 10]. This means that as the
size of the number to be factored increases, the time required to factor it grows almost
exponentially. As a result, even relatively small numbers can take traditional computers
a very long time to factor.

In contrast, quantum computers can use Shor’s algorithm [11], which factors a
large number N in 0(log3 N) time, unlike classical computers [12, 13]. Furthermore,
Shor’s algorithm relies on the principles of quantum mechanics to factor large numbers
efficiently [14].

This poses a significant problem for classical computers because many encryption
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methods commonly used today could be vulnerable to attack by quantum computers in
the future. For example, a classical computer would require billions of years to factor
a 2048-bit RSA key, which is the size commonly used for encryption today. However,
using Shor’s algorithm on a quantum computer could factor the same key in hours or
days, depending on the number of qubits, the accuracy of the hardware, the clock speed,
and the modular exponential algorithm.

1.1 The Need for Quantum Computing

Quantum computing is a rapidly advancing field that has the potential to revolutionize
the way we process information. Classical computers rely on manipulating bits, which
can be either a 0 or a 1. However, quantum computing is based on manipulating quantum
bits or qubits, which can be 0 or 1 or a superposition of O and 1. This unique property
allows quantum computers to process information differently and solve complex prob-
lems difficult for traditional computers. Because of the use of superposition, quantum
computers solve problems differently than classical computers do.

One of the most significant advantages of quantum computing is its ability to process
data much faster than traditional computers through quantum algorithms [15]. As a
result, quantum computing is significant in fields such as finance [16, 17], logistics [18],
and data analysis [19, 20]. We can also utilize quantum computing in optimizing supply
chain management [21] or enable companies to manage their inventory and reduce waste
more efficiently. Moreover, cryptography [22, 23, 24] is another area where quantum
computing has the potential to make a significant impact.

Quantum computing also has the potential to revolutionize scientific research by
enabling more complex simulations and modeling, which could lead to significant
breakthroughs in fields such as chemistry [25, 26], physics [27, 28, 29], and mate-
rials science [30]. For example, quantum computing could simulate the behavior of
molecules and materials [31], enabling scientists to develop new drugs [32], catalysts,
and materials with high accuracy and speed [33].

Additionally, quantum computing could significantly affect artificial intelligence
(AI). Traditional Al algorithms rely on large datasets and require significant computa-
tional resources to train, often necessitating extensive time and energy to achieve desired
accuracies and efficiencies [34, 35]. The inherent properties of quantum systems, like
entanglement and superposition, could enable the development of new types of Al algo-
rithms that are not feasible with classical computers. These quantum algorithms could
potentially create more nuanced and complex models that could predict outcomes more
accurately and adapt to new data dynamically.

Many quantum algorithms are designed for different problems; in addition to the
above, the Quantum Algorithm Zoo cites more than 300 papers on those algorithms
when writing this dissertation [36].
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1.1.1 Technical Advantage: Beyond Classical Computing

The most striking technical advantage of quantum computing lies in its potential to solve
specific problems at speeds surpassing current classical computers, dramatically altering
the computational complexity landscape for those problems.

For instance, integer factorization is crucial for encryption. Classical algorithms
for this task, like the general number field sieve [37, 38, 39], have complexities that

1
are superpolynomial, approximately O (exp (( % ) 3 (logn) 5 (loglogn) 5 ) ) , where N is

the number to be factored and n = [log,(N)] is the bit length. In contrast, Shor’s
algorithm [40] can factor integers in polynomial time, roughly O(n?), representing a
speedup for large N.

Similarly, for searching an unsorted database, Grover’s algorithm [41] showcases
quantum advantage by reducing the complexity from O (N) in classical settings [42, 43]
to O(VN) in quantum computing, offering a quadratic speedup.

Quantum computing offers significant advantages over classical computing in terms
of time complexity, particularly for specific computational tasks. One example is the use
of quantum algorithms like the Quantum Fourier Transform (QFT), which calculates the
Fourier transform of a vector size N with time complexity O(n?), where n = log,(N),
compared to the classical complexity of O(N log N) [44]. Furthermore, quantum com-
putational models can achieve tasks such as Gaussian boson sampling in microseconds,
which would otherwise take classical supercomputers thousands of years by offering
asymptotic speedups [45].

Asymptotic Speedups

Asymptotic speedup refers to the comparison of the growth rates of the time complexity
of algorithms as the size of the input n becomes very large. In the context of quantum
computing, asymptotic speedup describes how quantum algorithms can solve specific
problems significantly faster than classical algorithms as the problem size increases.

Classical Algorithms: The time complexity of an algorithm describes the number of
basic operations (or steps) that an algorithm takes as a function of the input size n.
Common complexities include polynomial time (O (n¥)), exponential time (O (2")), and
others.

Quantum Algorithms: Similarly, quantum algorithms have their time complexity,
often expressed in the number of quantum operations (gates) required.

When a quantum algorithm reduces the time complexity from O (n*) to O (n*~!) or
O(+/n), it is called a polynomial speedup. For instance, Grover’s algorithm provides
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a polynomial speedup for searching unsorted databases, reducing the time complexity
from O (n) to O(y/n).

If a quantum algorithm reduces the time complexity from O(2") to O(n), it is
called an exponential speedup. Shor’s algorithm for integer factorization is a prime
example, reducing the time complexity from exponential (O (2")) in classical algorithms
to polynomial (O(n?)) in a quantum algorithm.

For example, classical algorithms for factoring large integers, such as
the general number field sieve, have a sub-exponential time complexity of
O (exp((logn)'3(loglog n)?/3)) as discussed earlier. Shor’s algorithm can factor inte-
gers in polynomial time, specifically O (n?), providing an exponential speedup. Another
example is searching an unsorted database. A classical algorithm requires O(n) steps.
Grover’s algorithm reduces this to O (+/n), providing a quadratic speedup.

Asymptotic speedup is particularly important when considering scalability. While a
quantum algorithm might not be faster for small input sizes due to overhead in quantum
operations, it can become significantly faster as the input size grows. Moreover, asymp-
totic speedup is not universal; it applies to specific problems where quantum algorithms
have a proven advantage. Many problems still lack known quantum algorithms that
outperform classical ones.

Asymptotic speedup highlights quantum algorithms’ potential to solve certain prob-
lems more efficiently than classical algorithms as the problem size increases. It un-
derscores the fundamental differences in computational power between classical and
quantum computing, especially for problems with high computational complexity.

1.1.2 Societal Impacts

Quantum computing presents unique challenges and opportunities in cybersecurity, ne-
cessitating the development of robust, quantum-resistant cryptographic methods to pro-
tect sensitive data against potential quantum attacks. As quantum computers become
capable of breaking traditional encryption systems such as RSA and ECC, which rely on
the difficulty of factoring large numbers and elliptic curve discrete logarithms, respec-
tively, the field of post-quantum cryptography (PQC) has gained significant attention.
PQC aims to develop secure cryptographic systems against both classical and quantum
computers, ensuring long-term data protection. Integrating these systems into current
digital infrastructures is critical, requiring updates to protocols and software to support
new cryptographic standards [46].

Access to quantum computing also raises essential considerations. The high cost
and complexity of quantum hardware limit access primarily to well-funded corporations
and research institutions, potentially creating a "quantum divide" where unequal access
to this powerful technology could lead to imbalances in economic and technological
advancements. Ensuring equitable access involves lowering entry barriers, developing
more accessible quantum computing platforms, and addressing regulatory and policy
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challenges to prevent monopolistic practices and encourage a competitive quantum in-
dustry [1].

Ethical considerations are equally paramount. The deployment of quantum com-
puting in finance, military, and healthcare sectors must be governed by clear ethical
guidelines to prevent misuse and ensure that quantum advancements are aligned with
societal values and benefits. Privacy, consent, and transparency are crucial, especially
as quantum computing may enable new surveillance or data analysis forms that could
infringe on personal liberties. Developing a framework for ethical quantum computing
involves stakeholders from various sectors, including ethics, law, technology, and public
policy, to explore the implications of quantum technologies and establish guidelines that
promote responsible use [47].

The implications of quantum computing extend beyond technical challenges to en-
compass broad societal impacts, making it essential to consider these aspects in tandem
as the technology develops.

1.2 Problems With Quantum Computers

Though many useful quantum algorithms have been developed, we have yet to construct
a quantum computer that can practically solve large problems. For example, no quantum
bit (qubit) implementation can sustain a state with sufficient fidelity from the start of
some computations to the end. 23 years ago, DiVincenzo summarized the physical
conditions necessary for building a practical quantum system in [48],

1. A scalable physical system with reliable qubits.

2. The ability to initialize the state of the qubits to a simple state, such as "the zero
states" [000...).

3. Decoherence times that are much longer than the gate operation time.
4. A hardware-independent set of quantum gates (a universal set).
5. A qubit-specific measurement capabilities.

These conditions provide a clear direction towards building a fault-tolerant quantum
computer. We still can not build one for different reasons [1].
Some of the problems quantum computers face today are:

Decoherence and High Error Rates

One of the main challenges in quantum computing is decoherence [49]. When qubits
interact with their environment, decoherence leads to a loss of information, increasing
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the error rates in the computations. Therefore, maintaining coherence and minimizing
errors is crucial for building reliable quantum computers [50, 51, 52]. Quantum error
correction codes have been developed to counteract the effects of decoherence and other
errors [53, 54, 55, 56]. However, these methods require a significant overhead regarding
the number of qubits and computational resources.

Scalability

Scalability is another primary concern in quantum computing. While small-scale quan-
tum computers with a few dozen qubits have been built and can be accurately simu-
lated, scaling up to thousands or millions of qubits is required to solve practical prob-
lems [57, 58, 59, 60]. One of the main reasons is the increase in the system’s complexity
as more qubits are added. Aside from the number of qubits, the increasing number
of connections and interactions between qubits adds to the difficulty in maintaining
their coherence and controlling their states precisely. However, the biggest problem we
face when scaling quantum computers is the exponential decline in the probability of
successful execution of an algorithm when gates are imperfect.

Algorithm Development and Implementation

The development of quantum algorithms is another area where progress is needed, mainly
on a software and practical level.

While some groundbreaking algorithms, such as Shor’s and Grover’s algorithms,
have implementations for small problems on today’s quantum computers, many quantum
algorithms are still very theoretical and must be implemented practically.

Additionally, discovering new quantum algorithms that can offer significant advan-
tages over classical algorithms for various problems remains an ongoing research goal.
Future research will likely focus on algorithm optimization for NISQ devices, error
correction to enhance algorithm stability, and the exploration of hybrid algorithms that
combine classical and quantum computing elements to perform tasks more efficiently
than purely classical or quantum approaches could alone. This holistic approach to algo-
rithm development is crucial for advancing practical quantum computing applications.

Integration with Classical Systems

Quantum computers are not meant to replace classical computers entirely; they are
expected to complement them by solving problems currently intractable for classical
systems. As a result, seamless integration between quantum and classical computing
systems is crucial for practically implementing quantum computing [61, 62]. Therefore,
developing efficient methods for exchanging information and coordinating computations
between quantum and classical systems is significant for advancing quantum systems.
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Testing and Debugging Quantum Software

Finally, we discuss the reasons for and motivation behind this thesis. Testing and de-
bugging quantum programs presents a unique and formidable challenge in the field of
quantum computing, mainly due to the intrinsic properties of quantum mechanics, such
as superposition and entanglement [63, 64, 65]. Unlike classical computing, where the
system’s state can be observed directly at any point without altering it, measuring a
quantum state inherently changes it, making traditional debugging techniques ineffec-
tive [66, 67]. Moreover, the probabilistic nature of quantum computation means that
outcomes can only be predicted in terms of probabilities rather than certainties, compli-
cating the verification of program correctness [68, 69, 70, 71]. As quantum algorithms
increase in complexity, ensuring their accuracy and reliability demands innovative test-
ing and debugging methodologies that can accommodate the non-deterministic behavior
of quantum systems. This need represents a significant hurdle in developing and deploy-
ing quantum technologies, necessitating new tools and approaches that can handle the
nuanced complexities of quantum programming.

1.3 Contribution of This Dissertation

As quantum computing progresses toward more extensive, scalable systems, significant
gaps remain in the toolchain for quantum software development, particularly in-circuit
testing and debugging. Practical quantum circuit debugging and testing tools must allow
isolation and in-depth examination of sub-circuits to understand their functionality
without incurring exponential costs in computational resources. Such tools are critical
as they enable developers to interface parts of the circuit, prepare and execute tests, and
analyze outcomes efficiently. This necessity becomes more pronounced as quantum cir-
cuits grow in size and complexity, making simulation on classical computers impractical.

The capacity to work with sub-circuits without simulating every possible quantum
state—each with potentially exponential terms due to quantum superposition—is essen-
tial. As quantum circuit design advances and developers transition from simulating small
to medium circuits to tackling larger quantum applications, the limitations of existing
simulators become apparent. This underscores the importance of developing robust,
scalable testing and debugging tools that can handle the increasing complexity without
relying on classical simulation methods.

The dissertation addresses these challenges by introducing practical tools to enhance
quantum circuit comprehension, testing, and debugging. These tools are designed to
be hardware-independent and provide a foundational step towards more sophisticated
quantum software development capabilities. Contributions include a circuit slicer for
managing large circuits, a categorizer to assess circuit parts’ impacts, and various testing
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strategies tailored to different quantum circuits. This approach not only aids developers
in understanding and debugging their circuits but also facilitates the broader adoption
and optimization of quantum computing technologies.

Currently, most circuits being developed are small to medium-medium-sized; the
developers can simulate them after performing some optimization techniques. However,
as we move on to more extensive applications, simulators will fail to keep up with the
increased size of circuits. Making tools such as the ones presented in this work is
essential for the progress of quantum software.

The primary contribution of this dissertation is a practical quantum software tool
that allows developers and quantum enthusiasts to better understand their circuits. When
they know their circuits better, they can debug them whenever a problem occurs. This
work focuses on the software shortage in quantum computing today and aims to be the
first step towards a hardware-independent quantum circuit testing and debugging tool.

The structure of this dissertation is as follows:

Chapter 2: This chapter provides an overview of the fundamentals of quantum
computation, the current state of quantum hardware and software, and the challenges
quantum software faces, particularly in debugging.

Chapter 3: This chapter details the process of implementing a quantum algorithm,
from theoretical foundations to code development and hardware analysis. The
implementation of the clique-finding problem using Grover’s algorithm is used as a case
study to illustrate this process step-by-step.

Chapter 4: This chapter first shows the common bugs in quantum programs and
then presents the proposed suite, explaining its core components, including circuit
categorization, testing methodologies for various types of quantum circuits, and
debugging strategies.

Chapter 5: This chapter demonstrates the application of the proposed suite and
debugging strategies through various examples.

Chapter 6: This chapter reviews the existing literature and related work on quantum
debugging, testing, and software analysis. It also discusses the results and current
limitations of debugging quantum computers.

Chapter 7: This chapter concludes the dissertation, summarizing the proposed work
and outlining potential directions for future research.



Chapter 2

Quantum Information Science

This chapter will discuss the basis of quantum information, its characteristics, and its
operations. Then, we will address the information the reader needs to know to understand
the rest of the thesis, including quantum superposition, interference, entanglement, and
gates.

Before discussing the details of a quantum computer, we need to answer one crucial
question: "What is a quantum computer?" A quantum computer is a computing device
that harnesses the principles of quantum mechanics to perform calculations and solve
problems. Unlike classical computers, which use bits to represent data in binary form
(0 or 1), quantum computers use quantum bits or qubits. Due to quantum mechanics,
qubits possess unique properties, such as superposition and entanglement, which I will
address shortly. Superposition allows a qubit to exist in a combination of 0 and 1
states simultaneously, while entanglement creates strong correlations between qubits
that classical physics cannot describe. These properties enable quantum computers
to perform specific calculations much more efficiently than classical computers. In
addition, by manipulating qubits in superposition and leveraging entanglement, quantum
computers can process vast amounts of information in parallel and solve problems
considered intractable for classical computers.

To understand the basics of quantum computing, we first need to cover the behind-
the-scenes mathematics.

2.1 The Math Used in This Thesis

Quantum information science represents an intersection of mathematics, physics, and
computer science, built on the foundation of quantum mechanics principles. The mathe-
matical framework of quantum information is primarily centered around linear algebra,
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which is fundamental to describing the states and transformations of quantum systems.

2.1.1 Complex Numbers

Complex numbers are integral to the framework of quantum mechanics. Unlike real
numbers, which can be visualized as points on a straight line, complex numbers require a
two-dimensional plane for their representation. A complex number is typically expressed
in the form z = a + bi, where a and b are real numbers, and i is the imaginary number
\/Z — 1), defined by the property i = —1. This seemingly simple extension has profound
implications in various fields of mathematics and physics.

The fundamental component a of the complex number z represents the real number,
whereas the imaginary component b introduces a new dimension, allowing for exploring
phenomena that cannot be described by real numbers alone. The introduction of the
imaginary unit i was initially met with skepticism, as it challenged the existing norms of
mathematics; however, it has since become indispensable in solving equations with no
real solutions, such as x2 + 1 = 0.

Complex numbers have several features:

1. The complex plane representation of numbers: Each complex number is com-
posed of a real part and an imaginary part, where the horizontal axis is for the real
part, and the vertical axis is for the imaginary part.

2. Arithmetic operations:

¢ Addition and Subtraction: For z; = a + bi and zp = ¢ + di, then:
Z1+z22=(a+c)+ (b+d)i. (2.1)
« Multiplication: Using the distributive property and i> = —1:
71 X 22 = (ac — bd) + (ad + bc)i. (2.2)

* Division: To divide by a complex number, multiply by the conjugate of the

denominator:
2 _ (ac+bd) + (bc — ad)i

2 c2+d?

(2.3)

3. Conjugates: The complex conjugate of z = a + bi is z* = a — bi.

4. Magnitude and Argument:
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* The magnitude (or modulus) of z = a + bi:
|zl = Va? + b2, (2.4)

* The argument (or phase) of z, denoted 6, where z can be expressed in polar
coordinates as:

z = |z|e". (2.5)

5. Euler’s Formula: This formula connects exponential and trigonometric functions:
€% = cos(0) +isin(0). (2.6)

For example, the complex number Z = e and its conjugate Z* can be drawn as
in Figure 2.1.
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Figure 2.1: Complex Plane Representation of e’ and .

2.1.2 Vectors and Matrices

Vectors and matrices are fundamental concepts in mathematics and are essential tools
in various fields such as physics, engineering, computer science, and economics. They
provide a systematic way of organizing data and performing calculations on sets of
numbers, enabling the efficient representation and manipulation of linear equations.
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A vector is a mathematical object with both a magnitude and a direction. Vectors
can be considered arrows pointing from one point to another in space. In mathematics,
vectors are often represented as ordered lists of numbers; these numbers indicate the
vector’s components along various axes. For example, a three-dimensional vector v
Vi

might be written as v = | v, [, where v, v2, and v3 are scalar quantities representing the
V3

vector’s magnitude along the X, y, and z axes, respectively.

Operations and Properties of Vectors
¢ Vector Addition: The addition of two vectors a and b results in a vector ¢ that

combines the magnitude and direction of both.

a1+b1
c=a+b=|a+bsyf. 2.7)
a3+b3

* Scalar Multiplication: Multiplying a vector by a scalar k scales the magnitude
of the vector without altering its direction.

kal
ka = |kay|. (2.8)
ka3

* Inner Product (Dot Product): The inner product of two vectors is a scalar value
that quantifies the extent to which two vectors point in the same direction. For two
vectors u and v in R”, where

u=[u,uy,...,u,] and v=_[v,va,...,v,], (2.9)

the inner product (dot product) is defined as:

u-v= Z uv;. (2.10)
i=1
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* Outer Product: For two vectors u and v in R" and R™ respectively, where

Ui Vi
us V2

u=| .1, v=| .1, (2.11)
Un Vm

the outer product u ® v is defined as the n X m matrix:

uivi u1vy - U1Vpy
Uvy uvy -+ UVpy

uv= . . ) . . (2.12)
Upvy UpVa -+ UpVpy

* Tensor Product: The tensor product denoted a®b, results in a higher-dimensional

a b . .
tensor. For vectors a = [al] andb = [ bl] , their tensor product is:
2 2

ayby
ai by
azby
azbs

a®b= (2.13)

* Vector Norm: The norm (or magnitude) of a vector a is given by:

2
1

2

lall = \Ja? + a3 +a3. (2.14)

* Unit Vector: A unit vector u in the direction of a is obtained by dividing a by its

norm.
a
| a+al+al
a
u:ma: a%+a%+a§ . (215)
a5
a*+a’+a?

177273

* Projection: The projection of vector a onto vector b is a vector p that lies along
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b and represents the component of a in the direction of b.
p=—b. (2.16)

A matrix is a rectangular array of numbers arranged in rows and columns. It is a
highly organized grid representing a system of linear equations, transformations in space,
or any data that can be structured into rows and columns. For example, a matrix A with
two rows and three columns is represented as:

ail a2 ais
azy dzp a3

A= , (2.17)

where a;; denotes the element in the i-th row and j-th column.

Operations and Properties of Matrices

* Matrix Addition: Matrix addition is performed element-wise. Two matrices of
the same order can be added by adding their corresponding elements:

ajp+bn an+bip

A+ B =
azi +ba1 ax+bxy

. (2.18)

* Scalar Multiplication of Matrices: Multiplying a matrix by a scalar involves
multiplying each element of the matrix by the scalar:

cA=c

ayy ap| _|can cap (2.19)
az; daz cazy cax

* Multiplication of Matrices: Matrix multiplication is more complex and is defined
when the number of columns in the first matrix matches the number of rows in
the second matrix. The element at the i-th row and j-th column of the product is
obtained by taking the dot product of the i-th row of the first matrix and the j-th
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column of the second matrix.

Yho @tkb Xhoawubie - Xl awbip
Yol @2ubrr  Xyoyanbiy - X aubi

AB = | 216 ke € | k=1 924Dkp (2.20)
Zzzl amibi Zzzl amkbra -+ 2221 amkbkp

Matrix addition is commutative and associative. Matrix multiplication is associa-
tive and distributive over addition but generally not commutative.

* Transpose of a Matrix: The transpose of a matrix is obtained by swapping its
rows with its columns.
AT = [6111 as

. 221
apz an (221)

e Trace of a Matrix: The trace of a matrix is the sum of the elements on the main
diagonal. It is defined only for square matrices.

TI‘(A) =ajyt+axy+...+ay,. (2.22)

* Types of Matrices: There are various types of matrices, such as square matrices,
diagonal matrices, identity matrices, symmetric matrices, and orthogonal matrices.

* Determinant of a Matrix: The determinant is a scalar value that can be computed
from the elements of a square matrix and encodes certain matrix properties.

det(A) =dajiaz —apan].- (2.23)

« Inverse of a Matrix: The inverse of a matrix A is another matrix, denoted A~!,
such that AA~! = I where [ is the identity matrix.

* Eigenvalues and Eigenvectors of a Matrix: An eigenvector of a matrix A is a
non-zero vector v such that Av = Av where A is a scalar known as an eigenvalue.

2.1.3 Probability Theory

Probability theory is a branch of mathematics concerned with analyzing random phenom-
ena. The fundamental object of study in probability theory is the probability measure,
which assigns a numerical probability to events within a certain framework. Here are
some key concepts and operations in probability theory:
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* Sample Space and Events: The sample space is the set of all possible outcomes
of arandom experiment, and an event is a subset of the sample space. For example,
in a dice roll, the sample space is {1,2, 3,4, 5, 6}, and an event could be rolling an
even number, {2,4,6}.

* Probability of an Event: The probability of an event is a measure of the likelihood
that the event will occur, denoted as P(E). It is a number between 0 and 1, where
0 indicates impossibility and 1 indicates certainty.

* Conditional Probability: The probability of an event given that another event
has occurred is called conditional probability and is denoted by:

P(ANB)

P(A|B) = =5

(2.24)

where P(A N B) is the probability that both events A and B occur simultaneously
and P(B) is not zero.

* Independence: Two events are independent if one occurrence does not affect the
occurrence of the other. Mathematically, events A and B are independent if and
only if:

P(ANB)=P(A)P(B). (2.25)

* Random Variables: A random variable is a function that assigns a real number to
each outcome in the sample space. For example, a random variable could assign
the number rolled to each outcome when rolling a dice.

* Probability Distributions: The probability distribution of a random variable
describes how probabilities are assigned to each possible value. Common distri-
butions include the binomial, normal, and Poisson distributions.

* Expected Value: The expected value of arandom variable is the sum of all possible
values, each multiplied by the probability of its occurrence, and is calculated as:

E(X) = pr(x =X). (2.26)

X

For discrete variables or an integral for continuous variables.

e Variance and Standard Deviation: The variance of a random variable is a
measure of the dispersion of its values around the mean, and the standard deviation
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is the square root of the variance. They are calculated as follows:

Var(X) = E[(X - E(X))?*], ox = +/Var(X). (2.27)

* Law of Large Numbers: This law states that as the number of trials in a random

experiment increases, the average of the results obtained from the experiment is
likely to get closer to the expected value.

¢ Central Limit Theorem: The central limit theorem states that the distribution

of the sum (or average) of a large number of independent, identically distributed
variables will be approximately normal, regardless of the underlying distribution.

2.1.4 Hilbert Spaces

A Hilbert space is a key concept in mathematics and physics, particularly useful in
quantum mechanics, signal processing, and functional analysis. Below are the core
attributes that define a Hilbert space:

1.

Vector Space: A Hilbert space is a vector space equipped with vector addition
and scalar multiplication operations that satisfy standard vector space axioms.

. Inner Product: The defining feature of a Hilbert space is the inner product, a

function that assigns a scalar to each pair of vectors. This inner product is denoted
as (x, y), linear in the first argument, conjugate symmetric, and positive definite.

. Norm Derived from Inner Product: The inner product induces a norm on the

space, defined by ||x|| = 4/{x, x). This norm measures the magnitude or length of
vectors.

Completeness: A Hilbert space is complete, meaning every Cauchy sequence of
vectors converges to a limit within the space. This property ensures that the space
is closed under the limit of sequence operation.

. Orthogonality and Orthonormal Basis: Vectors can be orthogonal in a Hilbert

space, with two vectors x and y being orthogonal if (x, y) = 0. An orthonormal
basis is a basis where all vectors are orthogonal to each other, and each has a unit
norm. Every vector in the space can be uniquely expressed as a sum of scalars
times these basis vectors.

. Examples of Hilbert Spaces:

* Euclidean Space: R” or C" with the standard inner product (x,y) =
er'lzl XiYi.
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« Sequence Spaces: /2, the space of all square-summable sequences of real or
complex numbers.

» Function Spaces: L2, the space of square-integrable functions over a given
interval or domain.

Hilbert spaces provide the framework for the mathematical formulation of quantum
mechanics, where states are vectors and observables are operators on these spaces.

In addition to the above concepts (which we will use in this thesis), group theory
helps us understand the symmetries and invariants in quantum systems, which is crucial
for tasks like quantum error correction and entanglement characterization. The concept
of tensor products allows for the description of composite systems, where individual
quantum systems are combined into larger configurations, crucial for the scalability of
quantum computing. Operator theory, particularly the study of unitary and Hermitian
operators, enables the rigorous description of quantum dynamics and quantum observ-
ables.

The rest of this chapter will go through quantum computing basics, including:

All About Qubits.

* Isit0, 1, or both? (Superposition).

* Spooky Action At A Distance (Entanglement).
* No Clones Allowed! (The No-clone Theorem).
* Waves and Interference.

* Decoherence.

* Quantum Gates.

* Measurements.

* Quantum Circuits.

2.2 All About Qubits

A qubit, short for "quantum bit," is the fundamental unit of quantum information and
the basic building block of quantum computers. It is the quantum analog of a classical
bit. Mathematically, a qubit is represented as a vector using the bra-ket notation (Which
will be explained in depth shortly).
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2.2.1 Qubits Mathematically

The bra-ket notation, also known as Dirac notation, is used in quantum mechanics to
represent quantum states and operators. It was introduced by the physicist Paul Dirac
to differentiate the state of a qubit from that of the classical binary O or 1. So, when
speaking of qubits, we say the qubit state is either |0) or |1) (read as ket O and ket 1,
respectively).

Ket vectors represent quantum states and are typically written as |y), where |¢) is a
column vector in a complex vector space. For example:

* |0) represents the quantum state corresponding to the classical bit 0 as a column
1
vector ol

* |1) represents the quantum state corresponding to the classical bit 1 d as a column

vector

,1_ .

a
, where @ and 3

B

are complex numbers. These coeflicients must satisfy the normalization condition:

* |¢) represents an arbitrary quantum state as a column vector

la)® + 181> =1, (2.28)

Bra vectors are the complex conjugate transposes of ket vectors and are typically
written as (|, where (/| is a row vector. The bras for the kets we just mentioned are:

* (0| represents the bra vector corresponding to the quantum state |0) and can be
represented as a row vector [1 O] .

* (1] represents the bra vector corresponding to the quantum state |1) and can be
represented as a row vector [0 1].

* (| represents the bra vector corresponding to the quantum state |/) and can be
represented as a row vector [a* ,8*], where a* and B* are the complex conjugates
of @ and .

We can also use the bra-ket notation to represent vectors’ inner and outer products
(qubits). The inner product of two vectors, (a|b), can be calculated as the dot product
of their corresponding column vectors and will result in a scaler. For example, the inner
product of (0| and |1) can be written as:

oy=[0 1]- [(1)] =0 (2.29)
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The result of the inner product of |0) and |1) is zero because they are orthogonal
states. In quantum computing, we refer to them as the computational basis (Discussed
in depth in the measurement section).

We can use the bra-ket notation to describe the outer product of |a) and |b), resulting

in a matrix. For example, the outer product of |0)(0| corresponds to the matrix (1) 8 .
We also use the bra-ket notation to describe a qubit’s arbitrary state as a linear
combination of the basis states |0) and |1). Using the format: |¢) = @|0) + 8|1) Here, «
and B are complex numbers determining the probability amplitudes of the qubit in the 0
or 1 state.
The probabilities of measuring the qubit in either state are given by the squared
magnitudes of the coefficients, i.e., |@|> and |8|2. The sum of these probabilities is

always 1, ensuring that the qubit will be measured in either the O or 1 state.

2.2.2 Qubits Physically

Conceptually, qubits can be defined using a quantum system with two distinguishable
states. For example, the energy levels are one type of observable of an electron. Two
levels of the energy levels can be used to describe a qubit, such as the ground state |g)
for |0) and the first excited state |e) for |1). Another example is the polarization of a
photon, where we can denote horizontal polarization as |H) and the vertical polarization
as |V).

There are various approaches to construct qubits physically speaking, including:

* Superconducting qubits: These qubits are based on superconducting circuits,
where electrical current can flow without resistance. Superconducting qubits
utilize Josephson junctions to create nonlinear circuits that store and manipulate
quantum information. Companies like IBM, Google, and Rigetti Computing have
built quantum processors using superconducting qubits [72, 73, 74].

* Trapped ion qubits: In this approach, individual ions are trapped using electro-
magnetic fields and manipulated using lasers or microwave radiation. The internal
energy levels of the ions are used to represent the qubit states. Trapped ion qubits
offer long coherence times and high-fidelity operations. Companies such as IonQ
and Quantinuum are developing trapped ion quantum computers [75, 76, 77].

» Topological qubits: Topological qubits rely on anyons particles (particles less
restricted than the two kinds of standard elementary particles, fermions, and bosons
as they acquire any phase when the particles are swapped) in two-dimensional
systems. These qubits store quantum information in the topological properties of
the system, making them inherently more robust against local errors and noise.
Microsoft is one of the companies researching this type of qubits [78, 79, 80].
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* Photonic qubits: These qubits utilize the quantum properties of photons, such as
their polarization or path, to encode quantum information. Photonic qubits can
be manipulated using linear optical elements, such as beam splitters and phase
shifters. We can measure these qubits using single-photon detectors. Xanadu
and PsiQuantum are companies developing photonic quantum computing plat-
forms [81, 82, 83].

* Quantum dots: Quantum dots are semiconductor nanostructures that can trap
individual electrons. The electron spin can be used to represent the 0 and 1 states.
Quantum dots can be manipulated using electric and magnetic fields [84, 85, 86].

* Atomic spin qubits: These are based on atoms’ nuclear or spin states, often in
solid-state systems like diamond or silicon. Researchers can control and read out
the spin states by manipulating the magnetic environment and applying microwave
pulses [87, 88, 89].

Though all these techniques are used to construct qubits physically, it is essential to
understand the difference between what we refer to as logical qubits and physical qubits.

* Physical qubits are implemented using a specific physical system using one of
the approaches above. Physical qubits store and manipulate quantum information
and are subject to noise and errors. The performance and reliability of a quantum
computer depend on the quality of the physical qubits, such as their coherence
time, gate fidelity, and error rates.

* Logical qubits are an abstract representation of qubits in fault-tolerant quantum
computing. They are constructed by encoding the quantum information across
multiple physical qubits using quantum error correction (QEC) [56, 90, 91]. QEC
protects the quantum information from errors and noise by distributing the infor-
mation redundantly and allowing the detection and correction of errors without
directly measuring the qubit’s state.

The ratio of physical qubits to logical qubits can vary depending on the specific QEC
code and the selected error threshold. Generally, the more physical qubits used to encode
a single logical qubit, the more robust the quantum computer will be against errors. De-
veloping practical, large-scale quantum computers requires successfully implementing
logical qubits and quantum error correction techniques.

