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Abstract

Humans use two universal acoustic communication systems daily: music and (spoken) language.
What are the key features of these two universal acoustic communication forms? And how have music
and language emerged throughout human evolutionary history? This dissertation contributes to these
two long-standing scientific questions.

This dissertation consists of two central chapters, following the overview and background in Chapter
1. In Chapter 2, I provide an extensive review of the studies on the cultural evolution of music and
language. Cultural evolutionary research of music and language has been producing various findings
regarding how music and language evolve empirically, experimentally, and computationally.
However, these two disciplines have developed mostly independently, so this is the first time
contrasting and synthesizing their studies, which provides a more integrated view of how these
communication systems emerged and their potential co-evolving pathways.

Chapter 3 analyzes similarities and differences between song, instrumental music, and speech sampled
from over 60 collaborators whose 1st or heritage languages belong to around 20 language families.
Although it is essential to take into account cultural variations, few studies have undertaken analyses
with a diverse set of languages. Thus, this study provides the most compelling empirical evidence to
date. The analyses identified the three features of pitch height, temporal rate, and pitch stability
exhibiting cross-cultural differences and the two features of timbral brightness and pitch interval size
as cross-cultural similarities between song and speech. Furthermore, the distributions of the three
differentiating features displayed a continuous shift from music to language.

I present potential future directions and proposals about global collaborative research and inclusivity
for the equity of “humanly organized sounds” in Chapter 4, including novel speculation about the
evolutionary origin of music built upon commonalities across non-linguistic vocal communication and
our findings. This dissertation sheds light on what has shaped music and language.
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1. Introduction: Analyzing the diversity and specificity of music and
language as the human communication continuum.

Acoustic communication is widespread in animals (Chen & Wiens, 2020; Kelley, 2022), ranging from
insects (e.g. crickets) to living things under the sea (e.g. whales). Humans can hear sounds in the
frequency range from around 20 Hz to 20,000 Hz, but some species utilize tones even outside of this
range (e.g. mice). We, humans, also considerably draw upon various acoustic communication in our
daily lives, which can be roughly grouped into music and (spoken) language. These two
communication forms are universally present in our societies (Brown, 1991; Mehr et al., 2019).
However, despite their ubiquitous presence in every culture, the striking aspect is that they take very
diverse forms, and some scholars contemplated there are almost no shared properties in every
language and music (Evans & Levinson, 2009; Nettl, 2015). Still, we can reliably identify whether the
uttered sounds are song or spoken language regardless of familiarity with or knowledge about the
given music and language (Albouy et al., 2023). What are the key features of these two universal
acoustic communication forms? And how have music and language emerged in our society throughout
human evolutionary history? This dissertation contributes to these two long-standing scientific
questions.

Although this dissertation focuses on comparing music and (mainly spoken) language, the
other research projects I have completed put more emphasis on the cross-cultural diversity of music.
In particular, I engaged upon reliability analysis of automated music transcription methods to global
musical samples of singing (Ozaki et al., 2021), dominancy of visual or audio in music performance
evaluation in different music traditions (Chiba, Ozaki [co-first author] et al., 2023), and the book
chapter dedicated to the cultural evolution of music (Youngblood et al., 2023; second author). The key
research interest is to advance our understanding of cross-cultural diversity of music. For example, the
first project revealed relatively low reliability of automated music transcription methods for analyzing
traditional songs sampled globally (Ozaki et al., 2021), which suggests more work is expected to
include non-Western corpora in music information retrieval research. The second study found a
potential culturally dependent pattern in which audio or visual is more influential when people assess
the superiority of musical performance (Chiba et al., 2023). Previous research (Mehr et al., 2018;
Tsay, 2013) studied the same psychological effect but with Western music and Western participants
only, and our extended study illustrates music cognition also benefits from performing a replication
study in different cultural settings to gain another interpretation of the preceding results. We used the
Registered Report format in the second study, which takes peer review and decides (in-principle)
acceptance before data are collected and analyzed to prevent researchers from publication bias. This
experience later indeed helped us decide what to publish in the research of Chapter 3 on a more
theoretical basis; otherwise, we would be tempted to hold back the negative result we actually found
even if it still provided meaningful information.

Cross-cultural studies are effective in investigating cultural differences and commonalities of
music, and my primary motivation for embarking on a PhD was to derive scientific insights into such
aspects of music. Since I started my master’s, I have been attracted to the diversity of music and been
intrigued by how we can obtain an organized overview of the universe of music, which led me
pursuing to learn an array of data analysis methods (signal processing, statistical inference, deep
learning, Bayesian modeling, etc.). Encounter with the field of cultural evolution was a fascinating
moment since it seemed the most promising theory explaining the mechanism of the increase in
variation of cultural traits. However, combining the notion of evolution with music brought me
another interest: What if any, is the evolutionary origin of music? What is the ultimate root of this
diversity? We may not be able to know what makes music unique or special if we only study music,
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which is an important aspect when discussing the evolutionary root of music. To answer this question,
we need to understand the specificity of music through comparative analysis with related acoustic
communication.

In the second chapter, I will provide an extensive review of the studies on the cultural
evolution of music and language. It is unlikely that music and language appeared in the current forms
at some point in the past suddenly. Rather, a more plausible scenario is that they have gradually
changed from some initial states to the states nowadays observed, though punctuated changes may
have also happened. Cultural evolution tackles uncovering how and why culture has mutated over
time, and a line of research on the cultural evolution of music and language has been producing
various findings regarding how music and language evolve empirically, experimentally, and
mathematically. However, cultural evolutionary studies of music and language have developed mostly
independently, so this is the first time contrasting and synthesizing the studies of these two fields,
which will provide a more integrated view of how these communication cultures emerged and
potential co-evolving pathways.

The third chapter analyzes similarities and differences between song and speech sampled
from over 60 collaborators whose 1st or heritage languages belong to around 20 language families in
total. Comparative analyses of music and language have been undertaken frequently in various fields.
However, although it is essential to take into account cultural variations of music and languages, few
studies have undertaken analyses with a diverse set of languages like ours. Thus, this study provides
the most compelling empirical evidence to date about the regularities underlying music and language
on the globe. The analyses identified the three features of pitch height, temporal rate, and pitch
stability exhibiting cross-cultural differences and the two features of timbral brightness and pitch
interval size as cross-cultural similarities between song and speech. Furthermore, the additional
analyses including lyrics recitation of the sung song and the instrumental version of the sung melody
in comparison revealed a cross-culturally consistent musi-linguistic continuum (Brown, 2000) in the
distributions of the three differentiating features.

In the final chapter, I will present potential future directions and proposals about global
collaborative research followed by the discussions developed in Chapters 2 and 3. This includes my
speculation about the evolutionary origin of music, which is a novel perspective on the emotive
communication nature of music (Besson & Schön, 2001; Leongómez et al., 2022; Ma et al., 2019).
Debates on the evolutionary nature of music have a long history that we can trace back to Darwin
(1871). Although we have reached a decisive conclusion yet, I hope this chapter can supply some
ideas for the future of this field.
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2. Cultural evolution of music and language1

Abstract
Music and language are both forms of communication universally observed across human
societies, prompting researchers to investigate why and how they evolved. Such research
initially focused on the biological evolution of the capacities to create and perceive language
and music; later work has been increasingly tackling the cultural evolution angle to study the
mechanisms and processes driving the diversity and regularities of music and language. In
this chapter, we review seminal studies of the cultural evolution of music and language. We
group the review into observational studies (e.g., phylogenetic analysis), experimental studies
(e.g., transmission chains), simulation studies (e.g., agent-based models), and music-language
relationships (e.g., song/speech melody/prosody). Furthermore, we highlight key ideas that
each discipline can learn from the other and promising research topics to encourage
collaborative work. In particular, we argue that more direct comparisons of music and
language will help to better understand commonalities and differences in their evolution. This
includes parallels (or lack thereof) in cognitive and motor constraints (e.g., memorability,
ease of vocalization), cultural transmission mechanisms (e.g., vertical/horizontal transmission
with/independent from human populations), and underlying biological bases (e.g., vocal
learning). Integrating the emerging field of cultural evolution of music with the larger
literature on language evolution will enrich our understanding of both music and language.

2.1. Introduction: Overview of the fields

Music and language are both human universal cultural systems (D. Brown, 1991; Patel, 2008;
Savage, 2019; Mehr et al., 2019). All known societies make use of these two types of
communication - including combined in the form of songs with words - leading scholars from
Darwin (1871) to the current volume to speculate on their evolutionary origins and
relationships. Historically, such discussion has focused primarily on the biological evolution
of the capacities to make and experience music (“musicality”; c.f., Wallin et al., 2000; Patel,
2008; Honing et al., 2015;) and language (“the faculty of language”; c.f., Hauser et al., 2002;
Christiansen & Kirby, 2003; Fitch, 2010). However, a growing body of research has explored
the cultural evolution of musical and linguistic forms themselves (e.g., melodies/words;
instruments/writing systems; musical genres/linguistic families), and the way such cultural
evolutionary processes may relate to biological evolution or even feedback onto it via
gene-culture coevolution (Dediu et al. 2011; Patel, 2018; Savage et al., 2021).

Several chapters in this Oxford Handbook of Language and Music provide
comprehensive reviews of biological evolutionary relationships between music and language
(Fitch, this volume; Brown, this volume; ten Cate & Honing, this volume; Gingras & Drayna,
this volume). Meanwhile, several chapters in the forthcoming Oxford Handbook of Cultural
Evolution provide comprehensive reviews of the cultural evolution of music (Youngblood et

1Ozaki, de Heer Kloots, Ravignani & Savage, Oxford Handbook of Language and Music (Under contract)

Authors: Yuto Ozaki1, Marianne de Heer Kloots2, Andrea Ravignani3, Patrick E. Savage1

1Graduate School of Media and Governance / Faculty of Environment and Information Studies, Keio University, Japan
2Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands
3Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, The Netherlands
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al. 2023), language (Bailes & Cuskley, 2023; Greenhill, In Press; Raviv & Kirby, 2023In
Press; Kim & Morin, 2023), and general principles of gene-culture coevolution (Lala et al., In
Press; Lotem et al., 2023). Our aim in this chapter is to compare and synthesize these studies
to reveal how a comparative, cultural evolutionary perspective on music and language can
lead to a better understanding of both domains, their evolutionary relationships, and possible
coevolution.

Cultural evolution provides the theoretical foundation for how culture, such as ideas,
behaviors and artifacts, can change over time (Mesoudi, 2011; Creanza et al., 2017). This is
not merely a metaphor: rather, Darwin’s theory of biological evolution was explicitly inspired
by earlier studies of language evolution, such as the discovery that languages as different as
English and Hindi shared a common ancestral “Proto-Indo-European” language (see Section
2 for details). As Darwin wrote in The Descent of Man (1871):

“The formation of different languages and of distinct species, and the proofs that both
have been developed through a gradual process, are curiously parallel . . . . We find in
distinct languages striking homologies due to community of descent, and analogies
due to a similar process of formation.” (pp. 89–90)

In 1955, the International Council for Traditional Music also defined “folk music” using
cultural evolutionary terms:

"Folk music is the product of a musical tradition that has been evolved through the
process of oral transmission. The factors that shape the tradition are: (i) continuity
which links the present with the past; (ii) variation which springs from the creative
impulse of the individual or the group; and (iii) selection by the community, which
determines the form or forms in which the music survives." (Cherbuliez et al.,
1955:23)
Cultural evolution can also influence the selection of genes and vice versa, with the

cultural adoption of dairy farming famously leading to selection for genes to digest milk
lactose in adults (Ségurel & Bon, 2017). Such mutual interaction between genetic evolution
and cultural evolution is named gene-culture coevolution, dual inheritance theory, or cultural
niche construction (Feldman & Laland, 1996; Crenza et al., 2017; Laland & O’Brien, 2011;
Richerson & Boyd, 1978). In the case of the evolutionary study of music and language, some
studies are concerned with purely the evolution of music or language itself drawing on
evolutionary analysis methods (e.g. Bomin et al., 2016; Greenhill et al., 2017), but there are
different kinds of studies not necessarily conforming to this category (e.g., Serrà et al., 2012).
Hence, in this chapter, we broadly discuss research on music and language as evolving
human cultural traits regardless of explicitly grounding in cultural evolutionary theory.

Mesoudi (2021) explained that the field of cultural evolution nowadays comprises two
main types of research: traditional (and original) population-genetic-style, and cognitive
scientific approach. Research engaging in cultural evolution of music and language from the
former viewpoint is relatively sparse. However, laboratory experiments to divulge cognitive
priors generating fundamental aspects of music and language have been actively conducted.
Interestingly, Mesoudi (2021) also pointed out that the scholars of cultural evolution of this
group also practice (Bayesian) agent model-based simulation and the analysis of
cross-cultural regularities, which is also a common trend in music and language fields.
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Like its sister discipline of evolutionary biology, cultural evolution often begins
through observational analysis of uncontrolled, real-world “field” data. Such data might
compare between-group “macroevolution” (e.g., among distinct languages or musical
cultures) or within-group “microevolution” (e.g., among individual
speakers/singers/dialects/melodies). Hypothesis testing often proceeds through controlled
laboratory experiments and/or computational modeling.

We first review the cultural evolutionary study of music and language independently,
grouped into three types of methodologies: 1) observational, 2) experimental, and 3)
simulation studies. For each type, we highlight one seminal study to demonstrate the diversity
of methods and findings (Fig. 2.1). We then discuss two types of potential music-language
coevolution: 1) indirect relationships among musical, linguistic, and/or genetic histories; and
2) direct relationships between musical and linguistic features such as musical/linguistic
rhythm or musical melody/linguistic prosody. Finally, we outline contrasts between the
cultural evolution studies of music and language, what each discipline can learn from the
other, and propose future directions toward integrating these two disciplines.
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Figure 2.1. Simplified diagrams contrasting seminal studies of cultural evolution of
music and language from each of three different methodological approaches. From top to
bottom: Language: Bouckaert et al. (2012); Kirby et al. (2008); Griffiths & Kalish (2007).
Music: Savage et al. (2022); Ravignani et al. (2016); Kaplan et al. (2022).

2.2. Observational studies

Existing linguistic and musical systems naturally provide the most ecologically valid source
of data to inform cultural evolutionary theories. Here, we focus on approaches that attempt to
reconstruct particular linguistic and musical histories. Some studies focus on macro-level
evolution (e.g. Bouckaert et al., 2012), but there is also research concerned with micro-scale
analysis (e.g. Savage et al., 2022) aiming to reveal the detailed mechanisms of evolution. One
striking aspect is that the studies of this group can not only shed light on the history of
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language and music themselves, but also link music and language to the past events in
general human history as a part of human culture.

These studies aim at unveiling evolutionary trends from data, but their methods,
approaches and scope wildly differ. Some scholars are interested in reconstructing the
macro-history of specific languages or musics (Bouckaert et al., 2012; Lomax, 1968; Savage,
2018), while others put emphasis on delineating the patterns from historical data (Gell-Mann
& Ruhlen, 2011; Mauch et al., 2015). The types of studies further include relationships with
population expansion (Gray et al., 2009; Juhász et al., 2019), ancestral state estimation from
archeological evidence (Alaica et al., 2022; Barham & Everett, 2021; d’Errico et al., 2003),
patterns of cultural transmission (Bryden et al., 2018; Youngblood, 2019), rate of evolution
(Lambert et al., 2020), and so on. Although the range of research interests in this category is
too wide to concisely summarize the overview, we pick up some studies to illustrate
characteristic aspects of the evolution of music and language in the following sections.

2.2.1 Language

Reconstructing the history of language evolution has been an active area of research since
before Darwin’s time - indeed, Darwin’s theory of biological evolution was inspired by such
“philological” research (see quote in the Introduction). The Indo-European language family -
including contemporary languages as distant as English and Hindi and richly documented
ancient languages like Latin, Sanskrit, and ancient Greek - has been particularly well-studied.
Sir Williams Jones famously concluded in 1786 that these three ancient languages had
“sprung from some common source, which, perhaps, no longer exists.” (cf. Atkinson & Gray,
2005). And just as modern evolutionary biology has moved to quantitative phylogenetic
analysis of DNA sequences to reconstruct the evolution of biological species, so has modern
cultural evolution applied quantitative phylogenetic analysis to lists of word meanings to
reconstruct the evolution of language families (Gray & Atkinson, 2003; Levinson & Gray,
2012).

Bouckaert et al. (2012) applied such modern methods to the longstanding debate over
Indo-European origins by applying Bayesian phylogeographic methods to a comparative
database containing over 200 items of basic vocabulary from over 20 ancient and 83
contemporary Indo-European languages to reconstruct a phylogenetic tree of the language
family. Such trees join more closely related languages sharing many cognates (e.g., Italian
and Spanish) with shorter branches than more distantly related languages sharing fewer
cognates (e.g., English, Hindi; Fig. 2.2). The dates on this tree were calibrated based on
ancient texts, and both the timing and the phylogeography of the resulting tree were argued to
support an “agricultural expansion from Anatolia beginning 8000 to 9500 years ago”
(Bouckaert et al., 2012), although this interpretation remains controversial (cf. Pereltsvaig &
Lewis, 2015).
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Figure 2.2. An example of phylogenetic analysis of the evolution of the Indo-European
language family. a) a simplified phylogenetic tree based on comparing cognates (inherited
vocabulary sharing the same meaning, origin, and sound correspondences, in red) for three
concepts among four languages. b) full, dated tree of 103 Indo-European languages based on
Bayesian phylogenetic analysis of over 200 concepts (based on the figure from Bouckaert et
al., 2012 [Fig. S1])

Phylogenetic analysis is one of the key instruments in the cultural evolutionary
analysis of language. Traditionally employed tree prior models can only represent the binary
tree diversification, but extended models allowing the borrowing of linguistic traits from
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isolated lineages (i.e. horizontal transfer) demonstrating superior capability of reconstructing
past language contact events are now available (Neureiter et al., 2022). Phylogenetic analysis
can also be used to test hypotheses regarding the variation of features across languages, such
as information locality and dependency locality principles of word order (Hahn & Xu, 2022),
concerted evolution of phonemes (Hruschka et al., 2015), and the universality of kinship
terminology (Passmore & Jordan, 2020).

In addition to the phylogenetic technique, several diverse approaches have
investigated the influence of cultural factors in for example linguistic structure, from careful
analyses documenting the development of recently emerged sign languages (e.g. Senghas,
Kita, & Özyurek, 2004; Sandler, Meir, Padden, & Aronoff, 2005; Ergin, 2022; and see Meir,
Sandler, Padden, & Aronoff, 2010), to large cross-cultural correlational studies investigating
connections between linguistic and demographic properties (e.g. Hay & Bauer, 2007; Lupyan
& Dale, 2010; Bentz & Winter, 2013). However, a precise understanding of the factors
driving the cultural evolution of language necessitates disentangling numerous variables. For
example, Josserand et al. (2021)’s analysis suggests the presence of a word corresponding to
“blue” depends on the degree of UV-B radiation, distance to large bodies of standing water,
and population size of speakers, which further interlink to environmentally and genetically
determined color deficiency.

2.2.2 Music

Like linguists, musicologists have long attempted to reconstruct the evolutionary history of
music. Such efforts included musical instruments (Sachs, 1940), singing styles (Lomax,
1968), rhythms (Toussaint, 2013) and “tune families” (Bayard, 1954). Tune family research
was particularly inspired by language evolution to try to reconstruct “proto-melody” (Boilès,
1973) and the process of “evolution of one air out of another by variation, deletion, and
addition" (Bayard, 1954). Like ancient languages, some early music was preserved via
written notation (e.g., Sumerian cuneiform, Japanese gagaku, Gregorian chant, Western
common practice classical music), but the invention of audio recording technology in the late
19th century dramatically expanded the ability to document musical evolution in rich detail.
By the mid 20th century musicologists had recorded and compared detailed variation of
musical features such as melody, rhythm, singing style, and other musical factors across
thousands of musical items throughout the world (Lomax, 1968; Bronson, 1966; cf., Savage,
2019 for review).

Researchers have also applied explicit quantitative evolutionary models at large scales
to such musical data, just as they have done with language. For example, Savage et al. (2022)
digitized two large and detailed databases containing over 10,000 melodies from traditions
they knew well as performers: English and Japanese folk songs (Bronson, 1959; Machida,
1944). By modeling melodic evolution as sequences of notes, analogous to molecular
sequences of DNA or amino acids, they were able to apply sequence alignment to identify
328 pairs of highly similar melodies within various tune families, and quantify the
substitution or insertion/deletion of notes between these pairs. They found that, across both
Japanese and English repertoires, “note changes are more likely when they have smaller
impacts on a song’s melody”. Specifically, note changes are more likely at rhythmically weak
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points, and substitutions are most likely to occur to melodically neighboring notes (Fig. 2.3).
Such convergent evolutionary patterns may underscore the presence of biologically
determined musicality of humans, and laboratory experiments can subsequently highlight
what cognitive and motor mechanisms are attributable to the observed converged evolution
from data (Hoeschele & Fitch, 2022; Anglada-Tort et al., 2023).

Figure 2.3. Sequence alignment analysis of two different versions of the same folk song
melody (“Scarborough Fair”) highlighting patterns of substitution and deletion during
oral transmission. The top version was sung by Martin Carthy in 1965, who taught it to
Simon & Garfunkel who recorded the slightly different bottom version the following year.
The two substitutions (red) both occur to neighboring notes (Eb to D and F to Eb), while all
of the deletions (blue) occur at rhythmically weaker ornamental notes without affecting the
lyrics (figure from Savage et al., 2022).

At the beginning of this section, we spotlighted papers sharing common interests with
the language side, but there are also perspectives unique to music. For example, Phillips &
Brown (2022) suggest that the degree of vocal pitch precision can be a factor constraining the
cultural evolution of musical scales. Another example is the dynamics of cultural change.
Various transmission biases play a role in cultural evolution (e.g., novelty, payoff,
(anti)conformity, prestige, content), but Klimek et al. (2019) identified a different strategy
driving the cultural change in musical styles called counter-dominance cycle, which may be a
sort of social learning strategy peculiar in the cultural evolution of aesthetics domain.

2.3. Experimental studies

Controlled experiments can allow us to isolate and test the role of cultural evolutionary
factors that can be difficult to disambiguate from uncontrolled observational data. The
experiment is a proof of concept; it tests under which condition and settings the same cultural
traits observed in the real world also arise in the lab. Specifically, this approach includes
exploratory generation of variation in traits and confirmatory testing of causal mechanisms.
For example, controlled experiments (Anglada-Tort et al., 2023) can establish causal
mechanisms underlying cross-cultural regularities in song evolution identified by corpus
analyses (Savage et al., 2022) described above. Mesoudi (In Press) provides an introduction
to experimental studies in the field of cultural evolution overall.
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The most frequently used method is transmission chain experiments, where
participants are asked to reproduce stimuli (e.g., words, rhythms, stories), and subsequent
participants receive the outputs of previous “generations” (Bartlett, 1932). This transmission
chain paradigm has a key strength: while participants transmit behaviors, it lets experimenters
observe how the initial state of stimuli transitions to particular forms. Systematic patterns in
transitioning to stable forms (or ‘convergent transformations’; Acerbi et al., 2021) observed
in transmission chain experiments can potentially reveal “cultural attractors” (Boyd &
Henrich, 2002; Claidière & Sperber, 2007), which is another key theoretical driving force of
cultural evolution alongside selection pressure. In summary, these experiments deliver key
insights about underlying factors (e.g., cognitive biases, motor constraints) shaping cultural
evolution.

2.3.1 Language

Language evolution experiments commonly aim to replicate the emergence of some form of
linguistic structure in controlled lab settings, where the driving forces leading to particular
structural properties can be more carefully manipulated and disentangled. Participants in
language evolution experiments often learn to use some miniature artificial language or
otherwise unfamiliar communicative device to describe a set of meanings. Research in the
experimental semiotics tradition has studied the emergence of conventions and systematic
structure as participants come up with a signalling system from scratch (Galantucci, 2005;
Selten & Warglien, 2007; Galantucci & Garrod, 2011), usually in dyads or other closed-group
settings without generational transmission. Another popular approach involves the iterated
learning of miniature artificial languages by generations of participants. In the seminal study
introducing the latter paradigm, Kirby, Cornish and Smith (2008) used a transmission chain
design (Bartlett, 1932; Mesoudi & Whiten, 2008) in which each participant learned a set of
labels to describe simple scenes, based on the labels produced by the previous participant.
Initially holistic and incompressible languages (describing every scene with a separate label)
became increasingly simplified over generations of transmission, to the point of degeneracy
(describing each scene with the same label; see Figure 2.4). However, when duplicate labels
were removed from the training input to each generation, the artificial languages developed
compositional structure, with systematic form-meaning mappings between labels and scenes
(see Fig. 32.4) — a prominent design feature of natural languages.

In a later experiment, Kirby, Tamariz, Cornish, & Smith (2015) found that while
generational transmission alone leads to degeneracy, compositional languages emerge when
languages need to be learned as well as used for communication in each generation.
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Figure 2.4. Emerged language structures from different designs of transmission chain
experiments. The left side (a) has fallen into degeneracy, but the right side (b) is more
systematic, with specific characters assigned to each object element (i.e., movement, color,
and shape; figure from Kirby et al., 2008).

These competing pressures for learnability and expressivity have formed a powerful
basis to inspire many further experimental studies. Raviv, Meyer, & Lev-Ari (2019) showed
that compositional languages can also spontaneously emerge in closed group settings without
generational transmission, but where a learnability pressure is nevertheless present through
the need to communicate with multiple partners about an expanding meaning space. The
studies so far discussed used typed labels and simple scenes, but current research actively
studies other signalling modalities, especially gesture (e.g. Motamedi et al., 2019;
Schouwstra, Smith, & Kirby, 2020; Fay et al., 2022); but also visual color sequences
(Cornish, Smith, & Kirby, 2013), drawings (Fay et al., 2010; Garrod et al., 2010;
Theisen-White, Kirby, & Oberlander, 2011), and continuous sounds created using slide
whistle (Verhoef, Kirby, & De Boer, 2016) or leap motion (Little, Eryılmaz, & De Boer,
2017) have been studied as signalling devices. Moreover, several studies have explored
effects of population structure on language structure and learnability, such as group size
(Raviv, Meyer, & Lev-Ari, 2019; Raviv, de Heer Kloots, & Meyer, 2021), network structure
(Raviv, Meyer, & Lev-Ari, 2020), and proportion of imperfect or non-native learners
(Berdicevskis & Semenuks, 2022), as well as effects of novel communicative environments
through virtual reality (Nölle, 2021). Overall, methodologies in the experimental language
evolution literature provide promising means to refine theories on how individual level
cognitive biases, as well as types of transmission and population structure, shape the structure
and learnability of resulting languages.

2.3.2 Music

Historically, laboratory-controlled studies on music evolution began by examining how music
changes over time and is being selected by listeners (MacCallum et al., 2012; Salganik et al.,
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2006; Salganik & Watts, 2008), which operate on methods slightly different from the iterated
learning-style transmission chain paradigm. For example, MacCallum et al.’s (2012)
“DarwinTunes” experiment isolated the effects of listener selection and random
recombination, which were enough to evolve pleasing musical loops from initially random
noise over the course of thousands of generations. Later on, the experimental studies in the
field of music started adapting the transmission chain experiment paradigm from language
research. Ravignani et al. (2016), Jacoby & McDermott (2017), and Lumaca & Baggio
(2017) pioneered this line of research almost at the same time.

