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Abstract

This thesis addresses the dynamic adaptability of a multimedia search system to the
contexts of its users and proposes a new query creation and search system for large-
scale image and video data. The contexts of a user in this system are defined as three
types of preferences: content, intention, and response time. A content preference
refers to the low-level or semantic representations of the data that a user is interested
in. An intention preference refers to how the content should be regarded as relevant.
And a response time preference refers to the ability to control a reasonable wait time.

The important feature of the proposed system is the integration of context-based
query creation functions with high-performance search algorithms into a unified search
system. This system adapts the inverted list data structure to construct a disk-
resident database model for large-scale data in high-dimensional feature space. The
database model has an intrinsic property, the orthogonality of indexes, which facili-
tates the functionality of the query creation and search system. The query creation
process consists of two main operations: (1) context-based subspace selection and (2)
subspace manipulation that includes several unary and binary functions to alter and
combine subspaces in order to reflect content preferences of users. The pruning search
mechanism consists of three search algorithms that are designed to adapt to different
types of intention preferences of users. Three search algorithms have a same pro-
cessing logic: (1) prioritizing feature indices for searching based on the input content
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preferences, (2) initializing starting points of searching based on the input intention
preferences, (3) iteratively finding relevant candidates, and (4) ranking candidates by
actual relevance scores and returning top results to users.

This thesis contributes to the multimedia retrieval research field a solution to
the tradeoff between functionality and usability of a search system. With the query
creation method, the proposed system provides users with a flexible means to express
their varying contextual preferences. Moreover, with the pruning search mechanism,
the system maintains a comparative high search performance to other conventional
search techniques without disrupting the feature space by dimension reduction or
weakening retrieval capabilities by static indexing.

Two application systems has been implemented to demonstrate the effectiveness
and applicability of the proposed system: a context-dependent image search system
with dynamic query creation and a frame-wise video navigation system. Many quan-
titative experiments were intensively studied using these systems. The experimental
results have shown a high usability of query creation functions to reflect imagina-
tions of users into queries and the advantages of the search algorithms to obtain high
performances comparative to other conventional search techniques.

Keywords: Multimedia Retrieval, Subspace Selection, Query Creation, Large-scale
Data, Video Navigation.
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Chapter 1

Introduction

The best way of finding out the

difficulties of doing something is to

try to do it.

Vision, David Marr

1.1 Research Motivation

1.1.1 Emergence of Large-scale Image and Video Data

Between 40,000 and 10,000 years ago, Early Human started to express images of

themselves and animals on cave walls [1]. Human is not the only species that can

“see” the outside world but we are the only one that can create a visual space out of

our perception, memory, and imagination. Ever since that very first time of drawing,

there have been many evolutionary moments that we invented techniques and devices

to promote this rich and powerful space for ourselves: from drawing, painting to

photography, from still pictures to moving pictures, from analog to digital imaging.

Nowadays we no longer depend on only our hands to capture what we see but instead

we have camera devices to record the world either at anytime we want or even all the

time such in case of surveillance cameras.

At 19th century and early 20th century, the most productive painters could create
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about one to two thousands artworks in their lifetime (e.g., Pierre Auguste Renoir

(1702 artworks), Oscar-Claude Monet (1284 artworks), Vincent Willem van Gogh

(913 artworks))1. Those are outnumbered in many large order of magnitude by the

aid of cameras and recording devices. According to a recent technical report of Mary

Meeker, ‘2016 Internet Trends’ [2, p. 90], about 3.2 billion photos per day are shared

on social media services including Facebook, Instagram, Messenger, and WhatsApp.

Among them, about 2.0 billion photos per day at only Facebook. As of May 7, 2015,

Flickr, one of image hosting and video hosting websites, announced there are over 10

billion images on its server2 and more than 3.5 million new images uploaded daily3.

This emergence of recording and communicating technologies has brought about

plentiful of data at many large scales and at the same time, challenged us to make

use of them. Undoubtedly, we use these resources intensively. A brief statistic at

SimilarWeb4 describes how often we visit websites looking for information as shown

in Table 1.1.

Table 1.1: Monthly traffic overview of some selected websites during May - October
2016 (data from www.similarweb.com).

Website Total visits (millions) Avg. Visit Duration
google.com 31,600 00:08:29

images.google.com 49.9 00:02:01
flickr.com 143.3 00:05:02

youtube.com 22,700 00:19:02
tineye.com 11 00:04:03

pinterest.com 970.8 00:05:28
instagram.com 1.8 00:05:58
yandex.com 19.7 00:06:48
tumblr.com 971.6 00:07:39

dailymotion.com 306.7 00:04:55
netflix.com 1,500 00:09:15

While to end-users, search is the most basic and quickest way to find information,

at the core of a search engine, it is the indexing and search algorithms that work clev-
1Source: The Athenaeum, http://www.the-athenaeum.org/art/counts.php?s=cd&m=a
2Flickr blog: http://blog.flickr.net/2015/05/07/flickr-unified-search/
3Source: The Verge, March 2013
4https://www.similarweb.com
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erly to meet that information need. Large-scale multimedia data challenge a search

engine in several ways: organizing the contents of unstructured data; indexing large

amount of records into databases; interpreting and adapting to changing contexts of

users at query time; and quickly returning relevant information from the databases

to users.

1.1.2 Contextual Aspects in Searching for Information

The information need of users is the topic has been widely studied in information

retrieval field [3, 4, 5]. While in principle text retrieval including document re-

trieval or Web page retrieval and multimedia retrieval share some principal concepts

and methodology, in practice multimedia search seems to be more complex and ex-

ploratory [5]. Spink et al. [6] stated that “multimedia searching appears to require

greater interactivity between users and the search engine.” Comparing to the general

Web page search, multimedia retrieval shows “a significant increase in the number

of query terms, search session length, query reformulations, and number of search

results clicks” [5].

Those differences can be explained by addressing the represented contents in a full-

text document comparing to a multimedia datum. The contents of a document is often

represented by the set of its words, whereas the contents of an image, for example,

are often more unstructured and can vary depending on the low-level features are

chosen to represent it such as color, shape or texture features. This gap between a

low-level features and high-level semantics is often known as a semantic gap. Besides

the semantic gap, recent researches in multimedia retrieval have also realized another

gap, the intention gap between search intent of a user and the query at query time

[7, 8]. However, instead of defining explicitly what can be an intention, the existing

methods often suggests to use the user’s feedbacks (i.e., the evaluation of a result is

relevant or irrelevant) as an implicit interpretation of the search intent.

In this thesis, three distinctive contextual aspects comprised to form a set of

preferences of a user at query time are defined and treated: content, intention, and

response time.
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Content of interest: This aspect refers to the low-level features of an image or

video, which include color, shape, texture.

Intention of search: This aspect refers to how the content will be regarded as rele-

vant. Intention preferences are classified into three categories: “dominant”, “sim-

ilar”, and “exact”. A “dominant” intention preference signifies that the strong

characterized features should be considered as more important therefore a re-

sult will be counted as a match if it contains these features with high values. A

“similar” intention preference refers indicates a desire to find similar data to the

input datum given a preferred content. An “exact” intention preference suggests

a search for only exactly matched data given the input datum and a preferred

content.

Response time: This aspect refers to the ability of users to control the response

time of a search engine. Currently, most search systems run to completion then

return results to users. However, there are situations when the users want to

choose a reasonable running time and want to get results by this time limit.

This demand is supposedly raised when the dataset is large and the response

time may be longer than an affordable wait time of a user.

Different persons, or the same person under different circumstances, may have

different interest under one query. For a same input image in content-based image

search, for example, one person may be more interested in the colors while another

may be more interested in the shapes of objects in the input. Likewise, another

person may wish to search for images that contain the vivid red colors as those are in

the input image ignoring other light red colors or other colors. Only those returned

images that match the user’s interest and intention are evaluated as “relevant”. This

state of affairs challenges a search system to be able to treat those preferences and

return reasonable results.
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1.1.3 The Curse of High Dimensionality

Multimedia data especially image and video data are unstructured data and their

contents are often represented by many high-dimensional features. An image can be

represented by a set of hundreds or thousands of colors with their distributions in the

image, or a set of hundred shape descriptors, or a set of words that describes objects

are in the image. A video can be represented as a sequence of continuous frames,

in which each frame is treated as an image. As a consequence, the dimensionality

of the metadata describing the contents of the video can be in much higher. From

a computation viewpoint, a higher dimensionality means a “curse” -the well-known

“curse of dimensionality” in literature.

In high dimensional space, “the concept of proximity, distance or nearest neighbor

may not even be qualitatively meaningful” [9]. Beyer et. al. [10] stated that under

some assumption on the data distribution, the distances between the nearest and

farthest neighbors to a given target in high dimensional space are almost the same

for a wide variety of distance functions. Moreover, Weber et. al. [11] observed the

rapid performance degradation of similarity indexing structures in high-dimensional

spaces, as they exhibit linear complexity.

The straightforward and common solution to tackle this problem is to reduce the

number of dimensions (or features) that used to represent the multimedia data such

as feature selection methods [12] or dimension reduction methods [13]. However, re-

ducing the number of dimensions causes reduced “subtleness” expressed in the original

data, which is, most of the time, what users are looking for.

It is observed that despite the high dimensionality of data, the number of dimen-

sions with respect to a content preference can be relatively small. For example, even

if we use thousands of colors to represent an image, it is more likely that we want to

use a part of them (some particular colors) at query time. For that reason, this thesis

suggests to manipulate the dimensionality of data in a context-adaptive way.
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1.2 Research Proposal and Objectives

The study in this thesis aims to answer the question “how to dynamically reflect

contextual preferences into queries, yet still have high-performance search capabilities

on large scale data with high-dimensional feature space?”

The thesis features the dynamic adaptability of a multimedia search engine and

proposes a new multicontext-adaptive query creation and search system for large-scale

image and video data. By realizing the importance of high-dimensional representa-

tions in describing delicate contents of multimedia but also acknowledging the chal-

lenges it may cause for a search algorithm on large-scale data, the proposed system

adapts the inverted list data structure to construct a disk-resident database model

and uses it to enable a dynamic pruning search mechanism for quickly finding relevant

candidates.

The indexing method is designed following three principles:

∙ features are indexed independently to each other as inverted lists,

∙ each inverted list is sorted by a descending order of values,

∙ all indices and metadata are written to binary files on disk by data blocks so

that each can be accessed by random access.

The proposed search mechanism works adaptively to the preferences input by users

at query time. It reflects users’ content preferences by selecting an appropriate subset

of inverted lists as a subspace for search process, and then adapts to the intention

preferences by prioritizing indexes to search and initializing starting points to search

for candidates. The searching for high-possibility relevant candidates is based on a

heuristic strategy to maximize the impact of important content and the relevance of

content measured by some similarity distance functions.

In this thesis, two application systems, context-dependent image search system

and frame-wise video navigation system, are implemented using the proposed query

creation and search system in order to demonstrate its feasibility and effectiveness

via several intensive experimental studies.
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1.3 Scope and Limitations

1.3.1 Scope of Context

The scope of context is limited in this thesis. Unlike context that can be defined in

ubiquitous computing as information including location, identity, activity, time [14],

the definition of context in this thesis is limited to contain only information about

content, intention, and response time preferences of users at query time.

Different from the “context-aware” computing, in which an application system

infers automatically the user contexts based on data from environmental sensors or

wearable devices, the “context-adaptive” computing that defined in this thesis assumes

that the contexts are explicitly stated by users as input at query time.

1.3.2 Scope of Content

1.3.2.1 Feature Representations of Image and Video Data

Features can be divided into two classes: low-level and high-level features. The low-

level features can often be extracted automatically whereas the extraction of high-

level features usually requires human assistance to create metadata such as captions

or keywords.

Contents used in this thesis refer to low-level features of image or video data

which are feature vectors of real numbers. In other words, the contents of image and

video data are represented by numerical vectors with each dimension represents a

feature of their contents. The proposed system currently does not deal with symbolic

representations such as names of objects in an image/video (as known as “bag-of-

words”), or other kinds of features.

Most of the current researches in content-based access and manipulation of vi-

sual data have focused on using low-level features such as texture, shape, and color.

Examples of features and their descriptors are shown in Table 1.2.

∙ Texture features are analyzed based on structural, statistical, spectral, stochas-

tic model-based, morphology-based, or multiresolution techniques.
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∙ Shape features are analyzed by various boundary-based (e.g., chain codes, ge-

ometric, and Fourier descriptors), or region-based (e.g., area, roundness) shape

models.

∙ Color features are frequently represented by computing the average color, the

dominant color, and the global/local histograms. Notably, color features are

extensively used because of their invariance with respect to image scaling and

rotation.

Table 1.2: General low-level features and their descriptors used to represent image
and video data (from table 3, section 6.5 [15]).

Feature Descriptor
Texture Contrast, coarseness, edge density and direction, Markov model,

co-occurrence matrix, DCT coefficients, wavelet coefficients, Wold
coefficients

Shape Geometrical descriptors (area, perimeter, etc.), Fourier descriptors,
chain code

Color Color histogram, color moments

Certainly using one low-level feature in many cases may not be sufficient to dis-

criminate between several objects. Therefore, combinations of two or several low-level

features are frequently used to improve significantly data access and manipulation by

content-based visual information. The concrete features used in the implemented

systems will be described in section 7.3.

1.3.2.2 Processing of Content

Moreover, the content is not processed in a device-independent way. The images

or videos can be acquired from many sources and their low-level data (in pixels) can

depend on the environmental conditions that they are captured and sensors of camera

devices (e.g., color constancy problem). However, they will be processed to produce

metadata in a uniform way.
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1.3.3 Scope of Intention

Although, it is very often that the user uses a search engine to explore the data space

rather than has already had a clear intention in mind [5]. The prominent assumption

of the proposed system is that every preference that a user might have must be

explicitly expressed as input at each query time.

The scope of intention is limited by the definition of how a result is regarded as a

relevant match, including only three types “dominant”, “similar”, and “exact”. Other

intentions of users that do not belong to these types are limited.

The above limitations of intention preferences can question the applicability of the

systems implementing the proposed architecture since from the viewpoint of users,

“don’t make me think” seems to be desirable [16]. However, it is suggested for such

applications to configure a reasonable default setting of the proposed system, which

requires the least input from users but when needed they can provide user interfaces

for setting context preferences.

1.4 Significance of the Research

This thesis contributes to the multimedia retrieval research field a solution to the

tradeoff between functionality and usability of a search system. With the query

creation method, the proposed system provides users with a flexible means to express

their varying contextual preferences. Moreover, with the pruning search mechanism,

the system maintains a comparative high search performance to other conventional

search techniques without disrupting the feature space by dimension reduction or

weakening retrieval capabilities by static indexing. The concrete contributions can

be reported from three main points as follows.

1.4.1 Context-adaptive Query Creation

The best “machine” that can sense and react effortlessly according to the surrounding

environment is human. It seems to be the case that “ ‘intelligent behavior’ often has
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more to do with simple situational understanding than complex reasoning” [17]. As

a results, understanding “contexts” and making use of them as human do (or better)

are the goals of many fields in computer science such as artificial intelligence (AI),

ubiquitous computing, wearable computing [18, 19, 14].