2.2.3 Qubits Graphically

Bloch Sphere
To have a better understanding of qubits, we needed to create a visual way to
understand them better. The visualization approach we use to represent qubits is Bloch
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spheres. A Bloch sphere is a geometrical representation of the state of a single qubit in
quantum mechanics. It is a three-dimensional sphere with a radius of 1 on which the
pure states of a qubit can be visualized as points on the sphere’s surface. A qubit can be
represented as a linear combination of the basis states |0) and |1): [¢) = @|0)+]|1). The
complex numbers « and 8 are the probability amplitudes of the qubit being in the O or
1 state. The probabilities of measuring the qubit in either state are given by the squared
magnitudes of the coefficients, i.e., |a|? and | 8|, with the constraint that |a|? + |8]> = 1.

A Bloch sphere represents a qubit’s state using coordinates (6, y) as follows: [¢) =
cos(%)lO) +el? sin(g)ll) Here, 6 (theta) ranges from O to 7, and ¢ (phi) ranges from 0
to 27. The north pole of the Bloch sphere corresponds to the |0) state, and the south
pole corresponds to the |1) state, as can be seen in Figure 2.2. The superposition states
lie on the surface between these poles, with the angles 6 and ¢ determining the specific
state.

1y - | — 1)
Figure 2.2: Bloch sphere representation of states |0), |1), |+), |—),|i), and| — 7).

While invaluable for visualizing the state of one qubit, the Bloch sphere encounters
limitations with multi-qubit systems. It cannot directly represent states involving more
than one qubit, essential for understanding quantum entanglement and other multi-qubit
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Figure 2.3: The Q-sphere representation of [000) —|001) —|010) +|011) —|100) +|101) +
[110) — [111).

phenomena. The sphere’s framework is restricted to two levels (or states), and thus, it
cannot accommodate the visualization of higher-dimensional quantum states in complex
quantum computing scenarios [92].

Q-Sphere

The Q-sphere is an approach used to represent the state of a system of one or more
qubits by associating each computational basis state with a point on the surface of a
sphere. Each node’s radius is proportional to the probability of its basis state. In
contrast, the node color indicates its phase according to the phase color circle in the
bottom right corner of the Q-sphere Figure 2.3.

In a Q-sphere, we place the state where all qubits are O at the sphere’s top (north
pole) and where all qubits are 1 at the bottom (south pole). Other states are arranged in
between, forming circles of latitude based on their Hamming distance from the O states.
For example, if we have a circuit constructing a system of 3 qubits in superposition,
except that states [001), |010), |100), and |111) have phase equal to x, the visualization
of the Q-sphere of that system can be seen in Figure 2.3.

The Circle Notation

Circle notation is a graphical method for representing quantum states, particularly
useful in quantum computing and information science. This visualization technique
simplifies the understanding of complex quantum states by depicting them in a more
intuitive and accessible manner, bridging the gap between abstract mathematical concepts
and their practical applications.

In an n-qubit system, there are 2" possible basis states, each represented by a circle.
These circles visualize the complex numbers that describe the quantum state’s amplitude
and phase. The magnitude of the amplitude is shown as the filled area within a circle,
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Figure 2.4: The circle notation representation of V2/V3|0) + 1/v3e"/2|1).

while the phase is indicated by the angle of a radial line within the circle relative to a
vertical line. This approach allows learners to grasp quantum algorithms’ basic ideas
and mechanisms without delving deeply into linear algebra and matrix operations.

For example, a one qubit state [y) = «|0) + 5|1) can be visualized using two circles.
The magnitude of @ and 8 are represented by the radii of the inner circles, and their
phases are shown as the angles of lines inside these circles. When extending this notation
to multi-qubit systems, each basis state is represented by a corresponding circle, and the
overall state is depicted as a superposition of these circles.

The dimensional circle notation (DCN) is an extension of the circle notation [93].
The DCN builds upon the circle notation, which graphically represents quantum states
using circles to depict complex numbers, with magnitudes shown as filled areas within
the circles and phases as angles relative to a vertical line, as seen in the example in
Figure 2.4.

While the circle notation makes the visualization of quantum states more accessible,
it has some limitations. For instance, the action of quantum gates on the states is not al-
ways intuitive and may require additional effort to understand. Moreover, distinguishing
between separable and entangled states directly from the circle notation can be challeng-
ing. Another limitation of the circle notation is the ability to visualize the state of a large
number of qubits effectively.

Despite these limitations, circle notation is a powerful tool for introducing quantum
computing concepts. It aids in education and research by providing a more intuitive way
to visualize and comprehend quantum states and their dynamics.

2.3 The Fundamentals

23.1 IsIt0,1, Or Both? (Superposition)

One of the fundamental principles of quantum mechanics is superposition. Quantum
superposition states that a quantum system can exist in multiple states simultaneously
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until a measurement is made. In classical physics, a system can only be in one well-
defined state at any given time. However, particles such as electrons, photons, or qubits
can exist in a linear combination of multiple states in quantum mechanics. This linear
combination is described mathematically as the "wave function" or "state vector" of the
qubit(s). For example, as mentioned in Subsection 2.2, a qubit can be in state |0) or
|1), but it can also be in a superposition of both the |0) and |1) states, represented by
the following state vector: |¢) = «|0) + B8|1) Here, @ and B are complex numbers that
determine the probability amplitudes of the qubit in the |0) and |1) states, respectively.

The squared magnitudes of the corresponding amplitudes give the probabilities of
measuring the qubit in either state: P(0) = |@|> and P(1) = |B|>. Superposition
allows quantum systems to explore multiple possibilities simultaneously, so quantum
computers outperform classical computers in specific computational tasks. Qubits can
be in superposition during the computations until a measurement is done. Once a
measurement is performed on a quantum system in a superposition, the system collapses
into one of the possible states with a probability determined by the amplitudes.

2.3.2 Spooky Action At A Distance (Entanglement)

Entanglement is a unique quantum phenomenon that occurs when two or more particles
become correlated so that the state of one particle cannot be described independently of
the other particles, even when large distances separate them. Einstein has described this
correlation as "Spooky action at a distance." Because these particles are entangled, they
somehow "know" the other particle’s state without communication. This correlation is
stronger than any possible classical correlation, fundamental to quantum mechanics, and
a basis for many quantum algorithms, such as teleportation.

Entanglement has been experimentally verified in many quantum systems, including
photons, electrons, and atoms. These systems can be used to construct qubits as discussed
in Subsection 2.2.

Mathematically, we can describe one joint state of two entangled qubits as |®*) =
35100} +[11)).

Entanglement is a key resource in quantum information processing, quantum com-
puting, quantum communication, and quantum cryptography.

A multi-qubit state that can be described as a product of the states of one qubit is
called separable state.
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Separable States

Consider a composite quantum system composed of two subsystems, A and B. The state
of this system is separable if it can be expressed as:

) = |da) ® |dB), (2.30)

where:
* |) is the entire system’s state.
* |¢4) is the state of subsystem A.
* |¢p) is the state of subsystem B.

* ® denotes the tensor product, which combines the states of A and B into a single
state vector for the composite system.

Properties:

* No Entanglement: In separable states, measurements on one subsystem do not
affect the outcomes of measurements on another subsystem, reflecting a lack of
entanglement.

* Independent Subsystems: Each subsystem can be described completely by its
state vector.

For two qubits, consider states |0) and [1) as the basis states for each qubit. A
separable state of this two-qubit system could be:

) =10)4 ® [1)p (2.31)

This state indicates that qubit A is definitively in the state |0) and qubit B in |1),
independently of each other.

A separable state can also involve superpositions if those superpositions pertain to
individual subsystems. For instance:

1
V2

1

=10 - |1>>B) 2.32)

|w>:( <|0>+|1>>A)®(

Each qubit is in a superposition, but the overall state is still separable as there is no
entanglement between the qubits.
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Entangled States

There are many ways we can construct entangled states. Some famous and widely used
in quantum algorithms entangled states include:

* Bell states (EPR pairs) are maximally entangled two-qubit states, meaning the
qubits are as strongly correlated as possible. There are four possible Bell states:

@) = % (1004 ®10)p +[1)4 ® [1)B)

o) = % (1004 @ 10)5 — |1)4 ® [ 1))

[¥*) = % (10)a ® [1)p +[1)4 ® |0)p)

) = %2 (1004 @ |1)5 — |1)4 ® [0))

* W states [94] are entangled states involving three or more qubits. W states exhibit
a more robust form of entanglement by maintaining some entanglement even if
one qubit is measured. The general equation of an N-qubit W state can be written
as: |Wy) = VLN(|100...0>+ |010...0) +---+]000...1))

* GHZ state (Greenberger-Horne-Zeilinger state) [95] is an entangled quantum state
that involves three or more qubits. It is named after its discoverers, Daniel Green-
berger, Michael Horne, and Anton Zeilinger. An N-qubit GHZ state can be written
as:

1
=—([0...0)+]1...1 2.33
|GHZy) \/§(| )+ ) (2.33)

* Cluster states are entangled states that can be generated in a lattice-like structure
of qubits [96].

These are just some examples of entangled states. However, we can create different
entangled states based on the system we decide to use and the target application.

The Basis States

Basis states provide the framework within which quantum superpositions and entangle-
ments are defined. A basis set is a set of linearly independent vectors that span the vector
space associated with a quantum system. Basis states are the individual vectors of this
set. The most commonly used basis for qubits, the quantum analogs of classical binary
bits, is the computational basis.
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The computational basis, also known as the standard basis, consists of all possible
states in which a set of qubits can be, each represented by a different combination of Os
and 1s.

For example, the computational basis for a single qubit is {|0), | 1)}, where:

-l -

2.3.3 No-cloning Theorem

The no-cloning theorem states that creating an exact copy of an arbitrary unknown
quantum state is impossible. Meaning there is no unitary operator U such that for an
arbitrary quantum state |¢/) and a fixed state |e):

U(ly) ®le)) = v) © |¢) (2.34)

The proof of the no-cloning theorem relies on the linearity of quantum mechanics.
Assume there exists a unitary operator U that can clone any arbitrary quantum state |¢/).
If we have two arbitrary quantum states |/1) and |,) and U can clone these states, we
must have:

U(lg1) ®le)) =) ® [y1). (2.35)
U(ly2) ® le)) = [¥2) ® |¢2). (2.36)

Now consider a superposition of |¢1) and |y3):
) = aly) + blya). (2.37)

If we apply U to the superposition state it gives:
U((alg1) +bly2)) ® |e)) = aU(ly1) ® |e)) + bU([y2) ® |e)). (2.38)

=a(ly1) ® [y1)) +b(|¢2) ® [Y2)). (2.39)

However, if U were a perfect cloning operator, it should produce:

U((alyr) +bly2)) ® le)) = (aly1) + bly2)) ® (alyr) + bly2)). (2.40)

Since the two expressions for the application of U to the superposition are not
equal unless 1) and |)) are identical or orthogonal, leading to a contradiction. This
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concludes that there is no such unitary operator U, proving the no-cloning theorem.

2.3.4 Interference

Interference is a concept existing in both classical and quantum physics. It describes
the phenomenon where two or more overlapping waves combine to produce a new wave
pattern from the superposition principle. Interference can be constructive, where the
amplitudes of the waves add up, or destructive, where the amplitudes cancel each other
out. Quantum particles, such as electrons and photons, have a dual nature; they exhibit
wave-like and particle-like properties. As a result, these particles can interfere with
themselves and each other, as demonstrated by the double-slit experiment.

Barrier

Light sourceI

(photons)

Figure 2.5: A simple demonstration of the two-slit experiment.

The two-slit experiment was initially observed and explained using classical coherent
waves. However, the paradox of a single particle interfering with itself illustrates wave-
particle duality. When many single-photon events are accumulated, they produce the
same interference pattern as seen with classical coherent waves (Figure 2.5).

Mathematically, the wave function describing the particles can be represented as
Y (x,t) where x is the position on the screen and ¢ is time.

The interference pattern that appears on the screen is because the wave function from
Slit A and the one from Slit B overlap and interfere with each other.

The interference pattern is described mathematically by the superposition of the wave
functions from both slits as ¢ (x, 1) = Y4 (x,t) + Yp(x,1).

After passing through the slits, the two parts of the wave function interfere with each
other. The interference pattern depends on the relative phases of the wave functions from
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each slit, which evolve. The resulting wave function at the screen, iy (x,t), determines
the probability distribution of detecting particles at different positions x.

Now, let’s consider what happens when we try to detect which slit the particle goes
through. To do this, we place detectors near each slit to determine which path the particle
takes.

When we introduce detectors, something interesting happens. The interference
pattern disappears, and we see a pattern that corresponds to particles passing through
either Slit A or Slit B, which is what we would expect to see if particles did not have a
dual nature.

In quantum algorithms, qubits are manipulated to create superposition states. Then,
interference patterns are designed to amplify the probability of obtaining the correct
solution while canceling the probability of incorrect solutions. We will discuss how
quantum algorithms work further in Chapter 3. For the remainder of this thesis, we will
only address ¥ (x, 1) as ¥ (x) since we are focusing on the computational aspects only.

2.4 Building Quantum Circuits

2.4.1 Quantum gates

Quantum gates are operators we use to manipulate the state of a qubit. There are many
quantum gates; you can even create custom gates once you fully understand the basic
ones. Quantum gates are the building blocks of quantum circuits. They are operators
that perform a specific function on one qubit or more. They are the quantum equivalent
of classical logic gates in all technology today. However, unlike most classical logic
gates, quantum gates are reversible, which means you can undo their effect by reapplying
on the same qubits.

Mathematically, quantum gates are represented using unitary operations. Unitary
operations are then described using square matrices. On the other hand, the state
of qubits is represented as a vector. Geometrically speaking, vectors usually have an
amplitude and a phase representing their location in space. In higher-dimensional spaces,
the phase can be described by a set of angles corresponding to the spherical coordinates
of the vector.

To find the results of applying a gate to a qubit in any state, we multiply the gate’s
matrix by the qubit’s state vector (Figure 2.6).

Before we go further, we will discuss unitaries a bit. A unitary is a type of linear
transformation that preserves the inner product of vectors. Unitaries are invertible if U
is a unitary operator, then there exists a unitary operator U' such that U'U = UU" =1,
where I is the identity operator.

Any unitary operator has the following characteristics:
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Quantum
STATES | GATES
o=l F =)

; )
=[] pon=2[ ]

Figure 2.6: A mathematical representation of qubits and gates.

1. Preservation of Norm: A unitary operator U acting on a vector |) preserves
the norm of the vector, which means that ||U|¥)|| = ||[¢)]|, where ||| is the norm of a
vector.

2. Preservation of Inner Product: If [) and |¢) are two quantum states, then the
inner product is preserved under the action of a unitary operator: (Uy|U¢p) = (¥|¢).

3. Hermitian (Self-Adjoint) Operators: a unitary operator is also Hermitian in
finite-dimensional vector spaces. This means that U' = U.

4. Orthonormal Basis Transformation: Unitary operators can perform transfor-
mations between different orthonormal bases in vector spaces.

One qubit Gates

Firstly, we will address gates that operate on single qubits. As we will see, those gates
operate on only one qubit at a time and can be extended to run on more qubits.
There are different one qubit gates; the basic ones are:

* Pauli gates:
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— X gate (a bit-flip or NOT gate) flips the state of a single qubit:

01
=i
For example, applying the X gate flips the O state to 1|0) :  X|0) = |1)
and vice versa|l) :  X|1) =0)

The rotation form of the X gate is:

_ [ cos(6/2) —isin(6/2)
R.(0) = (—i sin(0/2)  cos(6/2) )

For example, for 6 = 7:

R.(m) = (0 Bi) = —iX

—i

Since the difference here is only in the global phase, the X gate and the R, ()
are equivalent.

— Z gate (also called a phase-flip gate) flips the phase of the qubit.

1 0
2|y |
The Z gate does not change the O state:|0) :  Z|0) = |0)
However, it flips the phase of the 1 state|1) :  Z|1) = —|1)

The rotation form of the Z gate is:

e—i9/2 0
R (0) = ( 0 eie/z)

For example, for 6 = 7:

R = (3 )
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— Y gate combines the X and Z effects and introduces a complex phase.

Applying the Y gate to the O state adds a complex phase|0) :  Y|0) =i|1)
while it adds a negative complex phase to the 1 state|1) : Y|[1) = —i|0)

The rotation form of the Y gate is:

_ [cos(8/2) —sin(0/2)
Ry(0) = (sin(9/2) cos(6/2) )

0 -1
Ry(m) = (1 0 )
» Hadamard gate (H gate) creates superposition by transforming the basis states |0)

and |1) to states that are an equal combination of |0) and |1) with different phases,
which are states |+) = H|0) = %(lO) +|1)) and |-) = H|1) = %(lO) —[1)).

For example, for 6 = 7:

» Phase gates are used to manipulate the relative phases of qubit states in quantum
algorithms.

— The S gate adds a /2 phase to the |1) state.
— The T gate adds a /4 phase to the |1) state.

We can describe these gates using matrices or using Dirac notation. Table 2.1 shows
the different gates, their matrix representation, and their effect on the computational
basis.

Multi-qubit Gates

When we work with qubits, we often need to use more than one qubit at a time to perform
computations. Hence, the one-qubit gates can be used to build multi-qubit gates. Using
different approaches, we can create a controlled version of the one qubit gates. Two of

the most commonly used multi-qubit gates are the two-qubit and three-qubit extensions
of the NOT gate.

* CNOT gate (Controlled-NOT gate) is a two-qubit gate that flips the state of the
second qubit (target) if and only if the first qubit (control) is in the |1) state. The
truth table for the CNOT gate is 2.2.
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Gate = Matrix Representation Gate Applied to Basis States
0 1
X (1 0) X|0) = 1), X|1) = [0)
0 —i . .
Y i 0 Y|0) =-i|1), Y|1) =1|0)
1 0
z o 5 210 = 10), ZI1) =11y
1 1
L - L =L ,
H v5(1 _1) H|0) = (10 + 1)), H|1) = L([0) - 1))
s o ?) $10) =10), S11) = 11
1 0 1 in/4 1
T 0 eizr/4 T|0> = |0>’ Tl > =e | >

Table 2.1: Some one qubit gates, their matrix representation, and their effect on the
computational basis.

» Toffoli gate (CCNOT gate) is a three-qubit gate that performs a controlled-
controlled-NOT operation. It flips the state of the third qubit (target) only if
both the first and second qubits (controls) are in the |1) state. The truth table for
the CCNOT gate is in Table 2.2.

2.4.2 Measurements

Measurement in quantum mechanics represents the process of extracting information
from a quantum system, which leads to the collapse of the system’s wave function.
Mathematically, measurements are described by projection operators, and the outcomes
are probabilistic.

Because of the probabilistic nature of quantum systems, we cannot predict the out-
come we will obtain when we measure a quantum system. Instead, we can only compute
probabilities for various possible outcomes.

Now let’s clarify some of the concepts in that definition:

* Wavefunction Collapse: When a measurement is made, it collapses the wave-
function to one of the possible eigenstates of the observable being measured.
This collapse is random, and the probability of collapsing to a particular state is
determined by the coeflicients of that state in the superposition.

* Projection Operators: These are operators that project the quantum state onto
one of the eigenstates of the observable. The square of the absolute value of
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Gate Input | Output
CNOT | |00) 100)
|01) | [10)

[10) | [11)

I11) | [10)

CCNOT | |000) | |000)
|001) | |001)

|010) | |010)

|011) | |011)

[100) | [100)

[101) | |101)

[110) | [111)

[111) | [110)

Table 2.2: Truth table for the CNOT and CCNOT gates

the projection of the quantum state onto the corresponding eigenstate gives the
probability of obtaining a particular measurement outcome.

Projection operators play a pivotal role in the theory of quantum measurements, where
they mathematically formalize the outcome of measuring quantum states. A projection
operator P is associated with each possible outcome of a quantum measurement and is
defined for a particular eigenstate i) of an observable as:

P = 1)yl (2.41)

The projection operator acts on the quantum state space to project any state |¢) onto
the subspace spanned by |¢). This operation results in the component of |¢) aligned
with [y), effectively isolating this measurement outcome.

Two essential properties characterize projection operators:

« Idempotence: P> = P. This property signifies that once a state has been projected
onto |¢), further applications of P do not change the state, which aligns with the
stable post-measurement state in the same projected subspace.

« Hermiticity: P" = P. This indicates that the projection operator is self-adjoint, a
necessary condition to represent an observable in quantum mechanics.

In the quantum measurement process, the projection operator quantifies the state
reduction or collapse mechanism. Upon measuring an observable and obtaining a
specific outcome represented by |i/), the state of the system instantaneously reduces to



Chapter 2. QUANTUM INFORMATION SCIENCE 36

the state |y/), which is mathematically described by the action of P on the system’s initial
state:

|9) = Plg) = [¥)(¥l¢) (2.42)

Probability = ||(¢|¢)]|? (2.43)

The use of projection operators underscores the probabilistic nature of quantum
mechanics and the non-deterministic outcomes of measurements.

Quantum states can be represented in various bases, corresponding to the eigenstates
of different observables. When a quantum state is measured, the basis of the measurement
determines the possible outcomes and their associated probabilities.

Projection Operators and Measurement Basis

For an observable with eigenstates {|a;)}, the projection operator associated with
each eigenstate |a;) is defined as:

P; = |a;){a;|

This operator projects any quantum state |¢/) onto the direction of |a;).
The process of measuring a quantum state |i) with respect to an observable involves:

1. Projection: The state |¢) is projected onto each eigenstate |a;) using the projection
operator P;:

Pilyr) = lai){ailv)

2. Probability Calculation: The probability that the measurement results in the
state |a;) is given by:

Probability(a;) = [|P;|)|1* = [{aily)|?

3. Outcome: The outcome of the measurement is one of the eigenstates |a;), with
the system collapsing to this state post-measurement.

Changing the measurement basis to another set of eigenstates {|b )} associated with
a different observable changes the projection operators to:

Qj =1b;){bjl
The measurement process similarly involves:

Probability (b;) = [|Q;|¥)|I* = [(b|w)]?
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Now, let us take an example of performing measurements on a qubit on a different
basis. Consider a qubit in the |+) state:

1 1
= —|0) + —|1). 2.44
) = 510+ =I1) (2.44)

Measuring |/) in the Computational Basis

The computational basis consists of the states |0) and |1). When measuring |¢) in this
basis, the probability of obtaining each outcome is given by the squared magnitude of
the inner product between |i/) and the basis states.

The probability of measuring |0) is:

P(0) = [{0ly)|? (2.45)

The inner product (O|y) is:

1 1 1 1 1 1 1
Olyy = (0] | —=|0) + —=|1)| = —=(0]0) + =(0|]I)=— -1+ —=-0=— (246
<|w><|(\/§|>+\/§|>) \/§<|>+\/§<|>\/§ +\/§ \/5( )
Thus:
P(0) = 'i ] (2.47)
V2l 2 '
Similarly, the probability of measuring |1) is:
P(1) = 1) (2.48)
The inner product (1) is:
1 1 1 1 1 1 1
Hy) =] |—=|0)+ —=|1)| = —={1|0) + —=(1|I)=—= -0+ —-1=— (249
<|l//><|(\/§|>+\/§|>) \/§<|>+\/§<|>\/§ +\/§ \5( )
Thus:
P(l)—'iz—l (2.50)
=15 =2 )
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Therefore, the output probabilities for |¢) in the computational basis are:

P(0) = (2.51)

P(1) = (2.52)

SN S

Measuring |/) in the |+, —) Basis

If we measure |¢) in the basis formed by |+) = %(|O> +|1)) and |-) = %(lO) - 1)),
the probability of obtaining each outcome is given by the squared magnitude of the inner
product between |¢) and the new basis states.

The probability of measuring |+) is:

P(+) = [(+ly)? (2.53)

The inner product (+|¢) is:

(+ly) = (+] (—I0> + —|1>) (L(<0l + <1|)) (—I0> + —|1>) (2.54)

v2 vz )\ V2 V2

—i{—mm+ﬁmwiﬂm imﬂ (2.55)
22 T e |
1 1
:5(1+0+0+1):5(2):1 (2.56)
Thus:
P(+) =1 (2.57)
Similarly, the probability of measuring |—) is:

P(-) = [(~|y)? (2.58)

The inner product (—|¢) is:

(=ly) = (- I(T|0> TH)) (%((W—(ll)) (TIOHTID) (2.59)
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1 (1

1 1 1
N \/5<0|0> - 6<0ll> + 6<1|0> - E(Hl)

1 1
=3 (1-040-1)=5(0) =0

Thus:
P(-)=0

Therefore, the output probabilities for [¢) in the |+, —) basis are:

P(+)=1
P(-)=0

What happens when we try to measure |0) or |1) in the |+, —) basis?
Measurement of |0)

* Probability of measuring |0) as |+):

11
P(|0y in |+)) = [(+|0)|* = '— =5
V2 2
* Probability of measuring |0) as |—):
17 1
P(|0) in|—>)=|<—|0>|2=‘— =5
\2 2
Measurement of |1)
* Probability of measuring |1) as |+):
11
p(|1>m|+>):|<+|1>|2:'_ ==
V2 2
* Probability of measuring |1) as |—):
S

P(|1)in |-)) = [(~|I* =

1
A -2

39

(2.60)

(2.61)

(2.62)

(2.63)
(2.64)
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Measurement in the |/, —i) Basis

The basis states |i) and | — i) are defined as:

1

)= ~510) +111) (2.65)
|~ i) = %(m i) (2.66)

When measuring |¢) in this basis, the probabilities can be calculated using the inner
product of |¢) with |i) and | — 7).

2.4.3 Quantum Circuits

A quantum circuit is a sequence of quantum gates applied to a set of qubits in a specific
order to perform quantum computation. Quantum circuits can be represented as a series
of time-ordered operations where time flows from left to right in the circuit diagram,
and the gates are applied in that order. Quantum circuits typically begin with qubits
initialized in the |0) state. Then, various quantum gates, such as one-qubit gates (e.g.,
Pauli-X, Pauli-Y, Pauli-Z, Hadamard) and multi-qubit gates (e.g., CNOT, Toffoli), are
applied to manipulate the qubits’s states.

After quantum operations are applied, the final state of the qubits represents the
computation’s result. Then, measurements are performed on the qubits, collapsing their
state to a classical value (0 or 1) based on the probability distribution determined by the
sequence of gates used. The current circuit model is used to implement algorithms on
various NISQ devices. One of the platforms that can be used to create quantum circuits
is Qiskit [97]. To create the different circuits for the four Bell states (|¥+), |¥-), |®+),
and |®-)), we can follow the code in Listing 2.1.

import qiskit as gk
from giskit.visualization import plot_circuit_layout, plot_histogram,

plot_bloch_multivector

5 from giskit import Aer, transpile, assemble

s # Function to create Bell state circuit

6

def create_bell_state(qc, qubitl, qubit2, state):
gc.h(qubitl) # Apply Hadamard to the first qubit
gc.cx(qubitl, qubit2) # Apply CNOT with first qubit as control
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and second as target

if state == ’'Phi-':
gc.z(qubitl)

elif state == ’Psi+’:
gc.x(qubit2)

elif state == ’Psi-’:
gc.x(qubit2)
gc.z(qubitl)

# Create a Quantum Circuit for 2 qubits
bell_states = [’Phi+’, ’Phi-’, ’Psi+’, ’Psi-"]

circuits = []

for state in bell_states:
gc = gk.QuantumCircuit (2, 2)
create_bell_state(qc, 0, 1, state)
gqc.measure ([0, 1], [0, 11)

circuits.append(qc)

# Display the circuits
for i, qc in enumerate(circuits):
print (£f"Bell State {bell_states[i]}:")

display(qc.draw(’mpl’))
Listing 2.1: Qiskit code to generate the different Bell states.

Running this code block will display the circuits corresponding to the different states,
as seen in Figure 2.7.

2.5 Decoherence

Before we address decoherence, let us first define what is meant when we say "quantum
coherence." Quantum coherence refers to the ability of a quantum state to maintain
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Bell State Phi+ Bell State Phi-
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Figure 2.7: The different circuits constructing and measuring the four Bell states.

its superposition and entanglement over time despite interactions with the surrounding
environment and the effects of thermalization (which will be explained shortly). Itis a
fundamental property that underpins many of quantum systems’ unique behaviors and
applications.

Decoherence occurs when a quantum system interacts with its surrounding envi-
ronment, including other particles, electromagnetic fields, or other external influences.
These interactions introduce entanglement between the quantum system and the envi-
ronment.

Due to the interactions with the environment, the quantum system becomes entangled
with it, causing the quantum coherence to dissipate.

When a quantum system interacts with its environment, its state becomes intertwined
with the environment’s state. This entanglement means that information about the
system’s state spreads into the environment, effectively causing the system to lose its
distinct quantum properties.

To make it easier to understand, imagine a quantum system as a perfectly balanced
coin on its edge, representing a superposition of heads and tails. If this coin interacts
with the environment (like being nudged by the wind), it starts to tilt towards heads or
tails, losing its balanced superposition. The interaction with the environment makes the
coin fall to one side, similar to how quantum states lose their superposition and become
more like classical states.

As aresult of these interactions, the system no longer behaves like a quantum system
in a superposition of states but rather like a classical system in a definite state. We observe
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this transition from quantum to classical behavior as decoherence. The unique quantum
interference effects disappear, and the system’s behavior becomes more predictable and
classical.

Decoherence is generally an irreversible process. Once a quantum system becomes
entangled with its environment, restoring the original quantum coherence is challenging
(if not impossible).

To explain the effects of decoherence mathematically, we must first talk about density
matrices.

A density matrix often denoted as p, is a mathematical representation used in quan-
tum mechanics to describe the statistical state of a quantum system, particularly in
situations where the system may be in a mixed state. It is a Hermitian, positive semi-
definite matrix (a symmetric matrix with non-negative eigenvalues) that encapsulates
the information about the quantum state, including pure and mixed states. Pure states
represent quantum systems in definite, well-defined states, while mixed states describe
probabilistic combinations of different pure states.

A density matrix p can be expressed as:

p= Z pil P (Wil (2.67)

Where:

* p is the density matrix.

* p; represents the probability of the system being in state |¥;).
* |¥;) are the pure states that compose the mixed state.

The density matrix p is a Hermitian matrix (p = p'), which has only non-negative
eigenvalues because it represents a valid physical state. Moreover, the trace of p is equal
to 1 because it is normalized.

Density matrices are helpful when dealing with mixed states, where a quantum
system is not in a pure state but in a statistical ensemble of pure states.

Going back to decoherence, let’s consider a quantum system described by a density
matrix p. The density matrix p represents the quantum system’s state, which may
initially be pure or mixed. The evolution of p is described by the Schrédinger equation,
which describes the system’s evolution when it is isolated from the environment.

However, it becomes entangled when the quantum system interacts with its envi-
ronment. This interaction causes the density matrix to become non-unitary due to the
entanglement between the system and the environment, leading to decoherence.

The evolution of a closed quantum system is unitary and described by p’ = UpU",
where U is a unitary operator. However, open systems interact with their environment,
leading to non-unitary evolution.
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The Kraus operator formalism describes the evolution of an open quantum system.
Given a system with density matrix p representing its initial state and interacting with
an environment, its evolution is described by a positive trace-preserving map:

p'= > ExpE],
k

where {E} } are the Kraus operators, satisfying »;, E z Ej = I, ensuring trace preservation.
We can model decoherence (phase damping and amplitude damping) using Kraus
operators as follows:

Amplitude Damping

Amplitude damping represents the loss of energy to the environment. The Kraus opera-

tors are:
1 0 0 ¥
E = E =
0 (o \/1—)/)’ ! (o 0)’

Where v is the damping parameter.

Each Kraus operator Ey, represents a potential error due to environmental interaction.
The formalism does not require a specific environment model but fully describes the
environment’s effect on the system. It is crucial for designing quantum error-correcting
codes and achieving noise-resilient quantum computing.

Coherence loss due to amplitude damping refers to the reduction in the off-diagonal
elements of the density matrix, which represent quantum superpositions. Under
amplitude damping, the off-diagonal elements decay, leading to a loss of coherence.
This effect is due to the interaction with the environment, causing the system to lose
information about the relative phases between the quantum states.

In addition to coherence loss, amplitude damping also causes loss of energy. This
means the probability of the system being in the excited state (|1)) decreases over time
as energy is dissipated to the environment.

Phase Damping

Phase damping describes the loss of quantum coherence without energy loss. Its Kraus

operators are:
Eo=V1-aI, E;=Vaz,

where / is the identity operator, Z is the Pauli-Z operator, and A is the damping parameter.
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The loss in coherence due to phase damping refers to the reduction in the off-
diagonal elements of the density matrix. Unlike amplitude damping, phase damping
does not involve energy loss but still leads to decoherence due to the disruption of the
phase relationships between quantum states.

Partial Trace

Another important concept to consider is the partial trace. If a composite system is
described by a density matrix representing the state of two or more subsystems, the
partial trace over one of the subsystems gives us the state of the remaining system.

The partial trace of the subsystems is the average of their states, which gives infor-
mation about the other subsystems.

Given a composite quantum system consisting of two subsystems A and B, described
by the density matrix p 45 in the combined Hilbert space H4 ® Hp, the partial trace over
subsystem B is denoted as Trg(pap). This operation traces out (removes) the degrees
of freedom associated with subsystem B, leaving the reduced density matrix p4 for
subsystem A.

Formally, if p4p is the density matrix of the composite system, the reduced density
matrix p4 is given by:

pa=Tre(pag). (2.68)

If {|i)p} is an orthonormal basis for the Hilbert space Hp, the partial trace over B is
defined as:

pa =Trp(pap) = Z(ilBPAB|i>B, (2.69)

where (i|p and |i)p denote the bra and ket vectors in the basis of Hp, respectively.