Ravignani et al. (2016) divided 48 participants into 6 groups (chains). The first
participant in each chain had to reproduce, one after the other, 32 randomly-generated
drumming patterns to the best of their ability. The resulting patterns were then passed to the
next participant in that chain as their input. The drumming patterns of the final generation
(i.e. 8th generation) of all 6 chains were not random anymore; they produced distributions of
inter-onset intervals (IOIs) with noticeable peaks at specific IOIs, suggesting the emergence
of systematicity and learnability. In addition, several widespread musical features (Savage et
al., 2015) emerged in the last generation which were not present in the random patterns (Fig.
2.5). Noteworthy, what each chain replicated was not only the universality but also the
diversity of rhythm, in that all chains converged to distinct rhythmic patterns while
possessing the aforementioned characteristics observable in many musical traditions. Such
convergent evolution may have reflected either cognitive constraints such as working
memory capacity (Ravignani et al., 2016), information processing capability due to brain
functional connectivity (Lumaca et al., 2019), and/or the effect of music-specific abilities like
the capacity for isochrony, which is not typical in language and other animals (Fitch, 2017).
This paper first showcased the potential of transmission chain experiments in the music
domain that recreates music universals, cross-cultural diversity, and human musicality in the
lab.
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Figure 2.5. A transmission chain experiment showed that rhythmic patterns that were
initially randomly generated (a) became more structured as indicated by the
structure/systematicity measure G in the panel b (b) and easier to imitate ​​as indicated
by the imitation errors E in the panel c (c) over the course of 8 generations (figure from
Ravignani et al., 2016).

This line of music transmission experiments has now flourished and expanded to a
wide variety of aspects: melody (Anglada-Tort et al., 2022, 2023; Lumaca & Baggio, 2017;
Lumaca & Baggio, 2018; Popescu et al., 2022; Shanahan & Albrecht, 2019; Verhoef &
Ravignani, 2021), rhythm (Jacoby & McDermott, 2017; Jacoby et al., 2021; Lumaca et al.,
2018; Miton et al., 2020; Ravignani et al., 2016; Ravignani et al., 2018), lyrics
(deCastro-Arrazola & Kirby, 2019), consonance (Marjieh et al., 2022), vocalization (Ma et
al., 2019), and neural mechanisms (Lumaca et al., 2018; 2019; 2021; 2022; 2023). The
increasing scale of experiments allows such studies to test multiple factors at high resolution.
For example, Anglada-Tort et al. (2023) conducted transmission chain experiments of over
3,000 melodies across almost 2,000 participants from USA and India while manipulating
vocal constraints, working memory, cultural exposure, and social interaction, finding that
each factor influences the preference of intervals used in melodies. While such laboratory
experiments may still be too simple to explain the actual cultural evolution of music in the
field, converging evidence from such experimental studies and other approaches (e.g., Savage
et al., 2022’s observational results), may unveil convincing mechanisms of music evolution.

2.4. Simulation studies

Simulation studies allow researchers to analyze how certain parameters affect evolutionary
dynamics (e.g., evolution of language structure conditioned on language learner’s bias, Smith
et al., 2017) and find out which mathematical models can best explain the observed
phenomenon (e.g., frequency of tritones in Western classical music pieces across centuries,
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Nakamura & Kaneko, 2019). Since cultural evolution is complex, models in simulation
studies effectively function as a proof-of-concept; they are abstract descriptions of “what
could be possible, and how”, complementing the observational and experimental approaches
described above.

Simulation with agent-based models is frequently employed to analyze the dynamics
of cultural evolution not just of music and language but also in general (Acerbi et al., 2021;
Kandler & Powell, 2018; Kolodny et al., 2015; Mesoudi, 2021). Similar to transmission chain
experiments, agent-based models are also used to artificially generate evolutionary dynamics
of cultural processes. Transmission chain experiments and agent-based models have a crucial
difference: while the former involve complex psychological agents with uncontrollable
parameters, the latter involve computational agents who behave according to specific rules
and are controlled by a handful of essential parameters.

Simulation studies of music have been less common than of language. Generally
speaking, simulation studies build models which reflect specific aspects of the cultural
system under study, so the papers reviewed in the subsequent sections may foreground some
of the key features of music and language through models tailored for each musical and
linguistic evolutionary phenomenon.

2.4.1 Language

Computational simulations of language evolution have made use of a variety of approaches to
explore how different kinds of learner biases, communicative interactions, and language
properties affect the cultural transmission process and the structural features of emergent
languages themselves. A majority of studies center around computational agents which
simulate individual language users, though alternative paradigms include evolutionary game
theoretic approaches which address more macroscopic population-level quantities, and
approaches applying evolutionary computations on grammar formalisms directly without the
use of agents (see Grifoni, D'Ulizia, & Ferri, 2015 for an overview). Among agent-based
modelling methods, iterated learning models and naming game models are the two most
prominent paradigms. Whereas iterated learning models generally examine how
individual-level biases shape languages over generational transmission, naming game models
focus more on the interactional dynamics leading to convention formation and shared
vocabularies within communities of agents. Bailes & Cuskley (2023) provide a more
comprehensive overview of agent-based modelling studies in language evolution. We here
briefly highlight some seminal contributions from a particular modelling paradigm known as
Bayesian Iterated Learning.

Early iterated learning models were concerned with disentangling properties of
languages which could arise from the process of cultural transmission itself from those that
needed explanations based on biologically evolved, innate mechanisms. For example, Kirby
(2001) demonstrated that compositional structure in language can emerge without natural
selection but with cultural transmission of the meaning-signal mapping system between
generations of agents. Griffiths & Kalish (2007) formalized the process of iterated learning as
an iterative process of Bayesian inference: agents infer hypothesized signal-meaning
mappings from observed data, and subsequently use the inferred mappings to produce new
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data that serves as input for the next iteration. Griffiths & Kalish noted that this process
constitutes a Markov chain of conditional distributions (P(h|d) and P(d|h) in Fig. 2.6), which
allowed them to analyze the asymptotic results of the iterated learning process (the final state
of data and hypothesis after many iterations). These results revealed that the stationary
distribution of the data is determined by the agents' prior distribution over hypotheses, i.e. the
outcomes of iterated learning mirror individual agents' internal biases (including e.g. biases
for compositional languages). This finding initially suggested that biologically evolved
internal biases might be the explanation for linguistic universals (like compositionality) after
all. However, later research demonstrated that strong innate constraints are not in fact
necessary for cultural universals to emerge (Thompson, Kirby, & Smith, 2016), and the
complex relationship between individual-level cognitive biases and population-level
linguistic features remains an active area of research.

Figure 2.6. Overview of iterated learning with Bayesian agents. At each iteration, agents
observe new data (d) and update their hypothesis (h) for how data is generated, and
subsequently generate new data according to the updated belief (based on Fig. 1 from
Griffiths & Kalish, 2007).

Recent studies have dug into explaining the absence and presence of specific
linguistic features using simulation. For instance, though combining meaningless elements to
create meaningful elements, (“duality of patterning”; Hockett, 1960), has been considered a
language universal, Al-Sayyid Bedouin Sign Language (ABSL) is known as an exceptional
case with no apparent evidence of the dual patterning structure (Sandler et al., 2011). If such
compositional structure can be absent from languages, what conditions are key to the
emergence of this feature? Kirby & Tamariz (2022) conducted simulations to answer this
question, and demonstrated that the balance between the preference for simplicity and
expressivity in the population can shape the combinatoriality structure.

The power of simulation can also be exploited to comparatively study hypothetical
scenarios of evolution. Woensdregt et al. (2021) explored how “mindreading” (also known as
“theory of mind”) and language have influenced each other. Since language use requires both
speakers and listeners to model the mental state of the counterpart to convey and exchange
the information, selection pressure on mindreading skills may change the dynamics of the
language evolution process. Simulations of language evolution have also included
gene-culture coevolution scenarios (Azumagakito et al., 2018). However, simulations of
coevolutionary scenarios for music and language have yet to appear. A final emerging trend
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is the use of powerful deep learning-based algorithms for implementing computational
agents, allowing researchers to explore multi-agent simulations with more complex signals
and environments than in traditional approaches (see e.g., Chaabouni et al., 2022; Lazaridou
& Baroni, 2020). This opens up exciting possibilities for evolutionary simulations in both the
linguistic and the musical domain.

2.4.2 Music

Kaplan et al. (2022) developed a model named pPIPPET (Phase Inference from Point Process
Event Timing with pattern inference), which imitates the process of entrainment to rhythm
patterns based on the prior rhythm template. This model is designed to simulate the process
of people’s rhythmic perceptions depending on their cultural background, as observed in the
cross-cultural transmission chain experiment by Jacoby et al. (2021). Modeling rhythmic
behaviors with probabilistic models and simulating the effect of enculturation on rhythm has
gained attention from cognitive and psychology music scientists (Cannon, 2021; Sadakata et
al., 2006; van der Weij et al., 2017). Although integer-ratio rhythm is widely conserved
across many music traditions (Savage et al., 2015), each music has also nurtured unique
rhythmic vocabularies which deviate from simple integer-ratio patterns (Clayton, 1996).
Unveiling cognitive biases operating on the cultural evolution of music that yield
cross-cultural diversity is one of the central questions of the field. Kaplan et al. (2022)
approached this by simulating models that learn cultural biases of entrainment. In particular,
the prior expectation for specific rhythm patterns (i.e., encultured rhythm patterns) is
modeled as a template, and the model performs probabilistic prediction for event occurrence
timing in the phase space using the template as the base inhomogeneous point process for
event times. The authors’ conducted the experiment imitating the procedure of Jacoby et al.’s
(2021) experiment with pPIPPET, which produced results consistent with Jacoby et al.’s
analysis, indicating that their model potentially captures how convergence to specific rhythm
patterns happens conditioned on cultural background. In contrast with Bayesian agent models
that repeat sampling data and hypothesis to explore the asymptotic outcome of cultural
evolutionary processes as seen in the previous section, their approach focused on learning
parameters to configure the model towards targeted cultural rhythm patterns. Such an
approach would be particularly more useful to examine culture-specific attractors. However,
the choice of priors similarly matters to simulation results, which is the accuracy of
entrainment that models can achieve in this case.
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Figure 2.7. Simulation results of pPIPPET demonstrating that the model is capable of
imitating the cultural variation of three-interval rhythms shaped by cognitive bias due
to transmission and cultural background. Panel a and b show the density (darker areas are
more frequent) of the entrainment patterns of three interval rhythms (e.g., 112 means the ratio
of the durations of three rhythmic intervals are 1:1:2) by the models trained by German and
Turkish music corpus. Panel c shows the estimated ratio of each rhythm category that
categories for cyclic permutations are grouped. The patterns of 1:1:1, 1:1:2, and 2:2:3 show
differences between the musical traditions, while the other patterns are shared. (figure from
Kaplan et al., 2022).

Simulation studies have also been conducted to model the evolution of scales
(McBride & Tlusty, 2020), frequencies of acoustic features (Nakamura & Kaneko, 2019;
Nakamura, 2021), transmission biases (Youngblood, 2019), the effects of population structure
on tune complexity (Street et al., 2022), and the convergence to specific rhythms conditioned
on cultural background (Kaplan et al., 2022). Kaplan et al.’s (2022) model reviewed above is
actually not an agent-based model, but it demonstrates the potential of formalizing the role of
cognitive biases that shape culture-specific traits observed in transmission chain experiments.

2.5. Coevolution of music and language

While the previous sections have described independent work on the cultural evolution of
language or of music, this section describes work that directly compares both music and
language from an evolutionary framework. We focus on two types of comparisons: 1) indirect
relationships among musical and linguistic histories, and 2) direct relationships between
musical and linguistic features.
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2.5.1 Indirect relationships among musical and linguistic histories

Reconstruction of language evolution is argued to reflect the history of human populations
(e.g., migration, conquest; Cavalli-Sforza et al., 1994; Levinson & Gray, 2012). Meanwhile,
music has also been regarded as preserving cultural history (Lomax, 1968). Thus, several
attempts have been made to measure the evolutionary relationships between music, language,
and human population history.

Brown et al. (2014) assembled musical features of choral songs, languages, and
mitochondrial DNA of 9 indigenous populations in Taiwan to analyze correlations among
those three types of data. They found significant correlations between music and genes, and
between languages and genes. However, similar analyses employing data from northeast Asia
(Matsumae et al., 2021) or the Ryukyu archipelago (Nishikawa & Ihara, 2022) did not find a
significant correlation between music and genes or linguistic vocabulary and genes, though
Matsumae et al. detected a significant correlation between linguistic grammar and genes.
When Passmore et al. (2023) conducted a similar analysis on a global scale including 152
societies, music data (song styles) only showed weak relationships with genetic and linguistic
similarities. Language demonstrated stronger relationships with genetic histories, although it
still displays substantial (~20%) mismatches (Barbieri et al., 2022).

Tree-based models built upon cognates for language evolution assuming primarily
vertical transmission have proved useful for understanding cultural evolution, albeit with
substantial caveats (c.f., Evans et al., 2021; Neureiter et al., 2022). Similar analyses
performed in musical evolution suggest that music may have less tree-like structure and be
more independent of population history than language. However, this remains speculative as
many studies based on different data sources and regions come to conflicting conclusions
(Brown et al., 2014; Bomin et al., 2016; Juhász et al., 2019; Pamjav et al., 2012; Matsumae et
al., 2021; Nishikawa & Ihara, 2022) and the only study to directly compare a global sample
of music and language found both to contain similar levels of tree-like-ness (delta scores
ranging from 0.2~0.4; Passmore et al., 2023).

We emphasize that these comparisons all reflect indirect relationships between
music/language and genes via shared histories, not direct “genes for music/language”. For
discussion of possible direct shared genetic bases of music/language, see Gingras et al. (this
volume) and the next section.

2.5.2 Direct relationships between musical and linguistic features

Direct comparison between music and language - particularly in their vocal domain as song
and speech - may reveal fundamental similarities and differences that may reflect their
coevolution (e.g. Ding et al., 2017; Haiduk & Fitch, 2022; Hansen et al., 2020; Hilton et al.,
2022; Vanden Bosch der Nederlanden et al., 2022). For example, Ozaki et al. (2023)
analyzed controlled recordings of songs, the same lyrics recited in spoken form, the same
melodies in instrumental form, and natural speech recorded by the same speaker/singer
representing over 70 global linguistic varieties spanning almost 20 language families (Fig.
2.9). They found that both song and instrumental melodies are consistently higher, slower,
and use more stable pitches than speech, while timbral brightness and pitch interval size are
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consistently similar between song and speech. Albouy et al. (2023) came to similar
conclusions after analyzing recordings of 369 speakers/singers from 21 diverse societies,
concluding that spectrotemporal modulation consistently distinguish song and speech (e.g.,
song is slower and uses more energy in the upper harmonics than speech).

Figure 2.8. Direct comparison of music and language via controlled recordings of the
same person (last author PES) capturing a “musi-linguistic continuum” from
instrumental music (top) to naturalistic speech (bottom), with song and recited lyrics
occupying intermediate positions. (figure from Ozaki et al., 2023).

Such similarities and differences between acoustic features of music and language
likely reflect shared and distinct evolutionary mechanisms. For example, the similar interval
sizes in speech and music identified by Ozaki et al. (2023) may reflect shared motor
constraints on vocalization (Tierney et al., 2011), while the different temporal rates may
reflect the need for slower singing to synchronize and bond multiple singers (Savage et al.,
2021). Many similarities and differences between music and language may also reflect
shared or distinct neural mechanisms. For example, processing rhythm in music or language
requires decomposing it into multiple sub-components, such as motor periodicity, beat
extraction, audiomotor entrainment, and meter (Kotz et al., 2018). For instance, meter is
defined as the grouping of events into a hierarchical structure (e.g., stressed and unstressed
musical beats/linguistic syllables). Importantly, these sub-components do not necessarily
solely appear in the audio domain (e.g. visual display of rhythmic movement of body parts
via dance), which suggests rhythm is essentially multi-modal (Pouw et al., 2021).

Have we evolved any specializations specific to music or language? For example,
though music and spoken language both exhibit certain temporal structures, isochronous
rhythm is mostly specific to music (Fitch, 2017; Nolan & Jeon, 2014). Cross-species
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comparative studies may help elucidate evolutionary pathways, and research on songbirds
provides a promising hypothesis that rhythm perception is linked to vocal learning capacities
(also required for spoken language), and vocal learning was a preadaptation enabling beat
perception and synchronization of humans, potentially via gene-culture coevolution (Patel,
2021; Rouse et al., 2021).

2.6. Discussion

Throughout this chapter, we have reviewed the cultural evolution of music, language, and
their (co-)evolutionary relationships. In order to expedite more collaborative and integrative
research between the two disciplines, we will present future directions that will benefit both
fields in this last section.

Cultural evolution of music and language can expand our research methods by
borrowing ideas developed in each field. For example, one technique that music researchers
can borrow from language evolution is the control of population structure and size. Both
population structure and size impact cultural evolution in various ways, including trait
complexity, trait diversity, and the rate of evolution (Derex & Mesoudi, 2020). Researchers
have already demonstrated that population structure and size can affect the evolution of key
features of language (e.g. Berdicevskis & Semenuks, 2022; Raviv et al., 2019). For example,
population structure can be understood as some constraints or conditions on the pathway of
cultural transmission (e.g., from whom to learn), and Kirby et al.'s simulation (2022) revealed
that combinatorial languages emerge much faster when agents learn language from other
learners (horizontal transmission) than when agents can only be taught from the oldest agent
in the population (vertical transmission). Although observational studies have analyzed how
population structure can affect the complexity of folk tunes (Lomax, 1968; Street et al., 2022;
Wood et al., 2022), experimental or simulation studies have yet to systematically investigate
how population structure influences the cultural evolution of music. The language side might
also adopt some approaches emphasized in the cultural evolution of music. For example,
language evolution research might benefit from more regularly incorporating internal
diversity (e.g., dialects and microvariation among speakers), just as music evolution
researchers often incorporate diversity within cultures as well as between them in
evolutionary analysis (Rzeszutek et al., 2012).

One unanswered question about the cultural evolution of music and language is how
similar cognitive and motor mechanisms constrain the evolution of music and language. For
example, memorability or capacity of working memory is supposed to be one of the factors
generating regularities in the transmission chain experiments of both music and language
(Isbilen & Christiansen, 2020; Ravignani et al., 2016). Experimental results suggest that key
features of music and language affect memorability, such as word order (Amici et al., 2019)
and pitch discreteness (Haiduk et al., 2020). Ease of vocalization can be counted as another
example. Both speech and music are known to converge in similar but distinct ranges of
temporal rates across various genres and languages (roughly 1~5Hz for music and 5~10Hz
for speech; Ding et al., 2017; Poeppel & Assaneo, 2020; Ozaki et al., 2023; Albouy et al.,
2023). This regularity may be attributed to optimization of various factors including
limitations on our motor and perceptual capacities for controlling sound sequence production,
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audio-motor synchronization, and efficient communication of linguistic/musical information.
The perception and production of music and language rely on shared cognitive and motor
mechanisms to a certain degree, but whether exploited mechanisms operate in the same or
different ways may depend on case-by-case (Culbertson & Kirby, 2016). However, revealing
similar constraints shaping music and language may inform us how similarities and
differences between music and language emerge.

Another stimulating integrative research direction is the need to directly compare
music and language together in the same evolutionary studies. Although some of the studies
reviewed in section 5 directly compared music and language, most of the studies in Section
2-4 studied only music or only language, but as a result it is difficult to interpret whether their
findings were specific to music/language or shared more generally (cf. Singh & Mehr, 2023).
Ma et al.’s (2019) transmission chain experiments are an exception that tested whether
communicative needs transform a single vocalization into different distinctive types of
vocalizations, as illustrated by the proto-music-language hypotheses (Bannan, 2008; Brown,
2000; 2017; this volume; Darwin, 1871; Fenk-Oczlon & Fenk, 2009; Fitch, 2010; Jespersen,
1922; Kirby, 2011; Livingstone, 1973; Ma et al., 2019; Masataka, 2009; Mithen, 2007;
Miyagawa et al., 2022; Podlipniak, 2022; Ravignani & de Boer, 2021; Reybrouck &
Podlipniak, 2019; Richman, 1987; Thompson et al., 2012). Their experiment showcased that
the words used as referential rated as more like speech and the words meant to communicate
mental state rated as more like music, which is consistent with the account of the
proto-language-music hypothesis. It is important to note that this approach may reflect the
biases related to music and language already present in our current cognitive systems but not
how music and language evolved based on the cognitive mechanisms that our ancestors had
(Ravignani & de Boer, 2021). Nevertheless, experimenting on the cultural evolution of music
and language simultaneously is a promising way to obtain integrative insights into
specificities and commonalities of music and language.

Music and language are often hypothesized to have co-evolved with broader human
cognitive and social aspects such as emotion (Jablonka et al., 2012), mindreading
(Woensdregt et al., 2021), and social complexity (Lomax, 1968; Wood et al., 2022). An
attempt to analyze how those aspects coevolved with music and language together has not
been made yet, but collectively assembling data from music and language can potentially be
leveraged for not only human population genetics but also the evolution of human cognitive
and social systems.

Following the surge of machine learning and artificial intelligence research in recent
decades, development of generative models of language and music have shown remarkably
human-like qualities in their outputs (Brown et al., 2020; Dhariwal et al., 2020; Oord et al.,
2016; Vaswani et al., 2017; Agostinelli et al., 2023). Music and language are still mainly used
and produced by humans, but there is a possibility that artificial intelligence technologies
may also take part as “generators” that us humans culturally learn music and language from
them and these machine learning models get trained by output from us. Novel cultural
transmission biases may appear in that scenario, but how these deep generative models will
transform the cultural evolution of music and language is still unpredictable. Addressing the
role of generative models in the cultural evolution of music and language, including their
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legal and ethical implications (e.g., in music copyright [Yuan et al., In Press] or algorithmic
bias [Noble, 2018]) is a potential emerging research topic.

Mechanisms of the cultural evolution of music and language are very connected to
biological evolution. Identifying biological capacities necessary for the perception and
production of music (Honing et al., 2015) and language (Haspelmath, 2020), across species
(Ghazanfar et al., 2012; Patel et al., 2009) have shed light on their phylogenetic history. In
addition, findings about the genetic basis for musical or linguistic abilities (DeSalle &
Tattersall, 2018; Niarchou et al., 2022; Tan et al., 2014) and the evolution of vocal organs
(Belyk et al., 2021; Blasi et al., 2019; Brown et al., 2021; de Boer, 2019; Fitch et al., 2016)
have also been accumulating. Although many studies target either music or language, papers
jointly studying music and language have been increasing in volume (Asano, 2022; Belyk et
al., 2021; ten Cate & Honing, this volume; Nayak et al., 2022; Kotz et al., 2018; Jarvis, 2019;
Patel, 2021; Wesseldijk et al., 2021; Gingras & Drayna, This Volume), which provides an
integrative understanding of the evolution of music and language. The biological evolution of
music and language both require some general abilities such as vocal learning (Belyk, this
volume; Jarvis, 2019; Martins & Boeckx, 2020), which tells us music and language are not
merely cultural products observed in only humans but instead have deep evolutionary roots.
A holistic view of the evolution of music and language may require incorporating even more
evolutionary factors such as the evolution of general cognitive abilities (Kaczanowska et al.,
2022), environmental pressures (Bentz et al., 2018; Gavin et al., 2017), and epigenetics
(Gokhman et al., 2020).

We need more comprehensive parallel analyses of musical/linguistic evolution that
might help shed light on their potential distinct features, evolutionary origins, and/or
coevolution (cf. Ozaki et al., 2023 and Passmore et al., 2023). The terms music and language
encompass various forms and in some cases the boundary is not obvious (e.g. chanting;
Cummins, 2020) or can change depending on context (e.g., the speech-to-song illusion;
Deutsch, this volume; Deutsch et al., 2008). Diverse forms of music and language can
generate various combinations of communication signals of these two domains. For instance,
what can comparison (within and between) vocal music/ spoken language/ instrumental
music/ sign language show us about their evolution? What similarities can we find between
music and language expressed in the same modality (i.e. vocally, speech and song) vs. across
different modalities (e.g. sign or spoken languages and instrumental music)? To what extent
are turn-taking or synchronization in speech and musical performances similar or different?
What factors control the use of music-like features and speech-like features in people’s
utterances and how should we capture the variation of communicative acoustic signals (e.g.
the musi-language model (Brown, 2000; Leongómez et al., 2022))?

To address such questions, evolutionary research on music and language must become
more inclusive. While evolutionary researchers are beginning to diversify their pool of
participants (Apicella et al., 2020), the researchers performing and publishing the research
still tend to represent only a small sliver of humanity from English-speaking (Blasi et al.,
2022), “WEIRD” (Western, Educated, Industrialized, Rich, Democratic; Henrich et al., 2010)
societies, limiting the generalizability and quality of our results. Teaming up with scholars
from diverse linguistic and musical backgrounds is critical for this type of research to avoid
idiosyncratic biases embedded in a particular language (see Blasi et al., 2022 for the case of
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English) and to create a more equitable, inclusive society (Adame et al., 2020; Nature editors,
2022). For example, Ozaki et al. (2023) collaborated with over 70 coauthors representing
diverse linguistic varieties throughout the globe (Fig. 2.9), and each coauthor recorded and
annotated themselves singing and speaking in different languages. Each coauthor’s
knowledge of their language, culture, and own intended singing/speaking allowed them to
produce segmentations of acoustic units (e.g., syllables/notes) that could not have been
achieved by a non-native speaker or an algorithm, resulting in higher quality data and
analyses as well as allowing them all to share credit and shape the interpretation of the
resulting research paper.

Figure 2.9. Global collaboration on comparative analysis of music and language
facilitates diverse data. Here each circle corresponds to a coauthor who recorded and
annotated themselves speaking and singing in their 1st/heritage language. (figure from Ozaki
et al., 2023).

2.7. Summary

Music and language are both forms of communication universally observed across human
societies, prompting researchers to investigate why and how they evolved. Such research
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initially focused on the biological evolution of the capacities to create and perceive language
and music; later work has increasingly tackled the cultural evolution approach to study the
mechanisms and processes driving the diversity and regularities of music and language. In
this chapter, we reviewed seminal studies of the cultural evolution of language and music. We
grouped the review into observational studies (e.g., phylogenetic analyses), experimental
studies (e.g., transmission chains), simulation studies (e.g., agent-based models), and
music-language relationships (e.g., song/speech melody/prosody).

Drawing on the reviews of these four areas of cultural evolutionary studies of music
and language, we proposed key ideas that each discipline can learn from the other and
promising research topics to encourage collaborative work. In particular, we argued that more
direct comparisons of music and language will help to better understand what is shared and
distinct about each domain’s evolution. This includes similarities and differences in cognitive
and motor constraints (e.g., memorability, ease of vocalization), cultural transmission
mechanisms (e.g., vertical/horizontal transmission with/independent from human
populations), and underlying biological bases (e.g., vocal learning).

Much remains to be done for comprehensive parallel analyses of the cultural
evolution of music and language. The extent to which music, language, and genes have
co-evolved still remains elusive. However, increasing our knowledge of cultural evolution
and both globally and locally evolved cultural traits of music and language may identify
constraints on what necessary biological and cognitive bases underly musical and linguistic
evolution. The advancement of integrative research of these two disciplines will shed light
not only on the cultural evolution of music and language but also their biological evolution
and potential coevolution.
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Abstract

What, if any, similarities and differences between music and speech are consistent across
cultures? Both music and language are found in all known human societies and are argued
to share evolutionary roots and cognitive resources, yet no studies have compared
similarities and differences between song, speech, and instrumental music across languages
on a global scale. In this Registered Report, we analyze a novel dataset of 300 high-quality
annotated audio recordings representing matched sets of singing, recitation, conversational
speech, and instrumental music from our 751 coauthors whose 55 1st/heritage languages
span 21 language families to find strong evidence for cross-culturally consistent differences
and similarities between music and language. Of our six pre-registered predictions, five were
strongly supported: relative to speech, songs use 1) higher pitch, 2) slower temporal rate,
and 3) more stable pitches, while both songs and speech used similar 4) pitch interval size,
and 5) timbral brightness. Our 6th prediction that song and speech would show similar pitch
declination was inconclusive, with exploratory analysis suggesting that songs tend to follow
an arched contour while speech contours tend to decline overall but end with a slight rise.
Because our non-representative language sample and unusual design involving coauthors
as participants could affect our results, we also performed robustness analyses - including a
parallel reanalysis of a previously published dataset of 418 song/speech recordings from 209
individuals whose 16 languages span 11 language families (Hilton & Moser et al., 2022,
Nature Human Behaviour) - which confirmed that our conclusions are robust to these
potential biases. Exploratory analyses identified additional features such as phrase length,
intensity, and rhythmic/melodic regularity that also consistently distinguish song from
speech, and suggest that such features also vary along a “musi-linguistic” continuum in a
cross-culturally consistent manner when including instrumental melodies and recited lyrics.
Further exploratory analysis suggests that pitch height is the only consistently sexually
dimorphic feature (female singing/speaking is almost one octave higher than male on
average), and that other factors such as musical training and recording context may also
interact to influence the magnitude of song-speech differences. Our study provides strong
empirical evidence for the existence of cross-cultural regularities in music and speech.