This thesis promotes the use of contexts for more beneficial results in multimedia

retrieval based on the idea of context-dependent semantic computing [20, 21]. The

thesis clearly defines three contextual aspects further than the conventional treatment

regarding contents of multimedia data and proposes an architecture to index data in

such a way that a multimedia retrieval system can smoothly adapt to any new context

at query time while effectively maintaining its performance.

1.4.2 Alleviating the Curse of High Dimensionality with Sub-

space Manipulation

As discussed in section 1.1.3, high dimensionality of data degrades the performance

of nearest neighbor search algorithms that use similarity distance functions. This

thesis intends to alleviate this phenomenon by a context-based subspace selection

method. While indexing multimedia data, high-dimensional features are used so that

the delicate contents are preserved, especially for color information of image data (as

in chapter 6). But at search time, a subspace of the index space will be selected

according to the input contexts of users.

Moreover, a method to combine subspaces can be further applied in order to

project the whole index space into a space with a less number of dimensions for more

efficient distance calculation. This method will be introduced in section 6.3.3

1.4.3 Adaptive Fast Search Mechanism

This thesis proposes a fast search mechanism to prune the index space in order to

quickly find relevant candidates given an input query and context preferences. There

have been many successful methods using space partitioning at index time [22, 23,

24, 25, 26], but using space partitioning at search time is intensitvely proposed and
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studied in this thesis for large-scale image and video data. The original idea has been

introduced in the works of Kiyoki and Miyagawa et al. [27, 28]. This thesis aims for

an unified system for the context-based computing and heuristic search algorithms

which include two search algorithms based on the related works [27, 28] and a new

search algorithm. The detail of the algorithms are introduced in chapter 3.

1.5 Definition of Terms

∙ candidate

a candidate or a search candidate, is a possibly relevant record found by a

search algorithm given a query.

∙ content preference

a content preference, refers to low-level or semantic representations of data that

a user is interested in.

∙ context

a context, refers to a content, intention, or response time preference of users.

∙ dimension

a dimension or a feature dimension, refers to a type of low-level visual feature

which is used to represent the content of data. Saying data are represented in

𝑑-dimensional space indicates each datum is represented by 𝑑 types of low-level

features and each type is assummedly independent to other types.

∙ feature

a feature or a descriptor, refers to a low-level visual feature that presents

an elementary content of an image such as color, shape, or texture content

associated with the image.

∙ feature space

a feature space, is a vector space associated with a set of feature vectors.
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∙ feature vector

a feature vector (sometimes called “a histogram”) in 𝑑-dimensional space, is a

tuple of 𝑑 real numbers that describes the characteristics of a record.

∙ image

a digital color image, is a two-dimensional array of pixels where a pixel is a

sample of three color channels (e.g., RGB) as a tuple of three small integers.

∙ intention preference

an intention preference, refers to how the content of a result should be regarded

as relevant given a content reference.

∙ key frame

a key frame or a scene frame, is a video frame that belongs to a scene in a

video and representatively presents the scene.

∙ metadata

data that contains information about a record including its feature vectors.

∙ query

a query, is a set of input parameters which are used to state a question to a

search system for relevant records.

∙ record

a record (in this thesis), refers to an image or a video frame.

∙ response time

time to get results from a search.

∙ result

a result, a search result or an answer, is a relevant record returned by a

search algorithm.

∙ scene

a scene, is a series of semantically correlated video frames (e.g., same events).
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∙ score

a relevance score or a similarity score, is a real number returned by a function

which calculates how much relevant a result is to a given query.

∙ subspace

a subspace of a feature space, is a feature space created by a subset of dimensions

of the feature space.

∙ video

a digital video, is a sequence of time varying pictures.

∙ video frame

a video frame or a frame, is a single picture from the video. This picture is

equivalent to an image.

1.6 Thesis Organization

The contents of this thesis are divided into three parts. Part one including chapters

1–2 gives an overview of the study. Part two consisting of chapters 3–5 focus on

the theoretical observation, design, and analysis of the indexing method and search

algorithms. Part three including chapter 6–8 describes the implementation of the two

application systems, discusses the experiments on those systems, and concludes the

thesis with research findings and discussions on open questions in future work.

Part one Chapter 1 introduces the background, motivation, and objectives of this

study. This chapter also describes the significance as well as the scope and

limitations of the study and gives some definitions of main technical terms used

in the thesis. Chapter 2 gives a survey of related works in literature while

delineating the characteristics and originalities of this research by contrasting

to those works in several perspectives.

Part two Chapter 3 introduces the geometric intuitions and the generalized frame-

work of the multicontext-adaptive search mechanism. This chapter is the most
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important chapter to understand the design and implementing principles of the

proposed system, which follow throughout the rest of the thesis. Chapter 4

describes the details of the indexing method including indexing principles and

the file structure of the disk-resident database model, which is named Bamboo

Forest database. Chapter 5 describes three concrete algorithms that work com-

patibly with the Bamboo Forest database based on the search intuitions and the

generalized framework in chapter 3: Maxfirst search, Combinatorial search, and

Exact-match search algorithms. This chapter also gives a complexity analysis

of the algorithms using the big-O notation.

Part three Chapter 6 focuses on the implementation and experimental studies on

the context-dependent image search system with dynamic query creation. Like-

wise, chapter 7 is dedicated for the frame-wise video navigation system. This

chapter discusses intensively the performances of the proposed search algorithms

on the Bamboo Forest databases, and is the main chapter on experimental stud-

ies in this thesis. Chapter 8 gives some discussions regarding the applicability

of the proposed system, sums up the advantages of the proposed query creation

and search system with inclusive research findings, and encloses this thesis by

introducing further research directions.

30



Chapter 2

Literature Review

The greatest challenge to any

thinkers is stating the problem in a

way that will allow a solution.

Bertrand Russell

Content-based multimedia retrieval as a research field has attracted many re-

searchers from many different fields including both theoretical and experimental stud-

ies and application systems. The prominent goal is to satisfy the information need of

end-users. This goal becomes non-trivial as soon as we start to analyze the challenges

waiting ahead. The “information need” of end-users are often ambiguous and context-

dependent, whereas the data that we are dealing with are unstructured by nature,

contigent on recording devices and large in scales. Especially image and video data,

as the fragmented records of our real world, are still so far to represent the compli-

cated imaginations or memories of users for visual information, which are often the

starting points for a querying and searching task.

In this chapter, a review of current literature of research trends which relate to

the topic of this thesis is described. The review contains several parts that are the

main components in the general framework of a content-based multimedia retrieval

system: query processing, feature construction, indexing, and search.
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2.1 Querying and Searching for Image and Video

Data

Before investigating the technical aspects of how to index and search for image or video

data from a viewpoint of computational systems, a description from a viewpoint of

users will be described. In other words, this section discusses what users expect when

searching for images or videos and what tools are existing to assist them.

2.1.1 Search Intention

In literature, the word “intent” and “intention” are used interchangeably, and both

refer to what a user desires when searching for information. Datta et al. states “clarity

of intent plays a key role in a user’s expectation from a search system and the nature

of her interaction” [29]. There are several different classification models have been

proposed to define how to define “intention” in a search system, but among them,

there are three main models.

“Intention” as “reason, purpose, or goal” This definition type relates to the ques-

tion “why the user is searching” [30]. For example, Broder et al. [3] defines

a taxonomy of three categories: “navigational”, “transactional” and “informa-

tional”. Lux et al. [31] defines five categories: “knowledge orientation”, “mental

image”, “navigation”, “transaction”.

“Intention” as “behavior type” associated with a degree of goal clarity This

definition type relates to the question “how the user is search” [29, 32]. For ex-

ample, Datta et al. [29] classifies users based on their searching behaviors into

three classes: “browser”, “surfer”, and “searcher”. In this classification model, a

browser is “a user browing for pictures with no clear end-goal, ” “a surfer is a

user surfing with moderate clarity of an end-goal,” and a searcher is “a user who

is very clear about what she is searching for in the system.”

“Intention” as “implicit content” In this model, an intention is treated as an im-

plicit information that can be learned from a repeated relevance feedbacks of
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users [33, 34, 35]. A user of these systems repeatedly marks images in the re-

sults as “relevant”, “not relevant”, or “neutral” to progressively refine the search

results.

In this thesis, a new classification model of “intention” is introduced. This model

defines an intention of a user as her expectation of how a result should be regarded

as relevant with three categories: “dominant”, “similar”, and “exact”. This model fo-

cuses on an expectation-driven search behavior rather than a goal-oriented search.

In addition, comparing to the relevance feedback approaches which deal with inten-

tions implicitly, the proposed model deals with intentions explicitly suggesting an

important role in search and evaluation of results.

2.1.2 Querying Paradigms

A querying paradigm refers to a user-system interaction model of a image (video)

search system. In conventional retrieval systems, there are several interaction levels

that relates to the complexity of queries supported by the systems. The following list

describes the most common models.

Input keyword (or “query-by-keyword”) The user inputs a keyword and the

search system uses the keyword to match with annotated texts of image or video

data. This is currently the most popular way to search images and videos.

Sample systems: Google image search engine1, Yahoo image search2, Youtube3.

Input free-text The user inputs a complex phrase, sentence, question, or story

that describes an image she is looking for. This query model is still not widely

developed in literature. Google image search can handle an input of a sentence,

for example, “a picture of a cute white cat” but it is believed that the algorithm

is based on word-by-word matching using annotated texts of image or video

data.
1https://images.google.com
2https://images.search.yahoo.com/
3https://www.youtube.com/

33



Input sketch (or “query-by-sketch”) The user draws a rough picture describing

what she is looking for.

Sample systems: QbS [36], Sketch4match [37], DrawSearch [38].

One input mage (or “query-by-example”) The user inputs an image as the query

and wishes to search for an image similar to the query. This is the most popular

query model in content-based image search, which does not require any anno-

tated texts but relies only on the metadata extracted from image data.

Sample systems: QBIC [39], survey article [40].

Multiple input images The user inputs multiple images and using combination

operations to express their interested content.

Sample systems: imagination-based query creation [41, 42, 43, 44, 45, 46, 47, 48]

(proposing set and algebraic operations such as “PLUS”, “MINUS”, “INTER-

SECTION”, “UNION”, “ACCUMULATION”, “DIFFERENCE”), [49] (propos-

ing “intersection” operation), [50] (proposing logical operations “AND”, “OR”,

“NOT”),

Text and image The user inputs an example image and keywords as the query for

search.

Sample systems: 5D World Map [44, 51], Google image search.

In this thesis, the combination of “multiple input images” and “text and image”

querying models is introduced. This query creation method provides users with a

highly dynamic query expression capability. The detail of the query creation method

and experimental studies are described in chapter 6.

2.2 Presentation of Image and Video Data

2.2.1 Feature Space

Image and video data are basically unstructured. The annotation-based querying

and search methods are very limited since they require a heavy labor of manually
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annotating the data. Therefore there are more and more researches putting effort on

the content-based search methods. In order to develop a content-based search method,

a method to extract “content” (or “feature”) of the data is needed and this is known

as “feature extraction”. The collection of features of data creates a representational

space of data, called “feature space”.

Datta et al. [29] describes two major methods of feature extraction: “global

extraction” and “local extraction”. “In global extraction, features are computed to

capture the overall characteristics of an image” and “in local extraction, a set of

features are computed for every pixel using its neighborhood” [29].

The extracted information will be represented by a computational structure, which

is commonly a single vector (as known as a “histogram”) in a space with the number

of dimensions equal to the number of feature components, or a set of such vectors.

In some methods, the extracted information can be summarized into “visual words”

so that the image is represented as a set of natural language words [52].

As discussed in section 1.3.2, this thesis limits the content of image and video frame

data to single-numerical-vector representation. Each element of a feature vector has

a non-negative real value (numerical value) and represents a feature of content of an

image or a video frame.

2.2.2 High Dimensionality

In section 1.1.3, the “curse of dimensionality” was introduced. This phenomenon was

very early recognized by Bellman [53] when he was observing the behavior of choices

in high dimensional space, which he called the “combinatorial explosion”. Ever since,

it is widely studied and found in many fields of computer science such as machine

learning including clustering and classification which depends on distance functions,

numerical analysis, combinatorics, or data mining [54, 10, 9, 55, 56, 57, 58, 59].

In information retrieval including multimedia retrieval, which majorly depends on

a wide variety of distance functions to find nearest neighbors for a query (often called

the 𝑘-nearest neighbor (KNN) problem), the curse of dimensionality is often hard to

deal with.
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There are some main trends of methods that deal with high dimensionality:

∙ Feature extraction including feature selection, dimension reduction methods,

∙ Adjusting in measure in higher dimensional space itself, like the work in [60]

(using angle), share-neighbor distance: [61].

The objective of feature extraction is to reduce the number of dimensions that are

used to represent the data including two main kinds of methods: (1) feature selection

methods such as sequential feature selection such as FSS, SFBS, PIMR, BDS, FS

[12], and (2) dimension reduction method such as PCA, SVD, or LDA [13].

However, reducing the number of dimensions causes reduced “subtleness” that is

expressed in the original data and most of the time, this is what users are interested

in finding out. While considering that, we also realize that the number of dimensions

might be large, but for a query, a smaller number of dimensions are preferred either

by the setting of users or by the input itself. As an intuitive example, if we use some

thousands of colors to represent an image, it is unlikely that an input will contain

all these colors but it is more likely that the input has some colors more dominantly

distributed in it. Therefore, at the search time, a search algorithm should focus on

these colors rather than others.

2.3 Efficient Indexing Structures and Fast Search In

High-dimensional Spaces

Searching in a large amount of multimedia data whose semantic features are repre-

sented in high dimensional metadata has been main objective of many researches.

There is a phenomenon called “curse of dimensionality” that arises when analyzing

data in high-dimensional spaces. This phenomenon suggests that close objects might

get separated by a partition boundary when partitioning the space. Many researches

have utilized approximate nearest neighbors problems [62, 63] and the MapReduce

paradigm [64] in order to solve large-scale multimedia retrieval tasks.
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Content-based image retrieval systems have been able to manage collections hav-

ing sizes that could be very difficult years back. Most systems can handle several mil-

lion to hundred million images [65, 66, 67, 68, 69, 70], billions of descriptors [71, 68, 72],

or address web-scale problems [73, 74, 70, 75], and so on.

The approaches to overcome large-scale datasets and high-dimensional presenta-

tion of data vary from many ranges, but in general can be categorized as follows:

∙ Cluster-based and its derivatives, e.g., [76, 68, 75, 77]

∙ Locality-sensitive hashing, e.g., [26, 75]

∙ Tree-based, e.g., [67, 71, 78, 22, 79]

∙ MapReduce paradigm, e.g., [68]

Most of the approximate high-dimensional near neighbor search methods based on

the above categories are based on some kinds of segmentation of the data collection

into groups named clusters, or partition the data space into areas so that close data

are indexed in the same cluster, or with the same hash code, or at the same node leaf.

It is easy to see that the space partitioning is done at index time in these methods,

but using space partitioning at search time is our original proposal. The importance

of treating the data space dynamically depending on the contexts at query time has

been recognized early [27, 28]. However, the current situation of emergent of data

and demanding attention to users’ preferences when searching for information have

made this idea more alerted. Additionally, the computational resources as well as the

storage resourses that we have nowadays enable us to extend this research direction

further.

