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Applications of metabolomics and proteomics to study the biological effects of drugs 

 

Abstract 

 

Metabolomics and proteomics is a rapidly advancing area of research. Metabolites 

and proteins are functional and signaling molecules that often represent biological 

phenotypes and states. In recent years, mass spectrometry (MS) has gained widespread 

use in metabolomics and proteomics to monitor intracellular changes in cells, and by 

comprehensively measuring changes in these research objects it is possible to 

understand and elucidate the mechanisms that lead to different phenotypes. In Chapter 2, 

we identified the charged metabolites of 30 different types of Chinese herbal extracts 

and used metabolomics to investigate and explain the “cold and hot natured” of the 

traditional Chinese herbal classification. Chapter 3 focuses on the metabolomic analysis 

of normal and cisplatin (CDDP)-resistant cell lines to address the issue of chemotherapy 

resistance in ovarian cancer. The study revealed that CDDP-resistant cells exhibited 

significantly elevated levels of glutamine, and inhibiting glutamine metabolism led to 

reduced glutathione levels and decreased CDDP resistance. Additionally, the study 

found that the expression of glutamine synthetase (GS) was nearly suppressed in 

resistant cells, and knockdown of GS in normal ovarian cancer cells increased their 

CDDP resistance. Therefore, Chapter 4 investigated GS and its potential functionality in 

three different cultured cell lines (from ovarian and lung cancer) using omics 

approaches. Although GS expression varied among the three cell lines, knockdown of 

GS resulted in decreased platinum drug resistance. Proteomics research indicated that 

GS downregulation significantly decreased ferrochelatase, the terminal enzyme in the 

heme biosynthesis pathway, in the three cell lines, suggesting increased protoporphyrin 

and decreased heme synthesis. Moreover, GS downregulation activated the NF-κB 

pathway, an immune response pathway, while inhibiting cell responses to drugs. In 

summary, this research has provided novel insights into the effects of herbal medicines 

and anticancer drugs through metabolomics and proteomics using mass spectrometry. 

 

Keyword: CE-MS, cancer, traditional Chinese medicine, drug resistance, glutamate 

synthetase 
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メタボロミクス・プロテオミクスによる薬剤の生体への作用解析 

 

要旨 

 

メタボロミクスとプロテオミクスは急速に進化している研究分野であり、

広範囲な視点から生物学を理解する可能性を提供する。代謝産物とタンパク質

は生物の表現型や状態を反映すると考えられ、生体内の機能性分子およびシグ

ナル伝達分子の役割を担う。近年、メタボロミクスやプロテオミクスでは、細

胞内の分子の変動をモニターするために質量分析技術が広く使われ、このよう

な測定対象物質の変化を網羅的に測定することで、様々な表現型を生み出す機

序を解明することができる。第 2 章では、30 種類の生薬抽出物のイオン性代

謝産物を調べ、メタボロミクスの観点から中国伝統医学の分類法の“寒性と熱

性”を解析した。第 3 章では、卵巣がんの化学療法抵抗性の問題に取り組み、

正常卵巣癌細胞と抗がん剤であるシスプラチンの耐性を獲得した卵巣癌細胞の

メタボローム解析を行った。その結果、耐性細胞のグルタミン量は極めて高い

ことが判明した。そこで、グルタミン代謝を阻害することによりグルタチオン

量を減少させ、シスプラチン耐性を低下されることを見いだした。また、シス

プラチン耐性細胞ではグルタミン合成酵素（GS）の発現がほぼ抑制されており、

正常卵巣がん細胞で GS をノックダウンするとシスプラチン耐性が高まること

がわかった。そこで、第 4 章では GS に着目し、オミックスアプローチを用い

て 3 種類の培養細胞株（卵巣がん、肺がん由来）において、その機能を検討し

た。GS は 3 つの細胞株での発現量が異なるにもかかわらず、GS のノックダウ

ンはプラチナ製剤耐性を低下させた。プロテオミクス解析の結果、GS のダウン

レギュレーションは、3 つの細胞株でヘム生合成経路の最後の反応酵素である

フェロケラターゼの低下およびその上流の酵素の上昇がみられ、プロトポルフ

ィリの増加とヘム合成の減少が示唆された。また、GS のダウンレギュレーショ

ンは、免疫応答経路である NF-κB 経路を活性化し、薬剤に対する細胞の応答

を阻害することが判明した。まとめると、今回の研究によって、質量分析計を

用いたメタボロミクスやプロテオミクスにより、漢方薬や抗がん剤が生体に示

す作用を新たに見出すことができた。 

 

キーワード： CE-MS，癌，漢方薬，薬剤耐性，グルタミン合成酵素 
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Chapter 1 Introduction 

1.1 The Importance of Omics in Scientific Method 

Omics is an analytical methodology based on big data. In traditional scientific 

methodology, observations are made, and questions are raised, followed by the creation 

of a hypothesis and its verifiable explanation. Thereafter, experiments are performed to 

validate the theory. Finally, depending on the obtained results, responses are given or 

new hypotheses are presented. However, in the traditional methodology, the hypothesis 

construction step is considerably dependent on previous experience. Therefore, biased 

observations of new things can lead to "the blind men and an elephant" misconceptions. 

This embarrassment can be efficiently avoided with the utilization of big data and omics 

methods. Researchers can select factors via omics data analysis and then experimentally 

validate their selections based on the obtained results
1
. Moreover, individual differences 

influence judgment in biology; the omics approach can increase the universality and 

reproducibility of results. 

Based on the objectives of the analysis, omics are classified into genomics, 

transcriptomics, proteomics, and metabolomics. Genes are employed as the fundamental 

blueprints when cells produce materials such as proteins. Specific sections of genes are 

transcribed (transcript) to synthesize mRNA when the genetic information is utilized. 

The overall quantity of mRNA information in an organism is referred to as the 

transcriptome. Proteins are synthesized based on the mRNA information, and the total 

amount of proteins in an organism is referred to as the proteome. Cells metabolize and 

produce metabolites from these various materials, resulting in trait manifestations such 

as variances in hair or eye color (phenotype) 
2
. 

Current research methods in genomics depend on next-generation sequencing to 

fragment the genome followed by de novo assembly method or iterative assembly and 

subsequent data analysis such as gene annotation
3
. Transcriptomics is the study of the 

sum of mRNA at a given point in time, and it routinely employs microarray or 

sequencing technologies. Microarray work with known gene probes, and RNA-seq has 

the potential to discover new mRNA
4
. Proteomics identified proteins mostly using 
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2D-gel electrophoresis until the twenty-first century, but currently, mass spectrometry 

(MS) is primarily used
5
. The principle is similar to that of genomics, in which proteases 

are cleaved into peptides, the protein sequence is inferred by mass inversion, and finally, 

the known and unknown protein sequences are identified by a deep search. 

Metabolomic analysis of metabolites, which contain molecules such as nucleotides, 

amino acids, sugars, organic acids, and lipids, is also performed mainly by liquid 

chromatography and MS. In conclusion, all the aforementioned techniques search for 

variables globally and are top-down research approaches. 

1.2 Significance of metabolomics in pharmacy 

Metabolites are the most effective molecules to reflect biological phenotype and 

state
6
. These molecules being the end products of cellular regulatory processes can be 

regarded as the ultimate response of biological systems to control genetic or 

environmental changes. This implies, if properly interpreted, metabolomics can provide 

information about a cascade of changes at the DNA, RNA and protein levels. In some 

cases, this method may be the most sensitive way to identify pathological variants, 

because even small changes in protein expression or structure can result in significant 

changes in protein activity and metabolite levels
7
.  

In practice, metabolomics is defined as the analysis of small-molecule metabolites 

(≤1500 daltons and non-peptides) in biological samples
7
. Advances in MS have 

considerably improved the efficiency of metabolomics, which can simultaneous 

identification of hundreds to thousands of molecules. Therefore, MS is currently an 

ideal tool for the application of metabolomics. Moreover, with the development of MS 

instruments and methods, more accurate detection can be performed, and the detection 

speed and flux are improving. MS-based metabolomics demonstrates several 

applications in drug discovery and development
8
. For example, mass spectroscopy 

significantly contributes to the enhanced understanding of the role of candidate drugs 

and improves their targeting capabilities or comprehensive non-invasive analysis of 

metabolic biomarkers for early disease detection and identification of residual disease 

after surgery. Therefore, mass spectroscopy has become an indispensable tool in 

combined clinical monitoring and drug development. 
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Cancer is one of the most challenging problems in modern medicine. Unlike 

bacterial or viral infections, cancer cells are derived from the own body cells of the 

affected individual. Therefore, these cells are very similar in composition to the normal 

cells in the body. In addition, considerable variations in developmental states (different 

stages of cancer development or drug resistance) are observed. Hence, drugs that 

selectively work on cancer cells without harming normal cells or that work at all stages 

of cancer development are essential for cancer therapy. Based on the development of 

metabolomics technology, currently, researchers have concluded that metabolic 

reprogramming is a cancer marker
9
. In recent years, increasing evidence has been 

available that suggests reprogrammed cellular metabolism supports tumor initiation, 

progression, metastasis, and drug resistance
9,10

. By performing qualitative and 

quantitative analyses of small molecules within cells or tissues, metabolomics provides 

static data at specific time points, while metabolic flow analyses can use stable isotopes; 

therefore, metabolic turnover was explored dynamically
11,12

. Thus, metabolomics can be 

used to understand the metabolic imbalance in cancer cells, determine therapeutic 

targets, and facilitate drug development for cancer therapy. Therapeutic strategies that 

involve target metabolic enzymes have achieved several breakthroughs, and currently, 

dozens of small-molecule inhibitors targeting more than a dozen metabolic enzymes are 

under preclinical and clinical investigations
13

. This strategy alters those activities of 

metabolic enzymes which are necessary for the cancer cells to maintain growth (often 

referred to as metabolic dependence), but the host metabolism can tolerate the inhibition 

of this activity. Therefore, highly specific and preferentially isoenzyme-selective 

metabolic inhibitors are critical to the safety and efficacy of the developed drug. 

Plants have been a source of numerous drugs used in modern therapies, particularly 

in the treatment of cancer, with more than 50% of the anticancer drugs initially derived 

from natural products
14,15

. Regarding the application of plants in pharmacy, traditional 

Chinese medicine (TCM) is worth mentioning. Unlike Western medicine represented by 

Ancient Greek Traditional Medicine, which pays more attention to the human body 

itself, Eastern Traditional Medicine, such as TCM and Indian Traditional Medicine, 

focuses on aspects such as the use of plants and treating diseases with minerals. TCM is 

usually a mixture of several plants. It had been developed and practiced for thousands of 

years before the advent of modern medicine and developed complex theories that were 
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handed down by books
16

. Because these theories are based on philosophy and clinical 

experience, they lack modern scientific support and molecular basis, and mechanistic 

understanding. Therefore, the quality control of traditional drugs, their clinical efficacy, 

and the investigation of molecular mechanisms are imminent
17

. With the increasing 

maturity of metabolomics techniques, the use of metabolomics to study TCM began to 

increase gradually
18

. However, because of the complex chemical composition of TCM, 

thousands of compounds can be produced by just one medicinal plant, and several of 

them simultaneously interact with different disease targets
19,20

. Therefore, effective 

identification of the functional compounds and deciphering their pharmacological 

effects is a challenge to the scientific development of Chinese pharmacy
21,22

. On the one 

hand, metabolomics technology can provide a high-performance analytical method to 

characterize the medicinal plant compound (primary and secondary metabolites), which 

is more conducive to the standardization of medicinal plant quality. On the other hand, 

metabolomics significantly contributes to understanding the effects of medicinal plants 

on the metabolic function in humans or model animals to unravel pharmacological 

efficacy and therapeutic mechanisms
23-26

. 

1.3 Significance of proteomics in pharmacy 

In the era of functional genomics, proteomics is a discipline that studies the 

composition, activity, and interaction of proteins in cells as a whole. Most research to 

date has concentrated on RNA detection. However, because proteins are found 

downstream of transcription and are directly involved in crucial physiological processes, 

typically show an insignificant relationship exists between the protein levels and 

transcript levels
27

. In the Human Protein Atlas Project, although The Human proteome 

Atlas is mapped based on the transcriptome data and antibody staining, as well as the 

RNA-based classification of tissue-specific expression, the issues of precise 

quantification and antibody specificity still exist
28

. Currently, MS-based proteomics 

quantifies human proteins, accounting for more than 90% of the protein species encoded 

by the genes
29,30

. Moreover, the most advanced proteomic technology enables highly 

reliable in-depth analysis of cancer proteome to realize clinical molecular typing and 

discover new target molecules, driving the development of precision medicine
31,32

. 
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Proteomics is preclinically employed for target recognition and characterization, 

candidate drug selection and characterization, and clinically for biomarker discovery 

and the development of novel anticancer medicines
33,34

. In addition, proteomics can be 

used to analyze biological components, secreted proteins, protein translational 

modifications and protein-protein interaction networks by using specific procedures
35

. 

More precise biomarker targets can be found and created for diagnosis and treatment by 

mapping altered signaling pathways and finding altered protein expression that causes 

carcinogenesis, invasion, and metastasis. Taken together, the discovery of biomarkers by 

proteomics holds great promise for identifying novel intracellular signaling pathways 

that could lead to the discovery of new therapeutic targets, as well as facilitating the 

understanding of important pathway regulators and biomarkers. 

1.4 Application of MS-based metabolomics and proteomics analyses 

Three initiatives in this thesis make use of the metabolomics and proteomics 

research methodologies.  

In Chapter 2, the project aimed to analyze the metabolites of several Chinese 

herbal medicines by CE-MS. CE-MS is mainly used for polar molecules. In a few cases 

have been utilized to test for Chinese herbal medicines, but it has the advantages of high 

resolution, low sample and solvent consumption, quick analysis times, and high 

separation efficiencies
36

. Although the study of “cold and hot” is the dominant core in 

the theoretical research of TCM, some articles speculate that the content of some 

metabolites may be related to cold and hot, though the distinction has never been clearly 

explained by modern science
37

. Moreover, the study analyzed the relationship between 

their molecular similarity and "cold and hot". 

In Chapter 3, cancer cells were studied by metabolomic analysis of ovarian cancer 

cell lines and their cisplatin (CDDP)-resistant cell lines using CE-MS and metabolic 

flux techniques. It was found that there were significant differences in glutamine 

metabolism between the two cell lines. Metabolic flux analysis using stable isotope 

glutamine revealed differences in the regulation of energy metabolism and changes in 

GS by L-glutamine in the tolerant cell lines. The analysis also showed that GS 

regulation could effectively control CDDP-induced drug resistance. 
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In Chapter 4, the study follows up on the previous chapter, which focused on the 

function of GS. GS knockdown in a variety of cell lines by recombinant lentiviral 

infection suggested that GS could increase the platinum-based drugs resistance of tumor 

cells. The GS knockdown strain and the control group were compared using the 

metabolic flux technique of CE-MS and the proteomic technique of LC-MS/MS. It was 

found to trigger the activation of several pathways that maintain the proliferation and 

survival of tumor cells. 
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Chapter 2 Quantitative and molecular similarity 

analyses of  the metabolites of  cold- and hot-natured 

Chinese herbs 

2.1 Introduction 

In recent years, TCM has gained recognition worldwide as a valuable treatment for 

chronic and complex diseases. The World Health Organization has estimated that over 

80% of the world’s population relies on herbal medicines
38

. With centuries of clinical 

practice and development, recent endeavors have focused on scientific studies to 

establish the principles of TCM. However, ancient books on TCM generally present 

experience-based principles, obscuring the details needed for diagnosing and 

prescribing proper herbs for disease treatment. Therefore, it is important to clearly 

understand the nature of herbal medicines and illustrate their therapeutic uses in detail 

so as to provide a comprehensive guide to TCM inheritance because it is a treasure 

house for humans. 

TCM recipes use herbs alone or in a mixture. Based on a patient’s condition, a 

recipe is written for effective treatment using adjusted amounts or a combination of 

various ingredients by adding or deleting individual herbs. According to the therapeutic 

properties described in ancient books, such as Shennong Ben Cao Jing and 

Compendium of Bencao, Chinese herbs represent complementary forces of “four natures 

and five flavors.” For rebalancing the Yin and Yang of the body, Chinese herbs can be 

classified into four groups: warm, hot, cold, and cool; these are the so-called four 

natures, also known as the four properties. In clinical application, the principal of 

healing in TCM is to balance the disturbed Yin–Yang in the body using appropriate 

therapy to restore the harmony of the entire body. To this end, hot-natured herbs are 

used for treating cold syndromes and cold-natured herbs are used for treating hot 

syndromes. Although the four natures of Chinese herbs have been widely known by our 
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ancestors for more than 2,000 years, the scientific basis of their classification remains 

unclear
39

. 