3.1. Introduction
Language and music are both found universally across cultures, yet in highly diverse forms
(Evans & Levinson, 2009; Jacoby et al., 2020; Mehr et al., 2019; Savage 2019), leading
many to speculate on their evolutionary functions and possible coevolution (e.g., Darwin,
1871; Haiduk & Fitch, 2022; Mehr et al., 2021; Patel, 2008; Savage et al., 2021; Valentova et
al., 2019). Yet such speculation still lacks empirical data to answer the question: what
similarities and differences between music and language are shared cross-culturally?
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Although comparative research has revealed distinct and shared neural mechanisms for
music and language (Albouy et al., 2020; Doelling et al., 2019; Morrill et al., 2015; Patel,
2008, 2011; Peretz, 2009; Rogalsky et al., 2011), there has been relatively less comparative
analysis of acoustic attributes of music and language (e.g., Ding et al., 2017; Patel et al.,
2006), and even fewer that directly compare the two most widespread forms of music and
language that use the same production mechanism: vocal music (song) and spoken
language (speech).

Cross-cultural analyses have identified “statistical universals” shared by most of the world’s
musics and/or languages (Bickel, 2011; Brown, 1991; Brown and Jordiana, 2013; Savage et
al., 2015). In music, these include regular rhythms, discrete pitches, small melodic intervals,
and a predominance of songs with words (rather than instrumental music or wordless songs)
(Mehr et al., 2019; Savage et al., 2015). However, non-signed languages also use the voice
to produce words, and other proposed musical universals may also be shared with language
(e.g., discrete pitch in tone languages; regular rhythms in “syllable-timed” / “stress-timed”
languages; use of higher pitch when vocalizing to infants) (Haiduk & Fitch, 2022; Hilton et
al., 2022; Ozaki et al., 2022; Patel, 2008; Tierney et al., 2011). Moreover, vocal parameters
of speech and singing, such as fundamental frequency and vocal tract length as estimated
from formant frequencies, are strongly intercorrelated in both men and women (Valentova et
al., 2019).

Many hypotheses make predictions about cross-cultural similarities and differences between
song and speech. For example, the social bonding hypothesis (Savage et al., 2021) predicts
that song is more predictably regular than speech to facilitate synchronization and social
bonding. In contrast, Tierney et al.’s (2011) motor constraint hypothesis predicts similarities
in pitch interval size and melodic contour due to shared constraints on sung and spoken
vocalization. Similarly, the sexual selection hypothesis (Valentova et al., 2019) predicts
similarities between singing and speaking due to their redundant functions as ‘backup
signals’ indicating similar underlying mate qualities (e.g., body size). Finally, culturally
relativistic hypotheses instead predict neither regular cross-cultural similarities nor
differences between song and speech, but rather predict that relationships between song
and speech are strongly culturally dependent without any universal regularities (List, 1971).

Culturally relativistic hypotheses appear to be dominant among ethnomusicologists. For
example, in a Jan 13, 2022 email to the International Council for Traditional Music (ICTM)
email list entitled “What is song?”, ICTM Vice-President Don Niles requested definitions for
“song” that might distinguish it from “speech” cross-culturally. Much debate ensued, but the
closest to such a definition that appeared to emerge was the following conclusion published
by Savage et al. (2015) based on a comparative analysis of 304 audio recordings of music
from around the world:

"Although we found many statistical universals, absolute musical universals did not
exist among the candidates we were able to test. The closest thing to an absolute
universal was Lomax and Grauer’s [1968] definition of a song as a vocalization
using “discrete pitches or regular rhythmic patterns or both,” which applied to
almost the entire sample, including instrumental music. However, three musical
examples from Papua New Guinea containing combinations of friction blocks, swung
slats, ribbon reeds, and moaning voices contained neither discrete pitches nor an
isochronous beat. It should be noted that the editors of the Encyclopedia did not
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adopt a formal definition of music in choosing their selections. We thus assume that
they followed the common practice in ethnomusicology of defining music as “humanly
organized sound” [Blacking, 1973] other than speech, with the distinction between
speech and music being left to each culture’s emic (insider, subjective) conceptions,
rather than being defined objectively by outsiders. Thus, our analyses suggest that
there is no absolutely universal and objective definition of music, but that
Lomax and Grauer’s definition may offer a useful working definition to
distinguish music from speech.” (emphasis added)

Importantly, however, Savage et al.’s conclusion was based only on an analysis of music,
thus the contrast with speech is speculative and not based on comparative data.

Some studies have identified differences between speech and song in specific languages,
such as song being slower and higher-pitched (Hansen et al., 2020; Merrill &
Larrouy-Maestri, 2017; Sharma et al., 2021; Vanden Bosch der Nederlanden et al., 2022).
However, a lack of annotated cross-cultural recordings of matched speaking and singing has
hampered attempts to establish cross-cultural relationships between speech and song (cf.
Blasi et al., 2022). The available dataset closest to our study is Hilton, Moser, et al.’s (2022)
recordings sampled from 21 societies. Their dataset covers 11 language families and each
participant produced a set of adult-directed and infant-directed song and speech. However,
their dataset was designed to independently compare adult-directed vs. infant-directed
versions of song and of speech, and they did not directly compare singing vs. speaking. We
performed exploratory analyses of their dataset (Ozaki et al., 2022), but found that since
their dataset does not include manual annotations for acoustic units (e.g. note, syllable,
sentence, phrase, etc.), it is challenging to analyze and compare key structural aspects such
as pitch intervals, pitch contour shape, or note/syllable duration. While automatic
segmentation can be effective for segmenting some musical instruments and animal songs
(e.g., percussion instruments [Durojaye et al., 2021]; bird song notes separated by
micro-breaths [Roeske et al. 2020]), ​​we found they did not provide satisfactory segmentation
results compared to human manual annotation for the required task of segmenting
continuous song/speech into discrete acoustic units such as notes or syllables (cf. Fig. S6).
For example, Mertens’ (2022) automated segmentation algorithm used by Hilton et al. (2022)
mis-segmented two out of the first three words “by a lonely” from the English song used in
our pilot analyses (“The Fields of Athenry”), over-segmenting “by” into “b-y”, and
under-segmenting “lonely” by failing to divide it into “lone-ly” (cf. Fig. S6 for systematic
comparison of annotation by automated methods and by humans speaking five different
languages from our pilot data).

Our study overcomes these issues by creating a unique dataset of matched singing and
speaking of diverse languages, with each recording manually segmented into acoustic units
(e.g., syllables, notes, phrases) by the coauthor who recorded it in their own 1st/heritage
language. Furthermore, because singing and speaking exist on a broader “musi-linguistic”
spectrum including forms such as instrumental music and poetry recitation (Brown, 2000;
Leongómez et al., 2022; Tsur and Gafni, 2022), we collected four types of recordings to
capture variation across this spectrum: 1) singing, 2) recitation of the sung lyrics, 3)
spoken description of the song, and 4) instrumental version of the sung melody (Fig. 3.1).
The spoken description represents a sample of naturalistic speech. In contrast, the lyrics
recitation allows us to control for potential differences between the words and rhythmic
structures used in song vs. natural speech by comparing the exact same lyrics when sung
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vs. spoken, but as a result may be more analogous to poetry than to natural speech. The
instrumental recording is included to capture the full musi-linguistic spectrum from
instrumental music to spoken language, allowing us to determine how similar/different music
and speech are when using the same effector system (speech vs. song) versus a different
system (speech vs. instrument).

Figure 3.1. Example excerpts of the four recording types collected in this study, arranged in a
“musi-linguistic continuum” from instrumental music to spoken language. Spectrograms
(x-axis: time [seconds], y-axis: frequency [Hz]) of the four types of recordings are displayed on the
right-hand side (excerpts of author Savage performing/describing “Twinkle Twinkle”, using a piano for
the instrumental version). Blue dashed lines show the schematic illustration of the mapping between
the audio signal and acoustic units (here syllables/notes). For this Registered Report, we focus our
confirmatory hypothesis only on comparisons between singing and spoken description (red
rectangles), with recited and instrumental versions saved for post-hoc exploratory analysis.

3.1.1 Study aims and hypotheses
Our study aims to determine cross-cultural similarities and differences between speech and
song. Many evolutionary hypotheses result in similar predicted similarities/differences
between speech and song: for example, song may use more stable pitches than speech in
order to signal desirability as a mate and/or to facilitate harmonized singing, and by
association bond groups together or signal their bonds to outside groups (Savage et al.,
2021b). Such similarities and differences between song and speech could arise through a
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combination of purely cultural evolution, purely biological evolution, or some combination of
gene-culture coevolution (Patel, 2018; Savage et al., 2021; Hoeschele & Fitch, 2022).
Rather than try to disambiguate such ultimate theories, we focus on testing more proximate
predictions about similarities and differences in the acoustic features of song and speech,
which can then be used to develop more cross-culturally general ultimate theories in future
research. Through literature review and pilot analysis (see Section S1.4), we settled on six
features we believe we can reliably test for predicted similarities/differences: 1) pitch height,
2) temporal rate, 3) pitch stability, 4) timbral brightness, 5) pitch interval size, and 6)
pitch declination (cf. Table 1). Detailed speculation on the possible mechanisms underlying
potential similarities and differences are described in the Supplementary Discussion section
(S2).
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Table 3.1. Registered Report Design Planner. Includes six hypotheses (H1-H6).

Question Hypothesis Sampling plan Analysis plan
Rationale for deciding the test
sensitivity

Interpretation given
different outcomes

Theory that could be shown
wrong by the outcomes Actual outcome

Are any
acoustic
features
reliably
different
between
song and
speech
across
cultures?

1) Song uses
higher pitch than
speech

n=81 pairs of audio recordings of
song/speech, with each pair
sung/spoken by the same person
(Fig. 3.3). Recruitment was
opportunistic based on collaborator
networks aiming to maximize global
diversity and achieve greater than
95% a priori power even if some data
has to be excluded (see Sec. 2.2 for
inclusion/ exclusion criteria).

Meta-analysis
framework (Fig. 3.2)
calculates a paired effect
size for pitch height (f0)
for each song/ speech
pair and tests whether
the population effect size
(relative effect pre) is
significantly larger than
0.5.

Power analysis estimate of minimum
n=60 pairs was based on converting
Brysbaert’s (2019) suggested
Smallest Effect Size Of Interest
(SESOI) of Cohen’s d=0.4 to the
corresponding pre = 0.61. We control
for multiple comparisons using false
discovery rate (Benjamini-Hochberg
step-up method; family-wise α = .05; β
= .95).

The null hypothesis of no
difference in f0 between sung
and spoken pitch height is
rejected if the population
effect size is significantly
larger than pre= 0.5.
Otherwise, we neither reject
nor accept the hypothesis.

Our design cannot falsify specific
ultimate theories (e.g., social bonding
hypothesis, motor constraint
hypothesis), but can falsify cultural
relativistic theories that argue
against general cross-cultural
regularities in song-speech
relationships.

All three
hypothesized
differences
between song and
speech (pitch
height, temporal
rate, and pitch
stability) were
confirmed

2) Song is slower
than speech

Same as H1, but for temporal rate (inter-onset interval (IOI) rate) instead of pitch height (f0)

3) Song uses more
stable pitches than
speech

Same as H1, but for pitch stability (-|Δf0|) instead of pitch height

Are any
acoustic
features
reliably
shared
between
song and
speech
across
cultures?

4) Song and speech
use similar timbral
brightness

Same as H1. Same as H1, except test
whether the effect size
for timbral brightness is
significantly smaller
than the SESOI.

Same as H1. The null hypothesis of
spectral centroid of singing
being meaningfully lower or
higher than speech is
rejected if the population
effect size is significantly
within the SESOI (0.39<pre
<0.61, corresponding to ±0.4
of Cohen’s d. Otherwise, we
neither reject nor accept the
hypothesis.

Same as H1. The hypothesized
similarities in
timbral brightness
and pitch interval
size were
confirmed

5) Song and speech
use similar sized
pitch intervals

Same as H4, but for pitch interval size (f0 ratio) instead of timbral brightness.

6) Song and speech
use similar pitch
contours

Same as H4, but for pitch declination (sign of f0 slope) instead of timbral brightness. The hypothesized
similarity in pitch
contour was
neither rejected
nor confirmed.
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3.1.2 Analysis plan
We test two types of hypotheses, corresponding to the hypothesis of difference and the
hypothesis of similarity, respectively. Formally, one type of null hypothesis is whether the
effect size of the difference between song and speech for a given feature is null. This
hypothesis will be applied to the prediction of the statistical difference. Another type of null
hypothesis is whether the effect size of the feature exceeds the smallest effect size of
interest (SESOI) (Lakens, 2017). This hypothesis will be applied to the prediction of
statistical similarity. In this study, we particularly rely on the SESOI of 0.4 suggested by the
review of psychological research (Brysbaert, 2019). There are various ways to quantify the
statistical difference or similarity (e.g. Kullbak-Leibler divergence, Jensen-Shannon
divergence, Earth mover’s distance, energy distance, Ln norm, Kolmogorov-Smirnov
statistic). Here we focus on effect sizes to facilitate interpretation of the magnitudes of
differences.

Since our main interest lies in the identification of which features demonstrate differences or
similarities between song and speech, we will perform the within-participant comparison of
the six features between the pairs of singing and speech, using the spoken description
rather than the lyric recitation as the proxy for speech (cf. red boxes in Fig. 3.1; the
comparisons with lyrics recitation and with instrumental versions will be saved for exploratory
analyses). In addition, terms in the computed difference scores will be arranged so that for
our predicted differences (H1-H3), a positive value indicates a difference in the predicted
direction (cf. Fig. S3).

Evaluation of difference in the magnitude of each feature is performed with nonparametric
relative effects (Brunner et al., 2018) which is also known as stochastic superiority (Vargha &
Delaney, 1998) or probability-based measure of effect size (Ruscio, 2008). This measure is a
nonparametric two-sample statistics and allows us to investigate the statistical properties of
a wide variety of data in a unified way.

We apply the meta-analysis framework to synthesize the effect size across recordings to
make statistical inference for each hypothesis (Fig. 3.2). In this case, the study sample size
corresponds to the number of data points of the feature in a recording and the number of
studies corresponds to the number of language varieties. We use Gaussian random-effects
models (Brockwell & Gordon, 2001; Liu et al., 2018), and we frame our hypotheses as the
inference of the mean parameter of Gaussian random-effects models which indicates the
population effect size.
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Figure 3.2. Schematic overview of the analysis pipeline from raw audio recordings to the
paired comparisons shown in Figure S2. Recording sets 1 and 2 represent pilot data of singing and
speaking in Yoruba and Farsi by coauthors Nweke and Hadavi, respectively. From each pair of
song/spoken audio recordings by a given person, we quantify the difference using the effect size for
each feature. is the relative effect (converted to Cohen’s d for ease of interpretability). In both
cases, the distributions of sung and spoken pitch overlap slightly but song is substantially higher on
average (Cohen’s d > 2). In order to synthesize the effect sizes collected from each recording pair to
test our hypotheses, we apply meta-analyses by treating each recording pair as a study. This
approach allows us to make an inference about the population effect size of features in song and
speech samples. This example focuses on just one feature (pitch height) applied to just two recording
sets, but the same framework is applied to the other five features and other recording sets to create
the processed data for hypothesis testing shown in Figure S2, Different types of hypothesis testing
are applied depending on the feature (i.e. hypothesis of difference and hypothesis of similarity).

Our null hypotheses for the features predicted showing difference is that the true effect size
is zero (i.e. relative effects of 0.5). On the other hand, the null hypotheses for the feature
predicted showing similarity is that the true effect size is lower or larger than smallest effect
sizes of interest in psychology studies (i.e. relative effects of 0.39 and 0.61 corresponding to
±0.4 of Cohen’s d) (Brysbaert, 2019). We test six features, and thus test six null hypotheses.

Since we test multiple hypotheses, we will use the false discovery rate method with the
Benjamini-Hochberg step-up procedure (Benjamini & Hochberg, 1995) to decide on the
rejection of the null hypotheses. We define the alpha level as 0.05.

For the hypothesis testing of null effect size (H1-H3), we test whether the endpoints of the
confidence interval of the mean parameter of the Gaussian random-effects model are larger
than 0.5. We use the exact confidence interval proposed by Liu et al. (2018) and Wang &
Tian (2018) to construct the confidence interval. For the hypothesis testing of equivalence
(H4-H6), we first estimate the mean parameter (i.e. overall treatment effect) with the exact
confidence interval (Liu et al., 2018; Wang & Tian, 2018) and the between-study variance
with the DerSimonian-Laird estimator (DerSimonian & Laird, 1986). Since Gaussian
random-effects models can be considered Gaussian mixture models having the same mean
parameter, the overall variance parameter can be obtained by averaging the sum of the
estimated between-study variance and the within-study variance. Then, we plug the mean
parameter and overall variance into Romano’s (2005) shrinking alternative parameter space
method to test whether the population mean is within the SESOI as specified above.
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Our choice of an SESOI of d = 0.4 based on Brysbaert’s (2019) recommendation after
reviewing psychological studies is admittedly somewhat arbitrary. Future studies might be
able to choose a different SESOI on a more principled basis based on the data and analyses
we provide here, and the value of our database for such hypothesis generation and
exploration is an important benefit beyond the specific confirmatory analyses proposed.
However, we currently are faced with a chicken-and-egg problem in that it is difficult to justify
an a priori SESOI for analysis until we have undertaken the analysis. The same argument
may hold for Bayesian approaches (e.g., highest density regions, region of practical
equivalence, model selection based on Bayes factors) independent of the choice of prior
distributions. We thus chose to rely on Brysbaert’s recommended SESOI of d = 0.4 (and its
equivalent relative effect of pre = 0.61) in the absence of better alternatives.

Visual and aural inspection of the distribution of pilot data (Figs. S2 and S9; audio recordings
can be heard at https://osf.io/mzxc8/) also suggest that it is a reasonable (albeit arbitrary)
threshold given the variance observed across a range of different features and languages.
To enable the reader/listener to assess what an SESOI might sound like, we have created
versions of the pilot data artificially raising/lowering the temporal rate and pitch height of
sung/spoken examples so one can hear what our proposed SESOI would sound like for a
range of languages and features (Section S7 and Table S1; audio files also at
https://osf.io/mzxc8/.

3.2. Method

All details are written in the S1 Supplementary methods section. Here, we briefly introduce
two key aspects: language sample and acoustic features.

We have recruited 75 collaborators from around the world, spanning the speakers of 21
language families (Fig. 3.3). All audio recordings analyzed are made by our group of 75
coauthors recording ourselves singing/speaking in our 1st/heritage languages. Collaborators
were chosen by opportunistic sampling beginning from co-corresponding author Savage’s
network of researchers (cf. S1.2. for details).
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Figure 3.3. Map of the linguistic varieties spoken by our 75 coauthors as 1st/heritage
languages (A). (NB: 6 of the original 81 planned coauthors were unable to complete the recording
and annotation process compared to our initially planned sample; cf. Fig. S1 for the original map of 81
linguistic varieties). Each circle represents a coauthor singing and speaking in their 1st (L1) or
heritage language. The geographic coordinates represent their hometown where they learned that
language. In cases when the language name preferred by that coauthor (ethnonym) differs from the
L1 language name in the standardized classification in the Glottolog (Hammarström et al., 2022), the
ethnonym is listed first followed by the Glottolog name in round brackets. Language family
classifications (in bold) are based on Glottolog. Square brackets indicate geographic locations for
languages represented by more than one coauthor. Atlantic-Congo, Indo-European and Sino-Tibetan
languages are further grouped by genus defined by the World Atlas of Language Structures (Dryer et
al., 2013; https://wals.info/languoid). The word clouds outline the most common textual content of
English translations of the song lyrics (B) and spoken descriptions (C) provided by our 75 coauthors
(larger text indicates words that appear more frequently).
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We compared the following six acoustic features between song and speech for our main
confirmatory analyses:

1) Pitch height (fundamental frequency (f0)) [Hz],
2) Temporal rate (inter-onset interval (IOI) rate) [Hz],

- The unit of IOI is seconds and IOI rate is the reciprocal of IOI. Onset
represents the perceptual center (P-center) of an acoustic unit (e.g., syllables,
mora, note), which represents the subjective moment when the sound is
perceived to begin. The P-center can be interpreted to reflect the onset of
linguistic units (e.g., syllable, mora) and musical units (e.g., note), with the
segmentation of acoustic units determined by the person who made the
recording. This measure includes the interval between a break and the onset
immediately preceding the break. Breaks were defined as relatively long
pauses between sounds. For vocal recordings, that would typically constitute
when the participant would inhale.

3) Pitch stability (-|f0|) [cent/sec.],
4) Timbral brightness (spectral centroid) [Hz],
5) Pitch interval size (f0 ratio) [cent],

- Absolute value of pitch ratio converted to the cent scale.
6) Pitch declination (sign of f0 slope) [dimensionless]

- Sign of the coefficient of robust linear regression fitted to the phrase-wise f0
contour.

For each feature, we compared its distribution in the song recording with its distribution in
the spoken description by the same singer/speaker, converting their overall combined
distributions into a single scalar measure of nonparametric standardized difference (cf. Fig.
3.2). Details can be found in S1.3. and S3.

Figure 3.4. Schematic illustration of the six features analyzed for confirmatory analysis, using
a recording of author Savage singing the first two phrases of “Twinkle Twinkle Little Star” as
an example. Onset and breathing annotations are based on the segmented texts displayed on the top
of the spectrogram. The y-axis is adjusted to emphasize the f0 contour, so note that the spectral
centroid information is not fully captured (e.g. high spectral centroid due to the consonant). The
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bottom figure shows pitch stability (rate of change of f0, or derivative of the f0 contour equivalently) of
the sung f0.

Changes to Stage 1 Registered Report protocol (Introduction and Method sections 1-2
plus Supplementary Materials)

We have left the content of Introduction and Method (Sections 1-2) and Supplementary
Materials unchanged from the version granted In Principle Acceptance (accessible at
https://osf.io/download/6387919ba98e5f286310370d/?version=4), following Registered
Report procedures to avoid any possibility of adjusting hypotheses or analyses after knowing
the results. However, we have moved the majority of the Method section to Supplementary
Materials to make the main result and discussion easier to read. At the time we submitted
the Stage 1 manuscript, we mainly reported our pilot data results included in the Method
section, but now those results have been moved to Supplementary Information.

As a result, we have renumbered Section and Figure numbers and have updated
cross-references to them. In addition, we have added a subsection title to the paragraph
explaining exploratory features in the supplementary materials which should have been
there. Minor typos have also been corrected accordingly.

Note that the map in the Methods section (Fig. 3.3) reflects the final 75 collaborators who
provided audio recording data, not the original 81 collaborators shown in the original map
(Fig. S1), as 6 collaborators were unable to provide recording data. We have also added a
word cloud visualization of the translated content of the sung/spoken audio recordings to
accompany this map.

3.3. Results
3.4.2 Confirmatory analysis

The results of the confirmatory hypothesis testing with 73 recording sets confirm 5 of our 6
predictions (Fig. 3.5 and Table 2; all p < 1x10-5). Specifically, relative to spoken descriptions,
songs used significantly higher pitch (translated Cohen’s D = 1.6), slower temporal rate (D =
1.6), and more stable pitches (D = 0.7), while both spoken descriptions and songs used
significantly equivalent timbral brightness and pitch interval size (both D < 0.15). The one
exception was pitch declination, which was not significantly equivalent between speech and
song (p=.57), with an estimated effect size of D = 0.42 slightly greater than our pre-specified
“Smallest Effect Size of Interest” (SESOI) of D = 0.4. In section 4.2.7 we perform alternative
exploratory analyses to understand possible reasons for this failed prediction.
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Figure 3.5. Plot of effect sizes showing differences of each feature between singing and spoken
description of the 73 recording sets for the confirmatory analysis and 75 recording sets for the
exploratory analysis. The plot includes 7 additional exploratory features, and the 6 features
corresponding to the main confirmatory hypotheses are enclosed by the red rectangle. Confidence
intervals are created using the same criteria in the confirmatory analysis (i.e., α = 0.05/6). Each circle
represents the effect size from each recording pair of singing and spoken description, and the set of
effect sizes are measured per recording pair. Readers can find further information on how to interpret
the figure in the caption of Figure S2 and Figure S9. Note that the colors of data points indicate
language families, which are coded the same as in Figure 3.3, and violin plots are added to this figure
compared to Figure S2.
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Hypothesis Feature Test Combined ES CI (α = 0.05/6) p-value

1) Song uses higher pitch than
speech

f0 One-tailed
confidence
interval of
the
combined
effect size

1.61 1.41, n/a *< 1.0x10-8

2) Song is slower than speech IOI rate 1.60 1.40, n/a *< 1.0x10-8

3) Song uses more stable
pitches than speech

-|Δf0| 0.65 0.56, n/a *< 1.0x10-8

4) Song and speech use similar
timbral brightness

Spectral
centroid

Equivalenc
e test for
the
combined
effect size

0.13 -0.0046, 0.27 *5.2x10-6

5) Song and speech use similar
sized pitch intervals

f0 ratio 0.082 -0.044, 0.21 *< 1.0x10-8

6) Song and speech use similar
pitch contours

Sign of f0
slope

0.42 0.13, 0.69 .57

Table 3.2. Results of the confirmatory analysis. The effect sizes reported in the table are Cohen’s d
transformed from relative effects for ease of interpretation, but the hypothesis tests were conducted
with relative effects. The CIs are either one-tailed or two-tailed, depending on the aim of the test. Note
the equivalence test uses statistics different from the above meta-analysis CIs to verify equivalence
hypotheses. Asterisks in p-values indicate that the null hypothesis is rejected.

Our robustness checks confirmed that the tests with the recordings excluding collaborators
who knew the hypotheses when generating data lead to the same decisions regarding the
rejection of the null hypotheses (Table 3). This result suggests our unusual “participants as
coauthors” model did not influence our confirmatory analyses. In addition, the other
robustness check suggests that the measured effect sizes do not have language
family-specific variance (Table 4), which supports the appropriateness of the use of simple
random-effect models in the analyses.
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Hypothesis Feature Test Combined ES CI (α = 0.05/6) p-value

1) Song uses higher pitch
than speech

f0 One-tailed
confidence
interval of
the
combined
effect size

1.73 1.46, n/a *< 1.0x10-8

2) Song is slower than
speech

IOI rate 1.64 1.40, n/a *< 1.0x10-8

3) Song uses more stable
pitches than speech

-|Δf0| 0.64 0.51, n/a *< 1.0x10-8

4) Song and speech use
similar timbral brightness

Spectral
centroid

Equivalen
ce test for
the
combined
effect size

0.14 -0.028, 0.31 *3.3x10-4

5) Song and speech use
similar sized pitch intervals

f0 ratio 0.10 -0.067, 0.27 *3.5x10-5

6) Song and speech use
similar pitch contours

Sign of
f0 slope

0.23 -0.11, 0.60 .12

Table 3.3. Results of the robustness check, which used data only from the collaborators who had not
known the hypotheses when generating data (47 pairs of singing and spoken description recordings).