2.3.1 Feature Space Partitioning for Fast Nearest Neighbors

Retrieval

The most efficient and well-known search approach is a group of spatial indexing

methods including a family of hashing algorithms (e.g. LSH and its variants) and a

family of tree-based algorithms (e.g. R-tree and its variants).
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2.3.1.1 Locality-Sensitive Hashing

Some researches approach to high-dimensional image search for large datasets using

“locality-sensitive hashing” (LSH), which is a solution for nearest neighbor problem

such as those studied in [26, 75]. The first locality-sensitive hashing algorithm was

introduced very early in 1998 [57] to overcome “curse of dimensionality”. A LSH

algorithm uses a family of locality-sensitive hash functions to hash nearby objects in

the high-dimensional space into the same bucket. A similarity search is performed

by hashing a query object into a bucket, using the data objects in the bucket as the

candidate set of the results, and then ranks the candidate objects using the distance

measure of the similarity search. The goal of LSH is to maximize probability of

“collision” of similar items rather than avoid them such like perfect hashing techniques.

Some methods such as [26] improved space efficiency of LSH using multi-probe by

deriving probing sequence to look up multiple buckets that have a high probability

of containing the nearest neighbors of a query object.

Locality-sensitive hashing is similar to cluster-based algorithms since datasets are

pre-indexed into groups and at search time, a group will be called providing candidates

for similarity calculation. Comparatively, LSH with fixed indexes have limited support

for the variations in feature importance due to different user preferences.

2.3.1.2 Tree-based Indexing

The most widely used tree-based spatial indexing structure for high-dimensional data

is R-Tree, which is firstly proposed by Guttman in [80]. Many variants of R-Tree

including KD-Tree, Ball-Tree have been studied and show some improvements in

performance by some aspect like “query retrieval, indexing cost, application specefic,

and so on” [81]. Some good survey articles for R-Tree variants can be found in [82],

[81], and [83].

Lejsek et al. in [67, 71] introduced a Nearest-Vector-tree data structure named

NV-tree for approximate search in very large high-dimensional collections. Another

author, Liu in [78] used a distributed hybrid Spill-tree, a variant of the Metric-tree, for
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a collection of 1.5 billion global descriptors. When comparing to LSH, the performance

was the same but the method used fewer disk reads [78]. A NV-tree is constructed

after a repeated steps of projection and partitioning through the high-dimensional

space. The search algorithms using NV-tree mainly depend on the selected projection

lines. Each projection line can be seen as a concrete context to be search. Due to a

limited number of projection lines and their fixed contexts, the tree-based techniques

are restricted to apply for dynamic queries.

2.3.2 Data Partitioning for Fast Nearest Neighbors Search

Cluster-based techniques Many approximate high-dimensional near neighbor

search methods are based on some kinds of segmentation of the data collection into

groups named clusters, which are stored together on disk. At query time, an index is

typically used to select the single nearest cluster for searching. Some survey articles

on clustering for content-based image search are such as [84], [85], and [40].

The work [68] used cluster-based indexing method named the extended Cluster

Pruning (eCP) proposed in [76] that is an extended method of Cluster Pruning

(CP) [86]. The Cluster Pruning method [86], which is a simple algorithm comparing

to the traditional K-Means algorithm, randomly chooses a subset of data points to be

leaders and the remaining data points are partitioned by which leader is the closest.

The eCP by Gudmundsson et al. gives some changes to improve CP by three addi-

tional parameters to control cluster size on disk, balance cluster size distribution in

order to improve search in both IO and CPU costs. Other derivatives of cluster-based

methods can also use hierarchical clusters and so-called multiplevel clustering [76] or

multi-index in [75] to partition large clusters into smaller clusters. The very recent

work in very large scale image search [68] used clustering concept adapting with dis-

tributed Map-Reduce programming paradigm, and tested with Hadoop framework by

indexing 30 billion SIFT descriptors for roughly 100 million images (about 4 terabytes

of data).
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2.3.3 Inverted List Data Structure

Inverted index is a optimized data structure that facilitates efficient retrieval. This

data structure is broadly used in information retrieval (IR) tasks where target data is

documents. An inverted index includes a list of inverted lists for each word (or term).

Each inverted list is a list of identifiers of the documents containing that term. The

answers to a query “find the documents where word X occurs” can be retrieved quickly

by looking up at the inverted list 𝑋. When querying one or more terms, documents

are retrieved by looking up indexes of corresponding terms, and they are processed by

computing their vectors of word frequencies and ranked to return as closer distance

to the query. In either case, the time and processing resources to perform the query

is dramatically improved.

Using inverted index structure for other multimedia information retrieval tasks

such as for image and video are currently investigated, e.g., [35, 87, 65, 88, 28].

Researches in this direction treat either low-level features of images such as color

and texture in [35] or “visual words” of quantized descriptors such as [87] as set of

terms to be indexed. By searching time, the algorithms get out all the images which

contain features appear in query and adding them to the pool of candidate images to

be ranked.

There are two common ways to organize the inverted list: document-sorted [87, 65]

and frequency-sorted as stated in [89]. Document-sorted inverted list means the list

of documents are sorted by document identifiers, commonly by an increasing order.

Frequency-sorted list means the list of documents are sorted by the frequency of the

term occurring in the documents, commonly by a decreasing order. The document-

sorted technique is useful for phrase and Boolean queries whereas the frequency-sorted

technique is useful for ranked document retrieval. A combined technique named

dual-sorted [90] can be used to maintain a single data structure that offers both two

orderings of frequency-sorted and document-sorted inverted lists.

From storage viewpoint, the inverted index is stored either in-memory [87] or on-

disk [87, 65] and either be compressed [91, 92] or not. For large-scale data, it’s more
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Table 2.1: Categories of methods use inverted index. The bold methods are used or
newly proposed in this research.

Viewpoint Categories

Organization in-memory, on-disk

List structure document-sorted, frequency-sorted, dual-sorted, modi-
fied frequency-sorted

Content representation low-level features, “visual words”

search mechanism pruning from head, context-adaptive pruning

Application text retrieval, image retrieval, video retrieval

appropriate to use on-disk storage so that the memory consumption can be reduced

significantly by transferring only needed part of each inverted list from disk [93].

Table 2.1 summaries categories of methods that use inverted index: organization

of inverted index (either in-memory or on-disk), structure of inverted index (either

document-sorted or frequency-sorted), representation of semantic content (either us-

ing low-level features or visual words), and its applications (either text, image or

video retrieval). The next chapters of this thesis introduces a disk-resident database

using a modified frequency-sorted inverted indexing method (chapter 4), which is as

an improved method to support context-dependent image and video retrieval with a

dynamic pruning search mechanism (chapter 3) and three search algorithms (chapter

5).
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Chapter 3

Methodology

If the facts don’t fit the theory,

change the facts.

Albert Einstein

3.1 Geometric Intuition

Human are excellent at adapting to and using contexts. Despite our complex desires

and preferences, we know when a thing is relevant or irrelevant effortlessly given a

situation. Observing the processes of how we achieve that gives us a hint to formalize

them in a computational model. It is likely that we organize all of known facts and

beliefs (data) into a virtual attribute space with nearly infinite number of dimensions

but when given a situation, we only use some of them to make some orders of those

facts and make decisions based on those orders. Sorting and searching become two

basic and interdependent processes of our daily life problem solving.

This context-dependent computing mechanism has been early recognized and pro-

posed in the works of Kiyoki et al. [20, 21]. In a computation model, data are sup-

posed to be in a high dimensional space and when a context is given, a subspace of

a less number of dimensions is selected as the space for calculation, which is either

searching or ranking or more complex integrated tasks such as semantic interpreta-

tion. By using the idea of Kiyoki et al., the importance of dynamic recognition of
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contexts is emphasized, which will potentially leads to better computing performances

by its intrinsic ability to alleviate the curse of high dimensionality discussed in section

1.1.3. Moreover, it also yields some degrees of interpretability of semantic computing

processes. Figure 3-1 describes this intuition.
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Figure 3-1: Data on high dimensional space and subspace selection.

Assume that we are interested in two attributes of data and want to proceed

some search for information with respect to an existing preference. This situation

is described in Figure 3-2 in which data and query from high dimensional space are

already projected into a two-dimensional space. By assuming that the attributes are

independent to each other, we can assume that the computing space is a subspace

of high-dimensional space of real numbers in which orders can be induced from the
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orders of values of real numbers. As a consequence, a subspace created by a selection

of a set of appropriate dimensions is a subspace with orthogonal dimensions.
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Figure 3-2: Sample data and query on a selected subspace R2.

In Figure 3-2, the content preference is supposedly expressed by the position of

the query point. At this moment, we can have at least three intentions to order other

data points and have them listed as the results of a search problem. The first intention

is to find the answers to the question: “which is the closest point to the query?”. The

second intention is to find the answers to the question: “which points are close to the

query?”. And the third intention is to find the answers to the question: “which points

have a large sum of values in some direction”. The first and second questions are

common in information retrieval while the third question expects more exploratory
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answers.

Intuitively, if a data point is close to the query, it is close to the query in any

direction. Based on this observation, we can approximate the locations of candidates

as some areas that are remote from the query points by some small distances as shown

in Figure 3-3. The original idea has been proposed by Kiyoki et al. [27] who applied

this intuition for document retrieval problems.
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Figure 3-3: Approximating locations of first similar candidates.

This search for the very first candidates depends on the query point, not on the

search space as shown in Figure 3-4. This idea is also known as “similarity heuristic”

which has been studied in document retrieval [27, 94] and recently applied in image

[28] and video [95], In this figure, a new priority ranking of features are defined

45



based on the position of the new query point. At this moment, the vertical feature

is assumed to be more important than the horizontal feature. The search finds the

locations of the first candidate, point “f”, and then point “d”.
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Figure 3-4: Location approximation depending on an input query

The effort to find the close points to the query continues from those starting

locations. For the query given in 3-3, the continuing process is given in Figure 3-5.

In this figure, the search continues from the first prioritized feature (horizontal axis)

starting from point “c” as it is found to be closest to the query in this direction. On

this direction, point “b” (“b (#2)”) is found. And on the other direction, point “e”

(“e (#2)”) is found. It can be seen that this continuing looking for candidates has

a purpose that is to avoid the error of missing the actually “close” point. In other
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words, the error of a point is close to the query in one direction but in both directions,

it returns to be remote. In this example, it is point “a” comparing to points “e” and

“b”.
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Figure 3-5: Expanding search area for new similar candidates.

A search process based on the intuitions in Figures 3-3 and fig:expand is named

a “Combinatorial search” and described in Algorithm 5.2 in section 5.2.

Where can we be guaranteed to find the closest point without any error? If

following the search process that we are doing, which is incrementally searching for

candidates at each direction, there will be a moment we find at least one candidate

that appears at all directions, and all found candidates make a covering rectangle.

This rectangle is the guaranteed location that the closest point to the query will be
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in. Figure 3-6 shows this intuition. By continue searching at the horizontal direction,

we find points “c, b, e” where as at the same time, we find points “a, e” and realize

that “e” appears in both candidate sets, meaning we have found a covering rectangle.

All found candidates at the moment are “c, b, e, a” and we are guaranteed to find

the closest point to the query among these candidates. The search process based on

this intuition is named an “Exact-match search” and described in Algorithm 5.3 in

section 5.3.
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Figure 3-6: Determining area of exact-match candidates.

Let us consider the third question, “which points have a large sum of values in

some direction?”. The answers are expected by finding candidates starting from the

points which have very large values in some desired directions. This intuition has
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been originally applied for image data in the work of Miyagawa et al. [28]. Figure

3-7 shows the intuition of the search process.
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Figure 3-7: Approximating locations of first dominant candidates.

In Figure 3-7, we can see that we re-rank the data points on each direction based

on a descending order of values. On the first prioritized feature direction, we find

point “g” which has the highest value and on the second feature direction, we find

the point “d”. They are the starting points to continue looking for the candidates.

It is important to note that this intuition works as a greedy strategy but it does not

guarantee that the final order based on the sums of values in both directions. The

sums of values in both directions will be done giving us the final order of candidate

points. It is to be shown by experiments in section 7.5.6 that this intuition can
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fail badly when the number of preferred features are increased. The search process

based on this intuition is named a “Maxfirst search” and described in Algorithm 5.1

in section 5.1.

The above discussions have presented several geometric intuitions that motivate

the design of a new indexing and search system with dynamic query creation for

data in high dimensional space, which is the main goal of this thesis and will be

described in more details in the next chapters. This thesis aims for an unified system

for the context-based computing and heuristic search algorithms mainly based on the

works of Kiyoki, Kitagawa, and Miyagawa [20, 21, 27, 28]. The proposed system is

particularly designed for image and video data with rigorous detail in the indexing

and search processes. Moreover, a third retrieval algorithm that quickly searches for

exact-match candidates using the covering rectangle intuition (Figure 3-6) is newly

proposed (Algorithm 5.3).

3.2 Generalized Multicontext-adaptive Pruning Search

Mechanism

A multicontext-adaptive search method based on the geometric intuition discussed

in the previous section is described in Algorithm 7.6 and its logic is shown in Figure

3-8.

The logic of this search method contains five steps: (1) reflecting content prefer-

ence onto query vector (subspace selection), (2) prioritizing directions for searching,

(3) initializing starting points of search, (4) iteratively finding matching candidates,

and (5) ranking candidates and returning top results to users.

It is to note that, the candidates found on one direction will not have any actual

relevant score comparing to the query until a distance function between its feature

vector and the query’s feature vector is applied and returns a real value as the relevant

score. In other words, the candidates found on one direction only have some local

properties that state it is close to the query, but not globally. Consequently, the
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Begin

Get input

Process content preference
(subspace selection)

Based on intention preference,
initialize starting points

Find candidates
+ calculate relevance scores

+ rank and display results
until timeout or an exact match is found

End

Figure 3-8: Generalized logic of the multicontext-adaptive search method.

fourth and fifth steps are always done right after each other every time a candidate is

found. The definitions of several distance functions that will appear in this thesis are

described in section 3.3.2. Figure 3-8 shows the general logic of the search method in

which step 4 and 5 are integrated.

In Algorithm 7.6, the content preference is expressed as a vector 𝑝 and reflected

during computation in lines 1 and 15. The intention preference is processed at con-

ditional branching in lines 4 and 5. The response time limit preference is controlled

in the while loop from line 11.

The iterative finding candidates in each direction of prioritized features is repeated

as in line 13. In order to speed up this process, we propose to index data using inverted

lists in the next chapter.
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Algorithm 3.1 Multicontext-adaptive pruning search mechanism
Input:

∙ A query vector 𝑞 ∈ R𝑑
+;

∙ A dataset X ⊂ R𝑑
+;

∙ A preference vector 𝑝 ∈ R𝑑
+ such that 𝑝𝑖 = 1 if 𝑖-th feature is preferred and

𝑝𝑖 = 0 otherwise;
∙ A preference of intention I ∈ dominant , similar , exact ;
∙ Optional: Maximum number of priorities 𝑚, by default 𝑚 = 5;
∙ Optional: Timelimit 𝑡, by default 𝑡 = 1(𝑠𝑒𝑐𝑜𝑛𝑑) or None for exact matching;
∙ Optional: Number of results 𝑅, by default, 𝑅 = 20.

Output: Top 𝑅 ranked relevant 𝑥 ∈ X.