The partial trace operation extracts the state of a subsystem from the state of the
entire system. This is particularly useful when we are interested in the behavior of only
a specific part of the system.

Tracing out one of the qubits from a Bell pair is a great way to demonstrate how a
pure entangled state can produce a mixed state for one of its subsystems. Let’s consider
the Bell state, an EPR pair, and perform the partial trace operation to see the effect.

For example, consider the Bell pair:

1
@) = —(]00) +11)). 2.70
|®7) \/z(l )+ [11)) (2.70)

The density matrix pap of |D*) is:



Chapter 2. QUANTUM INFORMATION SCIENCE 46

pap = @@ = %(IOG} +[11)) (00] + (111). (2.71)

Which we can expand to:

pAB = %(|00><00| +100)(11[ + [11)¢00] + [11)(11]). (2.72)

Now, assume we want to trace out |0)p:
1
(0150 4510)5 = 5 (05(100)00] +[00) (11| + [11)€00] + [11){IT)I0)p).  (2.73)

Which leads to: !
(0|ppaslO)s = §(|O>A<O|A)- (2.74)

Similarly, if we want to trace out |1)p
1
(1spasll)s = 5 ({1[5(100)€00] +[00) (11| + [11)€00] + [L){ITD[1)p).  (2.75)

We get:
1
(1lppagll)p = §(|1>A<1|A)- (2.76)

Summing the contributions from tracing out |0)p and |1)p:

pa = 3004000+ 5(Da0 = 5o ) @)

This is the reduced density matrix for subsystem A, which is a mixed state. Which
shows that tracing out one qubit of a pure entangled state results in a mixed state for the
remaining subsystem.

The diagonal elements of p4 give the probabilities of finding subsystem An in
its respective states. The off-diagonal elements represent the coherences (quantum
correlations) between these states.

It is important to differentiate between superposition and mixed states. Unlike a
superposition, a mixed state is a statistical mixture of different states. It represents a
situation where the system is in one of several possible states, but we do not know which
one. In a mixed state, probabilities describe the likelihood of each state. Experimentally,
distinguishing between an equal superposition involves measuring the qubit in different
bases and analyzing the results.

For example, consider the density matrix of the pure state |¢) in an equal superposi-
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tion of |0) and |1):
1

\/§(|O> +1[1)). (2.78)

) =

{1 1
Psuperposition = )| = E (1 1) . (2.79)

A maximal mixture is represented by the density matrix:

1 I{1 0
Pmixture = 51 = 5 (O 1) . (2.80)

To distinguish between those two states, we will perform measurements in different
bases:

1. Measurement in the Computational Basis: - For state |/), measuring in the
computational basis will give |0) and |1) with equal probabilities (0.5 each). - For the
maximal mixture, measuring in the computational basis will also give |0) and |1) with
equal probabilities (0.5 each).

2. Measurement in the Superposition Basis |+, —): - For the equal superposition
state, measuring in the |+, —) basis will yield:

2
1 1 1
P =P = | = 4 )| =1 2381)
VvV
2
1 1 1
P(-) = (W) = | = (— - —) ~0. 2.52)
V2 V2
- For the maximal mixture, measuring in the |+, —) basis will give: We use the formula:
P(|¢)) = (¢lpl¢). (2.83)
Probability of Measuring |+)
First, we calculate (+|pomixture|+):
1
(+ = (—(<0| + <1|)) (2.84)
V2

) = (\%um + |1>)) (2.85)
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Now,
o) = 01+ D) 3 g ) (5000 +10)
Simplifying this:
1 I{1 0 1
(Hpman: = [(01+ 1D) 3 (g ) = s=tc01
(55101 D) (5000 +119)) = 3 (01 0y +11)
)0y =1, {1|1)=1, (O]1)=0, (1]0)=0
1 1 1
:Z(1+0+0+1):Z'2:§
So,

1
P(|+)) = (+|pmixture|+) = E

Probability of Measuring |—)
Similarly, we calculate {—|omixture|—):

1
(-l= (6“0' - <1|))

1
=)= (600) - |1>))

1 I (1 0\(1
(~|pmisurel =) = (@«m - <1|>) 5 (0 1) (\—5<|o> - |1>))

Which leads to: !
P(|_>) = <_|pmixture|_> = 5
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(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

We can experimentally distinguish an equal superposition from a maximal mixture

by performing these measurements and analyzing the outcomes.

Mixed states reflect a lack of knowledge about which pure state the system is in. They
often result from decoherence, where interaction with the environment causes a loss of
quantum coherence. Mixed states are also described by density matrices, which are a
weighted sum of the outer products of the state vectors with their complex conjugates.
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This contrasts with a pure state’s density matrix, which is simply the outer product of its
state vector with itself.

2.6 Current Status of Quantum Hardware

The current era of quantum computers is called the NISQ (Noisy Intermediate-Scale
Quantum) era [98]. NISQ devices are called "intermediate-scale" because they have a
relatively small number of qubits (typically a few dozen to a few hundred) compared to
the larger-scale quantum computers that we aim to build in the future with the ability
to use millions of qubits and run real-life applications. They are also called "noisy"
because the qubits in these devices are prone to errors and noise, affecting the accuracy
of their computations. Though NISQ devices are faulty and cannot run general-purpose
applications, they provide a stepping stone in developing quantum computing. Moreover,
they have considerable importance because they allow us to:

* Develop and refine quantum algorithms on real hardware, providing insights into
their performance and potential improvements. Some algorithms are designed to
be less sensitive to errors and noise, making them more suitable for NISQ devices.

* With NISQ devices, researchers can study various error mitigation strategies to
minimize the impact of noise on the computation results. These techniques can
help improve the performance and reliability of NISQ devices, even without full-
fledged quantum error correction.

* They offer a testbed for researchers to explore new quantum computing applications
across various domains, such as chemistry, optimization, and machine learning.

* By building and operating NISQ devices, researchers can gain insights into the
challenges and potential improvements in qubit technology, control systems, and
hardware architectures.

2.6.1 Performance Metrics for Quantum Computers

IBM has introduced several new metrics and benchmarks to measure the performance
of quantum computers. Some of these metrics include:

Quantum Volume

IBM has proposed a single number indicator to describe the quantum processing capa-
bilities of any NISQ device. IBM introduced the concept of Quantum Volume (QV)
in [99] and it is defined as in Definition 1.
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Definition 1. Quantum volume (QV) is the ability to run a square circuit with at least a
2/3 success probability. This success depends on the number of qubits n and the depth
of the circuit d [100]. they also laid out a prediction for the future of their quantum
devices Their proposed roadmap for the advancement of quantum processor power aims
to double the performance every year in order to achieve Quantum Advantage in the
near future [101]. Quantum volume is a machine metric that by definition uses “square”

circuits; an nqubit computer capable of running a depth d circuit is said to have:

QV ~ 2Vnd (2.96)

CLOPS (Circuit Layer Operations per Second)

CLOPS measures the speed at which a quantum computer can execute quantum cir-
cuits [102]. It takes into account the classical computation needed to manage the quan-
tum operations and the latency of the quantum operations themselves. Higher CLOPS
values indicate a faster system capable of executing more quantum operations in a given
time frame.

Quantum Processor Performance (QPP)

QPP is a comprehensive metric that combines multiple performance factors, including
gate fidelity, qubit coherence times, and the overall reliability of the quantum proces-
sor [103]. This metric aims to provide a holistic view of the processor’s capabilities.
These new metrics and benchmarks help provide a more comprehensive understand-
ing of a quantum computer’s capabilities, addressing various aspects of performance.

2.6.2 Common Errors In Quantum Hardware

Decoherence is particularly detrimental to quantum computing because it directly
undermines the core principles of quantum mechanics that quantum computers rely
on—superposition and entanglement. When a quantum system decoheres, the superpo-
sition states collapse into a mixture of classical states, and the entanglement between
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qubits is lost. This transition from a coherent quantum state to an incoherent classical
state reduces the computational power of the quantum system.

Quantum computing devices are prone to various types of errors due to their interac-
tion with the environment, imperfections in the hardware, and the limitations of control
mechanisms. These errors can significantly affect the performance and reliability of
quantum computations. In this section, we will describe some of the most prevalent
errors encountered in quantum hardware and how they relate to the phenomenon of
decoherence.

Thermal-relaxation Error

Thermal relaxation needs two main parameters defined, 77 and 7, together called
decoherence times. T; is known as the relaxation time constant; it is defined as the time
needed for the system to go from state |1) to |0) with probability é For example, the

probability of state [¢) remaining in its state for some time ¢ is given by P(|¢)) = e

The time constant 7> represents the timescale over which the phase coherence of a
qubit decays. Specifically, it is the time it takes for the off-diagonal elements of the
qubit’s density matrix (which represent the coherence terms) to decay to 1/e of their
initial value [104].

In order for the values of 77 and 7, to be valid, they have to satisfy the relation
T, < 2T;. Since both T, and T} are, in a sense, measures of qubit stability, larger values
mean a more stable qubit. The qubit will maintain its state without decaying for a longer
time, hence making it easy to measure and use in complex algorithms.

Gate Error

Gate errors occur due to imperfections in the execution of quantum gates, which are
fundamental operations that alter the states of qubits. These errors may be caused by:

1. Imprecise control signals that fail to accurately implement the intended quantum
gates.

2. Unintended interactions between qubits that lead to erroneous gate operations.
3. Environmental disturbances such as thermal fluctuations or electromagnetic fields.

Readout Error
Readout errors occur during the measurement phase of quantum computing, where
the state of a qubit is incorrectly determined. Causes include:

1. Measurement apparatus inaccuracies or failure to accurately capture the state due
to quantum superposition.

2. Environmental noise affecting the qubits at the measurement stage.

Crosstalk Error
Crosstalk errors describe unwanted interactions between qubits, typically in densely
packed quantum systems, leading to erroneous operations. This error can occur due to:



Chapter 2. QUANTUM INFORMATION SCIENCE 52

1. Electromagnetic interactions or quantum information leakage between physically
proximate qubits.

2. Increased complexity and qubit density in quantum circuits heightening interaction
risks.

Minimizing crosstalk involves careful layout and timing adjustments in quantum
circuit design.

In summary, understanding and mitigating the various types of errors, especially
decoherence, is crucial for the development of robust and reliable quantum computing
devices. Techniques such as error correction, qubit isolation, and advanced control
mechanisms are essential to preserve quantum coherence and ensure accurate quantum
computations.

2.7 Current Status of Quantum Software

The forty-year history of quantum computers has taken us through initial curiosity, naive
optimism, then dismay at the scale of proposed error-corrected systems, and into today’s
excitement over the availability of real, but still small and error-prone, systems [1, 2, 3].
Algorithms have followed a similar roller coaster, arriving at the point where modest
demonstration implementations of algorithms originally defined as abstract equations in
theory papers are now common [4]. The challenge on both hardware and software now
is scalability: more qubits and larger, more sophisticated programs where, unlike today’s
demonstrations, the results are not a priori known. Working at a large scale implies the
need for a mature software engineering (SE) approach, including tools for all phases of
the life cycle.

Software engineering follows a specific cycle and is a reasonably mature process. Two
essential phases are designing and developing the key conceptual elements and testing
and fixing bugs Figure 2.8). The conceptual elements may be supported with formal
specifications, pseudocode, libraries, modeling tools, languages, etc. Bugs arise from
mistakes in the specification of a program or in translating the specification into code
(or, sometimes, from bugs in the tools themselves). A variety of methods, both formal
and informal, are used to find such bugs and to prevent their recurrence once isolated and
fixed. Unit testing, regression testing and continuous integration, path coverage testing,
and the many types of test cases that software testers construct all contribute to locating
and eliminating the different types of bugs. Using these techniques and tools, it is now
possible to build and support systems as complex as tens of millions of lines of code, as
in the Linux kernel and other similar systems.

Considering the quantum software development cycle described in [105] as shown
in Figure 2.8, we can find general similarities to the classical software development
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Figure 2.8: A general life cycle of classical software vs quantum software as described
in [105].

cycle. There are two significant differences in debugging quantum programs. Quantum
computers can operate on a superposition of states, each with a complex amplitude [106,
107]. The exponential growth in the state space poses a fundamental problem for
debugging and testing quantum programs. In classical computers » bits can carry any
of 2" values, however, we do not worry about testing all 2" input values for a program,
let alone all of the astronomical numbers of possible states, when we include temporary
variables. After all, a system with 1GB of RAM has 2889934592 possible states, almost
all of which will never be reached. Instead, we focus on key paths and expected input
values and work to build robust error handling for the vast majority of unwanted states.
With quantum computers, though, the process is different, and we often have to consider
the behavior of all possible inputs.

Today, there are different approaches developers could use to transform their ideas
and algorithms into quantum programs [108, 109]. If they can develop and implement
their algorithms efficiently, leading to small/medium-scale circuits, they can try executing
them on actual quantum hardware. Otherwise, they can implement a smaller version of
the algorithm and try to extrapolate its behavior for larger instances of the problem. The
currently available approaches differ based on the core programming model into four
categories.

* High-level quantum programming language supporting the developer’s quantum
intuition such as Silq [110] and Quipper [111].
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* Gate-level programming. In this option, the developer translates his idea into a
sequence of gates and then simulates this circuit, visualizes it, or runs it on a
hardware device. Developers can use this approach in different ways:

— Building the circuit using code, often using a classical-language-supported
library or package, such as: Qiskit [112], Cirq [113], and PyQuil [114] which
are Python Packages.

— Using a drag-and-drop tool to build the circuit, simulate the results, and
view them visually. These tools include, QUI [115], the IBM Circuit Com-
poser [116], and Quirk [117].

— Using the Quantum Assembly language, or QASM [118].
* Building the circuit using other compilation paradigms.

— Using a low-level approach, for example, using pulses and signals to control
the quantum hardware directly, the main example is OpenPulse [112].

— Using a more quantum physics and mechanics approach like using the ZX-
calculus [119].

— Circuit optimizer, back-end compilers, and interpreters. For example
Tket [120], TriQ [121], and Qbsolv [122].

A summary of the most used quantum software tools can be seen in Table 2.3. All of
these tools mainly focus on the current generation of hardware, small programs, and the
important problems of optimization and mapping to specific processors [98, 123, 124], as
well as on designing and implementing programs for hybrid or adaptive algorithms [125,
126, 127, 128, 129].

The difference between these tools is not significant, at least, syntactically. Figure 2.9
shows different approaches to apply a Hadamard gate to the state |0).

All of these tools leave it to the developer to mentally and manually plan the algorithm
and its implementation and examine its outputs. However, we need to start building tools
for the future of quantum because as we move toward large scale, including a quantum
debugger and tools for automated program testing such as unit tests. Both of these depend
on the ability to isolate a portion of a quantum program and examine and understand
its inner functionality. More specifically, developers need to understand the interactions
between the different elements of the program, prepare input vectors, and check their
corresponding outputs without paying exponential costs in state or time spaces. This,
however, will not be possible as the circuit size increases, the current hardware fails to
run them error-free, and classical devices fail to simulate them. As quantum debugging
becomes a focus and an essential skill for the current and next generations of quantum
circuits and developers, the value of a tool that enables understanding the circuit and the
error reasons will only increase. Solving the challenge of debugging quantum circuits is
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SiLa

//in Silq we don't need to
initialize the circuit, and qubits
are treated as variables
x:=H(x);

y:=H(y);

QISKIT

QUIPPER

"Create 2 qubits circuit"
lourCir :: Circ (Qubit, Qubit)
"apply hadamard to qubit 1,2"
"a,b are our qubits"

a,b=do

a <-hadamard a

b <- hadamard b

CIRQ

0# QX SIMULATOR

#Create two qubits

qubits 2

#qubits in QX are numbered by
default from 0 to number of

[/Create a circuit and apply H
gate to both qubits
operation setCir(q: Qubit[2]) :

results{ qubits-1
H(glo]); :A%ply h gate to two qubits
H(ql11):} N

hql

SCAFFOLD PrauiL

from qiskit import

from pyquil import

QuantumCircuit import cirq int main () { get_qc, Program

#Create a quantum circuit with #Create 2 qubits /[Create 2 qubits from pyquil.gates import H

2 qubits q0, q1 =cirg.LineQubit.range(2) | |qbit reg[2]; #Create 2 qubits circuit

qgcir = QuantumCircuit(2) #apply hadamard to qubit 1 for(i=0;i<2;i++){ qum = get_qc('2q-qvm’)
#apply hadamard to qubit 1 hO = cirg.H(g0) /] apply hadamard to qubit 1,2 p = Program()

qeir.h(0) #apply hadamard to qubit 2 XH(reglil); } #apply hadamard to qubit 1,2
#apply hadamard to qubit 2 hl=cirq.H(g1) return 0;} p +=H(0)

qeir.h(1) p+=H(1)

STRANGE

mport com.gluonhgq.strange.*;
mport
com.gluonhq.strange.gate.*;
bublic static void main(String[]
#rQS) {

Program p = new Program(2);
Gate hGate0 = new Hadamard(0);
Gate hGatel = new Hadamard(1);

Step stepl = new Step()
stepl.addGates(hGate0, hGatel);

p.addStep(stepl); }

INTEL SDK

#include <clang/Quantum/
quintrinsics.h>
const int total_qubits = 2;
[[create a 2-qubit circuit
qbit qubit_register[total_qubits];
[/apply hadamard to qubit 1,2

H(qubit_register[0]);
H(qubit_register[1]);

Figure 2.9: The code creating the |+) state using different platforms.
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Table 2.3: A summary of some widely used current quantum software tools.
J. R. Johansson, P. D.
Gate-level 2012 Nation, and F. Nori Python Package
High-level 2013 Dalhousie University Quantum PL
N JavaScript
Drag and Drop 2016 Craig Gidney Package
Gate-level 2017 IBM Python Package
Gate-level 2017 Microsoft Quantum PL
QASM-based 2017 QuTech QASM
Gate-level 2018 D:Wave Python Package
Google Python
Gate-level 2018 (not an official product) Package
Gate-level 2018 Rigetti Python Package
Hollenberg Group at the
Drag and Drop 2018 University of Melbourne Quantum PL
Gate-level 2018 Xanadu Python Package
Drag and Drop 2020 Stewart Smith JavaScript Package
High-level 2020 ETH Zurich Quantum PL
Gate-level 2020 Amazon Python Package
Gate-level 2021 Quantinuum Python Package
Gate-level 2023 Intel C++ Library

not going to be a simple task, but it is a challenge that we need to address and attempt to
solve as best we can, which is the target of this thesis.
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How Are Quantum Algorithms

Implemented?

3.1 Introduction

An important aspect of developing tools for debugging and testing quantum algorithms
is a solid understanding of the inner workings of quantum algorithms.

Quantum algorithms leverage the principles of quantum mechanics to perform com-
putations that would be infeasible or highly time-consuming to classical computers.
One of the well-known quantum algorithms is Shor’s algorithm [11], developed by
mathematician Peter Shor in 1994.

Shor’s algorithm poses a significant threat to traditional cryptographic systems, such
as RSA and ECC, which are foundational to many authentication mechanisms. By effi-
ciently factorizing large integers and solving discrete logarithms, Shor’s algorithm can
potentially break these encryption methods, undermining the security of digital signa-
tures, key exchange protocols, and other authentication processes. This vulnerability
necessitates a transition to quantum-safe or post-quantum cryptographic algorithms that
can withstand quantum attacks.

To mitigate the risks posed by quantum computing, organizations must adopt post-
quantum algorithms and consider hybrid cryptographic solutions that combine classical
and quantum-resistant techniques. Continuous monitoring of advancements in quan-
tum computing and post-quantum cryptography, along with education and training of
cybersecurity professionals, is essential for maintaining secure authentication systems.
Implementing quantum key distribution (QKD) can also enhance security by providing
a method for secure key exchange that is immune to quantum attacks, ensuring robust

57
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authentication in the quantum era.

Another important quantum algorithm is Grover’s algorithm [41], formulated by Lov
Grover in 1996, designed to search unsorted databases and solve black-box computational
problems. It provides a quadratic speedup over classical algorithms for these types of
tasks.

Quantum algorithms are also being developed for simulations of quantum systems,
a task inherently suited to quantum computers.

Algorithms such as the Variational Quantum Eigensolver (VQE) and Quantum Phase
Estimation algorithms are central in this domain and offer promising avenues for ad-
vancements in chemistry and material science by enabling the simulation of molecular
structures and reactions with high precision. As research in the field progresses, we are
likely to see the emergence of new quantum algorithms that harness the unique prop-
erties of quantum mechanics to solve a broader array of complex problems, potentially
revolutionizing computing as we know it.

Understanding how quantum algorithms work and how we move them from theory
to implementation is essential to developing efficient testing and debugging tools. In
this chapter, we review one of the popular algorithms in quantum computing (Grover’s
Algorithm) and see how we can implement it from theory to implementation, even
analyzing the hardware performance.

3.2 Grover’s Algorithm

Grover’s Search Algorithm answers the question “Given a function f(x), what values of
x cause f(x) to evaluate to True?”. The algorithm presents a framework for tackling the
search problem in an unsorted database with complexity O(VN), where N is the number
of possible inputs. It mainly consists of three sections, state preparation, the oracle, and
the diffusion operator. The oracle and diffusion operators will be repeated depending on
N and m, where m is the number of answers.

The algorithmic steps of Grover’s search are (Figure 5.1):

1. Prepare the input in a symmetric-superposition state.
2. Apply Grover’s Oracle to the prepared state.

3. Apply the diffusion operator to the oracle’s results.
4. Iterate over steps 2 and 3 until the answer is reached.

The first step of Grover’s algorithm is preparing the initial state. In the simplest
version, the initial state is prepared in an equal superposition over the entire Hilbert
space.
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State
preparation

H

H
Grover's Diffusion

Oracle Operator
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Figure 3.1: An overview of Grover’s algorithm’s steps.

After the state preparation comes to the oracle. The oracle is a black box function
that inverts the answer by flipping its sign. Following that, the diffusion operator will
magnify the amplitude of the correct state while damping the amplitude of other states
until the amplitude of the answer is significantly larger than the rest of the states.

Grover’s oracle is a special function that is problem-based. Each problem will require
a different oracle to mark the correct answer/s.

import qiskit as gk

from qgiskit.visualization import plot_histogram

def grover_oracle(qc, qubits):
# Oracle for |[111>
# Apply multi-controlled Z gate
gc.h(qubits[-1])
gc.mct(qubits[:-1], qubits[-1]) # Multi-controlled Toffoli gate
gc.h(qubits[-1])

def grover_diffuser(qc, qubits):
# Apply H-gates
for qubit in qubits:

gc.h(qubit)
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# Apply X-gates

for qubit in qubits:
gc.x(qubit)

# Apply multi-controlled Z gate

gc.h(qubits[-11])

gc.mct(qubits[:-1], qubits[-1])

gc.h(qubits[-1])

# Apply X-gates

for qubit in qubits:
gc.x(qubit)

# Apply H-gates

for qubit in qubits:

gc.h(qubit)

# Number of qubits

n =3

qubits = gk.QuantumRegister(n)
cbits = gk.ClassicalRegister(n)

gqc = gk.QuantumCircuit(qubits, cbits)
# Apply Hadamard gates to initialize the superposition
for qubit in qubits:

gc.h(qubit)

# Number of iterations

iterations = 2 # Adjusted to 2 for 3 qubits

# Apply Grover’s algorithm

3 for _ in range(iterations):

grover_oracle(gc, qubits)

grover_diffuser(qc, qubits)

# Measurement

60
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qc.measure(qubits, cbits)

# Execute the circuit

backend = gk.Aer.get_backend(’gasm_simulator’)

> job = qgk.execute(qgc, backend, shots=1024)

; result = job.result()

s # Plot the results

counts = result.get_counts(qc)

plot_histogram(counts)

Listing 3.1: The output of the gateLLoc function when querying the NOT gate in the

diffusion operator

A simple example of Grover’s algorithm assumes that we are looking for a state |111)
in a 3-qubit system. We can implement that system using Qiskit as shown in Listing 3.1.
When we run that code and display the histogram of the results, we can see that the
probability of measuring state |111) is 1 (ideally) (Figure 3.2).
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Figure 3.2: A simple implementation of Grover’s algorithm with an oracle marking
[111)

It is important here to be able to distinguish between marking the correct answer
and knowing the correct answer. Marking the answer means that the oracle modifies
the phase of the correct state, but it does not reveal which state is the correct one. The
algorithm doesn’t gain classical knowledge about the correct item at this stage. Instead,
it subtly alters the quantum state, setting up for further processing. Knowing the answer,
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on the other hand, would imply that the algorithm explicitly identifies the correct item. In
classical terms, it would mean pinpointing the exact position of the item in the database.

Grover’s algorithm, the process involves repeatedly applying the oracle and a diffu-
sion operator to amplify the probability amplitude of the correct state.

— State State —
Prep Prep

Diffusion
Operator —

Figure 3.3: A general implementation of the diffusion operator.

The diffusion operator is formed by: the inverse of state preparation, C®*"Z gate,
state preparation, as shown in Figure 5.5. The C®"Z gate cost is 2n — 1 gates, divided
into 1 CZ gate and 2n — 2 CCX gates when n > 2. When n = 2, however, we only need
2 Hadamard gates and a CZ gate to form a CCZ. Starting from n = 3 to form the C®"Z
gate, we will need some ancillary qubits. A construction of the CCZ, C®3Z and C®*Z
can be seen in Figure 3.4.

Control 1

Control 2

Control 1

Control 3

Control 2

Control 1

Control 3 Control 4

Control 2

Target Target

Target — H —_ . — H ——

Ancilla 1T — S —_——_—_—— Ancilla 1 — , —} i m—-— @ — — —  ——

—o—f— Ancilla 2 — —

Ancilla 2

Ancilla 3 ———— ™, — 00—

Figure 3.4: Different number of controlled Z gates. From the left, CCZ, C ®37 and C®*Z

The answer’s amplitude will grow to a maximum and then decline after the optimal
number of iterations opt_iter repeating cyclically. Therefore, we need to measure
the answer at the right time, leading to the first high amplitude of the answer. The
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optimal number of repeating the oracle and the diffusion depends on two factors, the
size of the search space N and the number of answers for our search query m as seen in
Equation 3.1 [138].

N

opt_iter = [f —‘ (3.1
4 \Nm

3.3 The Clique Finding Problem

A cligue is a complete subgraph over a subset of vertices in an undirected graph. Several
computational problems address finding cliques in a given graph. These problems vary
based on what information about the clique needs to be found. One such is the k-clique
problem, which answers the question, “Given an undirected graph and a positive integer
k, does a clique with size k exist?” The k-clique problem is NP-Complete for large
values of k, as shown by Karp [139] and Cook [140]. Probably one of the most studied
versions of the k-clique problem is the triangle finding problem (the 3-clique problem),
which has been addressed both classically [141, 142] and quantumly [143, 144]. The
best-known classical algorithm has time complexity O(n*3%), while the most famous
quantum algorithm has time complexity O(n'~), where n is the number of nodes in the
graph. Several quantum algorithms have also been proposed for the k-clique problem
with k > 3 [144, 145, 146].

Given an undirected graph (G), if there exists a subset of k vertices that are connected
to form a complete graph, then it is said that G contains a k-clique — for example,
Figure 3.5 represents a graph of 6 vertices, which includes a 4-clique between vertices

1,2, 3, and 4.
(2 S 3

j o
0—o

Figure 3.5: 6-node graph with 4-clique on nodes 1, 2, 3, and 4. The output of Grover’s
Algorithm will be [011110), with 1 for every node in the clique and O otherwise.

The k-clique problem asks us to determine if the input graph G contains a k-clique,
and if it does, output the vertices forming the clique [147]. A popular variant of this
problem only asks us to determine if G contains a k-clique [148].

Clique-finding algorithms have many practical applications. One of the main fields
they can be used in is chemistry, to find chemicals matching a specific structure [149], to
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model molecular docking, and to find the binding sites of chemical reactions [150]. They
can also be applied to find similar structures within different molecules [151]. Another
field for the clique-finding algorithms is automatic test pattern generation. Finding
cliques helps to confine the size of the test sets [152]. The clique-finding problems are
also used for Proof-of-Work (PoW) in cryptocurrencies [153].

3.4 Using Grover to Solve the Clique Finding Problem

The efficient execution of Grover is a two-fold problem: reducing the number of iterations
and finding a practical implementation of each iteration. In this section, we present two
approaches to implementing the oracle circuit; we will call them the checking oracle
and the incremental oracle, respectively. The remainder of this section will discuss
both implementations in detail, starting with the checking oracle. Although either
implementation can be used to find any k-clique in any given undirected graph, while
explaining how both implementations work, we will consider the simplest case possible,
which is when k = 3 or a triangle. In all explanations, the graph in Figure 3.6 will be

(1)
(3

Figure 3.6: 4-node graph containing a triangle (3-clique) on nodes 0, 1 and 2. This
graph is used in Tables 3.1,3.3

3.4.1 State Preparation

State preparation is the first step of the implementation. Usually, when implementing
Grover’s algorithm, the states are prepared in an equal superposition of the whole Hilbert
space using the Hadamard Gate (H gate). Initializing into full superposition needs only n
H gates and time complexity O(1) since all H gates can be run simultaneously. This state
preparation leads to a search of the entire Hilbert space, which is not always necessary.

If we wish to search for a 3-clique, it makes no sense to look for a subgraph with
one, two, or even four nodes. Instead, we should consider only subgraphs with 3 nodes
and then assess whether the induced subgraph contains (;) edges (the number of edges
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in a complete graph of 3 vertices) — three edges in case of a triangle. Searching over a
limited space should be faster. However, it will cause a significant increase in the state
preparation gate count.

For this example, we will use two approaches to limit the search space, using Dicke
states, or W state followed by X gates.

Dicke State

A Dicke state |D}) [154] is a fully symmetric entangled state over the n-qubit Hilbert
space with Hamming weight k. For example, given a Hilbert space of 4 qubits, the Dicke
state |D%) will be the superposition of § (|1110) +[1101) + [1011) +[0111)).

The number of basis states with kK Hamming weight in a Hilbert space of n qubits is

(k)-

Definition 2. Dicke state |DY) is an entangled superposition of all n-states |s) with

Hamming weight k:

(Sl

n
DY) = > s (3.2)
k se€{0,1}s.t.hw(s)=k

Dicke states represent an essential class of entangled quantum states for their appli-
cations in quantum game theory [155], quantum networking [156] and quantum metrol-
ogy [157]. Dicke states can be implemented in several different ways; we followed the
approach proposed in [158] to prepare our Dicke states deterministically. The proposed
method computes the Dicke state for any Hamming weight k and n qubits with O (kn)
gates and O (n) depth [158].

W State

W states are a class of entangled quantum states that are a special case of the Dicke
State. W state followed by a simple bit flip is a Dicke state with Hamming weight 1, such
as |[W) = %(HOO...O) +...+101...0) + |00...01)). The implementation of the W-state

preparation we used in this work is the algorithm proposed in [159].

W states as a state preparation approach works only for clique size k = n — 1;
otherwise, W states cannot be used, and Dicke states have to be used instead. When using
Dicke state, we can search for any size clique in any size graph. For example if we have a
10 node graph and we want to look for 4-cliques in it, we can limit the search space to (140) .
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Figure 3.7 shows the change in the search space size for different clique sizes and
approaches as the number of nodes grows. In the figure, the x-axis represents the
number of nodes in the graph, and the y-axis represents the size of the search space.
The worst-case search space for subsets of n nodes is 2" (upper dotted line). For fixed-
size cliques, simple search methods are polynomial (lower dashed lines, k = 3 and
k =5). When the clique size is a function of n, the search space is superpolynomial, and
classical search becomes impractical. Constrained-Hamming-weight quantum searches
using Dicke states extend the range of problems that can be addressed using Grover’s
algorithm (solid lines, k = n/4 and k = n/2).

-------- Full Search Space
1017 Limited Search when k = n/2
—— Limited Search when k = n/4
-- Limited Search whenk =5
-- Limited Search when k = 3
14
o 10
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©
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102
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Number of nodes in the graph

Figure 3.7: The difference in search space concerning the number of nodes in the graph.
A limited search space (the two solid lines) is produced using state preparation (Dicke/W
states) in the cases k = n/2 and k = n/4.

3.4.2 The Oracle

To determine that a triangle exists, we must confirm that 3 nodes are connected with 3
edges. This is exactly what both the oracle implementations do.

Checking-based Oracle

In the checking-based oracle, each node in the graph is represented as a qubit, and the
edges between them are expressed using one or more multiple-Toffoli C®"NOT gates
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connecting specific qubits. After all edges have been counted, the results are checked.
The sequence of C®"NOT gates forms a simple adder that adds one every time an edge
is encountered. In the case of a triangle, after the C®" NOT gates, we need to check that
we have precisely three edges (11,). To check for 11,, we need two qubits that we will
call edges_counter.

edge edge edge edge
(0,1) (0,2) (1,2) (2,3)

node 0

node 1 —

node 2 —

node 3 —

edge — — — — —

counter @

edge —_—
counter 1

edge
flag
a- Checking-based Oracle’s Edges Counter

node o node 1 node 2 node 3

node0 — —

node1 —— —

node 2 S - —_

node 3

node J— — — — —

counter o

node —_—
counter 1

node
flag

b- Checking-based Oracle’s Nodes Counter

Figure 3.8: Checking-based oracle for the graph in Figure 3.6.

In general, we need [log (];)] qubits to represent the edges_counter. For example,
for a 4-clique, the edges_counter will be a 3-qubit counter that can count up to 7
(111,), and for a 5-clique which can count up to 15 (11115;), the edges_counter will
need four qubits and so on. For example, if we want to construct the oracle for the graph
in Figure 3.5, we will need six node qubits, a 3-qubit edge counter, and one qubit edge
flag. The connection of the edges in the graph is then made, as shown in Figure 3.9.