Hypothesis AIC
(standard)

AIC
(multi-level)

Log
likelihood
(standard)

Log
likelihood
(multi-level)

Variance of the
effects at

language family

1) Song uses higher pitch
than speech

-87.08 -85.08 45.54 45.54 < 1.0×10-8

2) Song is slower than
speech

-111.64 -109.73 57.82 57.86 1.86×10-3

3) Song uses more stable
pitches than speech

-153.53 -151.53 78.76 78.76 < 1.0×10-8

4) Song and speech use
similar timbral brightness

-86.32 -84.90 45.16 45.45 2.07×10-3

5) Song and speech use
similar sized pitch intervals

-95.90 -93.90 49.95 49.95 < 1.0×10-8

6) Song and speech use
similar pitch contours

-7.24 -5.48 5.62 5.74 2.29×10-3

Table 3.4. Results of the robustness check comparing models taking into account dependency by
language families. Superior AIC scores are highlighted in bold. Maximum likelihood estimation is used
to fit the models. “standard” refers to standard random-effects models used in the confirmatory
analyses, and “multi-level” refers to two-level random-effects models grouping data by language
families. The right-most column shows the maximum likelihood estimate of the variance parameters
appearing in the multi-level models. The log-likelihoods are almost identical between the two models,
and multi-level models degenerate to standard random effects models (i.e. variance due to language
family is negligible), which means grouping data by language family is redundant and simple random
effects models are enough to model data.
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3.4 Exploratory analysis

3.4.2.1 More acoustic features

We specified six features for our confirmatory analyses, but human music and speech can
be characterized by additional acoustic features. We include seven additional features to
probe further similar and different aspects of music and speech, namely rhythmic regularity,
phrase length (duration between two breaths/breaks), pitch interval regularity, pitch range,
intensity, pulse clarity, and timbral noisiness (cf. section S6). Although we do not formally
construct and test hypotheses for this analysis, Figure 3.5 suggests that phrase length,
intensity, and timbral noisiness may also inform differences between song and speech, and
pitch range can be another candidate for demonstrating similarities between song and
speech. Specifically, songs appear to have longer intervals between breathing, higher sound
pressure, and have less vocal noise than speech. Note that as described in 1.2, the order of
comparison is arranged so that difference is expressed as a positive value, so that
difference in timbral noisiness is calculated as noisiness of spoken description relative to
song.

Figure 3.6. Alternative visualization of Figure 3.5 showing mean values of each feature rather than
paired differences but with all recording types. Note that the colors of data points indicate language
families, which are coded the same as in Figure 3.3. The horizontal lines in the violin plots indicate the
median.

3.4.2.2 Music-language continuum: including instrumental/recited lyrics
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Exploratory analyses that include comparisons with lyrics recitation and instrumental
recordings (cf. Fig. S13 and Fig. 3.6) suggest that 1) comparing singing vs. lyrics recitation
shows qualitatively the same results as for singing vs. spoken description in terms of how
confidence intervals intersect with the null point and the equivalence region; 2) comparing
instrumental vs. speech (both spoken description/lyrics recitation) reveals larger differences
in pitch height, temporal rate, and pitch stability than found with song vs. speech; 3) features
shown to be similar between song vs. speech (e.g., timbral brightness and pitch interval
size) show differences when comparing instrumental vs. speech; 4) few major differences
are observed between lyrics recitation and spoken description, except that recitation tends
be slower and use shorter phrases; 5) the instrumental generally has a more extreme
(larger/smaller) magnitude than singing for each feature except for temporal rate; and 6)
pitch height, temporal rate, and pitch stability display a noticeable constantly increasing (or
decreasing) continuum from spoken description to instrumental.

A similar trend is also found in additional differentiating features discussed in 4.2.1 (i.e.,
phrase length, timbral noisiness, and loudness). We also performed a nonparametric trend
test (cf., Table S2) to quantitatively assess the existence of trends, and the result suggests
that features other than pitch interval size and pitch range display increasing/decreasing
trends. These results tell us how acoustic characteristics are manipulated through the range
of acoustic communication from spoken language to instrumental music.

3.4.2.3 Demographic factors: Sex differences in features

Because we had a similar balance of female (n=34) and male (n=41) coauthors, we were
able to perform exploratory analysis comparing male and female vocalizations (Fig. S14).
These analyses suggest that, while there is some overlap in their distribution (e.g., some
male speaking/singing was higher than some female speaking/singing), on average female
vocalizations were consistently higher-pitched than male vocalizations regardless of the
language sung/spoken (by ~1,000 cents [almost one octave] consistently for song, spoken
description, and recited lyrics). However, there is no apparent sexual dimorphism in vocal
features other than pitch height (e.g., temporal rate, pitch stability, timbral brightness, etc.).
Although this analysis is exploratory, this result is consistent with past research that often
focuses on vocal pitch as a likely target of sexual selection (Chen et al., 2022; Feinberg et
al., 2018; Puts et al., 2006; 2016; Valentova et al., 2019).

3.4.2.4 Analysis by linguistic factors: nPVI

We employed nPVI (Patel & Daniele, 2003) to examine the degree of variation in inter-onset
intervals and onset-break intervals (cf. S3.2. & S8.) of our song and speech recordings. nPVI
provides large values if adjacent intervals differ in duration on average and vice versa. Thus,
nPVI can capture durational contrasts between successive elements. It was originally
developed to characterize vowel duration of stress-timed and syllable-timed languages (Ling
et al., 2000), although our duration is defined by the sequence of onset (cf. S1.1.) and break
annotations (cf. S8.) which are neither the same as vowel duration nor vocalic intervals. In
this exploratory analysis, we mapped nPVIs of song and spoken description recordings of
each collaborator on a two-dimensional space to explore potential patterns and also
visualized the density of nPVIs per recording type (cf. Fig. S20). However, we observed that
(1) nPVIs of song and spoken description do not seem to create distinct clusters among our
recordings (whether into “syllable-timed”, “stress-timed”, or any other categories), (2) nPVIs
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of song and spoken description do not have a clear correlation (Pearson’s r = 0.087) while
nPVIs of song and instrumental recording do show a substantial correlation (Pearson’s r =
0.52), and (3) nPVIs of spoken description tend to be slightly larger than song and
instrumental. The third result suggests durational contrast of speech is more variable
compared to singing and instrumental, which is consistent with past work showing that music
tends to have limited durational variability worldwide (Savage et al., 2015). In addition,
though linguists use various features (Grabe & Low, 2002) to carefully characterize the
rhythm of speech, the first two observations suggest that song rhythm is potentially
independent of speech rhythm even when produced by the same speaker in the same
language, which suggests that temporal control of song and speech may obey different
communicative principles.

3.4.2.5 Reliability of annotation process: Inter-rater reliability of onset annotations

We analyzed the inter-rater reliability of onset annotations to check how large individual
varieties are in the annotation. As stipulated in S1.7.7, Savage created onset annotations to
the first 10 seconds of randomly chosen 8 pairs of song and spoken description recordings.
In this 10-second annotation, Savage created onset annotations using the same segmented
text as Ozaki (the text provided by the coauthor who made the recording) but was blinded
from the actual annotation created by YO and confirmed by the coauthor who made the
recording. Therefore, the annotation by PES follows the same segmentation as the
annotation by YO, but can differ in the exact timing for which each segmentation is judged to
begin. We measured intra-class correlations (ICCs) of onset times with two-way
random-effects models measuring absolute agreement. As a result, all annotations show
strong ICCs (> .99), which indicates who performs the annotation may not matter as long as
they strictly follow the segmentation indicated in segmented texts. Alternative exploratory
analysis inspecting the distribution of differences in onset times is also conducted (cf., Fig.
S21). In the case of singing, 90% of onset time differences are within 0.083 seconds.
Similarly, in the case of spoken description, 90% of onset time differences are within 0.055
seconds. In other words, Ozaki’s manual onset annotations that form a core part of our
dataset have been confirmed by the coauthor who produced each recording and by
Savage’s independent blind codings to be highly accurate and reliable.

4.2.6. Exploring recording representativeness and automated scalability: Comparison
with alternative speech-song dataset (Hilton et al., 2022)

As stated in S1.7.8, we performed two exploratory analyses using automated methods to
investigate (1) the reproducibility of our findings with another corpus and (2) the applicability
of automated methods to substitute data extraction processes involving manual work. We
analyzed the recordings of adult-directed singing and speech of Hilton et al.’s (2022)
dataset. We especially analyzed both the full set of their data and the subset of their data
representing languages also present in our own dataset - English, Spanish, Mandarin,
Kannada, and Polish - to perform a matched comparison with our language varieties.
However, in their dataset, not all individuals made a complete set of recordings
(infant/adult-directed song/speech), and we analyzed recording sets containing matching
adult-directed song and adult-directed speech recordings, which resulted in 209 individuals
for the full data (i.e., individuals from full 21 societies/16 languages) and 122 individuals for
the above subset of 5 languages.
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Our data extraction processes involving manual work are fundamental frequency extraction,
sound onset annotation, and sound break annotation, and we automated fundamental
frequency extraction since reliable fundamental frequency estimators applicable to both song
and speech signals are readily available. On the other hand, reliable automated onset and
break annotation for both song and speech is still challenging. For example, we observed
that a widely used syllable nuclei segmentation method by de Jong & Wempe (2009) failed
to capture the major differences in temporal rate that we identified using manual
segmentation in Fig. 3.5. Instead, if we had used this automated method, we would have
mistakenly concluded that there is no meaningful difference in IOI rates of singing and
speech (Fig. S15). Therefore, as described in our Stage 1 protocol, we only focused on the
automation of f0 extraction that could provide reliable results even using purely automated
methods without requiring manual annotations.

We chose the pYIN (Mauch & Dixon, 2014) f0 extraction algorithm for this analysis. In
addition, we analyzed full-length recordings by taking advantage of the efficiency of
automated methods. Note that our timbral brightness analysis is already fully automated, so
we use the same analysis procedure for this feature. The result suggests that (1) the same
statistical significance can be obtained from Hilton et al.’s data though overall effect sizes
tend to be weakened, and (2) combined effect sizes based on pYIN with full-length duration
only show negligible differences from the original analysis involving manual work despite the
drastic difference in the measurement of some effect sizes (i.e., no effect sizes larger than
3.5 in the automated analysis of the pitch height of our data). Note that the differences in
pitch stability in Hilton et al.’s sample (translated Cohen’s d=0.30) are small enough to be
within our defined equivalence region (|d|<0.4) if we had predicted it to be equivalent, but it is
also significantly greater than the null hypothesis of no difference (translated Cohen’s d=0
corresponding to relative effect of 0.5), as we predicted (p < .005). Similar to Fig. 3.6, mean
values of each feature per recording can be found in the supplementary information (Fig.
S17-S19).
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Figure 3.7. Re-running the analyses on four different samples using different fundamental frequency
extraction methods: 1) our full sample (matched song and speech recordings from our 75 coauthors);
2) Hilton et al.’s (2022) full sample (matched song and speech recordings from 209 individuals); 3) a
sub–sample of our 14 coauthors singing/speaking in English, Spanish, Mandarin, Kannada, and
Polish), and 4) a sub-sample of Hilton et al.’s 122 participants also singing/speaking in English,
Spanish, Mandarin, Kannada, and Polish). “SA” means that f0s are extracted in a semi-automated
manner (cf. S3.1), while “FA” means they were exactly in a fully automated manner (using the pYIN
algorithm). Semi-automated analyses could only be performed on 20s excerpts of our recordings
annotated by the coauthor who recorded them, while automated analyses could be applied to the full
samples. In order to make the comparison with our results more interpretable, we have also added
the analysis of Hilton's data using the same number of song-speech recording pairs with us (i.e.,
randomly selected 74 pairs of recordings), extracting features from the first 20 seconds. Since
temporal rate, pitch interval size, and pitch declination analyses require onset and break annotations,
we focused on pitch height, pitch stability, and timbral brightness. The visualization follows the same
convention as in Figure 3.5 and Figure 3.8. However, Hilton et al.’s (2022) dataset contains languages
that are not in our dataset. Therefore, slightly different color mapping was applied (cf. Fig. S16). Note
that some large effect sizes (D > 3.5) in the pitch height of our original analysis (i.e., full-SA-20 sec.)
are not observed in the automated analysis (i.e., full-FA-full length). This is due to estimation errors in
the automated analyses. When erroneous f0s of pYIN are very high in spoken description or very low
in singing, relative effects become smaller than semi-automated methods that remove such errors.

4.2.7. Alternative analysis approaches for pitch declination (hypothesis 6)

The only one of our 6 predictions that was not confirmed was our prediction that song and
speech would display similar pitch declination. However, we would like to point out that only
3 to 4 f0 slopes (equal to the number of “phrases” or intervals from the first onset after a
break and to the next break, cf. Fig. 3.4) are, on average, included in the 20s length
recording of singing and spoken description, respectively, and so it is possible that this failed
prediction could be due to the relatively more limited amount of data available for this
feature. Therefore, we additionally checked the validity of the result of this hypothesis test
using a longer duration to extract more signs of f0 slopes to evaluate effect sizes. Although
we performed exploratory reanalysis using 30s recordings which contain 5 to 7 f0 slopes for
singing and spoken description on average, still the p-value was not small enough to reject
the null hypothesis (p = .48, CI [.17, .60]).

Note that we are judging the declination in an f0 contour by looking at the sign of the slope of
linear regression (i.e., the sign is negative means declination). Therefore, even if the f0
contour is an arch shape, which means it has a descending contour at the end part, it can be
judged as no declination if the linear regression shows a positive slope. Therefore, the
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declination here means if the f0 contour has a descending trend overall and not necessarily if
the phrase is ending in a downward direction.

We report here an additional analysis based on a different approach for handling the case
when signs of f0 slopes are not directly analyzable. Some singing and spoken description
recording pairs only contained negative signs (i.e. descending trend prosody). This is
undesirable for inverse variance-weighted based meta-analysis methods which we use (e.g.
DerSimonian-Laird estimator) since the standard deviations of effect sizes become zero,
leading to computation undefined. We employed the same procedure used in our power
analysis for such cases (cf. S4.2), but a more widely known practice would be zero-cell
corrections used in binary outcome data analysis (Weber et al., 2020). Signs of f0 slopes are
dichotomous outcomes (i.e. positive or negative), and drawing upon zero-cell corrections, we
artificially appended a plus and minus sign to each of the signs of f0 slopes from singing and
spoken description recordings when estimating standard errors of relative effects if needed
(e.g. [-1, -1, -1] → [-1, -1, -1, 1, -1] for the case of 3 f0 slopes). In zero-cell corrections, 0.5 is
added to all cells of the 2×2 table. Our analysis is not based on count data, so we cannot
exactly follow this correction. However, adding plus and minus signs to the outcome of both
singing and spoken description recordings has a similar effect. In other words, our additional
procedure is similar to zero-cell corrections but adding 1 instead of 0.5 to all cells. This
additional analysis provided virtually identical results with the main analysis reported in 3.1
(p = .66, CI [.15, .71]), suggesting that the way to handle zero frequency f0 slope sign data is
not crucial.

Lastly, we also checked the average trend of f0 contours segmented by onset and break
annotations (cf. Figure 3.8). The averaged f0 contour of spoken description recordings clearly
exhibits a predominantly descending trend, albeit with a slight rise at the end. In contrast, the
averaged f0 contour of songs is close to an arch shape, so that even though the second half
of songs tend to descend as predicted, the first half of songs tend to rise, in contrast to
speech which tends to mostly descend throughout the course of a breath. Thus, on average
spoken pitch contours tend to descend more than sung pitch contours, explaining our failure
to confirm our prediction that their contours would display similar pitch declination (cf. Fig.
3.5). We also noticed that vocalizers sometimes end their utterance by raising pitch in their
spoken description recordings (and lyrics recitation as well), causing a slight rise at the end
of the averaged f0 contour of spoken description (and lyrics recitation, cf. Figure 3.8).
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Figure 3.8. Averaged f0 contours. f0 contours extracted by the segments between onset and break
were averaged to visualize the overall trend. The extracted f0 contours were normalized to the length
of 512 samples using interpolation by Fourier transform and resampling (Fraser, 1989; Schafer &
Rabiner, 1973). The implementation by the MATLAB function interpft is used. Besides, the
frequencies of extracted f0 contours were standardized. Missing data from unvoiced segments of f0
contours were excluded. The blue lines represent averaged f0 contours, and the black lines indicate
95% confidence intervals assuming the frequencies at each normalized sampling point were
distributed normally. The average widths of confidence intervals of each category are .14 for
instrumental, .097 for song, .060 for lyrics recitation, and .065 for spoken description.

Furthermore, the width of standard errors around the mean contour (cf. Figure. 3.8) suggests
that spoken description and lyrics recitation have more homogeneous variations of contours
than song and instrumental. This difference may corroborate that music actually makes more
use of the manipulation of the pitch in communication. Indeed, musical melodies are
considered to have multiple typical shapes (Adams, 1976), so the overall average contour is
not necessarily representative of all samples.

3.4.2.8. Explanatory power of the features in song-speech classification

In order to probe the explanatory power of features on classifying acoustic signals into song
and speech, we evaluated feature importance using permutation importance (Breiman,
2001) with three simple machine learning models. Permutation importance informs the
influence on the machine learning model by a particular variable by randomly shuffling the
data of the variable (e.g., imagine a data matrix that row corresponds to observations and
column corresponds to variables, and the data in a particular column are shuffled). Here we
use the permutation importance, which is the version implemented in Python's eli5 package
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(Permutation Importance, n.d.). Since how the feature contributes to solving the given task
differs in machine learning models, we employed three binary classification models to
mitigate the bias from particular models: logistic regression with L2 regularization, SVM with
RBF kernel, and naive Bayes with Laplace smoothing.

We computed permutation importance by randomly splitting 75 recording sets into the
training set (n = 67) and test set (n = 8, 10% held-out) to fit the model and to evaluate the
importance of features in the classification task, and repeated the same process 1024 times.
The mean values of the feature, which are plotted in Figure 3.6, were used as data after
normalization. The average of 1024 realizations of permutation importance values was
reported here as the final output. ​​

The result suggests at least temporal rate, pitch stability, and pitch declination are constantly
weighed among these three models (cf. Fig. S22). All classifiers achieved average accuracy
and F1 score higher than 90 (cf. Table S3). The importance of the other features depends on
the models. For example, logistic regression gave the highest importance to pitch interval
regularity as their 3rd most important feature. Naive Bayes chose rhythmic regularity as the
2nd most important feature, but this feature did not have a noticeable impact on SVM. On
the other hand, it is consistent with the confirmatory analysis that pitch interval size and
timbral brightness are evaluated as unimportant in discriminating between song and speech.

Interestingly, there are several cases that some features showing a strong difference within
subjects were not evaluated as important in this analysis, including pitch height and intensity
(cf. Fig. 3.5 and Fig. S22). Two reasons can be considered. One reason is relative largeness
within the individual is not as informative in classifying acoustic signals collected from
multiple individuals. In this case, between-subjects consistent differences would be more
informative. Another scenario is that there is an overlap in information among features.
Correlation matrices of the features within song and speech (cf. Fig. S23-S24) show several
features have medium to large size correlation (e.g., increase in pitch interval regularity with
a decrease in temporal rate in singing with r = -.53). Therefore, there is a possibility that
some features are evaluated as unimportant not because that feature is irrelevant to classify
song and speech but because the information in that feature overlaps with other features.
This comes from the limitation of permutation importance that this measurement does not
take into account correlation among features.

Inspection of the correlation matrices suggests complex interactions exist among features.
Although what is captured in correlation matrices is a linear dependency between two
variables, nonlinear dependency among features or dependency among more than two
variables can also happen in vocal sound production. However, correlation is considered
acting in the underestimation of permutation importance (Pereira et al., 2022). Therefore, at
least the two features that consistently scored high among the three between-participant
models and that confirmed our predicted within-participant differences - namely, temporal
rate and pitch stability - capture important factors differentiating song and speech across
cultures.

3.5 Discussion
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3.5.1. Main confirmatory predictions and their robustness

Our analyses strongly support five out of our six predictions across an unprecedentedly
diverse global sample of music/speech recordings: 1) song uses higher pitch than speech, 2)
song is slower than speech, 3) song uses more stable pitches than speech, 4) song and
speech use similar timbral brightness, and 5) song and speech use similar sized pitch
intervals (Fig. 3.5). Furthermore, the first three features display a shift of distribution along
the musi-linguistic continuum, with instrumental melodies tending to use even higher and
more stable pitches than song, and lyric recitation tending to fall in between conversational
speech and song (Fig. 3.6).

While some of our findings were already expected from previous studies mainly focused on
English and other Indo-European languages (Chang et al., 2022; Ding et al., 2017; Hansen
et al., 2020; Merrill & Larrouy-Maestri, 2017; Sharma et al., 2021; see also S2.1 and Blasi et
al., 2022), our results provide the strongest evidence to date for the existence of “statistically
universal” relationships between music and speech across the globe. However, none of
these features can be considered an “absolute” universal that always applies to all
music/speech. Fig. 3.5 shows many exceptions for four of the five features: for example,
Parselelo (Kiswahili speaker) sang with a lower pitch than he spoke, and Ozaki (Japanese
speaker) used slightly more stable pitches when speaking than singing, while many
recording sets had examples where differences in sung vs. spoken timbre or interval size
were substantially larger than our designated “Smallest Effect Size Of Interest”. The most
consistent differences were found for temporal rate, as song was slower than speech for all
73 recording sets in our sample. However, additional exploratory recordings have revealed
examples where song can be faster than speech (e.g., Savage performing Eminem’s rap
from “Forgot About Dre” [https://osf.io/ba3ht]; Parselelo’s recording of traditional Moran
singing by Ole Manyas, a member of Parselelo’s ancestral Maasai community
[https://osf.io/mfsjz]).

Our sixth prediction - that song and speech use similar pitch contours - remained
inconclusive. Instead of our predicted similarities, our exploratory analyses suggest that,
while both song and speech contours tend to decline toward the end of a breath, they tend to
do so in different ways: song first rising before falling to end near the same height as the
beginning, speech first descending before briefly rising at the end (Fig. 3.8). Our prediction
was based in part on past studies by some of us finding similar pitch contours in human and
bird song, which we argued supported a motor constraint hypothesis (Tierney et al., 2011;
Savage et al., 2017). However, our current results suggest that motor constraints alone may
not be enough to explain similarities and differences between human speech, human song,
and animal song, and that future studies directly comparing all three domains will be needed.

Our robustness checks confirm that our primary confirmatory results were not artefacts of
our choice to record from a non-representative sample of coauthors. Specifically: 1)
language families do not account for variances in the measured song-speech differences
and similarities (Table 4), which means that these differences and similarities are
cross-linguistically regular phenomena, and 2) analyzing only recordings from coauthors who
made recordings prior to learning our hypotheses produced qualitatively identical
conclusions (Table 3). Analysis of Hilton et al.’s (2022) dataset of field recordings also
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supplemented our findings, producing qualitatively identical conclusions, regardless of the
precise analysis methods or specific sample/sub-sample used (Fig. 3.7).

3.5.2. Implications from the exploratory analyses

Comparisons with lyrics recitation and instrumental recordings revealed the relationship
between music and language can noticeably change depending on the type of acoustic
signal. In general, many features followed the predicted “musi-linguistic continuum” with
instrumental music and spoken conversation most extreme (e.g., most/least stable pitches
respectively), with song and lyric recitation occupying intermediate positions (Fig. 3.6).
However, for temporal rate, songs were more extreme (slower) than instrumental music,
while for phrase length, lyric recitation was more extreme (shorter) than spoken
conversation. Increasing variations of acoustic signals and designing the continuum with
multiple dimensions (e.g., by adding further categories such as infant-directed song/speech,
or speech intended for stage acting; mapping music and language according to pitch,
rhythm, and propositional/emotional functionality) may elucidate a more nuanced spectrum
of musi-linguistic continuum (Brown, 2000; Leongómez et al., 2022; Hilton et al., 2022).

3.5.3. Limitations on generality

A limitation of our study is that, because our paradigm was focused on isolating melodic and
lyrical components of song, the instrumental melodies we analyzed are not representative of
all instrumental music but only instrumental performance of melodies intended to be sung. It
is thus possible that instrumental music intended for other contexts may display different
trends (e.g., music to accompany dancing might be faster). Different instruments are also
subject to different production constraints, some of which may be shared with singing and
speech (e.g., aerophones like flutes also are limited by breathing capacity), and some of
which are not (e.g., chordophones like violins are limited by finger motor control). For
example, though most of our instrumental recordings followed the same rhythmic pattern of
the sung melody, Dessiatnitchenko’s instrumental performance on the Azerbaijani tar was
several times faster than her sung version because the tar requires the performer to
repeatedly strum the same note many times to produce the equivalent of a single long
sustained note when singing (listen to her instrumental recording at https://osf.io/uj3dn).

Another limitation of our instrumental results is that, while none of our collaborators reported
any difficulty or unnaturalness in recording a song and then recording a recited version of the
same lyrics, many found it unnatural to perform an instrumental version of the sung melody.
For example, while the Aynu of Japan do use pitched instruments such as the tonkori, they
are traditionally never used to mimic vocal melodies. In order to compare sung and
instrumental features, all of our collaborators agreed to at least record themselves tapping
the rhythm of their singing, but such recordings without comparable pitch information (n=28
recordings) had to be excluded from our exploratory analysis of pitch features, and even
their rhythmic features may not necessarily be representative of the kinds of rhythms that
might be found in purely instrumental music. Likewise, the conversational speech recorded
here is not necessarily representative of non-spoken forms of language (e.g., sign language,
written language).
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3.5.4. Comparison with alternative dataset (Hilton & Moser et al., 2022)

Interestingly, while the qualitative results using Hilton et al.’s dataset were identical, the
magnitude of their song-speech differences were noticeably smaller. For example, while
song was substantially higher-pitched than speech in both datasets, the differences were
approximately twice as large in our dataset as in Hilton et al.’s (~600 cents [half an octave]
on average vs. ~300 cents [quarter octave], respectively). These differences were consistent
even when analyzed using matching sub-samples speaking the same languages and using
the same fully automated analysis methods (Fig. 3.7), suggesting they are not due to
differences in the sample of languages or analysis methods we chose.

Instead, we speculate that these differences may be related to differences in recording
context and participant recruitment. While our recordings were made by each coauthor
recording themselves in a quiet, isolated environment, Hilton et al.’s recordings were field
recordings designed to capture differences between infant-directed and adult-directed
vocalizations, and thus contain various background sounds other than the vocalizer’s
speaking/singing (especially high-pitched vocalizations by their accompanying infants; cf.
Fig. S11).Such background noise may reduce the observed differences between speech and
song.

Another potential factor is musical experiences. Our coauthors were mostly recruited from
academic societies studying music, and many also have substantial experience as
performing musicians. Although the degree of musical experiences of Hilton et al.’s
participants is not clear, the musical training of our participants is likely more extensive than
a group of people randomly chosen from general populations. Such relatively greater
musical training may have influenced the production of higher and more stable pitches in
singing. In fact, we confirmed that there is no obvious difference in pitch stability of speech
between ours and Hilton et al.’s dataset (2022), but our singing recordings have higher
stability than theirs (Fig. S18). Similarly, even if pitch estimation errors due to background
noise erroneously inflated estimated f0 of Hilton et al.’s recordings due to noise, our singing
showcased the use of more heightened pitch (Fig. S17).

Interestingly, we also observed that our spoken recordings have slightly lower pitch height
than Hilton et al.'s spoken recordings. Possible factors that may underlie this difference
include age (Berg et al., 2017), body size (Pisanski, 2014), and possibly avoiding using low
frequencies not to intimidate accompanied infants (Puts et al., 2006). Our instructions to “
describe the song you chose (why you chose it, what you like about it, what the song is
about, etc.)” are also different from Hilton et al.’s instructions to describe “a topic of their
choice (for example…their daily routine)”, and such task differences can also affect speaking
pitch (Barsties, 2013). On the other hand, this result is unlikely to be due to the exposure of
Western styles to participants, since the subset of Hilton's data including only English,
Mandarin, Polish, Spanish, and Kannada speakers show almost the same result as one with
their full data including participants from societies less influenced by Western cultures.