1: [Step 1: Reflect content preference onto query] Set 𝑞 ← 𝑞 ⊙ 𝑝 where ⊙ is the
elementwise multiplication or Hadamard product.

2: [Step 2: Prioritize features] A permutation function 𝜎 of the set {1, . . . , 𝑑} that
sorts elements of vector 𝑞 in a descending order:

(︀
𝑞𝜎(1) ≥ . . . ≥ 𝑞𝜎(𝑑)

)︀
.

3: [Step 3: Initialize starting points] Accumulator vector 𝑣 ∈ R𝑚:
4: if I = dominant then
5: 𝑣 ←

(︀
max𝑥∈X 𝑥𝜎(1), . . . ,max𝑥∈X 𝑥𝜎(𝑚)

)︀
.

6: else
7: 𝑣 ←

(︀
𝑞𝜎(1), . . . , 𝑞𝜎(𝑚)

)︀
.

8: end if
9: [Step 4: Find candidates]

10: List of candidates C← {}
11: while time limit 𝑡 is not reached do
12: for 𝑖 from 1 to 𝑚 do
13: 𝑐← arg min𝑥

⃒⃒
𝑥𝜎(𝑖) − 𝑣𝑖

⃒⃒
for all 𝑥 ∈ X not yet in C.

14: 𝑣𝑖 ← 𝑐𝜎(𝑖)
15: score = relevant(q , c ⊙ p). ◁ see sections 3.3.2 and 7.5.2.2
16: if I = exact and score = 0.0 then
17: return 𝑐
18: end if
19: Update C with candidate 𝑐 and 𝑠𝑐𝑜𝑟𝑒.
20: Sort C by an appropriate order of scores. ◁ see section 7.5.2.2
21: end for
22: end while
23: [Step 5: Return top results]
24: return top 𝑅 of C to users.
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3.3 Definitions of Similarity Calculation

This thesis uses the following definitions of similarity and distance methods that refer

their definitions in the Encyclopedia of Distances [96].

3.3.1 Similarity and Distance

The Encyclopedia of Distances [96, p. 3] defines a distance space as follows:

A distance space (𝑋, 𝑑) is a set 𝑋 equipped with a distance d. A

function 𝑑 : 𝑋 ×𝑋 → R is called a distance (or dissimilarity on 𝑋 if,

for all 𝑥, 𝑦 ∈ 𝑋, it holds:

1. 𝑑(𝑥, 𝑦) ≥ 0 (nonenegativity);

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry);

3. 𝑑(𝑥, 𝑥) = 0 (reflexivity).

Equivalently, a similarity is defined as:

Let 𝑋 be a set. A function 𝑠 : 𝑋 ×𝑋 → R is called a similarity on 𝑋 if

𝑠 is nonnegative, symmetric and the inequality

𝑠(𝑥, 𝑦) ≤ 𝑠(𝑥, 𝑥)

holds for all 𝑥, 𝑦 ∈ 𝑋, with equality if and only if 𝑥 = 𝑦.

In this thesis, a “similarity” function is used interchangeably with a “distance”

function but both refer to a similarity function. This indicates a two similar objects

have a smaller “similarity” score returned by a similarity function 𝑠.

Some transformations can be used to convert between a distance (dissimilarity) 𝑑

and a similarity 𝑠 function are introduced in [96, p. 4] such as: 𝑑 = 1 − 𝑠, 𝑑 = 1−𝑠
𝑠

,

𝑑 =
√

1− 𝑠, 𝑑 =
√︀

2(1− 𝑠2, 𝑑 = arccos𝑠, 𝑑 = −ln𝑠.
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3.3.2 Similarity Functions

Given two records (e.g., two images or two video frames), represented by nonzero

vectors 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑛) from R𝑛, the similarity functions used

in this thesis are defined as in following subsections. The definitions of similarity

functions are extracted and based on their definitions in the Encyclopedia of Distances

[96, pp. 325-331].

3.3.2.1 Bray-Curtis Similarity

The Bray-Curtis similarity, denoted as BRAY_CURTIS (𝑥, 𝑦), is a similarity on R𝑛

defined by
2

𝑛(𝑥̄ + 𝑦)

∑︁
𝑚𝑖𝑛{𝑥𝑖, 𝑦𝑗} (3.1)

where 𝑢̄ =
∑︀

𝑢𝑖

𝑛
.

3.3.2.2 Canberra Distance

The Canberra distance, denoted as CANBERRA(𝑥, 𝑦), is a distance on R𝑛 defined

by
∑︁ |𝑥𝑖 − 𝑦𝑖|
|𝑥𝑖|+ |𝑦𝑖|

(3.2)

where |𝑎| denotes absolute value of 𝑎 ∈ R.

3.3.2.3 Symmetric 𝜒2-distance

The symmetric 𝜒2-distance (or chi-distance or chi-square distance), denoted as CHI_SQUARE (𝑥, 𝑦),

is a distance on R𝑛 defined by

√︂∑︁ 𝑥̄ + 𝑦

𝑛(𝑥𝑖 + 𝑦𝑖)
(
𝑥𝑖

𝑥̄
− 𝑦𝑖

𝑦
)2 =

√︃
∑︁ 𝑥̄ + 𝑦

𝑛(𝑥̄ · 𝑦)2
· (𝑥𝑖𝑦 − 𝑦𝑖𝑥̄)2

𝑥𝑖 + 𝑦𝑖
. (3.3)
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3.3.2.4 Cosine Similarity

The Cosine similarity, denoted as COSINE (𝑥, 𝑦), is defined by

1− 𝑥 · 𝑦
‖𝑥‖ ‖𝑦‖

. (3.4)

where ‖𝑢‖ =
√︀∑︀

𝑢2
𝑖 is the magnitude of a vector 𝑢 and 𝑥 · 𝑦 operation is the dot

product between two vectors 𝑥 and 𝑦.

3.3.2.5 Normalized 𝑙𝑝-distance

The power (𝑝, 𝑟)-distance is a distance on R𝑛 defined by

(
∑︁
|𝑥𝑖 − 𝑦𝑖|𝑝)

1
𝑟 . (3.5)

For 𝑝 = 𝑟 ≥ 1, it is the 𝑙𝑝-metric, including the Euclidean, Manhattan, and Chebyshev

metrics for 𝑝 = 2, 1 and ∞, respectively. The distance functions are also respectively

denoted as L2(𝑥, 𝑦), L1(𝑥, 𝑦), and CHEBYSHEV (𝑥, 𝑦).

3.4 Feature Vector Normalization

In this section, three functions used for normalizing a feature vector that are used in

this thesis are introduced: 𝑁𝑂𝑅𝑀𝐴𝐿𝐼𝑍𝐸,𝐿𝐼𝑁𝐸𝐴𝑅_𝑆𝐶𝐴𝐿𝐸, and 𝐸𝑄𝑈𝐴𝐿𝐼𝑍𝐸.

The 𝑁𝑂𝑅𝑀𝐴𝐿𝐼𝑍𝐸 function is used in general cases whereas the 𝐿𝐼𝑁𝐸𝐴𝑅_𝑆𝐶𝐴𝐿𝐸

and 𝐸𝑄𝑈𝐴𝐿𝐼𝑍𝐸 functions are particularly designed and used in the imagination-

based query creation method in section 6.3.3.

3.4.1 Frequency Vector Normalization

A frequency vector is a element-wise non-negative vector that has the sum of its

elements equal to 1.0. In this thesis, when there is no description further for a feature

vector, it is implicitly referred as a frequency vector.
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A feature vector that represents content of a data can be extracted by several

different methods and its scale also varies. This thesis assumes that each extracted

vector is non-negative, meaning all elements of the vector are non-negative. And as

an implicit rule, the extracted vector will be normalized into a frequency vector by

using the following formula.

Given a feature vector 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑
+ which is a non-zero, non-negative

vector, meaning there is at least one element is non-zero, the following formula applies

for each element 𝑥𝑖

𝑥𝑖 ←
𝑥𝑖∑︀𝑑
𝑗=1 𝑥𝑗

. (3.6)

If the extracted vector is a not non-zero vector, which is possibly the result of

subspace selection (e.g., adaptive subspace selection in section 6.3), the feature vector

will be left unchanged.

A transformation procedure implementing the equation 3.6 for a feature vector 𝑥

will be denoted as NORMALIZE (𝑥).

3.4.2 Linear Scaling

This normalization method will be used when combining feature vectors, particularly

in an imagination-based search algorithm described in section 6.3.3. The purpose of

this normalization is to scale the values of elements of a feature vector to a range

[𝑎, 𝑏]. By default, the interval [𝑎, 𝑏] = [0, 1].

Given a vector 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑
+, with max = max1≤𝑗≤𝑑 𝑥𝑗 and min =

min1≤𝑗≤𝑑 𝑥𝑗, the following equation applies for each element 𝑥𝑖:

𝑥𝑖 ←
(𝑏− 𝑎)(𝑥𝑖 −𝑚𝑖𝑛)

𝑚𝑎𝑥−𝑚𝑖𝑛
+ 𝑎. (3.7)

The procedure implementing this normalization for a feature vector 𝑥 will be

denoted as LINEAR_SCALE (𝑥), or LINEAR_SCALE (𝑥, 𝑎, 𝑏).
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3.4.3 Power-law Transformation

The normalization based on a power-law transformation has a useful interpretation

when applying to a feature vector, which is by applying a power-law transformation

we intentionally change the preference of how the content will be adapted.

Given a vector 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑
+, the following formula applies for each

element 𝑥𝑖

𝑥𝑖 ← 𝑥𝛾
𝑖 (3.8)

where 𝛾 ≥ 0.

In equation 3.8, the smaller the value of 𝛾, the more “balanced” the values of

elements of the vector 𝑥 will be. In other words, this normalization “equalized” the

the values of elements of 𝑥, resulting a meaning that there no preference especially set

for any direction basis of R𝑑
+. If 𝛾 is very big, the contrast between values of elements

of 𝑥 becomes bigger. There are two special cases:

∙ 𝛾 = 0, every 𝑥𝑖 ̸= 0 will have value 1, meaning all non-zero elements have the

same priority.

∙ 𝛾 = 1, 𝑥 is unchanged, meaning the proportions are preserved.

The procedure implementing this normalization for a feature vector 𝑥 will be

denoted as EQUALIZE (𝑥, 𝛾).
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Chapter 4

Database Construction

He who has a why to live can bear

almost any how.

Friedrich Nietzsche

The previous chapter has described the intuitions of the multicontext-adaptive

search method and its generalized search procedure. The search procedure contains

two main steps which are (1) to select a subspace and (2) to find candidates with

respect to content and intention preferences at each query time. This chapter intro-

duces a disk-resident database model, named Bamboo Forest database model, which

is specifically designed to facilitate those two steps in order to achieve a high perfor-

mance of the proposed search method.

The idea of this database model is straightforward. Each dimension of the feature

space will be indexed independently so that a context-dependent subspace can be

selected quickly by choosing appropriate dimensions based on the content preferences.

This strategy not only makes it easy to choose a subspace but also reduces the memory

cost when loading a database since only needed indices will be open to read. Each

dimension will be indexed as an inverted list, meaning each dimension contains a set

of (𝑣, 𝑟𝑖𝑑) where 𝑟𝑖𝑑 is the identifier of a datum and 𝑣 is its corresponding feature

value in this dimension.

In order to quickly find local candidates in one prioritized dimension (search in-
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tuitions in Figure 3-3 or Figure 7-7), the corresponding inverted list is sorted by the

values of projected data on this dimension. In this case, the inverted lists are so called

value-sorted invert lists. We will see in section 4.4 that the cost of finding the first

candidate in one prioritized dimension can be done in a 𝑂(log𝑁) or a 𝑂(1) while the

next candidates are always found incrementally if supposed that the cost of accessing

to a file at a random position is 𝑂(1).

4.1 Indexing Principles

Given a dataset of 𝑁 records (e.g., images or video frames) (𝑥1, . . . , 𝑥𝑁) and a set of

corresponding 𝑁 feature vectors in 𝑑-dimensional space (X ∈ R𝑑
+), we have a matrix

M with column vectors are feature vectors of 𝑁 data in X as shown in Figure 4-1.

M = 

N data 

A data block in a metadata (.pi) file 

To be indexed 
independently 
as an index (.t) file 

d$features$

x1 x2 x3 . . . xN

1 2 3 . . . N unique identifier (rid)
d1 d2 d3 . . . dN description of data2

66664

3
77775

x11 x12 x13 . . . x1N feature1

x21 x22 x23 . . . x2N feature2

x31 x32 x33 . . . x3N feature3
...

...
... . . . ...

...
xd1 xd2 xd3 . . . xdN featured

14

Figure 4-1: Indexing a dataset of 𝑁 data in 𝑑-dimensional space.

In Figure 4-1, each record has an unique identifier (𝑟𝑖𝑑) which will be used as a

primary key to index it in the database. Each record also has a description which

can be text information about the record (e.g., path to the record in the file system

or its 𝑈𝑅𝐿 in the Internet).

The dataset in Figure 4-1 will be indexed by the following rules:

1. each row vector (𝑥𝑖1, . . . , 𝑥𝑖𝑁) of 𝑀 is indexed independently as an inverted list,
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2. each inverted list is a list of (𝑟𝑖𝑑𝑗, 𝑥𝑖𝑗) and is sorted by a descending order of

values {𝑥𝑖𝑗},

3. all indexes are written to binary files on disk by data blocks {(𝑟𝑖𝑑𝑗, 𝑥𝑖𝑗)} so that

each can be accessed by random access,

4. all column-wise descriptive information and feature vectors are written to a

metadata file for referencing when needed (i.e., when calculating the relevant

scores, line 15 in Algorithm 7.6).

Since each index is a ordered independent inverted list, the database is named

“Bamboo Forest” database while each index is metaphorically a bamboo tree, which

is literally a tree mainly no branches but only sections. In the generalized search Al-

gorithm 7.6, the search process finds one candidate on a direction at a time, however,

in actual practice, it is suggested to obtain a number of candidates on the direction

at a time. In other words, instead of fetching one piece of a bamboo tree at a time,

we will prune (or trim) a section of it at a time. This is recommended especially for

large datasets since for large datasets, since there are likely many different identifiers

that have same values in an inverted list and one-by-one accessing to file is likely too

expensive. The number of candidates on a section to be fetched out is set equal to

50 in the implementations and experiments in this thesis (chapters 5 and 7).

4.2 Bamboo Forest Database

4.2.1 File Naming and File Content Format

The database contains three types of files that are used to store inverted list and

reference metadata: metadata files (named .pi files), feature reference files (named

.meta files), and feature index files (named .t files). A demonstration of metadata

files (.pi files) and index files (.t files) can be seen in Figure 4-1.
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4.2.1.1 Metadata File (.𝑝𝑖 file)

A metadata file follows the 4th indexing rule (section 4.1) and indexes the column-wise

information of a dataset (see Figure 4-1).

The data structure of a .𝑝𝑖 file is shown in Table 4.1. A .𝑝𝑖 file stores each column

(𝑟𝑖𝑑, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟) as a data block and indexes them by their 𝑟𝑖𝑑s as

a primary key to look up a record. contains the identifiers of records (𝑟𝑖𝑑s), and their

metadata including sources of data (e.g., file paths to data), and values of feature

vectors. The filename format for this file type is “db_name.pi”.