Among the TCM substances (botanical, animal, and mineral), more than 90% are 

of botanical origin, and the roots, stems, flowers, and fruits are medicinally useful
40

. 

Recent studies have proven the effects of the combination of herbal medicines
41,42

. 

Recently, coupled with statistical analysis, cold- and hot-natured Chinese herbs were 

investigated by using the state-of-the-art analytical techniques for the determination of 

amino acids and lipids
37

. The application of metabolomics analysis and multivariate 

data analysis to herbal medicine is also gaining increased attention
26,43-45

. Gas 

chromatography–MS (GC–MS), liquid chromatography–MS (LC–MS), and nuclear 

magnetic resonance are used for the analysis of TCMs
46,47

.  

Capillary electrophoresis–time-of-flight MS (CE–TOF/MS) is an analytical 

technique used to qualitatively and quantitatively detect small-molecule compounds and 

is particularly well-suited for the detection of charged compounds in organisms
48,49

. 

This technique has been broadly applied in biological samples, such as plants, and 

herbal preparations
44,50

. When analyzing herbal species, providing a comprehensive 

evaluation for all metabolites remains a technical challenge
24

.  

In this study, 30 representative cold- and hot-natured herbs were selected for 

comparative analysis of the contents of charged small molecules in metabolites. Our 

study focused on the active ingredients, including alkaloids, organic acids, amino acids, 

flavonoids, and small-molecule polyphenols, that act on the human body
51

. Based on the 

identification results, the hot and cold natured of the compounds in Chinese herbs were 

characterized. These results may help elucidate the holistic molecular mechanisms 

underlying the determination of the intrinsic hot or cold nature of Chinese herbs. 
 

2.2 Materials and methods 

2.2.1 Herbal medicine preparation 

A total of 30 Chinese herbs were selected (Table2-1), of which 15 were 

cold-natured and 15 were hot-nature herbs according to the description of the Chinese 

Pharmacopoeia (V.2015). These herbs were purchased from Beijing Tong Ren Tang 

file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html#/javascript:;
file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html#/javascript:;
file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html#/javascript:;
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Group Co. Ltd. (Beijing, China). Researchers have analyzed the relationship between 

the four natures of herbal medicine and plant families
52

. However, the selection of herbs 

in our study was only based on only the four natures rather than on the plant family. 

Plant families with both hot/warm and cold natured, including Rutaceae, Asteraceae, 

and Ranunculaceae, were also present in the 30 chosen herbs. 

The preparation of herbs referred to the previous study
50

. In brief, 100 mg of each 

sample was frozen in liquid nitrogen and then homogenized into a single powder using 

a shocker (TOMY MS-100R) at 1,500 rpm for 180 × 2 s. After the preliminary 

treatment, the samples were processed by adding 1,250 μL of 60% ethanol solution 

containing 8 μM internal standard 1 (containing l-methionine sulfone, 

2-morpholinoethanesulfonic acid, and D-Camphor-10-sulfonic acid) and extracting the 

samples for 2 h. The supernatants were collected via centrifugation to obtain the 

extracted ingredients. The pellets containing plant residues, polysaccharides, and 

proteins were removed. The supernatants were transferred into 500-Da centrifugal filter 

tubes and recentrifuged at 9,100 ×g and at 4°C for 3 h, followed by filtering the samples. 

After filtration, the liquid samples were placed in a vacuum dryer (35°C, 3 h) for drying. 

The dried samples were forcefully dissolved with 200 μM Milli-Q water containing 

internal standard 2 (containing 3-aminopyrrolidine and trimesate) using a vortex. 
 

Table2-1 Names and properties of the 30 Chinese herbs used for metabolite 

extraction 

Number Name Latin index Familia 
Medicinal 

part 
Natures Flavor 

1 Radix Aconiti Praeparata 

Aconitum 

carmichaelii 

Debeaux  

Ranunculaceae Root Hot 
Pungent, 

Sweet 

2 Cortex Cinnamomi 

Cinnamomum 

cassia Nees ex 

Blume  

Lauraceae Bark Hot 
Pungent, 

Sweet 

3 Rhizoma Zingiberis  
Zingiber 

officinale Rosc.  
Zingiberaceae Rhizome Hot Pungent 

4 
Rhizoma alpiniae 

officinarum 

Alpinia 

officinarum 

Hance  

Zingiberaceae Rhizome Hot Pungent 

5 Fructus foeniculi 
Foeniculum 

vulgare Mill.  
Umbelliferae Fruit Warm Pungent 

file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html%23/javascript:;
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Number Name Latin index Familia 
Medicinal 

part 
Natures Flavor 

6 Flos caryophylli 

Syzygium 

aromaticum (L.) 

Merr. & 

L.M.Perry  

Myrtaceae 
Flower 

bud 
Warm Pungent 

7 Pericarpium zanthoxyli 

Zanthoxylum 

bungeanum 

Maxim.  

Rutaceae Pericarp Warm Pungent 

8 
Pericarpium citri 

reticulatae 

Citrus reticulata 

Blanco  
Rutaceae Pericarp Warm 

Pungent, 

Bitter 

9 
Pericarpium citri 

reticulatae viride 

Citrus reticulata 

Blanco  
Rutaceae Pericarp Warm 

Pungent, 

Bitter 

10 Fructus aurantii immaturus 
Citrus × 

aurantium Linn.  
Rutaceae Fruit Warm 

Pungent, 

Bitter 

11 Radix aucklandiae 
Aucklandia lappa 

DC.  
Asteraceae Root Warm 

Pungent, 

Bitter 

12 Radix linderae 

Lindera 

aggregata (Sims) 

Kosterm.  

Lauraceae Root Warm Pungent 

13 Fructus citri sarcodactylis 

Citrus medica 

var. sarcodactylis 

(Noot.) Swingle  

Rutaceae Fruit Warm 
Pungent, 

Bitter 

14 Rhizoma chuanxiong 

Ligusticum 

sinense 

'Chuanxiong' S. 

H. Qiu et al. 

Umbelliferae Rhizome Warm Pungent 

15 Semen arecae 
Areca catechu 

Linn. 
Palmae Seed  Warm 

Pungent, 

Bitter 

16 
Bulbus fritillariae 

cirrhosae 

Fritillaria 

cirrhosa D. Don 
Liliaceae Rhizome Cold 

Bitter, 

Sweet 

17 Radix scutellariae 

Scutellaria 

baicalensis 

Georgi 

Labiatae Root Cold Bitter 

18 Cortex phellodendri 

Phellodendron 

chinense 

Schneid.  

Rutaceae Bark Cold Bitter 

19 Radix gentianae 
Gentiana scabra 

Bunge 
Gentianaceae Rhizome Cold Bitter 

20 
Radix sophorae 

flavescentis 

Sophora 

flavescens Ait.  
Papilionaceae Root Cold Bitter 

file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html%23/javascript:;
file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html%23/javascript:;
file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html%23/javascript:;
file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html%23/javascript:;
file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html%23/javascript:;
file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html%23/javascript:;
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Number Name Latin index Familia 
Medicinal 

part 
Natures Flavor 

21 Cortex fraxini 

Fraxinus 

chinensis subsp. 

rhynchophylla 

(Hance) E. 

Murray  

Oleaceae Bark Cold Bitter 

22 Cortex dictamni 

Dictamnus 

dasycarpus 

Turcz.  

Rutaceae Velamen  Cold Bitter 

23 Folium isatidis 
Isatis tinctoria 

Linn.  
Cruciferae Leaf Cold Bitter 

24 Radix isatidis 
Isatis tinctoria 

Linn.  
Cruciferae Root Cold Bitter 

25 Herba andrographis 

Andrographis 

paniculata 

(Burm. f.) Nees  

Acanthaceae Stem leaf Cold Bitter 

26 
Radix sophorae 

tonkinensis 

Euchresta 

japonica Regel  
Papilionaceae Rhizome Cold Bitter 

27 Herba artemisiae annuae 
Artemisia annua 

L.  
Compositae Stem leaf Cold 

Bitter, 

Pungent 

28 Radix et rhizoma rhei 
Rheum palmatum 

Linn  
Polygonaceae Rhizome Cold Bitter 

29 Rhizoma belamcandae 

Belamcanda 

chinensis (Linn.) 

DC.  

Iridaceae Rhizome Cold Bitter 

30 Radix Pulsatillae 

Pulsatilla 

chinensis 

(Bunge) Regel  

Ranunculaceae Root Cold Bitter 

2.2.2 Measurement conditions for CE–TOF/MS 

The instrumentation and measurement conditions used for CE–TOF/MS were as 

described elsewhere
49,53

. In the positive ion mode, samples were separated in a fused 

silca capillary (50 μm i.d. × 100 cm) using 1 M formic acid as the electrophoretic and 

equilibrium buffer. Samples were injected under a pressure of 50 mbar for 3 s 

(approximately 3 μL) at an applied voltage of +30 kV. During the analysis, 50% (v/v) 

methanol containing 5 mM ammonium acetate and 0.5 M reserpin was used as the 

sheath liquid at a flow rate of 10 μL/min. In the negative ion mode, separation was 

file:///C:/Users/zhw0752018/AppData/Local/Youdao/Dict/Application/8.5.3.0/resultui/html/index.html%23/javascript:;
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performed on a capillary SMILE (+) (Nacalai Tesque, Kyoto, Japan) using 50 mM 

ammonium acetate (pH 8.5) as the mobile phase. Samples were injected under a 

pressure of 50 mbar for 30 s at an applied voltage of −30 kV. 

2.2.3 Data processing 

The data measured via CE–TOF/MS were perprocessed using the MasterHands 

ver.2 software
54

. Noise-filtering, baseline correction, peak detection, and peak area 

integration were performed on mass/charge ratio (m/z) 0.02–width sliced 

electropherograms. The migration time was normalized using dynamic programming 

and simplex optimization. Peaks with small differences in their m/z values (<20 ppm) 

and normalized migration times (<1.0 min) were treated as features. External standards 

based on m/z values and migration times were used for identification and concentration 

calibration. To determine the concentrations of the compounds, the integral value (area) 

of the peak area, area of the sample compound, and area of the relative internal and 

external standards were calculated. 

2.2.4 Statistical analysis 

1) Discriminant analysis 

The concentration of each metabolite was represented as the average of three 

samples. The differences in metabolites between the two independent groups, i.e., cold- 

and hot-natured groups, were detected using the Mann–Whitney U test using the MeV 

TM4 software (Dana-Farber Cancer Institute, Boston, MA)
55

. 

2) Principal components analysis (PCA) 

PCA as an exploratory tool for data analysis used variables from a variety of 

components as a set of summary indices to observe the changing trend of all data. 

Analysis was conducted using the statistical software JMP ver.10 (SAS Institute Inc., 

Cary, NC, USA). 

3) Molecular fingerprints and similarity searching 

The commonly used algorithm to calculate the similarity of the compounds is the 

Tanimoto coefficient. Depending on the source of the structural information of the 

molecule provided by the public database of PubChem Compound, the structure data 
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files of the identified metabolites were used for analysis
56

. The Tanimoto coefficient is 

an index to calculate the degree of similarity of two clusters using similarity calculation 

(Equation 1) by comparing their molecular fingerprints in chemical systems
57

. In 

Equation 1, A and B are represented by vectors calculated from the local structures of 

various substances. When vectors A and Vector B are exactly equal 1, it is not at all 

equal to 0. For this reason, the closer the value is to 1, the higher is the similarity. The 

software Open Babel 2.3.0 was used to calculate the Tanimoto coefficients of all 

molecules
58

. 

𝑇(𝐴, 𝐵) =
|A ∩ B|

|A| + |B| − |A ∩ B|
           (1) 

4) Molecule cluster analysis 

Molecule cluster analysis is a hierarchical clustering approach to discover the 

relationship between data by calculating the distance between the compounds extracted 

from the herbs and molecule cluster. In each of the succeeding steps, the closest clusters 

were merged to obtain a hierarchical structure. The Tanimoto coefficient was calculated 

based on the similarity between the substances. Molecule cluster analysis was 

performed using the Mev TM4 V4.6 analysis software
59

 based on Spearman correlation 

coefficient (nonparametric method) and was classified based on average index. 

 

2.3 Results 

2.3.1 Profiling of the charged metabolites in TCMs 

CE–TOF/MS-based metabolomics analysis was performed to detect the 

metabolites, including amino acids, organic acids, alkaloids, and nucleotides, in Chinese 

herbs. In total, 416 charged small molecules matched with the compounds in our 

standard library. Notably, despite a clear difference in metabolites between different 

herbs, there was a general metabolite-by-metabolite similarity among the herbs, and 193 

identical metabolites were detected in most herbs. In the present study, to accelerate the 

similarity search, the lead 193 metabolites identified from over 16 herbs were screened 

using metabolomics for cluster analysis. The heatmap clusters based on the metabolite 

profiles were generated using the dataset to clarify the distribution of the identified 

metabolites between different groups. Figure 2-1 shows that the metabolites 
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concentrated in the middle of the heatmap tended to be present in high concentrations in 

hot-natured herbs and in low concentrations in cold-natured herbs. However, few herbs 

had lower similarities than other herbs, for example Rhizoma zingiberis, Pericarpium 

zanthoxyli, Rhizoma chuanxiong, and Semen arecae in hot-natured herbs and Radix 

scutellariae in cold-natured herbs. 

Figure 2-2 shows the cluster analysis results of the significant differences in 

metabolite concentrations between hot/warm- and cold/cool-natured herbs. From the 

193 metabolites identified in each herb in Figure 2-1, more than 40 metabolites with 

significant difference (p < 0.05) in concentrations between hot/warm- and 

cold/cool-natured herbs were selected via cluster analysis. In particular, the 

concentrations of 2, 5-dihydroxybenzoate, 2-hydroxypentanoate, n-acetylglucosamine, 

and uracil were significantly higher in hot/warm-natured herbs than in cold-natured 

herbs (p < 0.01). In contrast, glutamine concentration was significantly higher in 

cold-natured herbs than in hot/warn-natured herbs (p < 0.01) (Figure 2-2). 
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Figure 2-1: Heatmap based on the 193 

identified compounds from 30 extracts of 

Chinese herbs 

Rows represent compounds and columns 

represent the Chinese herb samples. The 

orange box groups the 15 hot/warm-natured 

herbs and the blue box groups the 15 

cold/cool-natured herbs. Color key indicates 

the relative concentrations of the identified 

compounds: yellow indicates higher 

concentrations, black indicates medium 

concentrations, and blue indicates lower 

concentrations. Each herb had three 

duplicate samples. 
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Figure 2-2 Heatmap cluster analysis of the metabolites with significant differences 

(p < 0.05) between the varied groups of hot- and cold-natured herbs 

Rows represent metabolites and columns represent herbs. The orange box groups 

the 15 hot/warm-natured herbs and the blue box groups the 15 cold/cool-natured herbs. 

Color key indicates the relative concentrations of the identified compounds: yellow 

indicates higher concentrations, black indicates medium concentrations, and blue 

indicates lower concentrations. In addition, the p values highlighted with two stars are 

less than 0.01. 

  

-1.0           0.0            1.0

Hot/warm-natured herbs Cold/cool-natured herbs



Quantitative and molecular similarity analyses of the metabolites of cold- and hot-natured Chinese 

herbs 

17 

 

 

2.3.2 PCA of the charged metabolites in TCMs 

As a decomposition approach, PCA allowed the original metabolite data to be 

reduced to a few principal components of the data to obtain more detailed metabolic 

variations among the herbs. The PCA score plots (blue for cold/cool-natured herbs and 

red for hot/warm-natured herbs) and loading plots of the 30 Chinese herbs are presented 

in Figure 2-3. The first two principal components accounted for 58% of the overall 

variability. PC1 scores (50.1%) revealed that the spectra of hot/warm-natured and 

cold/cool-natured herbs were separate, except for that of individual herbs (Rhizoma 

Zingiberisand Semen Arecae). Overall, except for some deviating data points, the 

metabolite scores of the hot/warm-natured herbs drifted toward the positive axis, 

whereas the scores of the cold/cool-natured herbs were focused on the negative axis. 