Finally, to check if the edges_counter contains the correct value, another C*"NOT
gate needs to be applied, the result of which will be saved in another qubit, edge_flag
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edge edge edge edge
(0,1) (0,2) (0,5) (4.5)
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Figure 3.9: Checking-based oracle for the graph in Figure 3.5. The ten edges in the
graph are expressed as ten groups of gates, giving the oracle cost O(|E]).

(Figure 3.8-a). A similar circuit is then applied to count nodes; a k-clique should have
k nodes. The node_counter needs [log k] qubits with C®"NOT between them. If
the node_counter contains the correct number of nodes (k), the qubit node_flag will
become 1. Figure 3.8-b shows the node counting section of the oracle. Finally, after
checking for both edges and nodes, a ccx is applied to edge_flag and node_flag and
stored in another qubit clique_exists. If we have the correct number of edges and
nodes, then a clique of size k exists; otherwise, no clique exists.

Incremental-based Oracle

For incremental-based oracle, each node in the graph is represented with a qubit, and the
edges are expressed using C®"NOT gates. The difference between this and the checking-
based oracle is in the edges_counter and clique_flag. In this implementation, the
edges_counter is replaced with a one qubit edge_£flag, and the edge_£flag becomes
1 if and only if an edge exists between two nodes. That flag is then used as a control
qubit controlling an increment circuit that adds one every time it encounters an edge
(Figure 3.10). For the edge_f1lag to function correctly, we need to uncompute it (reset
to |0) state) after each increment.

The increment circuit size depends on the size of the clique; it will need [log (12‘)]
qubits. For example, when applying the oracle for a triangle (k = 3), we will need a
2-qubit increment circuit to count up to 3 or 11,. Figure 3.11 shows different sizes of
the increment circuit. The circuit finding the triangle in Figure 3.6 needs two qubits for
the increment circuit and some ancillary qubits to implement the control functionality.



Chapter 3. HOW ARE QUANTUM ALGORITHMS IMPLEMENTED? 69

edge edge edge edge
(0,1) (0,2) (1,2) (2,3)
node o
node 1
node 2
node 3
edge
flag —O 45 L L © L L ©
inco
inc1
clique
edge a_
flag
a- Incremental-based Oracle’s Edge Counter
node node node node
(0) (€)) (2) (3)
node o
node 1
node 2

node
"3 —& '+ J} J:

clique
node 0—

flag

b- Incremental-based Oracle’s Node Counter

Figure 3.10: Incremental-based oracle for the graph in Figure 3.6.
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After counting the edges in each subgraph Figure 3.10-a, the qubit clique_edge_flag
will be 1 only if the number of edges is correct (’;) When applying this oracle on the
entire Hilbert Space, another circuit to count nodes must be added to the oracle 3.10-
b. The number of qubits needed in the increment circuits when counting nodes will
be [logk]. The number of nodes will be stored in a register inc, once the number
of nodes in a specific subgraph reaches k, the clique_node_flag will turn into 1.
Once both the edge counter and the node counter sections of the oracle are executed,
the clique_edge_flag and clique_node_flag are used in a ccx to generate the
clique_flag which will indicate if a clique of size k exists in the graph or not.

e D S P

Ix+1)
X
Ix+1)
x)
Ix+1)

Figure 3.11: Different size increment circuits. From right to left, 2-qubit increment,
3-qubit increment, and 4-qubit increment circuits.

3.5 Results and Analysis

To test the efficiency of our implementation, we compared various combinations of the
problem variables. To be consistent, the comparison is based on the smallest instance
of the problem, i.e., the triangle finding problem, more precisely, finding the triangle in
Figure 3.6. The combinations in the comparison are:

» Grover’s algorithm with checking-based oracle over the entire Hilbert space.

* Grover’s algorithm with checking-based oracle over limited search space using W
state preparation (W state followed by n NOT gates).

* Grover’s algorithm with checking-based oracle over limited search space using
Dicke state preparation.

* Grover’s algorithm with incremental-based oracle over the entire Hilbert space.

* Grover’s algorithm with incremental-based oracle over limited search space using
W state preparation (W state followed by n NOT gates).

* Grover’s algorithm with incremental-based oracle over limited search space using
Dicke state preparation.
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Table 3.1: Circuit size, depth (length of critical path), and number of qubits needed for
all approaches of Checking-based oracle and Incremental-based oracle for the optimal
number of iterations for the triangle finding problem in all 3 edges or more 4-node graph
shapes

Full search space
Graph Checking-based Oracle Incremental-based Oracle
shape # of qubits | depth  size | # of 1-qubit gates | # of 2-qubit gates | # of qubits | depth size # of 1-qubit gates | # of 2-qubit gates
Star 13 942 | 1464 855 609 15 1041 | 2064 1263 801
Line 13 930 | 1464 855 609 15 1041 | 2064 1263 801
Loop 13 1194 | 1812 1047 765 15 1236 | 2340 1431 909
One triangle (Figure 3.6) 13 1173 1812 1047 765 15 1284 2640 1731 909
One diagonal square 13 1416 [ 2160 1239 921 15 1551 [ 2616 | 1599 1017
Complete graph 13 1659 | 2508 1431 1077 15 1674 | 2892 | 1767 1125
W state prep
Graph Checking-based Oracle Incremental-based Oracle
shape #of qubits | depth ~ size | # of 1-qubit gates | # of 2-qubit gates | # of qubits | depth = size # of 1-qubit gates | # of 2-qubit gates
Star 9 267 | 409 252 157 10 289 | 415 258 157
Line 9 251 | 409 252 157 10 289 | 415 258 157
Loop 9 345 | 529 324 205 10 354 | 507 314 193
One triangle (Figure 3.6) 9 331 529 324 205 10 354 507 314 193
One diagonal square 9 391 [ 649 396 253 10 419 ] 599 370 229
Complete graph 9 471 | 769 468 301 10 484 | 691 | 426 265
Dicke state prep
Graph Checking-based Oracle Incremental-based Oracle
shape # of qubits | depth size | # of 1-qubit gates | # of 2-qubit gates | # of qubits | depth ~size # of 1-qubit gates | # of 2-qubit gates
Star 9 518 | 719 410 309 10 528 | 733 432 301
Line 9 514 | 719 410 309 10 528 | 733 432 301
Loop 9 602 | 835 474 361 10 593 | 825 488 337
One triangle (Figure 3.6) 9 595 835 474 361 10 593 825 488 337
One diagonal square 9 676 | 951 538 413 10 658 | 917 | 544 373
Complete graph 9 757 [ 1067 602 465 10 723 [ 1009 | 600 409

We will address the analysis from two perspectives, complexity, and practicality, com-
paring the type of gates and depth of the resultant circuit. In addition, we will also
discuss how different state preparations affect the amplitude of the correct answer, using
both the ideal-case and gate-error simulations.

3.5.1 Gate Count Analysis

In quantum circuits, the more gates that involve multiple qubits, the more unreliable
and difficult it will be to get the circuit to work on actual quantum hardware. First,
we will discuss the different circuit sizes for other Oracle implementations and various
state preparations. Again, as a base case, we will compare the different approaches in
the case of finding a 3-clique (triangle) in a 4-node graph. Table 3.1 shows the other
operation counts from checking- and incremental-based oracle for the optimal oracle
iteration count. The table shows the variation of the circuit size for all 4-node graph
shapes with 3 or more edges at optimal iteration. The size and depth used here are when
decomposing the circuit to only single-qubit gates and CNOT gates.

To better understand the numbers in Table 3.1, we need to consider how often
the oracle is repeated. Since Grover’s Algorithm is periodic, the optimal number of
repetitions of the oracle and diffusion is calculated based on the number of input qubits
(number of nodes in the graph) and the number of solutions we want. For the sake of
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this analysis, we will focus on the case where m = 1. If we are using the entire search
space, then N = 2", and so the optimal number of iterations here will be three iterations.
However, if we are using Dicke/W states to limit our search space, N= (Z), m =1, giving
an optimal iteration number of one. Although the number of iterations is smaller with
state preparation (Dicke/W state), the circuit may increase in size, based on the state
preparation approach followed. While it is relatively easy to prepare initial states in full
superposition (only n H gates are needed), preparing an initial state using Dicke/W states
is a costly operation, with the Dicke state being the most expensive in gate count. A
detailed layout of the gates used in every state preparation is found in Table 3.2.

Table 3.2: Gate type and count for each state preparation approach

State Preparation Method | Gate Count Gate Type
Full search space 4 (Hadamard, 4)
W State 17 (U3, 6), (CNOT, 6), (NOT, 5)
Dicke State 30 (CX’, 12), (Cu3’, 6), CCCNOT", 6), (’x’, 3), CCRY’, 3)

Circuit size is crucial, but it is more important to check the complete list of gates
used. More particularly, NOT, CNOT, CCNOT, C®*"NOT gate counts play an essential
factor in whether the circuit can be applied to an actual hardware device. Table 3.3 lists
the number of NOT, CNOT, C®"NOT gates in every approach proposed for the optimal
number of iterations for each. Figure 3.12 shows a construction of the CCNOT gate.

Control 1 —_ T — —

Control 2 —_— T 7 —{ O —

Target  — H —E— Tt —£— T —(0— T —L0— T — H

Figure 3.12: A construction of the CCNOT gate.

Another factor affecting whether a circuit is implementable is the circuit depth or
length of the critical path of the circuit. Unfortunately, the circuit depth is highly
dependent on the hardware layout of qubits and the connections between them. On the
bright side, many works have focused on optimizing and generalizing circuit’s depth and
size for any hardware qubit layout [160] [161] [124] [162] [163].

3.5.2 Simulation Results

This subsection discusses how the change in state preparation affects the amplitude of
the correct answer (probability of success). To observe this change, we will simulate
the circuit twice, once using the ideal-case simulator (QASM Simulator) and another
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Table 3.3: The number of NOT, CNOT, and CCNOT gates in Checking-based and
Incremental-based approaches for the triangle finding problem in Figure 3.6

Checking-based Oracle
Full Search Space | W state Prep Dicke state Prep

NOT 25 15 9
CNOT 24 205 115
CCNOT 63 0 18

Incremental-based Oracle
Full Search Space | W state Prep  Dicke state Prep

NOT 0 15 9
CNOT 621 145 163
CCNOT 48 8 26

Table 3.4: Average values of 77, T», readout error, and single-qubit error for six different
IBMQ Devices

Device T1 T2 Readout | Single-qubit

name (in us) | (in us) error gate error
ibmq_16_melbourne 55 59 0.118 0.0022
imbq_poughkeepsie 64 65 0.0517 0.00179
ibmgq_singapore 83 89 0.0389 0.000875
ibmq_paris 76 67 0.032 0.000573
ibmq_cambridge 81 39 0.0959 0.00124
ibmq_rochester 55 59 0.118 0.0022

simulation with added gate error. The Qiskit Aer module provides the pure-state QASM
simulator. Aer is a high-performance Qiskit simulation framework for quantum circuits.
It offers various backends to meet different simulation ends. QASM simulates any
given circuit, assuming ideal qubits and gates with no errors. The results of using the
QASM simulation are not realistic for current hardware and represent the goal of future
advancements in quantum computers. However, for now, ideal simulators are used. For
more realistic results, Aer also provides a way to add noise to the gates while assuming
perfect qubits. In real life, both qubits and gates are faulty and noisy, but adding gate
noise produces more realistic simulation results.

Several types of errors can be applied to the QASM simulator that correlate with
various quantum errors [164] [165]; Qiskit Aer offers ten standard error models,
including Depolarization Error, Reset Error, and Thermal Error with an option to create
user-customized error models [112]. In addition, the user can choose whether to apply
the error to all qubits or a specific set of qubits. In our gate-error simulation, we decided
on a realistic thermal-error model (thermal relaxation) (explained in 2.6.2) and applied
it to all algorithms’ qubits.
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Thermal Relaxation Error

To understand better how 77, and 75 affect the amplitude of the correct answer, we applied
our two proposed oracle structures (for the graph in Figure 3.6) to six different IBMQ
devices with different 77, 75. Since the value of 7, 7> depends on the specific qubits, we
took the average 71, T of the devices when we applied our different circuits. Table 3.6
shows the average values of 77, T», and the names of the six devices used. The table also
shows the average readout error and single-qubit gate error rate. We should note that the
error rates are determined by gate execution times and the qubit 77 and 73 values. The
values chosen for the gate execution times are averages based on actual devices as follows,
U2 gates take 50 nanoseconds, U3 gates take 100 nanoseconds, CNOT gates take 300
nanoseconds, and finally, the readout will take 1000 nanoseconds?. Figure 3.13 shows the
results of all proposed approaches on each of the six devices. Various observations can
be made by looking at the bar chart. It can be seen that the W state preparation approach
mainly retains the correct answer better than other methods, followed by the incremental-
based Dicke state preparation approach. It can also be seen that the ibmg_singapore
device has the lowest error among this set of devices, followed by ibmg_paris due to
these devices having the highest 77, 7> among the devices used. In addition, we added
another simulation where 77, T, = 200 us, and 500 us. These values were chosen to
be noticeably larger than all 6 IBMQ devices we considered while remaining practical.
As can be seen from the figure, these simulations have the lowest error rate among all
simulations performed. Hence, increasing 77, T» by 60% reduced the error rate and the
damping in the amplitude of the correct answer by nearly 42%.

Device-specific Error

The above case incorporates only memory errors; gates are assumed to be perfect. Hence,
to provide a more realistic effect of noise models in NISQ devices, we applied the device-
specific noise models to three of our implementations. The three implementations
we chose to apply device-specific models are Checking-based Oracle with W state
Preparation, Incremental-based Oracle with W state Preparation, and Incremental-based
Oracle with Dicke state Preparation. We chose these three approaches because they have
the highest error tolerance among the six strategies. All three implementations have nine
qubit circuits and an ideal (QASM simulator) amplitude of 1.

Considering Figure 3.14, we can observe that when executing the Checking-based
Oracle with W state Preparation, Incremental-based Oracle with W state Preparation, and
Incremental-based Oracle with Dicke state preparation on real IBMQ devices, the error
rate increases sharply. Even the implementations with high error tolerance for changes
in T, T, show a significant drop in the amplitude of the correct answer, with an error rate
ranging from 93% to 96%. We can also see that ibmq_singapore and ibmq_paris

102, and U3 are basic single-qubit unitary gates presented by Qiskit [166]
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Figure 3.13: The amplitude damping effect of memory decoherence, assuming perfect
gates. The bars are the probability of finding the correct answer after simulating a perfect
machine (leftmost bar in each group), 77 = T = 500, 200 (next two bars) as well as T}
and 7, based on the simulation of six different IBMQ devices in table 3.6 (last six bars).
The figure is sorted based on the average error rate from lowest to highest.
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Figure 3.14: Probability of finding the correct answer using the Checking-based Ora-
cle with W state Preparation, Incremental-based Oracle with W state Preparation, and
Incremental-based Oracle with Dicke state Preparation. Data is taken from executing
the different approaches on the six different IBMQ devices in Table 3.6.
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maintained the best performance among the six devices used. We compared running the
approaches on the actual devices to simulating the devices’ error models on the QASM
simulator and found that the results are incredibly close, with negligible differences.
That gave us confidence that using the error models of the devices provides a valid
representation of the performance of the actual devices.

3.5.3 Time Complexity Analysis

We can split the time complexity analysis into four main parts: analyzing the number of
iterations in Grover’s algorithm, the initial state preparation (in case of limited Hilbert
space search) complexity, the different oracles and diffusion operators complexities, and
finally analyzing the total complexity of the algorithm.

Number of Iterations in Grover’s Algorithm

The oracle and the diffusion operator are repeated Lg\/gj = 0(\/5) times, which
depends on the size of the search space and the expected number of answers. Assuming
the simplest case, where m = 1, such as the case in Figure 3.6, the complexity then
becomes O (VN). Notice that this applies to the case when the entire Hilbert space is
used. However, if we limit the search space using initial state preparation, the number

of iterations also depends on the size of clique k£ and becomes O (/ (’Z))

State Preparation Complexity

We used two different state preparation techniques to limit the search space and using
either W state preparation in case k = n — 1 or Dicke state preparation otherwise. We
followed the algorithm in [159] to prepare the nodes qubits in a W state superposition;
the algorithm produces a circuit with complexity O (logn) and depth of O(n). Here, n
represents the number of qubits involved in the W state preparation, which is, in our
case, the number of nodes |V|. Hence, the cost of preparing W states becomes O (|V|).
On the other hand, when using the Dicke state preparation proposed in [158], we get a
circuit with depth O (kn) and complexity O (n), where k is the clique size, and n is the
number of qubits. Therefore, the cost of preparing the Dicke state becomes O (k|V]).

Oracle and Diffusion Operator Complexities

First, we will discuss the complexity of the diffusion operator. As seen in Figure 5.5,
the diffusion operator consists of the state preparation, a C®"Z gate, and the adjoint of
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Table 3.5: Complexities for the different steps of the algorithm with and without the
initial state preparation.

Algorithmic Time Gate
Step Complexity Count
W state
T O(log V1) o(v
Dicke state
Preparation ovD O(kIVD)
Diffusion

Operator O((state_prep)) O (state_prep +|V|)

Oracle without
state prep
Oracle with
state prep

O(|E| +1og(k)) | O(IE|+ |V +log(k))

O(|E| +log(k)) | O(|E| +log(k))

state preparation, respectively. Hence, we can generalize the complexity of the diffusion
operator as O (state_prep) + O (C®"Z) + O (state_prep). The cost of the state preparation
depends on which approach is used; hence, it will be O(log|V]) in case of W state
preparation or O(|V|) in case of Dicke state preparation, as can be seen in Table 3.5.
However, the complexity of the C®"Z gate depends on the number of nodes |V |; therefore,
the complexity of the gate will be O (|V]). Consequently, the cost of the diffusion operator
will become O (state_prep) + O(|V]), while its complexity will be O (state_prep).

The complexity of the oracle also depends on whether an initial state preparation is
used. Regardless of the oracle implementation (checking-based or incremental-based),
the primary function of the oracle counts the number of edges and nodes needed to
compose a clique of size k. So, the complexity of the oracle for the entire Hilbert space
is O(log(k) +|E| +|V|). When we use state preparation, we eliminate the need to count
nodes; that is because we only allow states with the specific k nodes activated at any
time to be included in the search space. Hence, the complexity of the oracle when using
initial state preparation to limit the search space is O (log(k) + |E|).

Algorithm Total Complexity

The total complexity of Grover’s algorithm can be expressed as the number of iterations
times the cost of one iteration. The number of iterations, as discussed in previous

subsections, can be presented as O (4/ (mi)) Each iteration’s cost can be divided into two
parts: the oracle’s cost and the diffusion operator’s cost. Hence the total complexity

becomes O (+/ (mi)) X (O (oracle) + O (diffusion operator)). This complexity assumes the
initial state preparation of states in the entire Hilbert space. However, suppose we used
W state or Dicke-state as initial state preparation. In that case, the complexity becomes

O (state_prep) + O(4/ (mi)) X (O (oracle) + O (diffusion operator)).
To estimate when our proposed schemes of Grover’s algorithm to solve the clique
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Table 3.6: Average values of 77, T», readout error, and single-qubit error for six different
IBMQ Devices

Device Tl T2 Readout | Single-qubit

name (in us) | (in us) error gate error
ibmq_16_melbourne 55 59 0.118 0.0022
imbq_poughkeepsie 64 65 0.0517 0.00179

ibmq_singapore 83 89 0.0389 0.000875

ibmq_paris 76 67 0.032 0.000573
ibmq_cambridge 81 39 0.0959 0.00124
ibmq_rochester 55 59 0.118 0.0022

finding problem can be implemented on an actual device with minimal error, we need to
address two factors: the quantum volume and the device performance.

3.5.4 Device Performance

Even among machines with similar QV, their performance depends on more than just the
number of qubits in the machine. It also depends on the device noise model, as discussed
in 3.5.2, and the coupling map (the connectivity between the qubits). That’s why different
devices with the same number of qubits perform differently and have different error rates.
Each machine has a different error profile, which makes it challenging to estimate the
ability to implement any algorithm on an actual device based solely on its QV. We
analyzed the performance of our top three error-resistant approaches (Checking-based
Oracle with W-state Preparation, Incremental-based Oracle with W-state Preparation,
Incremental-based Oracle with Dicke state Preparation) on the two machines with the
overall best performance, ibmg_singapore and ibmq_paris. We obtained the error
model of both these devices and modified it in three ways to understand which factor
affects the overall error most. We changed the thermal relaxation error by modifying
Ty, and T, while keeping all other errors untouched, then did the same but with the gate
error, and finally, edited both the thermal relaxation error and the gate error together.
To understand better how 77, and 7, affect the amplitude of the correct answer, we
applied our two proposed oracle structures (for the graph in Figure 3.6) to six different
IBMQ devices with different 77, 75. Since the value of 77, 7> depends on the specific
qubits, we took the average 77, T of the devices when we applied our different circuits.
Table 3.6 shows the average values of 77, 7>, and the names of the six devices used.
The table also shows the average readout error and single-qubit gate error rate. We
should note that the error rates are determined by gate execution times and the qubit 7
and 7, values. The values chosen for the gate execution times are averages based on
actual devices as follows, U2 gates take 50 nanoseconds, U3 gates take 100 nanoseconds,
CNOT gates take 300 nanoseconds, and finally, the readout will take 1000 nanoseconds?.

2U2, and U3 are basic single-qubit unitary gates presented by Qiskit [166]
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Figure 3.15: The effect of manipulating the error model of the ibmg_singapore and
ibmq_paris devices in decreasing or increasing the error percentage. Each color
represents an approach, and the shades of the bars represent the type of modification as
follows: dark shade modifies both 77, 7> and the gate error, the medium shade modifies
Ty, T; only, and the light shade is modifying the gate error only. The x-axis is the
percentage of modifying the errors.

As seen in Figure 3.15, changes in error rate depend on both the implementation of
the circuit and the device used for execution. The changes applied to the noise model
were increasing 71, T> by 25, 50, 75, and 100% while decreasing the gate error by 25,
50, 75, and 100%. The difference in error rate due to modifications (changing 77, 75,
and gate error) can increase the device error up to 7.5% and decrease down to 20.5%.
It can also be seen that the incremental-based approach with W-state preparation has
the largest decrease in error rate, significantly when modifying both 77, 7>, and the gate
error. Finally, we can see that changing 77, T, only leads to better results than modifying
the gate error only. Figure 3.15 also shows that in some cases, modifying 77, 75, and
the gate error led to an increase in the overall error rate. The reason is that the overall
error depends on many factors, such as other types of error (reset and readout errors,
and the measurement—machine maintenance cycle) and the date on which experiments
were conducted.



Chapter 4

Testing and Debugging Quantum

Circuits

4.1 Introduction

In classical software, the development process follows a mature cycle. Two critical stages
of the cycle are testing, debugging, and maintaining the application. The application’s
abstract aspects may be tested with formal specifications, pseudocode, modeling tools,
etc. Bugs arise from errors in the specification of a program, in translating the specifi-
cation into code, or, sometimes, from bugs in the tools themselves. Currently, there are
many approaches to testing classical software, both formal and informal [167, 168, 169].
Approaches such as unit testing, regression testing, continuous integration, and path
coverage testing make building and supporting systems as complex as tens of millions
of lines of code, such as the Linux kernel, possible [170, 171].

Like the classical software development cycle, the quantum software development
cycle shown in Figure 2.8 describes developing software for quantum computers as
proposed in [105]. Since quantum computers can operate on the superposition of values
(each with a complex amplitude [106, 107]), the exponential growth in the state space
poses a fundamental problem in testing and debugging quantum programs.

When we want to test a quantum circuit, we often have to consider the behavior
of all possible inputs as a set. That exponential growth in the input state space poses
fundamental challenges during the testing and debugging.

The first and perhaps most critical challenge is the principle on which quantum
algorithms operate. The goal of quantum algorithms is often to find a solution to a
problem through building interference patterns that amplify the amplitude of correct

80
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answers at the expense of the incorrect ones.

First, we must consider the steps of testing a quantum circuit to build a framework
for testing and debugging quantum programs. Testing a quantum circuit involves several
steps, each of which plays a vital role in ensuring the functionality and accuracy of the
computations. We can set the needed steps as follows:

1.

Writing Code: This step involves creating the quantum circuit using the special-
ized quantum programming languages or quantum packages supported by classical
programming languages (Section 2.7).

. Writing Tests: Creating test vectors for the circuit and specific parts. This step

includes several sub-steps.
* Slicing the Circuit: Dividing the circuit into smaller segments for efficient
testing.

* Categorizing Slices: Categorizing the slices based on their functionality
within the circuit.

* Adjusting Slice Start/End Points: Modifying the boundaries of a slice as
necessary.

* Developing Test Vectors: Creating sets of inputs and expected outputs for
each slice type.

» Assessing Coverage: Ensuring that the tests cover all (or most) possible
scenarios the slices might encounter.

. Confidence Interval Selection: Deciding on the statistical confidence level for

the test results, which includes:

* Choosing Optimal Number of Shots: Determining the number of circuit
executions to balance accuracy and computational resource usage is discussed
below.

. Integration: Resolving issues arise when a slice, which works independently,

fails upon integration.

. Running Tests: Executing the developed test cases against the slices of the

quantum circuit and comparing the actual behavior with the expected one. This
step can be done on a simulator (if the slice size allows) or an actual device.

Error Isolation and Additional Testing: If an error is detected, the problematic
slice is isolated and subjected to further focused testing to pinpoint and understand
the bug.
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These steps provide a systematic approach to testing and debugging quantum pro-
grams, which we will follow loosely in this chapter.

Before we demonstrate the proposed suite, we first need to look at the bugs commonly
occurring when writing quantum programs today.

4.2 Bugs and Errors in Quantum Software

Most work done around the field of testing and debugging quantum software mainly
focused on finding patterns in quantum bugs and collecting frequent bugs. Since un-
derstanding the flow of quantum programs and the causes of errors is essential for the
ability to debug quantum circuits, researchers focused on reproducible bugs and catego-
rizing the occurrences of bugs in quantum programs [172, 173, 174]. In these studies,
researchers found that quantum program bugs can occur for multiple reasons. Based on
their source, quantum bugs were categorized to make their understanding easier.

Bugs could occur due to either the package/library used or the developer’s im-
plementation of an algorithm. Library-related bugs occur because of a fault in the
implementation of the API, such as deprecation and mistakes in the data handling within
the API. On the other hand, bugs introduced by the developer cover incidents such as the
wrong ordering of the gates or misuse of the functions offered by the API.

Because the API used to implement quantum programs can introduce a lot of bugs
to the programs [175, 176] conducted work on these particular sources of bugs and how
it can affect the following programs.

In [174], 35 of the bugs were related to a mistake in the implementation of the API
(some provided functions do not behave as expected or described in the documentation),
while 61 were due to some errors introduced by the developer. We collected an additional
73 bugs from the same sources (Stack Overflow, Stack Exchange, and GitHub) (a table
with all 123 bugs can be seen in Appendix B). We then classified the bugs into four
categories, summarized based on whether they are caused by the library/package or the
user in Table 4.2:

» System Backend bugs include transpiler, decomposition, and simulator errors and
those related to the API implementation. The programmer does not introduce
these bugs, which may cause a correct implementation not to work correctly.

* Classical data post-processing bugs include misunderstanding/wrong interpreta-
tion of the data or a mistake in parameterizing the circuit. This category of bugs
is about the different ways the programmer can mistakenly interpret the results.
A common example of this bug is mistaking little Endian with big Endian rep-
resentation [177] when reading the register variable of the working qubits. For
example, if we have an algorithm that should output [1101), in Qiskit (which uses
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Table 4.1: The count of bugs causing runtime exceptions based on whether the library/-
package or the user causes them.

Throws runtime exception?
Yes No Sum
Library | 35 8 43
User 39 41 80
Total 123

little Endian), it will be [1011) which often leads to confusion in interpreting the
results.

* Classical semantics bugs include typos and mishandling of functions, such as
missing attributes and confusing data types. This type of bug is not quantum-
specific. These bugs also occur in classical programs, and although they may lead
to false circuit results, fixing them does not require any quantum knowledge but
rather an understanding of the software and programming language used.

* Quantum logic bugs are bugs that will cause difficulties in developing larger
quantum software in the future. Quantum circuit bugs include missing or extra
gates, applying a gate to the wrong qubit, wrong gate order, initialization error,
wrong phase, or using the wrong gates.

Understanding the bugs in quantum programs is essential to debugging and testing
quantum programs. A simple differentiation we can make here is: How many of
these bugs cause a runtime exception? If a runtime exception also occurs in classical
programming, fixing it is easier. Table 4.1 shows the distribution of the bugs based on
their source and category.

Moreover, considering the categorization above, we can refer to the first three cat-
egories as non-quantum-specific bugs and the last as quantum bugs. Those categories
include bugs that could occur in classical programming as well; hence, we can approach
debugging them as we do classically. Another important note about such bugs is that
they often cause a runtime exception, which makes it easier to locate and fix.

Let us consider the non-quantum-specific bugs first. These bugs are introduced by
the package used, misuse of that package by the programmer, or misinterpretations of the
results. An example of bugs introduced by the package includes errors due to deprecation
or compatibility between the package and its dependencies.

i from giskit.providers.aer import QasmSimulator
> # Create a quantum circuit
3 g¢ = QuantumCircuit(2, 2)

4+ qc.h(0®)
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s gc.cx(0, 1)

gc.measure ([0, 11, [0, 11)

7 # Get the Qasm simulator and set the backend options
aer_qgasm_simulator = Aer.get_backend(’gasm_simulator’)

# Set the backend options, method set to statevector

options = {’method’: ’statevector’, ’'memory’ : True, ’'shots’:10}
# Execute circuit using the backend options created

> job = execute(qc, backend_simulator, backend_options=options)
result = job.result()

# Pull the memory slots for the circuit

s memory = result.get_memory(qc)

# Print the results from the memory slots

print (’Memory results: ', memory) ‘ ‘¢

Listing 4.1: An example of non-quantum-specific bug due to misuse of the functions

offered by the API by the programmer.

In Listing 4.2, we can see an example of a piece of code that produced an error due
to the deprecation of the function Shor in the recent versions of Qiskit. Another example
of a non-quantum-specific bug can be seen in Listing 4.1, where this code produces an
error because the programmer used the wrong parameters when choosing a backend to
execute the circuit. Finally, the programmer can implement an algorithm correctly and
have no issues due to the API, yet misinterprets the results and thinks they are incorrect;

that is often due to confusing little and big Endian representations of the qubits.

from qiskit import Aer
from giskit.utils import QuantumInstance

from qiskit.algorithms import Shor

s N = 15

backend = Aer.get_backend(’aer_simulator’)
quantum_instance = QuantumInstance(backend, shots=1024)
s shor = Shor(quantum_instance=quantum_instance)

result = shor.factor(N)

print (£f"The list of factors of {N} as computed by the Shor’s
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Table 4.2: Categorizing the bugs collected from StackExchange and StackOverflow
based on their type and cause.

Bug Source
Bug Type Due to package | Due to User
Classical Data Post-processing 11 15
Classical Semantics Bugs 4 24
Quantum Logic 1 37
System Backend 27 4
Total 43 80 123 |

algorithm is {result.factors[0]}.")

Listing 4.2: A simple example of a bug due to the library (Qiskit) deprecation of the

Shor function.

If we focus on the quantum circuit bugs introduced by the programmer, the impact of
bugs can often depend on the specific application and the type of algorithm used. These
bugs can sometimes cause syntax or compile-time errors (which can be caught and fixed
quickly), while others only evidence themselves at runtime. We can further categorize
these as:

* Initialization bugs.
* Gate-order bugs include extra gates or gates applied to the wrong qubit.

* Quantum-logic bugs, such as using the wrong phase or misinterpreting an algo-
rithmic step.

An initialization error indicates that the programmer made a mistake in the initial
state required to form a specific state. An example would be if the programmer "forgot"
to set all qubits in state |[+) when constructing a cluster state [178], which would lead to
incorrect results Listing 4.3. We can also think of state preparation when implementing
different algorithms, such as Grover and Shor algorithms, as initialization bugs.

i from qgiskit import QuantumCircuit

> def create_cluster_state(n_qubits: int) -> QuantumCircuit:
"""Create a cluster state for the given number of qubits."""

4 # Initialize a quantum circuit with the specified number of
qubits

gc = QuantumCircuit(n_qubits)
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# Apply CZ gates between neighboring qubits to create the cluster
state
for i in range(n_qubits - 1):

gc.cz(i, i+1)

return qc

n_qubits = 4

cluster_circuit = create_cluster_state(n_qubits)

Listing 4.3: A Python and Qiskit implementation of cluster states missing the
initialization of the qubits to the |+) state by applying H gate to all qubits before the CZ
gates.

The final category is what we refer to as quantum-logic bugs. This includes applying
gates to the wrong qubits, placing them in the wrong order, and missing or adding an
extra gate. Section 4.5 will discuss an example of that. In addition to phase errors, they
are caused by using the wrong phase or making a mistake in translating an algorithm
into code. Section 4.5 will also discuss an example of such a bug.

4.3 Quantum Circuit Slicer

The current state of classical debuggers results from decades of research [179], develop-
ment, and experiments [180]. One of the most fundamental concepts used in classical
debugging is the concept of program slicing [181]. A programming tool divides a big
body of code into smaller, easy-to-test and manage chunks. Each of these chunks is
called a slice.