After our Stage 1 Registered Report protocol received In Principle Acceptance, Albouy et al.
(2023) also reanalysed Hilton et al.'s (2022) recordings using different but related methods
that also emphasize pitch stability and temporal rate (“spectro-temporal modulations”).
Albouy et al. transformed audio recordings to extract two-dimensional density features
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(spectro-temporal modulations where one axis is temporal modulations [Hz] and the other is
spectral modulations [cyc/kHz]) to characterize song and speech acoustically. Their finding is
similar to our results that speech has higher density in the temporal modulation range of
5-10 Hz, which matches the syllable rate and amplitude modulation rate of speech
investigated cross-culturally (Ding et al., 2017; Pellegrino et al., 2011; Poeppel & Assaneo,
2020), on the low spectral modulation range (rate of change in amplitude due to vocal sound
production including the initiation of utterances and the transition from consonants to vowels,
which is an automated proxy of our measurement of temporal rate via manually annotated
acoustic unit (e.g., syllable/mora/note) durations), and song has higher density in the
spectral modulation range of 2-5 cyc/kHz on the low temporal modulation range (prominent
energy in upper harmonics without fast amplitude change, potentially related to pitch
stability). Their behavioral experiment further confirmed listeners rely on spectral and
temporal modulation information to judge whether the uttered vocalization is song or speech,
which suggests spectro-temporal modulation is an acoustic cue differentiating song and
speech. Although they have not reported other features such as pitch height, the
convergence of our study and their study identifying the same features implies that temporal
rate and pitch stability are robust features distinguishing song and speech across cultures.

3.5.5. Evolutionary and functional mechanisms

“Discrete pitches or regular rhythmic patterns” are often considered defining features of
music that distinguish it from speech (cf. Fitch, 2006; and Savage et al. 2015 block quote in
the introduction), and our analyses confirmed this using a diverse cross-cultural sample. At
the same time, we were surprised to find that the two features that differed most between
song and speech were not pitch stability and rhythmic regularity, but rather pitch height and
temporal rate (Fig. 3.5). Pitch stability was the feature differing most between instrumental
music and spoken description, but sung pitches were substantially less stable than
instrumental ones. Given that the voice is the oldest and most universal instrument, we
suggest that future theories of the evolution of musicality should focus more on explaining
the differences we have identified in temporal rate and pitch height. In this vein, experimental
approaches such as transmission chain may be effective in capturing causal mechanisms
underlying the manipulation of these parameters depending on communicative goals (e.g.,
Ma et al., 2019; Ozaki et al., 2023).

On the other hand, while pitch height showed larger differences between speech and song
than pitch stability when comparing within the same individual, our exploratory analysis
evaluating feature importance in song-speech classification showed that pitch stability was
more useful than pitch height comparing song and speech between individuals. This is
consistent with our intuition that song pitch can be artificially lowered in pitch and speech
artificially raised in pitch without changing our categorical perception of them as song or
speech. Future controlled perceptual experiments independently manipulating each feature
may provide more insight on how these acoustic features are processed in our brains.

While our results do not directly provide evidence for the evolutionary mechanisms
underlying differences between song and speech, we speculate that temporal rate may be a
key feature underlying many observed differences. In fact, the temporal rate is the only
feature showing almost no difference between singing and the instrumental (cf. Fig. S13).
While slower singing reduces the amount of linguistic information that can be conveyed in
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the lyrics in a fixed amount of time, it gives singers more time to stabilize the pitch (which
often takes some time to reach a stable plateau when singing), and the slower and more
stable pitches may facilitate synchronization, harmonization, and ultimately bonding between
multiple individuals (Savage et al., 2021). However, to ensure comparability between song
and speech, we only asked participants to record themselves singing solo, even when songs
are usually sung in groups in their culture, so future direct comparison of potential acoustic
differences between solo and group vocalizations (cf. Lomax, 1968) may be needed to
investigate potential relationships between our acoustic features and group
synchronization/harmonization.

Furthermore, slow vocalization may also interact with high pitch vocalization since it needs
deeper breaths to support sustained pitches, which may lead to an increase in subglottal
pressure and accompanying higher pitch (Alipour & Scherer, 2007). The use of higher
pitches in singing may also contribute to more effective communication of pitch information.
Sensitivity to loudness for pure tones almost monotonically increases up to 1k Hz (Suzuki &
Takeshima, 2004), but generally, the frequency range of f0s of human voice is below 1k Hz,
so it is reasonable to heighten pitches to exploit higher loudness sensitivity, which may be
helpful for creating bonding through acoustic communication extensively utilizing pitch
control.

The exploratory analysis of additional features can also be interpreted from the same
viewpoint that extra potential differentiating features also function to enhance the saliency of
pitch information: use of longer acoustic phrase, greater sound pressure, and less noisy
sounds may ease the intelligibility of pitch information. On the contrary, similar timbral
brightness, pitch interval size, and pitch range between song and speech may be due to
motor and mechanistic constraints, like the difficulty of rapid transitioning to distanced pitch
caused by the limiting control capacity of tension in the vocal folds. Since utilization of pitch
can also be found in language (e.g., tonal languages; increasing the pitch of the final word in
an interrogative sentence in today’s English and Japanese), inclusively probing what we can
communicate with pitch in human acoustic communication may give insights into the
fundamental nature of songs.

3.5.6. Inclusivity and global collaboration

Our use of a new “participants-as-coauthors” paradigm allowed us to discover new findings
that would not have been possible otherwise. For example, collaboration with native/heritage
speakers who recorded and annotated their own speaking/singing relying on their own
Indigenous/local knowledge of their language and culture allowed us to achieve annotations
faithful to their perception of vocal/instrumental sound production that we could not have
achieved using automated algorithms, particularly given that there were no apparent
consistent criteria about what exactly constitutes acoustic units among our participants. This
resulted in our identifying surprisingly large differences for features such as temporal rate
when analysed using their manual segmentations that we would have underestimated if we
relied on automated segmentation (cf. combined effect size of translated Cohen’s d>1.5 in
Fig. 3.5 vs. d<0.4 in Fig. S15). This highlights that equitable collaboration is not merely an
issue of social justice but also of scientific quality (Nature Editors, 2022; Urassa et al., 2021).

On the other hand, this paradigm also created challenges and limitations. For example, 6 of
our original 81 collaborators were unable to complete their recordings/annotations, and
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these were disproportionately from Indigenous and under-represented languages from our
originally planned sample. Such under-represented community members tend to be
disproportionately burdened with requests for representation, and some also faced additional
barriers including difficulty communicating via translation, loss of internet access, and urgent
crises in their communities (e.g., Nicas, 2023). Of our coauthors representing Indigenous
and under-represented languages who did complete their recordings and annotations,
several were not native speakers, and so their acoustic features may not necessarily reflect
the way they would have been spoken by native speakers. Indeed, several of our coauthors
have been involved in reviving their languages and musical cultures despite past and/or
continuing threats of extinction (e.g., Ngarigu, Aynu, Hebrew; Troy & Barwick, 2020; Savage
et al., 2015). By including their contributions as singers, speakers, and coauthors, we also
hope to contribute to their linguistic and musical revival efforts.

Our requirement that all participant data come from coauthors, and vice versa, led to more
severe sampling biases than traditional studies, as reflected in our discussion of our data
showing higher, more stable-pitched singing than found in Hilton et al.’s data. Many of these
limitations have been addressed through our robustness analyses and converging results
from our own and Albouy et al.’s (2023) reanalyses of Hilton et al.’s independent
speech/song dataset described above. However, while our exploratory analyses revealed
strong sex differences in pitch height that may reflect sexual selection, most demographic
factors that may affect individual differences or cultural differences in music-speech
relationships (e.g., musical training, age, bilingualism) will require more comprehensive
study with larger samples in the future. Because a key limitation of our
participants-as-coauthors paradigm is sample size (as manual annotations are
time-consuming and coauthor recruitment is more time-intensive than participant
recruitment), this model may not be feasible for future larger-scale analyses. Instead, other
paradigms such as targeted recruitment of individuals speaking selected languages, or
mixed approaches combining manual and automated analyses may be needed.

3.6. Conclusion

Overall, our Registered Report comparing music and speech from our coauthors speaking
diverse languages shows strong evidence for cross-cultural regularities in music and
language amidst substantial global diversity. The features that we identified as differentiating
music and speech along a “musilinguistic continuum” - particularly pitch height, temporal
rate, and pitch stability - may represent promising candidates for future analyses of the
(co)evolution of biological capacities for music and language (Fitch, 2006; Patel, 2008;
Savage et al., 2021). Meanwhile, the features we identified as shared between speech and
song - particularly timbral brightness and pitch interval size - represent promising candidates
for understanding domain-general constraints on vocalization that may shape the cultural
evolution of music and language (Tierney et al., 2011; Trehub, 2015; Ozaki et al., 2023;
Singh & Mehr, 2023). Together, these cross-cultural similarities and differences may help
shed light on the cultural and biological evolution of two systems that make us human: music
and language.

Data/code availability:

Analysis code: https://github.com/comp-music-lab/song-speech-analysis
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4. Conclusion: Future directions for cultural evolutionary study of human
acoustic communication.

In this dissertation, firstly, I reviewed the literature on the cultural evolution of music and language,
and discussed some promising directions to jointly investigate the evolution of music and language.
Within the concluding chapter, I outline potential avenues for future research on the evolutionary
analysis of music and language. Furthermore, how global collaboration can make our scientific
knowledge about music and language is also discussed.

4.1. Further research on the evolutionary analysis of music and language

4.1.1. Beyond cultural evolution

Although Chapter 2 targets cultural evolution, a more integrative approach would be to connect this
area with the research on musicality (Honing et al., 2015) and linguisticality (Haspelmath, 2020),
which are biological building blocks for producing and perceiving music and language, respectively.
Cultural evolution helps us construct theories and patterns for how music and language evolve, but the
understanding of its biological mechanisms and cross-species comparisons are needed to answer the
question of where music and language came from.

Regarding the origins of music, various hypotheses have been proposed, such as social
bonding (Savage et al., 2021), credible signaling (Mehr et al., 2021), sexual selection (Miller, 2000),
and a byproduct of preceding traits, primarily language (Pinker, 1997). Although none of the
hypotheses addressing adaptive values of music seem to be dominant, we can still advance theories
regarding evolutionary specialization (Patel, forthcoming). In this regard, Patel (2021) hypothesizes
that highly capable vocal learning ability induced the evolution of beat perception and
synchronization abilities later, which are essential and widely exploited musical traits. He further
suggests this evolution took the form of gene-culture co-evolution that music-like behaviors were
adopted in populations for some reasons and that drove the selection of beat perception and
synchronization abilities, then the prevalence of music-like behaviors further expanded, and so on.

But how can cultural evolution be coupled with such biological discussions? For example,
although these experiments took place with today’s humans who already acquired the faculty to
perceive and synchronize with beats, several studies showcased how cultural evolutionary processes
can generate musical rhythm patterns from scratch (Jacoby et al., 2021; Ravignani et al., 2016). What
led our ancestors to adopt music-like behaviors remains a mystery, but perhaps even an early, crude
beat perception capability could bias sporadic sound interval patterns to be organized rhythms,
assuming such rhythms bring favorable effects to populations. Indeed, even a weak cognitive bias in
individuals can easily determine population-level outcomes through cultural evolutionary processes
(Mesoudi, 2016), and this is actually the case for structural universals of language (Kirby et al., 2007).
Such amplification of weak biases has not been experimented with in music, but this experiment can
potentially serve as a test for how the above scenario is likely. Though how this fits for music
evolution is unclear at this moment, it would be worth remembering that gene-culture co-evolution
can also happen by epigenetic effects (Ragsdale & Foley, 2022). In summary, fusing findings and
evidence from both the papers on cultural evolution and biological evolution is necessary to further
make progress in this research arena. The same argument can also be made for language evolution.

4.1.2. High pitch, low temporal rate, and stable pitch in acoustic communication
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In the Discussion section of Chapter 3, we briefly discussed how three differentiating features,
namely pitch height, temporal rate, and pitch stability connect to the evolutionary origin of music.
Here, I attempt to develop a more specific, intermediate theory bridging our confirmatory predictions
and the ultimate-level hypothesis based on the current result. One of the hypothesized functional
origins of music is to communicate emotional states (Benítez-Burraco & Nikolsky, 2023; Jackendoff,
2009; Leongómez et al., 2022; Ma et al., 2019; Perlovsky, 2010; Snowdon et al., 2015; Trehub et al.,
1997; and cf. S2 for detailed discussions), and I will draw commonalities between our findings and
the related literature.

Anikin (2020) analyzed that high pitch, long duration, and high spectral modulation
(potentially correlating with stable pitch [Albouy et al., 2020; 2023]) make more emotional
vocalization salient. Their analysis and our result are congruent if we interpret music as also a part of
vocalization expressing emotions. In addition, the use of higher pitch and slower sound production is
also cross-culturally observed in infant-directed speech (Cox et al., 2022; Hilton et al., 2022). But we
can also cast this phenomenon in the same framework with the following logic. If we want to
communicate with infants who have not yet acquired their mother tongues, we certainly need to make
use of communication elements that is neither referential nor linguistic, which may nudge us to
employ acoustic cues effective for mental state communication.

Song, emotional vocalization, and infant-directed speech all appear in different contexts, but
they have the shared characterizing features, and all of them include salient non-verbal aspects. In
non-human animals, vocalization pattern is considered to co-evolve with social complexity to enable
to reduce of uncertainty in individuals arising from various differentiated relationships (Cheney &
Seyfarth, 2018; Fichtel & Kappeler, 2022; Freeberg et al., 2012; Schamberg et al., 2018). Combining
this theory from ethology and commonalities among three types of vocalizations, I hypothesize song
was specialized from (potentially non-linguistic) preceding emotional vocalizations by utilizing pitch
information for affective states in response to function in specific relationships which emerged as
human society became complex. For example, Mehr et al. (2019) identified that songs are associated
with specific social contexts, namely love, healing, dance, and lullaby, widely across societies. Such
contexts also entail unique relationships (e.g. patient and healer when healing but companions when
dancing), and song was added to our vocalization repertoire as an effective tool to share affective
states in various complex relationships as they appear in the society. This hypothesis can be
considered a more specific version of the social bonding hypothesis (Savage et al., 2021).

Darwin (1871) already considered that emotional vocal expression is shared across species, so
it has an evolutionary root. Based on Dawrwin’s hypothesis, Filippi et al. (2017) tested whether
human subjects can identify high arousal vocalization produced by a variety of terrestrial vertebrate
animals. They found not only participants could recognize high arousal vocalization by animal, but
also higher fundamental frequency functioned as a reliable predictor. However, whether a longer
sound duration is useful depends on the species. A similar finding is also reported by Schamberg et al.
(2018), so amongst the three features differentiating song and speech found in our study (i.e. higher
pitch height, lower temporal rate, and higher pitch stability in song than speech), at least the use of
high fundamental frequency for emotive communication can be rooted back to our ancestral
communication practice. However, music is considered to communicate affects that may not be the
same as basic emotions (Cespedes-Guevara & Eerola, 2018; Cowen et al., 2020). Therefore, acoustic
properties observed in singing can be attributed to a more specific type of internal states.
Nevertheless, the commonality that infant-directed speech and human emotional vocalizations also
use higher pitch and longer duration suggests that humans rely on certain acoustic cues when
referential information is not a primary communicative purpose, which may have been possibly
inherited from the same root of ancestral vocalization for conveying emotive/internal states (cf. Figure
4.1).
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Figure 4.1. Illustration of the expansion of non-linguistic vocalization and the speciation into singing. The
features differentiating song and speech identified in Chapter 3 have some overlap with other non-linguistic
vocalizations and emotional calls by animals. The figure illustrates a hypothesis that singing is a particular form
of vocalization conveying emotive/internal states rather than propositional/referential meaning, which has been
speciated from an ancestral broader category. What acoustic features make singing unique in human acoustic
communication can be further examined by comparing non-linguistic vocalization. This hypothesis does not
assume that emotional call also evolved to communication for propositional/referential meaning (i.e., linguistic
communication) as in the music proto-language hypothesis (Brown, 2000; Darwin, 1871; Fitch, 2010),
considering their functional difference.

Our neural mechanism involved in speech and music processing is also in line with this claim.
Fujii & Wan (2014) summarized the shared and distinctive neural pathways for rhythm perception and
production of music and speech developed on Patel's OPERA hypothesis (Patel, 2011), and their
model suggests that the subcortical-prefrontal circuit, which handles emotional and reward-related
processing, only appears in music domain in contrast with rhythm perception and production in
speech. Similarly, evidence from neuroimaging studies of individuals with autism spectrum disorder
demonstrates their preserved ability to process the emotional aspects of music with activation of
subcortical-prefrontal areas, despite their socio-emotional impairment in daily life (Caria et al., 2011;
Koelsch, 2014; Lai et al., 2012). Taking together, it is likely that the acoustic cues we employ when
making music function in a distinctive way that our brain links to emotions. Whether our findings
regarding high pitch, low temporal rate, and stable pitch as key features that elicit emotional
information in brain will be determined in future studies.

Singing exhibits unique acoustic structures compared to infant-directed speech and emotional
vocalizations, and probably pitch stability would contribute to occupying a distinctive niche in the
design space of human vocalization. Although why this feature is selected is elusive, it would be
interesting to consider testing whether it is neutrally selected or it is due to some selection pressures. It
is also attractive to analyze whether pitch stability has any relationship with pitch-related musicality
and related hypotheses, like invariance of melody recognition by transposition in humans (Patel,
2019). Regarding pitch height, the cross-species study and phylogenetic comparative analysis suggest
that the evolution of sensitivity to high-frequency range vocal calls is driven by social complexity
(Ramsier et al., 2012), and coevolution of both production and perception of high-frequency
vocalization occurred in mammals inhabiting forest environments (Charlton et al., 2019). These
findings could serve as a starting point for formulating hypotheses regarding the origin of the use of
high-frequency in our particular vocal communication forms. An increase in variations in vocalization
patterns in tandem with the increase in social complexity has already been confirmed in several
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non-human animals, and one promising extension of this theory would be to consider testing this
hypothesis for humans either in the field or experimentally to see if it drives the emergence of
singing-like vocalization.

4.2. Global collaboration for music and language science

In order to derive a more general scientific statement about music and language, it is essential
to include data sampled from societies as diverse as possible. This imposes a challenge for data
collection and even sometimes data preprocessing or feature extraction due to a lack of
cross-culturally consistent measurement (e.g. onset annotation discussed in Chapter 3). This situation
strongly encourages researchers to build a global and inclusive collaboration so that the research can
mitigate cultural bias in their data, methods, results, and interpretations. Such a practice also
contributes to tackling exploitive, unfair scientific conducts such as helicopter research (Adame,
2021).

The social, behavioral, psychological, and cognitive sciences have employed creative
approaches to recruit participants and gather data from a wider range of populations, such as the
utilization of discipline-wide online infrastructures (Sheskin et al., 2020), the incorporation of
gamification techniques (Long et al., 2023), and the integration of citizen science practices (Hilton &
Mehr, 2022). Another effective approach would be ‘big team’ science (Coles et al., 2022), which
allies many researchers on a single project. This aligns with the approach we adopted for the study of
Chapter 3. Formulating a transparent policy stipulating the criteria for authorship and clarifying the
expected roles/commitments of each collaborator is crucial to managing the process in this situation.
In the study of Chapter 3, we have collaborated with dozens of academics and musicians to collect
recordings and created an agreement form to make it explicit what we want them to contribute and
how they will be rewarded. In the realm of music and language science, such a collective and
inclusive approach may become more indispensable than ever. In fact, it would have been impossible
for us to include recordings from various indigenous people communities in our hypothesis tests
without collaboration with them. Nevertheless, it is noteworthy to mention that what we really need to
care about on top of linguistic and cultural diversity is the diversity of participant demographics, such
as age, income-level, and education. Merely collecting data from across different cities may not
necessarily assure the desired quality (Ghai et al., 2023).

Regarding music, scholars have documented the cases that the Western word or concept
“music” is not necessarily translatable to other societies (Nattiez, 1987/2005), which implies what
audio recordings to be sampled for the study can potentially be biased by the viewpoint of the
researcher of what they think “music” is. The lack of a universal definition of music suggests that we
need to work collaboratively to reflect the diversity of “humanly organized sound” (Blacking,
1973/1978) and to realize equity in music science, even if it is still far from perfect.

During the song-speech project (Ch. 3), several challenges arose due to the nature of a large
global-scale collaboration. Some collaborators from Brazilian indigenous communities, including the
Yanomami people, had to withdraw from the project, likely due to an imminent issue imposed on their
communities. This issue pertained to a serious health concern caused by mercury contamination
resulting from illegal gold mining conducted in their areas (Nicas, 2023). Including data from
indigenous people is arguably important. However, this issue highlights that such attempts are
sometimes hampered by complex social and political matters surrounding them, which they need to
prioritize over academic activities.

Another issue brought up by collaboration with diverse cultural backgrounds is the challenge
of translating a concept developed in one culture to people from different cultures. This issue became
apparent when we asked some collaborators to make a recording of the onset of singing through
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clapping or tapping. Since they did not have melodic instruments to play, we requested that these
collaborators provide clapping/tapping recordings instead. Certain collaborators indeed made
recordings as we expected, while the other collaborators played percussion or clapped as if they were
accompanying the song with their traditional percussive instruments, just as it would be done in the
original performance context. This mismatch likely occurred because of a lack of practice in playing
the melody of the song using instruments from their own tradition, so they perhaps did not have an
idea about playing instruments to imitate singing. In the end, we could have managed to collect the
desired recordings by providing examples to them, which helped to communicate more clearly the
types of recordings we were seeking. However, this communication gap made us realize what we
initially called music was concerned with a melody- or pitch-oriented perspective. Thus we did not
decide to include "music" in the title but opted for more specific terms ("songs and instrumental
melodies").

Finally, I would also like to share the logistical and operational challenges that came with our
global collaboration. These were also a necessary cost of promoting equity and inclusivity in music
and language science, which we had to overcome. For example, honoraria to coauthors proved to be
costly in terms of both finances and time. Each honorarium incurred an international wire transfer fee,
and the paperwork required for cross-border payments usually becomes more complex and
time-consuming. Another example is the complexity of using culturally unbiased terms as possible
when creating a recording protocol. In Ch. 3, we frequently referred to the term acoustic unit, which
represents an abstract concept of a unit of sound perceived in recordings. Initially, we considered
using more common terms such as syllables or notes, but we also realized syllable is not necessarily
universal for every language. Meanwhile, "note" was found to be ambiguous, and some coauthors first
associated it with a unit appearing in Western staff notation, which is questionable to equally apply to
songs collected from diverse societies. To address these concerns, we had to resort to a more general
and abstract concept, leading us to use the term acoustic units (and P-centers). However, we
acknowledge this decision made the protocol somewhat complex, and that in turn may have resulted
in somewhat increased communication costs among collaborators. Incidentally, although this is
general in projects involving a large number of members, communication costs escalate significantly
as the team size grows. Therefore, making a protocol straight to every collaborator is crucial, though
we encountered a situation asking over ten collaborators to re-record their recordings due to a
misunderstanding of the protocol despite our best efforts to make it clear. Last but not least, of course,
the recruitment of collaborators itself was also a demanding task. We utilized various channels such as
a mailing list of the academic society, recruitment in a conference, and advertisement on Twitter to
reach out to individuals who might be interested in participating in this project. The efforts required
for these activities are far from negligible, but they must be prioritized to realize diversity in cultural
and linguistic backgrounds within the team.

Inclusive and global collaboration would be increasingly important for building novel
scientific knowledge. Allying with researchers from multiple societies and countries have some
general challenges, in addition to the above-mentioned specific cases, such as language barrier
(Khelifa et al., 2022) and limited funding usable for international or multi-national projects (Matthews
et al., 2020). However, as large-scale collaboration becomes more recognized as an effective strategy
to advance scientific missions, discussions on these issues will gain more attention and become more
active, which will hopefully lead to deriving working solutions from there.

4.3. Reflection on the use of Registered Reports

Lastly, although this is not directly related to music and language research, I would like to
write about Registered Reports (Center for Open Science, n.d.; Henderson & Chambers, 2022) in the
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hope of inspiring readers to take into consideration this recently growing yet still not fully recognized
research practice by sharing what I could have gained from it. I have used Registered Reports two
times for my research projects (Ch. 3; Chiba et al., 2023). An organization called Peer Community In
Registered Reports (PCI-RR) manages the review of this publication framwork. This framework
values the quality of hypothesis building and the approach to hypothesis testing, thereby effectively
disciplining projects by separating activities between the planning phase and execution phase. In
Registered Reports, acceptance of the manuscript is principally determined by the quality of the
research plan rather than the results. Therefore, it naturally directed our attention towards
sophisticating predictions and how to effectively test them. In fact, we could have established a
rigorous prediction and protocol to verify it in my research projects thanks to adopting this
framework. However, in our song-speech project, we have actually treated the significance of the
results from rigorously planned confirmatory analyses and ad-hoc exploratory analyses almost
equally. The appropriateness of this treatment, in terms of hindsight bias, may be questioned, and
there may be some lessons to be learned from it.

In light of collaborative research, Registered Reports can potentially be used to precisely
control research activities assigned to each collaborator or research site (e.g., Coles et al., 2022). We
have also created a recording protocol that outlines the steps to be followed by all collaborators during
the data collection stage, ensuring transparency. Involving multiple collaborators can make the project
activity complex and potentially ambiguous. Registered Reports can serve as a means to keep the
study open and traceable in such a situation.

Registered Reports have further advantages, in addition to preventing publication bias, when
compared to a traditional review process. One notable advantage is that authors can obtain reviews
and feedback at the planning stage. This would undoubtedly help improve the solidity of hypotheses,
experimental paradigm, sample selection strategy, and analysis methods, all of which are crucial
factors in making research successful. In the traditional publication process, researchers receive
reviews after completing every research, which is often too late to detect potential flaws embedded in
the study design. In our cases, the sight-vs-sound project (Chiba et al., 2023) indeed greatly benefited
from the Registered Reports review process. While the core part of the hypotheses remained the same,
we made extensive updates to the experimental design and analysis plan based on the feedback
received during the Stage 1 review process. Although we may never know how the project ended up if
we had proceeded with the original research design, we are confident that the revised version is more
sound. The same applies to the song-speech project. Several exploratory analyses and robustness
checks were incorporated based on the Stage 1 reviews, which certainly contributed to increasing the
validity of our main results by addressing potential criticisms with the added analysis plan.

Another advantage of Registered Reports is that it provides a scheduled review process. In
this process, authors first submit a single-page summary of the study, known as a snapshot, to PCI-RR
editors. The editors then organize reviewers based on the content provided in the snapshot, taking into
consideration the time limit for the review process, which is a maximum of six weeks. Although this
process is not available for the Stage 2 review, which is primarily the confirmation of whether the
study adhered to the plan specified at the Stage 1 review, it is an effective scheme to expedite the most
arduous part of the Registered Reports review. We utilized the scheduled review in the song-speech
project, which helped us initiate the project to fit its timeline for my PhD programme.

How the use of Registered Reports is beneficial may vary depending on the type of study and
field, and whether the acceptance by PCI-RR has the same utility as acceptance by journals may also
be contingent on the researcher's circumstances. Nevertheless, it is worth considering, and Registered
Reports arguably offer unique merits, as described in this section and examplified by how it worked in
my own PhD experience.
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4.4. Summary

Music and language are so diverse yet omnipresent in our societies, and they are a part of our
cultures inherited from generation to generation. Still, much scientific work has to be done to answer
the following central questions that I worked on in this dissertation: Where do music and language
come from? What do make music and language so special for us? I hope my work contributes to
building novel knowledge about music and language around the world.
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A. Stage 1 Supplementary Materials of Chapter 3

S1. Supplementary method
S1.1. Recording and segmentation protocol
In order to keep the quality and consistency of the recordings, we created a detailed
recording protocol for coauthors to follow when recording (Appendix 1). The protocol gives
detailed instructions for things like how to interpret the instructions to choose a “traditional
song in their 1st or heritage language” for cases where they are multilingual; logistics such
as recording duration (minimum 30s, maximum 5 minutes for the song and the spoken
description), file format, and how to deliver recordings to a secure email account monitored
by a Research Assistant who is not a coauthor on the manuscript. All recordings are made
by the coauthor themselves singing/ speaking/ playing instruments.