Meanwhile, the loading score plots showed that 20 kinds of amino acids contributed to 

the negative axis, agreeing with the score plots of cold/cool-natured herbs. It seemed 

that there were respective differences between hot/warm-natured and cold/cool-nature 

herbs. As indicated by the results, the amino acid concentration was in fact closely 

related to cold/cool-natured herbs. 
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Figure 2-3 Principal component analysis 

Score plots (A) and loading scores (B) (PC1 vs. PC2) of the Chinese herbs. The 

x-axis is principal component 1 (PC1) and the y-axis is principal component 2 (PC2). 

PC1 and PC2 describe around 50.1% and 7.86% of the total variability, respectively. In 

the score plot, red represents hot/warm-natured herbs (Hot Herbs) and blue represents 

cold/cool-natured herbs (Cold Herbs). In addition, the numbers correspond to the names 

of the herbs in Table 1. In the loading score, the green squares represent the 20 basic 

amino acids and the orange diamonds represent all other metabolites. 
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2.3.3 Molecular similarity analysis 

Because most of the compounds were derived from a common skeleton building 

block in the plant metabolic network, the structural similarity of compounds might play 

an important role in identifying the herb as hot- or cold-natured. Therefore, a 

hierarchical tree constructed using cluster analysis was investigated to support 

compound information on relationships with the properties of Chinese herbs. Using the 

Tanimoto coefficient, the extracted information of the selected 193 metabolites from 

PubChem Compound was used to calculate the structural similarity between the 

samples. The samples were arranged into a hierarchy by grouping the common structure 

of the metabolites (Figure 2-4). In addition, after assigning the major metabolites, the 

relative concentrations of these metabolites were measured to calculate the mean values 

of hot- and cold-natured herbs. By comparing with mean values, the relative ratios of 

cold to hot were calculated to observe the contributions to each group. The results 

showed that although a non-specific structure was generally observed between cold- and 

hot-natured herbs, the nucleotides in the red box accounted for a large proportion in 

most hot-natured herbs. 

Next, we visualized the distribution of nucleosides and related concentration of 

compounds in both hot- and cold-natured herbs using a box plot (Figure 2-5). 

Thymidine, uridine, cytidine, 1-methyladenosine, N6-methyl-2′-deoxyadenosine, 

adenosine, guanosine, and uracil were slightly more distributed in hot-natured herbs 

(pink) than in cold-natured herbs (blue). Soluble nucleotides and analogs are the most 

important bioactive ingredients in some TCMs
60

. 
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Figure 2-4 Molecular structure similarity of the metabolites and the metabolite 

content ratio of cold- to hot-natured herbs 

The hierarchical tree is constructed using the results of Tanimoto coefficients, and 

the similarity approach between the molecules of various metabolites is distance-based. 

The common structure of each classification is represented on the right side of the 

hierarchical tree. For easy comparison of the ratio of cold- to hot-natured herbs, the left 

vertical bar chart displays these ratios calculated from the average values of each 

metabolite. The red colored bars indicate the high metabolite concentration in 

hot/warm-natured herbs and the blue colored bars indicated the high metabolite 

concentration in cold-natured herbs. 
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Figure 2-5 Nucleoside metabolites are more widely distributed in hot-natured 

herbs than in cold-natured herbs 

Boxplot shows the concentration of each metabolite in hot- and cold-natured herbs. 

The pink box expresses the 15 hot-natured herbs (Hot herbs) and the blue box expresses 

the 15 cold-natured herbs (Cold herbs). Boxplots describe the upper quartile (Q3), 

median, and the lower quartile (Q1) values. Upper and lower limit whiskers describe 

maximum and minimum values in the data. 
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2.4 Discussion 

The four-natured principles serve as the reference guide for TCM recipes. However, 

to date, the underlying mechanism of such different properties on therapeutic effects has 

not been fully identified at molecular level as a complex research system. This is 

generally believed to be related to the large number of molecular groups in Chinese 

herbs. In this study, 15 hot/warm-natured herbs and 15 cold-natured herbs were selected 

by analyzing their ionic metabolites via CE–TOF/MS detection, followed by multiple 

statistical analysis approaches to investigate the correlation of properties between each 

molecular group. The approaches included PCA, discriminant analysis, Tanimoto 

coefficient analysis, and molecular cluster analysis. In total, 416 metabolites from 30 

Chinese herbs were recognized, and it was noted that 193 of the 416 compounds were 

found in more than 16 herbs. The CE–TOF/MS-based metabolomics with multivariate 

data analysis enabled the identification of compounds between cold- and hot-natured 

herbs. Although the levels of compounds, including amino acids, nucleosides, and 

nucleotides, varied in both cold- and hot-natured herbs due to individual differences, the 

results via metabolomics PCA, Mann–Whitney U test, and structural similarity analysis 

still illustrated some regular characteristics among the different groups. Metabolomics 

analysis of the 193 metabolites indicated significant differences in the contents of the 40 

metabolites between hot- and cold-natured herbs (Figure 2-2). In contrast, more amino 

acid compounds were observed in cold-natured herbs via PCA (Figure 2-3). 

Comparative analysis of the molecular similarity of the chemical and molecular 

structures and contents revealed that hot-natured herbs had more number of nucleotides 

(Figure 2-4). 

Many studies have focused on antioxidant activities in cellular or mouse 

experimental systems
61,62

. However, more quantitative studies of the four natures of 

Chinese herbs have focused on microelement and chemical compositions
63

. While 

discussing the effects of chemical compositions on the cold/hot natures of Chinese herbs, 

the theory of generalized oxidation and reduction was hypothesized to be associated 

with these kinds of thermal properties
64

. In general, metabolism of the human body can 

be broadly categorized into catabolism and anabolism
65

. In sharp contrast, cold-natured 

herbs consist of more amino acid compounds, which are the basic building blocks for 
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the anabolic processes of cellular growth or function (Figure 2-3). The absorption of 

amino acids is mainly used for protein synthesis, requiring energy in the form of ATP. 

Energy consumption leads to a cold effect in nature. Therefore, cold- and hot-natured 

herbs can be distinguished from the point of view of metabolism. In addition, it has 

been shown that warm/hot-natured herbs contain more nucleotides and their derivatives 

(Figure 2-4 and Figure 2-5). Immunity, inflammation, and cancer can all be regulated by 

extracellular nucleosides
66-68

. Furthermore, based on the functional activities of the 

metabolites, Liang et al. searched the protein targets of active compounds in the 

PubChem database and found that immune regulation are more related to hot-natured 

herbs and that cold-natured herbs possess the tendency to impact cell growth and 

proliferation
69

. Therefore, the high concentration of nucleosides and analogs in 

hot-natured herbs may play a role in immune regulation. 

Although each herb has different actions and uses, metabolomics analysis indicates 

that each herb contains the common biologically active ingredients, such as amino acids, 

organic acids, and nucleoside or nucleotide compounds. Therefore, it should be noted 

that the different energy natures of hot, warm, cold, and cool are not merely determined 

by one or a certain class of chemical molecules but by the combined effects of all of 

ingredients, the so-called molecular groups. Warm/hot-natured herbs are more prevalent 

in those molecular groups prone to oxidation reactions, such as nucleotides. On the 

other hand, cold/cool-natured herbs have the predominant components prone to 

reduction reactions, such as amino acids. 
 

2.5 Conclusions 

In this study, to determine the key compounds in Chinese herbs of the four inherent 

energy properties, CE–TOF/MS-based metabolomics with statistical analysis was 

performed to measure the metabolites of the 30 selected Chinese herbs. The results 

show that organic acids and nucleotide compounds are accumulated in the 

warm/hot-natured herbs, whereas basic amino acids, such as glutamine, and nucleoside 

compounds are present in higher concentrations in cold-natured herbs. PCA revealed 

that there are important differences between warm/hot- and cold/cool-natured herbs and 

that the molecular groups and energy properties of herbs are closely related to each 
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other. The present results show that our CE–TOF/MS-based metabolomics approach 

provides a powerful tool to assess the relationship between the molecular mechanisms 

underlying the four natures of Chinese herbs. This approach will help establish the 

theoretical basis of TCM or traditional medicine. 
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Chapter 3 Reprogramming of  glutamine metabolism 

via glutamine synthetase silencing induces cisplatin 

resistance in A2780 ovarian cancer cells 

3.1 Introduction 

CDDP, a platinum-based drug, has been a mainstay of treatment in various cancers 

since it was approved by the U.S. Food and Drug Administration (FDA) in 1978
70-72

. To 

date, CDDP remains commonly used as a first-line treatment for ovarian cancer in many 

countries. CDDP binds to nuclear DNA, particularly to the nucleophilic N7 sites of 

purine bases, with high affinity, thereby activating the DNA damage response
73-75

. 

However, some cancer cells develop CDDP resistance over time, leading to recurrences 

in up to 75% of patients with ovarian cancer
76-78

. CDDP-resistant cells often express 

elevated levels of glutathione (GSH)
79

. Research has shown that the levels of GSH in 

cancer cells are much higher than those in CDDP-treated cells
80-82

. GSH has high 

affinity for CDDP and competitively inhibits the binding of CDDP to DNA, causing 

CDDP resistance
79,83

. Therefore, treatment with a GSH synthesis inhibitor can increase 

CDDP sensitivity
84

. 

Alterations in cellular metabolism are a crucial hallmark of cancer
85,86

, and cancer 

cells require both glutamine and glucose for their proliferation
87

. Glutamine contributes 

to the synthesis of not only nucleotides, amino acids, and proteins, but also of GSH, 

which is important for antioxidant defense
80

. Glutamine is the most abundant amino 

acid in serum, but it is often severely depleted in growing tumors due to nutrient-limited 

environments, and glutamine starvation may lead to rapid cancer cell death
80,82,88

. 

Extracellular glutamine is transported into cells and converted into glutamate by 

glutaminase (GLS). Glutamate is in turn used for α-ketoglutarate (α-KG) synthesis by 

glutamate dehydrogenase (GLUD). Conversely, glutamate is metabolized into glutamine 

by glutamine synthetase (GS), which is encoded by glutamate ammonia ligase (GLUL). 

The levels and functions of GS in tumors vary depending on the cellular context
89

. 
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Low-invasive ovarian cancer cells express high levels of GS, whereas highly invasive 

ovarian cancer cells express low levels of GS
90

. Meanwhile, GS fuels nucleotide 

biosynthesis and facilitates growth of various cancer cells
83,91-93

. 

Although recent research has revealed a relationship between CDDP resistance and 

glutamine metabolism, the exact mechanism is yet to be elucidated
94-98

. A preliminary 

hypothesis is that CDDP-resistant cells upregulate GSH production from glutamine, 

thereby attenuating CDDP-induced cytotoxicity. However, key factors that regulate the 

“resistance system” in cancer cells remain to be identified. Metabolome analysis is one 

of the powerful approaches to understanding the molecular mechanisms by which 

cancer cells acquire malignant potential
99

.  

This study aimed to determine the mechanisms by which ovarian cancer cells 

acquire CDDP resistance. Towards this goal, we conducted CE-TOF/MS
49,100

 to 

quantify the central carbon metabolites and amino acids in the human ovarian epithelial 

cancer cell line A2780 and the CDDP-resistant daughter cell line A2780cis and then 

performed glutamine metabolic flux analysis. Considering the higher levels of 

glutamine and GSH in CDDP-resistant cells, we hypothesized that reprogramming of 

glutamine metabolism contributes to CDDP resistance in cancer cells. 

 

3.2 Methods 

3.2.1 Materials 

Cisplatin (Wako), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) (Sigma-Aldrich), and Compound 968 (Merck Millipore) were dissolved in 

phosphate-buffered saline (PBS) and filtered through a 0.22-μm filter. 

5-aza-2'-deoxycytidine (5-aza-dC; Tokyo chemical industry) was initially dissolved in 

dimethyl sulfoxide (DMSO) and further diluted with culture medium. 

3.2.2 Cell culture 

The human ovarian cancer cell line A2780 (catalog no. 93112519) and the 

CDDP-resistant cell line A2780cis (catalog no. 93112517) were purchased from 
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European Collection of Cell Cultures (ECACC) General Cell Collection in 2013. Cell 

lines were shown to be mycoplasma free using the Mycoalert kit from Lonza. A2780 

and A2780cis cells
101,102

 were maintained in Roswell Park Memorial Institute (RPMI) 

1640 medium (Sigma-Aldrich, Co. R8758) supplemented with 10% heat-inactivated 

fetal bovine serum (Equitech-bio) and an antibiotic-antimycotic mixed solution (Nacalai 

Tesque, Inc.). A2780cis cells were maintained in the presence of 1 μM CDDP to 

maintain CDDP resistance and cultured in the absence of CDDP for 24 h prior to each 

experiment. For glutamine starvation conditions, RPMI 1640 medium (Sigma-Aldrich, 

Co. R0883) were used. All cells were grown at 37°C with 5% CO2.  

3.2.3 MTT assay  

Cell viability was assessed using the MTT assay as follows. The cells were seeded 

in 96-well microtiter plates (4×10
3
 cells per well) and cultured for 24 h. For exposure to 

CDDP and compound 968, cells were cultured for an additional 48 h. For cell counting, 

20 μL of MTT solution (5 mg/mL) was added to the culture medium, and cells were 

further cultured for 3 h to generate formazan crystals that were dissolved in 100 μL of 

DMSO after the culture medium had been removed. Viability was calculated from the 

absorbance of MTT formazan at 570 nm with a background correction of 690 nm using 

a TECAN microplate reader with Magellan software (Männedorf). The IC50 of CDDP 

after 48 h was calculated based on the viability curve. 

3.2.4 Metabolite extraction and standards  

Cells were seeded in 6-well plates (2×10
5
 cells in 2 mL of medium) and cultured in 

regular medium with CDDP or low-glutamine medium for 48 h or the indicated time 

periods. For flux analysis, 1, 3, 6, and 12 h before sampling, the medium was replaced 

with medium containing 
13

C-labeled glutamine.  

Sampling was performed by washing the cells twice with 5% mannitol solution, 

covering with 600 μL of methanol containing 25 μM internal standards (L-methionine 

sulfone, 2-(N-morpholino)-ethanesulfonic acid, and D-camphor-10-sulfonic acid), and 

homogenizing for 10 min to inactivate cellular enzymes. The cell-ethanol mixture was 

collected and mixed with Milli-Q water and chloroform in a 2:1:2 ratio. The resulting 
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solutions were then centrifuged at 10,000 g for 3 min. The aqueous layers were 

collected for centrifugal filtration though 5-kDa cutoff filters (Merck Millipore) at 9,100 

g for 3 h. The extracted metabolites were concentrated using a centrifugal concentrator. 

The concentrated metabolites were dissolved in 25 μL of Milli-Q water containing 200 

μM of the reference compounds (3-aminopyrrolidine and trimesate). 

All metabolite standards were dissolved in Milli-Q water to obtain 10 mM or 100 

mM stock solutions. Working standard mixtures were prepared by diluting stock 

solutions with Milli-Q water prior to injection into the CE-TOF/MS. All chemicals used 

were of analytical or reagent grade. 

3.2.5 CE-TOF/MS conditions for cationic and anionic metabolite analyses 

The following instrumentation and measurement conditions were used for 

CE-TOF/MS (Agilent Technologies, Santa Clara, CA, USA) as previously 

reported
49,99,100

. Briefly, for analyzing cations, a fused silica capillary (50 μm i.d. × 100 

cm total length) was used with 1 M formic acid as the electrolyte
49

. Each sample was 

injected by applying a pressure of 50 mbar for 3 s and a continuous voltage of +30 kV. 

A solution of 5 mM ammonium acetate and 0.5 μM reserpine in 50% (v/v) methanol in 

water was used as the sheath liquid at a flow rate of 10 μL/min. ESI-TOFMS was 

performed in the positive ion mode, and the capillary voltage was set to 4 kV. Automatic 

recalibration of each acquired spectrum was achieved using the masses of the reference 

standards ([
13

C isotopic ion of a protonated methanol dimer (2 MeOH+H)]+, m/z 

66.0631) and ([hexakis(2,2-difluoroethoxy)phosphazene +H]+, m/z 622.0290). For 

analyzing anions, a commercially available COSMO (+) (chemically coated with 

cationic polymer) capillary (50 μm i.d., 5 cm total length) (Nacalai Tesque, Kyoto, 

Japan) was used with a 50 mM ammonium acetate solution (pH 8.5) as the electrolyte 

100
. Each sample was injected by applying a pressure of 50 mbar for 30 s and a 

continuous voltage of -30 kV. Methanol/5 mM ammonium acetate (50% v/v) containing 

0.1 µM hexakis(2,2-difluoroethoxy)phosphazene was delivered as the sheath liquid at 

10 μL/min. ESI-TOFMS was performed in the negative ion mode, and the capillary 

voltage was set to 3.5 kV. Automatic recalibration of each acquired spectrum was 

achieved using the masses of the reference standards (
13

C isotopic ion of deprotonated 
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deuterated acetic acid dimer (2CD3COOH-H)- m/z 126.076001, 

Hexakis(2,2-difluoroethoxy)phosphazene +deprotonated deuterated acetic acid 

(M+CD3COOH-H)- m/z 683.054372). The other conditions were identical to those 

described previously. 