Table 4.1: Data structure of a metadata file (.𝑝𝑖 file).

File extension .pi
File type binary
Structure of a data block {long rid;

string description;
float[d] feature_vector}

Number of bytes of a data block 8 + 60× 2 + 𝑑× 4

4.2.1.2 Feature Index File (.𝑡 file)

An index file follows the indexing rules number 1, 2, and 3 (section 4.1). An index file

indexes the row-wise information of feature matrix M of a dataset (see Figure 4-1).

The data structure of a .𝑡 file is shown in Table 4.2. A .𝑡 file stores each value 𝑥𝑖𝑗

of the feature row 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 and the corresponding 𝑗th 𝑟𝑖𝑑 as a data block (𝑟𝑖𝑑, 𝑥𝑖𝑗).

Data blocks in a .𝑡 file are sorted by the values (𝑥𝑖𝑗) with an ascending order. The

filename format for this file type is “db_name_featuretype_index.t ”.

Table 4.2: Data structure of an index file (.𝑡 file).

File extension .t
File type binary
Structure of a data block { float value;

long rid }
Number of bytes of a data block 4 + 8
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4.2.1.3 Reference File (.𝑚𝑒𝑡𝑎 file)

A reference file is optional and contains the reference information regarding a feature

vector. It is a dictionary about feature types in a feature space. It indexes ranges of

indices of a feature vector. An example of a dictionary of feature space created by

several features types in section 7.3 is as in the following definition (Figure 4-2) using

a Python dictionary data structure:

FINDEX = OrderedDict ({
"cedd" : range (0 , 144) ,
" c o l o r " : range (144 , 207) ,
" f c th " : range (207 , 399) ,
"phog" : range (399 , 439) ,
" j cd " : range (439 , 607) ,
" gabor " : range (607 , 667)

})

Figure 4-2: Sample data structure of a reference file (.𝑚𝑒𝑡𝑎 file) for a feature space
defined in Python.

In the above definition, “cedd” features are from index 0 to index 143th; “color”

features are from index 144 to index 206th, and so forth. The filename format for

this file type is “db_name.meta”.

4.2.2 Database Storage Structure

For a dataset of 𝑁 records represented by 𝑑-dimensional feature space, a Bamboo

Forest database consists of one metadata file (.𝑝𝑖 file) and one reference file (.𝑚𝑒𝑡𝑎

file) and 𝑑 feature index files (.𝑡 files).

The database is stored in a directory (or a folder) of the file system of a computer.

The metadata file and index files will be stored as binary files and written by data

blocks so that they can be accessed using random access of the computer’s file system.

The reference file will be stored as plain text files. However, in order to access the

dictionary of a reference file more efficiently, it is recommended to use a serialization

method of a programming language to translate each dictionary to a byte stream that
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can be stored as a binary file in the file system and reconstructed easily when needed

[97]. In this thesis, the pickle1 Python module will be used in experiments in chapters

6 and 7 as a serialization method for the reference files.

Figure 4-3 shows a sample tree view of a Bamboo Forest database directory. The

root of the tree is the path to the database directory on storage disk. The directory

contains a .𝑚𝑒𝑡𝑎 file, a .𝑝𝑖 file and many index .𝑡 files.

/Volumes/chupi/pidb/500k
| ---------- 500k.meta
| ---------- 500k.pi
| ---------- 500k_JCD_1.t
| ---------- 500k_JCD_2.t
| ---------- 500k_JCD_3.t
| ---------- 500k_JCD_4.t
| ---------- 500k_JCD_5.t
| ---------- 500k_JCD_6.t
| ---------- 500k_JCD_7.t
| ---------- 500k_JCD_8.t
| ---------- 500k_JCD_9.t
| ---------- 500k_CEDD_1.t
| ---------- 500k_CEDD_2.t
| ---------- 500k_CEDD_3.t
| ---------- 500k_CEDD_4.t
| ---------- 500k_CEDD_5.t
| ---------- 500k_CEDD_6.t
| ---------- 500k_CEDD_7.t
| ---------- 500k_CEDD_8.t
| ---------- 500k_CEDD_9.t
| ---------- 500k_FCTH_1.t
| ---------- 500k_FCTH_2.t
| ---------- 500k_FCTH_3.t
| ---------- 500k_FCTH_4.t
| ---------- 500k_FCTH_5.t
| ---------- 500k_FCTH_6.t
| ---------- 500k_FCTH_7.t
| ---------- 500k_FCTH_8.t
| ---------- 500k_FCTH_9.t
| ---------- 500k_JCD_10.t
| ---------- 500k_JCD_11.t
| ---------- 500k_JCD_12.t
| ---------- 500k_JCD_13.t
| ---------- 500k_JCD_14.t
| ---------- 500k_JCD_15.t
| ---------- 500k_JCD_16.t
| ---------- 500k_JCD_17.t
| ---------- 500k_JCD_18.t
| ---------- 500k_JCD_19.t
| ---------- 500k_JCD_20.t
| ---------- 500k_JCD_21.t
| ---------- 500k_JCD_22.t
| ---------- 500k_JCD_23.t
| ---------- 500k_JCD_24.t
| ---------- 500k_JCD_25.t
| ---------- 500k_JCD_26.t
| ---------- 500k_JCD_27.t
| ---------- 500k_JCD_28.t

Figure 4-3: A tree-view directory structure of a Bamboo Forest database with a
metadata file (.𝑝𝑖), a reference file (.𝑚𝑒𝑡𝑎), and some sample index files (.𝑡).

1https://docs.python.org/2/library/pickle.html
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4.3 Data Insertion

4.3.1 Single Insertion

When a datum is inserted to the database, its feature vector is extracted. Then, it

will request for an unique identifier 𝑟𝑖𝑑 in the database. This 𝑟𝑖𝑑 is unique by setting

it equal the maximum 𝑟𝑖𝑑 plus one. Its data block including this 𝑟𝑖𝑑, its information

and the feature vectors in bytes will be appended to the .pi file of the database.

In the next step, each element of the feature vector will be written at an appro-

priate position in the corresponding .t file. The position is found by a binary search

algorithm so that when written to the index file, the orders of values are sorted. In

the experiments, we use an ascending order.

4.3.2 Batch Insertion

Instead of inserting one by one data into a database, we can index all the dataset at

once if we are given the whole dataset. In this case, an algorithm to generate unique

identifiers for each datum will be applied. We can write the batch of metadata directly

to a .𝑝𝑖 file. As in Figure 4-1, each row vector will be extracted, combing with the

𝑟𝑖𝑑 row then sorted and write to a .𝑡 file. Moreover, a parallel indexing process can

be applied for each feature index.

4.4 Big-O Complexity Analysis of Bamboo Forest

Database

For indexing a dataset of 𝑁 records in 𝑑-dimensional feature space using the indexing

method described in the previous section 4.2, the Bamboo Forest database requires

𝑑 files of inverted lists. This leads to the space complexity of 𝑂(𝑑𝑁) of the database.

For indexing a new record to the database, it takes 𝑂(1) to insert into the metadata

.𝑝𝑖 file and 𝑂(log𝑁) to insert into each index .𝑡 file. In total, the complexity of

insertion is 𝑂(𝑑 log𝑁).
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Table 4.3 summaries the complexity of the Bamboo Forest indexing method.

Table 4.3: Big-O complexity of the Bamboo Forest indexing method

Space complexity 𝑂(𝑑𝑁)
Insertion complexity 𝑂(𝑑 log𝑁)
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Chapter 5

Search Algorithms on Bamboo Forest

Database

Everything is theoretically

impossible, until it is done.

Robert A. Heinlein

Given a Bamboo Forest database indexed by the indexing method proposed in

chapter 4, we define further three search algorithms that work compatibly with the

general search architecture described in chapter 3.

The first algorithm is named “Maxfirst” algorithm, which corresponds to the con-

text where the intention preference is “dominant”. The second search algorithm is

named “Combinatorial” algorithm, which corresponds to the context where the in-

tention preference is “similar”. The third search algorithm is named “Exact-match”

algorithm, which corresponds to the context where the intention preference is “exact”.

Table 5.1 shows the classification of contexts in which each proposed search algo-

rithm can be applied. The content preferences are introduced following the feature

types of image data which are used in the experimental application system in chapter

7. They include “color”, “shape”, “texture” or combination of those features. How-

ever, these content preferences are not limited to these types. Any feature type that

satisfies the scope of content discussed in section 1.3.2 is applicable to the search al-
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gorithms. The combination of two or more feature types can be done using combining

functions in Table 6.2 in section 6.3.3.

Table 5.1: Classification of applicable contexts of three proposed search algorithms.

Contextual preference Maxfirst
search

Combinatorial
search

Exact-match
search

Content

Color Yes Yes Yes
Shape Yes Yes Yes
Texture Yes Yes Yes
Combination Yes Yes Yes

Intention
“dominant” Yes No No
“similar” No Yes Yes
“exact-match” No No Yes

Response time
limited Yes Yes No
unlimited Yes Yes Yes
interruptible Yes Yes No

It is also to note that, the “interruptible” preference regarding the response time

limits is introduced in Table 5.1 refers to an interactive behavior of a user to abort the

search process at anytime it is running. This interaction between users and search

systems can provide an interesting usability in which the users of search systems

can receive “better” results while the systems are running and decide at their will

when to stop. Although, this is not shown in the pseudocodes of the proposed search

algorithms in the following sections, it is possibly implemented by modifying the main

𝑤ℎ𝑖𝑙𝑒 loop of each appropriate algorithm.

5.1 Maxfirst Search Algorithm

The pseudocode of Maxfirst search algorithm compatible with a Bamboo Forest

database is described in Algorithm 5.1. This algorithm uses the search intuition

in Figure 3-7. Note that in this algorithm, relevant calculation in line 15 of Algo-

rithm 7.6 between a candidate’s feature vector and query vector is calculated as the

“sum” of its feature corresponding to prioritized features. Additionally, the ranking of

candidates respect to a query is decided by an descending order of those sum scores.
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Algorithm 5.1 Maxfirst Search Algorithm
Input:

∙ A query vector 𝑞 ∈ R𝑑
+;

∙ A Bamboo Forest database B that indexes a dataset X ⊂ R𝑑
+;

∙ A preference vector 𝑝 ∈ R𝑑
+ such that 𝑝𝑖 = 1 if 𝑖-th feature is preferred and

𝑝𝑖 = 0 otherwise;
∙ Optional: Maximum number of priorities 𝑚, by default 𝑚 = 5;
∙ Optional: Time limit 𝑡, by default 𝑡 = 1(𝑠𝑒𝑐𝑜𝑛𝑑);
∙ Optional: Number of results 𝑅, by default, 𝑅 = 20.

Output: Top 𝑅 ranked relevant 𝑥 ∈ X.

1: [Step 1: Reflect content preference onto query] Set 𝑞 ← 𝑞 ⊙ 𝑝 where ⊙ is the
elementwise multiplication or Hadamard product.

2: [Step 2: Prioritize features] A permutation function 𝜎 of the set {1, . . . , 𝑑} that
sorts elements of vector 𝑞 in a descending order:

(︀
𝑞𝜎(1) ≥ . . . ≥ 𝑞𝜎(𝑑)

)︀
.

3: [Step 3: Initialize starting points] Set reading offset of .t files in B corresponding
to features 𝜎(1), ..., 𝜎(𝑚) is 0. ◁ beginning of file

4: [Step 4: Find and rank candidates]
5: List of candidates C← {}
6: while time limit 𝑡 is not reached do
7: for 𝑖 from 1 to 𝑚 do
8: 𝑆 ← Get candidate identifiers from next lower section of a .t file

corresponding to feature 𝜎(𝑖).
9: Update reading offset of this .t file.

10: for each 𝑐 ∈ 𝑆 do
11: 𝑢← feature vector of candidate 𝑐 from the .pi file in B.
12: score ←

∑︀𝑚
𝑖=1 𝑢𝜎(𝑖).

13: Update C with (𝑐, score).
14: end for
15: Sort C by a descending order of scores.
16: end for
17: end while
18: [Step 5: Return top results]
19: return top 𝑅 of C to users.
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Algorithm 5.2 Combinatorial Search Algorithm
Input:

∙ A query vector 𝑞 ∈ R𝑑
+;

∙ A Bamboo Forest database B that indexes a dataset X ⊂ R𝑑
+;

∙ A preference vector 𝑝 ∈ R𝑑
+ such that 𝑝𝑖 = 1 if 𝑖-th feature is preferred and

𝑝𝑖 = 0 otherwise;
∙ Optional: Maximum number of priorities 𝑚, by default 𝑚 = 5;
∙ Optional: Timelimit 𝑡, by default 𝑡 = 1(𝑠𝑒𝑐𝑜𝑛𝑑);
∙ Optional: Number of results 𝑅, by default, 𝑅 = 20.

Output: Top 𝑅 ranked relevant 𝑥 ∈ X.

1: [Step 1: Reflect content preference onto query] Set 𝑞 ← 𝑞 ⊙ 𝑝 where ⊙ is the
elementwise multiplication or Hadamard product.

2: [Step 2: Prioritize features] A permutation function 𝜎 of the set {1, . . . , 𝑑} that
sorts elements of vector 𝑞 in a descending order:

(︀
𝑞𝜎(1) ≥ . . . ≥ 𝑞𝜎(𝑑)

)︀
.

3: [Step 3: Initialize starting points]
4: for 𝑖 from 1 to 𝑚 do
5: Using binary search on a .t file in B corresponding to feature 𝜎(𝑖) to

find the offset of the data block which has the value closest to 𝑞𝜎(𝑖)
and set this offset as the current reading offset of the .t file.

6: end for
7: [Step 4: Find and rank candidates]
8: List of candidates C← {}
9: while time limit 𝑡 is not reached do

10: for 𝑖 from 1 to 𝑚 do
11: 𝑆 ← Get candidate identifiers from next higher and lower section of

the .t file corresponding to feature 𝜎(𝑖).
12: Update current reading offset of this .t file.
13: for each 𝑐 ∈ 𝑆 do
14: 𝑢← feature vector of candidate 𝑐 from the .pi file in B.
15: score = COSINE (𝑞, 𝑢⊙ 𝑝). ◁ see sections 3.3.2, 3.3.2.4
16: Update C with (𝑐, score).
17: end for
18: Sort C by an ascending order of scores
19: end for
20: end while
21: [Step 5: Return top results]
22: return top 𝑅 of C to users.
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5.2 Combinarorial Search Algorithm

The pseudocode of Combinatorial search algorithm compatible with a Bamboo Forest

database is described in Algorithm 5.2. This algorithm uses the search intuitions in

Figures 3-3 and fig:expand. In this algorithm, the reading offsets of .t files are kept

at both directions: going higher and lower finding for .s section files. Also in this

algorithm, the similarity calculation is by default set to Cosine similarity, but it can

always be reconfigured. The ranking of candidates respect to a query is decided by

an ascending order of similarity scores.

5.3 Exact-match Search Algorithm

The pseudocode of Exact-match search algorithm compatible with a Bamboo Forest

database is described in Algorithm 5.3. This algorithm uses the search intuition in

Figure 3-6. In this algorithm, the reading offsets of .t files are kept at both directions:

going higher and lower finding for .s section files like in the case of Combinatorial

search algorithm. However, using this algorithm, response time is not controllable.