In addition to the recordings, we also collect the texts of recordings which are segmented
into acoustic units (e.g., notes, syllables) according to their perceptual center (P-center)
(Danielsen et al., 2019; Howell, 1988; Morton et al., 1976; Pompino-Marschall, 1989; Scott,
1998; Vos & Rasch, 1981). Here, the P-center is defined as the moment sound is perceived
to begin, and the P-center is considered to be able to capture the perceptual experience of
rhythm (Scott, 1998; Villing, 2010). The segmentation by the P-center is expected to reflect
the vocalizer’s perception of the beginning of acoustic units. Here, we use acoustic units as
a general term that a listener perceives as a unit of sound sequences such as syllables and
notes. However, some languages have their own linguistic unit (e.g. mora in Japanese) and
music as well (Fushi 節 in Japanese traditional folk songs). It is challenging to identify the
beginnings of acoustic units for different domains (e.g., language and music), musical
traditions, and languages comprising different phonemic and suprasegmental properties. For
example, the location of the P-center in speech is known to be dependent on various factors
such as the duration of phonemic elements (e.g. vowel, consonant) and the type of the
syllable-initial consonant (Barbosa et al., 2005; Chow et al., 2015; Cooper et al., 1986;
Villing, 2010). Therefore, rather than building an objective definition of sound onset, we ask
each participant to reflect on their interpretation of acoustic units of their song and speech
focusing on the P-center. Segmented texts are used to create onset and breath annotations
with SonicVisualizer software (Cannam et al., 2010; https://www.sonicvisualiser.org/) which
will be the base of some features. SonicVisualizer was chosen because it provides a simple
interface to add a click sound to the desired time location of the audio to reflect the P-center.
Those annotations will be created by the first author (Ozaki) because the time required to
train and ask each collaborator to create these annotations would not allow us to recruit
enough collaborators for a well-powered analysis.

In order to maximize efficiency and quality in our manual annotations, we adopt the following
3-step process:

1) Each coauthor sends a text file segmenting their recorded song/speech into acoustic
units and breathing breaks (see Appendix 1 for examples).

2) The first author (Ozaki) creates detailed millisecond-level annotations of the audio
recording files based on these segmented texts. (This is the most time-consuming
part of the process).

3) Each coauthor then checks Ozaki’s annotations (by listening to the recording with
“clicks” added to each acoustic unit) and corrects them and/or has Ozaki correct
them as needed until the coauthor is satisfied with the accuracy of the annotation.
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S1.2. Language sample
S1.2.1. Inclusion criteria
All audio recordings analyzed are made by our group of 81 coauthors recording ourselves
singing/speaking in our 1st/heritage languages, which span 23 language families (Fig. S1).
Coauthors were chosen by opportunistic sampling beginning from co-corresponding author
Savage’s network of researchers, a public call to the email list of the International Council for
Traditional Music (July 15 2022 to ictm-l@ictmusic.org; cf. Appendix 3), and recruitment at
various conferences/symposia (International Council for Traditional Music, July 2022,
Portugal; Joint Conference on Language Evolution, Sep 2022, Japan; Interdisciplinary
Debates on the Empirical Aesthetics of Music series, Dec 2021, online; Social Bridges, Jan
2022, online; European Society for Cognitive Psychology, Feb 2022; AI Music Creativity,
Sep 2022, online), with additional snowball recruitment from some collaborators using their
own networks. Most authors are multilingual speakers who can speak English, though a few
are multilingual in other languages (e.g., Portuguese, Japanese) with translations to and
from English done by other coauthors as needed.

The set of linguistic varieties in this study represents a considerable portion of the world
cross-linguistic variability in the main aspects that could conceivably play a role in shaping
speech-song similarities/variabilities across languages (Dryer et al., 2013;
https://wals.info/languoid):

● Head-complement order: languages with basic head-complement order (e.g.
English), languages with basic complement-head order (e.g. Bengali)

● Vowel inventory size: moderate (e.g. Japanese), large (e.g. German)
● Consonant inventory size: small (e.g. Ainu), moderately small (e.g. Guaraní),

average (e.g. Greek), moderately large (e.g. Swahili), large (e.g. Ronga)
● Consonant/vowel ratio: low (e.g. French), moderately low (e.g. Korean), average

(e.g. Spanish), moderately high (e.g. Lithuanian), high (e.g. Russian)
● Potential syllable structures: simple (e.g. Yoruba), moderately complex (e.g. Catalan),

complex (e.g. Kannada)
● Word-prosodic systems: stress-accent systems (e.g. Italian), pitch-accent systems

(e.g. Swedish), tonal systems (e.g. Cantonese)
● Stress location: initial (e.g. Irish), postinitial (e.g. Basque), ante-penultimate (e.g.

Georgian), penultimate (e.g. Polish), final (e.g. Balinese)
● Rhythm type: iambic (e.g. Mapudungun), trochaic (e.g. Hebrew)
● Complexity of tone systems: simple (e.g. Cherokee), complex (e.g. Thai)
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Figure S1. Map of the linguistic varieties spoken by our 81 coauthors as 1st/heritage
languages. Each circle represents a coauthor singing and speaking in their 1st (L1) or heritage
language. The geographic coordinates represent their hometown where they learned that language.
In cases when the language name preferred by that coauthor (ethnonym) differs from the L1 language
name in the standardized classification in the Glottolog (Hammarström et al., 2022), the ethnonym is
listed first followed by the Glottolog name in round brackets. Language family classifications (in bold)
are based on Glottolog. Square brackets indicate geographic locations for languages represented by
more than one coauthor. Atlantic-Congo, Indo-European and Sino-Tibetan languages are further
grouped by genus defined by the World Atlas of Language Structures (Dryer et al., 2013;
https://wals.info/languoid).

S1.2.2. Exclusion criteria and data quality checks
If coauthors choose to withdraw their collaboration agreement at any point prior to formal
acceptance after peer review, their recording set will be excluded (cf. Appendix 2). If their
recording quality is too poor to reliably extract features, or if they fail to meet the formatting
requirements in the protocol we will ask them to resubmit a corrected recording set. In order
to keep ourselves as blind as possible to the data prior to In Principle Acceptance and
analysis, we ask coauthors to send only their segmented texts, not their audio recordings, to
coauthors Ozaki & Savage to conduct formatting checks (e.g., ensuring that coauthors had
understood the instructions to make all recordings in the same language and to segment
their sung/spoken texts into acoustic units), so that we will not need to access the audio
recordings until after In Principle Acceptance.
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After we had already begun this process, we decided to add an additional layer of formatting
and data quality checks by hiring a Research Assistant (RA) who is not a coauthor to create
and securely monitor an external email account where authors could send their audio
recordings. This allows us to prevent data loss (e.g., collaborators losing computers or
accidentally deleting files), as well as allowing us to have the RA confirm that recording
quality was acceptable, recordings met minimum length requirements, etc. The RA will not
share the account password needed to access these recordings with us until we have
received In Principle Acceptance.

S1.3. Features
We will compare the following six features between song and speech for our main
confirmatory analyses:

1) Pitch height (fundamental frequency (f0)) [Hz],
2) Temporal rate (inter-onset interval (IOI) rate) [Hz],
3) Pitch stability (-|f0|) [cent/sec.],
4) Timbral brightness (spectral centroid) [Hz],
5) Pitch interval size (f0 ratio) [cent],

- Absolute value of pitch ratio converted to the cent scale.
6) Pitch declination (sign of f0 slope) [dimensionless]

- Sign of the coefficient of robust linear regression fitted to the phrase-wise f0
contour.

For each feature, we will compare its distribution in the song recording with its distribution in
the spoken description by the same singer/speaker, converting their overall combined
distributions into a single scalar measure of nonparametric standardized difference (cf. Fig.
2).

We selected these features by reviewing what past studies focused on for the analysis of
song-speech comparison and prominently observed features in music (e.g. Fitch, 2006;
Hansen et al., 2020; Hilton et al., 2022; Savage et al., 2015; Sharma et al., 2021, see the
Supplementary Discussion section S2 for a more comprehensive literature review). Here, f0 ,
rate of change of f0, and spectral centroid are extracted purely from acoustic signals, while
IOI rate is based purely on manual annotations. Pitch interval size and pitch declination
analyses combine a mixture of automated and manual methods (i.e. extracted f0 data
combined with onset/breath annotations). The details of each feature can be found in the
supplementary materials. Note that some theoretically relevant features we explored in our
pilot analyses (especially the “regular rhythmic patterns” from Lomax & Grauer’s definition of
song quoted in the introduction) proved difficult to quantify using existing metrics and thus
are not included in our six candidate features (cf. Fig. S9 for pilot data and discussion for
potential proxies that we found unsatisfactory such as “IOI ratio deviation” and “pulse
clarity”).

S1.4. Pilot data analysis
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We collected recordings from five coauthors for pilot data analysis3 Each speaks a different
1st language: English, Japanese, Farsi, Marathi, and Yoruba. Figure S2 uses the analysis
framework shown in Fig. 2 to calculate relative effect sizes for all five recording sets for all
six hypothesized features. Note that our inferential statistical analysis uses the relative
effects, but we translate these to Cohen’s d in Fig. S2 for ease of interpretability, but
technically our analysis is not the same as directly measuring Cohen’s d of the data.

The primary purpose of the pilot analysis is to demonstrate feasibility and proof of concept,
but we also used it to help decide on our final set of six features to focus on for our
confirmatory analyses (Fig. S2). A full pilot analysis including additional features that we
decided not to test is shown in Fig. S9. However, while some of our hypotheses appear to be
strongly supported by our pilot data (e.g., song consistently appears much higher and much
slower than speech, and timbral brightness appears consistently similar), others seem more
ambiguous (e.g., pitch stability and pitch interval size show similar, weak trends although we
predict pitch stability to differ but pitch interval size not to differ). In these cases, we
prioritized our theoretical predictions over the pilot data trends, as effect sizes estimated
from pilot data are not considered reliable (Brysbaert, 2019), while ample theory predicts that
song should use more stable pitches than speech (e.g., Fitch, 2006) but sung and spoken
pitch interval size should be similar (e.g., Tierney et al., 2010). However, we will be less
surprised if our predictions for pitch stability and pitch interval size are falsified than if our
predictions for pitch height and temporal rate are. Summary statistics visualizing the data
underlying Fig. S2 in a finer-grained way are shown in Figure S3.

3 Coauthors who contributed pilot data also recorded separate recording sets to be used in
the main confirmatory analysis to ensure our main analyses are not biased by reusing pilot
data.
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Figure S2. Pilot data showing similarities/differences between song and speech for each of the
six hypothesized features across speakers of five languages (coauthors McBride, Hadavi,
Ozaki, D. Sadaphal, and Nweke) Red diamonds indicate the population mean and black bars
are confidence intervals estimated by the meta-analysis method. Although we use false
discovery rate to adjust the alpha-level, these intervals are constructed based on Bonferroni
corrected alpha (i.e. 0.05/6). Whether the confidence interval is one-sided or two-sided is
determined by the type of the hypothesis. Positive effect sizes indicates song having a higher
value than speech, with the exception of “temporal rate”, whose sign is reversed for ease of
visualization (i.e., the data suggest that speech is faster than song. The effect size is originally
measured by relative effect, and that result is transformed into Cohen’s d for interpretability. The red
shaded area surrounded by vertical lines at ±0.4 indicate the “smallest effect size of interest” (SESOI)
suggested by Brysbaert (2019). See Fig. 2 for a schematic of how each effect size is calculated from
each pair of sung/spoken recordings.
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Figure S3. Alternative visualization of Figure S2 showing mean values of each feature of song
and speech, rather than paired differences. “Speech” indicates spoken description (not lyric
recitation). This figure allows us to visualize some trends not viewable from Figure S2, such as
absolute values of each feature. For example, male voices all tend to be lower-pitched than female,
but regardless of sex all singers use higher pitch for singing than speaking. (See Fig. S8 for an
alternate version including exploratory analyses comparing instrumental and recited versions.)

In addition to the above main pilot analysis, we conducted two additional pilot analyses to
validate our choice of duration of recording and annotation procedure. First, we investigated
how estimated effect sizes vary with length of recording excerpt analyzed (Fig. S4). We
concluded that 20 seconds approximately optimizes the tradeoff between accuracy of effect
size estimation and the substantial time required to manually annotate onsets (roughly 10-40
minutes per 10 seconds of recording, with spoken description often taking several times
longer to annotate than sung, instrumental, or recited versions).

Second, we had each of the five coauthors who annotated pilot data for their own language
re-annotate a 10-second excerpt of their own recording (to determine intra-rater reliability)
and then also annotate a 10-second excerpt of recordings in all other languages (to
determine inter-rater reliability). They first did this once without any segmented text provided,
and then corrected this after being provided with segmented texts. We then compared all
these recordings against automated algorithms widely used in speech analysis (de Jong &
Wempe, 2009; Mertens, 2022) to determine reliability of automated methods (Fig. S6).

The results of human-human comparisons were somewhat ambiguous, but overall
suggested that (1) between-annotator differences in onset and break annotation are
negligible even for different languages (provided they are provided with segmented texts),
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(2) within-annotators randomness of annotation is also negligible as well, and (3) effect sizes
based on the annotation provided by automated methods can be significantly different from
human annotations. Note that Fig. S6 only compares temporal rate and pitch interval size,
since most other features did not require manual annotations, while pitch declination was not
analyzed because the 10-second excerpts were too short to have enough phrases to
evaluate. Although our validation suggests the value of manual annotation, it would be
desirable to increase its efficiency in future via options such as semi-automated methods or
crowd-sourcing (though there will likely be tradeoffs between data quality and quantity; cf.
Cychosz et al., 2021).

Figure S4. Relationship between the duration of recording excerpt analyzed and estimated
effect size for the 6 features and 5 sets of pilot recordings analyzed in Fig.S2. Since the length
of the pilot recordings ranged from under 30s to over 70s, plots are truncated at the point when there
is no longer enough matching sung and spoken audio recording for that language (e.g., 25s for
Marathi and Yoruba, 70s for English). The red vertical dashed line at 20s indicates the length we
concluded approximately optimizes the tradeoff between accuracy of effect size estimation and the
substantial time required to manually annotate onsets.

S1.5. Power analysis
We performed a power analysis to plan the number of recording sets (corresponding to the

number of studies in meta-analysis) necessary to infer the statistical significance of the
specified analyses. Because our pilot data consisting of only 5 recording sets is too small to
empirically derive reliable effect size estimates, our power analyses used an SESOI
corresponding to d = .4 (see Anvari & Lakens, 2021; Brysbaert, 2019 for the use of SESOI
for sample size planning). However, there is one nuisance parameter in the model (i.e.
between-study variance) necessary to specify for the power analysis, and we set this value
with the estimate from the pilot data as a workaround.
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Although we are planning to use the Benjamini-Hochberg step-up procedure (Benjamini &
Hochberg, 1995) in our hypothesis testing, since the actual critical value depends on the
p-value we will observe, it is challenging to specify sample size based on the false discovery
rate especially when using nonparametric statistics, though some methods are available for
parametric models (Jung, 2005; Pounds & Cheng, 2005). Therefore, we use the family-wise
error rate for setting the alpha level for sample size planning as a proxy. Although it is known
that when all null hypotheses are true, the false discovery rate becomes equal to the
family-wise error rate (Benjamini & Hochberg, 1995), and the required sample size does not
differ significantly between false discovery rate methods and stepwise family-wise error
control methods in certain cases (Horn & Dunnett, 2004), our case may not necessarily
match these conditions. Therefore our sample size estimate will be equal to or more than the
size required for specified power assuming the alpha level determined by Bonferroni
correction to set a stricter critical value.

We define the alpha level as 0.05 divided by six which is a family-wise error control by
Bonferroni correction, and the statistical power as 0.95 for our sample size planning. Our
statistical model is Gaussian random-effect models as explained in 1.2 Analysis plan.

Our power analysis estimated that n=60 recording sets is estimated as the minimum
required sample size to achieve the above type I and type II error control levels when testing
our six null hypotheses (see Supplementary Materials S3.2 for details). The features other
than the sign of f0 slope (i.e. f0, IOI rate, rate of change of f0, f0 ratio, and spectral centroid)
were estimated to have a relatively low between-study (recording set) variance, so the
required number of recording sets computed for each feature is estimated to be lower than
10. However, as shown in Fig. S2, the sign of f0 slope has a large between-study variance,
and that resulted in 60 recording pairs being needed.

Please note that our power analysis does not take into account the specific languages used.
While it would be ideal to have models that capture how languages (and other factors such
as sex, age, etc.) influence the song-speech difference, we do not have enough empirical
data or prior studies to build such models at this moment. Hence we simply treat each
recording data without such factors, controlling for language family relationships separately
in our robustness analyses. Future studies may be able to better incorporate such factors in
a power analysis based on the data our study will provide.

S1.6. Robustness analyses
S1.6.1. Exclusion of data generated after knowing the hypotheses
One distinctive aspect of this study is that the authors ourselves generate the data for the
analysis. Traditionally, personnel who provide data are blinded from the hypotheses to avoid
biases where researchers (consciously or unconsciously) collect data to match their
predictions. Here, we attempt to control for bias by withholding from analysis of audio data
until we confirm the in-principle acceptance of this manuscript. We collect most recordings in
a way that coauthors do not have access to each others’ audio recordings until In Principle
Acceptance (IPA) of this Registered Report, so that hypothesis formation and analysis
methodology are specified a priori before accessing and analyzing the audio recordings.
Still, some data are generated from the core team who planned and conducted the pilot
analyses and thus already knew most hypotheses before we decided this issue needed to
be controlled for. Data from these authors may possibly include some biases due to knowing
the details of the study (e.g., we may have consciously or unconsciously sung higher or
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spoke lower than we normally would to match our prediction that song would use higher
pitch than speech). Therefore, we will test the robustness of our confirmatory analysis results
by re-running the same analyses after excluding recordings provided by coauthors who
already knew the hypotheses when generating data. Our confirmatory analyses test the
direction of effect sizes, so applying the same tests allows us to check if that holds with
varying conditions. In case the results of this analysis and the original confirmatory analysis
do not match, we will interpret our results as not robust (whether due to potential
confirmation bias or to other sampling differences) and will thus not draw strong conclusions
regarding our confirmatory hypotheses.

S1.6.2. Potential dependency caused by language family lineage
Another potential bias in our design is the unbalanced sample of languages due to our
opportunistic sampling design. Related languages are more likely to share linguistic features
due to common descent, and sometimes these features can co-evolve following
lineage-specific processes so that the dependencies between the features are observable
only in some families but absent in others (Dunn et al., 2011)4. Thus, it is possible that our
sample of speakers/singers may not represent independent data points. While our study
includes a much more diverse global sample of languages/songs than most previous
studies, like them our sample is still biased towards Indo-European and other larger
languages families, which might bias our analyses. To determine whether the choice of
language varieties affects our confirmatory analyses, we will re-run the same confirmatory
analyses using multi-level meta-analysis models (linear mixed-effects models; Sera et al.,
2019) with each recording set nested in the language family. We will perform model
comparison using the Akaike Information Criterion (AIC; Bozdogan, 1987) for the original
random-effects model and the multi-level model. The model having the lower AIC explains
the data better in terms of the maximum likelihood estimation and the number of parameters
(Watanabe, 2018), although critical assessment of information criteria and model selection
methods in light of domain knowledge is also important (Dell et al., 2000). If the choice of
model technique qualitatively changes the results of our confirmatory hypothesis testing, we
will conclude that our results depend on the assumption of the language dependency..

S1.7. Exploratory analysis to inform future research
We are interested in a number of different questions that we cannot include in our main
confirmatory analyses due to issues such as statistical power and presence of background
noise. However, we plan to explore questions such as the following through post-hoc
exploratory analyses, which could then be used to inform confirmatory analyses in future
research:

S1.7.1. More acoustic features: We will also explore other features in addition to the
specified five features to investigate what aspects of song and speech are similar and
different. Supplementary Figure S9 shows the analysis using additional features.

4 There is also some potential that musical and linguistic features may be related, although
past analyses of such relationships between musical features and linguistic lineages have
found relatively weak correlations (Brown et al., 2014; Matsumae et al., 2021; Passmore et
al., Under review).

108



S1.7.2. Relative differences between features: Our confirmatory analysis will formally test
whether a given feature is different or similar between song and speech, but will not directly
test whether some features are more or less good than others at distinguishing between
song and speech across cultures. To explore this question, we will rank the magnitude of
effect sizes to investigate the most differentiating features and most similar features among
the pairs of song and speech.

S1.7.3. Music-language continuum: To investigate how music-language relationships vary
beyond just song and spoken description, we will conduct similar analyses to our main
analyses but adding in the other recording types shown in Fig. 1 made using instrumental
music and recited song lyrics.

S1.7.4. Demographic factors: Most collaborators also volunteered optional demographic
information (age and gender), which may affect song/speech acoustics. Indeed, Fig. S3
suggests that pitch height differences between males and females are even larger than
differences between song and speech. We will explore such effects for all relevant features.

S1.7.5. Linguistic factors: We will also investigate whether typological linguistic features
affect song-speech relationships (e.g., tonal vs. non-tonal languages; word orders such as
Subject-Verb-Object vs. Subject-Object-Verb languages; “syllable-timed” vs. “stress-timed”
languages and related measurements of rhythmic variability (nPVI; cf. Patel & Daniele,
2003), etc.

S1.7.6. Other factors: In future studies, we also aim to investigate additional factors that
may shape global diversity in music/language beyond those we can currently analyze. Such
factors include things such as:
-functional context (e.g., different musical genres, different speaking contexts)
-musical/linguistic experience (e.g., musical training, mono/multilingualism)
-neurobiological differences (e.g., comparing participants with/without aphasia or amusia)

S1.7.7. Reliability of annotation process: Each of Ozaki’s annotations will be based on
segmented text provided by the coauthor who recorded it, and Ozaki’s annotations will be
checked and corrected by the same coauthor, which should ensure high reliability and
validity of the annotations. However, in order to objectively assess reliability, we will repeat
the inter-rater reliability analyses shown in Fig. S6 on a subset of the full dataset annotated
independently by Savage without access to Ozaki’s annotations. Like Fig. S6, these
analyses will focus on comparing 10s excerpts of song and spoken descriptions, randomly
selected from 10% of all recording sets (i.e., 8 out of the 81 coauthors, assuming no
coauthors withdraw). Ozaki’s annotations corrected by the original recorder will be used as
the “Reference” datapoint as in Fig. S6, and Savage’s annotations (also corrected by the
original recorder) will correspond to the “Another annotator” datapoints in Fig. S6. Note
however that we predict that Savage’s corrected annotations will be more analogous to the
“Reannotation” data points in Fig. S6, since in a sense our method of involving the original
annotator in checking/correcting annotations is analogous to them reannotating themselves
in the pilot study.

S1.7.8. Exploring recording representativeness and automated scalability: Because
our opportunistic sample of coauthors and their subjectively selected “traditional” songs are
not necessarily representative of other speakers of their languages, we will replicate our
analyses with Hilton, Moser et al.’s (2022) existing dataset, focusing on the subset of
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languages that can be directly compared. This subset of languages will consist of 5
languages (English, Spanish, Mandarin, Kannada, Polish) represented by matched
adult-directed song and speech recordings by ~240 participants (cf. Hilton et al. Table 1).

Because our main analysis method requires time-intensive manual or semi-manual
annotation involving the recorded individual that will not be feasible to apply to Hilton et al.’s
dataset, we will instead rely for our reanalysis of Hilton et al.’s data on purely automated
features. We will then re-analyze our own data using these same purely automated features.
This will allow us to explore both the scalability of our own time-intensive method using
automated methods, and directly compare the results from our own dataset and Hilton et
al.’s using identical methods.

Fig. S10 demonstrate this comparison using pilot data for one feature (pitch height) based
on a subset of Hilton et al.’s data that we previously manually annotated (Ozaki et al., 2022),
allowing us to simultaneously compare differences in our sample vs. Hilton et al.’s sample
and automated vs. semi-automated methods. Even though this analysis focuses on a feature
expected to be one of the least susceptible to recording noise (pitch height), our pilot
analyses found that these were mildly sensitive to background noise, such that purely
automated analyses resulted in systematic underestimates of the true effect size as
measured by higher-quality semi-automated methods (Fig. S10). While our recording
protocol (Appendix 2) ensures minimal background noise, Hilton et al.’s field recordings were
made to study infant-directed vocalizations and often contain background noises of crying
babies as well as other sounds (e.g., automobile/animal sounds; cf. Fig. S11), which may
mask potential differences and make them not necessarily directly comparable with our
results. This supports the need to compare our results with Hilton et al.’s using both
fully-automated and semi-automated extracted features to isolate differences that may be
due to sample representativeness and differences that may be due to the use of automated
vs. semi-automated methods.

S2. Supplementary discussion of hypotheses and potential mechanisms
This section outlines the literature review on the comparative analyses of music and
language, with special emphasis on relevant hypotheses regarding their evolutionary origins.
This section introduces possible mechanisms underlying differences and similarities
between song and speech. We have include this text here for completeness but placed it in
the Suplementary Material rather than in the “Study aims and hypotheses” section of the
main text because, while relevant to our hypotheses, most are not directly testable in our
proposed design.

S2.1. Hypotheses for speech-song differences
We predict that the most distinguishing features will be those repeatedly reported in past
studies, namely pitch height and temporal rate of sound production (Chang et al., 2022; Ding
et al., 2017; Hansen et al., 2020; Merrill & Larrouy-Maestri, 2017; Sharma et al., 2021). Why
have these features emerged specific to singing? From the viewpoint of the social bonding
hypothesis, slower production rate may help multiple singers synchronize, facilitating
“formation, strengthening, and maintenance of affiliative connections” (Savage et al., 2021).
The social bonding hypothesis does not directly account for the use of high pitched voice;
instead we speculate that this is related to the loudness perception of human auditory
systems. It is known that the loudness sensitivity of human ears increases almost
monotonically until 5k Hz. Furthermore, the magnitude of neural response to the frequency
change by means of mismatch negativity also increases as the frequency range goes high in
the range of 250 - 4000 Hz (Novitski et al., 2004). Therefore, heightening f0 can be
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considered as conveying pitch information at a higher sensitive channel as possible. Also, in
song and speech, melody is predominantly perceived via f0, while timbre is predominantly
perceived via the upper harmonics (Patel, 2008). Thus the tendency for music to emphasize
melodic information and language to emphasize timbral information (Patel, 2008) may also
explain a preference for higher sung pitch to optimize the frequency of the key melodic
information. However, in adition to perceptual factors, higher pitch in singing may also be a
consequence of the production mechanism required for the sustaining the pitched voice,
especially when keeping sub-glottal pressure at a high level to sustain phonation, which may
facilitate raising pitch (Alipour & Scherer, 2007)​​​​.

Interestingly, higher pitch and longer duration are identified as features contributing to
saliency and perceived emotional intensity of sounds (but also other factors such as greater
amplitude and higher spectral centroid, see Anikin (2020) for a more comprehensive list).
This suggests our features predicted to show differences may originate in non-verbal
emotional expression. In addition, the pattern of higher pitch height and slower sound
production rate is also cross-culturally characteristic of infant-directed speech compared to
adult-directed speech (Cox et al., 2022; Hilton et al., 2022). Along with other features in
infant-directed speech, this difference is argued to play an important role in linguistic and
social development (Cox et al., 2022).

Pitch discreteness is often considered a key feature of music (Brown and Jordiana, 2013;
Fitch, 2006; Haiduk & Fitch, 2022; Savage et al., 2015; Ozaki et al., 2022; Vanden Bosch der
Nederlanden et al., 2022). However, to our knowledge, there is no well-established way to
analyze this property directly from acoustic signals. In this study, we measure pitch stability
as a proxy of pitch discreteness. Our pitch stability measures how fast f0 modulates,
although we admit this may not fully account for the characteristics of pitch discreteness. For
example, recent studies indicated pitch discreteness might relate to the ease of
memorization (Haiduk et al., 2020; Verhoef & Ravignani, 2021), but our measurement does
not directly take into account such effects. Based on the pilot analysis (Fig. S2), we
confirmed that pitch stability can demonstrate the expected trend (i.e. more stable pitch in
singing). The effect size can be medium (size corresponding to Cohen’s d of 0.5) at best, but
considering the limited capacity of human pitch control in singing (e.g. imprecise singing;
Pfordresher et al. (2010)), it is plausible that pitch stability may not matter for the distinction
between song and speech as much as pitch height and temporal rate. Still, we predict this
feature is worth testing for cross-cultural differences between song and speech, particularly
given its prominence in previous debate (including Lomax an Grauer’s definition of song
cited in the introduction). In fact, several empirical studies documented that song usually
produces more controlled f0 than speech (Natke et al., 2003; Raposo de Medeiros et al.,
2021; Stegemöller et al., 2008; Thompson, 2014).