3.2.6 Metabolome data processing 

Metabolome data were preprocessed with MasterHands ver.2
53

. The peaks were 

identified by matching the m/z values and normalized migration times of corresponding 

external stand compounds. All of the identified peaks were changed manually, and 

noise-derived peaks were removed based on S/N values. All peak areas were normalized 

using internal standards, and the concentrations of each compound were calculated 

according to the relative area of the external standard compound. The average amount 

of each metabolite per cell was evaluated based on the number of viable cells in each 

cell line. The number of cells was determined using a hemocytometer. 

Hierarchical clustering of metabolite levels for heatmap visualization was 

performed in MultiExperiment Viewer (MeV)
55

. 

3.2.7 Western blot analysis 

The protein levels of glutamine-related enzymes were determined via Western blot 

analysis. Briefly, cells were collected using cell scraper, washed once with PBS, and 

centrifuged at 5,000 rpm for 1 min. Protein extracts were prepared by lysing cells in 

RIPA Buffer (Nacalai tesque) on ice for 10 min. Protein quantification was performed 

using a Broadford protein assay kit (BIO-RAD). After determining the protein 

concentration, protein samples were mixed with 5× loading buffer then boiled for 10 

min at 96°C. Samples (20 μg of protein) were separated using SDS-PAGE (7.5% gel) 

and then transferred to a polyvinylidene difluoride (PVDF) membrane with a Trans-Blot 

Turbo Transfer System (BIO-RAD). 

 The membrane was first blocked with PBST containing 4% BSA for 10 min at 

room temperature. Next, they were incubated with primary antibodies at 4°C overnight 

and then incubated with secondary antibodies at room temperature for 2 h. The 

immunoreactive proteins on the membrane were analyzed using ECL detection reagents 
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and Image Quant LAS 4000 (GE Healthcare). The antibodies used were as follows: 

anti-GLUL, 1:1,000 (HPA007316, Atlas Antibodies); anti-GLS, 1:2,000 (ab156876, 

Abcam); anti-β-actin, 1:10,000 (ab8226, Abcam); anti-rabbit IgG HRP-linked antibody, 

1:10,000 (Cell Signaling); anti-mouse IgG HRP-linked antibody, 1:10,000 (Cell 

Signaling). 

3.2.8 Knockdown of GS expression 

siRNA targeting human GS and negative control siRNA were purchased from 

Sigma-Aldrich. A2780 cells were separately seeded in 6-well culture plates at a density 

of 4 × 10
3
 cells/well and cultured for 24 h. For siRNA transfection, complexes of siRNA 

duplex and Lipofectamine RNAiMAX (Invitrogen) were formed in serum-free medium 

and added to the culture medium at a final concentration of 25 nM siRNA. For RNA 

extraction, transfected cells were harvested 48 h after transfection. The siRNA 

sequences for GS were as follows: 5’-GAUUGGACCUUGUGAAGGAdTdT-3’; 

5’-UCCUUCACAAGGUCCAAUCdTdT-3’. 

3.2.9 Quantitative real-time polymerase chain reaction (qRT-PCR) 

RNA was isolated from cells using RNeasy Mini kit (Qiagen) following the 

manufacturer’s instructions. RNA concentration was qualitatively assessed and 

quantified using NanoDrop 2000 (Thermo scientific). Total RNA (2 μg) was reverse 

transcribed to cDNA with a ReverTra Ace qPCR RT Master Mix (TOYOBO). RT-PCR 

was performed with SYBR Green RT-PCR Master Mix (TaKaRa) on a StepOnePlus 

Real-Time PCR System (Thermo Scientific). PCR cycles consisted of initial 

denaturation at 95°C for 30 sec, followed by 40 cycles of 95°C for 30 sec, 95°C for 5 

sec, and 60°C for 30 sec. The relative expression of mRNA was calculated using the 2−Δ

ΔCt
 method. Data were normalized to the expression of β-actin or RPL27. The 

sequences of primers used are listed inTable S1Table S1. 

 

https://www.sciencedirect.com/topics/immunology-and-microbiology/denaturation
https://www.sciencedirect.com/science/article/pii/S1567576916302569#t0005
https://www.sciencedirect.com/science/article/pii/S1567576916302569#t0005
https://www.sciencedirect.com/science/article/pii/S1567576916302569#t0005
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3.2.10 DNA demethylation 

For DNA demethylation, cells were seeded in 6-well plates at a density of 2×10
5
 

cells per well). After overnight culture, 2 μM 5-aza-2'-deoxycytidine (5-aza-dC), a DNA 

methyltransferase inhibitor, was added to the culture medium, and cells were incubated 

for an additional 72 h. GS expression was determined using RT-PCR. 

 

3.3 Results 

3.3.1 Components of glutamine metabolism is increased in CDDP-resistant cells 

Drug resistance is one of the most crucial challenges in cancer treatment. We used 

the CDDP-sensitive human ovarian cancer cell line A2780 and the CDDP-resistant cell 

line A2780cis, which was obtained by long-term exposure of A2780 cells to increasing 

concentrations of CDDP
101

. The MTT assay showed that the half-maximal inhibitory 

concentrations (IC50) for CDDP in A2780cis cells were approximately 20 times greater 

than those in A2780 cells (Figure 3-1A). The colony formation capability of A2780cis 

cells was also greater than those of A2780 cells (Figure 3-1B).  

These cell lines were also evaluated using CE-TOF/MS to determine the metabolic 

pathways responsible for CDDP resistance. The 189 metabolites in the major energy 

metabolism pathway were identified in extracts of A2780 and A2780cis cells using 

authentic standards. Principal component analysis (PCA) of metabolites revealed global 

metabolic changes between A2780 and A2780cis cells (Figure 3-1C). The score plots 

along with the first principal component axis (PC1) showed marked differences between 

these cell lines. As shown by the volcano plots, the levels of 50 metabolites were 

increased to 2-fold or more, whereas those of 8 metabolites were decreased to 0.5-fold 

or less in A2780cis cells compared with those in A2780 cells (Figure 3-1D and Table 

S2). The most remarkably increased metabolite in A2780cis cells was glutamine, the 

levels of which were 88-fold higher than those in A2780 cells (Figure 3-1E). In addition, 

the levels of glutamate and GSH, which are synthesized from glutamine, were also 

significantly increased in A2780cis cells (Figure 3-1E). This shows that in A2780cis 
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cells, CDDP resistance was elevated with metabolic changes, including increases in the 

components of glutamine metabolism. 
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Figure 3-1 Increase in CDDP resistance and global metabolic changes in A2780cis 

cells 

(A) Effects of CDDP treatment on the viability of A2780 and A2780cis cells. Cell 

viability was measured at 48h after treatment using the MTT assay. (B) For colony 

formation assays, A2780 and A2780cis cells were cultured in the presence of CDDP 

(concentrations as indicated). Colonies were counted 9 days after plating. (C) Score 

plots of principal component analysis (PCA) of 189 intracellular metabolite levels in 

A2780 and A2780cis cells measured using CE-TOF/MS. The contribution rate of PC1 

and PC2 were 74.4% and 10.9%, respectively. (D) Volcano plots with the fold change of 

each metabolite and p values calculated using the Student’s t-test (p<0.05). The 

horizontal axis indicates a p-value (-log10) of 0.05. The averages metabolite levels in 
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A2780cis cells were compared with those in A2780 cells (n=3). Red dots depict 

significantly increased metabolites in A2780cis cells. Blue dots depict significantly 

decreased metabolites in A2780cis cells. Gray dots depict metabolites without 

significant differences. See also Table S2. (E) Levels of glutamine (Gln), glutamate 

(Glu), and GSH in A2780 and A2780cis cells. Data are shown as the mean ± SD of the 

three independent experiments. Statistical significance was determined using the 

Student’s t-test (**p<0.01, ***p<0.001). 
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3.3.2 Reprogramming of glutamine metabolism enhances CDDP resistance in ovarian 

cancer cells 

Glutamine as one of the main energy sources is involved in cancer cell 

proliferation, inhibition of apoptosis, and cell signaling
88,103,104

. Glutamine is converted 

to glutamate, which is a metabolic intermediate channeled into the tricarboxylic acid 

(TCA) cycle and GSH synthesis
105

. Taken together with our observations that levels of 

glutamine and GSH are higher in CDDP-resistant cells, we hypothesized that 

reprogramming of glutamine metabolism contributes to CDDP resistance in cancer cells. 

To test our hypothesis, we conducted three experiments. 

First, to examine the difference in glutamine metabolism between A2780 and A2780cis 

cells via metabolic flux analysis using glutamine isotopically labeled at all five carbon 

atoms (
13

C5-glutamine). For this analysis, we cultured these cell lines in medium 

containing labeled glutamine and determined the levels of metabolites produced from 

labeled glutamine using CE-TOF/MS. As expected, the levels of 
13

C5-labeled glutamine 

were similar in both cell lines, suggesting that glutamine incorporation was not changed 

in A2780 and A2780cis cells (Figure 3-2A, orange). Meanwhile, the levels of labeled 

TCA cycle metabolites (
13

C1–
13

C5), including α-KG, were lower in A2780cis cells than 

in A2780 cells. (Figure 3-2B, and Figure S1). In contrast, labeled GSH was actively 

produced from labeled glutamine in A2780cis cells (Figure 3-2C). These results suggest 

that glutamine is preferentially involved in GSH production in CDDP-resistant cells. 
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Figure 3-2 Metabolic flux analysis using isotopically labelled glutamine in A2780 

and A2780cis cells 

(A, B, and C) Isotopologue distribution of metabolites in A2780 and A2780cis 

cells. Cells were incubated with medium containing glutamine isotopically labeled at all 

five carbon atoms (
13

C5-glutamine) for the indicated time periods. Carbon fluxes from 

glutamine to Glu, GSH, and α-ketoglutarate (α-KG) were determined using 

CE-TOF/MS. Each bar color corresponds to the number of 
13

C replaced with 12C in the 

metabolites. Data are shown as the mean ± SD of three independent experiments. (D) A 

pathway map of glutamine metabolism. Metabolites and catalytic enzymes are shown in 

black and blue, respectively. The colored dots show the 
13

C isotopically labeled 

metabolites, and the color corresponds to the icons in Figure 3-2A–C on the left. 
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Second, we used CE-TOF/MS to analyze the metabolic profiles of A2780 and 

A2780cis cells cultured under glutamine starvation conditions. In agreement with the 

results of the first experiment, the levels of glutamate and GSH in A2780cis cells were 

significantly decreased under glutamine starvation conditions, while those in A2780 

cells were not affected by glutamine starvation (Figure 3-3A). We also found that levels 

of various metabolites were changed by glutamine starvation in both cell lines (Table 

S3-6). These results indicate that glutamine starvation causes metabolic reprogramming. 

Third, we assessed CDDP resistance of A2780 and A2780cis cells in the presence 

or absence of glutamine. The viability of A2780 cells was decreased not only by CDDP 

treatment alone, but also by glutamine starvation alone, suggesting that A2780 cells 

depend on glutamine to sustain their proliferation (Figure 3-3B left). In contrast, the 

viability of A2780cis cells was neither drastically affected by CDDP treatment alone nor 

glutamine starvation alone (Figure 3-3B right). Importantly, however, glutamine 

starvation reduced the viability of A2780cis cells in the presence of CDDP. The effect of 

glutamine starvation on the viability of A2780cis cells was also greater than those of 

A2780 cells in the presence of CDDP. These results indicate that A2780cis cells depend 

on glutamine to induce CDDP resistance. 

The results of these three experiments collectively support the hypothesis that 

glutamine is utilized preferentially for GSH production rather than for TCA cycle 

metabolite production in A2780cis cells. This reprogramming of glutamine metabolism 

enhances CDDP resistance. 

The result that glutamine metabolism plays an important role in CDDP resistance 

prompted us to examine the effect of treatment with a glutamine metabolism inhibitor 

on CDDP resistance. Accordingly, we treated cells with a constant concentration of 

CDDP (10 μM) and various concentrations of compound 968, a GLS inhibitor, and 

analyzed cell viability. Consistent with the results presented in Figure 3-3B, the viability 

of A2780cis cells in the presence of CDDP was decreased by compound 968 treatment 

in a concentration-dependent manner (Figure 3-3C). These results show that treatment 

with a GLS inhibitor enhances the cytotoxic effects of CDDP on CDDP-resistant cells. 
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Figure 3-3 Glutamine starvation reduces the GSH level and CDDP resistance in 

A2780cis cells 

(A) Levels of Gln, Glu, and GSH in A2780 and A2780cis cells cultured in the 

presence (+) or absence (-) of glutamine. (B) Effects of glutamine starvation on CDDP 

resistance. A2780 and A2780cis cells were treated with 3 μM CDDP in the presence (+) 

or absence (-) of glutamine for 48 h. (C) A2780 and A2780cis cells were cultured for 

48h in medium containing CDDP (0 or 10 μM) and the GLS inhibitor compound 968 (0, 

1, 3, or 10 μM). Cell viability was measured using the MTT assay. Data are shown as 

the mean ± SD of the three independent experiments. The differences were analyzed by 

using the Student’s t-test (*p<0.05, **p<0.01, ***p<0.001). 
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3.3.3 CDDP resistance in A2780cis cells is caused by DNA methylation-mediated 

silencing of GS expression 

As shown in Figure 3-3B and Figure 3-3C, CDDP-induced cytotoxicity against 

A2780cis cells was enhanced by glutamine starvation or GLS inhibitor treatment. 

Therefore, we next examined the expression of glutamine metabolism enzymes. 

Unexpectedly, real-time polymerase chain reaction (RT-PCR) and Western blot analyses 

showed that there were no significant differences in the levels of GLS between A2780 

cells and A2780cis cells (Figure 3-4A). Meanwhile, GLS expression was induced in the 

presence of glutamine, a substrate for GLS, in both cell lines (Figure 3-4B). In addition, 

both cell lines expressed similar levels of GLUD1, GCLC, GSS, and GSTP1, a major 

drug-metabolizing enzyme 
106,107

 (Figure 3-4A). We also performed western blotting to 

examine the expression level of GS in medium with normal glutamine concentration 

and medium without glutamine. 

Interestingly, we found that GS expression was almost completely suppressed in 

A2780cis cells (Figure 3-4A), whereas A2780 cells expressed a detectable level of GS 

in the presence of glutamine and a higher level of GS in the absence of glutamine 

(Figure 3-4B). Thus, it is believed that the absence of glutamine causes cells to express 

a higher level of GS, which supplements glutamine level in the cells. However, GS 

expression did not increase in A2780cis cells even in the absence of glutamine. Bott et 

al. recently reported that the GS promoter is methylated in human mammary epithelial 

cells and that GS expression is induced by Myc-mediated promoter demethylation 
92

. 

Therefore, to determine whether suppression of GS expression in A2780cis cells is due 

to DNA methylation, we treated A2780cis cells with 5-aza-2'-deoxycytidine (5-Aza-dC), 

an inhibitor of DNA methyltransferases, and analyzed GS expression using RT-PCR. As 

expected, GS expression was markedly increased by 5-Aza-dC treatment, indicating that 

GS expression is suppressed by DNA methylation (Figure 3-4C). We further 

investigated whether 5-Aza-dC treatment attenuates CDDP resistance in A2780cis cells. 

We treated A2780cis cells with a constant concentration of CDDP (10 μM) and various 

concentrations of 5-Aza-dC and found promising findings. The viability of A2780cis 

cells in the presence of CDDP was decreased by 5-Aza-dC treatment in a 
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concentration-dependent manner (Figure 3-4D). This result demonstrates that CDDP 

resistance in A2780cis cells is diminished by 5-Aza-dC treatment. 