The algorithm runs until it finds at least one candidate that is returned by an inter-

section operation of a list of sets of candidates from repeatedly expanding sections on

prioritized .t files. In this algorithm, the similarity calculation is also by default set

to Cosine similarity, but it can always be reconfigured too. The ranking of candidates

respect to a query is decided by an ascending order of similarity scores. But only one

top result is returned to users.

This algorithm does not guarantee the just of the returned result is an exact match

to a query if 𝑚 is set other than the default value. The default value 𝑚 =
∑︀𝑑

𝑖=1 𝑝𝑖

indicates that all the prioritized features will be used to find the candidates. When

𝑚 is set other than this value, however, the results are guaranteed with only some

probability to be the right match. In section 7.5.3, the effects of setting 𝑚 on the

performance of the algorithm will be discussed in details.
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Algorithm 5.3 Exact-match Search Algorithm
Input:

∙ A query vector 𝑞 ∈ R𝑑
+;

∙ A Bamboo Forest database B that indexes a dataset X ⊂ R𝑑
+;

∙ A preference vector 𝑝 ∈ R𝑑
+ such that 𝑝𝑖 = 1 if 𝑖-th feature is preferred and

𝑝𝑖 = 0 otherwise;
∙ Optional: Maximum number of priorities 𝑚, 𝑚 ≥ 2. By default, all positive

features 𝑞𝑖 with respect to a subspaced selected by 𝑝 will be used, meaning
𝑚 =

∑︀𝑑
𝑖 ⌈𝑞𝑖⌉ × 𝑝𝑖.

Output: Top 𝑅 ranked relevant 𝑥 ∈ X.

1: [Step 1: Reflect content preference onto query] Set 𝑞 ← 𝑞 ⊙ 𝑝 where ⊙ is the
elementwise multiplication or Hadamard product.

2: [Step 2: Prioritize features] A permutation function 𝜎 of the set {1, . . . , 𝑑} that
sorts elements of vector 𝑞 in a descending order:

(︀
𝑞𝜎(1) ≥ . . . ≥ 𝑞𝜎(𝑑)

)︀
.

3: [Step 3: Initialize starting points]
4: for 𝑖 from 1 to 𝑚 do
5: Using binary search on a .t file in B corresponding to feature 𝜎(𝑖) to

find the offset of the data block which has the value closest to 𝑞𝜎(𝑖)
and set this offset as the current reading offset for the .t file.

6: end for
7: [Step 4: Find candidates]
8: List of candidates C← {}
9: while C is empty do

10: Initialize 𝑚 empty sets 𝑇𝑖 ← {} for all 𝑖 ∈ [1, . . . ,𝑚]
11: for 𝑖 from 1 to 𝑚 do
12: 𝑆𝑖 ← Get candidate identifiers from next higher and lower section of

a .t file corresponding to feature 𝜎(𝑖).
13: 𝑇𝑖 ← 𝑇𝑖 ∪ 𝑆𝑖.
14: end for
15: 𝐶 ←

⋂︀𝑚
𝑖=1 𝑇𝑖.

16: end while
17: [Step 5: Calculate similarity]
18: for each 𝑐 ∈ C do
19: 𝑢← feature vector of candidate 𝑐 from the .pi file in B.
20: score = COSINE (𝑞, 𝑢⊙ 𝑝). ◁ see sections 3.3.2, 3.3.2.4
21: Update 𝑐 ∈ C with (𝑐, score)
22: end for
23: [Step 6: Sort candidates and return one top result]
24: Sort C by an ascending order of scores
25: return top 1 of C to users.
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5.4 Big-O Complexity Analysis of Search Algorithms

Three search algorithms have been introduced. This section will discuss their com-

plexity using big-O notation.

Given a Bamboo Forest database B which indexes 𝑁 data for 𝑑 features (𝑁 𝑑-

dimension data) and given an input query vector, each proposed search algorithm

firstly prioritizes the features in the query vector based on their values, then conducts

the search process on 𝑚 prioritized feature indices (𝑚 ≤ 𝑑), which are feature indices

which have largest values. Also assume that the cost to calculate relevance score,

either 𝐶𝑂𝑆𝐼𝑁𝐸(𝑥, 𝑦) or 𝑠𝑢𝑚, and the cost of a random access to a position of the

binary file are 𝑂(1), the big-O complexity analysis of three proposed search algorithms

are shown in Table 5.2.

Table 5.2: Big-O complexity of three proposed search algorithms

Algorithm Complexity
Maxfirst search 𝑂(𝑚 + 𝐶)
Comibnatorial search 𝑂(𝑚 log𝑁 + 𝐶)
Exact-match search 𝑂(𝑚 log𝑁 + 𝐶)

Maxfirst search algorithm For each feature index, the Maxfirst search algorithm

(algorithm 5.1) obtains the first candidate at the first datab block in the corresponding

.𝑡 file. Since reading this block costs 𝑂(1), the cost for obtaining 𝑚 first candidates

for 𝑚 prioritized features are 𝑂(𝑚). The Maxfirst search algorithm continues to find

candidate by sequentially read each data block from the starting position until the

input time limit is reached. If 𝐶 is the total number of candidates can be found

during this time limit, the complexity of the algorithm is evaluated as 𝑂(𝑘 + 𝐶). If

the time limit is set to infinity (unlimited search time), 𝐶 can be very large (𝐶 ≃ 𝑁),

then the complexity of the algorithm can be considered as linear.

Combinatorial search algorithm For each feature index, the Combinatorial search

algorithm (algorithm 5.2) needs 𝑂(𝑚 log𝑁) to find the first candidate then sequen-

tially reads the index file to the next candidates. If 𝐶 also denotes the number of
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candidates found during the input time limit, the complexity of the algorithm is

𝑂(𝑘 log𝑁 + 𝐶). As also noted in analysis of the Maxfirst search algorithm, if the

time limit is large, 𝐶 can be very large and the complexity of the algorithm becomes

linear.

Exact-match search algorithm Similarly to the Combinatorial search algorithm,

the Exact-match search algorithm (algorithm 5.3) also have 𝑂(𝑚 log𝑁 + 𝐶) as its

complexity. However, the time limit can not be set in this algorithm, and 𝐶 can

be smaller than 𝐶 of the Maxfirst search algorithm or of the Combinatorial search

algorithm.

The big-O complexity of three proposed search algorithms are summarized in

Table 5.2. In section 7.5.7 in chapter 7, this complexity analysis will be revisited and

demonstrated by experimental results.
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Chapter 6

Adaptive Color-based Image Search

with Dynamic Query Creation

Logic will get you from A to Z;

imagination will get you everywhere.

Albert Einstein

Color plays an important role in our world. “The concept of colour is one of the

biggest concepts in our life. Every colour has different effects on our psychology...”

[98]. The study of color and its effect as well as its applications on our life has been

started very early such as color and its effect on psychological states of human includ-

ing perception, impression, imagination, mood [21, 99, 98, 100, 101] or its applications

on design, art and industry [102, 103]. In computer vision, particularly in content-

based image retrieval (CBIR), color-based techniques are the most well-known and

applicative. Despite the importance of color, most of the approaches in CBIR give

up on the delicate variations of color in order to achieve fast extracting and compact

indexing. However, when the users’ contexts and preferences are valued higher than

those technical performance, it obviously demands a systematic method to utilize the

fine ranges in color spaces.

This thesis proposes such a system, which extracts and indexes refined color in-

formation of an image in a systematic way and then adapts to users’ contexts and
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imaginations to conduct relevant searches.

6.1 Image Datasets

The image dataset used for experiments in this chapter is the painting dataset1 pro-

vided by the Visual Geometry Group at Department of Engineering Science, Univer-

sity of Oxford [104]. This dataset is a collection of works from the “Your painting”

project at BBC UK, which contains 8,629 modern art paintings with several genres

as shown in Table 6.1.

Table 6.1: Description of Crowley’s painting dataset (from “Your paintings” project
at BBC UK) [104].

Train Validation Test Total
Aero 74 13 113 200
Bird 319 72 414 805
Boat 862 222 1059 2143
Chair 493 140 569 1202
Cow 255 52 318 625
Dtable 485 130 586 1201
Dog 483 113 549 1145
Horse 656 127 710 1493
Sheep 270 76 405 751
Train 130 35 164 329
Total 3463 865 4301 8629
Copyright information: https://artuk.org/footer/copyright-notice-15.
Download link: http://www.robots.ox.ac.uk/~vgg/data/paintings/.

6.2 Color Space Sampling and Color Feature Extrac-

tion

A hierarchical indexing model of HSV color space is proposed. The HSV color space

consists of hue ‘H’, intensity value ‘V’, and saturation ‘S’ [105] which is often repre-

sented as a hexacone in three dimensional space. Hue is described with the words
1Thanks Dr. Elliot J. Crowley for giving me the copyright information.
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that we normally think of as describing colors: red, purple, blue, etc. and also a term

describing a dimension of colors we readily experience when we look at colors. Inten-

sity value refres to how light or dark a color is. Saturation refers to the dominance

or purity of hue in the color. A common HSV color space defines the values of H, S,

V are in range of (0, 360), (0, 100), and (1, 100), respectively.

Based on this nature of the HSV color space, the sampling method will walk

around the hue wheel, go according to the outer edge and move toward the center

of the wheel. During this sampling path, it can pick up chromatic colors with pure

hue values which are more vivid than the colors with the same hue values but closer

to the central vertical axis. If the sampling pointer walks through the central axis

of the wheel, achromatic colors (grayscale) colors are picked up. In this thesis, only

chromatic colors are treated.

Figure 6-1 shows the illustration of the sampling process. At level 0 of the tree, it

is the HSV color space (a hexacone). At level 1, it is the common color names. These

are the most seven common color names in English language [98] and undoubtedly in

many other languages. At next levels, the saturation and intensity value are sampled

continuously.

This thesis focuses on the chromatic colors and features the hue wheel more than

saturation and intensity value, so that the sampling method will sample the hue wheel,

saturation and intensity value into 180, 5, and 5 values returning total 180*5*5 =

4500 colors. This set of colors will be used to extract a color feature vector of an

image. The process of extracting a color feature vector, which is also known as a

color histogram is described in Algorithm 6.1. This algorithm is based on the idea of

color indexing which has been proposed earlier by [106] and become a conventional

method for extracting color histograms of color images in the literature. Swain and

Ballard [106, p. 13] defines the process to obtain a color histogram as follows: “Given

a discrete color space defined by some color axes (e.g., red, green, blue), the color

histogram is obtained by discretizing the image colors and counting the number of

times each discrete color occurs in the image array.” Using this algorithm and the

above sampled color set, the extracted color feature vector has 4500 elements.
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Figure 6-1: Illustration of the tree-shaped hierarchical model of HSV color space
sampling method for feature indexing. The tree has three non-root levels: name of
basic colors, hues, saturations, and intensity values.
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Algorithm 6.1 Conventional Color Histogram Extraction Algorithm
Input:

∙ A RGB color image 𝐼;
∙ A list of 𝑛 colors 𝐶 = [𝑐1, 𝑐2, . . . , 𝑐𝑛] ⊂ R3 where 𝑐𝑖 is a color in a color space C.

Output: A 𝑛-element frequency feature vector (i.e., histogram) ℎ ∈ R𝑛
+.

1: [Initialize a list to store the histogram] ℎ← [].
2: for each pixel 𝑝 in the image 𝐼 do
3: [Project pixel to the color space] 𝑐𝑝← color of 𝑝 in the color space C.
4: [Find index of a color which is closest to the pixel]

𝑖← arg min𝑖 𝐿1(𝑐𝑖, 𝑐𝑝). ◁ Equation 3.5 in section 3.3.2.5
5: ℎ[𝑖]← ℎ[𝑖] + 1.
6: end for
7: [Normalize the histogram]

ℎ← 𝑁𝑂𝑅𝑀𝐴𝐿𝐼𝑍𝐸(ℎ). ◁ Equation 3.6 in section 3.3.2.5
8: return ℎ.

It is fistly to note that there are also other methods besides the method in Algo-

rithm 6.1 for fast color histogram extraction in the literature. Those methods apply

several techniques such as “fuzzy color histogram” [107], or “integral histogram” [108].

Finally, there are also existing libraries for calculating color histograms of image data

such as OpenCV2 in Python, C, C++, and Java (the calcHist function), or JFeature-

Lib in Java 3.

6.3 Adaptive Query Creation

6.3.1 Context-based Color Subspace Selection

Content preferences as contextual preferences will be treated in this section. Each

preference will be expressed in a color name, which is a combination of a word de-

scribing the vibrancy of preferred colors (“vivid” or “light” or “” (void)) and a basic

color name from a set of basic color names at level 1 of the tree in Figure 6-1: “red”,

“orange”, “yellow”, “green”, “blue”, “purple”, and “pink”. This preference is denoted as
2http://opencv.org/
3https://jfeaturelib.googlecode.com
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color = (vibrancy , colorname).

Given a content preference color and a feature vector 𝑞, Algorithm 6.2 calculates

the adapted feature vector 𝑞′. Note that the index of a vector starts from 0. In this

algorithm (lines 2-8), the range of hue values for color names are defined in a non-

uniform way. This is based on a psychologocal result4. The range of “green” or “blue”

colors are larger than of “purple” or “pink”.

Moreover, it is argued that lower intensity valued and lower saturated colors are

treated perceivably as achromatic colors in human eyes for a given hue. Algorithm 6.2

reflects this in the settings of vibrancy (“vivid” or “light” or nothing) of colors as from

line 10 to line 18. For “vivid” colors, only high saturations and high intensity values

are chosen since they are more pure to the corresponding hues. For “light” colors,

low saturations and high intensity values are chosen. Very low intensity values are

ignored since the corresponding colors would be very dark (black) if the saturations

are high, or very bright (white) if the saturations are low. If there is no setting for

vibrancy, the colors are chosen as combinations of both vibrant values. In this case,

very low intensity values are ignored.

6.3.2 Adaptive Color-based Query Creation

Given a dataset of images, their features vectors are extracted based on the color set

defined by the sampling method described in section 6.2. Each feature vector is a

vector in 4500-dimensional feature space. At query time, given an input image and a

content preference color , Algorithm 6.2 computes and returns the top relevant images

from the dataset to users. In principle, this algorithm selects a subspace of feature

space (R4500
+ ) and then applies similarity calculation on that subspace. Semantically,

it reflects the idea of using preferred subspaces while ignoring unrelated outer spaces

in order to make concise calculation. From a technical point of view, this selection

of subspace not only provides the ability to deal with delicate contents and dynamic

contexts, but also alleviates the “curse of dimensionality” in high-dimensional space

(R4500
+ in this case).
4https://vasilis.nl/nerd/code/human-colours/tests/hue-en-gb.php
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Algorithm 6.2 Adaptive Color Subspace Selection Algorithm
Input:

∙ A feature vector 𝑞 ∈ R4500
+ ;

∙ A content preference color = (vibrancy , colorname).

Output: Adapted featured vector 𝑞′ ∈ R4500
+ .