In relation to the differentiation between song and speech, Ma et al. (2019) provided an
intriguing simulation result of how a single vocal communication can diverge into a music-like
signal and speech-like signal through transmission chain experiments. Their experiment was
designed to test the musical protolanguage hypothesis (Brown, 2000) and found that
music-like vocalization emerges when emotional functionality is weighted in the transmission
and speech-like vocalization emerges when referential functionality is necessitated. This
result may imply a scenario that singing behaviour emerged as one particular form of
emotional vocal signals conveying internal states of the vocalizer, though its evolutionary
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theory has not particularly targeted music (Bryant, 2021). In fact, a melodic character of
music is often considered to function in communicating mental states (Leongómez et al.,
2022; Mehr et al., 2021) and infant-directed singing acts as the indication of emotional
engagement (Trehub et al., 1997). Since our recordings are solo vocalizations however, our
recordings may not display key features facilitating synchronization of multiple people such
as regular and simple rhythmic patterns. Although this is out of scope of our study, it is
intriguing to investigate whether this speculation also holds in the case of solo music
traditions (Nikolsky et al., 2020; Patel & von Rueden, 2021).

S2.2. Hypotheses for speech-song similarities
We predict pitch interval size, timbre brightness and pitch declination will not show marked
differences between song and speech. Amongst these three features, we introduce a novel
way for assessingpitch interval size. Although there is a line of research studying musical
intervals based on the limited notion of the interval defined with the Western twelve-tone
equal-tempered scale (Ross et al., 2007; Schwartz et al., 2003; Stegemöller et al., 2008; but
cf. Han et al., 2011; Robledo et al., 2016), our study treats interval more generally as a ratio
of frequencies to characterize the interval of song and speech in a unified way.

Stone et al. (1999) reported that country singers use similar formant frequencies in both
song and speech which is consistent with our pilot analysis (Figure S2), and they argued that
the use of higher formant frequencies (e.g. singer’s formant, see also Lindblom & Sundberg
(2007)) in Western classical music tradition stemmed from the necessity of the singer’s voice
to be heard over a loud orchestral accompaniment. Similarly, Stegemöller et al. (2008)
confirmed that speech and song have a similar spectral structure. Although we can find
studies showing higher brightness in singing performed by professional singers (Barnes et
al., 2004; Merrill & Larrouy-Maestri, 2017; Sharma et al., 2021; Sundberg, 2001), our dataset
does not necessarily consist of recordings by professional musicians and as in the case of
Stone et al. (1999) the prominent use of the high formant frequencies in singing may depend
on musical style (but see Nikolsky et al., (2020) for the role of timbre played in personal
music tradition). However, we would like to note that other aspects of timbre such as
noisiness (spectral flatness) can potentially indicate the difference between song and speech
(Durojaye et al., 2021).

Cross-species comparative studies identified that the shape of pitch contour is regulated by
the voice production mechanism (Tierney et al., 2011; Savage et al., 2017). Since both
humans and birds use respiratory air pressure to drive sound-producing oscillations in
membranous tissues (Tierney et al., 2011), their pitch contours tend to result in descending
towards the end of the phrase. Although previous studies only compared on pitch contours
of human music (instrumental and vocal) and animal song, we predict the same pattern can
be found in human speech since it still relies on the same motor mechanism of vocal
production. More precisely, pitch declination is predicted to happen when subglottal pressure
during exhalation can influence the speed of vocal fold vibration; the high pressure facilitates
faster vocal fold vibration, and low pressure therefore makes the vibration relatively slower.
Declarative speech is also subject to this mechanism (Ladd, 1984; Slifka, 2006).

S3. Features
The six features introduced in the main section are extracted as follows:
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S3.1. Pitch height (f0): f0 is estimated in a semi-automated way like the annotation in the
Erkomaishvili dataset (Rosenzweig et al., 2020), which used an interactive f0 extraction tool
(Müller et al., 2017). We created a graphical user interface application with the following
extraction process: 1) create the time-frequency representation of the audio signal using the
fractional superlet transform (Bârzan et al., 2021; Moca et al., 2021); 2) a user specifies the
set of points (beginning, end, upper and lower bound of frequency, and optional intermediate
point(s) to be included in the contour) on the time-frequency plane to constraint the search
region of f0; 3) estimate an f0 contour using the Viterbi algorithm (Djurović & Stanković,
2004). It is also possible to manually draw/delete/modify the contour if the f0 is deemed not
reliably estimated automatically due to severe interference by noise. The frequency
resolution is 10 cents with 440 Hz = 0 (octave is 1200 cents), and the time resolution is 5 ms.

S3.2. Temporal rate (Inter-onset interval [IOI] rate): Inter-onset interval rate is measured
by first taking the difference between adjacent onset annotation times or onset and break
annotation times and then taking that reciprocal. Our proxy for temporal rate is the
inter-onset interval of consecutive P-centers (perceptual centers; Danielsen et al., 2019;
Howell, 1988; Morton et al., 1976; Pompino-Marschall, 1989; Scott, 1998; Vos & Rasch,
1981), which is approximately similar to but not identical to the rate of linguistic and musical
acoustic units (e.g. syllables, notes). Onset is a perceptual center determined by the person
who made the recording.

S3.3. Pitch stability (-|Δf0|): The rate of change of f0 is the negative absolute value of the
numerical differentiation at each sampling point of the f0 contour. The negative sign is used
so that higher values indicate greater pitch stability. We use Shao & Ma’s (2003) wavelet
method with a first-order derivative of Gaussian to derive this because it is robust to noisy f0
contours such as the ones in our pilot dat. We use 20 ms as the standard deviation
parameter of the first-order derivative of Gaussian to smooth the noise, which corresponds
to the scaling factor of the wavelet function.

S3.4. Pitch interval size: Pitch interval is usually expressed as the ratio of pitch of two
notes. We generalize this concept as follows. Firstly, segment an f0 contour with the onset
and break times. Secondly, take the outer product of the antecedent segmented f0 contour
and the reciprocal of the consequent f0 contour. Here, rather than estimating a single
representative pitch from each segment, we take exhaustive combinations of the ratio of f0
values between adjacent segments and evaluate the interval as a distribution. This approach
allows us to quantify intervals on both musical and linguistic acoustic signals. We calculate
this outer product from each pair of adjacent segmented f0 contours and aggregate all results
as the pitch interval of the recording. However, one drawback of this method is the number
of data points tends to become large due to taking outer products, though it can be mitigated
by lengthening the sampling interval of f0. Figure S5 shows a schematic overview of our
approach.
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Figure S5. Process of computing f0 ratios. The leftmost figure shows an f0 contour which is
segmented by three onset times. Then, the pitch ratio of the antecedent segmented f0 contour
(orange) and the consequent f0 contour (purple) is calculated by taking exhaustive pairs of samples
from two signals (104 samples × 55 samples in this example). The rightmost figure shows the
obtained intervals by histogram which displays two peaks. The right-hand mode is the interval of
ascending direction (around 370 cents) generated from the green rectangle part. The left-hand mode
is the interval of descending direction (around -50 cents) generated from the orange rectangle part.
Note that this example uses the cent scale rather than the frequency scale so that intervals can be
calculated by subtraction.

S3.5. Timbral brightness (spectral centroid): Spectral centroid is computed by obtaining a
power spectrogram using 0.032 seconds Hanning window with 0.010 seconds hop size. The
original sampling frequency of the signal is preserved. Please note silent segments during
breathing/breaks are also included. However, the majority of the recordings contain a voice
(or instrument), so the influence from silent segments should be minimal. Although we tried
using an unsupervised voice activity detection algorithm by Tan et al. (2020), it was
challenging to assess how much the failure of detection can impact the measurement of the
effect size. The unsupervised algorithm was chosen to avoid the assumption of particular
languages and domains as possible since we deal with a wide range of language varieties
and audio signals of both music and language domains, which is usually beyond the scope
of voice activity detection algorithms in general. Another limitation is that the measurement
of spectral centroid can be affected by noise due to poor recording environment or
equipment. However, our study focuses on the difference in terms of the relative effect in
spectral centroid in two recordings (expected to be recorded in the same
environment/equipment/etc.), and we confirmed that the difference in spectral centroid itself
is not markedly influenced by noise if the two recordings are affected by the same noise.

S3.6. Pitch declination (Sign of f0 slope): Pitch declination is estimated in the following
steps. First, a phrase segment is identified by the onset annotation after the break
annotation (or the initial onset annotation for the first phrase) and the first break annotation
following that. Secondly, an f0 contour is extracted from that segment. We treat f0s as
response variable data and correspondence times as dependent variable data. If there are
frames where f0 is not estimated, we discard that region. Finally, we fit a linear regression
model with Huber loss and obtain the slope. If the pitch contour tends to have a descending
trend at the end of the phrase, we expect the slope of the linear regression tends to be
negative. MATLAB’s fitlm() function was used to estimate the slope. Figure 3 illustrates linear
models fitted to each phrase.
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S4 Statistical models and power analysis
S4.1 Statistical models
The Gaussian random-effects model used in meta-analysis is (Brockwell & Gordon, 2001;
Liu et al., 2018)

is the effect size (or summary statistics) from th study, is the study-specific
population effect size, is the variance of th effect size estimate (e.g. standard error of
estimate) which is also called the within-study variance, is the population effect size,
is the between-study variance, and is the number of studies. In our study, is the
relative effect and is its variance estimator (Brunner et al., 2018). In addition, the term
“studies” usually used in meta-analysis corresponds to recording sets. This model can also
be written as

S4.2 Power analysis
We first describe the procedure for sample size planning for the hypotheses testing
differences (H1-3). In this case, hypothesis testing evaluates
, which means that the null hypothesis assumes the population effect size is the same as no
difference and the alternative hypothesis assumes the difference exists in the positive
direction (one-sided). Since we use relative effects as our effect sizes, we define .
As described in “S1.5 Power Analysis”, we decided to use SESOI for sample size planning,
meaning we assume that the population effect size is the same as SESOI. Therefore, we
specify where is the standard cumulative normal distribution.

The power of the Gaussian random-effects model is given by (Hedges & Pigott, 2001;
Jackson & Turner, 2017)

, where satisfies that is the significance level of the test, and is
non-centrality parameter defined as which represents the gap between the
parameter of the null hypothesis model and the population parameter.

In order to perform the power analysis, we first need to specify the nuisance parameter
(between-study variance) which is generally unknown. We use DerSimonian-Laird estimator
(Dersimonian & Laird, 1986; Liu et al., 2018) to estimate using pilot data. However, there
is the issue that the within-study variance of sign of f0 slope of the Yoruba recordings
became 0. This happened because the signs of f0 slope of singing and spoken description
are all -1, which means f0 contours of all phrases show better fitting to a downward direction
than the upward. Zero variance causes divergence (i.e., +∞) in the weighting used in the
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DerSimonian-Laird estimator. As a workaround, the hypothetical standard error of the
relative effect is estimated by assuming at least one of the observations was +1 (i.e. one of
the f0 slopes fits the upward direction). Specifically, we first re-estimated the standard error of
the relative effect with both patterns that one of the signs is +1 in either the singing or
spoken description. Then we took the smaller variance estimate for the hypothetical
standard error of this recording set.

Furthermore, we also need assumption for to calculate the power and to estimate the
necessary number of studies since the power is the function of the non-centrality
parameter, between-study variance, and within-study variances. We assume the within-study
variance has a mean and plug in the average of the within-study variances from pilot data.
Algorithmically, our procedure is

1. Estimate and .
2. Calculate the average of the within study variance.

is the number of pilot recording sets (i.e. = 5) here.

3. Set
4. Calculate the power using the equation (1)
5. If the calculated power is lower than the target power then,

(append to the current ) and return to 4.
Otherwise, take the number of elements of as the necessary number of studies.

For the power analysis of equivalence tests (H4-6), we first note that the Gaussian
random-effects model is equivalent to a normal distribution since random-effects models are
Gaussian mixture models having the same mean parameter among components, therefore

where

We use this reparameterized version for equivalence tests. We estimate the necessary
number of studies by simulating how many times the test can reject a null hypothesis
under the alternative hypothesis being true out of the total number of tests. Specifically, the
rejection criteria is (Romano, 2005)

where satisfies
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is sample estimate of the mean, and we use the estimated instead of the simple
average of effect sizes. Here, defines the boundary for equivalence testing, namely

that the boundary is symmetric at 0. We set the boundary
parameter based on SESOI that shifts the center of the relative
effect to 0 from 0.5, and specify assuming that the population effect sizes of the
features to be tested are null. When running the simulation, we draw random samples as

and increase the number of studies gradually until the simulation
satisfies the expected power under the specified significance level.

S5 Supplementary Figures

Figure S6. Within- and between-annotators randomness of onset annotations including automated
methods (de Jong & Wempe, 2009; Mertens, 2022) discussed in Section S1.4 “Pilot data analysis”.
10-second excerpts were used. Reference is the result of the annotation by the person who originally
made the recording.
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Figure S7. Effect sizes of each feature across five languages using the pilot data as in Figure S2 but
with exploratory comparisons with recitation and instrumental recording types.

Figure S8. Mean values of each feature as in Figure S3 but with all recording types (including
recitation and instrumental). “Desc.” means spoken description, “Recit.” means recited lyrics.
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Figure S9. Effect sizes of each feature across five languages using the pilot data as in Figure S2 with
additional exploratory features. Green-colored diamonds and two-sided confidence intervals are used
for the features that hypotheses are not specified.
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Figure S10. Pilot analysis of a subset of Hilton et al.’s (2022) data (pairs of adult-directed
singing/speaking recordings from n=9 participants speaking English, Spanish, or Mandarin) focusing
on pitch height. Ozaki et al., (2022) previously analyzed this subset for preliminary analyses using the
same method described in S2.1 to avoid contamination by various noises included in audio
(vocalization by babies, car noises, etc.), which allows us to explore issues such as whether such
extraneous noises are likely to be a concern in our planned fully automated analysis of Hilton et al.’s
full dataset (cf. Fig. S11). Although all four conditions demonstrate the predicted trend of song being
consistently higher than speech, the effect size varies depending on the dataset and analysis method
used (see Section S1.7.8. for discussion).

Figure S11. An example of fully-automated vs. semi-automated f0 extraction underlying the
analyses in Fig. S7 for one of the field recordings from Hilton et al.’s dataset. AC002D =
adult-directed speech [D] from individual #02 from the Spanish-speaking Afro-Colombian [ACO]
sample). While the extracted f0 values are generally similar, the fully automated pYIN method
sometimes has large leaps, particularly when there are external noises and the main recorded
individual stops vocalizing to breathe (here the high-pitched blue contours at around 3.5 and 8
seconds correspond to the vocalizations of a nearby child while the recorded adult male takes a
breath).

S6 Exploratory features.
The summary of the additional features that will be examined in the exploratory analysis is
as follows.

7) Rhythmic regularity (IOI ratio (Roeske et al., 2020) deviation) [dimensionless],
- Absolute difference between the observed IOI ratios and the nearest mode

estimated from the observed IOI ratios. If the perceived onsets constitute
similar ratios over the recording, each data point (IOI ratio) would be
concentrated around the mode thus small deviation from the most typical ratio
would be expected. This idea is similar to measuring the variance of the
within-cluster that modal clustering is used to create clusters. However, the
deviation of each data point from a cluster centroid is measured instead of
variance.
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- Various methods for density modes (equivalently zero-dimensional density
ridges or degree zero homological features) have been recently proposed
(Chacón, 2020; Chaudhuri & Marron, 1999; Chazal et al., 2018; Chen et al.,
2016; Comaniciu & Meer, 2002; Fasy et al., 2014; Genovese et al., 2014;
Genovese et al., 2016; Sommerfeld et al., 2017; Zhang & Ghanem, 2021).
Here, we adopted techniques of topological data analysis. In particular, we
use the mean-shift algorithm (Comaniciu & Meer, 2002) to detect the modes.
Gaussian kernels are used and we choose to obtain a bandwidth parameter
using Pokorny et al. (2012)’s method that selects a bandwidth from the range
that the Betti number (number of modes in this case) is most stable
(Carlsson, 2009; Pokorny et al., 2012). Note that this is not the only way and
other criteria also exist (e.g. Genovese et al., 2016; Chazal et al., 2018) for
the bandwidth selection from the viewpoint of topological features. The search
space of bandwidth is set as as minimum following Genovese et
al. (2016). The maximum bandwidth value is set as Silverman’s rule-of-thumb
(Silverman, 1986) since this bandwidth selection is usually considered
oversmoothing (Hall et al., 1991), and this idea was previously also used for
ridge detection analysis (Chen et al., 2015). Removing low density data points
(outliers) to infer the persistent homology features is recommended (Chazal
et al., 2018), so we set the threshold to eliminate data points that is

where is a kernel
density function with the bandwidth parameter and is kernel density
estimate using all data points. This threshold removes samples from density
created by a few samples; equivalent to density less than 2 data points or
less than 1% of the number of data points. Figure S12 illustrates our
approach.

8) Phrase length (duration between two breaths/breaks) (onset-break interval)
[seconds],

- An interval between the first onset time after a break time (or the beginning
onset time) and the first break time after the onset time, roughly
corresponding to the length of a musical phrase or spoken utterance..

9) Pitch interval regularity (f0 ratio deviation) [cent],
- Like the IOI ratio deviation, the absolute difference between the observed f0

ratios and the nearest mode. The method for calculating this feature is
identical to the IOI ratio deviation, but for frequency rather than for time..

10) Pitch range (phrase-wise 90% f0 quantile length) [cent],
- The phrase is an interval as defined in 8) Phrase length. The sample quantile

length of f0 within each phrase is extracted.
11) Intensity (short–term energy) [dimensionless],

- We measure the energy of the acoustic signal as a rough proxy of loudness
although loudness is a perceptual phenomenon and these two are not
necessarily equal. The short-term energy is the average of the power of the
signal within a rectangular window whose length is 25 ms. We slide this
window every 12.5 ms to collect the short-term energies of the recording. In
order to avoid including the unvoiced segments, the energy is calculated from
the samples within IOIs or onset-break intervals. Since the relative effect is
invariant with the order-preserving transformation, we do not apply a
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logarithm though the feature name is intensity. There are some limitations in
this feature. One limitation is that recording is not strictly controlled. However,
assuming the collaborator follows the protocol (e.g. keep the same distance
between microphone and mouth/instrument and use the same recording
device and recording environment across recordings), we assume the
intensityof the recordings within each collaborator can be roughly compared.
Another limitation is that the recording method is not unified across the
collaborators. Therefore, even if there are the same level of differences in
sound pressure level of singing and speech among the collaborators, the
effect sizes to be calculated can be different. More precise control of
recording conditions would be necessary for more accurate measurement of
the difference in loudness in the future study.

12) Pulse clarity [dimensionless],
- Pulse clarity is calculated using MIRToolbox V1.8.1 (Lartillot et al., 2008).

13) Timbre noisiness (spectral flatness (Johnston, 1988; Peeters, 2004)) [dimensionless]
- Spectral flatness is measured at each acoustic unit, namely inter-onset

intervals and onset-break intervals, as in Durojaye et al. (2021).

Figure S12. Illustration of the computation of IOI ratio deviation and f0 ratio deviation. The interval
between the magenta lines is the range of the bandwidth parameter that Betti number (number of
modes) is most stable which we interpret as indicating the strong persistence of the topological
features. Note that due to the removal of data points from the low density region, the number of
modes does not simply monotonically decrease with the increase in the bandwidth parameter.

S7. Manipulation of features to demonstrate our designated SESOI (Cohen’s D = 0.4).
Following Brysbaert’s (2019) recommendation, we use the relative effect corresponding to
0.4 of Cohen’s D as the SESOI for our hypothesis testing. Although the choice of 0.4 of
Cohen’s D is somewhat arbitrary, we empirically measured how much such differences
correspond to the physical attribute of audio using our pilot data focusing on pitch height and
temporal rate. For each pair of singing and spoken description recording, we first measured
the relative effect (3rd column: Relative effect (pre)). Then, we manipulated the
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corresponding feature of the song to result in a relative effect equal to 0.61 (corresponding to
0.4 of Cohen’s D) and 0.5 (corresponding to no difference, 0.0 of Cohen’s D). Specifically,
we shifted down the entire f0 for pitch height and slowed down the playback speed for
temporal rate. The 4th and 5th columns show actual scale factors identified at each
recording and feature. For example, the first row indicates the f0 of the sung version needed
to be shifted 730 cents downward to manipulate the difference in this feature between
singing and spoken description to be as small as our proposed SESOI of Cohen’s D = .4.
Similarly, the sixth row indicates the IOIs of singing needed to be multiplied by 0.472 (i.e.,
each sung note sped up to be 47.2% as short as the original duration) to make no difference
against the spoken description recording, meaning the playback speed of singing should be
over 2x faster than the the original recording. Although there are only 5 recording pairs and
this measurement does not directly provide the justification for using 0.4 of Cohen’s D, we
can see how the current SESOI threshold corresponds to the physical attribute of audio by
comparing the 4th and 5th columns (106 cents for pitch height and factor of 0.091 for
temporal rate in average), which to we authors seems reasonabl borderlines for listeners to
notice the change in audio content. The corresponding audio examples are available in our
OSF repository (https://osf.io/mzxc8/files/osfstorage/638491c81daa6b1394759086).

Table S1. Overview of our pilot recordings with key features (pitch height [f0] and
temporal rate [1/IOI]) manipulated to demonstrate what real examples of song and
speech might sound like if they the differences were non-existent (“equivalence”) or
negligible (as small as our chosen SESOI [Smallest Effect Size Of Interest]).

Vocalizer Feature Relative
effect (pre)

Manipulation to
demonstrate SESOI

(pre = 0.611)

Manipulation to
demonstrate
equivalence
(pre = 0.5)

D. Sadaphal (Marathi) f0 0.992 -730 cents (i.e., pitch is
transposed down such
that sung pitch is more
than half an octave lower
than the original)

-860 cents

Nweke (Yoruba) f0 0.995 -930 cents -1030 cents

McBride (English) f0 0.931 -650 cents -770 cents

Hadavi (Farsi) f0 0.978 -430 cents -480 cents

Ozaki (Japanese) f0 0.997 -1300 cents -1430 cents

D. Sadaphal (Marathi) IOI 0.931 x 0.544 (i.e., playback
speed is increased by
almost 2x such that the
duration of each sung
note is only 54.4% as fast
as the original)

x 0.472

Nweke (Yoruba) IOI 0.831 x 0.622 x 0.499

McBride (English) IOI 0.836 x 0.530 x 0.415
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Hadavi (Farsi) IOI 0.932 x 0.396 x 0.324

Ozaki (Japanese) IOI 0.939 x 0.393 x 0.320

Appendix 1 Recording protocol

We study how and why song and speech are similar or different throughout the world, and we need
your help! We are recruiting collaborators speaking diverse languages who can record themselves
singing one short (minimum 30 second) song excerpt, recitation of the same lyrics, spoken description
of the song, and an instrumental version of the song’s melody. In addition, we ask collaborators to
include a transcribed text that segments your words according to the onset of the sound unit (e.g.,
syllable, note) that you feel reasonable. The recording/transcription/segmentation process should
take less than 2 hours. (Later we will ask you to check sound recordings that we produce based on
your segmented text, which may take up to 2 more hours.)

Collaborators will be coauthors on the resulting publication, and will also be paid a small
honorarium (pending the results of funding applications). In principle, all audio recordings will be
published using a CC BY-NC 4.0 non-commercial open access license, but exceptions can be
discussed on a case-by-case basis (e.g., if this conflicts with taboos or policies regarding indigenous
data sovereignty). We seek collaborators aged 18 and over who are speakers of diverse 1st/heritage
languages.

Once you have finished the recordings and created the segmented text files, please:
● email us your text files (but NOT your audio recordings) to psavage@sfc.keio.ac.jp and

yozaki@sfc.keio.ac.jp.
● email your audio recordings to globalsongspeech@gmail.com, where they will be securely

monitored and checked by our RA, Tomoko Tanaka, who is not a coauthor on the manuscript.
This folder shows an example template of one full set of recordings and text files:
https://drive.google.com/drive/folders/1qbYpv_gxy-gQTBpATA3WwtPHkj14-lSU?usp=sharing

If you have any questions about the protocol, please email:
‐ Dr. Patrick Savage (psavage@sfc.keio.ac.jp), Associate Professor, Keio University
‐ Yuto Ozaki (yozaki@sfc.keio.ac.jp), PhD student, Keio University

[Recording content]

● Please choose one traditional song to record. This should be a song you know how to sing that is
one of the oldest/ most “traditional” (loosely defined)/ most familiar to your cultural background.
This might be a song sung to you as a child by your parents/relatives /teachers, learned from old
recordings, etc. (we plan to include other genres in future stages). Since there is no universally
accepted definition of “song” (which is an issue we hope to address in this study), you are free to
interpret “song” however feels appropriate in your language/culture. Please contact us if you
would like to discuss any complexities of how to define/choose a “traditional song”.

● Please choose a song that you can record yourself singing for a minimum of 30 seconds.
However, we encourage you to record yourself for as long as makes sense for your song to enable
more in-depth future studies without having to go back and re-record yourself (though we request
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you keep within a maximum of 5 minutes if possible). Note that it is fine if it takes less than 30
seconds to recite the same lyrics when spoken, but please ensure that your free spoken
description also lasts a minimum of 30 seconds.

● Please use your 1st/heritage language for every recording (except for the instrumental track). If
you speak multiple languages, please choose one language (and let us know which one ahead of
time) and avoid combining multiple languages in singing, recitation and spoken description.

● Please record song, lyric recitation, spoken description and instrumental in the order that you feel
natural.

○ Song: When you sing, please sing solo without instrumental accompaniment, in a pitch range that
is comfortable to you. You do not need to follow the same pitch range sung by others. Feel free to
sing while reading lyrics/notation if it is helpful.

○ Lyric recitation: When you recite the lyrics, please speak in a way you feel is natural. Feel free to
read directly from written lyrics if it is helpful.

○ Spoken description: Please describe the song you chose (why you chose it, what you like about
it, what the song is about, etc.). However, please avoid quoting the lyrics irn your description.
Again, aim for minimum 30 seconds.

○ Instrumental version: Please also record yourself playing the melody of your chosen song(s).
We would be delighted for you to play with a traditional instrument in your culture or country.
Continuous-pitch instruments (e.g., violin, trombone, erhu) are especially helpful, but fixed-pitch
instruments (e.g., piano, marimba, koto) are fine, too. Please do not use electronic instruments
(e.g. electric keyboard). Choose whatever pitch/key is comfortable for you to play (this need not
be the same pitch/key as the sung version). Please contact us if you want to discuss any
complexities involved in trying to play your song’s melody on an instrument.

➢ If you do not play a melodic instrument, it is also acceptable to just record the song’s
rhythm using tapping sounds or other percussive sounds (e.g., drums). In this case,
this “instrumental” recording will only be used to analyze rhythmic features. In this
case, you can tap the rhythm while singing in your head, but please do not sing out
loud.

[Recording method]

● Please record in a quiet place with minimal background noise.

● Please record each description/recitation/song/instrumental separately as different files. The file
name should be "[Given name]_[Surname]_[Language]_Traditional_[Song
title]_[YYYYMMDD of the time you record]_[song|recit|desc|inst].[file format]". For example,

○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_song.wav
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_recit.wav
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_desc.wav
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_inst.wav

● Please ensure that your mouth (or instrument) is the same distance from your recording
device for each recording, and please make all recordings during one session (to avoid
differences in recording environment and/or your vocal condition on that day).

● Regarding the recording device, a high-quality microphone would be great, but a smartphone or
personal computer built-in microphone is also fine. Preferred formats are: .mp4, .MOV, .wav,
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with sampling rate: 44.1kHz or higher / bit rate: 16bit or higher for .wav and lossless codecs (e.g.
Apple Lossless Audio Codec) and 128kbps or higher for .MOV and .mp4 with lossy compression
codecs. If you are an iPhone user and considering using the Voice Memos app, please set the
"Audio Quality" configuration to "Lossless".