Finally, to clarify the role of GS in CDDP resistance, we knocked down GS 

expression in parental A2780 cells, which express GS and are CDDP sensitive, and 

evaluated cell viability in the presence of various concentrations of CDDP (Figure 3-4E). 

Consistent with the results that CDDP-resistant A2780cis cells scarcely expressed GS, 

GS knockdown in A2780 cells caused an approximately two-fold increase in the IC50 

value for CDDP (Figure 3-4F). Collectively, these results indicate that CDDP resistance 

in A2780cis cells is induced, at least in part, by DNA methylation-mediated silencing of 

GS expression. 
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Figure 3-4 CDDP resistance in A2780cis cells is caused by DNA 

methylation-medicated silencing of GS expression 

(A) RT-PCR analysis of glutamine metabolism enzymes. (B) Western blotting of 

glutamine metabolism enzymes. “+”indicates culture medium with normal glutamine 

concentration, and “−“ indicates culture medium without glutamine. Cells were cultured 

in the absence or presence of glutamine for 48 h. (C) RT-PCR analysis of GS expression 

in A2780cis cells. Cells were cultured for 72 h in the absence or presence of 5-Aza-dC 

(2 μM). (D) Effects of 5-Aza-dC on CDDP-induced cytotoxicity. A2780cis cells were 

cultured for 72 h in medium containing CDDP (0 or 10 μM) and 5-Aza-dC (0, 1, 2, or 5 

μM). Cell viability was measured using the MTT assay. (E) Confirmation of GS 

knockdown in A2780 cells using RT-PCR analysis. (F) Effects of CDDP knockdown on 

CDDP-induced cytotoxicity. A2780 cells transfected with control siRNA or GS siRNA 

were cultured for 72 h in the presence of CDDP (concentrations as indicated). Cell 

viability was measured using the MTT assay. Data are shown as the mean ± SD of the 
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three independent experiments. The differences were analyzed using the Student’s t-test 

or one-way ANOVA with Dunnett’s multiple comparison (*p<0.05, **p<0.01). 
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3.4 Discussion 

Through catalyzing the formation of glutamine from glutamate and ammonia, GS 

functions in various processes in cancer cells, including nucleotide biosynthesis, cell 

proliferation
83,91,93

, and cell invasion
108

. However, the roles of GS in CDDP resistance in 

cancer cells have not been elucidated. In this study, we found global metabolic changes 

in CDDP-resistant ovarian cancer cells. First, levels of glutamine, glutamate, and GSH, 

which is associated with drug resistance, were higher in A2780cis cells than those in 

A2780 cells (Figure 3-1E). Second, levels of TCA cycle metabolites synthesized from 

glutamine were lower in A2780cis cells than those in A2780 cells (Figure 3-2B; Figure 

S1). To our best knowledge, this is the first study to report the importance of glutamine 

metabolic reprogramming in CDDP resistance. 

In addition, we found that glutamine starvation reduced the levels of glutamine, 

glutamate, and GSH and, accordingly, CDDP resistance in A2780cis cells (Figure 3-3A; 

Figure 3-3B). Treatment of A2780cis cells with compound 968, a GLS inhibitor, also 

diminished CDDP resistance (Figure 3-3C). Furthermore, treatment of A2780cis cells 

with 5-Aza-dC restored the expression of GS and reduced CDDP resistance (Figure 

3-4C and Figure 3-4D). In summary, glutamine starvation, GLS inhibition, and 

5-Aza-dC treatment reduced CDDP resistance in A2780cis cells. These results indicate 

that GSH production from glutamine plays a crucial role in the development of CDDP 

resistance. Consistent with these observations, GS knockdown in CDDP-sensitive 

A2780 cells induced CDDP resistance (Figure 3-4F). 

Based on our results, we proposed a hypothesis for the development of CDDP 

resistance in ovarian cancer cells (Figure 3-5 ). In CDDP-sensitive cells, both GLS and 

GS are expressed, and low levels of GSH are produced from glutamate. In contrast, in 

CDDP-resistant cells, GS expression is suppressed by DNA methylation, while GLS 

expression is maintained. Thus, high levels of GSH are produced, and levels of TCA 

cycle metabolites synthesized from glutamine are decreased. This reprogramming of 

glutamine metabolism causes CDDP resistance. The mechanisms and functional roles of 

decreases in levels of glutamine-derived TCA cycle metabolites remain to be elucidated 

in CDDP-resistant cells. However, we speculate that in addition to GS, other genes may 

also be silenced by DNA methylation. These alterations in gene expression may 
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contribute to a metabolic shift from TCA cycle metabolite synthesis to GSH synthesis. 

This reduction of TCA cycle activity might cause cell growth suppression, a decrease in 

CDDP-induced DNA damage, and CDDP resistance. 

Our present study shows that GS expression is almost completely suppressed via 

DNA methylation in CDDP-resistant A2780cis cells (Figure 3-4A, B, C). GS 

knockdown in CDDP-sensitive A2780 cells induced CDDP resistance (Figure 3-4F). 

Interestingly, Yang et al reported that low-invasive ovarian cancer cells express high 

levels of GS, whereas highly invasive ovarian cancer cells express low levels of GS
108

. 

Other studies reported that daunorubicin-resistant acute lymphoblastic leukemia cells 

lack GS expression
109

. In addition, GS knockdown in non-small cell lung cancer and 

hepatocellular carcinoma cells enhances resistance to gefitinib and sorafenib, 

respectively
110,111

. GS knockout in non-small-cell lung carcinoma cells also increases 

resistance to pazopanib and docetaxel
112

. Thus, we infer that GS inactivation is a crucial 

step in acquiring malignant potential, including drug resistance, in various cancers. 
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Figure 3-5 A model for CDDP resistance development via reprogramming of 

glutamine metabolism in ovarian cancer cells 

(A) In CDDP-sensitive cancer cells, both GLS and GS are expressed, and low levels 

of GSH are produced from glutamate. (B) In contrast, in CDDP-resistant cells, GS 

expression is suppressed by DNA methylation, whereas GLS expression is maintained, 

and thereby high levels of GSH are produced. This reprogramming of glutamine 

metabolism causes CDDP resistance. 
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3.5 Conclusions 

Our results highlight the importance of glutamine metabolism in CDDP resistance 

in ovarian cancer cells. We found that levels of glutamine, glutamate, and GSH in 

A2780cis cells were significantly higher than those in A2780 cells. GS expression was 

almost completely suppressed in A2780cis cells. In addition, treatment of A2780cis 

cells with 5-aza-dC restored GS expression and reduced CDDP resistance. Thus, 

targeting glutamine metabolism, particularly with DNA methyltransferase inhibitors, 

could be a promising strategy to overcome chemotherapy resistance in various cancers. 
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Chapter 4 Metabolic flow analysis coupled with 

proteomic analysis revealed the effect of  glutamine 

synthetase in cancer cells 

4.1 Introduction 

Glutamine is a pleiotropic molecule in cancer cell metabolism, and it is known that 

several cancer cells use glutamine excessively. Glutamine is used to promote cell 

proliferation and maintain survival, particularly in malnutrition and poor angiogenesis
113

. 

Glutamine provides carbon and nitrogen to various cell biosynthesis, amino acids, lipids, 

nucleotides, etc. In addition, it supplements the tricarboxylic acid (TCA) cycle in the 

mitochondria and produces NADPH and ATP. Moreover, it provides the substrate of 

GSH synthesis and is used to reduce intracellular reactive oxygen species (ROS)
114,115

. 

GS is the only enzyme involved in the de novo synthesis of glutamine, and when the 

intracellular glutamine concentration is low, GS is upregulated to maintain glutamine 

concentration
83

. Cancer cells use excessive glutamine; however, their glutamine is 

converted into glutamate, which is catalyzed by glutaminase (GLS) to support cell 

proliferation-related biosynthesis
116

. This metabolic trend is known as glutaminolysis. 

Cancer cells that overexpress GLS depend on glutamine, making them less likely to 

survive in the absence of glutamine. GLS treatment strategies have been proposed. 

Inhibitors such as BPTES, CB-839, and 968, for example, have been developed, and 

CB-839 is currently in clinical trials
117

. Some cancer species, however, are resistant to 

GLS inhibitors, and it is known that most of them are highly expressed in GS (encoded 

by GLUL; glutamate-ammonia ligase)
118

. Furthermore, it has been demonstrated that 

GS knockdown can suppress GLS expression, whereas GLS does not affect GS levels
119

. 

Cancer cells with high GS are self-sufficient in glutamine and can survive in the 

absence of glutamine. In addition, existing studies on GS expression and functions are 

different for each cancer type. Overall, the lack of GS is considered to be associated 
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with high GLS activity, high dependence on glutamine, cancer infiltration, and drug 

resistance
82

. 

In our previous study comparing sensitive cell lines of ovarian cancer cell lines and 

resistant cell lines to CDDP, the resistant strain A2780cis had a very low GS expression 

compared with sensitive cell lines. In A2780 cells, the parent cell line, reduced levels of 

glutamine in the media clearly increased GS expression; however, this trend was not 

observed in the resistant cells. Furthermore, the knockdown of GS by siRNA shows an 

increase in CDDP resistance. We found that after the glutamine entered the cell 

membrane, the CDDP-resistant A2780 cell line produced more GSH and that GSH had 

a stronger antioxidant effect, resulting in resistance. On the other hand, we suggest that 

CDDP-sensitive cell lines send more glutamine into mitochondria and have a favorable 

metabolic environment for unrestricted cell proliferation. In other words, GS is thought 

to be like a switch of the metabolism upstream
120

. To better understand the possible 

functionality of GS in cancer cells, we knocked down GS in more cancer cell lines with 

varying levels of GS expression and examined their drug resistance, proteomics changes, 

and metabolomics changes in the following study. 

 

4.2 Materials and Methods 

4.2.1 Cell culture 

Human ovarian cancer cell line A2780 and human lung cancer cell lines A549 and 

MOR were purchased from the European Collection of Authenticated Cell Cultures 

(ECACC). A2780 and MOR cells were maintained in Roswell Park Memorial Institute 

1640 (RPMI 1640) (Sigma-Aldrich, Co. R8758) medium supplemented with 10% 

heat-inactivated fetal bovine serum (FBS) (Equitech-bio). The A549 cells were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Nacalai, Co. 09891–25) 

supplemented with 10% FBS. The cell lines were incubated in a humidified atmosphere 

of 5% CO2 at 37 °C. 
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4.2.2 MTT assay 

Cell viability was evaluated using the MTT assay as follows. The cells were seeded 

in 96-well microtiter plates (4 × 10
3
 cells per well) and cultured for 24 h. For exposure 

to CDDP and carboplatin (CBDCA), cells were cultured for an additional 48 h or 72 h. 

For cell counting, 20 µL of MTT solution (5 mg/mL) was added to the culture medium, 

and cells were further cultured for 3 h to generate formazan crystals which were 

dissolved in 100 µL of dimethyl sulfoxide (DMSO) after the culture medium had been 

removed. Viability was determined from the absorbance of MTT formazan at 570 nm 

with a background correction at 690 nm using a TECAN microplate reader with 

Magellan software (Männedorf). 

4.2.3 Real-time quantitative PCR 

Total RNA was extracted from cells using an RNeasy Mini kit (Qiagen) according 

to the manufacturer’s instructions. Subsequently, 2 µg of extracted RNA was reverse 

transcribed to cDNA with ReverTra Ace qPCR RT Master Mix (TOYOBO). Target 

mRNA was quantified using SYBR Green RT-PCR Master Mix (TaKaRa) with 

StepOnePlus Real-Time PCR System (Thermo Scientific). PCR cycles included initial 

at 95 °C for 30 sec, followed by 40 cycles of denaturation at 95 °C for 30 sec, 95 °C for 

5 sec, and 60 °C for 30 sec. The relative expression of mRNA was determined using the 

delta-delta CT method, and Gene expression was normalized to the expression of 

β-actin. 

4.2.4 Establishing stable GS knockdown cells by lenti viral-induced shRNA 

For establishing cell lines expressing shRNA against GS, four human unique 

shRNA lenti viral constructs (#1, #2, #3, and #4) (Sigma-Aldrich) were employed. For 

negative control, non-mammalian gene-targeting shRNA (NTC) was used. Lenti viruses 

were produced by co-transfecting HEK293T cells (ATCC) with each shRNA plasmid 

and 3rd generation packaging vectors (pMDLg/pRRE, pMD2.G-VSV-G, and pRSV-Rev) 

(Addgene) by using Lipofectamine 2000 (Invitrogen). The transfection media was 

replaced with fresh DMEM after 4 h of transfection. The incubated cell culture medium 



Metabolic flow analysis coupled with proteomic analysis revealed the effect of glutamine synthetase in 

cancer cells 

50 

 

containing viral particles was collected 48 h after transfection and passed through a 0.45 

µm filter. The virus supernatant was then evenly distributed to cells (A2780, A549, and 

MOR cell lines) along with 4 µg/mL polybrene for cell line infection (Sigma-Aldrich). 

After 24 h, the virus supernatant was removed, and the cells were restored in the fresh 

culture medium. After 24 h, the medium was replaced with 2 µg/mL 

puromycin-containing medium, and pressure selection was performed on the basis of 

puromycin on packaged lentivirus vectors. Stable cell lines were cryopreserved after 

three generations of continuous passage and screening. Pools of four different shRNA 

sequences were used to target human GS: #1 (TRCN0000045631) 

5’-CCAGGAGAAGAAGGGTTACTT-3’; #2 (TRCN0000343990) 

5’-AGGAGAAGAAGGGTTACTTTG-3’; #3 (TRCN0000343992) 

5’-CACACCTGTAAACGGATAATG-3’; #4 (TRCN0000344059) 

5’-ATAACCACTGCTTCCATTTAA-3’, and shNT. 

4.2.5 Metabolite tracing analysis using CE-MS 

Cells were seeded in six-well plates (8.8 × 10
5
 cells in 2 mL medium) and cultured 

in a low glutamine medium (RPMI 1640, Sigma-Aldrich, Co. R0883 and DMEM, 

Nacalai, Co. 11584–85) with 10% FBS for overnight or the indicated time periods. For 

flux analysis, 1, 3, 6, and 12 h before sampling, the medium was replaced with a 

glutamine-free medium containing 
13

C5-labeled glutamine (CLM-1822-H) with 10% 

dialyzed FBS. 

The metabolite extraction method and CE-TOF/MS detection method are depicted 

above
120,121

. Data were analyzed by MasterHands
53

. 

4.2.6 Protein extraction and digestion 

The cell samples were dissolved in 50 mM ammonium bicarbonate buffer 

containing 12 mM sodium deoxycholate (SDC), 12 mM sodium 

N-dodecanoylsarcosinate (SDDS), and 1% protease inhibitor (Protease Inhibitor 

Cocktail, Nacalai) and sonicated for 20 min using a Bioruptor II (BM Equipment). 

Protein concentration was measured using bicinchoninic acid (BCA) assay (Thermo), 

wherein 20 µg of protein was treated with dithiothreitol (DTT) for 30 min at 37 °C, 
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followed by iodoacetamide (IAM) for 30 min at 37 °C in the dark. After diluting with 

50 mM ammonium carbonate five times, the samples were treated with Lys-C (Wako) 

for 3 h at 37 °C, followed by trypsin (Promega) (1:50 enzyme to protein ratio) overnight 

at 37 °C to digest proteins. 

The peptides were desalted with an in-house tip containing a C18 disk (3M, 

Empore) and 10 mg C18 packing material (YMC GEL ODS-AQ)
122

. Each sample was 

dissolved in 0.1% formic acid (FA) and 2% acetonitrile after being concentrated and 

dried. 

4.2.7 Quantitative Analysis with diaPASEF 

The nano LC was performed on a nano HPLC system (nanoElute, Bruker), 

equipped with a hand-made spray needle column (75 µm i.d., 3 µm tip i.d., 250 mm 

length) packed with ACQUITY-BEH C18 material (1.7 µm, Waters). The mobile phase 

is composed of (A) 0.1% formic acid (FA) in water and (B) 0.1% FA in acetonitrile. The 

peptides were separated in 130 min at 280 nL/min using the following gradients: (A) + 

(B) = 100%, (B) 2%-35% (0–120 min), 35%-80% (120–125 min), 80%-80% (125–130 

min) under the column temperature of 60 °C. 