Slices are formed in two ways, either manually using breakpoints [182] or using a
form of automatic/semi-automatic slicing. Using breakpoints, the debugger can divide
the code so the user can observe its behavior and the variables’ contents within each
slice. There are different types of automated program slicing; the basic two are static
and dynamic. Static slicing works by slicing the program based on a variable or set
of variables by eliminating the lines of code that do not include or affect that variable
directly or indirectly. In dynamic slicing, on the other hand, the slice is formed using
variable(s) and condition(s). The variable(s) and shape used to create the slices are
called the slicing criteria.

As the available interest and the current size of the available systems continue to
increase, the circuits implemented will also increase. Hence, we implemented a quantum
circuit debugging tool with a circuit slicer based on manual slicing and breakpoints. A
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quantum circuit slicer will divide a large circuit into smaller, simulatable sub-circuits to
prove the use of the circuit both in the current NISQ (Noisy Intermediate-scale Quantum
Computers) era [1] and the future era of fault-tolerant quantum computing.

Classical Quantum . Classical
Pre-processing 3 Computations Post-processing
Initialization Core Arithmetic Amplitude

(Setup superposition) > Operations > Redistribution 3 Measurements

Figure 4.1: The different steps needed to implement and execute most quantum algo-
rithms.

Generally, quantum algorithms follow a set of steps to solve a problem. All quantum
algorithms start with preparing the qubits in a specific state or a uniform superposition,
then perform some arithmetic and calculations, followed by redistribution of the ampli-
tudes. Depending on the algorithm and the problem being solved, some may include
classical pre-processing or post-processing after the measurement procedure Figure 4.1.
For example, let us consider Grover’s algorithm, which consists of three algorithm steps:
preparing the qubits in a uniform superposition, followed by a problem-specific oracle,
and then a diffusion operator. In the algorithm, the oracle and diffusion will repeat
multiple times until the answer is reached.

We implemented a manual slicer, where the user inserts breakpoints (in a quantum
context, breakbarriers) in the circuit and then simulates the resultant slices or runs them
on an actual device to observe their behavior. To make the valuable tool for all sizes
of circuits, it has to be able to slice the circuits on two axes, the gate axis (vertically)
and the register axis (horizontally) Figure 4.3. That is, the user can insert breakbarriers
vertically in the circuit to divide it into smaller circuits and horizontally remove any
qubits that are unused in any of the slices.

Vertical Slicing

To explain the methodology and concept of slicing, let us think of a circuit corresponding
to Grover’s algorithm [41]. Based on each algorithmic step, we can use breakbarriers to
divide the circuit into slices. Grover’s algorithm consists of three main algorithmic steps:
initial state preparation, an oracle, and the diffusion operator. To keep things simple,
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Figure 4.2: A generic Grover’s algorithm circuit sliced using both stand-alone and
accumulated slicing.

assume Grover’s algorithm we are slicing consists of one iteration of the algorithm. We
will insert two breakbarriers to slice this circuit, one after the state preparation and one
after the oracle. This will result in three sub-circuits, each performing a specific step in
the overall algorithm.

The circuit slicer offers two options for vertical slicing as in Figure 4.2:

 Stand-alone slices: The slices are defined by the breakpoints.

e Accumulated slices: Each slice is added to the slice before it to create a new slice.

Horizontal Slicing

Sometimes, after slicing the circuit vertically, we may end up with a slice that contains
some unused qubits. Since our goal of slicing the circuit is creating smaller, simulatable,
executable circuits, having unused qubits is redundant. Hence, we can do horizontal
slicing to remove these unused qubits from the slice. The current version of the tool only
allows for the automatic slicing of unused qubits. Future expansion will allow users to
manually insert horizontal breakbarriers in slices with two independent registers or a set
of qubits. One main challenge of slicing quantum circuits horizontally is cross-register
entanglement before the slice, which becomes more prominent if the horizontal slicer is
manual and allows the programmer to choose the slicing location, such as CutQC [183].
CutQC uses the Kronecker product to overcome the challenge of considering the effect
of the slice. For example, if we cut only one wire, we get a 4% Kronecher product, where
k is the number of qubit wires cut. The math used to develop CutQC [184], indicates that
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the probability of the measurement of an input state |¢) for the unsliced circuit must be
equal to the sum of possibilities of the same state for the slices following Equation 4.1,
where N is the number of subcircuits resultant from the slicing.

pUYY) = D P1i® o ® P, (.1)

Where, p; is the probability of obtaining a particular measurement outcome i from
the first subcircuit and the tensor product p; ® - - - ® py; combines the probabilities of
all subcircuits to reconstruct the probability distribution of the original, unsliced circuit.

After slicing a large quantum circuit into smaller subcircuits, CutQC handles the
entanglement between qubits that span different subcircuits through a classical postpro-
cessing step. The key steps are:

* At the cut points, the qubit states are measured in different bases, and correspond-
ing states are initialized in the next subcircuit. This process generates several
combinations of measurement and initialization pairs.

» Each subcircuit is executed independently on a quantum computer, generating
probability distributions for each possible measurement outcome.

* The measurement outcomes and corresponding probabilities from each subcircuit
are combined using tensor products. The final probability distribution of the entire
circuit is reconstructed by summing the tensor products over all combinations of
measurement outcomes from the subcircuits.

This approach allows the effects of entanglement between qubits in different subcir-
cuits to be captured and recombined classically, effectively reconstructing the behavior
of the original, unsliced circuit.

Lastly, if we assume that the programmer is using a NISQ machine to execute both
the slices and the original circuit they need to use an efficient number of shots to achieve
good coverage of the possibilities of measuring the different states.

4.4 The Different Types of Quantum Circuits

Generally speaking, we can say that quantum algorithms consist of blocks (Algorithmic
steps) that perform either classical computations and blocks that create constructive and
destructive interference. Based on that, this thesis proposes a categorization of quantum
circuits according to their behavior into three categories:
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Figure 4.3: A generic circuit for Grover’s algorithm is sliced into 3 vertical slices, then
the first slice is horizontally re-sliced to remove unused qubits.

* Amplitude-Permutation (AP) Blocks A type of quantum circuit primarily fo-

cuses on permuting the amplitudes of quantum states. These circuits operate
like classical logic gates within the quantum realm, rearranging the probabilities
(amplitudes) associated with the quantum states without altering their phases. An
example of that is a quantum adder or Grover’s oracle. Those blocks are essentially
classical reversible logic [185, 186]. Mathematically, for set of states «;|j), an
AP block can be defined as:

D ajliy = D angliy (4.2)
J J

Where T1(j) is a permutation function. In terms of unitary operators, an example
2-qubit AP block unitary (a) might be a permutation matrix with exactly one 1 in
each row and column, such as

0100
ltooo
““loo1o0
0001

An AP circuits can be tested and executed using single amplitudes.

* Phase-Modulation (PM) Blocks Quantum circuits that focus exclusively on alter-
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Figure 4.4: Examples of AP and AR block. A. (left) A random amplitude distribution
of a 2-qubit state (right) The amplitudes are permuted after applying the NOT gate to
the LSQB. B. (left) A two-qubit superposition. (right) The phase is modulated after
applying a T gate to the LSQB. C. (left) A uniform superposition of 3 qubits (right) The
probability amplitude after applying Grover’s iterator to mark the correct answer |101).
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ing the phases of quantum states without changing their amplitudes. The primary
function of these circuits is to introduce phase shifts in qubits. An example of
such circuits is the Quantum Phase Estimation (QPE) algorithm. This algorithm
showcases the modulation of quantum states’ phases to derive information. Math-
ematically, for set of states «;|j), a PM block can be defined as:

Dl = > ae™ D)) (4.3)
J J

Where f(j) is a function that calculates the phase shift of a state, f(j) € R. The
unitary of a PM block will be a diagonal matrix D with D;; = e,

* Amplitude-Redistribution (AR) Blocks Unlike the Amplitude-Permutation Cir-
cuits, these circuits redistribute the amplitudes across various quantum states,
thereby harnessing the full potential of quantum superposition and entanglement.
An example of an AR block is the Quantum Fourier Transform (QFT). An AR block
contains gates that alter interference patterns and create or destroy superposition.
AR blocks can be represented as:

2 ki) = il (44)
7 J

Where o’ ; = 3, Uj ray, here, U; i are the elements of the unitary matrix applied
to the qubits. An example of a straightforward AR block is only the Hadamard
gate.

Though Grover’s oracle is an AP block, Grover’s iterator (the oracle and the diffusion
operator) is an AR block. Figure 4.4-B shows the Q-sphere before and after applying
Grover’s iterator to a 3-qubit circuit.

Based on the different characteristics of those types, the debugging process will differ
significantly. It will even vary within each type. The categorization depends on the size
of the circuit as well as the simplicity of creating test vectors to check the functionality
of the circuit accurately.

4.5 Testing The Different Circuit Blocks

As discussed in Section 4.4, we divided quantum circuits into three types with entirely
different properties, making the process of testing and debugging them significantly
different. Moreover, testing and debugging the same type will vary depending on its size
and the type of instructions it contains.
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Figure 4.5: One approach to testing quantum circuits, where Upyr is the Device Under
Test (full circuit/slice). Ury; is the circuit corresponding to a test vector i. Ugg; is the
simplified circuit corresponding to the expected behavior for test vector i. If |)ro; =
|¥)Eo: the output will be |0).

AP blocks behave like classical programs [185, 187]; hence, we can use classical
approaches when testing them. Therefore, the challenge when testing them would pri-
marily be the difficulty of generating test cases that can provide full coverage. For
example, for an adder, we can test a few simple inputs using single amplitudes (no super-
position), including overflow cases, and reason by induction for the rest. Unfortunately,
that approach cannot be extended to AR and PM blocks because they contain quantum
properties that are difficult to address using traditional testing and debugging techniques.

Although creating test vectors for AR and PM blocks is not as simple as doing so
for the AP blocks, creating test vectors for simple AR and PM blocks should be slightly
more straightforward than the complex ones. For example, creating test vectors for a
4-qubit block that contains only 4 Hadamard gates is more straightforward than creating
test vectors for a circuit of 20 qubits and 60 different gates.

The size of the block and the types of instructions in it are not the only challenges
we face when testing and debugging AR and PM blocks.

Before we discuss the different approaches for each type, we need to discuss an
approach to testing PM blocks. To do that, we must define a few important terms:

* Upyr: Device Under Test, which refers to the slice/circuit we are testing/debug-
ging.
* Ury;: Is the circuit corresponding to applying test vector i to Upyr. The results

of this is ¥ )roi, where [¥)roi = UpyrUrvil0).

* Uroi: The expected behavior of Upyr for TVi which is |¢)gp;. Because this is
specific to a single test vector, it will be substantially simpler than Upyr.

Figure 4.5 shows an approach to testing any quantum circuit (regardless of its type).
Essentially, we want to answer the question: Does |¥)ro; = [¢)eoi? If the slice we are
testing is correct, these two states are equal; if not, we can conclude that something is
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incorrect in the test circuit and proceed with the debugging process. The debugging
process will then differ based on the circuit block we target.

To make it easier for the programmer, Cirquo has two testing functions for the
two different types of programs. To test AP circuits, the programmer can use the
pClassTester function with a classical representation of the qubits states. On the
other hand, the function fQuantTester allows the developer to use state vectors as
input/output pairs to test the program for PM and AR circuits.

To see the difference, let us first address AP programs and how they can be debugged
and tested using Cirquo. Before we start explaining the difference between testing the
two types of circuits, it is important to explain the construction of the test vectors. The
general format of a test vector is as shown in Listing 4.4. When constructing tests for AP
circuits, the input and expected_out values would be a list of classical representations
of the qubits, while they would be the state vector of the qubits when testing the AR
circuits.

test_cases = [
{
"name": "test 1",
"input": [],

"expected_output": T[]

b

{
"name": "test n",
"input": [],
"expected_output": []

3

Listing 4.4: The format of test vectors.

4.5.1 Generating Test Cases

One key element missing in all quantum software today is testing, particularly creating
test cases. Though some tools offer unit testing for quantum programs, they leave it to
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the programmer to create test cases.

Cirquo offers functions to generate basic tests for some commonly used sub-routines
in quantum algorithms to ease the load off the programmer. The test generation functions
Cirquo offers for the subroutines:

* Quantum Full Adder

 The Diffusion Operator

The W state

The GHZ state

The Dicke State
* Quantum Fourier Transform

For example, if the programmer needs to test their implementation of the W state,
they can use the specific function provided by Cirquo to generate tests for the W state
based on the number of input qubits. The function to generate tests for any of the
provided subroutines works as follows: Given the number of input qubits, the function
generates 6 basic inputs corresponding to the different bases |0), [1), |[+), |), |i), and|—i).
Returning to the example of generating tests for the W state, assume that
we need to generate tests for a 2-qubit W state. We can use the function
generate_w_state_test_cases(2) to generate the tests in a format we can pass
to the testing function to validate the correctness of a given W state implementation as
shown in Listing 4.5.

1 {

> 'name’: 'test O’, ’input’: [(1+0j), 0j, 0j, 0j], ’'expected_output’:
[0j, (0.707+0j), (0.707+0j), 0j]

s }

o f

s 'name’: ’'test 1’, ’input’: [0j, 0j, 0j, (1+0j)], ’'expected_output’:
[(-2.586e-17+0j), 0j, 0j, (1+0j)1]

6 }

7 4

s 'name’: ’test +’, ’input’: [(0.5403j), (0.5+0j), (0.5+03j), (0.5+0j)],

’expected_output’: [(0.5+07), (0.707+0j), (-9.872e-17+0j), (0.5+0j
D]
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0 {

i1 ’name’: ’test -’, ’dinput’: [(0.5+40j), (-0.5+0j), (-0.5+0j), (0.5+0j)
1, ’expected_output’: [(-0.499+83), (1.075le-16+03j), (0.707+03),
(0.5+07)1

2}

i3 {

4 'name’: ’test i’, ’input’: [(0.5+0j), 0.5j, 0.5j, (-0.5+0j)]1, ’
expected_output’: [(1.2930e-17+0.5j), (0.353+0.353j), (0.353-0.353
i), (-0.5-1.293e-173)]

5}

16 {

7 name’: ’test -i’, ’dinput’: [(0.5+03j), -0.5j, -0.5j, (-0.5+0j)]1, ’
expected_output’: [(1.293e-17-0.5j), (0.3535-0.353j), (0.353+0.353
j), (-0.5+1.293e-17j)1}

5]

Listing 4.5: Test vectors for the 4-qubit W state.

This list of tests can then be used with the fQuantTester to run tests on any im-
plementation of the W state to validate its functionality. The W state only needs one
parameter to be defined: the number of input qubits. However, some subroutines,
namely the Dicke state, require two parameters to be defined, the number of qubits and
the Hamming distance between them. To simplify the process for the programmer, each
of the given subroutines by Cirquo has its own test generation function. To generate
the test vectors for a 3-qubit Dicke state with a Hamming distance of 2, we use the
function generate_dicke_state_test_cases(3,2), more details about that will be
discussed in Section 5.3.

Similarly, we can wuse the functions generate_qft_test_cases and
generate_gpe_test_cases to generate test cases for QFT and QPE, respectively.
The current implementation of Cirquo generates test cases as state vectors.

4.5.2 Testing and Debugging Amplitude Permutation (AP) Blocks

One example of an AP circuit is the quantum full adder. The full adder is a 4-qubit
system, where the inputs are |A), |B), |Ci,), and |0). |A) and | B) are the qubits we wish
to add and |C;;,) is the carry-in. The output of the full adder is |A), |B), |S), and |C,,s),
here |S) is the sum of qubits |A) and |B) Listing 4.6.
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Figure 4.6: The circuit constructing a full adder.

def Quant_full_adder(qc, in_gbits,zero_qubit):
gc.ccx(in_qbits[0],in_gbits[1], zero_qubit)
gc.cx(in_gbits[0],in_gbits[1])
gc.ccx(in_qgbits[1],in_gbits[2],zero_qubit)
gc.cx(in_gbits[1],in_gbits[2])
gc.cx(in_gbits[0],in_gbits[1])

return qgc
Listing 4.6: A simple Python and Qiskit implementation of the full adder.

Let’s look at this circuit 4.6 from a high level. Without considering the decompo-
sition of the control not and Toffoli gates, we can say that this circuit is AP, using the
catCircuit function in Cirquo will also point that this circuit is AP. Since this is an AP
circuit, we can test it using a classical approach. Cirquo includes two testing functions,
one to test AP circuits and one for AR ones. In this case, we will use the AP circuit tester
pClassTester. The tester function takes on a circuit and a list of test vectors. When
testing AP circuits, we will create the test vectors as a list of the desired values of the
qubits. For example, to test the full adder, we can pass the test vectors in Listing 4.7.

test_cases = [

{

"name": "test 1",
"input": [1,1,1,0],

"expected_output": [1,1,1,1]

"name": "test 2",
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"input": [0,0,0,0],

"expected_output":

"name": "test 3",

"input": [1,0,1,0],

"expected_output":

"name": "test 4",

"input": [0,1,0,0],

"expected_output":

"name": "test 5",

"input": [1,1,0,0],

"expected_output":

[0,0,0,0]

[1,0,0,1]

[6,1,1,0]

(1,1,0,1]

Listing 4.7: Test vectors for the full adder.
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Running the program for these test vectors results in a PASS status for all of them,

as seen in Listing 4.8.

Testing test 1:

> Result: PASS

5 Input: [1, 1, 1,

Output: [1, 1, 1,

Expected Output:

Testing test 2:
Result: PASS
Input: [6, O, O,
Output: [0, 0, O,

0]
1]
(1,

1,

1,

1]
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Expected Output: [6, 0, 0, O]

; Testing test 3:

Result: PASS

s Input: [1, 0, 1, 0]

Output: [1, O, 0, 1]
Expected Output: [1, ®, 0, 1]

Testing test 4:
Result: PASS

Input: [0, 1, 0, 0]
Output: [6, 1, 1, 0]

s Expected Output: [0, 1, 1, 0]

»s Testing test 5:

Result: PASS

»7 Input: [1, 1, 0, 0]

Output: [1, 1, 0, 1]
Expected Output: [1, 1, 0, 1]
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Listing 4.8: Test results when running the test vectors of the correct full adder program.

Now, let us introduce a simple bug to this program. We will add an extra Toffoli gate
Listing 4.9, then walk through the testing and see how we can locate that bug if we don’t

know what it is.

def Quant_full_adder(qc, in_gbits,zero_qubit):
gc.ccx(in_gbits[0],in_gbits[1], zero_qubit)
gc.cx(in_gbits[0],in_gbits[1])
gc.ccx(in_qgbits[1],in_gbits[2], zero_qubit)
gc.cx(in_gbits[1],in_gbits[2])
gc.cx(in_gbits[0],in_gbits[1])

gc.ccx(in_gbits[0],in_gbits[1],zero_qubit)
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return qc

Listing 4.9: A simple Python and Qiskit implementation of the full adder with an extra

CCX gate.

The first step is running the same test for the program containing the bug. This will
lead to similar results but different ones (Listing 4.10). When we examine the results,
we see that the mismatch only occurs when both qubits |A) and |B) are 1.

Testing test 1:

Result: FAIL

3 Input: [1, 1, 1, 0]

~

Output: [1, 1, 1, 0]

Expected Output: [1,

Testing test 2:
Result: PASS

Input: [0, 0, 0, 0]
Output: [6, 0, O, O]

Expected Output: [0,

3 Testing test 3:

Result: PASS

s Input: [1, 0, 1, 0]
; Qutput: [1, O, 0, 1]

Expected Output: [1,

Testing test 4:
Result: PASS
Input: [0, 1, 0, 0]

» Qutput: [6, 1, 1, 0]

; Expected Output: [0,

s Testing test 5:

s Result: FAIL
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»7 Input: [1, 1, 0, 0]
s OQutput: [1, 1, 0, 0]
» Expected Output: [1, 1, 0, 1]

Listing 4.10: Test results when running the test vectors of the full adder program

containing the bug.

This hints that whatever is causing the error has something to do with the first
two qubits. If we used the gateLoc function, we know that we have 3 Toffoli gates
in the circuit instead of two and that the extra one is applied to the first two qubits.
Using similar approaches can help to lead programmers to the source of the bug. In
this case, since the error only occurs when the first two qubits are 1, we can assume
that they may be the control of some gate, which is when the error occurs. We can
know the multi-qubit gates applied to these two qubits using the gateLoc(qc,’ cx’,
qubits=["q[0]’, q[1]’]) function, which will lead us to two Toffoli gates, and then
we can remove each of them and test the circuit again. Doing so leads us to determine
that the last Toffoli gate is the source of the error.

4.5.3 Testing and Debugging Phase Modulation (PM) Blocks

Testing and debugging AP blocks were relatively straightforward; however, moving on
to the PM and AR blocks gets more challenging. This subsection will consider a strategy
for debugging a PM block. The most straightforward PM block would be the QPE
algorithm.

Before we dive into an example of a QPE with a bug, let us first discuss an approach
to testing PM blocks. The strategy we propose here is to use the swap test [188].

The swap test is a fundamental quantum computing procedure used to determine the
similarity between two quantum states. It is beneficial for measuring the inner product
of two states, which can then be used to calculate their fidelity or similarity.

Consider two quantum states |¢) and |¢) that we want to compare. The swap test
involves an ancillary qubit (the control qubit) initialized in the state |0) and the two states
|y and |¢). The process of the swap test involves the following steps:

1. Apply a Hadamard gate to the control qubit, putting it into the superposition
L(10) +11)).

2. Perform a CSWAP gate using the control qubit. The CSWAP gate swaps |¢) and
|¢) only if the control qubit is in the state |1).

3. Apply another Hadamard gate to the control qubit.
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4. Measure the control qubit. The probability of measuring |0) is given by P(0) =
3+ 5lwlg).

The outcome of the measurement gives us information about the similarity of the
two states. If the states are identical, the probability of measuring |0) in the control qubit
will be 1. If they are orthogonal, the probability will be %

In the swap test circuit, the first qubit is the control qubit, and the other two qubits are
the states ) and |¢) being compared. The CSWAP operation is central to comparing
the two states.

In this thesis, we use the swap test to determine if a phase difference exists between
the two states. To do that let us consider |¥) = |0) + ¢71|1) and |¢) = |0) + €2|1). We
can then recalculate the probability of measuring 1 or 0 as a function of #; and 6, as
follows:

The inner product of these two states is:

1 .
Wle) =5 (1 +e’<92-91>) . (4.5)

We need to find the magnitude squared of this inner product. Since /(2= can be
expressed as cos(6, — 61) +isin(6; — 01), and A8 = 6, — 0] we get:

2

‘% (1 + e"<A9>) ([1 +cos(A9)]? + [sin(AQ)]z) . (4.6)

I

The probability P(0) is given by:

11
P(0) = 5 + 5 [l (47

Substituting the magnitude squared into this, we get:

P(0) = % + % ([1 +cos(A6)]* + [sin(A@)]z) . (4.8)

P(0) = % + %cos(AQ). 4.9)

Since P(1) =1 — P(0), we substitute our expression for P(0) and simplify:

P(1) =

cos(Af). (4.10)

FNY-.
FNy-
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To practically implement the swap test in qiskit (Listing 4.11), we can calculate the
inner product using the number of shots using the equation s = 1 — %B. s 1s the inner
product, N is the total number of shots, and B is the number of times 1 was measured.

q QuantumRegister (3, ’'q’)

c = ClassicalRegister(l, ’'c’)

3 circuit = QuantumCircuit(q, c)

s circuit.h(q[0])

circuit.cswap(q[®], ql[1]l, ql2])
circuit.h(q[0])

circuit.measure(q[0], c[0])

simulator = Aer.get_backend(’gasm_simulator’)

nShots = 8192

3 job = execute(circuit, simulator, shots=nShots)

counts = job.result().get_counts()

if 1’ in counts:

b = counts[’1’]

o
1l

0
s =1 - (2 / nShots) * b

Listing 4.11: An Implementation of a simple swap test using Qiskit.

Since P(1) = 1 — P(0) and —2— = P(1), we have:

nShots
b 1 1

=—-—— A0Q). 4.11
nShots 4 4COS( %) ( )

Since we are targeting both the NISQ and FT quantum computers, the number of
shots is an essential factor to consider. A higher number of shots is a resource-expensive
choice. However, we can estimate the optimal number of shots based on our device. We
can calculate a confidence interval with the desired confidence level by collecting data
from different devices.
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Figure 4.7: Using the swap test to detect the phase difference in a circuit containing a
phase error p.

Let us assume we have the circuit shown in Figure 4.7 to see this better. In this
circuit, we set our two states |¢) and |¢) of qubits 2 and 3 to the |+), and then we apply
a T gate to both of them. To introduce an error, we added a phase gate to qubit 3.

Considering we do not know the value of the phase the P gate applies, we can
execute the circuit and use the results to estimate that phase. In this case, if we use
the code in Listing 4.11, we will end up with s = 0.76. We can use the equation
[y |o)|? = % + % cos(A0) to calculate the value of A6.

0.76 = cos(Af). (4.12)

| =
| =

= cos(A0). (4.13)

N =

Following this, we get A@ = %. This tells us that the phase gate in that circuit is
applying a %, which we can then reverse to remove the error.
Generally, we can express 66 as a function of the squared inner product as:

AG = cos™! (2|<¢|¢>|2 - 1) . (4.14)
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Figure 4.8: A general case of the swap test

Hence, if we know the value of the squared inner product, we can deduct the difference
in phase between the two input states.

It is important to note that the Swap test is a special case of the circuit in Figure 4.8.
If |y) is an Eigenstate of U, the entanglement will not be affected.

Detecting S and 7" Gate Errors

As discussed in Chapter 4.2, one of the most common errors in quantum circuits is
missing or having an extra gate. Since we focus on the gates that alter the phase in this
section, how can we use the swap test to detect errors due to additional or missing S to
T gates?

Before we use the swap test to detect errors due to an S or T gate, let us take a step
back and quickly revise the effect of those two gates.

* S Gate: Applies a phase of /2 (quarter-turn). Mathematically, S = [(1) (z)]

1
» T Gate: Applies a phase of /4 (eighth-turn). Mathematically, 7 = [0 e’g/“]'
We can use the swap test, as we did earlier in the section, to detect an error due to an
S or T gate.
For an S Gate
The § gate introduces a phase shift of 7:

Af = 4.15)

T
5

Substituting into the equation:

Tl 2
2 = cos (2|<¢|¢>| 1). (4.16)
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Since cos (§) = 0:

0 =2|(y|p)* - 1. (4.17)

[(¥|p)| = —. (4.18)

Sl -

ForaT Gate
The T gate introduces a phase shift of 7:

AG = g. 4.19)
Substituting into the equation:
T -1 2
2 = cos (2|<¢|¢>| 1) . (4.20)
Since cos (§) = %:
1
— =2 o1, 4.21
NG K1)l (4.21)
W18 = |5+ —=. 422)
2 2\2

So, if we can calculate the squared inner product of input states, we can deduct if the
circuit contains an extra T or S gate.

Effect of Applying Phase Gates to the Circuit

Another common mistake programmers make when implementing their circuits is ap-
plying a gate to the wrong qubit. In this section, we are concerned with gates that alter
the phase. A phase gate P(6) introduces a phase shift 6 and is represented by the matrix:

P(6) = ((1) e?e)

For multi-qubit systems, applying a phase gate to a specific qubit affects the unitary
matrix of the system. We will explore the effect of applying phase gates, such as the Z,
S, and T gates, to different qubits in a multi-qubit system.

First, let us revise the unitaries of some phase gates:



Chapter 4. TESTING AND DEBUGGING QUANTUM CIRCUITS
* The Z gate introduces a phase shift of 7:
1 0
7=l )

* The § gate introduces a phase shift of 7:

g

* The T gate introduces a phase shift of 7:

1 0
T= (0 ein/4)
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For an n-qubit system, the matrix resulting from applying a phase gate P(6) to qubit
q is constructed using the tensor product with identity matrices. The resulting unitary

U is:

U=1°0"Ygp@) e,

(4.23)

where [ is the identity matrix. This ensures that the phase gate only affects the

specified qubit while leaving the others unchanged.

Consider a 2-qubit system. Applying a Z gate to qubit O (the least significant qubit)

results in the following matrix:

10 0 0
1 0y (10 {01 0 o0
U‘Z®I‘(o —1)®(0 1)‘00—1 0
00 0 -l

Here, the unitary U shows that the states |10) and |11) acquire a phase shift of —1,

while |00) and |01) remain unchanged.

But what if we have a 3-qubit system? For a 3-qubit system, applying an S gate to

qubit 2 (the most significant qubit) results in:

10 10 10
vtoros=(} Yoft Yot

This results in:
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Figure 4.9: The unitary for a three-qubit phase slice. The colored boxes delineate terms
affected by errors in the high-order (red), middle (blue), and low-order (green) qubits.

1 0000O0O0O
0i:i 000O0O0O
00100O0O0O
UZOOOiOOOO
000O0OT1O0O0O
000O0O03:i 0O
000O0O0O0OT1PO
000O0OO®O0 ¢

In this matrix, the states |1xx) (where xx can be 00, 01, 10, or 11) acquire a phase
shift of i.

From the above, we can reach a generalization of the effect of applying phase gates
to different qubits, and we can see the change in the unitary in Figure 4.9.

When applying a phase gate to a specific qubit in an n-qubit system, the unitary
matrix is modified such that the phase shift is applied to the diagonal elements where
the corresponding qubit is in state |1). This can be generalized as follows:

U = e if the g-th bit of i is 1
“7 11  ifthe g-th bitof i is 0

One approach to finding out if the bug in such circuits is caused by applying a phase

gate to the wrong qubit is to examine the matrix resulting from applying that phase gate.

To detect errors in applying phase gates to a specific qubit g in an n-qubit system,
we use the following steps:

1. Identify the target qubit g.
2. Prepare superposition states sensitive to phase changes on the target qubit.

3. Apply the phase gate to the intended qubit g.
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4. Measure the resulting state to detect phase discrepancies.

We can create test cases to detect a particular case, which is applying the gate to the
most significant qubit instead of the least significant qubit creating superposition states
helps in detecting phase shifts more clearly. For an n-qubit system, use the Hadamard
gate H to prepare superposition states. These states should isolate the effect of the phase
gate on the target qubit.

Consider a 3-qubit system where we intend to apply a phase gate to qubit O (the least
significant bit, LSB). The basis states are:

01y = %<|000>+ 1100))
02) = \15<|001>+|101>)
03 = %<|010>+ 1110))

0a) :\%('0“”““”

We then apply the Z gate to qubit 0, measure the resulting states, and compare them
to the expected outcomes to detect any phase discrepancies.

* Correct Application to Qubit 0:
1 1
= —(|000) + |100)) — —(]000) — |100
Y1) \/§(| ) +1100)) \/i(l ) — 100))
1 1
= — (001 101)) - —(]001) — |101
|¥2) \/§(| ) +1101)) \/E(l ) —[101))
1 1
= —(]|010) + |110)) — —(|010) — |110
|¥3) \/Q(l ) +1110)) \/E(l ) —[110))

) = \i@uom L) - %uom J111))
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* Incorrect Application to Qubit 1 (e.g., applying to MSB instead of LSB):

v) = %<|000> +1100)) — %uoom +1100))

02) = \%uoon +1101) — %uoow +[101))

03) = —=(1010) + [110)) — —=(]010) + [110))
N

N
W) = \iﬁuom FlILD) - %uom 1))

Extension to n-Qubit Systems

The same principle can be applied to systems with more qubits. For an n-qubit system,
follow these steps:

1. Select Superposition States: Use Hadamard gates to create superpositions on the
target qubit.

2. Apply the Phase Gate: Apply the phase gate to the qubit of interest.

3. Measure and Compare: Measure the resulting states and compare them to the
expected outcomes to detect any phase shifts.

For an n-qubit system, prepare superposition states such as:

v = %uon ® X0t + 1), ® [ X))

where | X ), represents the superposition of the remaining n — 1 qubits in various basis
states. By measuring the resultant phase shifts and comparing them to the expected
values, you can determine whether the phase gate was applied correctly.

Using superposition states to detect errors in applying phase gates is simple and
scalable to larger systems while leveraging the sensitivity of superposition states to
phase changes, providing a robust method for error detection in quantum circuits.

4.5.4 Testing and Debugging Amplitude Redistribution (AR) Blocks

Testing and debugging AP circuits was relatively straightforward; the challenge arises
when we deal with AR circuits. Let us consider the implementation of the W state
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190> X
— U /U —
| q1 > 0.615, 0, 0 -0615,0,0
192> i S e
w4, 0, 0 Baaadedy

Figure 4.10: The circuit constructing a 3-qubit W state.

proposed in [159] to walk through an example of debugging an AR circuit. A general W
state Python and Qiskit function can be seen in Listing 4.12, which, if wanted to create
a 3-qubit W state, will result in the circuit in Figure 4.10.

def cg (qcir,cQbit,tQbit,theta):
theta_dash = math.asin(math.cos(math.radians(theta/2)))
qcir.u(theta_dash,0,0, tQbit)
qcir.cx(cQbit, tQbit)
qcir.u(-theta_dash,0,0,tQbit)

return qcir

def wn (qcir,qbits):
for i in range(len(gbits)):

i 4 ==
gcir.x(gbits[0])

else:
p = 1/(len(gbits)-(i-1))
theta = math.degrees(math.acos(math.sqrt(p)))
theta = 2% theta
gcir = cg(qcir,qgbits[i-1],qgbits[i], theta)
gcir.cx(gbits[i],gbits[i-1])
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Figure 4.11: The different Q-sphere outputs for the 3-qubit W state.

return qcir
Listing 4.12: An Implementation of the W state as described in [159].