Procedure: ADAPT (𝑞, color)

1: [Dictionary of hue indices ]
2: Hues[‘red’] ← [1, . . . , 7, 160, . . . , 179]
3: Hues[‘orange’] ← [8, . . . , 20]
4: Hues[‘yellow’] ← [21, . . . , 34]
5: Hues[‘green’] ← [35, . . . , 81]
6: Hues[‘blue’] ← [82, . . . , 130]
7: Hues[‘purple’] ← [131, . . . , 145]
8: Hues[‘pink’] ← [146, . . . , 159]
9: [Indices of saturations and values ]

10: if vibrancy = “vivid” then
11: saturations ← [3, 4]
12: values ← [2, 3, 4]
13: else if vibrancy = “light” then
14: saturations ← [1, 2]
15: values ← [3, 4]
16: else
17: saturations ← [1, 2, 3, 4]
18: values ← [1, 2, 3, 4]
19: end if
20: [Generate content preference vector 𝑝 ∈ R4500

+ ]
21: indices ← {}
22: for ℎ in Hues[colorname] do
23: for 𝑠 in saturations do
24: for 𝑣 in values do
25: 𝑖← ℎ× 25 + 𝑠× 5 + 𝑣
26: indices ← indices ∪ {𝑖}
27: end for
28: end for
29: end for
30: 𝑣 ← [𝑣1, . . . , 𝑣4500] s.t 𝑣𝑖 = 1.0 if 𝑖 ∈ indices
31: [Return adapted feature vector ]
32: 𝑞′← 𝑞 ⊙ 𝑝 where ⊙ is the elementwise multiplication or Hadamard product.
33: return 𝑞′
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Algorithm 6.3 Adaptive Color-based Query Creation and Search Algorithm
Input:

∙ A feature vector 𝑞 ∈ R4500
+ ;

∙ A dataset X ⊂ R4500
+ ;

∙ A content preference color = (vibrancy , colorname);
∙ Optional: Number of results 𝑅, by default, 𝑅 = 20.

Output: Top 𝑅 ranked relevant 𝑥 ∈ X.

1: [Compute adapted feature vector ]
2: 𝑞′← ADAPT (𝑞, color). ◁ Algorithm 6.2
3: 𝑞′← NORMALIZE (𝑞′) ◁ Equation 3.6 in section 3.4.2
4: [Calculate similarity ]
5: List of targets C← {}
6: for 𝑥 ∈ X do
7: 𝑥′← ADAPT (𝑥, color)
8: 𝑥′← NORMALIZE (𝑥′)
9: score = similarity(𝑞′, 𝑥′)

10: Update C with (𝑥, 𝑠𝑐𝑜𝑟𝑒).
11: end for
12: Sort C by an ascending order of scores.
13: return Top 𝑅 of C

In this algorithm, the similarity calculation can implement any of similarity func-

tions described in section 3.3.2. However, the choice of a similarity calculation can

affect the performance of the search algorithm. Experimental results in section 6.4

will show the cases.

6.3.3 Imagination-based Query Creation

A user’s imagination can be thought as a combination of many existing pieces of

visual information in which each piece can be extracted from a picture by specifying

the content preference in the picture. Using the proposed adaptive color subspace

selection function described in section 6.3.1, an imagination-based query creation

method is introduced. This method extends the earlier proposed methods that have

been published in [43, 44, 48].

The idea of designing an imagination-based query creation method is to apply
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some binary functions to feature vectors of input images to construct a combined

feature vector that can express the “imagination” of a user when searching for rele-

vant images. Many previous researches have proposed such combining functions for

creating search queries for image data [41, 42, 45, 46].

In this thesis, a set of functions that extend functionality of query processing of

the adaptive color-based search algorithm in section 6.3.2 is introduced. Given a

set of input images with corresponding feature vectors {𝑓𝑖} (section 6.2) and a set

of respective content preferences {𝑐𝑜𝑙𝑜𝑟𝑖}, we have a set X = {(𝑓𝑖, 𝑐𝑜𝑙𝑜𝑟𝑖) | 𝑓𝑖 ∈

R4500
+ , 𝑐𝑜𝑙𝑜𝑟𝑖 = (𝑣𝑖𝑏𝑟𝑎𝑛𝑐𝑦𝑖, 𝑐𝑜𝑙𝑜𝑟𝑛𝑎𝑚𝑒𝑖)}.

Applying the adaptive function in Algorithm 6.2 to each pair (𝑓𝑖, 𝑐𝑜𝑙𝑜𝑟𝑖) ∈ X, we

obtain a set X′ = {𝑓𝑖′}. The following binary functions are used to combine those

vectors into one vector. Each binary function takes two vectors to produce a new

vector with the same number of dimensions.

1. 𝑃𝐿𝑈𝑆(𝑥, 𝑦)

This function produces an element-wise sum of two vectors 𝑥 and 𝑦. The pro-

duced vector represents an imaginative image which contains all characteristic

features of the two images which correspond to 𝑥 and 𝑦.

𝑃𝐿𝑈𝑆(𝑥, 𝑦) = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, . . . , 𝑥𝑑 + 𝑦𝑑) (6.1)

2. 𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶𝑇𝐼𝑂𝑁(𝑥, 𝑦)

This function produces a vector of element-wise minimum values from two vec-

tors 𝑥 and 𝑦. The produced vector represents an imaginative image which

contains characteristic features that exist in both two images of vectors 𝑥 and

𝑦.

𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶𝑇𝐼𝑂𝑁(𝑥, 𝑦) = (𝑚𝑖𝑛(𝑥1, 𝑦1),𝑚𝑖𝑛(𝑥2, 𝑦2), . . . , (𝑥𝑑, 𝑦𝑑)) (6.2)

3. 𝑈𝑁𝐼𝑂𝑁(𝑥, 𝑦)

This function produces a vector of element-wise maximum values from two
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vectors 𝑥 and 𝑦. The produced vector represents an imaginative image which

contains characteristic features that exist in either of the two images of vectors

𝑥 and 𝑦.

𝑈𝑁𝐼𝑂𝑁(𝑥, 𝑦) = (𝑚𝑎𝑥(𝑥1, 𝑦1),𝑚𝑎𝑥(𝑥2, 𝑦2), . . . ,𝑚𝑎𝑥(𝑥𝑑, 𝑦𝑑)) (6.3)

4. 𝑀𝐼𝑁𝑈𝑆(𝑥, 𝑦)

This function produces an element-wise minus of two vectors 𝑥 and 𝑦. The

produced vector represents an imaginative image which contains reduced char-

acteristic features of the image of 𝑥 by them of the image of 𝑦.

𝑀𝐼𝑁𝑈𝑆(𝑥, 𝑦) = (𝑚𝑎𝑥(0, 𝑥1− 𝑦1),𝑚𝑎𝑥(0, 𝑥2− 𝑦2), . . . ,𝑚𝑎𝑥(0, 𝑥𝑑− 𝑦𝑑)) (6.4)

5. 𝐷𝐼𝐹𝐹𝐸𝑅𝐸𝑁𝐶𝐸(𝑥, 𝑦)

This function produces a vector of element-wise contrasting values from two

vectors 𝑥 and 𝑦. The produced vector represents an imaginative image which

contains characteristic features that exist in the image of 𝑥 but not in the image

of 𝑦.

𝐷𝐼𝐹𝐹𝐸𝑅𝐸𝑁𝐶𝐸(𝑥, 𝑦) = (𝑥1 × 𝜑(𝑦1), 𝑥2 × 𝜑(𝑦2), . . . , 𝑥𝑑 × 𝜑(𝑦𝑑)) (6.5)

where 𝜑(𝑎) is a function on real numbers, 𝜑(𝑎) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if 𝑎 = 0

1 if 𝑎 > 0

.

It is to note that a vector produced by a binary function introduced above is

in general not a frequency vector (section 3.4.1). It is recommended to apply the

𝑁𝑂𝑅𝑀𝐴𝐿𝐼𝑍𝐸 function (equation 3.6) to the produced vector before using it to

combine it with other vectors. However, it also depends on the desired semantic of

the combining operation.

Besides the above five binary functions, two unary functions 𝐿𝐼𝑁𝐸𝐴𝑅_𝑆𝐶𝐴𝐿𝐸

and 𝐸𝑄𝑈𝐴𝐿𝐼𝑍𝐸 (sections 3.4.2 and 3.4.3) can be applied for a feature vector in
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order to express an imagination of the preferred search results.

Table 6.2 lists the applicable functions to express users’ imagination at query time

and their properties. In this table, the “commutative” property of a binary function

⊕(𝑥, 𝑦) indicates that the function satisfies ⊕(𝑥, 𝑦) = ⊕(𝑦, 𝑥), meaning the order of in-

put vectors does not affect the produced vector. The “associative” property of a binary

function ⊕(𝑥, 𝑦) indicates that the function satisfies ⊕(𝑥,⊕(𝑦, 𝑧)) = ⊕(⊕(𝑥, 𝑦), 𝑧),

meaning the order of applying the functions to a set of input vectors does not affect

the produced vector. These properties give a guide to precisely express orders of

inputs and functions in order to obtain the desired results.

It is also to note that, regardless of the theoretical algebra, the addition and mul-

tiplication of floating point numbers are not necessarily associative due to “roundoff

errors” [109].

Table 6.2: Imagination-based query creation functions and their properties.

Query manipulation function Type Properties
𝑃𝐿𝑈𝑆 binary Commutative, associative*
𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶𝑇𝐼𝑂𝑁 binary Commutative, associative
𝑈𝑁𝐼𝑂𝑁 binary Commutative, associative
𝑀𝐼𝑁𝑈𝑆 binary Non-commutative, non-associative
𝐷𝐼𝐹𝐹𝐸𝑅𝐸𝑁𝐶𝐸 binary Non-commutative, associative*
𝑁𝑂𝑅𝑀𝐴𝐿𝐼𝑍𝐸 unary
𝐿𝐼𝑁𝐸𝐴𝑅_𝑆𝐶𝐴𝐿𝐸 unary
𝐸𝑄𝑈𝐴𝐿𝐼𝑍𝐸 unary
Note for (*): this property of a function holds in theory but does not necessarily hold in practice when
applying for floating-point numbers (refer to [109]).

6.4 Experiments

In this section, several experimental studies using the adaptive color-based and imagination-

based query creation functions described in section 6.3 are discussed using the Crow-

ley’s painting dataset (see Table 6.1) in section 6.1.
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6.4.1 System Implementation and Experiment Setting

6.4.1.1 System Implementation

The image search system is implemented using using Python programming language

version 2.7.12 on MacBook Air computer with specifications as follows: 1.7 GHz Intel

Core i7, 8 GB 1600 MHz DDR3 with OXS Yosemite operating system. The detailed

description and performance benchmarks of this computer is in Table 7.2 in section

7.2.2. The Python interface of OpenCV library framework is used to pre-process

images and extract color feature vectors.

Two widely used color-based feature extraction methods are also implemented in

order to compare with the proposed adaptive color feature extraction and indexing

method. The first method uses a set of 130 basic colors sampled from the Munsell

color system to represent an image. The descriptions for these colors can be found

in [101]. The second method uses a set of 7 × 3 × 3 = 63 colors sampled from the

HSV color space. These method applies Algorithm 6.1 to extract the feature vectors

of image data in 130- and 63-dimensional feature spaces, respectively.

Seven distance functions described in section 3.3.2 are also implemented in order

to study the effectiveness of a combination of a feature extraction and similarity

calculation methods.

6.4.1.2 Experiment Setting

To study the effectiveness of the adaptive color-based query creation method, for each

colorname consisted of a basic color color among 7 colors, and a level of vibrancy (3

levels), five images are randomly chosen as input to the system. For each input, one of

seven different distance functions will be used when calculating the similarity scores.

As a result, for this setting, we have a total of 7× 3× 5× 7 = 735 queries.

To compare the proposed extraction method to other methods which use lesser

number of dimensions (proposed adaptive feature (𝑑 = 4500), Munsell color feature

(𝑑 = 130), and HSV color feature 𝑑 = 63), seven images are randomly chosen as input

to the system. Also, seven similarity distances are used for each input. Consequently,
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for this setting, we have a total of 3× 7× 7 = 147 queries.

In summary, we have total 735 + 147 = 882 queries and the top 20 results of

each query will be evaluated manually to assess the precision of the results. A brute

force algorithm, which is similar to Algorithm 7.6 in section 7.5.2.2 is used to search

for the most relevant images given a query from the image dataset. The precision is

defined as the percentage of correct results among 20 results returned by the search

algorithm.

6.4.2 Adaptive Color-based Search

6.4.2.1 Precision Statistics

Figure 6-2 shows the average precision of different combinations of features and dis-

tance functions. In this figure, we can see that overall precision of the proposed

adaptive color-based image search method performs better than other “non-adaptive”

color-based image search methods. It is also seen that the average precisions depend

on the distance functions as expected but Chi square and Cosine distances yield over-

all higher precisions. Comparing to three non-adaptive search results including the

one returned by using the whole 4500 color features, adaptive search returns reason-

able high precisions. It is noteworthy that the Munsell color based method uses a

relative low number of colors (𝑑 = 130) but returns the lowest performance.

In Figure 6-2, we also see the performance of the adaptive color-based search

method drops slightly for queries of “purple” and “pink” color names. This can be

explained by two reasons. The first reason is that the target dataset has a few number

of images with “purple” and “pink” colors. The second reason is based on the intrinsic

distinguishability of “purple” to “blue” colors and of “pink” to “red” colors. Since

the precisions are manually checked, the appearance of a color on actual images can

slightly changed depending on which colors it is with. To solve this problem, a further

investigation on the sampling of hue, saturation and intensity values in Algorithm 6.2

is required and planned as a future work.
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Figure 6-2: Precision of adaptive color-based image search methods comparing to
other methods with different combination of color feature and similarity functions.
The proposed adaptive color-based image search method returns relative higher pre-
cisions. The Chi square and Cosine distances obtain overall better performance.
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6.4.2.2 Sample Search Results using Adaptive Color-based Image Search

This section shows some sample search results using the adaptive color-based search

method on the Crowley’s painting dataset (section 6.1) as in Figures 6-3 to 6-7 to

demonstrate the effectiveness of the system when adapting to different content prefer-

ences of users. These figures demonstrates two different adaptive searching scenarios

using color names. Figures 6-3 to 6-5 show the search results of queries with a same

input image but different vibrancy levels of a same color to express the content pref-

erences. Figures 6-6 and 6-7 show the search results of queries with a same input

image but different colors as content preferences.

Input	image(s):

Query:

vivid	blue	(chisquare)

Results:

images_3931.jpg,	score:	0.138 images_3166.jpg,	score:	0.150 images_1078.jpg,	score:	0.184 images_3013.jpg,	score:	0.187 images_5437.jpg,	score:	0.213

images_5739.jpg,	score:	0.215 images_3233.jpg,	score:	0.221 images_6511.jpg,	score:	0.223 images_5218.jpg,	score:	0.229 images_6311.jpg,	score:	0.229

images_7682.jpg,	score:	0.231 images_8023.jpg,	score:	0.234 images_412.jpg,	score:	0.235 images_1337.jpg,	score:	0.237 images_2752.jpg,	score:	0.240

images_8295.jpg,	score:	0.240 images_6937.jpg,	score:	0.247 images_5075.jpg,	score:	0.247 images_7670.jpg,	score:	0.249 images_2167.jpg,	score:	0.249

Figure 6-3: Sample search results of the adaptive color-based search method with
one input image, a input keyword “vivid blue” and using Chi-square similarity. Im-
ages are from the Crowley’s painting dataset (more detail in section 6.1). Copyright
information: https://artuk.org/footer/copyright-notice-15.