Eluted peptides were analyzed on timsTOF Pro (Bruker Daltonics) in the Parallel 

Accumulation Serial Fragmentation-Data Dependent Acquisition (PASEF-DDA) mode 

to generate the spectral library
123

. Trapped Ion Mobility Spectrometry (TIMS) was 

enabled with a ramp time of 100 ms and a duty cycle of 100%. Ions with ion mobility 

from 0.6 to 1.6 V s/cm
2
 were monitored. MS and MS/MS spectra were acquired from 

m/z 400 to 1200, and MS/MS data were acquired with 10 PASEF MS/MS scans per 

cycle. Isolation width was set to 2 m/z for m/z <700 and 3 m/z for m/z >800. Collision 

energy was increased stepwise from 20 to 59 eV as a function of increasing ion mobility 

from 0.6 to 1.6 V s/cm
2
. In the Data Independent Acquisition (DIA) experiment, the MS 

was operated under the same conditions as in the DDA experiments except precursor 

selection. Precursor ions were selected using a diaPASEF acquitision scheme previously 

reported
124

. The LC-MS raw data and associated files were submitted to the 

ProteomeXchange Consortium via the jPOST partner repository (accession number: 

PXD041557) (accession number: JPST002115)
125

. 
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4.2.8 Proteome data analysis 

All LC-MS data were analyzed using PEAKS studio 10.6 (Bioinformatics 

Solutions)
126

, and UniProt human protein database was used for protein identification. 

The error tolerance was set to 20 ppm for precursor ions and 0.05 Da for fragment ions; 

the enzyme was set to trypsin, and up to two missed cleavages were allowed. 

Carbamidomethylation at cysteine was set as a fixed modification. Protein N-terminal 

acetylation and oxidation at methionine were set as variable modifications, allowing for 

up to three positions per peptide. The identifications were filtered at a false discovery 

rate of 1% at peptide levels. The feature area of each identified peptide ion was 

calculated automatically with PEAKS software algorithm. The intensity-based 

quantification value of each identified protein was calculated from the feature area 

values. 

The GO functional classification and annotations were obtained using the 'Wu 

Kong' platform (https://www.omicsolution.com/wkomics/main/)
127

. We used the 

Student’s t-test for unpaired, two-tailed data to determine the statistical significance of 

FC in log2-transformed proteomic data. Pathway analysis was performed using Kyoto 

Encyclopedia of Genes and Genomes (KEGG) website (http://www.kegg.jp)
128

. 

 

4.3 Results 

4.3.1 Knockdown of GS can effectively reduce the resistance of cells to platinum 

anticancer drugs 

The GS expression levels of 609 cell lines from the expression atlas database 

(https://www.ebi.ac.uk/gxa/home)
129

 were investigated, and human ovarian cancer 

A2780, non-small cell lung cancer A549, and MOR were used in the experiments. 

Ovarian cancer and non-small-cell lung carcinoma remain primarily treated with 

platinum-based drugs due to their initial effectiveness
76

. Although the three cell types 

display varying levels of GS expression, they all demonstrate resistance to 

platinum-based drugs, making them valuable models for studying drug resistance. In 

fact, A2780 belongs to a group of cell lines in the database that have relatively low GS 

https://www.omicsolution.com/wkomics/main/
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expression levels (Figure 4-1A). The GS expression level in A549 is 10 times that of 

A2780, and the GS expression level in MOR is 500 times that of A2780 (Figure 4-1A). 

RT-PCR confirmed that GS expression was significantly lower when compared to the 

negative control (Figure 4-1B). Our objective was to investigate the influence of 

different levels of GS expression on drug resistance following the inhibition of GS. 

Subsequently, the sensitivities of GS-KD cells to platinum drugs were determined 

using an MTT assay (Figure 4-1C; Figure 4-1D). The vertical axis shows the cell 

viability 72 h after the addition of platinum drugs. It is noteworthy that the sensitivity of 

GS-KD cells is generally higher than that of control KD cells, i.e., resistance develops 

after GS knockdown, especially in #1 and #4. The resistance of the three cell lines to 

CDDP and carboplatin (CBDCA) before the knockdown of GS (refer to IC50) was not 

as different as the expression level of GS (Figure S2). Therefore, under the existing 

expression level of GS in cell lines, the inhibition of GS expression will reduce the 

sensitivity of cells to platinum drugs. 
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Figure 4-1 Inhibition of GS expression will reduce the sensitivity of cells to platinum 

drugs 

(A) GLUL gene expression levels in A2780, A549, and MOR cell lines (Expression 

Atlas database). (B) The vertical axis shows the expression levels of GLUL detected by 

RT-PCR. Data are expressed as the mean ± standard deviation (SD) of three 

independent experiments. shRNA negative control (sh-NC, black bar) and si-GLUL (#1, 

#2, #3, and #4, blue bar) are shown with a horizontal line. (C, D) The negative control is 

represented by the black bar, and the viability of GS knockdown cell lines is represented 

by the blue bar. Cells were exposed to 16 µM (A2780 and A549) or 8 µM (MOR) of 

CDDP (C) or 128 µM (A2780 and MOR) or 256 µM (A549) of CBDCA (D), 

respectively. Cell viability was measured by MTT assay at 72 h after treatment. The 

relative percentage of untreated to control was calculated. The black bars represent 

sh-NC, while the blue bars represent sh-GLUL clones. Data are shown as mean value 

±SD. Significance was determined using Student’s t-test (*p < 0.05, **p < 0.01, ***p < 

0.001). 
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4.3.2 GS knockdown led to a decrease in ferrochelatase in all three cell lines 

Differential expression analysis of all quantified proteins was then performed to 

determine the effect of GS knockdown on the proteome of A2780, A549, and MOR cell 

lines. Negative control (NT) and five variants of #1, #2, #3, and #4 were obtained by 

shRNA for each of A2780, A549, and MOR cells, with three replicates per group; 

therefore, 15 samples were obtained for each cell type. Following preprocessing and 

missing value filtering using the k-Nearest Neighbors (kNN) algorithm (k = 5), A2780, 

A549, and MOR cells identified 6172, 5715, and 5433 quantifiable proteins, 

respectively
130

. Thresholds for significance were defined as an absolute fold change 

greater than 1.5 or less than 0.67 and a p-value of less than 0.05 by t-test (Figure S3). 

A2780 had 213 upregulated and 174 downregulated proteins; A549 had 142 upregulated 

and 114 downregulated proteins; MOR had 810 upregulated and 164 downregulated 

proteins. Among them, 42 upregulated proteins and 13 downregulated proteins were 

shared by more than two cell lines (Figure 4-2A; Figure 4-2B).  

Among the three cell types, we observed a significant increase in the expression of 

two proteins. One of these proteins is Rab-like protein 6 (RABL6), which is known to 

be an oncogene associated with tumor development and may contribute to drug 

resistance in cancer. The other protein is oxygen-dependent coproporphyrinogen-III 

oxidase (CPOX), which serves as the sixth enzyme in the heme synthesis pathway 

(Figure 4-3A, B, C). Conversely, there was a notable decrease in the expression of 

ferrochelatase (FECH), an enzyme downstream of CPOX and the rate-limiting enzyme 

in the conversion of protoporphyrin to heme. Given these findings, we focused our 

attention on the heme synthesis pathway since two of the differentially expressed 

proteins among the three cell types are enzymes in this pathway. The upstream enzymes, 

such as CPOX, were more frequently expressed in the GS knockdown cell lines, 

whereas FECH expression was reduced (Figure 4-2A, B; Figure 4-3D, E). This 

observed pattern in enzyme expression suggests a potential accumulation of 

protoporphyrin and a reduction in heme synthesis when GS expression is inhibited. 

Overrepresentation analyses indicated that the upregulated common proteins were 

significantly associated with cancer-associated molecular pathways, such as the positive 

regulation of I-κB kinase/NF-κB signaling and innate immune response. In contrast, 
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drug-responsive proteins were downregulated in GS knockdown cell lines  (Figure 

4-2C; Figure 4-2D). 
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Figure 4-2 Differential expression analysis of proteomic data 

(A) Venn diagram representing proteomics data of upregulated proteins among three 

cell lines. (B) Venn diagram representing proteomics data of downregulated proteins 

among three cell lines. (C) Bar graph representing overrepresentation analysis results of 

42 upregulated proteins common to more than two cell lines by Gene Ontology (GO) 

biological process. The abscissa represents the number of enrichment factors (p.adjust < 

0.005); the ordinate represents the enrichment items. (D) Bar graph representing 

overrepresentation analysis results of 13 downregulated proteins common to more than 

two cell lines by GO biological process. The condition was the same as in C. 
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Figure 4-3 Expression of enzymes in heme biosynthesis pathway in cell lines 

(A, B, C)The black texts indicate metabolites, the blue texts indicate the name of 

the gene corresponding to the metabolic enzyme, the red box represents upregulated 

enzyme, and the blue box represents downregulated enzyme. (D, E) The negative 

control is represented by the black bar, and the viability of GS knockdown cell lines is 

represented by the blue bar. The vertical axis represents protein abundance for CPOX 

and FECH. Data are shown as mean value +SD. Significance was determined using 

Student’s t-test (*p < 0.05, **p < 0.01, ***p < 0.001). 
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4.3.3 Total glutathione increased after GS knockdown in all three cell lines 

In 
13

C flux experiment, negative control and four types of shGLUL in A2780, A549, 

and MOR cell lines were exposed to 
13

C5-labeled glutamine for 1, 3, 6, and 12 h, and 

intracellular and extracellular metabolites were measured. To focus on the central 

carbon metabolites that contain the glutamine pathway, CE-TOF/MS was used for 

detection in positive and negative modes. 

To evaluate the metabolic information of the different 
13

C-glutamine fluxes, a 

pairwise comparison between GLUL knockdown groups and control groups was 

performed using orthogonal partial least squares discriminant analysis (OPLS-DA) 

(Figure 4-4). Q2Y were all higher than 0.5, indicating that the OPLS-DA model 

established in this study had goodness-of-fit and prediction ability (Figure 4-4A, B, C). 

The S-plot displays the detected metabolites, where the axis plotted from the prediction 

component was the covariance p[1] against the correlation p(corr)[1]. Metabolites with 

variable influence on projection (VIP) >1 strongly contributed to the observed 

differences among groups. Therefore, the red and blue dots in the figure are the 

differential substances of A2780, A549, and MOR cell lines (Figure 4-4D, E, F). 

Metabolites were selected according to the criterion of VIP >1 and p-value <0.05, 

which differed between control and shGLUL groups of three cell lines by OPLS-DA 

analysis (Table 4-1, 2, 3). In A2780, gamma-aminobutyric acid (GABA) was 

significantly upregulated, whereas cysteine (Cys) and glycine (Gly), two amino acids 

involved in GSH synthesis, were significantly changed (Table 4-1). A549 cells showed 

significant changes in glutamate metabolism and GSH metabolism pathways (Table 4–

2). A significant decrease was seen in MOR cells in the number of isotope-labeled 

glutamines (+01 ~ +05). This indicated that glutamine synthesis was downregulated. In 

addition, metabolites from the urea cycle, TCA cycle, and arginine metabolic pathway 

were found to be significantly downregulated in MOR cells (Table 4–3).  

Figure 4–5 illustrates changes in glutamine-related metabolic pathways resulting 

from a comprehensive analysis of proteomics and metabolomics profiling of the GS 

knockdown in A2780, A549, and MOR cell lines. Enzymes involved in purine and 

pyrimidine metabolic pathways responsible for nucleotide degradation to nucleosides 

were upregulated in MOR cells after GLUL knockdown, while they were 
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downregulated in A549 and A2780 cells. Additionally, GSH levels increased 

significantly in A549 and MOR cells, while the oxidized state of GSSG was elevated in 

A2780 cells, likely due to an increase in glutathione peroxidase (Figure 4-5A, B, C; 

Figure 4-6 A, B). 

However, the metabolic responses of these three cells differed considerably, 

making it challenging to identify any significant similarities. This is most likely because 

the basal expression levels of GS in the three cells varied greatly. In particular, the 

metabolic response of MOR cells was very different from that of the other cells. 
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Figure 4-4 Differential expression analysis of metabolic data 

(A, B, C) Score plot in the OPLS-DA model. In the score plot, the yellow text 

represents negative control, the purple text represents the shGLUL sample. 1, 3, 6, and 

12 h represent the duration of isotope labeling. (D, E, F) In S-plot, the dot represents 

each individual metabolite or isotope-labeled metabolite. The farther a dot departs from 

the X and Y axes, the more the contribution to shGLUL samples and negative control. 

Among them, metabolites with VIP greater than 1 were considered crucial. VIP, a 

crucial variable, is a projection. Red dots in the S-plot represent the metabolites with 

VIP greater than 1 and increased in shGLUL samples, and blue dots represent the 

metabolites with VIP greater than 1 and reduced in shGLUL samples. Where R2X and 

R2Y, respectively, represent the percentages of X and Y matrix information explained 

by the PLS-DA model, whereas Q2Y is calculated through cross-validation to evaluate 

the prediction ability of the model. The larger the Q2Y, the better the prediction effect of 

the model. 
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Table 4-1 Metabolites that significantly change in shGLUL A2780 

ID p-value VIP change 

GABA(+01) 0.000144 3.181984 increase 

Cys 0.008948 2.716405 decrease 

Isocitrate 0.014288 2.810726 increase 

GABA 0.024424 2.072594 increase 

His(+01) 0.041861 1.794719 decrease 

Gly 0.049798 1.959492 increase 

 

Table 4-2 Metabolites that significantly change in shGLUL A549 

ID p-value VIP change 

Gln(+02) 0.017336 2.296228 increase 

Asn(+05) 0.02089 2.228786 decrease 

Gln(+05) 0.041441 2.104193 increase 

gamma-Glu-cys(+02) 0.041861 1.982619 decrease 

2-Oxoglutarate 0.049678 1.518982 increase 

 

Table 4-3 Metabolites that significantly change in shGLUL MOR 

ID p-value VIP change 

Gln 1.34E-08 2.454  decrease 

Gln(+02) 2.19E-08 2.450  decrease 

Gln(+03) 1.78E-07 2.411  decrease 

Gln(+01) 7.58E-07 2.339  decrease 

Ornithine 1.85E-05 2.140  decrease 

Citrate(+04) 1.03E-04 1.913  decrease 

Ornithine(+01) 2.55E-04 1.952  decrease 

Acetyl CoA 0.001  1.792  decrease 

Malate(+04) 0.002  1.842  decrease 

cis-Aconitate(+04) 0.003  1.509  decrease 

Arg(+01) 0.005  1.591  decrease 

Fumarate(+04) 0.007  1.643  decrease 

Arg 0.007  1.532  decrease 

Citrate(+05) 0.008  1.627  decrease 

Arg(+02) 0.010  1.494  decrease 

Citrate(+03) 0.010  1.443  decrease 
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ID p-value VIP change 

Urea 0.010  1.587  decrease 

Thr 0.013  1.524  decrease 

Thr(+01) 0.014  1.493  decrease 

Gln(+04) 0.017  1.503  decrease 

Gln(+05) 0.021  1.463  decrease 

Lys 0.028  1.366  decrease 

Citrate(+02) 0.030  1.143  decrease 

Asn 0.031  1.288  decrease 

cis-Aconitate(+03) 0.034  1.102  decrease 

Asn(+01) 0.034  1.243  decrease 

Lactate(+03) 0.036  1.069  decrease 

cis-Aconitate(+05) 0.038  1.289  decrease 

Ser(+02) 0.042  1.332  decrease 

Fumarate(+02) 0.045  1.169  decrease 

Malate(+02) 0.046  1.180  decrease 

His(+02) 0.050  1.131  decrease 
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Figure 4-5 Differences in the expression of metabolites and enzymes in central 

carbon metabolism pathways 

(A, B, C) Metabolic profiles of A2780, A549 and MOR cell lines, respectively. The 

red and blue texts indicate the increase and decrease of metabolites, respectively. The red 

triangle pointing up represents the upregulated enzymes and the blue triangle pointing 

down represents the downregulated enzymes. 
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Figure 4-6 Glutathione levels increased slightly after GS knockdown in all three cell 

lines 

(A, B) Cells were incubated with medium containing glutamine isotopically labeled 

at all five carbon atoms (13C5-glutamine) for 1 h, 3 h, 6 h and 12 h. Carbon fluxes from 

glutamine to GSH and GSSG were the sum of all time periods, shGLUL was the 

average of # 1 ~ # 4. Each bar color corresponds to the number of 13C replaced with 12C 

in the metabolites. 
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4.4 Discussion 

In previous studies, high GS expression was linked to cancer cell proliferation and 

a poor prognosis, so inhibiting GS expression has been proposed as a possible treatment 

for cancer
83,119,131

. For example Ye et al. and Furusawa et al. successfully inhibited the 

growth of gastric and ovarian cancer tumors in mice by inhibiting glutamine 

transporters ASCT2 and GS
93,132

. However, limited research has been conducted on GS 

as a potential target for glutamine metabolism cancer therapy. This is mainly attributed 

to studies that have highlighted potential concerns associated with GS inhibition, 

including resistance to multiple anticancer drugs with diverse mechanisms or 

heightened inflammatory responses
93,110,112

. Nonetheless, our initial hypothesis in 

investigating GS was based on its potential versatility and significant impact on 

metabolism and signaling pathways. 