When considering AR programs, different types of bugs can occur that we do not
encounter in classical programming. From that perspective, we can categorize the bugs
introduced to quantum programs into two types: ones that only affect the amplitude of
the qubits and those that affect the phase (in terms of amplitude).

To explain that better, let us attempt injecting two types of bugs into the W state
implementation in Listing 4.12. To do that, let us first consider the correct output of
that circuit. In the case of three qubits, the output of the W state should follow the
equation 4.24.

|W,) = i(|100...0> +...+]01...0) +]00...01)) (4.24)
i

Hence, if n = 3, the result of the program should be 0.58|001) + 0.58|010) +
0.58]100). Though only considering the state vector of the results can provide us with
some information, having a visual representation of the state of the qubits can provide
better information on the phase about the phase. That can be done by displaying the
Bloch sphere of the state of the three qubits 4.11-a.

test_cases = [
{
"name": "W State Test 1",
"input": [1, O, 0, O, O, 0O, O, O],
"expected_output": [0, 1/np.sqrt(3), 1/np.sqrt(3), 0, 1/np.
sqrt(3), 0, 0, 0]
3,
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7 {

8 "name": "W State Test 2",

9 "input": [0, O, O, O, O, O, O, 11,

10 "expected_output": [0, O, O, 0.71, O, -0.71, 0, 0]
1 3

Listing 4.13: Test vectors for the three-qubit W state.

We can run two of the sample tests offered by Cirquo for this program Listing 4.13
to ensure that it works as expected by using the fQuantTester function Listing 4.14.

> W State Test 1:

;3 Result: PASS

+ Input: 1.00[/000>

s Output: 0.58[/001> + 0.58/010> + 0.58|100>

¢« Expected Output: 0.58|001> + 0.58|010> + 0.58|100>
g

o W State Test 2:

o Result: PASS

i Input: 1.00[111>
2 Output: 0.71[/011> + -0.71]|101>
3 Expected Output: 0.71[/011> + -0.71|101>

Listing 4.14: Test results when running the test vectors of the correct three-qubit W state

program.

We can start injecting some bugs, starting with amplitude "classical" bugs. "Clas-
sical" bugs, in that sense, are like adding or missing a gate that performs a classical
operation. In our example, one way to do so would be to remove the NOT gate at the
beginning of the circuit.

By removing the NOT gate at the beginning of the circuit, the program’s results will
be 1.00/000), and the Q-Sphere representation of the different qubits can be seen in
Figure 4.11-b. As shown in the figure, removing this led to the wrong amplitude (the
probability of measuring the state— the size of the point of the vector) in the results. If
we run the tests on this circuit, both tests will fail.
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To locate the source of the error here, we can use the process of elimination with
the functions offered by Cirquo. To start, we can use the gateLoc function to count the
different gates in the circuit. This would only be helpful if the programmer knows how
the correct circuit is supposed to look. However, if we consider the two tests |000) and
|111), we see when the input is [000), the output is the same as the input, as in the gates
in the circuit was not activated.

We can start by assuming that the source of the error is an initialization problem.
Hence, we can run the circuit with three different inputs with each qubit activated,
making the states |001), |010), and |001). Then, use the fQuantAnalyzer function to
run these tests, Which leads to the results in Listing 4.15. From there, we can see that
when the first qubit is in state |1), the results are correct; hence, if we add a NOT gate
on that qubit at the beginning of the circuit and rerun the original tests, we will see that
they both pass. From that, we can conclude that the bug was due to a missing NOT gate
on qubit 0.

Testing W State Test 1:

Name: W State Test 1

5 Input: 1.00[100>

Output: 0.58[100> + 0.58(010> + 0.58[/001>

Testing W State Test 2:

Name: W State Test 2

Input: 1.00(010>

Output: 0.71]110> + 0.71]|101>

; Testing W State Test 3:

Name: W State Test 3

s Input: 1.00(001>
» Output: 1.00|011>

Listing 4.15: Test results when running the test vectors of the three-qubit W state program

with amplitude bug to locate the bug.

Though some gates can be considered "classical" on a higher level, their implemen-
tation may not be. For example, we can consider the CNOT or Toffoli gates as classical
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gates (as we did in Subsection 4.5.2); however, the decomposition of those gates may
often—contain phase gates. So, if we are testing an implementation of these gates, we
must ensure that the overall program does not introduce phase to the qubits at the end
of the circuit.

Often, when a bug is introduced through a quantum gate (phase or Hadamard), it
affects both the final amplitude redistribution of the state of the qubits and their phase.
Returning to our example of the three-qubit W state, in line 2 of Listing 4.10, we can
introduce a phase error in two different ways. We can enter the phase for theta_dash in
degrees instead of radians or by passing the wrong angle to the cos function.

W State Test 1:

> Result: FAIL

3 Input: 1.00|000>

Output: 0.89/001> + 0.42|010> + 0.18|100>

s Expected Output: 0.58|001> + 0.58|010> + 0.58[100>

7 W State Test 2:

1(

Result: FAIL

Input: 1.00/111>

Output: 0.38]/011> + -0.92|101>

Expected Output: 0.71]011> + -0.71|101>

Listing 4.16: Test results when running the test vectors of the three-qubit W state program

with phase error in degrees instead of radians corresponding to Figure 4.11-c.

If we use degrees instead of radians, we get —0.24|001) + 0.51|010) + 0.83|100),
and the final states of the qubits are shown in Figure 4.11-c, whereas if we pass the
wrong angle—6/4 instead of 6/2—we get 0.89|001) + 0.42|010) + 0.18]100), and the
final state of the qubits would look like Figure 4.11-d.

When we consider the case where the angle of the function was passed using degrees
instead of radians and use the testing function with the same test as before, it leads to
both tests failing Listing 4.16. If we examine the Q-Sphere, we see that state |001) has a
different color than the other two states, which means it has a different phase. From this,
we can assume that the error is phase-related. In a Q-Sphere, each line represents an
answer state. The color of the line represents the state’s phase, and the dot on the sphere’s
surface represents the probability amplitude of measuring the state. The implementation
of the W state used here has two angles: theta and theta_dash. Since theta_dash depends
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on theta, we can start by analyzing the lines of code containing theta. Doing so leads us
to notice the missing conversion to radians in line 2 Listing 4.12.

4.6 Overview of Cirquo

The tool discussed in this thesis is built using Python on top of the Qiskit module. In
Qiskit, any quantum circuit is built using an object class QuantumCircuit. Any Quan-
tumCircuit object can contain QuantumRegisters, ClassicalRegisters, different quantum
gates, and measurement operations. The Qiskit QuantumCircuit object contains many
proprieties and characteristics. In order to build our tool, we extended this class to
include a few new commands to include breakbarriers to cut the circuit and gate tracking
option. In addition to these, we added new functionalities to perform horizontal and
vertical slicing. We can divide the functionality the debugging tool adds to Qiskit into
two categories, methods added to the QuantumCircuit class and the debugger’s core
functionality.

Methods Added to The QuantumCircuit Class

Since all quantum circuits that can be built using Qiskit use the QuantumCircuit object,
we decided to extend that class to include the debugging-needed methods instead of
creating a whole new type. That was accomplished by adding two methods:

1. breakbarrier(): a new object type based on Qiskit’s barrier class that is used
to pinpoint where the tool is going to cut the circuit when using the Vertical tool
function (VS1licer).

2. gateInfo(): a method that, when the debugging mode is enabled, is used to
store information about all gates added to the circuit. The information is the gate
type, the number of occurrences, and where in the code this gate was added to the
circuit.

The Core Functionality of Cirquo

Cirquo is built using Python on top of the Qiskit package!. In Qiskit, any quantum circuit
is built using the object class QuantumCircuit. Any QuantumCircuit object can contain
QuantumRegisters, ClassicalRegisters, different quantum gates, and measurement oper-
ations. The Qiskit QuantumCircuit object contains many properties and characteristics.

ICirquo is built on ’qiskit-terra’: °0.25.2’, ’qiskit’: ’0.44.2’, ’qiskit-aer’: ’0.12.0°, ’qiskit-ignis’:
’0.7.1°, ’qiskit-ibmg-provider’: ’0.20.2’, ’qiskit-nature’: *0.6.2
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In order to build our tool, we extended this class to include a few new commands to
include breakbarriers to cut the circuit and gate tracking options.

The methods added to the QuantumCircuit class and the new functions offered by
Cirquo are:

1.

10.

1.
12.

breakbarrier(): a new object type based on Qiskit’s barrier class that is used
to pinpoint where the tool is going to cut the circuit when using the Vertical tool
function (VSlicer).

gateInfo(): a method that, when the debugging mode is enabled, is used to
store information about all gates added to the circuit. The information is the gate
type, the number of occurrences, and where in the code this gate was added to the
circuit.

startDebug(): This function enables the debugging mode by extending the
QuantumCircuit Class to include both breakbarrier and gatelnfo methods.

endDebug (): This function disables the debugging mode.

. VSlicer(): This function takes a QuantumCircuit object that contains breakbar-

riers and then divides the circuit based on the location of those breakbarrier and
returns the original circuit as well as a list of subcircuits corresponding to the
circuit dividing based on the breakbarrier locations.

. HSlicer(): This function removes unused qubits or QuantumRegisters from a

subcircuit after using the vertical slicer.

gateLoc(): This function takes a circuit or a subcircuit, a gate, and a qubit or a
list of qubits (optional), and displays how many times and where in the code this
gate was added to the circuit.

catCircuit(): This function takes a circuit and, based on its size, unitary,
and the containing gates, categorizes it into either Amplitude Permutation, Phase
Modulation, or Amplitude Redistribution.

. pClassAnalyzer(): This function is used to run tests on Amplitude Permutation

circuits to observe the circuit’s behavior.

fQuantAnalyzer(): This function is used to run tests on Phase Modulation and
Amplitude Redistribution circuits to observe the circuit’s behavior.

pClassTester(): This function is used to test Amplitude Permutation blocks.

fQuantTester(): A function to run tests on Phase Modulation and Amplitude
Redistribution blocks.
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13. applySwapTest(): A function to apply the swap test and calculates 66 for Phase
Modulation blocks.

The API implementation of Cirquo can be found in Appendix C. Once we obtain the
smaller circuits from the slicer—or already have the circuit—and know its categorization,
we need to start testing it and observe its behavior. Cirquo offers two testing functions,
pClassTester and fQuantTester, to run tests on Amplitude Permutation, Phase
Modulation, and Amplitude Redistribution circuits, respectively.

The pClassTester allows the programmer to pass the test cases as a list of classical
values of the qubits—that is, 0 or 1—that input is converted to a state vector before
running the circuit. That is to make testing the classical circuits more intuitive than
how we test classical software. For example, if a programmer needs to test a quantum
full-adder circuit and wants to test the circuit results if the inputs were 1, 1 and 1, they
can pass the pClassTester alist [1,1,1].

The fQuantTester takes a list of state vectors and their corresponding outputs and
runs the circuit accordingly. Testing Phase Modulation and Amplitude Redistribution
circuits can be challenging; hence, programmers often don’t know how to test these
circuits. Cirquo also contains implementation and sample test vectors for common
building blocks in quantum algorithms.

If a programmer wants to test an Amplitude Permutation circuit, they can describe
the inputs and corresponding outputs as state vectors. For example, if we were to test a
simple Bell pair generator, we would need to format the input and output tests as state
vectors. So, in the case of a 2-qubit Bell pair generator circuit consisting of a Hadamard
gate and a CNOT gate, if the initial state of the qubits is |0) and |0), then the results
should be 0.71|00) + 0.71|11). To prepare that for the tester, the input state will be
[1,0,0,0] because the state vector of 2 qubits consists of 22 cases. In addition to the test
samples, programmers can also use the pre-defined functions of these building blocks to
assist them in constructing their circuits.

A summary of the methods and functions added to Qiskit to allow the tool to function
in Table 4.3.

Understanding how the circuit behaves is the key to making the testing and debugging
process more efficient. Therefore, Cirquo offers some functions that provide information
to make testing the circuit a better experience for the programmer.

When an error occurs while executing a circuit on actual hardware, it is often due to
the hardware (machine-related) or the quantum logic (algorithm and implementation).
Machine-related errors are low-level hardware-specific faults such as gate errors, readout
errors, thermal relaxation errors, measurements errors, etc. [189, 190, 191]. Fixing
these errors requires implementing quantum error correction and some efficient error
minimizing technique [192] (or getting very lucky on a given run). However, only
quantum logic errors can occur if the circuit is simulated.

Quantum logic errors are more difficult to resolve in quantum circuits than in classical
programs, partly because most quantum algorithms select an outcome from a probability
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Table 4.3: Cirquo API Overview.

119

Instruction Type Parameters Description
. - . Used on a QuantumCircuit object to mark where
breakbarrier QuantumCircuit attribute None .. Q N )
the circuit needs to be sliced.
- . Keep track of all gates added to the circuit when
gateInfo QuantumCircuit attribute None b (re 8
debugging mode is enabled.
Divides the QuantumCircuit into a list of sub-circuits
VSlicer Function QuantumCircuit vertically cut based on the breakbarriers added to the
QuantumCircuit object.
. . L Removes unused regiters from the QuantumCircuit
HSlicer Function QuantumCircuit . & Q
or slices.
. Starts the debugging mode by adding brakbarrier and
startDebug Function None sEng Y acdding
gatlnfo to the Qiskit QuantumCircuit Class.
. Ends the debugging mode by enabling the original
endDebug Function None L Eging m 4 J ©
Qiskit QuantumCircuit Class.
. L . Returns the number of times and line of code the
gateLoc Function QuantumCircuit, Gate, Qubits . . -
given gate is added to the QuantumCircuit.
catCircuit Function QuantumCircuit Categorizes the circuit.
pClassAnalyzer Function QuantumCircuit, Tests Run different inputs Amplitude Permutation circuits.
fQuantAnalyzer Function QuantumCircuit, Tests Run different inputs on Phase Modulation and Amplitude Redistribution circuits.
pClassTester Function QuantumCircuit, Tests Run and validate tests on pseudo-classical circuits.
fQuantTester Function QuantumCircuit, Tests Run and validate tests on Amplitude Permutation circuits.

distribution at the end of a run and partly because of their use of superposition, entangle-
ment, and interference. Thus, isolating the circuit section containing the error requires
careful reasoning and narrowing down operations to make the error as reproducible and
visible as possible.

One aspect of this is the need for the programmer to work both forward and
backward through the toolchain, examining the circuit at the gate level and the
higher-level functions that generated the circuit. Cirquo allows the programmer to track
where in the code each gate was added to the circuit.
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Usage Examples

In the previous chapter, we proposed the ideas and strategies for testing and debugging
quantum circuits implemented in Cirquo. Building upon that foundation, this chapter
will delve into practical walkthrough examples, demonstrating how these methodologies
can be applied to some well-known quantum algorithms. We will illustrate how the
proposed tools—the circuit slicer, categorizer, and various testing strategies—can be
effectively utilized to enhance the development process of quantum software.

This chapter provides a step-by-step guide on dissecting and understanding the com-
plexities of quantum circuits through detailed examples showing how the circuit slicer
can break down large quantum circuits into smaller, more manageable units, facilitating
easier analysis and debugging. We will also demonstrate how the circuit categorizer
helps identify critical components of the circuit that significantly affect the overall com-
putation.

5.1 Example 1: Grover’s Algorithm for The Triangle
Finding Problem

To better understand how we can Cirquo can help developers understand their circuits
and locate errors in them, let us consider an example of an implementation of Grover’s
algorithm applied to the triangle finding problem, where a graph is given. We try to find
a 3-node complete graph within the larger graph (a triangle). This problem has been
addressed both classically [141], [142] and quantumly [143],[144]. Although there are
various ways this problem can be solved quantumly, using Grover is one of the most
straightforward approaches, as presented in Chapter [? ]

120
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Figure 5.1: A 4-node graph with a triangle between nodes 1,2 and 3.

For this example problem, consider the 4-node graph in Figure 5.1. As mentioned
earlier, we need three algorithmic steps to implement Grover’s algorithm: stage prepa-
ration, the oracle, and the diffusion operator. The oracle and diffusion operator need
to be repeated a total number of opt_iter cyclically. This optimal number of times
depends on two factors, the size of the search space N and the number of answers for our
problem m (how many triangles in the graph, in this case, one) and is calculated using

opt_iter = F\/g| [138].

In our example, we will limit the search space using a W state preparation fol-
lowed by NOT gates. Hence, the search space will be states containing three 1s
(]1110),|0111),.....,|1011). Using that formula and in case of m = 1, opt_iter
will be 1.

To implement this circuit, we need 6 ancillary qubits and 3 qubits flag that will be
set to |111) only if a triangle is found in the graph. We can write this using Python and
Qiskit as shown in Listing 5.1.

from qgiskit, import QuantumRegister, ClassicalRegister,

QuantumCircuit

> import numpy as np

3 import math as m

4

def grover():
n_nodes = 4
N = 2**n_nodes # Hilbert space size
#Defone needed qubits
nodes_qubits = QuantumRegister (n_nodes, name=’nodes’)

ancilla = QuantumRegister (6, name = ’anc’)
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flag = QuantumRegister (3, name=’check_qubits’)
class_bits = ClassicalRegister(n_nodes, name=’'class_reg’)
tri_flag = ClassicalRegister (3, name=’tri_flag’)
gc = QuantumCircuit(nodes_qubits, ancilla, flag, class_bits,
tri_flag)
# Initialize quantum flag qubits in |-> state
gc.x(flag[2])
gc.h(flag[2])
# Initializing i/p qubits in superposition
gc.h(nodes_qubits)
# Calculate optimal iteration count
iterations = round(m.pi/4.sqrt(N))
#in case of debugging, we will make iteration = 1
for i in np.arange(iterations):
oracle(n_nodes, qc, nodes_qubits, ancilla, flag)
diffusion(qc, nodes_qubits, ancilla)
qc.breakbarrier () #for debugging only, must be used after
startDebug() is called

return qc

Listing 5.1: Python and Qiskit code implementing Grover’s algorithm for the triangle

finding problem.

First, we will run the algorithm using 5000 shots. What we expect to get
is 7|0111>": 5000, however, we got *|1111>’: 1285, ’[0110>": 1239,
"10101>": 1256, ’|0011>’: 1220 indicating that there is a bug in the algorithm.
Now, we need to debug the circuit.

Step 1: Slicing the circuit

To do that, we will first need to access debugger mode by calling the startDebug
function to be able to use the breakbarrier and Vslicer function with the mini mode.

Then, we will slice the circuit using the VS1icer function based on the algorithmic
steps shown in Figure 5.2, resulting in three subcircuits.
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—— Grover's Diffusion
Oracle Operator

Operation Qubits
State preparation

Ancilla
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|

Figure 5.2: Slicing the circuit according to the algorithmic steps

Step 2: Categorize the slices

Having the subcircuit, we can pass them through the catCircuit function to categorize
them according to their behavior. The categorize will return the following categoriza-
tions:

* The state prep » "Amplitude Redistribution".
* The oracle » "Amplitude Permutation".
* The diffusion » "Amplitude Redistribution".

Knowing the categories of the different slices will assess us in the testing and debugging
process.

Step 3: Testing the different Slices

The goal is to test each slice and ensure they perform as expected.

Let us start with the state prep, which is the W state. The W state is
an AR circuit, so we will use the fQuantTester function to test it and the
generate_w_state_test_cases(4) to generate test cases to use, which will print
the results in Listing 5.2.

Testing test 0:
Result: PASS

3 Input: 1.00/0000>

5

Output: 0.50|/1000> + 0.50|/0100> + 0.50|0010> + 0.50|0001>
Expected Output: 0.50[1000> + 0.50/0100> + 0.50|/0010> + 0.50|0001>
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Testing test 1:

Result: PASS

Input: 1.00/1111>

Output: -0.41[1010> + 0.41|1601> + 0.82]|1111>

Expected Output: -0.41]1010> + 0.41]|1001> + 0.82|1111>

3 Testing test +:

Result: PASS

s Input: 0.25[0000> + 0.25[1000> + .... + 0.25]|0111> + 0.25|1111>

16 Output: 0.25/0000> + 0.34[1000> + .... + 0.13[0111> + 0.35]|1111>

17 Expected Output: 0.25[/0000> + 0.34]1000> + .... + 0.13]0111> +
0.35[1111>

Testing test -:

Result: PASS

Input: 0.25/0000> + -0.25]/1000> + .... + -0.25|0111> + 0©.25|1111>
> Qutput: -0.25/0000> + -0.09|1000> + .... + 0.08|0111> + 0.06|1111>
;3 Expected Output: -0.25|0000> + -0.09|1000> + .... + 0.09|1011> +

0.08|0111> + 0.06]1111>

Testing test i:

Result: PASS

Input: 0.25]/0000> + 0.00+0.255[1000> + .... + 0.00-0.25j[0111> +
0.25]1111>
Output: -0.00+0.25;[0000> + 0.12+0.22j]/1000> + .... + -0.10+0.23]j

|0111> + 0.20-0.14j|1111>
Expected Output: -0.00+0.25;5/0000> + 0.12+0.22j]1000> + .... +
-0.10+0.23j|0111> + 0.20-0.14j|1111>

Testing test -i:

Result: PASS

3 Input: 0.25/0000> + 0.00-0.255[1000> + .... + 0.00+0.25j(0111> +

0.25]1111>

124
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32 Output: -0.00-0.25j/0000> + 0.12-0.22j[16000> + .... + -0.10-0.23j
[0111> + 0.20+0.14j[1111>

5 Expected Output: -0.00-0.25j(0000> + 0.12-0.2275(1000> + .... +
-0.10-0.23j|0111> + 0.20+0.14j[1111>

Listing 5.2: Test results for the W state.

The passing tests tell us that the bug is not likely in the state preparation, so we move
on to test the oracle.

The oracle circuit is packaged in a function that aims to mark the correct answer
(J0111)). Based on the categorization, the oracle is an AP circuit, so we can use the
pClassTester function to test it. To do that, however, we need to create some test
cases. The oracle’s job is to count the edges for each state based on the input graph. If
the state represents a triangle in the graph, flag qubits will be 1. The set of tests we will
use is in Listing 5.3.

I test_cases_ora = [

2 {
"name": "test 1",

" "input": [0,1,1,1,0,0,0,0,0],
"expected_output": [1,1,1,0,0,0,0,0,1]

6 },
7 {
8 "name": "test 2",
9 "input": [1,1,1,1,0,0,0,0,0],
10 "expected_output": [1,1,1,1,0,0,0,0,0]
1 },
12 {
"name": "test 3",
14 "input": [1,1,0,0,0,0,0,0,0],
15 "expected_output": [1,1,0,0,0,0,0,0,0]
16 3

Listing 5.3: Tests for the oracle.

We can then pass those tests to the pClassTester function along with our oracle,
which leads to the results in Listing 5.10 showing that the tests pass.
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Testing test 1:

Result: PASS

3 Input: [0, 1, 1, 1, 6, O, O, O, 0]

s Expected Output: [1, 1, 1,

Output: [, 1, 1, 6, 060, 0,

Testing test 2:
Result: PASS
Input: [, 1, 1, 1, o, 06, 6, 0, 0]
Output: [, 1, 1, 1, 0, 0, 0, 0, 0]
Expected Output: [r, 1, 1, 1, ©

; Testing test 3:

Result: PASS

s Input: [1, 1, 60, 0, 0, 0, 0, 0, 0]

Output: [1, 1, 6, 0, O, , 0]

0, 0, 0
;7 Expected Output: [1, 1, 06, 0, 0, 0, 0, 0, 0]

Listing 5.4: The results of testing the oracle.

The last part of the circuit we need to test is the diffusion operator. Since we have
already tested the other parts of the circuit and made sure that they function correctly,
we can confidently say that the error occurred with the diffusion operator. The diffusion
operator is added to the circuit to execute a rotation about the average to increase
the probability of measuring the correct answer or the answer marked by the oracle.
Generally, if we used the Hadamard gates as state preparation, the diffusion operator
should look as shown in Figure 5.3-A. For our example, the diffusion operator code is
shown in Listing 5.5

def grover_diff(gc, nodes_qubits,edge_anc,ancilla,stat_prep,
inv_stat_prep):
gc.append(inv_stat_prep,gargs=nodes_qubits)

gc.x(nodes_qubits)

#3 control qubits Z gate

create_3cz_circuit(qc,len(nodes_qubits)-1,nodes_qubits[::-1],



)

Chapter 5. USAGE EXAMPLES 127

State
Prepration
State
Prepration?

i

:

Figure 5.3: The general construction of the diffusion operator.
ancilla)

gc.x(nodes_qubits)

gc.append(stat_prep,gargs=nodes_qubits)

Listing 5.5: The function constructing the diffusion operator (that results in an error due

to an extra NOT gate in line 7).

We need to look at the definition of the diffusion operator. Mathematically, the
diffusion operator D is defined as D = state_prep R state_prep’, where R is a zero
reflection or a zero-phase shift. This phase shift can be calculated by R = 2]0)®"(0|®"-1,,,
where I, is the identity matrix on n qubits [41, 193, 194]. When we examine this equation
and try to test the function in Listing 5.5 correctly, we implement it.

Since we already tested the state prep, we can use the VS1icer to slice the diffusion
even further so we can focus on the implementation of the C®3Z gate (Listing 5.6).

def create_3cz_circuit(qc):

c3z_circuit = QuantumCircuit (4, name=’'C3Z’)
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# Add the gate sequence for the C3Z gate

c3z_circuit.h(3) # Hadamard gate to transform Z to X basis
c3z_circuit.mct([0®, 1, 2], 3) # Multi-controlled Toffoli gate
c3z_circuit.h(3) # Hadamard gate back to original basis
c3z_circuit.z(3)

# Convert the circuit to a gate

c3z_gate = c3z_circuit.to_gate()

# Append the C3Z gate to the provided quantum circuit

qc.append(c3z_gate, [0, 1, 2, 3])

return qc
Listing 5.6: The implementation of the C®3Z gate.

The diffusion part is an AR circuit; however, passing the CZ circuit to the categorizer
will show that it is a PM circuit. First, we need to create some tests for the C®3Z circuit.
The circuit should only apply a phase of 7 to the target qubit when all control qubits are
1. Accordingly, we can see the tests for this in Listing 5.7.

test_cases_cnz = [

"name": "test 1",
"input": [0, 6, O, O, O, O, O, O, O, O, O,
o, 6, 0, 0, 17,
"expected_output": [0, O, O, O, O, O, O, O, O,

3,
{

"name": "test 2",

"input": [0, O, O, O, O, O, O, O, O, O, O, O,

0, 0, 1/np.sqgrt(2), 1/np.sqrt(2)],
"expected_output": [0, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 0, 1/np.sqrt(2), -1/np.sqrt

(2)1]
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16 {

17 "name": "test 3",

18 "input": [0, O, O, O, O, O, O, O, O, O,

19 0, 0, 0, 0, 1/np.sqrt(2), -1/np.sqgrt(2)],

20 "expected_output": [0, O, O, O, O, O, O, O,

2 o0, 0, 0, 0, 0, 0, 1/np.sqrt(2), 1/np.sqrt
(2)1]

2 3

Listing 5.7: The tests for the control Z function.

All tests fail when we run those tests on implementing the C®3Z, as shown in
Listing 5.8.

Test Results:

3 Testing test 1:

4+ Result: FAIL

s Input: 1.00/1111>

¢ Output: -1.00(1110>

7 Expected Output: -1.00[1111>

Testing test 2:
Result: FAIL
i1 Input: 0.71|0111> + 0.71|1111>

» Output: 0.71]/0110> + -0.71]1110>
3 Expected Output: ©0.71]|0111> + -0.71|1111>

5 Testing test 3:

i Result: FAIL

7 Input: 0.71]0111> + -0.71[1111>

s Output: ©0.71]/0110> + 0.71]1110>

v Expected Output: ©0.71[0111> + 0.71]1111>

Listing 5.8: The results of testing the C®3Z circuit.
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Now that we know that the source of the bug is in the C®3Z implementation, we can
use the Swap test to determine the phase difference between the expected results and the
results we obtained. The test circuit we use is shown in Figure 5.4, corresponding to the
code in Listing 5.9.

ancilla = H —¢— H
1, 0

measure

Figure 5.4: Using the swap test on the C®3Z circuit

The Swap test tells us that the phase difference is &, which means an extra Z gate
or a P gate with phase 7 applied to the target qubit in implementing the C®3Z gate. To
figure that out, we use the gateLoc function, which leads us to an extra Z gate in the
create_3cz_circuit. Removing that Z gate and rerunning the algorithm will produce
the correct results.

#Prepare test circuit

> qcl = QuantumCircuit (4)

#initialize ([0, O, O, O, O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1])
qcl.x([0,1,2,3])
qcl.z(3)

#prepare the C3Z circuit
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7 qc2 = QuantumCircuit (4)
s gc2.x([0,1,2,3])
v qc2 = create_3cz_circuit(qc2, 3, [0,1,2,3], None)

0 qc2.draw(output="mpl’)

11 # Combine the two circuits and add a swap test

> combined_circuit = QuantumCircuit(8) # New circuit to hold both

state circuits

3 combined_circuit.compose(qcl, qubits=[0, 1, 2, 3], inplace=True)

4+ combined_circuit.compose(qc2, qubits=[4, 5, 6, 7], inplace=True)

s combined_circuit = apply_swap_testl(combined_circuit, [(3,7)])

16 combined_circuit.draw(output="mpl’)

Listing 5.9: Using the Swap test to test the C®3Z circuit.

5.2 Example 2: The C®"Z Gate

In quantum computing, a multi-control Z gate ( C®"Z) applies a Z gate to a target qubit if
all control qubits are in the |1) state. The gate can be constructed using multiple Toffoli
gates and ancilla qubits. The decomposition typically involves creating an ancilla qubit
representing the AND of the control qubits and then applying a controlled-Z operation.

Mathematically, a C®"Z gate with n control qubits and one target qubit can be

represented as:
C®nZ — (I _ 2|1><1|)®(n+1)

where [ is the identity matrix, and the outer product |1)(1| ensures that the Z gate is
applied only when all control qubits are in the state |1).

In Qiskit, a multi-control Z gate can be implemented by constructing a custom gate
using a series of Toffoli (controlled-controlled-NOT gates) and single-qubit gates. The
following code demonstrates how to implement a C®"Z gate (a 3-control Z gate) using
Qiskit:

from qiskit import QuantumCircuit, Aer, execute

> from giskit.circuit.library import MCXGate

# Define a function to add a multi-control Z gate to a QuantumCircuit

s def multi_control_z(circuit, controls, target):
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6 # Number of control qubits

7 n = len(controls)
9 # Create an ancilla qubit
10 ancilla = circuit.qregs[0].size

1 circuit.add_register (QuantumRegister(l, ’ancilla’))

# Apply multi-controlled X (MCX) gate

14 mcx = MCXGate (n)

15 circuit.append(mcx, controls + [ancillal])
16

17 # Apply Z gate to target

18 circuit.cz(ancilla, target)

20 # Uncompute the ancilla

21 circuit.append(mcx, controls + [ancilla])

» # Initialize the quantum circuit
2+ num_controls = 3

5 q¢ = QuantumCircuit(num_controls + 1)

27 # Define control and target qubits
s control_qubits = [i for i in range(num_controls)]

29 target_qubit = num_controls

31 # Add the multi-control Z gate to the circuit

» multi_control_z(qc, control_qubits, target_qubit)

32 # Draw the circuit

35 print (gc.draw())

37 # Execute the circuit on a statevector simulator

33 backend = Aer.get_backend(’statevector_simulator’)
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result = execute(gc, backend).result()

statevector = result.get_statevector()

# Print the statevector

print (statevector)
Listing 5.10: An implementation of a general C®"Z gate.

In this implementation, themulti_control_z function creates an ancilla qubit, uses
an MCX (multi-control X) gate to compute the AND of the control qubits onto the ancilla,
applies a CZ gate between the ancilla and the target qubit, and then uncomputes the
ancilla. This approach leverages Qiskit’s built-in MCXGate to simplify the construction
of the multi-control logic. The quantum circuit is then executed on a statevector simulator
to verify its correctness.

Adding an extra gate is one of the interesting bugs that can occur when implementing
quantum programs. However, the effect of such a bug depends highly on the location
where the extra gate was added.

Taking a deeper look into implementing the C®3Z introduced in 5.1. We used the
categorize, tester, and swap test to locate an extra Z gate before the second Hadamard
gate (in Listing 5.11).

def create_3cz_circuit(qc):
c3z_circuit = QuantumCircuit (4, name=’C3Z’)

# Add the gate sequence for the C3Z gate

c3z_circuit.h(3) # Hadamard gate to transform Z to X basis
c3z_circuit.mct ([0, 1, 2], 3) # Multi-controlled Toffoli gate
c3z_circuit.h(3) # Hadamard gate back to the original basis

# Convert the circuit to a gate

c3z_gate = c3z_circuit.to_gate()

# Append the C3Z gate to the provided quantum circuit

gc.append(c3z_gate, [0, 1, 2, 3]1)

return qc

Listing 5.11: The implementation of the C®3Z gate.
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However, for this example, we want to show that this extra gate makes a big difference
based on its location. In fact, where we add the extra gate will completely change the
circuit’s category.

Let us try adding this extra gate in two locations and see how the circuit behaves:

* Add the extra Z gate before the second H gate.
* Add the extra Z gate after the second H gate.

Now, we know that a CZ gate, regardless of the number of control qubits, is a phase
gate, so if we pass it to the catCircuit function, we should get "Phase Modulation."