○ Note: although we only require and will only publish audio data for the main study,
we have found that default audio quality can be higher when recording video via
smartphone than when recording audio. Also, when it comes time to publish the
findings with accompanying press releases, we plan to ask for volunteers who want to
share videos of their own singing/speaking. So if you want to make your initial
recordings using video, it may save time if you decide you want to volunteer video
materials later on.

[Segmented texts]

● After the recording of spoken description, lyric recitation or song, please create a Word file or
Rich Text Format file per recording that segments your utterance based on the onset of acoustic
units (e.g., syllable, note) that you feel natural. It is up to you how you divide song/speech into
what kind of sound unit.

○ Technically, we would like you to focus on the perceptual center or "P-center" (Morton,
Marcus, & Frankish, 1976), which is "the specific moment at which a sound is perceived to
occur" (Danielsen et al., 2019).

○ Segmentation by the acoustic unit of language (e.g. syllable, mora), by the acoustic unit of
music (e.g. note,節 fushi), and by the P-center are not necessarily the same. For example, one
syllable may sometimes be sung across multiple notes (and vice versa).

● Please use a vertical bar (“|”) to segment recordings (see examples below).

● Please use romanization when writing and also write it based on the phoneme in your native
script if it doesn’t use Roman characters. You may use IPA (International Phonetic Alphabet)
instead of romanization if you prefer.

● Please start a new line in the segmented text at the position where your utterance has a pause for
breathing

● When there are successive sound units that keep the same vowels (e.g. "melisma" in Western
music, "kobushi" in Japanese music, etc.) and you feel have separate onsets, then you can
segment the text by repeating vowels (e.g. A|men → A|a|a|a|men).

● Please include a written English translation of the text of the spoken description and the sung
lyrics.

● Example (Japanese)
○ Singing of Omori Jinku

(Segmented texts with romanization)
Ton|Bi|Da|Ko|Na|Ra|Yo|O|O|O
I|To|Me|Wo|O|Tsu|Ke|E|Te
Ta|Gu|Ri|Yo|Se|Ma|Su|Yo|O|O
I|To|Me|Wo|O|Tsu|Ke|E|Te
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Hi|Za|Mo|To|Ni|I|Yo|O
Ki|Ta|Ko|Ra|Yoi|Sho|Na

(Original lyrics)
鳶凧ならヨ　糸目をつけて
（コイコイ）
手繰り寄せますヨ　膝元にヨ
（キタコラヨイショナ）

(English translation of the lyrics)
Tie the bridle of a kite kite (Tonbi-dako), pull it in to your knees.
(Kita-ko-ra Yoi-sho-na)

○ Lyrics recitation of Omori Jinku
(Segmented texts with romanization)
Ton|Bi|Da|Ko|Na|Ra|Yo
I|To|Me|Wo|Tsu|Ke|Te
Ta|Gu|Ri|Yo|Se|Ma|Su|Yo
Hi|Za|Mo|To|Ni|I|Yo
Ki|Ta|Ko|Ra|Yoi|Sho|Na

○ Spoken description of Omori Jinku
(Segmented texts with romanization)
E-|Wa|Ta|Shi|Ga|E|Ran|Da|No|Ha, |Oo|Mo|Ri|Jin|Ku, |To|Iu, |E-, |Tou|Kyou|No|Min|You|De|Su.
Oo|Mo|Ri|To|Iu|No|Ha|Tou|Kyou|No|Ti|Mei|De,
I|Ma|Wa|Son|Na|O|Mo|Ka|Ge|Ha|Na|In|Desu|Ke|Re|Do|Mo
Ko|No|U|Ta|Ga|U|Ta|Wa|Re|Te|I|Ta|To|Ki|Ha,|Sono,|No|Ri|Ga,|Ni|Hon|De|I|Ti|Ban|To|Re|Ru|Ba
|Sho|To|Iu|Ko|To|De,
Maa|Wa|Ri|To|So|No,|Kai|San|Bu|Tsu|De|Nan|Ka|Yuu|Mei|Na, |Ti|I|Ki|Dat|Ta|Mi|Ta|I|De|Su.
Kyo|Ku|No|Ka|Shi|Mo,
E-, |Sou|Des|Ne, |Ho|Shi|Za|Ka|Na, |To|Ka, |Sou|Iu|Ki-|Wa-|Do|Ga|De|Te|Ki|Ma|Su.

(Original spoken description)
えー、私が選んだのは、大森甚句、という、えー、東京の民謡です。
大森というのは東京の地名で、
今はそんな面影はないんですけれども
この歌が歌われていたときは、その、海苔が、日本で一番取れる場所ということで、
まぁ割とその、海産物でなんか有名な、地域だったみたいです。
曲の歌詞も、
えー、そうですね、干し魚、とか、そういうキーワードが出てきます。

(English translation of the spoken description)
Ah, the song I chose is entitled Omori-Jinku, ah, a Minyo song from Tokyo. Omori is the
name of a place in Tokyo, and it has changed a lot these days, but in those days when this song
was sung, the place was known for producing the largest amount of nori (seaweed) in Japan,
and it also seemed popular due to seafood. Speaking of the lyrics of the song, ah, yeah, like
dried fishes, such keywords appear.

● Example (English)

○ Singing of Scarborough Fair
(Segmented texts with romanization)
Are |you |go|ing |to |Scar|bo|rough |Fair
Pars|ley, |sage, |rose|ma|ry |and |thyme
Re|mem|ber |me |to |one |who |lives |the|ere
She |once |was |a |true |love |of |mine
Tell |her |to |make |me |a |cam|b|ric |shirt
Pars|ley |sage, |rose|ma|ry |and |thyme
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With|out |no |seam |or |nee|dle|wo|ork
Then |she’ll |be |a |true |love |of |mine

○ Lyrics recitation of Scarborough Fair
(Segmented texts with romanization)
Are |you |go|ing |to |Scar|bo|rough |Fair
Pars|ley, |sage, |rose|ma|ry |and |thyme
Re|mem|ber |me |to |one |who |lives |there
She |once |was |a |true |love |of |mine
Tell |her |to |make |me |a |cam|bric |shirt
Pars|ley |sage, |rose|ma|ry |and |thyme
With|out |no |seams |nor |nee|dle|work
Then |she’ll |be |a |true |love |of |mine

○ Spoken description of Scarborough Fair
(Segmented texts with romanization)
For |my |tra|di|tio|nal |song |I’m |gon|na |sing |Scar|bo|rough |Fair,|
um, |be|cause |it |is |one |of |the |ol|dest|
songs |that |is, |uh, |quite |well |known |be|cause |it |was, |ah, |made |po|pu|lar |by, |ah, |Paul
|Si|mon |and |Art |Gar|fun|kle.|
Um,
and |it |al|so |has |this |nice |kind |of |haun|ting,|
beau|ti|ful |me|lo|dy |with |this, |uh, |nice |Do|ri|an |scale |that |gives |it |this |kind |of |old
|fa|shioned |feel |that |I |quite |like.|
And |then |the, |the |mea|ning |is |quite |um, |ah, |In|t’res|ting,|
has |this |kind |of |strange,|
um, |im |pos|si|ble |rid|dle |kind |of |theme |where |the,|
ah, |cha|rach|ter |keeps |as|king |the, |um,|
o|thers |to |do |these |im|pos|si|ble |things, |so |it’s |kind |of |this|
cryp|tic, |old|fa|shioned |song |that |I, |ah, |I |quite |like.

● Please save the segmented texts of each description/recitation/song separately as different files.
The file name should be "[Given name]_[Surname]_[Language]_Traditional_[Song
title]_[YYYYMMDD of the time you record]_[song|recit|desc].[file format]". For example,

○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_song.docx
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_recit.docx
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_desc.docx

➢ Therefore, you will upload 7 files in total as your deliverables (i.e. 4 audio files and 3
Word/RTF files) in the end.
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Appendix 2 Collaboration agreement form5

Collaboration agreement form for "Similarities and differences in a global sample of song and speech
recordings"

This project uses an unusual model in which collaborators act as both coauthors and participants. All
recorded audio data analyzed will come from coauthors, and conversely all coauthors will provide
recorded audio data for analysis. Collaborators will be expected to provide data within 2 months of
when these are requested. Please do NOT send data now - we are following a Registered Report
model where data must not be collected until the initial research protocol has been peer-reviewed and
received In Principle Acceptance. We estimate this will be in early 2023, and ask that you provide
your audio recordings and accompanying text within 2 months of In Principle Acceptance. We
estimate this recording/annotation will take approximately 1-2 hours to complete. This will be
followed by an additional 1-2 hours to check/correct the final files we prepare at a later date.

All collaborators reserve the right to withdraw their coauthorship and data at any time, for any reason,
until the manuscript has passed peer review and been accepted for publication. In such cases, their
data will be immediately deleted from all computers and servers, public and private (though be aware
that if this happens after posting to recognized preprint/data servers such as PsyArXiv or Open
Science Framework some data may remain accessible). The corresponding authors (Patrick Savage
and Yuto Ozaki) also reserve the right to cancel this collaboration agreement and publish without a
given collaborator’s data and coauthorship if necessary (e.g., if data are not provided according to the
agreed timeline, or if an insurmountable disagreement about manuscript wording arises). In such a
case, any contributions made will be acknowledged in the manuscript.

Collaborators will be coauthors on the resulting publication, and will also be paid a small honorarium
(pending the results of funding applications) unless they choose to waive the honorarium. In principle,
all audio recordings will be published as supplementary data with this manuscript and permanently
archived via recognized preprint/data servers (e.g., PsyArXiv, Open Science Framework, Zenodo)
using a CC BY-NC 4.0 non-commercial open access license, but exceptions can be discussed on a
case-by-case basis (e.g., if this conflicts with taboos or policies regarding indigenous data
sovereignty). We seek collaborators aged 18 and over who speak a diverse range of 1st/heritage
languages.

5 NB: This agreement had a different timeline from that eventually adopted, because
after beginning the process of scheduled review and discussing the issue of
confirmation bias with our editor, we concluded that we needed to modify our planned
level of bias control from Level 6 (“No part of the data that will be used to answer the research question
yet exists and no part will be generated until after IPA [In Principle Accepantce] (so-called ‘primary RR’)”) to Level
2 (“At least some data/evidence that will be used to answer the research question has been accessed and partially
observed by the authors, but the authors certify that they have not yet sufficiently observed the key variables within
the data to be able to answer the research question AND they have taken additional steps to maximise bias control
and rigour (e.g., conservative statistical threshold, recruitment of a blinded analyst, robustness testing, the use of a
broad multiverse/specification analysis, or other approaches for controlling risk of bias)”; cf. “Registered Reports with
existing data”).
We thus had to ask collaborators to record themselves several months earlier than
they had originally agreed. Most of them managed to do this, but some did not.
Because the number of collaborators who could not meet the revised timeline was
small enough not to affect our planned power analyses or robustness analyses, we
shared the manuscript with all authors and will incorporate those who had not yet
made their recordings in the robustness analyses, along with the other authors who
made their recordings after knowing the hypotheses.
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For analysis, we plan to collect and publish demographic information about each collaborator along
with their recordings (language name, city language was learned, biological sex [optional], birth year
[optional]). Providing your biological sex or birth year are optional - if you opt not to include these,
we will simply exclude your audio data from exploratory analyses that use these variables. (Though
please note that biological sex and age may be guessed from your recordings even if you opt not to
answer these questions.)

For compliance purposes, CompMusic Lab (“we” or “us”) is the data controller of demographic data
and audio recordings we hold about you, and you have a right to request information about that data
from us (including to access and verify that data). We would like your informed consent to hold and
publish demographic data and recordings that you provide to us. All such data will be treated by us
under agreed license terms. Please tick the appropriate boxes if you agree and then sign this form:

I agree for my data (audio recordings, written transcriptions, and demographic information [language, city
language learned, and biological sex and birth year if provided]) to be used as part of research.
I agree to provide my audio recordings and text annotations within 2 months of the Stage 1 protocol’s In Principle
Acceptance, and to check/correct the final annotated files within 2 months of their preparation.
I agree to publish my data under ​​a CC BY-NC 4.0 non-commercial open access license.

a. (If you do not agree to publish your data under CC BY-NC 4.0 [e.g., for reasons relating to Indigenous
data sovereignty]) please state your conditions for sharing your audio recording data.:_______________

I agree to be a coauthor of the manuscript.
I agree for a preprint of the manuscript and accompanying data to be posted to recognized preprint/data servers
(e.g., PsyArXiv, Open Science Framework, Zenodo).

If you would like to waive the honorarium, you can also tick this box. If you do not waive the honorarium, we will contact
you separately to provide bank account details for the wire transfer after you have provided all data.

I choose to waive the honorarium

Name: ___________________________________________________________________
Affiliation (e.g., Department, University, Country): ___________________________________
1st/heritage language(s) spoken: ______________________________________________
Primary city/town/village(s) where language(s) were learned: ____________________________
[Optional] Biological sex (e.g., male, female, non-binary, etc.):___________________________
[Optional] Birth year: ______________________________________________________________

Appendix 3: Open call for collaboration to the International Council for Traditional
Music (ICTM) email list. Adapted versions of this email were also used later in tandem with
in-person recruitment at the conferences described in the main text). Note that in later
meetings we decided to relax the restriction of one collaborator per language, in part due to
difficulties of defining the boundaries separating languages and the desire to maximize
inclusion.

From: Patrick Savage <psavage@sfc.keio.ac.jp>
Subject: Call for collaboration on global speech-song comparison
Date: July 15, 2022 9:49:57 JST
To: "ictm-l@ictmusic.org" <ictm-l@ictmusic.org>

Dear ICTM-L members,

I am emailing to inquire if any of you are interested in collaborating on a project comparing
speech and song in diverse languages around the world to determine what, if any,
cross-culturally consistent relationships exist.
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I mentioned this project briefly back in January in response to the discussion about Don
Niles’ post to this list entitled “What is song?”. Since then, we have recruited several
dozen collaborators speaking diverse languages (see attached rough map), but would like
to open up the call to recruit more. As you can see from the map, our current recruitment is
quite unbalanced, particularly lacking speakers of indigenous languages of the Americas,
Oceania, and Southeast Asia. We hope you can help us correct that!

Collaborators will be expected to make short (~30 second) audio recordings of themselves
in four ways:
1) singing a traditional song in their native language
2) reciting the lyrics of this song in spoken form
3) describing the meaning of the song in their native language
4) performing an instrumental version of the song’s melody on an instrument of their
choice (negotiable)
They will also provide written transcriptions of these recordings, segmented into acoustic
units (e.g., syllables, notes) and English translations. Later, they will check/correct
versions of these recordings created by others with click sounds added to the start of each
acoustic unit. Finally, they will help us interpret the results of acoustic comparisons of
these recordings/annotations. Our pilot studies suggest that this should all take 2-4 hours
for one set of 4 recordings.

Collaborators will be coauthors on the resulting publication, and will also be paid a small
honorarium (pending the results of funding applications). In principle, all audio recordings
will be published using a CC BY-NC non-commercial open access license, but exceptions
can be discussed on a case-by-case basis (e.g., if this conflicts with taboos or policies
regarding indigenous data sovereignty).

We seek collaborators aged 18 and over who are native speakers of diverse languages, but
we are open to collaborators who are non-native speakers in cases of
endangered/threatened languages where there are few native speaker researchers
available. During this first stage, we only plan to recruit one collaborator per language, on
a first-come first-served basis in principle (in future stages we will recruit multiple
speakers per language).

More details and caveats (e.g., how to interpret “traditional” or “song") can be found in a
draft protocol here:
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https://docs.google.com/document/d/1qICFXwew7OEj06dkSoR59TlF7HCmVGcudkenMwHR
emM/edit

We actually are not quite ready to begin the formal recording/analysis process yet as we
are still working out some methodological and conceptual issues (for which we would also
welcome your contributions). The reason I am putting out this call now is that I will be
presenting at ICTM in Lisbon next week and I know many of you will also be there, so I
wanted to use this chance to reach out in case any of you want to meet and discuss in
person in Lisbon.

I’ll be mentioning more details about this project briefly during a joint ICTM presentation on
"Building Sustainable Global Collaborative Networks” at 9am on July 26th (Session VIA01),
and would be delighted to meet anyone interested in collaboration following this session
or at any other time during the week of the conference.

Please email me (mentioning your native language[s]) if you’re interested in collaborating
or in meeting in Lisbon to discuss possibilities!

Cheers,
Pat
---
Dr. Patrick Savage (he/him)
Associate Professor
Faculty of Environment and Information Studies
Keio University SFC (Shonan Fujisawa Campus)
http://compmusic.info
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B. Stage 2 Supplementary Materials of Chapter 3

S8. Break annotation

Break is defined as the end of a continuous sequence of sounds before relatively long pauses.
Breaks are used to avoid creating inter-onset intervals that do not include sounds. For vocal
recordings, that would typically constitute when the participant would inhale. In the case of
instrumental recordings, how to determine break points between instrumental phrases is up to
the person who made the recording, but it is expected to indicate pauses during sound
production.

S9. Exploratory Analysis

Figure S13. Effect sizes of each feature using the same data as in Figure 3.5 but with exploratory
comparisons with recitation and instrumental recording types.

Table S2. Nonparametric trend test (Jonckheere-Terpstra test) for the shift of mean
values of features across different acoustic forms. The category is ordered as 1 =
instrumental, 2 = song, 3 = lyrics recitation, and 4 = spoken description. Note that the
Jonckheere-Terpstra test assumes observations in each category to be independent of the
other categories (e.g., between-subjects design), but our data are collected in a
within-subjects design. Therefore, the p-values can be somewhat inaccurate in testing the
null hypothesis (i.e., H0: θ1 = θ2 = θ3 = θ4) if there is a strong correlation within subjects. The
p-values were calculated by a Monte Carlo permutation procedure.
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Feature JT statistics P-value

Pitch height 6752 1.2 x 10-4

Temporal rate 27672 1.2 x 10-4

Pitch stability 3569 1.2 x 10-4

Timbral brightness 16864 1.2 x 10-4

Pitch interval size 13340 0.30

Pitch declination 10288 1.2 x 10-4

Phrase length 10876 1.2 x 10-4

Intensity 13787 3.7 x 10-4

TImbral noisiness 22998 1.2 x 10-4

Rhythmic regularity 23484 1.2 x 10-4

Pitch interval regularity 20329 1.2 x 10-4

Pulse clarity 9911 1.2 x 10-4

Pitch range 13114.5 0.20
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Figure S14. Alternative visualization of Figure 3.9 showing mean values of each feature by biological
sex and focusing on the features subject to the main confirmatory analysis. Note that the colors of
data points indicate language families, which are coded the same as in Figure 3.3.

Figure S15. Re-running of the analysis on our full data with automated feature extraction. pYIN
(Mauch & Dixon, 2014) was used for f0 extraction and de Jong & Wemp’s (2009) Praat script was
used for onset timing extraction. Break annotation was not automated so pitch declination was not
measured.
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Figure S16. Color mapping of Figure 3.12.
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Figure S17. Supplementary information for Fig. 3.10. Mean values of pitch height of each recording
are displayed. f0s were extracted by pYIN (Mauch & Dixon, 2014). The horizontal lines in the violin
plots are median.

Figure S18. Supplementary information for Fig. 3.10. Mean values of pitch stability of each recording
are displayed. f0s were extracted by pYIN (Mauch & Dixon, 2014). The horizontal lines in the violin
plots are median.
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Figure S19. Supplementary information for Fig. 3.10. Mean values of timbral brightness of each
recording are displayed. f0s were extracted by pYIN (Mauch & Dixon, 2014). The horizontal lines in
the violin plots are median.

Figure S20. Mapping data by nPVIs of song and spoken description by each collaborator and its
song-instrumental version, and the density plot of nPVIs of each . The red lines are linear fitting of
nPVIs of spoken description and nPVIs of song, and the dotted line is y = x which can be used to
grasp if nPVIs of spoken description is larger than that of song and vice versa.
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Figure S21. Difference between onset times annotated by YO and onset times annotated by PES per
recording. The horizontal lines in the violin plots indicate the median. Color is coded as the same in
Fig. 3.3.

Figure S22. Permutation importance of the features in three binary classifiers.
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Table S3. Average over performance metrics measured by randomly splitting recording sets into
training and test sets 1024 times.

Logistic
regression

SVM Naive Bayes

Accuracy 95.78% 93.75% 92.94%

Song Precision 96.66 92.68 92.81

Recall 95.25 95.70 93.98

F1 score 95.72 93.92 93.03

Spoken
description

Precision 95.74 95.89 94.45

Recall 96.31 91.80 91.91

F1 score 95.80 93.50 92.76

Figure S23. Correlation matrix of the features within song recordings. The data are the mean values
of the features, which are plotted in Figure 3.6.
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Figure S24. Correlation matrix of the features within spoken description recordings. The data are the
mean values of the features, which are plotted in Figure 3.6.
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Appendix 3 List of songs

# Name Song title
(Romanization)

Language Instrument

1 Nori Jacoby Laila Laila Modern Hebrew [Jerusalem] Whistle

2 Limor Raviv זהבשלירושלים
(Yerushalayim ShelZahav)

Modern Hebrew [Tel Aviv] Tapping

3 Iyadh El Kahla منيغارواالليلاموني Tunisian Arabic Aerophone

4 Utae Ehara イタサン (Itasan) Aynu (Hokkaido Ainu) Tapping

5 Neddiel Elcie Muñoz
Millalonco

Ñaumen pu llauken Tsesungún (Huilliche) Clapping

6 Nozuko Nguqu Ulele IsiXhosa (Xhosa) Piano

7 Mark Lenini Parselelo Lala Mtoto Lala Kiswahili (Swahili) Tapping

8 Cristiano Tsope Hiya Tlanguela xinwanana
xinga pswaliwa namuntla

Ronga Clapping

9 Florence Nweke Pat omo o Yoruba Piano

10 Adwoa Arhine Yɛyɛ Eguafo Fante (Akan) Clapping

11 Jehoshaphat Philip
Sarbah

Daa na se Twi (Akan) Piano

12 Latyr Sy Mbeuguel Wolof Clapping

13 I Putu Gede Setiawan Putriceningayu Balinese Suling

14 Suzanne Purdy Pōkarekare Ana Te Reo Māori (Māori)
[Auckland]

Tapping

15 Rob Thorne Ko Te Pū Te Reo Māori (Māori)
[Wellington]

Kōauau rākau

16 Nerea Bello
Sagarzazu

Xoxo Beltza Euskara (Basque)
[Hondarribia]

Aerophone

17 Urise Kuikuro Toló Língua Kuikuro
(Kuikúro-Kalapálo)

Clapping

18 Shantala Hegde Moodala Maneya Kannada Clapping

19 Rytis Ambrazevičius Sėjau rugelius Lithuanian Idiophone

20 Tadhg Ó Meachair Éiníní Gaeilge (Irish) Piano Accordion

21 Niels Chr. Hansen I Skovens Dybe Stille Ro Danish Piano

22 Mark van Tongeren Hoor De Wind waait Dutch [Heemstede] Piano

23 Kayla Kolff Dikkertje Dap Dutch [Nairobi] Membranophone

24 Adam Tierney Simple Gifts English [Indiana] Electric Piano

25 Christina Vanden Sleep Now Rest Now English [Michigan] Cello
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Nederlanden

26 Patrick Savage Scarborough Fair English [Nevada] Piano

27 John McBride Arthur McBride English [Newry] Flute

28 William Tecumseh
Fitch

Rovin’ Gambler English [Pennsylvania] Guitar

29 Peter Pfordresher America the Beautiful English [Washington D.C.] Piano

30 Yannick Jadoul VandaagIs't Sinte Maarten Flemish (Dutch) Piano

31 Felix Haiduk Die Gedanken Sind Frei German Melodica

32 Ulvhild Færøvik Nordmannen Norwegian Clapping

33 Daniel Fredriksson Ho Maja Svenska (Swedish) Offerdalspipa

34 Emmanouil Benetos Saranta Palikaria Greek Clapping

35 Dhwani P. Sadaphal Saraswatee maateshwaree Hindi Harmonium

36 Parimal M. Sadaphal Sukhakartaa Marathi Sitar

37 Meyha Chhatwal ਬਾਜਰੇ ਦਾ ਸਿਟਾ (Bajre Da
Sitta)

Punjabi (Eastern Panjabi) Harmonium

38 Ryan Mark David Dil Dil Pakistan Urdu Acoustic guitar

39 Shahaboddin Dabaghi
Varnosfaderani

Morgh e Sahar Western Farsi [Isfahan] Clapping

40 Shafagh Hadavi Mah Pishanoo Western Farsi [Tehran] Piano

41 Manuel Anglada-Tort La Presó de Lleida Catalan Piano

42 Pauline
Larrouy-Maestri

À la claire fontaine French Piano

43 Andrea Ravignani Bella Ciao Italian Saxophone

44 Violeta Magalhães O milho da nossa terra Portuguese [Porto] Tapping

45 Camila Bruder A Canoa Virou Portuguese [São Paulo] Tambourine

46 Marco Antonio Correa
Varella

Suite do Pescador Portuguese [São Paulo] Nose flute

47 Juan Sebastián
Gómez-Cañón

El pescador Spanish [Bogotá] Guitar

48 Martín Rocamora Aquello Spanish [Montevideo] Guitar

49 Javier Silva-Zurita Un gorro de lana Spanish [Santiago] Guitar

50 Ignacio Soto-Silva El Lobo Chilote Spanish [Osorno] Clapping

51 Dilyana Kurdova Zarad tebe, mome, mori Bulgarian Clapping

52 Aleksandar Arabadjiev Jovano Macedonian Kaval
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53 Wojciech
Krzyżanowski

Wlazł Kotek Na Płotek Polish Guitar

54 Polina Proutskova Dusha moia pregreshnaia Russian Violin

55 Vanessa Nina Borsan En Hribček Bom Kupil Slovenian Tapping

56 Olena Shcherbakova Podolyanochka Ukrainian Piano

57 Diana Hereld ᎤᏁᎳᏅᎯ ᎤᏪᏥ (unelanvhi
uwetsi)

Cherokee Tapping

58 Gakuto Chiba 津軽よされ節
(Tsugaru-yosarebushi)

Japanese [Hokkaido] Tsugaru-shamisen (津軽
三味線)

59 Shinya Fujii デカンショ節
(Dekansho-bushi)

Japanese [Hyogo] Clapping

60 Yuto Ozaki 大森甚句 (Omori-Jinku) Japanese [Tokyo] Guitar

61 Naruse Marin 朝花節
(Asabana-bushi)

Northern Amami-Oshima Sanshin (三線)

62 Teona Lomsadze Nana (Lullaby) Georgian Chonguri

63 Sangbuem Choo 아리랑 (Arirang) Korean Guitar

64 Patricia Opondo Ero Okech Nyawana Luo (dholuo) (Luo (Kenya and
Tanzania))

Whistle

65 Rogerdison
Natsitsabui

Jakara Wata Rikbaktsa Clapping

66 Jakelin Troy Gundji gawalgu yuri Ngarigu Percussion

67 Tutushamum Puri
Righi

Petara Puri Kwaytikindo (Puri) Terara (bamboo flute)

68 Su Zar Zar Mya Man Giri Myanmar (Burmese) Saung-gauk

69 Psyche Loui 梁祝 (Butterfly Lovers) Cantonese (Yue Chinese) Violin

70 Minyu Zeng 五指山歌 (The Song of the
Five-Fingers Mountain)

HainanHua (Min Nan Chinese) Idiophone

71 Fang Liu 送别 (Farewell) Mandarin Chinese Clapping

72 Great Lekakul ลาวดวงเดอืน (Lao Doung
Duan)

Thai "Klui"(ขลุย่) (a Thai flute)

73 Brenda Suyanne
Barbosa

Apykaxu Mbyá-Guaraní Clapping

74 Polina
Dessiatnitchenko

Ay Lachin North Azerbaijani Tar

75 Olcay Muslu Uzun Ince Bir Yoldayim Turkish Tapping

144