The results of Chapter 3.1 revealed that GS knockdown increased resistance to 

anticancer drugs (Figure 4-1). Proteomic analysis revealed that GS knockdown 

activated the NF-κB pathway and the immune response, whereas drug response was 

inhibited (Figure 4-2C; Figure 4-2D). These findings suggested that GS was 

downregulated in cancer cells, making them more aggressive and resistant to anticancer 

drugs.  

The proteomic analysis revealed interesting findings in the GS knockdown cell lines. 

Specifically, we observed a consistent increase in CPOX levels, along with a uniform 

decrease in FECH levels within the heme biosynthesis pathways (Figure 4-2A, B; Figure 

4-A, B, C). These changes indicated an upregulation of the porphyrin metabolism 

pathway, leading to the accumulation of porphyrins, while the downregulation of FECH, 

a key enzyme in heme synthesis, potentially resulted in a reduction in heme production. It 

has been reported that inhibiting FECH can cause iron overload in lysosomes, 

subsequently enhancing oxidative stress and triggering lipid peroxidation, ultimately 

leading to ferroptosis
133

. Moreover, previous studies have linked ferroptosis to 

mitochondrial glutaminase (GLS2) and cystine/glutamate transporter (SLC7A11)
134,135

, 

both of which are metabolically associated with GS. Building upon these findings, our 

results suggest that GS may exert a positive influence on ferroptosis through the 

regulation of FECH in cancer cells. However, further experimental investigations and 
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measurements are required to validate this hypothesis. While GS generally promotes cell 

proliferation, it may also induce cell death through mechanisms such as FECH regulation. 

What GS does to promote cancer cell growth has been shown to activate the P38 

MAPK signaling pathway and increase purine nucleotide synthesis
136-138

. Glutamine 

provides amide and amino nitrogen for purine and pyrimidine synthesis, and each 

shGLUL cell line can influence the activities of purine and pyrimidine metabolism 

enzymes
139

. However, their manifestations vary for each cell line. According to Figure 

4-5, enzyme expression in the purine and pyrimidine metabolic pathways was 

upregulated in MOR cells following GLUL knockdown whereas it was downregulated 

in A549 and A2780 cells. We hypothesized that this was due to a large difference in the 

basal expression of GS, for example, MOR cells had 500 times more GS expression 

than A2780 cells. 

Interestingly, we observed similarities in the glutamine pathways among these 

three cell lines. As depicted in Figure 4-6, the total production of GSH or its oxidized 

form GSSG increased when GS was knocked down. GSH plays a crucial role as a key 

component of the cellular antioxidant defense system against ROS and electrophiles. 

Firstly, it has been established that GSH can enhance drug resistance in cancer cells
140

. 

Secondly, recent studies have indicated a connection between glutathione metabolism 

and ferroptosis
141

. Cao et al. demonstrated that the sensitivity of cells to 

glutathione-dependent ferroptosis is influenced by the total glutathione levels and the 

maintenance of intracellular GSH, which partially protects cells from the impact of 

ferroptosis
142

. Notably, the elevated levels of total glutathione and inhibition of heme 

synthesis, as observed in our study, suggest a potential direction of GS inhibition 

towards reducing vulnerability to ferroptosis. However, further research is necessary to 

establish a definitive association between ferroptosis and GS. 

4.5 Conclusions 

Despite its controversial role, GS is not currently recognized as a cancer biomarker. 

While it can act as a nutritional supplement in cases where glutamine is required, 

inhibiting GS has been shown to halt the growth of cancer cells. However, recent 

investigations have gradually revealed an association between GS and cancer drug 

resistance. Our study suggests that GS affects a wide range of metabolic pathways, 
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including the heme synthesis pathway, the glutamine pathway, and the purine and 

pyrimidine pathways. Additionally, it may also be linked to ferroptosis. Perturbations in 

these metabolic pathways may contribute to cancer drug resistance and initiate other 

functions that hinder effective cancer therapy. Consequently, we believe that GS has the 

potential to serve as a crucial monitoring target for evaluating malignancy levels and 

trends in disease progression.  
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Chapter 5 Concluding remarks 

This article presents several studies exploring the applications of metabolomics 

and proteomics analyses in evaluating the biological effects of drugs, including 

chemotherapeutic agents and traditional herbal medicines. Metabolomics focuses on the 

analysis of small molecules and is highly valuable in understanding candidate drugs and 

aiding target selection. Central carbon metabolism serves as the primary energy source 

and precursor for other metabolic pathways, making it crucial in all living organisms. 

Therefore, the study of metabolite expression related to central carbon metabolism and 

amino acid metabolism holds significant importance. CE-MS was employed in this 

research as it enables the simultaneous qualitative and quantitative characterization of 

most substances within the central carbon metabolic pathway. 

In Chapter 2, a comprehensive evaluation of 416 polar small-molecule metabolites 

from 30 Chinese medicinal materials was performed using CE-MS-based metabolomics. 

The study aimed to analyze the molecular-level aspects of the "Four-nature" principle, a 

fundamental concept in TCM. Among more than half of the Chinese herbal medicines, 

193 compounds were identified, and the concentrations of 5-dihydroxybenzoate, 

2-hydroxyvalerate, N-acetylglucosamine, and uracil were significantly higher in cold 

herbs compared to hot herbs (p < 0.01). In contrast, L-glutamine concentration was 

significantly higher in hot herbs than in cold herbs (p < 0.01). PCA revealed a stronger 

association between amino acid content and cold herbs. The Tanimoto coefficient was 

then used to calculate the similarity between the detected compounds, followed by 

cluster analysis to group similar molecules and compare their contents. The findings 

indicated that nucleoside metabolites tended to be more abundant in hot herbs. 

Extracellular nucleosides have previously been associated with immunity and 

inflammation. The work of Liang et al. suggests a correlation between hot-nature herbs 

and the regulation of inflammation and immunity through pathways such as MAPK, 

TNF, IL8, TLR, and HTR
69

. In addition, hot herbs had a higher frequency of purine-like 

chemical fragments, particularly those with a double-ring structure 
69

. This suggests that 

hot herbs may promote immune and inflammatory regulation through nucleoside 

analogs. It is important to note that the different energetic properties of hot, warm, cold, 
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and cool herbs are not solely determined by a single chemical molecule or class, but 

rather by the combined action of all components, known as molecular groups
143

. 

Understanding the mechanisms of drug resistance is crucial to overcome one of the 

major challenges in chemotherapy. In Chapter 3, the study focused on detecting 

qualitative and quantitative information on 189 metabolites in CDDP-sensitive ovarian 

cancer A2780 cells and CDDP-resistant A2780cis cells. The results revealed 

significantly increased levels of glutamine, glutamate, and GSH in A2780cis cells. 

Therefore, the study emphasizes the importance of glutamine metabolism in drug 

resistance. Cell experiments further confirmed that both glutamine starvation and 

hindrance could reduce GSH levels and CDDP resistance in A2780cis cells. 

Interestingly, GS expression was completely inhibited in A2780cis cells. Increasing GS 

expression through the use of 5-Aza-dC resulted in decreased CDDP resistance, while 

GS knockdown using siRNA techniques increased CDDP resistance. Taken together, 

these results suggest a model in which suppressed GS expression in resistant cells leads 

to high levels of GSH, while levels of TCA cycle metabolites are reduced compared to 

sensitive cells. Therefore, the study suggests that GS expression may be one of the 

factors to monitor the development of CDDP resistance. Previous studies have indicated 

that CG island methylation and gene silencing are associated with CDDP resistance in 

ovarian cancer cell lines. In a study by Li et al. significant changes in DNA 

methyltransferase proteins of A2780 resistant cell lines were observed, indicating the 

inhibitory effects of methylation on many factors
144

. Therefore, in addition to GS, 

several other factors influence CDDP resistance in A2780cis cells. 

In Chapter 3, the study highlights the role of GS and glutamine metabolism in 

influencing CDDP resistance in ovarian cancer cell lines. Consequently, Chapter 4 

aimed to investigate the functional aspects of GS by constructing human ovarian cancer 

A2780 cells, small-cell carcinoma A549 cells, and MOR cell lines with GS inhibited by 

shRNA. Knockdown of GS resulted in decreased resistance to platinum drugs in all 

three cell lines, validating the findings of Chapter 3. Metabolomic analysis revealed 

distinct glutamine metabolism trends upon GS knockdown in the three cell types. At the 

proteomic level, downregulation of GS activated the NF-κB pathway and the immune 

response, while inhibiting the cell response to drugs. In the shGS cell line, all three cell 

lines showed upregulation of CPOX and downregulation of FECH in the porphyrin 
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metabolic pathway. FECH acts as a rate-limiting enzyme involved in the conversion of 

protoporphyrin to heme, and GS knockdown resulted in reduced FECH expression 

which is believed to hinder heme synthesis 
145

. At the metabolomic level, GS 

knockdown showed different trends in purine and pyrimidine metabolism in the three 

cell lines, although all three cell lines showed upregulation of GSH synthesis. 

Ferroptosis, an alternative apoptotic process, is characterized by glutathione depletion 

and release of free iron from heme. Evidence suggests that inhibition of GS promotes 

GSH production and decreases heme production, potentially leading to a reduction in 

ferroptosis
146

. However, the relationship between GS and ferroptosis requires further 

investigation. For example, measuring the extent of lipid peroxidation after GS 

knockdown may provide additional evidence in this regard. 

Chapter 2 of this research contributes novel perspectives to the existing literature 

on the "hot and cold-natured" categorization in TCM. The study not only verifies the 

feasibility of using CE-TOF/MS to detect metabolites in herbal medicine, but also 

developed a method to analyze herbal metabolites by comparing molecular similarity 

and MS quantitative data. From our understanding, this is the first study to combine 

molecule fragments and mass spectrometry quantification to study herbal medicine. 

Small-molecule drugs have a long history of development, and plants have been a 

treasure trove for the discovery of such drugs, while some low-weight molecules less 

than 300 daltons have the advantage of high binding efficiency, although their 

pharmacological activity may be weak. In modern small-molecule drug discovery, the 

fragment-based drug discovery approach refers to the discovery and development of 

new drugs by screening small-molecule fragments with weak interactions with target 

proteins using nuclear magnetic resonance, surface plasmon resonance, and X-ray single 

crystal diffraction analysis, and later optimizing the active fragments based on their 

structural information. The development of new small-molecule drugs can benefit from 

the use of CE-TOF/MS to investigate the efficacy of traditional Chinese herbal remedies 

at the molecular level. 

Even though drug resistance has been widely studied, the present study identified 

new targets for resistance inhibition from a metabolic perspective. In Chapter 3, it 

confirms GS as a regulator of CDDP resistance in ovarian cancer cell lines, which opens 

a way for future research to consider the solution of drug resistance by metabolic 
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inhibitors. GS, known as a rate-limiting enzyme in glutamine synthesis, has 

predominantly been viewed as a potential target for cancer therapy. However, our study 

highlights some negative implications associated with GS. Chapter 4 focuses on the 

functional analysis of GS using proteomics and metabolomics approaches. The results 

show that the association between GS and drug resistance is consistent across different 

species of cancer cell lines. Moreover, the study reveals potential negative consequences, 

such as the inhibition of ferroptosis in cancer cells. Preclinical research has a risk 

component that focuses primarily on the mechanism of action of the drug. The 

discovery of pharmacological targets will have a significant impact on the longevity of 

the drug if it underestimates the biological complexity or ignores the pleiotropic nature 

of the targets.  Clarity of the upstream and downstream pathways of the target is 

critical for the development of novel drugs targeting metabolic enzymes. Therefore, 

metabolomics and proteomics methods are very useful for elucidating the mechanism of 

drug action and exploring drug targets, and may be suitable for multi-factorial 

personalized medical applications in the future. 
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Supplementary Materials 

 

Figure S1 Metabolic flux analysis using isotopically labelled glutamine in A2780 

and A2780cis cells in Chapter 3 

Isotopologue distribution of metabolites in A2780 and A2780cis cells. Cells were 

incubation with medium containing glutamine isotopically labeled at all five carbon 

atoms (
13

C5-glutamine) for the indicated time periods. Carbon fluxes from glutamine to 

TCA cycle metabolites were determined using CE-TOF/MS. Each bar color corresponds 

to the number of 
13

C replaced with 
12

C in the metabolites. Data are shown as the mean ± 

SD of the three independent experiments. See also Figure 2-2. 
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Table S1 Primer sequences used for RT-PCR analysis in Chapter 3 

GS Forward：5‘ AGGGTTAAAGAGGGCAACCC 3’ 

 Reverse：5’ GAGGTGGTCATGGTGGAAGG 3’ 

GLUD1 Forward：5‘GGGAGGTCATCGAAGGCTAC 3’ 

 Reverse：5’ TCACATCAGTGCTGTAACGGA 3’ 

GCLC Forward：5’ GTTCTCAAGTGGGGCGATGA 3’ 

 Reverse：5’ TTCTCCCCAGACAGGACCAA 3’ 

GSS Forward：5’ GAACCGTTCGCGGAGGAAA 3’ 

 Reverse：5’ TATCCTGCAAGAGGCTCCCC 3’ 

GSTP1 Forward：5’ GAGGACCTCCGCTGCAAATA 3’ 

 Reverse：5’ CAGCAGGGTCTCAAAAGGCT 3’ 

β-actin  Forward：5’ CCAGCCTTCCTTCCTGGGCATGG 3’ 

 Reverse：5’ TTGGCGTACAGGTCTTTGCGGAT 3’ 

GLS Forward：5’ TAGCTTGGAAGATTTGCTGT 3’ 

 Reverse：5’ CCTGTAGATTTGAGTGCTGT 3’ 

RPL27 Forward：5’ CTGTCGTCAATAAGGATGTCT 3’ 

 Reverse：5’ CTTGTTCTTGCCTGTCTTGT 3’ 
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Table S2 Metabolites with significant differences in expression between 

A2780 and A2780cis cells in Chapter 3 

The levels of 189 metabolites in A2780 and A2780cis cells in the presence of 

glutamine were determined via CE-TOF/MS using 513 metabolite standards. The levels 

of 50 metabolites in A2780cis cells were at least 2.0-fold higher than those in A2780 

cells, whereas those of 8 metabolites were lower by 0.5-fold or less than those in A2780 

cells (n=3). Statistical significance was determined using the Students’ t test (p<0.05). 

See also Figure 3-1C. 