But, if the extra gate is added before the H gate, the results of the categorizer
will be "Amplitude Redistribution." In Section 4.5, we discussed that we would follow
different strategies to test the various types of the circuit. If we had gotten the correct
categorization, we could use the swap test to figure out the phase difference.

Though we can use the swap test regardless of the categorization, it will only offer
helpful information for PM circuits.

Luckily, we can locate the extra gate in both cases using the gateLoc function, which
may not always be the case as the circuit size and complexity increase. However, getting
an AR categorization instead of a PM one is a helpful hint for the debugging process.

5.3 Example 3: Entangled Symmetric States

A symmetric state in quantum computing often refers to a quantum state that remains
invariant under some transformations or permutations. In other words, exchanging
the parts or elements of the state does not alter it. Such states are used in various
quantum algorithms and protocols, such as quantum teleportation, superdense coding,
and quantum error correction.

The study of symmetric states is more comprehensive than systems of only two
qubits. Studying the properties of symmetric states in larger systems is an essential
area of research in quantum information theory. There are various examples of such
symmetric states; for instance, the GHZ (Greenberger—-Horne—Zeilinger) state is a type
of multi-qubit symmetric state that plays a crucial role in many quantum protocols.

Consider a two-qubit system. The system’s state is symmetric if swapping the two
qubits doesn’t change the state. For instance, Bell states:

¥ = (100} + 1)),

is a symmetric state. If you swap the two qubits, the state remains the same. The
same logic applies to the case of the state:

) = 5(101) +10))

Generally speaking, a state is symmetric if it is unchanged under any permutation
of the qubits. For this set of examples, we will consider 3 symmetric states: GHZ, W,
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and Dicke. An example of testing an implementation of the W state was covered in
Chapter 4.5.

5.3.1 The GHZ State

The GHZ (Greenberger—Horne—Zeilinger) state is a specific kind of entangled quan-
tum state that involves three or more qubits. It was named after the scientists Daniel
Greenberger, Michael Horne, and Anton Zeilinger, who first studied it.

The GHZ state for three qubits is often written as:

|GHZ) = %(|ooo> +]111))

In this state, if you measure one of the qubits, you’ll also collapse the state of the
other two. For instance, if you measure the first qubit and find it in state |0), you know
with certainty that if you measure the other two qubits, you’ll also find them in state |0).
Similarly, if you measure the first qubit and find it in state |1), you’ll find the other two
in state |1). This property holds no matter how far apart the qubits are, demonstrating
the phenomenon of quantum entanglement.

A circuit representation of a 3-qubit GHZ state can be seen in Figure 5.5. This circuit
is built following the code in Listing 5.12 and the output state will be 5.13.

1 def ghz(qcir,gbits):
2 if len(gbits) == 1:

qcir.h(gbits)
x else:

for i in range(len(gbits)):
6 if i == 0:

qcir.h(gbits[i])

8 else:
9 qcir.cx(gbits[i-1],qbits[i])

10 return qcir

npn = 3

3 nodes_qubits = QuantumRegister(n, name="q’)
14 qc¢ = QuantumCircuit(nodes_qubits)

15 qc = ghz(gc, nodes_qubits)

16 result = execute(qc, S_simulator).result()

17 output_state = result.get_statevector()
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s state_to_ket (output_state)

Listing 5.12: Python and Qiskit code implementing of the GHZ state.

o -

a1

0 )

Figure 5.5: A three-qubit circuit implementation of a 3 qubit GHZ state.

'0.71[000> + 0.71[111>"°

Listing 5.13: Python output for the 3-qubit GHZ state.

We can use the generate_ghz_state_test_cases function to generate a set
of test cases which we can then use as an input to fQuantTester to examine the
behaviour of another implementation of the GHZ state and locate bugs. We must pass
the number of qubits to the generate_ghz_state_test_cases function and use the
result dictionary. For the purposes of our example, we will generate test cases for a
3-qubit system (Listing 5.14)

i {’name’: ’test 0’, ’input’: [(1+03j), 0j, 0j, 0j, 0j, 0j, 0j, 0j1, °’
expected_output’: [(0.7087+0j), 0j, 0j, 0j, 0j, 0j, 0j, (0.707+03)
1}

5 {’name’: ’test 1’, ’input’: [0j, 0j, 0j, 0j, 0j, 0j, 0j, (1+0j)], ’
expected_output’: [(0.707+0j), 0j, 0j, 0j, 0j, 0j, 0j, (0.707+0j)
1}

s {’name’: ’test +’, ’input’: [(0.35340j), (0.353+0j), (0.353+0j),
expected_output’: [(0.707+0j), 0j, 0j, 0j, 0j, 0j, 0j, (0.707+0;)
1}
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{’name’: ’test -’, ’input’: [(0.35340j), (-0.353+0j), (-0.353+0j),
(0.353+03), (-0.353+03), (0.353+03j), (0.353+0j), (-0.353+0j)1, °’
expected_output’: [(0.707+0j), 0j, 0j, 0j, 0j, 0j, 0j, (0.707+0j)
1}

{’name’: ’test i’, ’input’: [(0.353+0j), 0.353j, 0.353j, (-0.353+0j),
0.353j, (-0.353+0j), (-0.353+0j), -0.353j], ’expected_output’:
[(0.707+03j), 0j, 0j, 0j, 0j, 0j, 0j, (0.707+03j)1}

{’name’: ’test -i’, ’input’: [(0.353+0j), -0.353j, -0.353j, (-0.353+0

j), -0.353j, (-0.353+0j), (-0.353+0j), 0.353j], ’expected_output’:
[(0.707+03j), 05, 0j, 0j, 0j, 0j, 0j, (0.707+03)]1}
Listing 5.14: Test cases for a 3-qubit GHZ state.

As an example of that, assume we have a buggy implementation of the GHZ state
shown in Listing 5.15.

n = 3

nodes_qubits = QuantumRegister(n, name='q’)

3 gc_t = QuantumCircuit(nodes_qubits)

gc_t.h(0)

gc_t.cx(1,2)

gc_t.cx(0,1)

gc_t.draw(’mpl’)

result_t = execute(qc_t, S_simulator).result()
output_state_t = result_t.get_statevector()

state_to_ket (output_state_t)
Listing 5.15: An implementing of the GHZ state with a bug.

Running the tests we generated on this implementation will lead to all of them failing
as the output this time is not the expected one (Listing 5.16). We can see a visual
representation of the correct results vs. the buggy ones in Figure 5.6.

Creating special test cases is difficult since the GHZ is an Amplitude Redistribution
circuit, creating special test cases is difficult. So, the best way to approach this issue is
to consider the steps of creating a 3-qubit GHZ state.
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Figure 5.6: The Q-sphere for the 3-qubit GHZ state. A- the correct answer, B- the buggy
results.

To create a 3-qubit GHZ, we need to:

» After the Hadamard on the first qubit, the state should be % (]000) + |100}).

 After the first CNOT, with the first qubit as the control and the second qubit as the
target, the state should be %(|OOO) +|110)).

» After the second CNOT, with the second qubit as the control and the third qubit
as the target, the state should be %(lOOO) +|111)).

Now, we can use the gateLoc functions to follow these steps until we find the error.

Which will lead us to know that the circuit has the correct number and types of gates.
So, the error can either be an order problem or applying the gates to the wrong qubits.
Since we only have two gates, we can switch the order of the gates and run the tests again
and see if they pass.

In this case, switching the order fixes the bug, but if it did not, then we can deduct that
the error is due to applying the gates to the wrong qubits (using the wring control/target
combination).

1 0.711000> + 0.71]011>

Listing 5.16: The output of a faulty 3-qubit GHZ state.
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5.3.2 The Dicke State

A Dicke state defined for an N-qubit system is defined by the number of qubits and the
hamming distance. Specifically, a Dicke state |[D(N, k)) is a state with N qubits with a
k qubits hamming distance. They are in the state |1), and the rest are in state |0).

For instance, the Dicke state |D (3, 1)) with 3 qubits and 1 qubit in state |1) corre-
sponds to the three-qubit W state:

ID(3.1)> = 3(|001) +1010) + [100))

However, the Dicke state |D(3,2)) with 3 qubits and 2 qubits in state |1) would be:

|ID(3,2)> = %(K)ll) +[101) +|110))

And, the Dicke state |D(4,2)) with 4 qubits and 2 qubits in state |1) would be:

|D(4,2)) = %(|OOII> +1]0101) +|0110) + |1001) + |1010) + |1100))

The Dicke state |[D (N, k)) is a superposition of all possible permutations of k qubits
with equal amplitudes for each term. We can write a general implementation for the
Dicke state as seen in Listing 5.17. Using that code, a |D(3,2)) Dicke circuit would
look like Figure 5.7, and the output state will be 5.18.

#Implementation of dicke state as described in arXiv:1904.07358vl
def scs(qc,qubits,n,l):
#the qubits will be inputed from buttom to top
w = math.sqrt(l/n)
#print (math.sqrt(l/n))
if len(qubits) ==
gc.cx(qubits[1],qubits[0])
theta = 2*(math.acos(w))
gc.cry(theta,qubits[0],qubits[1])
gc.cx(qubits[1],qubits[0])
elif len(qubits) == 3:
gc.cx(qubits[2],qubits[0])
theta = 2*(math.acos(w))
gc.mcry(theta, [qubits[0],qubits[1]],qubits[2], None)
gc.cx(qubits[2],qubits[0])
ellisel:
raise CircuitError("Unvalid number of qubits")
#qc.barrier ()

return qc
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def dicke(qc,qubits,n,k):

n =

k =

qc.x(qubits[n-k:])

d = {}
1 =1
while 1l<=k:
if n == k:
k -=1
else:
t = []
for i in range(l,k+1):
if i == 1:
t.append([n-1,n-i-1])
else:
t.append([n-1,n-i,n-i-1])
distr(n)+str(k)] = t #[::-1]
n -=1
dr"s2"] = [[2,1],[2,1,0]]
df"21"] = [[1,0]]

for key in d.keys(Q):

item = d[key]

1 =1

for sub in item:
fn_in = []
for i in sub:

fn_in = [qubits[i] for i in sub]

temp = key[0] if len(key)== 2 else key[:-1]
qc = scs(qc,fn_in,int(temp),1)
1 += 1

return qc

3
2

nodes = QuantumRegister(n, name="q’)
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qc = QuantumCircuit(nodes)

s gc = dicke(qgc,nodes,n,k)

result = execute(gc, S_simulator).result()
output_state = result.get_statevector ()

state_to_ket (output_state)

Listing 5.17: Python and Qiskit code implementing the Dicke State.

— Ry _ A8 _ Ry N o Ry o
do 0615 —0615 w2
- —— Ry —
ql x 1A9Y1
g2 E—Gy——§y—

Figure 5.7: A three-qubit circuit implementation of Dicke states.

’0.58|011> + 0.58[101> + 0.58[110>"

Listing 5.18: Python output of a 3-qubit Dicke state.

Like the GHZ state, we can use the generate_dicke_state_test_cases to gen-
erate test cases for different implementations. However, unlike the GHZ state, we must
pass two values to the generate_dicke_state_test_cases function, the number of
qubits n and the hamming distance k. For example, for a |D(3, 2)), the function returns
the test cases shown in Listing 5.19.

{’name’: ’test 0’, ’input’: [(1+0j), 0j, 0j, 0j, 0j, 0j, 0j, 0j]1, ’
expected_output’: [0, 0j, 0j, (0.577+0j), 0j, (0.577+0j),
(0.577+03), 0j13

{’name’: ’test 1’, ’input’: [0j, 0j, 0j, 0j, 0j, 0j, 0j, (1+0j)], ’
expected_output’: [0, (0.707+0j), (-0.707+0j), 0j, (-0+0j), 0j, O
j, 031}

{’name’: ’test +’, ’input’: [(0.353+0j), (0.353+03j), (0.353+0j),
(0.353+03), (0.353+0j), (0.353+0j), (0.353+0j), (0.353+03j)], ’
expected_output’: [(0.354+0j), (0.598+0j), (0.098+0j), (0.606+0j),

(-0.085+03), (-0.057+03j), (0.063+0j), (0.354+03j)1}



4+ {’name’: ’test -’, ’input’: [(0.353+0j), (-0.353+0j), (-0.353+0j),
(0.353+03), (-0.353+0j), (0.353+03j), (0.353+0j), (-0.353+03j)1,
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expected_output’: [(0.354+0j), (-0.598+0j), (-0.098+0j), (0.606+0]

), (0.085+07), (-0.057+03j), (0.063+07), (-0.354+0j)1}

s {’name’: ’test i’, ’input’: [(0.353+0j), 0.353j, 0.353j, (-0.353+0j),

0.353j, (-0.353+03j), (-0.353+0j), -0.353j], ’expected_output’:
[(-0.354+0]7), 0.098j, 0.598j, (-0.198+0j), -0.085j, (0.465+0j),

(0.346+03), 0.35431}

¢ {’name’: ’test -i’, ’input’: [(0.353+0j), -0.353j, -0.353j, (-0.353+0

j), -0.353j, (-0.353+0j), (-0.353+0j), 0.353j], ’expected_output’:
[(-0.354+0j), -0.098j, -0.598j, (-0.198+0j), 0.085j, (0.465+0j),

(0.346+03), -0.354j1}

Listing 5.19: Test cases for a 3-qubit Dicke state.

One common error in circuits containing phase gates is entering the rotation angle

in the wrong measurement unit (degrees instead of radians).

1 def scs(qc,qubits,n,l):

N

#the qubits will be input from buttom to the top

if len(qubits) ==
gc.cx(qubits[1],qubits[0])
theta = math.degrees(2*(math.acos(math.sqrt(l/n))))
gc.cry(theta,qubits[0],qubits[1])
gc.cx(qubits[1],qubits[0])

elif len(Cqubits) == 3:
gc.cx(qubits[2],qubits[0])
theta = math.degrees(2*(math.acos(math.sqrt(l/n))))
gc.mcry(theta, [qubits[0],qubits[1]],qubits[2], None)
gc.cx(qubits[2],qubits[0])

else:
raise CircuitError("Invalid number of qubits")

return qc

def dicke(qc,qubits,n,k):
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qgc.x(qubits[n-k:])

d = {}
1 =1
while 1l<=k:
if n == k:
k -=1
ellisef:
t =[]

for i in range(l,k+1):
if i ==
t.append([n-1,n-i-1])
else:
t.append([n-1,n-i,n-i-1])
distr(n)+str(k)] = t #[::-1]
n -=1
dr"s2"] = [[2,1],[2,1,0]]
df"21"] = [[1,0]1]
for key in d.keys(Q):
item = d[key]
1 =1
for sub in item:
fn_in = []
for i in sub:
fn_in = [qubits[i] for i in sub]

temp = key[0] if len(key)== 2 else key[:-1]

qc scs(qc,fn_in,int (temp),1)
1 += 1

return qc
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Listing 5.20: Dicke implementation with a bug (wrong measurement units for the angles).

Consider the code block in Listing 5.20, where the angle is entered in degrees, leading

to somewhat wrong results (Listing 5.21).
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011) ¢ ’|101) 011) ¥ 1101)
110) 10)
n/2 n/2
\‘ \ \‘ \
n' Phase® 0 n ' Phase® 0
3n/2 3n/2

Figure 5.8: The Q-sphere for the 3-qubit Dicke state. A- the correct answer, B- the
buggy results.

1 -0.65|011> + -0.65[/101> + -0.40[110>
Listing 5.21: The output of the faulty Dicke state.

If we look closer at these results and compare them to the correct ones, we can see
that the states themselves are accurate. However, their distribution is not. To better
understand the effect of the bug, Figure 5.8 shows the Q-sphere of the right vs the buggy
versions of the code.

The Q-sphere shows that the phases for both the correct and wrong answers are the
same. Based on the discussion of the different categories of circuits in Section 4.4, the
Dicke state is an Amplitude Redistribution circuit (the controlled-rotation gates cause
entanglement). Since the states are all negative in the faulty results (or not as expected),
we can check the lines of code that alter the phase (e.g., rotation gates).

In the implementation of the Dicke state we are using, the angle theta is used as
an argument for two multi-control Y rotation gates. Since using the wrong measuring
units is a common mistake, ensuring that theta is in radians is a logical first step. In
our example, this should solve the problem. However, if the angle is in radians, but an
error still occurs, we need to ensure the value of the angle is correct by going back to the
implementation details and cross-checking the values.
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Figure 5.9: A 3-qubit QFT circuit.

5.4 Example 4: Quantum Fourier Transform

The QFT is a fundamental operation in quantum computing, pivotal for algorithms like
Shor’s algorithm [40] for factoring and quantum phase estimation. Ensuring its correct
implementation is vital for the success of these quantum algorithms. The QFT on an
n-qubit state is defined as

2"-1

. 1 2mijk /2"
FT|i) = — J k). (5.1
QFT|j) T kgzo e |k)

A general implementation using Qiskit can be seen in Listing 5.22. The code here
offers an important clue to debugging AR circuits: the code is parameterized in n, the
number of qubits in the QFT. Thus, the programmer can test and debug their code using
small values of n and develop confidence in the behavior of larger instances. We can use
simulators and Cirquo’s functions to examine the code and test propositions about the
circuit.

| def gft(circuit, n):
"""Applies QFT on the first n qubits in circuit"""
for j in range(n):
4 circuit.h(j)
for k in range(j+1, n):
6 circuit.cp(2 * pi / 2**(k - j)), k, j)

7 for j in range(n//2):
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circuit.swap(j, n-j-1)
Listing 5.22: An Implementation of the QFT using Qiskit.

One approach to creating efficient test vectors is to focus on the properties of the
QFT, such as linear shift-invariance and parallelism.

So we can focus on these properties to create test cases as well as some corner cases
to test the algorithm’s behavior, for example:

* The simplest states: Ensure the fundamental functionality of the QFT (all zeroes
and all ones). These are basic test cases because it is fairly simple to know the
results of the QFT on them.

* Edge Cases: Test the handling of single amplitudes set to 1, which can reveal
issues in the phase rotations by preparing |k) for k # 0.

* Superposition States: Verify the linearity and ability to handle superpositions
critical for quantum algorithms.

* Equal Superposition: Check the symmetry and uniformity essential for under-
standing periodic structures.

* Phase States: Ensure the correct handling of complex phases.

All Zeroes State

The simplest input state is |00...0). The QFT of this state should result in a uniform
superposition of all basis states:

1 2n—-1
QFT|000...0) = — . (5.2)
| )= ; 1)

All Ones State

The input state [111...1) referring to an n-qubit state where all qubits are in the |1)
state should transform to a state with alternating phases:

2"—1

1 2ni-y /2"
= Z e ). (5.3)

QFT|111...1) =
V2r
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Single Qubit States

For single qubit states such as [100...0),|010...0), and [000... 1), the QFT should
apply phase rotations corresponding to the position of the single qubit set to 1:

2"—-1
1 rok, n
QFT|2%) = o DAy, (5.4)
y=0

Superposition States

States such as ) = %0000) +1010)) and |y,) = %qom) + [111)) test the linearity
and interference patterns of the QFT:

QFT(Jy)) = %(QFT(IOOO» + QFT([010)). (5.5)

Equal Superposition State

1
v

QFT(|¢)) = 10). (5.6)

2,2;51 |x) should transform to a state where the

The equal superposition state |¢) =
QFT reveals the periodicity:

Phase States

States with phase factors such as |¢) = %(|OOO) +1|001)) test the handling of complex
coeflicients and phase shifts:

QFT(ly)) = %(QFT(IOO(D) +iQFT(]001))). (5.7)

In this example, we will focus on the linear shift-invariant aspect of the QFT. This
result of applying the QFT on a periodic state shows the periodicity and phase relations
encoded by the original state transformed into a new superposition reflecting these
frequency domain properties. A periodic n-qubit state (¢ (n, r,[))) is a state that shows
a periodic behavior and can be defined by its period r and its shift /. We can express that

as
2"-1

W(nr,0)) = > exlk) (5.8)

k=0

where ¢ are the coefficients of the computational basis states |k), and they reflect the
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periodicity and shift of the state. Specifically, ¢y is non-zero for states |k) that satisfy
(k —1) mod r = 0. For example, consider |¢(3,2,1))

W (3,2,1)) = 1 (]001) + [011) + [101) +|111)). (5.9)
V8

We can now apply the QFT to state (3,2, 1)) and observe how it preserves the
period while transforming it to the frequency domain. For a 3-qubit system (n = 3), the
QFT equation simplifies to

1 &
FT|j) = — kI8 ey 5.10
QFT|j) vg;) k) (5.10)

We can see the circuit for a 3-qubit QFT in Figure 5.9. Applying the QFT to |¢/(2, 1))
gives

7 7
1 ri-l. i3
Worry = —=[ Y KB lky + 37 IS k)
\/g k=0 k=0

7 7
+ZeZm'-5~k/8|k> +262ﬂi~7~k/8|k> . (511)
k=0 k=0
After simplifying this equation, we get

Worr) = \i@um 12+ 4 - |6)). (5.12)

The calculation demonstrates how the QFT reveals the periodicity and phase relation-
ships encoded in the original state | (n, r, 1)), transforming it into a new superposition
that reflects these properties in the frequency domain. That effect can be seen in Fig-
ure 5.9-A.

Consider the QFT for n = 1024; full simulation of this circuit is well beyond
classical capabilities. For a fault-tolerant machine, we expect to use it frequently. In
Shor’s algorithm, the QFT is far less expensive than the modular exponentiation portion
of the circuit so that the execution cost will be reasonable. As a first test, the programmer
can run the complete QFT circuit on a chosen test vector or set of test vectors using the
approach of Figure 4.5. If this test returns an error, the next step is to reduce the scale of
the tests to something that can be simulated.
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[111)

Figure 5.10: (A) The Q-sphere results for the periodic state |¢(3,2,1)). (B) The Q-
sphere results of the 3-qubit QFT where a Hadamard gate on qubit 0 is missing.
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Assume that the user forgot to apply a Hadamard gate to qubit O at the beginning
of the algorithm’s implementation. (This kind of error can be expected to be common
due to off-by-one programming mistakes in loops, as in Listing 5.22.) Simulating the
circuit for (3,2, 1)) will lead to the results shown in Figure 5.10-B. We can see that the
output does not match our expected results, but we do not know what might be causing
the error.

Because the most common error when implementing quantum algorithms is often a
missing/extra gate, we can get the gates count using Qiskit’s count_ops(). However,
this will only return the total count, including the measurement, which can be helpful to
use with Cirquo’s gateLoc () to get the specific qubit and line of code where a gate was
added.

We know that an n-qubit QFT includes n Hadamard gates, @ controlled phase
rotations are required, and L%J SWAP gates.

These two functions allow us to discover that qubit 0 has no Hadamard gates applied;
adding one (or correcting the loop conditions) and executing the circuit again fixes the
error. Repeating the smaller tests up to the simulation limit and re-testing the entire
circuit on the FT computer increases our confidence in the overall circuit.

In the prior subsections, we worked with single amplitudes in test vectors. Be-
cause AR blocks modify the set of amplitudes, a single-amplitude input will be a
multiple-amplitude output. With many amplitudes, testing results will be stochastic, and
reconstructing the amplitude distribution will be difficult.

An alternative would be to engineer an input test vector to generate a single am-
plitude on output. We could do this, for example, by taking a desired output, directly
calculating the inverse of the AR block, and using that output as the initial input test
vector. Unfortunately, in many cases, the direct creation of that input vector will be as
complicated as the entire AR block. However, the approaches shown in Figures 4.5 and
4.7 can be used, for example, to confirm that a new implementation of the QFT produces
the same output as a standard library implementation. Working entirely from scratch
will be difficult, but comparing versions with new optimizations or features can be more
straightforward using these techniques once bootstrapped.
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Discussions and Related Work

Advancements in quantum software tools for debugging are critical to support the
increasingly complex quantum computing applications.  Essential improvements
include the development of quantum-aware debugging tools that can operate within the
constraints of quantum mechanics such as observing or measuring a quantum state can
cause its wave function to collapse, potentially altering the state and erasing essential
quantum properties such as superposition and entanglement. However, as we get closer
to fault-tolerant quantum computers, we will need tools and systems to test and debug
quantum programs. We also need a version of these tools for the current generation
of quantum computers so that programmers and researchers can design and develop
programs for future generations.

Developing a mature debugging and testing process for quantum computers will
require many years of trials and research. Still, we hope this work will be one of the first
steps toward developing a mentality for thinking about quantum programs. Since one
of the challenges of debugging and testing quantum programs is the nature of quantum
algorithms and how they can be quite counterintuitive, providing the programmer with
tools to help them better understand the program’s behavior and offer some testing
assistance can make a big difference.

An example of a quantum testing and debugging effort is the debugging and testing
aspect of Q#. Q# is a quantum development environment developed by Microsoft with a
syntax designed to look and feel similar to C#. Q# offers various ways to test NISQ-era
quantum programs. It offers unit testing functionality over its quantum circuits object.
Unit testing is a commonly used testing and debugging technique in classical computing
that is very helpful if the program’s results are already known or can be easily calculated.
However, if the circuit behavior is challenging to understand, writing test cases for it

151
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will be challenging. Most quantum programs tend to be counterintuitive because of how
quantum computers operate; hence, more than unit testing functionality is needed to be
more helpful to developers, especially if they are new to quantum software development.

Moreover, some work focused on debugging quantum circuits at run-time [195],
using statistical methods [196], or quantum cloning [197]. Some work has also been
done on trying to establish a quantum programming development cycle, similar to
the classical software cycle, to suggest different techniques that can be used in each
step [105] [66] and the testing and debugging tactics for quantum algorithms [66]. In
addition to some work on the progress of formal verification methods in the quantum
arena [198].

Our proposed tool, Cirquo, provides programmers with some functionalities that
they can use to validate the performance of their circuits. Still, another valuable
assistance that Cirquo offers is 8 extendable building blocks (adders, the diffusion
operator, the W state, the Dicke state, the GHZ state, the QFT, the QPE, and the discrete
quantum walk), as well as testing vectors for each of them that the programmer can use
if they wish to implement these blocks themselves.

The goal behind Cirquo is to combine, extend, redefine, and bridge three common
classical debugging techniques. Firstly is the Binary-like search [199, 200] often referred
to as "binary search debugging" or "bisecting." The main idea behind binary-like search
debugging is to divide the program into smaller sections, test them individually, and
eliminate bug-free sections. Many version control systems, like Git, have built-in
tools to automate this process. For instance, Git offers the git bisect command, which
automates the binary search debugging process, making it easier to find the commit
that introduced a regression or bug. Cirquo incorporates this by offering the slicer,
the testers, and the sample building block implementations and test vectors. Another
debugging approach Cirquo utilizes is hypothesis testing [201, 202]. Hypothesis testing,
in general, is a statistical approach to analyzing and understanding the behavior of some
given data. In the context of software engineering and development, it refers to the
process of applying different tests to a program (or a slice), observing its behavior, and
then making decisions accordingly. Cirquo utilizes hypothesis testing by offering two
executing functions for the Amplitude Permutation, Phase Modulation, and Amplitude
Redistribution programs (versions of the testing functions that only run the circuit
for different inputs), allowing the user to observe the circuit’s behavior for different inputs.
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6.1 Verifying Quantum States

Quantum state verification is pivotal in quantum computing and quantum information
theory. It involves methods to ascertain the exact state of a quantum system, often
represented by qubits. This process is intricate due to the fundamental principles of
quantum mechanics. This thesis considers methods like the swap test and quantum
tomography and examines their mathematical foundations, limitations, and challenges.

Swap Test and Fidelity Check

The swap test determines the similarity or orthogonality of two quantum states, |i) and
|¢). The test utilizes an ancillary qubit, initially in the state |0), and a series of controlled-
swap (Fredkin) gates. The ancillary qubit’s final state depends on the similarity of |y)
and |¢). Mathematically, the probability of finding the ancillary qubit in the |0) state
after the swap test is given by:

I 1
P(0) = 5+ S Kwlg)I* (6.1)

The swap test’s limitation is its binary nature; it quantifies similarity but doesn’t provide
specific state details. It is also probabilistic, requiring several iterations for accurate
results.

An important note here is the relation between the swap test and fidelity checks. We
can estimate the fidelity F between an experimental state [¢/) and a theoretical state |¢@).
Fidelity is mathematically defined as:

F(Iy),1¢)) = 1) (6.2)

This method is less demanding than full tomography but offers limited insights into the
state’s specifics.

Technically, the swap test is an efficient and practical implementation of a fidelity
check [203] that we can execute on NISQ devices and FT ones in the future.

Tomography

Tomography is a set of methods used to reconstruct quantum states or processes.

State tomography [204, 205] involves reconstructing the quantum state itself. For a
state [y, state tomography aims to estimate the density matrix o = | )(|. The process
involves performing measurements in different bases and statistically reconstructing p
from the outcomes.
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Process tomography [206, 207, 208], on the other hand, reconstructs the quantum
operation (or channel) applied to a state. For an operation &, process tomography
estimates the transformation that & imparts on input states.

Though tomography provides comprehensive information about the system, it is very
resource-intensive, requiring exponential measurements for larger systems.

It is an expensive process, so selective process tomography became a focus for many
researchers. Though still expensive, it is significantly less resource-consuming than the
original process tomography algorithm.

While QPT provides comprehensive information about the quantum process, its
exponential scaling limits its use to small systems. SQPT, with its more manageable
scaling, becomes a practical choice for analyzing specific aspects of larger quantum
processes, offering a balance between resource requirements and possible information
to be obtained.

Randomized Benchmarking

Randomized benchmarking can be used to assess the quality of quantum gates and

processes [209]. It is robust against specific errors but does not verify the quantum state

directly. Instead, it provides an average error rate over a set of quantum operations.
Each method faces some limitations that include:

* Swap Test provides limited information about state specifics.
* Quantum Tomography has big scalability issues and high computational demands.
* Checking the fidelity provides limited insights into the quantum state.

* Randomized benchmarking would not directly provide state information and can
be challenging for people without a background in quantum information.

Furthermore, all methods must contend with quantum decoherence and noise, which
can lead to inaccurate results.

6.2 Entanglement and Debugging Quantum Circuits

One of the main limitations and challenges we will face is addressing entanglement,
not just the work in this thesis, but also debugging quantum programs in general. This
problem will become more prominent when we attempt to slice the circuit. For example,
consider a simple 2-qubit circuit shown in Figure 6.1.

Let us examine this circuit (the circuit for the Swap test) closely and see how it
behaves for different values of ¢g0. To do that, we will consider 3 cases, g0 = |0), |+),
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q0 — H H —

Figure 6.1: A simple circuit showing the challenges of debugging quantum circuits.

and an arbitrary state |¢). This circuit consists of three steps: (H® 1) -CNOT - (H®I),
we will go step by step for each value of g0 and check the intermediate state of the qubits

after each operation (to keep thing simple, the initial value of g1 will be set to 1).
Starting with g0 = 0:

Initial State: |00)

After First Operation:(H ® I) : %(lO) +|1)) ® |0) = %(lOO) +|10))
After CNOT: %(lOO) +|11))
1

After Second Operation:(H ® I) :  =[(]0) + 1)) ® [0) + (|0) — [1)) ® |1}]

\S]

_ %(|00> +110) +101) — [11))

Similarly, assume we start with g0 = |+), the formals for the intermediate states will
be:

1
Initial State: |+) ® |0) = —(]00) + |10))
V2
1 1
After First Operation (H ® I) : §(|O> +|1)) ® |0) + §(|0> - 1)) ® |0) = |00)
After CNOT: |00)
1

After Second Operation (H ® 1) :
V2

(10) + 1)) @ |0) = %uom +110))

Now, what if we need to know the state of ¢g0? If g0 is |¢) = «|0) + B|1), where
« and 8 are complex numbers such that |a|? + |3|> = 1. In that case, the intermediate
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states will be:

Initial State:  («|0) + B|1)) ® |0) = @|00) + B|10)

After First Operation (H ®I) : %(|O) +11)) ® |0) + %(IO) - 11)) ®10)
= %(alOO) + a|10) + B|00) — B|10))

After CNOT:  —=(t[00) + a[11) + B100) — BI11))
V2

After Second Operation (H Q) : %[a(lO) +11)) ® 10) + a(]0) — 1)) ® |1)
+5(10) +[1)) ® [0) - B(|0) = 1)) @ [ D]
= %[alOO) +a|10) + @|01) — a|11)
+100) + B[10) — Bl01) + B|11)]

Assume we only want to consider qubit 0; one may guess that since it has two
Hadamard gates applied to it if we start with |0) then at the end if we measure it, we
should get 0 (|0) ® H ® H = |0) ® I = |1)). However, that is not always true. It highly
depends on the value of qubit 1 and how it entangles with qubit O because of the CNOT
gate. In cases where the result is not a pure state but a mixed one, qubit 0 will not be 0
after measurement, making creating test cases for that relatively simple slice even more
challenging.

This is the main bottleneck in debugging quantum circuits. Though we can create
test cases for the pure states, achieving full coverage would be a serious problem.

6.3 Limitations of the Proposed Debugging and Testing

Techniques

Debugging quantum circuits is essentially performing process tomography at a high
level. We expect the system’s state to evolve over time, and the goal of our testing is to
determine whether the system is following these expectations.

In Section 4.5, we propose different strategies to use when testing and debugging
the various types of blocks, such as using the swap test for PM blocks or targeting the
algorithm’s properties to create test vectors for AR circuits. Though these approaches
are theoretically valid to test and debug these circuits, they still have limitations.
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Creating useful test vectors

Testing AR blocks poses unique challenges. The probabilistic outcomes of quantum
states require statistical methods for validation, diverging from the deterministic testing
used in classical computing. Entanglement further complicates testing, as the state of one
qubit is interdependent with others, obscuring individual analysis. One way to approach
this is by creating test vectors that prove the properties of the block under test, similar
to what we demonstrated in Section 4.5. Using basic test vectors (applying the block for
different bases) can provide the user with information to assist them in debugging.