 
Fold 

(A2780cis/A2780) 

Average 

(fmol/cell) 

(A2780) 

Average  

(fmol/cell) 

(A2780cis) 

p valve 
 

Gln 88.62 0.026 2.317 7.20E-04 Up 

Glycerophosphorylcholine 13.82 0.208 2.871 1.41E-04 Up 

Urea 8.92 0.447 3.993 8.41E-04 Up 

Asp 8.12 0.145 1.179 2.08E-06 Up 

o-Acetylcarnitine 5.69 0.233 1.328 4.56E-05 Up 

Carnitine 5.52 0.007 0.038 1.52E-06 Up 

Choline 5.31 0.010 0.055 2.62E-03 Up 

Glycerophosphate 5.12 0.126 0.644 1.34E-03 Up 

Ala 4.91 1.384 6.794 1.56E-03 Up 

4-Oxopentanoate 4.83 0.037 0.180 2.06E-02 Up 

GABA 4.69 0.044 0.206 3.01E-03 Up 

Hypotaurine 4.54 0.142 0.647 2.68E-06 Up 

beta-Ala 4.36 0.107 0.467 3.86E-04 Up 

Taurine 4.31 0.391 1.686 4.26E-03 Up 

Kynurenine 4.27 0.007 0.030 1.83E-03 Up 

Ophthalmate 4.05 0.001 0.003 3.59E-02 Up 

Creatinine 3.94 0.016 0.064 1.14E-02 Up 

G1P 3.75 0.032 0.120 2.79E-03 Up 

alpha-Aminoadipate 3.68 0.005 0.019 4.43E-04 Up 

3-Hydroxybutyrate 3.61 0.049 0.177 2.25E-03 Up 

Glu 3.37 2.953 9.962 6.15E-05 Up 

Glycolate 3.31 0.070 0.233 4.41E-02 Up 

Glutathione (GSH) 3.11 1.179 3.667 6.97E-05 Up 

gamma-Butyrobetaine 3.09 0.009 0.027 2.55E-04 Up 

threo-beta-methylaspartate 2.95 8.221 24.259 3.54E-04 Up 

GDP 2.90 0.004 0.012 2.07E-02 Up 
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Fold 

(A2780cis/A2780) 

Average 

(fmol/cell) 

(A2780) 

Average  

(fmol/cell) 

(A2780cis) 

p valve 
 

Val 2.89 0.117 0.339 3.22E-03 Up 

trans-Cinnamate 2.87 0.227 0.650 4.83E-03 Up 

Azelate 2.84 0.009 0.026 1.81E-03 Up 

Cysteine sulfinate 2.82 0.036 0.103 5.86E-03 Up 

2-Hydroxybutyrate 2.77 0.016 0.045 6.85E-03 Up 

Met 2.60 0.079 0.206 1.62E-06 Up 

Pro 2.57 1.060 2.721 6.38E-05 Up 

Nicotinamide 2.56 0.011 0.028 2.87E-04 Up 

Ornithine 2.45 0.117 0.286 2.26E-03 Up 

Carnosine 2.42 0.002 0.006 2.04E-02 Up 

Carbamoyl phosphate 2.41 0.453 1.091 1.29E-03 Up 

N-gamma-ethylglutamine 2.37 0.003 0.006 4.51E-04 Up 

Thiamine 2.36 0.003 0.007 8.29E-03 Up 

Betaine 2.35 0.045 0.105 1.53E-04 Up 

CDP 2.29 0.006 0.013 2.46E-02 Up 

Creatine 2.23 1.055 2.347 5.70E-04 Up 

Leu 2.22 0.415 0.922 5.58E-05 Up 

Syringate 2.20 0.077 0.169 1.13E-02 Up 

Phe 2.13 0.094 0.201 3.49E-05 Up 

2AB 2.11 0.021 0.045 4.23E-03 Up 

Thr 2.06 0.484 0.996 8.89E-05 Up 

NADP+ 2.05 0.005 0.010 3.13E-02 Up 

ADP 2.03 0.131 0.266 4.07E-05 Up 

Lactate 2.01 11.655 23.389 2.92E-04 Up 

N-Acetylputrescine 0.48 0.025 0.012 7.41E-03 Down 

SAM+ 0.43 0.038 0.016 1.90E-03 Down 

N-Acetylglucosamine 

6-phosphate 
0.37 0.113 0.042 1.37E-02 Down 

Argininosuccinate 0.34 0.043 0.015 1.36E-05 Down 

Arg 0.28 0.819 0.231 7.33E-03 Down 

Ser 0.22 0.675 0.151 2.91E-04 Down 

Cystathionine 0.10 0.558 0.057 4.90E-05 Down 

2-Hydroxyglutarate 0.05 0.127 0.007 1.09E-04 Down 
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Table S3 Metabolites with significant differences in expression between 

A2780 and A2780cis cells in the presence of glutamine in Chapter 3 

The levels of 77 metabolites in A2780 and A2780cis cells were determined via 

CE-TOF/MS using 114 metabolite standards. The levels of 28 metabolites in A2780cis 

cells were at least 1.5-fold higher than those in A2780 cells, whereas those of 7 

metabolites were lower by 0.67-fold or less than those in A2780 cells (n=3). Statistical 

significance was determined by Students’ t test (p<0.05). See also Figure 3-3A. 

 
Fold 

(A2780cis/A2780) 

Average  

(fmol/cell) 

(A2780) 

Average  

(fmol/cell) 

(A2780cis) 

p value 
 

Gln 31.67 0.139 4.400 5.26E-04 Up 

Val 29.52 0.017 0.512 3.07E-05 Up 

Ala 13.51 0.944 12.753 2.53E-04 Up 

Asp 11.90 0.157 1.865 4.86E-04 Up 

Met 11.67 0.028 0.322 4.94E-03 Up 

Phe 10.40 0.029 0.303 1.84E-04 Up 

F1,6P 10.23 0.052 0.530 1.33E-03 Up 

Glutathione (GSH) 9.97 0.885 8.816 1.52E-04 Up 

Lys 9.17 0.019 0.171 3.45E-03 Up 

G6P 6.71 0.018 0.123 3.94E-03 Up 

F6P 5.34 0.006 0.034 2.74E-02 Up 

Glu 3.58 6.191 22.182 4.55E-05 Up 

GABA 3.56 0.123 0.439 1.38E-05 Up 

G1P 3.50 0.068 0.236 2.83E-03 Up 

Cysteine sulfinate 3.28 0.041 0.135 2.86E-03 Up 

Thr 2.97 0.535 1.589 7.54E-06 Up 

CoA 2.85 0.005 0.015 1.83E-02 Up 

Hypotaurine 2.56 0.666 1.705 6.26E-06 Up 

Fumarate 2.55 0.073 0.185 9.49E-03 Up 

ATP 2.32 1.826 4.240 4.88E-02 Up 

Malate 2.30 0.307 0.707 5.18E-03 Up 

DHAP 2.26 0.017 0.039 1.61E-02 Up 

Pyruvate 2.18 0.346 0.755 5.88E-03 Up 

Leu 2.12 0.731 1.546 3.49E-04 Up 

Glycerophosphate 1.77 0.546 0.968 2.21E-02 Up 

Taurine 1.67 0.440 0.737 4.37E-03 Up 

Ile 1.66 0.985 1.632 2.46E-05 Up 
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Fold 

(A2780cis/A2780) 

Average  

(fmol/cell) 

(A2780) 

Average  

(fmol/cell) 

(A2780cis) 

p value 
 

PEP 1.55 0.021 0.033 1.40E-02 Up 

Gly 0.58 17.570 10.164 2.18E-04 Down 

Citrulline 0.55 0.127 0.070 2.44E-03 Down 

Lactate 0.55 26.650 14.583 3.68E-04 Down 

Ser 0.36 0.666 0.240 2.70E-04 Down 

Cystathionine 0.24 0.606 0.145 3.38E-04 Down 

Arg 0.20 4.333 0.882 1.65E-03 Down 

2-Hydroxyglutarate 0.17 0.156 0.026 4.85E-02 Down 
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Table S4 Metabolites with significant differences in expression between 

A2780 and A2780cis cells under glutamine starvation in Chapter 3 

The levels of 63 metabolites in A2780 and A2780cis cells in the absence of 

glutamine were determined via CE-TOF/MS using 114 metabolite standards. The levels 

of 10 metabolites in A2780cis cells were at least 1.5-fold higher than those in A2780 

cells, whereas those of 8 metabolites were lower by 0.67-fold or less than those in 

A2780 cells (n=3). Statistical significance was determined by the Students’ t test 

(p<0.05). See also Figure 3-3A. 

 

Fold 

(A2780cis/A2780) 

Average 

(fmol/cell) 

(A2780) 

Average 

(fmol/cell) 

(A2780cis) 

p value 
 

Hypotaurine 9.78 0.220 2.151 1.38E-06 Up 

Ala 7.93 0.417 3.306 3.64E-05 Up 

Glutathione (GSH) 5.31 0.866 4.602 1.27E-02 Up 

Creatine 4.98 4.520 22.521 3.13E-05 Up 

Taurine 4.57 0.336 1.535 2.26E-03 Up 

GABA 2.7 0.156 0.423 2.07E-04 Up 

beta-Ala 2.58 0.200 0.517 2.61E-04 Up 

Glycerophosphate 2.37 0.885 2.096 2.46E-02 Up 

Glu 1.93 4.570 8.814 1.20E-02 Up 

CDP 1.64 0.032 0.052 3.13E-02 Up 

Citrulline 0.63 0.119 0.076 2.42E-02 Down 

Gly 0.57 50.721 29.114 3.76E-02 Down 

Tyr 0.55 1.677 0.928 4.62E-02 Down 

S7P 0.34 0.164 0.056 2.74E-03 Down 

Cystathionine 0.3 0.351 0.104 2.15E-02 Down 

3PG 0.3 0.181 0.054 8.60E-03 Down 

2-Hydroxyglutarate 0.27 0.211 0.058 3.67E-02 Down 

Trp 0.23 0.362 0.083 1.73E-02 Down 
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Table S5 Metabolites significantly changed under glutamine starvation in 

A2780 cells in Chapter 3 

The levels of 70 metabolites in A2780 cells in the presence (Gln+) or absence 

(Gln-) of glutamine were determined via CE-TOF/MS using 114 metabolite standards. 

The levels of 27 metabolites in the absence of glutamine were at least 1.5-fold higher 

than those in the presence of glutamine, whereas those of 5 metabolites were lower by 

0.67-fold or less than those in the presence of glutamine (n=3). Statistical significance 

was determined using the Students’ t test (p<0.05). See also Figure 3-3A. 

 

Fold 

 (Gln-/Gln+) 

Average 

(fmol/cell) 

(Gln+) 

Average  

(fmol/cell) 

(Gln-) 

p value 
 

Val 102.13 0.017 1.773 2.41E-02 Up 

Lys 91.96 0.019 1.719 3.40E-02 Up 

F1,6P 46.24 0.052 2.397 9.80E-03 Up 

Phe 45.25 0.029 1.318 1.94E-02 Up 

Met 38.60 0.028 1.064 1.77E-02 Up 

DHAP 24.45 0.017 0.424 3.85E-02 Up 

Ru5P 13.78 0.010 0.138 2.27E-02 Up 

IMP 11.29 0.009 0.101 1.15E-02 Up 

Thr 10.81 0.535 5.781 1.29E-02 Up 

GTP 9.81 0.212 2.079 2.34E-02 Up 

S7P 8.29 0.020 0.164 5.83E-03 Up 

G1P 6.68 0.068 0.452 1.01E-03 Up 

G6P 6.34 0.018 0.117 8.14E-04 Up 

Ser 5.14 0.666 3.422 1.09E-02 Up 

Leu 4.66 0.731 3.403 2.96E-02 Up 

GDP 4.35 0.024 0.103 1.50E-02 Up 

Carnosine 4.13 0.004 0.016 2.81E-02 Up 

2PG 3.51 0.008 0.029 1.37E-03 Up 

Tyr 3.31 0.507 1.677 2.25E-02 Up 

3PG 3.13 0.058 0.181 2.00E-02 Up 

PEP 2.89 0.021 0.062 1.77E-04 Up 

Gly 2.89 17.570 50.721 1.75E-02 Up 

dTTP 2.70 0.018 0.047 7.76E-03 Up 

SAM+ 2.28 0.019 0.044 1.05E-03 Up 

ADP 2.27 0.257 0.585 3.77E-02 Up 
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Fold 

 (Gln-/Gln+) 

Average 

(fmol/cell) 

(Gln+) 

Average  

(fmol/cell) 

(Gln-) 

p value 
 

AMP 2.23 0.053 0.119 9.58E-05 Up 

Asn 2.21 6.985 15.414 2.96E-02 Up 

Cystathionine 0.58 0.606 0.351 2.48E-02 Down 

Taurine 0.56 0.440 0.247 3.13E-03 Down 

Ala 0.44 0.944 0.417 2.36E-02 Down 

Hypotaurine 0.33 0.666 0.220 2.36E-04 Down 

beta-Ala 0.28 0.716 0.200 1.18E-04 Down 
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Table S6 Metabolites significantly changed under glutamine starvation in 

A2780cis cells in Chapter 3 

The levels of 63 metabolites in A2780cis cells in the presence (Gln+) or absence 

(Gln-) of glutamine were determined via CE-TOF/MS using 114 metabolite standards. 

The levels of 23 metabolites in the absence of glutamine were at least 1.5-fold higher 

than those in the presence of glutamine, whereas those of 9 metabolites were lower by 

0.67-fold or less than those in the presence of glutamine (n=3). Statistical significance 

was determined using the Students’ t test (p<0.05). See also Figure 3-3A. 

 

Fold  

(Gln-/Gln+) 

Average 

(fmol/cell) 

(Gln+) 

Average  

(fmol/cell)  

(Gln-) 

p value 
 

Ser 17.25 0.240 4.138 7.52E-04 Up 

Creatine 5.32 4.233 22.521 8.09E-04 Up 

Lys 3.87 0.171 0.663 1.08E-02 Up 

F1,6P 3.81 0.530 2.021 1.96E-05 Up 

CDP 3.01 0.017 0.052 1.67E-02 Up 

Gly 2.86 10.164 29.114 9.24E-04 Up 

Arg 2.65 0.882 2.336 6.13E-03 Up 

GDP 2.64 0.051 0.135 2.48E-03 Up 

Thr 2.58 1.589 4.103 5.16E-04 Up 

Phe 2.33 0.303 0.705 1.00E-02 Up 

AMP 2.30 0.057 0.130 9.65E-05 Up 

Glycerophosphate 2.16 0.968 2.096 3.10E-02 Up 

Val 2.15 0.512 1.103 8.71E-03 Up 

Taurine 2.08 0.737 1.535 2.15E-02 Up 

2-Hydroxyglutarate 2.05 0.026 0.054 9.45E-03 Up 

ADP 2.02 0.366 0.741 5.52E-05 Up 

Met 1.95 0.322 0.629 7.68E-04 Up 

SAM+ 1.74 0.024 0.043 1.04E-03 Up 

Tyr 1.73 0.537 0.928 7.36E-03 Up 

Glutathione (GSSG) 1.66 1.217 2.024 1.47E-02 Up 

Asn 1.57 6.229 9.782 3.35E-03 Up 

CTP 1.57 0.296 0.465 1.92E-02 Up 

G1P 1.56 0.236 0.369 8.60E-03 Up 

Citrate 0.66 1.035 0.680 3.87E-02 Down 

beta-Ala 0.53 0.981 0.517 6.24E-05 Down 

Glutathione (GSH) 0.52 8.816 4.602 2.21E-03 Down 

cis-Aconitate 0.51 0.051 0.026 2.43E-02 Down 

Fumarate 0.43 0.185 0.079 1.16E-02 Down 

Malate 0.41 0.707 0.292 2.25E-04 Down 

Glu 0.40 22.182 8.814 2.17E-04 Down 
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Fold  

(Gln-/Gln+) 

Average 

(fmol/cell) 

(Gln+) 

Average  

(fmol/cell)  

(Gln-) 

p value 
 

Asp 0.27 1.865 0.495 2.10E-05 Down 

Ala 0.26 12.753 3.306 9.46E-05 Down 
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Figure S2 Evaluate CDDP and CBDCA sensitivity in the cancer cell lines in Chapter 

4 

(A) Effects of CDDP exposure after 48 h on cell viability of A2780, A549, and 

MOR cells, and cell viability was evaluated by MTT assay. The cell doubling time of 

A2780 was faster than that of A549 and MOR, so the seeding number of A2780 was 

4000 cells, and that of A549 and MOR was 8000 cells. The IC50 of A2780, A549 and 

MOR were 2.6 µM, 5.5 µM and 4.0 µM CDDP, respectively. (B) Effects of CBDCA 

exposure after 72 h on cell viability of A549 and MOR cells, and cell viability was 

measured by MTT assay. The IC50 of A549 and MOR was 23.4 µM and 46.3 µM 

CBDCA, respectively. 

  



Supplementary Materials 

99 

 

 

 

Figure S3 Differential expression analysis of three cell lines in Chapter 4 

(A, B, C) Volcano plot showing all quantified proteins distributed by fold change 

and p-value in a log scale (shGLUL over NT). The dashed lines represent the 

significance thresholds. Red triangles represent upregulated proteins and blue squares 

represent downregulated proteins. 
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Figure S4 Heatmap is based on the compounds in the glycolysis pathway from three 

cell lines in Chapter 4 

(A, B, C) Rows represent compounds, and the ordinates represent cell samples. A, 

B, and C are A2780, MOR, and A549 cells, respectively. The black box groups negative 

control cells, and the red box groups shGLUL cell lines. The color key indicates the 

relative concentration of the compound being determined: red, black, and green indicate 

high, intermediate, and low concentrations, respectively. 