The increase in needed resources

The swap test circuit looks fairly simple, but its complexity is directly tied to the size
of the states being compared. For two quantum states, each consisting of n qubits, the
circuit complexity Cgwap test = 11, Where Cyyap tese denotes the number of controlled-SWAP
gates needed.

Each CSWAP gate has a significant cost in terms of quantum resources. Depending
on the architecture of the quantum processor, implementing a CSWAP gate typically
involves multiple elementary quantum gates, such as CNOT and single-qubit gates.

Therefore, the resource cost and potential error rates increase with the number of
CSWAP gates used. As n grows, the swap test circuit becomes more complex and more
challenging to execute accurately due to increased gate operations and the associated
error rates.

A similar argument can be made for implementing and executing process tomography
(QPT) [206, 207].

QPT aims to reconstruct the complete quantum process, represented by a superop-
erator acting on a density matrix. The complexity of QPT scales exponentially with the
number of qubits n in the system [210]. The number of experimental configurations
required for full reconstruction grows [208] is

Copr = 4" (6.3)

In contrast, Selective Process Tomography (SQPT) [211, 212] focuses on recon-
structing only specific elements of the process matrix. The number of experimental
configurations in SQPT depends on the number of elements being selectively measured.
This selective approach reduces the scaling, often to a polynomial relation with the
number of qubits, depending on the targeted elements. Thus, for a subset of elements
k [213], the scaling is

CSQPT = pOly(Vl, k) (64)

The difference in scaling between QPT and SQPT has significant implications for
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their applicability in large quantum systems.

Estimating the optimal number of shots needed

Estimating the required number of shots in quantum circuit simulations depends on the
type of circuit we are testing/executing. We only need one shot for the AP blocks to
get the results. However, that is different when examining PM and AR blocks. These
blocks need more shots to have a higher accuracy. The swap test, for example, involves
considerations about statistical accuracy, computational resources, and the specifics of
the quantum states being compared. Considering that the measurement process in
quantum computing follows a binomial distribution [214] where each shot results in
either a success or failure. Hence, the relation between the number of shots and the
standard deviation (o) of the measurement outcome can be described by

o= w/p(lT_p) (6.5)

p 1s the probability of measuring a particular outcome, and N is the number of shots.
While there is no simple formula to calculate the optimal number directly, we can
determine a suitable number of shots based on the requirements for statistical accuracy.
We can use the o with a specific accuracy value Z to calculate the confidence interval
(CI) of the number of shots needed using the formula

Cl=ptZXxo (6.6)

Distinguishing between hardware and software errors

A critical aspect of quantum program testing is acknowledging the differences in debug-
ging on simulators, NISQ machines, and fault-tolerant quantum computers. Limitations
in program size and hardware-related errors in NISQ machines pose significant chal-
lenges. While these issues might be resolved with fault-tolerant quantum computers,
classical computers will still play a vital role in debugging and testing quantum programs.

Developing a deep understanding of circuit behavior, identifying sources of errors,
and creating effective test cases are essential for building the quantum intuition necessary
to advance the field toward the fault-tolerant era.



Chapter 7

Conclusion

7.1 Summary

As quantum computers evolve towards fault tolerance, the demand for tools assisting
developers in crafting and refining their quantum programs will surge. While there has
been significant focus on the software side of quantum computing, with the development
of quantum-intuitive programming languages, there is still a need to provide developers
with robust tools for testing and debugging.

Validating the behavior of quantum circuits remains the most significant challenge
quantum technology faces today. If a debugging tool is not developed, this challenge will
become more difficult as the circuit size increases and the ability of current hardware
improves.

It is crucial to pinpoint the specific implementation level to debug quantum programs
effectively. Quantum programs can be implemented on different levels: the high-level
algorithmic design, the intermediate circuit layout, and the foundational level of electrical
pulses interacting with the hardware. These implementation levels have challenges, but
overall, quantum programs are difficult to test and debug regardless of the implementation
level.

This thesis introduces a comprehensive suite of software tools (Cirquo) and insights
for developers to test and understand their quantum programs. This suite encompasses
circuit slicing, categorization, gate tracking, and testing functionalities. Additionally, it
provides foundational building blocks for testing and debugging quantum algorithms.

We also present an analysis of frequently encountered bugs in quantum software
collected from discussions on platforms like StackOverflow, StackExchange, and GitHub
(similar to bug clustering [215, 216] classically). This categorization can serve as a
valuable source for developers in the bug identification step of debugging.
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To summarize this thesis:

* Explores commonly occurring bugs reported by programmers on platforms like
GitHub, StackOverflow, and StackExchange.

* Proposes the construction of a simple circuit slicer to reduce the size of the circuit
being examined by the programmer.

» Explains a categorization of quantum circuits into three types based on their effects
on the qubits’ states.

* Discusses the implementation and test vectors of commonly used subroutines in
quantum algorithms.

* Proposes strategies for creating efficient test vectors and debugging different types
of circuits.

* Covers a debugging helper function to track and locate specific gates within a
quantum circuit.

Quantum circuit testing and debugging is a research field with numerous unresolved
questions and challenges. This research contributes to shaping the future of quantum pro-
gram testing and debugging while offering valuable insights into the field’s current state
by introducing a circuit slicer, categorizer, and targeted testing methods. It represents
a significant leap towards overcoming the limitations of quantum circuits’ increasing
complexity and size. These tools are designed to be hardware-independent, offering a
versatile solution across various quantum computing platforms.

For instance, consider the application of the circuit slicer tool within a quantum
algorithm used for molecular simulation—a field where quantum computing promises
substantial breakthroughs. Typically, such simulations involve complex and large-scale
quantum circuits that challenge even the most advanced classical simulation techniques.
Using the circuit slicer, developers can decompose these large circuits into smaller, more
manageable blocks. This decomposition allows for isolated testing and debugging, which
is far less resource-intensive and provides more precise insights into the functionality
and potential issues within specific circuit sections. Similarly, the circuit categorizer
can be used to pinpoint how a particular circuit block influence the overall performance
and outcomes of the simulation, enabling more precise optimizations and adjustments.
These examples illustrate the utility of the proposed tools and highlight their potential to
significantly expedite the development and deployment of quantum computing solutions.
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7.2 Future Directions

This work focuses on helping the programmer better understand the circuit behavior by
allowing them to look into smaller parts of it, learn the functionality of that part, and use
the provided test functions to examine different input/output combinations.

The work in this thesis is a solid first step not only in the field of quantum software
but also in the field of quantum education. Some possible future expansions of this work
include:

1. Development of Specialized Quantum Software Testing Frameworks: Includ-
ing the creation of broader testing frameworks that cover a specific subset of
quantum algorithms by focusing on how these algorithms manipulate the state of
the qubits to reach an answer.

2. Integration of Classical and Quantum Software Development Tools: There
is a potential to develop integrated development environments (IDEs) that merge
classical and quantum software tools, simplifying the development of hybrid al-
gorithms.

3. An In-depth Investigation on Calculating the Optimal Number of Shots: We
propose a simple approach to find the confidence interval for the optimal number
of shots. However, developing an algorithm to calculate the optimal number of
shots for a given algorithm will significantly value testing and debugging quantum
circuits.

4. Distinguish Between Hardware and Software Bugs: One of the challenges
that quantum software still faces, particularly in the NISQ era, is distinguishing
between errors caused by the hardware and the software.

If we desire to debug a quantum computer, we will need to be more specific about
the level of implementation we are targeting. In quantum computing, there are differ-
ent levels of implementation, starting with the higher level, which is the algorithmic
implementation. The circuit and lower levels consist of electrical pulses executed on
actual hardware. Regardless of our target level, scaling is another challenge since we use
classical computers to debug quantum circuits. Even if we attempt to use NISQ devices,
the scalability challenge remains. However, we need tools and strategies when we reach
fault-tolerant quantum computers.

Although attempting to bridge ideas and methods from the classical side to the
quantum side can be beneficial, these approaches must be edited to adapt to the nature of
quantum algorithms and add new methods and techniques that help us better predict and
understand the behavior of quantum programs. Cirquo is meant to assist the programmer
in locating bugs due to the implementation of the algorithm. It does not help if the bug
is due to the hardware or if there is any way to distinguish between the software-caused
or hardware-caused bugs.
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7.3 Influence of this work

This thesis’s contributions mark an advancement in the field of quantum software, ad-
dressing some of the key challenges faced by developers and researchers. By introducing
the comprehensive suite of tools within the Cirquo package, this work provides a robust
framework for testing, debugging, and optimizing quantum programs. These tools, in-
cluding circuit slicing, categorization, gate tracking, and targeted testing functionalities,
offer a solution for managing the complexity of quantum circuits as the field advances
toward fault-tolerant quantum computing.

I believe that this thesis will be impactful for multiple reasons, one of which is its
focus on the practical challenges of quantum software development. By analyzing and
categorizing frequently encountered bugs from platforms like GitHub, StackOverflow,
and StackExchange, this work offers a resource for developers, aiding in the bug iden-
tification process and providing insights into common issues. This empirical approach
ensures that the tools developed are grounded in the real-world experiences of quantum
programmers, making them highly relevant and effective.

Furthermore, this thesis sets a precedent for the future of quantum software de-
velopment by emphasizing the importance of hardware-independent solutions. The
tools and methodologies proposed are designed to be versatile across various quantum
computing platforms, ensuring broad applicability and fostering interoperability in the
rapidly evolving quantum landscape. This forward-thinking approach addresses current
challenges and anticipates future developments, positioning this work as a foundational
reference for ongoing and future research in quantum software testing and debugging.
This thesis contributes to accelerating the adoption and advancement of quantum com-
puting technologies by improving the reliability and efficiency of quantum program
development.
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Quantum Bugs

In this appendix we display a table of the 123 bugs collected and discussed in Chapter 4.2.
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Appendix C

Suite Code and Structure

C.0.1 The Slicer

1 # This file includes the slicer functions

3 from giskit import QuantumCircuit,

4

5

6

> import re

from .helpers import get_barrier_locs,

remove_barrier

def Vslicer(inputCir, mode="mini"):

gates_list = inputCir.data

barrier_locs = get_barrier_locs(gates_list)

QuantumRegister

slice_list_with_indeces,

slicedCir = slice_list_with_indeces(gates_list, list(barrier_locs

.values()))

cleanCir = remove_barrier(slicedCir)

qubitsInCir = str(inputCir.qubits)

pattern = r"QuantumRegister\(\d+,\s*’\w+"\)"

result = re.findall (pattern,
result = sorted(set(result),
qunRegs = {}

for i in list(result):

qubitsInCir)

key=1lambda x:

172

result.index(x))
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info = i[16:-1].split(C’, ’)
qunRegs[info[1][1:-1]] = info[0]
Dcir = QuantumCircuit ()
for key in qunRegs.keys():
Dcir.add_register (QuantumRegister (int (qunRegs[key]),
))
cirlList = []
for cir in cleanCir:
count = 1
cirName = "sub circuit" + str(count)
temp = Dcir.copy(name=cirName)
for gate in cir:
if gate[0].name == ’'measure’:
pass
else:
temp.append(gate[0], gargs=gate[1l])
cirList.append(temp)
count += 1
if mode == "mini":
return cirlist
elif mode == "accom":
cirListAcc = [cirList[0]]
for i in range(l, len(cirList)):
count = 2
cirName = "sub circuit" + str(count)
temp = cirlListAcc[i-1].copy(name=cirName)
temp.extend(cirList[i])
cirListAcc.append(temp)
count += 1
return cirListAcc
else:

return "Invalid mode"

173

name=key
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19 def
50
51
52
53
54

55

57
58
59
60

61

63
64

65

66

68

Hslicer(cirSlice, wanted_regs):
d = cirSlice.data
pattern = r"QuantumRegister\(\d+,\s*’\w+'\)"
result = re.findall(pattern, str(d))
result = sorted(set(result), key=lambda x: result.index(x))
qunRegs = {}
for i in list(result):
info = i[16:-1].split(C’, )
reg_name = info[1][1:-1]
if reg_name in wanted_regs:
qunRegs[reg_name] = info[0]
sub_circuit = QuantumCircuit ()
for reg_name in qunRegs.keys():
temp_reg = QuantumRegister(int(qunRegs[reg_name]), name=
reg_name)
sub_circuit.add_register(temp_reg)
for gate in cirSlice:
if any(str(qubit.register.name) in wanted_regs for qubit in
gate[1]):
gargs = [qubit for qubit in gate[1l] if qubit.register.
name in wanted_regs]
sub_circuit.append(gate[0], gargs=qgargs)

return sub_circuit

Listing C.1: The Slicer Functions

C.0.2 The Categorizer

1 def

is_permutation_matrix(matrix):

Check if the matrix is a permutation matrix.
size = matrix.shape[0]

for i in range(size):
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175

if not (np.sum(matrix[i,:] == 1) == 1 and np.sum(matrix[:,i]

== 1) == ]_):
return False

return True

def is_diagonal_matrix(matrix, tol=1e-10):

"""Check if the matrix is diagonal, considering a tolerance for

small imaginary parts.

return np.allclose(matrix, np.diag(np.diagonal (matrix)), atol=tol

)

def catCircuit(circuit):

# Simulate the circuit to get the unitary matrix
backend = Aer.get_backend(’unitary_simulator’)
t_circ = transpile(circuit, backend)

result = backend.run(t_circ).result()

unitary = result.get_unitary(t_circ)

# Convert the Operator to a numpy array

unitary_array = np.asarray(unitary)

# Print the unitary matrix nicely
np.set_printoptions(precision=3, suppress=True)
print("Unitary matrix:")

print(np.array2string(unitary_array, separator=’, ’))

# Analyze the unitary matrix

if is_permutation_matrix(unitary_array):
return "Amplitude Permutation (AP)"

elif is_diagonal_matrix(unitary_array):
return "Phase Modulation (PM)"

else:

Categorize the quantum circuit based on its unitary.
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return "Amplitude Redistribution (AR)"

Listing C.2: The Slicer Functions

C.0.3 Gate Tracker

class QuantumCircuitWrapper (_original_QuantumCircuit):

_original_QuantumCircuit = QuantumCircuit

class QuantumCircuitWrapper (_original_QuantumCircuit):
def __init__(self, *args, **kwargs):
super () .__init__(*args, **kwargs)

self.gateInfo = dict()

def __getattr__(self, name):
attr = super().__getattr__(name)

if callable(attr):

def method_with_traceback(*args, **kwargs):

if name not in self.gatelInfo:

176

self.gateInfo[name] = [traceback.extract_stack()

[-2]]

else:

self.gateInfo[name].append(traceback.

extract_stack () [-2]1)
return attr(*args, **kwargs)
return method_with_traceback
else:

return attr

def breakbarrier(self, *gargs, **kwargs):

if ’'breakbarrier’ not in self.gatelInfo:

self.gateInfo[’breakbarrier’] = [traceback.extract_stack

O[-21]
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else:
self.gateInfo[’breakbarrier’].append(traceback.
extract_stack()[-2])

return super().barrier(*qgargs, **kwargs)

def startDebug():

global QuantumCircuit

QuantumCircuit = QuantumCircuitWrapper

13 def endDebug():

48

19

5

52

global QuantumCircuit

QuantumCircuit = _original_QuantumCircuit

def gatelLoc(circuit, gate_name, qubits=None):

all_occurrences = circuit.gateInfo.get(gate_name, [])
occurrence_idx = 0

filtered_occurrences = []

for gate, *applied_qubits in circuit.data:
if gate.name == gate_name:
if qubits:
ginv = [f"{q.register.name}[{qg.index}]" for q in
applied_qubits[0]]
if lists_have_same_items(qubits, qinv):
filtered_occurrences.append(all_occurrences[
occurrence_idx])
else:
filtered_occurrences.append(all_occurrences[
occurrence_idx])

occurrence_idx += 1

print (f"Gate ’{gate_name}’ has {len(filtered_occurrences)}

177
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55
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occurrences.")

for idx

trace in enumerate(filtered_occurrences, 1):

print (£f"{idx}. Called at file {trace.filename} \nIn function

{trace.name} line {trace.lineno} {(trace.line)l}", end="\n

Listing C.3: The Slicer Functions

C.0.4 Testing

Generating inputs

def generate_input_states(num_qubits):

# Define

states =

"o

lllll:

=a

the input states

{
(1, 07,
(e, 11,

[1/np.sqgrt(2), 1/np.sqrt(2)],
[1/np.sqrt(2), -1/np.sqrt(2)],
[1/np.sqrt(2), 1j/np.sqrt(2)],
[1/np.sqrt(2), -1j/np.sqrt(2)]

input_states = {}

for name, state in states.items():

gc = QuantumCircuit (num_qubits)

for qubit in range(num_qubits):

gqc.initialize(state, qubit)

input_states[name] = Statevector.from_instruction(qgc).data.

tolist ()

return input_states

Listing C.4: The Slicer Functions
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Generating test cases

| def generate_w_state_test_cases(num_qubits):

5

16

26

input_states = generate_input_states(num_qubits)
test_cases = []
for name, in_state in input_states.items():
#print (in_state)
w_reg = QuantumRegister (num_qubits)
w_circuit = QuantumCircuit(w_reg)
w_circuit.initialize(in_state, list(range(num_qubits)))
w_circuit = wn(w_circuit,w_reg)
w_state = Statevector.from_instruction(w_circuit).data.tolist
O
#print (w_state)
test_cases.append({"name": f"test {name}", "input": in_state,
"expected_output": w_state})
#test_cases = [{"name": f"test {namel}", "input": state, "

expected_output": w_state} for name, state in input_states.items()

]

return test_cases

def generate_ghz_state_test_cases(num_qubits):

# Generate GHZ state
ghz_circuit = QuantumCircuit(num_qubits)
ghz_circuit.h(0)
for qubit in range(num_qubits - 1):
ghz_circuit.cx(qubit, qubit + 1)
ghz_state = Statevector.from_instruction(ghz_circuit).data.tolist

O

input_states = generate_input_states(num_qubits)
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27 test_cases = [{"name": f"test {namel}", "input": state, "
expected_output": ghz_state} for name, state in input_states.items
Q1

29 return test_cases
30

;31 def generate_dicke_state_test_cases(num_qubits,k):

input_states = generate_input_states(num_qubits)

test_cases = []

34 for name, in_state in input_states.items():

35 dicke_reg = QuantumRegister (num_qubits)

36 dicke_circuit = QuantumCircuit(dicke_reg)

37 dicke_circuit.initialize(in_state, list(range(num_qubits)))

38 dicke_circuit = dicke(dicke_circuit,dicke_reg,num_qubits,h k)

39 dicke_state = Statevector.from_instruction(dicke_circuit).
data.tolist()

10 test_cases.append({"name": f"test {name}", "input": in_state,

"expected_output": dicke_state})

41

return test_cases

45 def generate_qft_test_cases(num_qubits):

46 input_states = generate_input_states(num_qubits)

7 test_cases = []

48 for name, in_state in input_states.items():

49 gqft_reg = QuantumRegister (num_qubits)

50 qft_circuit = QuantumCircuit(qft_reg)

51 qft_circuit.initialize(in_state, list(range(num_qubits)))

52 qft_circuit = qft(qft_circuit,num_qubits)

53 gqft_state = Statevector.from_instruction(qft_circuit).data.
tolist ()

54 test_cases.append({"name": f"test {name}", "input": in_state,
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"expected_output": qft_state})

return test_cases

def generate_full_adder_test_cases():

qubits.

test_cases = []

# Full adder has 3 inputs: A, B, and Cin, plus one O input

181

Generate test cases for a full adder with 4 input/output

# There are 223 = 8 possible input combinations for A, B, and Cin
inputs = [
[6, 0, 0, 0],
[6, 0, 1, 0],
[6, 1, &, 0],
(6, 1, 1, 0],
[1, 0, 0, 0],
[1, 0, 1, 0],
[1, 1, 0, 0],
[1, 1, 1, 0]
]
for i, input_bits in enumerate(inputs):
a, b, cin, _ = input_bits
sum_bit = (a A b A cin) # Sum bit calculation using XOR

cout_bit = (a & b) | (cin & (a » b)) # Carry out calculation

expected_output = [a, b, sum_bit, cout_bit]

test_case = {
"name": f"test {i + 1}",
"input": input_bits,

"expected_output": expected_output
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86 }

87

88 test_cases.append(test_case)
89

90 return test_cases

91

» def create_diffusion_operator_test_cases(num_qubits):

93 test_cases = []

94

95 backend = Aer.get_backend(’statevector_simulator’)

96

97 for i in range(6):

98 # Create a quantum circuit with the given number of qubits

99 gc = QuantumCircuit (num_qubits)
100

101 # Apply Hadamard gates to create an initial superposition

state
102 gc.h(range (num_qubits))
103
104 # Get the initial statevector (input)
105 initial_statevector = execute(qc, backend).result().

get_statevector ()

106 initial_statevector = np.asarray(initial_statevector) #
Explicitly cast to numpy array

107

108 # Define a simple oracle that marks one of the states (e.g.,
|0...0> state)

109 oracle = QuantumCircuit (num_qubits)

110 oracle.x(range (num_qubits))

11 oracle.h(num_qubits-1)

12 oracle.mcx(list(range (num_qubits-1)), num_qubits-1) # multi-
controlled Toffoli

13 oracle.h(num_qubits-1)
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oracle.x(range (num_qubits))
# Define the Grover operator (diffusion operator)
grover_op = GroverOperator (oracle)
# Apply the Grover operator to the circuit
gc.append(grover_op, range(num_qubits))
# Get the final statevector (expected output)
final_statevector = execute(qc, backend).result().
get_statevector ()
final_statevector = np.asarray(final_statevector)
Explicitly cast to numpy array
# Create the test case
test_case = {
"name": f"Test case {i+1}",
"input": initial_statevector.tolist(), # Convert to list

for JSON serijialization

"expected_output": final_statevector.tolist()

to list for JSON serialization

3

# Add the test case to the list

test_cases.append(test_case)
return test_cases

Listing C.5: The Slicer Functions

Running Inputs

def fQuantAnalyzer(circuit, test_cases):

# Convert
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backend = Aer.get_backend("statevector_simulator")

analysis_results = []

for test_case in test_cases:
# Normalize the input state
input_state = test_case["input"]
norm = np.linalg.norm(input_state)
input_state = input_state / norm

state = Statevector(input_state)

test_circuit = QuantumCircuit(circuit.num_qubits)

test_circuit.initialize(state.data, range(circuit.num_qubits)

# Append the circuit

test_circuit = test_circuit.compose(circuit)

# Execute the test circuit
result = execute(test_circuit, backend).result()

output_state = result.get_statevector ()

# Store the analysis results
analysis_result = {
"name": test_case['"name"],
"input": state_to_ket(input_state),
"output": state_to_ket(output_state)

}

analysis_results.append(analysis_result)

return analysis_results

def display_results(test_results):

for test_result in test_results:



40

41

4

6

Appendix C. SUITE CODE AND STRUCTURE

print (f"Testing {test_result[’name’]}:")

for key, value in test_result.items():
# Check if the key is "pass" and modify the value
accordingly
if key == "pass":
value = "PASS" if value else "FAIL"

# Capitalize the first letter of the key and print the
value

print (f"{key.capitalize()}: {valuel}")

print ("\n")

Listing C.6: The Slicer Functions

Running Tests

from giskit import Aer, execute, QuantumCircuit

import numpy as np

from qgiskit.quantum_info import Statevector

from .helpers import state_to_ket, normalize_global_phase,

classical_to_statevector, statevector_to_classical

def fQuantTester(circuit, test_cases):
backend = Aer.get_backend("statevector_simulator")

test_results = []

for test_case in test_cases:
input_state = test_case["input"]
norm = np.linalg.norm(input_state)
input_state = input_state / norm

state = Statevector(input_state)
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test_circuit = QuantumCircuit(circuit.num_qubits)

test_circuit.initialize(state.data, range(circuit.num_qubits)

)
test_circuit = test_circuit.compose(circuit)
result = execute(test_circuit, backend).result()
output_state = result.get_statevector ()
expected_output_state = test_case["expected_output"]
normalized_output_state = normalize_global_phase(output_state
)

normalized_expected_output_state = normalize_global_phase(

Statevector (expected_output_state))

is_equal = np.allclose(normalized_output_state,

normalized_expected_output_state, atol=1e-6)

test_result = {
"name": test_case['"name"],
"pass": is_equal,
"input": state_to_ket(input_state),
"output": state_to_ket(output_state),
"expected_output": state_to_ket(expected_output_state)
}
test_results.append(test_result)

print (f"Testing {test_result[’name’]}:")

print("Result: ", "PASS" if test_result["pass"] else "FAIL")
print ("Input: ", test_result["input"])

print ("Output: ", test_result["output"])

print ("Expected Output: ", test_result["expected_output"])

print ("\n")
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44
45 return test_results
16

17 def pClassicalTester(circuit, test_cases):

48 backend = Aer.get_backend("statevector_simulator")

49 test_results = []

50

51 for test_case in test_cases:

52 print (f"Testing {test_case[’name’]}:")

54 input_state = classical_to_statevector(test_case["input"])
55 expected_output_state = classical_to_statevector(test_case["

expected_output"])

57 test_circuit = QuantumCircuit(circuit.num_qubits)
58

59 for i, bit in enumerate(test_case["input"]):

60 if bit == 1:

61 test_circuit.x(i)

63 test_circuit = test_circuit.compose(circuit)

65 result = execute(test_circuit, backend).result()

66 output_state = result.get_statevector ()

68 output_classical = statevector_to_classical (output_state)
69
70 is_equal = np.array_equal (output_classical[::-1], test_case["

expected_output"])

7 test_result = {
73 "name": test_case['"name"],

74 "pass": is_equal,
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def

"input": test_case["input"],
"output": output_classical,
"expected_output": test_case["expected_output"]

3

test_results.append(test_result)

print("Result: ", "PASS" if is_equal else "FAIL")
print("Input: ", test_result["input"])

print ("Output: ", test_result["output"]J[::-1])

print ("Expected Output: ", test_result["expected_output"])

print ("\n")

return test_results

applySwapTest(circuit, qubit_pairs, shots=8192):

from qiskit import QuantumRegister, ClassicalRegister
ancilla = QuantumRegister(l, ’ancilla’)

c = ClassicalRegister(l, ’measure’)
circuit.add_register(ancilla)

circuit.add_register(c)

circuit.h(ancilla[0])

for regl_index, reg2_index in qubit_pairs:

circuit.cswap(ancilla[0], regl_index, reg2_index)

circuit.h(ancilla[0])

circuit.measure(Cancilla[®], c[0])

backend = Aer.get_backend(’gasm_simulator’)

result = execute(circuit, backend, shots=shots).result()

188
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counts

if ’1°

b

in counts:

counts[’1’]

else:

s = abs(l - (2 / shots) * b)

delta_theta

delta_theta_degrees

delta_theta_pi =

print("Delta Theta:

return circuit

189

result.get_counts(circuit)

np.arccos (round((2*s-1)))

np.degrees(delta_theta)

delta_theta / np.pi

{delta_theta_pil}pi rad")

Listing C.7: The Slicer Functions

C.0.5 Quantum Subroutines

> \begin{lstlisting}[language=Python,

; def cnz(qc,

state preparation.]

num_control, node, anc):

num_control
node node qubit
anc

if num_control>2:

gc.ccx(node[0], node[1l],

caption=Diffusion for non-uniform

number of control qubit of cnz gate

ancillaly qubit

anc[0])
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def

def

for i in range(num_control-2):
gc.ccx(node[i+2], anc[i], anc[i+1])
gc.cz(anc[num_control-2], node[num_control])
for i in range(num_control-2)[::-1]:
gqc.ccx(node[i+2], anc[i], anc[i+1])
gc.ccx(node[0], node[l1l], anc[0])
if num_control==2:
gc.h(node[2])
gc.ccx(node[0], node[1], node[2])
gc.h(node[2])
if num_control==1:

gc.cz(node[0], node[1])

grover_diff(qc, nodes_qubits,edge_anc,edge_flag,ancilla,stat_prep
,inv_stat_prep):
gc.append(inv_stat_prep,gargs=nodes_qubits)

gc.x(nodes_qubits)

#control qubits Z gate

cnz(qc, len(nodes_qubits)-1,nodes_qubits[::-1],ancilla)

gc.x(nodes_qubits)

gc.append(stat_prep,gargs=nodes_qubits)

Listing C.8: General Diffusion Operator

gft_rotations(circuit, n):
if n == 0: # Exit function if circuit is empty
return circuit
n -= 1 # Indexes start from 0
circuit.h(n) # Apply the H-gate to the most significant qubit
for qubit in range(n):
# For each less significant qubit, we need to do a

# smaller-angled controlled rotation:
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def

def

def

def

circuit.cp(pi/2**(n-qubit), qubit, n)

swap_registers(circuit, n):
for qubit in range(n//2):
circuit.swap(qubit, n-qubit-1)

return circuit

qft(circuit, n):

QFT on the first n qubits in circuit
gft_rotations(circuit, n)
swap_registers(circuit, n)

return circuit

Listing C.9: QFT

cg (qcir,cQbit,tQbit,theta):

theta_dash = math.asin(math.cos(math.radians(theta/2)))
qcir.u(theta_dash,0,0, tQbit)

qcir.cx(cQbit, tQbit)

qcir.u(-theta_dash,0,0,tQbit)

return qcir

wn (gcir,gbits):
for i in range(len(gbits)):
if i ==
gcir.x(gbits[0])
#qcir.barrier ()
else:
p = 1/(len(gbits)-(i-1))
theta = math.degrees(math.acos(math.sqrt(p)))
theta = 2% theta
gcir = cg(qcir,qgbits[i-1],qgbits[i], theta)

gcir.cx(gbits[i],gbits[i-1])
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def

def

#qcir.barrier ()

return qcir

Listing C.10: W State

ghz(qcir,qgbits):
if len(gbits) == 1:
qcir.h(gbits)
else:
for i in range(len(gbits)):
if i ==
qcir.h(gbits[i])
else:
qcir.cx(gbits[i-1],qgbits[i])

return qcir

Listing C.11: GHZ State

scs(qc,qubits,n,1):
#the qubits will be inputed from buttom to top
#print (math.sqrt(l/n))
if len(qubits) == 2:
gc.cx(qubits[1],qubits[0])
theta = 2*(math.acos(math.sqrt(l/n)))
gc.cry(theta,qubits[0],qubits[1])
gc.cx(qubits[1],qubits[0])
elif len(qubits) ==
gc.cx(qubits[2],qubits[0])
theta = 2*(math.acos(math.sqrt(l/n)))
gc.mcry(theta, [qubits[0],qubits[1]],qubits[2],
gc.cx(qubits[2],qubits[0])
else:
raise CircuitError("Unvalid number of qubits")

return qc

None)
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def dicke(qc,qubits,n,k):
qc.x(qubits[n-k:])

d = {}
1 =1
while l<=k:
if n == k:
k =1
else:
t = []

for i in range(l,k+1):
if i ==
t.append([n-1,n-i-1])
else:
t.append([n-1,n-i,n-i-1])
distr(n)+str(k)] = t #[::-1]
n -=1
dr"s2"] = [[2,1],[2,1,0]]
df"21"] = [[1,0]]

for key in d.keys(Q):
item = d[key]
1 =1
for sub in item:
fn_in = []
P (=== SR
#print (sub)
for i in sub:
fn_in = [qubits[i] for i in sub]
#print (int (key[0]),1)
#print (fn_in)
qc = scs(qc,fn_in,int (key[0]),1)
1 += 1

193
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return qc

Listing C.12: Dicke State

C.0.6 Helper functions

| def state_to_ket(state):

5

3

)

def

ket = 7’
state = np.asarray(state)
n_qubits = int(np.log2(len(state)))
for i, amplitude in enumerate(state):
if abs(Camplitude) > le-6:
if ket I= ’7:
ket += ’ + ’

amplitude_str = f’{amplitude:.2f}’ if amplitude.imag != 0
else f’{amplitude.real:.2f}’

ket += f’{amplitude_str}|{i:0{n_qubitsl}b}>’

return ket

Listing C.13: A function to convert statevector to Dirac notation.

ket_to_state(ket):
# Split the ket string into terms

terms = ket.split(’ + )

# Extract the number of qubits from the first term

n_qubits = len(re.search(r’\|(\d+)\>’, terms[0]).group(l))

# Initialize the state vector

state = np.zeros(2**n_qubits, dtype=complex)

for term in terms:

# Extract the amplitude and the state from the term
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def

def

amplitude_str, state_str = re.match(r’(-?\d+\.?\d*(?:[eE

10-+172\d+)?j?2)\| (\d+)\>’, term).groups()

# Convert the amplitude to a complex number

amplitude = complex(amplitude_str)

# Convert the state string to an integer

state

# Set

state

_int = int(state_str, 2)

the corresponding element of the state vector

[state_int] = amplitude

return state

Listing C.14: A function to convert Dirac notation to statevector.

execute_for_bloch(qgc):

simulator

result =

= Aer.get_backend(’statevector_simulator’)

execute(gqc, simulator).result()

statevector = result.get_statevector ()

return st

atevector

execute_for_histogram(qc):

gc_with_meas = qc.copy(Q

gc_with_meas.measure_all ()

simulator
result =

counts =

= Aer.get_backend(’gasm_simulator’)
execute(qc_with_meas, simulator, shots=1000).result()

result.get_counts ()

return counts

Listing C.15: Run same circuit for different outputs.

195
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