Figures 6-3, 6-4, and 6-5 show the sample results using the proposed adaptive

color-based search method for queries with a same input image but different keywords
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to express the content preferences which are the different vibrancy levels of a same

color “blue”. The use of an input image aids a usefulness to express “colors like in this

image”, since the colors that human can perceive vary greatly with detailed subtleness

but are often difficult to express without an example.

In Figure 6-3, the input keyword “vivid blue” expresses a content preference of

“vivid blue colors like in this image”. The search results are images from the painting

dataset which contain similar vivid blue colors. Comparing to the search results in

Figure 6-4 with the input keyword “light blue”, the images returned from the search

algorithm are greatly different and reflected the content preferences in each case.

When only inputting color keyword without specifying the vibrancy, the search pro-

cess returns images with colors that contain similar colors regardless of the vibrancy

as shown in Figure 6-5.

Input	image(s):

Query:

light	blue	(chisquare)

Results:

images_799.jpg,	score:	0.234 images_6265.jpg,	score:	0.244 images_3697.jpg,	score:	0.246 images_3102.jpg,	score:	0.250 images_4312.jpg,	score:	0.261

images_7669.jpg,	score:	0.264 images_4907.jpg,	score:	0.266 images_4587.jpg,	score:	0.267 images_3165.jpg,	score:	0.268 images_6273.jpg,	score:	0.270

images_4850.jpg,	score:	0.271 images_6259.jpg,	score:	0.272 images_3066.jpg,	score:	0.272 images_3108.jpg,	score:	0.272 images_4285.jpg,	score:	0.272

images_7214.jpg,	score:	0.272 images_8257.jpg,	score:	0.273 images_3085.jpg,	score:	0.273 images_5889.jpg,	score:	0.274 images_4803.jpg,	score:	0.274

Figure 6-4: Sample search results of the adaptive color-based search method with the
same input image in Figure 6-3, a input keyword “light blue” and using Chi-square
similarity. Images are from the Crowley’s painting dataset (more detail in section
6.1). Copyright information: https://artuk.org/footer/copyright-notice-15.
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Input	image(s):

Query:

blue	(chisquare)

Results:

images_412.jpg,	score:	0.016 images_3699.jpg,	score:	0.103 images_1814.jpg,	score:	0.119 images_6886.jpg,	score:	0.120 images_3229.jpg,	score:	0.148

images_3149.jpg,	score:	0.150 images_6297.jpg,	score:	0.155 images_5954.jpg,	score:	0.157 images_6972.jpg,	score:	0.158 images_1826.jpg,	score:	0.158

images_6359.jpg,	score:	0.159 images_5693.jpg,	score:	0.160 images_5691.jpg,	score:	0.162 images_3035.jpg,	score:	0.164 images_7267.jpg,	score:	0.165

images_7344.jpg,	score:	0.165 images_3212.jpg,	score:	0.168 images_4067.jpg,	score:	0.168 images_8537.jpg,	score:	0.168 images_798.jpg,	score:	0.169

Figure 6-5: Sample search results of the adaptive color-based search method with
the same input image in Figure 6-3, a input keyword “blue” and using Chi-square
similarity. Images are from the Crowley’s painting dataset (more detail in section
6.1). Copyright information: https://artuk.org/footer/copyright-notice-15.

Figures 6-3, 6-4, and 6-5 have shown the usefulness of using the adaptive color-

based query creation to explore an image dataset. The search results demonstrate the

adapted subspace according to each query to retrieve appropriate results for various

levels of a same color.

Figures 6-6 and 6-7 show other search results the proposed adaptive color-based

search method for two queries of two different colors. The query in Figure 6-6 ex-

presses the content preference of “red” colors in the input image, while the query in

Figure 6-7 expresses the content preference of “yellow” colors in the input image.

In Figure 6-6, it can be seen that the exact-match image for the input image is

returned not at the first rank. This is due to an effect of the application of the subspace

selection method. In the selected subspace created by the content preference “red”,

meaning the subpace of “red” colors, each image of the image dataset has a different
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Input	image(s):

Query:

bbcadaptive	red	(chisquare)

Results:

images_4510.jpg,	score:	0.215 images_6233.jpg,	score:	0.256 images_5841.jpg,	score:	0.265 images_6437.jpg,	score:	0.266 images_6870.jpg,	score:	0.268

images_59.jpg,	score:	0.269 images_1620.jpg,	score:	0.270 images_6921.jpg,	score:	0.273 images_8388.jpg,	score:	0.276 images_2853.jpg,	score:	0.286

images_5799.jpg,	score:	0.296 images_5828.jpg,	score:	0.299 images_8364.jpg,	score:	0.303 images_5302.jpg,	score:	0.305 images_7535.jpg,	score:	0.311

images_2996.jpg,	score:	0.315 images_4641.jpg,	score:	0.316 images_7807.jpg,	score:	0.316 images_7243.jpg,	score:	0.317 images_1989.jpg,	score:	0.319

   red (chisquare)

Figure 6-6: Sample search results of the adaptive color-based search method with one
input image, a input keyword “red” and using Chi-square similarity. Images are from
the Crowley’s painting dataset (more detail in section 6.1). Copyright information:
https://artuk.org/footer/copyright-notice-15.

relative distance to the query image comparing to its original distance to the query

image in the original feature space. This is intuitively verifiable by the search results

in Figure 6-6. The returned images are ranked by the relevance scores of “redness” of

their contents (based on the Chi square distance function).

In Figure 6-7, the first ranked result is the same as the query image (based on the

Chi square distance calculation). This indicates that even in the selected subspace

created by “yellow” colors, the closest image in the dataset to the input query image

is itself.

Those above observations have intuitively demonstrated the behaviors subspace

selection method and how it can affect the search results. Moreover, it has been

shown to be effective and useful for adapting the contextual preferences of users into

queries.
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Input	image(s):

Query:

yellow	(chisquare)

Results:

images_59.jpg,	score:	0.157 images_7821.jpg,	score:	0.240 images_4973.jpg,	score:	0.262 images_3862.jpg,	score:	0.272 images_1089.jpg,	score:	0.298

images_6546.jpg,	score:	0.325 images_7915.jpg,	score:	0.328 images_1815.jpg,	score:	0.329 images_6652.jpg,	score:	0.331 images_7822.jpg,	score:	0.338

images_1007.jpg,	score:	0.341 images_4438.jpg,	score:	0.343 images_808.jpg,	score:	0.350 images_3416.jpg,	score:	0.351 images_8545.jpg,	score:	0.353

images_6063.jpg,	score:	0.365 images_6848.jpg,	score:	0.366 images_1057.jpg,	score:	0.371 images_8482.jpg,	score:	0.372 images_8084.jpg,	score:	0.372

Figure 6-7: Sample search results of the adaptive color-based search method with
the same input image in Figure 6-6, a input keyword “yellow” and using Chi-square
similarity. Images are from the Crowley’s painting dataset (more detail in section
6.1). Copyright information: https://artuk.org/footer/copyright-notice-15.

6.4.3 Imagination-based Image Search

Section 6.4.2 has shown quantitative experiments of the adaptive color-based query

creation method for searching for relevant images from an image dataset. The queries

used in those experiments contain only one input image and a keyword that specifies

the content preference. However, it is possible to combine several images to express

more refined content preferences, which are called imaginations. The functions used

to combine input images have been described in section 6.3.3. This section shows

an example of how to use a combining function to express a content preference for

search.

Figure 6-8 shows sample search results of an imagination-based query that is

created using the adaptive color-base query creation method (section 6.3) and PLUS
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combining function (section 6.3.3). The query contains two input images and a input

keyword “vivid orange PLUS vivid blue”. The keyword expresses a content preference

of the user and based on the keyword, the query is interpreted as “searching for images

with vivid orange colors like in the first image and vivid blue colors like in the second

image” using a 𝑃𝐿𝑈𝑆 operation.

Input	image(s):

Query:

vivid	orange	PLUS	vivid	blue	(cosine)

Results:

images_2133.jpg,	score:	0.002 images_1035.jpg,	score:	0.032 images_5147.jpg,	score:	0.052 images_6788.jpg,	score:	0.053 images_1078.jpg,	score:	0.057

images_5330.jpg,	score:	0.074 images_2166.jpg,	score:	0.101 images_6047.jpg,	score:	0.104 images_1349.jpg,	score:	0.105 images_5342.jpg,	score:	0.108

images_3891.jpg,	score:	0.109 images_2022.jpg,	score:	0.124 images_922.jpg,	score:	0.130 images_731.jpg,	score:	0.139 images_5149.jpg,	score:	0.141

images_8068.jpg,	score:	0.144 images_5218.jpg,	score:	0.148 images_2167.jpg,	score:	0.152 images_8346.jpg,	score:	0.153 images_2453.jpg,	score:	0.153

Figure 6-8: Sample search results of an imagination-based query created by two
input images with corresponding content preferences “vivid orange” and “vivid
blue” using PLUS operation. Images are from the Crowley’s painting dataset
(more detail in section 6.1). Copyright information: https://artuk.org/footer/
copyright-notice-15.

6.5 Discussion

It is firstly to note that the experiments in this chapter focuses on the performance

of the query creation proposed in section 6.3 while implementing a brute force search

algorithm for retrieving relevant images from an image dataset. The brute force
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search process follows an exhaustive search strategy and is similar to Algorithm 7.6

in section 7.5.2.2. It is because the purpose of the experiments in this chapter is

to assess the effectiveness of the proposing color feature indexing method, it is more

convincing to use a such exhaustive search strategy. For that reason, the performance

measured by how fast to complete a search query hasn’t been concerned. However,

the system is not limited with this search strategy. On the contrary, it is naturally

compatible with the adaptive pruning search mechanism introduced in section 3.2.

Secondly, quantitative experiments on the statistical effectiveness of the query

creation method using combining functions described in section 6.3.3 are reserved as

future works. However, an interested audience can find useful related information in

the previously published works [41, 42, 43, 44, 45, 46, 47, 48].

Finally, the adaptive color-based query creation method is not limited by using

color names. One algorithm that is similar to the proposed algorithm in Algorithm 6.2

is applicable based on the logic of the proposed query creation method. For example,

in section 8.1.3, an application that indexes the color spaces differently using different

keywords (“hot” and “cold”) is described.
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Chapter 7

Large-Scale Frame-wise Video

Navigation System

The true method of knowledge is

experiment.

William Blake

7.1 Video Datasets

There are two video datasets used in this thesis: “TRECVid 2015”, and “Movie

dataset” whose details are shown in Table 7.1.

“TRECVid 2015” : The TRECVid 2015 dataset is the dataset provided by the

National Institute of Standards and Technology, U.S. that is a well-known dataset

for multimedia research1. This dataset includes “master shot boundary reference for

semantic indexing test data” and will be used mainly to evaluate the proposing scene

detection algorithm.

“Movie dataset” : The movie dataset is a personal collection of 2.14TB movie

DVDs including various genres but mainly of animation, drama, and documentary.
1Download link: http://trecvid.nist.gov/trecvid.data.html#tv15
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Table 7.1: Description of two video datasets: TRECVid 2015 and Movie dataset

TRECVid 2015 Movie dataset
Number of videos 6870 806
Total duration 568 hours 597 hours
Total frames 2,047,413 2,150,428
Total scene frames 485,337
Compress rate 22.60%
Storage size 141GB 2.14TB

The total view length is 597 hours for 806 movies meaning the averaged length of a

movie is 45 minutes. This dataset is used to demonstrate the feasibility of using the

proposed architecture to index and search for personal collections of video data. It will

be used mainly to evaluate the performance of the indexing and search architecture.

The implementation to get the information regarding number of scene frames and

compress rate for this dataset will be discussed in section 7.5.1 while the detail of the

scene detection algorithm will be discussed in section 7.4.

7.2 System Architecture

7.2.1 Overall Architecture

The overall system architecture is shown in Figure 7-1. It includes six modules which

are (1) data collection, (2) frame extraction, (3) feature extraction, (4) indexing,

(5) search, and (6) ranking and display. The data collection module collect image

and video data from many resources which can be either from personal collections

of photos, videos or from the Internet such as from Youtube (video data) or Flickr

(image data) and many others.

1. Data collection

This module either collects video urls from the Internet, e.g., from YouTube

or converts videos in local hard disks into MPEG-4 format. It’s noteworthy

that crawling videos from the Internet is restricted by copyrights, thus the

system does not download them to store into local disks, but only store the
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Figure 7-1: Overall architecture of multicontext-adaptive query creation and search
system.

streaming urls for later video analysis and after that remove them from the

system. Moreover, the videos in the Internet might be unpredictably deleted

but once they are already indexed into the database, they will be used as other

videos meaning some results of search can be unable to trace. The current

version of the system does not support a function to eliminate such videos

and their related information such as associated frames and their metadata

information from an indexed database.

2. Frame extraction

The frame extraction module works only with video data and its purpose is to

reduce the number of frames of a video to be indexed. This module contains

three main steps: for each video record, it samples the video frames from the
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beginning by a fixed time (by default, 𝛿𝑡 = 1𝑠𝑒𝑐𝑜𝑛𝑑) and applies a threshold-

based scene detection algorithm to detect scene frames in the video. Finally,

the thumbnails of the detected scene frames are extracted from the video and

temporally saved as representative frames of the video to be indexed. The

details of this module will be discussed in section 7.4.

3. Feature extraction

This module uses existing feature extraction methods in literature to extract

feature vectors of low-level features of data such as color, shape, texture. Ref-

erences to the methods that are applicable are introduced in section 1.3 and

concretely in section 7.3. Algorithm 6.1 in section 6.2 is also applicable to

extract color feature vectors of data.

4. Indexing

The Bamboo Forest indexing module is integrated with a database manager

sub-module that manages the filesystem of the database. This module creates

and stores indexes for a dataset and the corresponding metadata related to

the dataset and the feature space. The data structure and file structure of a

Bamboo Forest database are described in chapter 4.

5. Search

The Search module includes three sub-modules: “query processing”, “Feature

Selection and Prioritization”, and “Context-adaptive Search”. The query pro-

cessing sub-module interprets input from users into variables of search algo-

rithms. It is coupled with the “Feature Selection and Prioritization”, which is a

sub-module that reflects the content and intention preferences in order to select

an appropriate search algorithm. This works as a search planner for the next

sub-module. The context-adaptive search sub-module has three algorithms as

introduced in chapter 5 implemented and this will find high-matching-possibility

candidates and return those to the next module “Ranking and Display”.
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6. Ranking and Display

This module receives candidates from the search module and makes a ranking

based on relevance scores and displays the results to users. For video data, each

candidate is a video frame but when being displayed to users, the whole video

with the replay time is marked at the time of the video frame is shown to users.

By this, the users can (1) know when the relevant frames are in videos, and

(2) replay and watch videos from the scenes they are looking for. This module

ranks the relevant results depending on a ranking preference specified by a user,

such as ranking by relevance scores or by timestamps of data.

7.2.2 System Implementation

The video navigation system with three algorithms described in chapter 5 are im-

plemented using Python programming language version 2.7.122. This system will be

studied in two computers: a desktop and a laptop.

The desktop computer, which is a lab server, has a faster processor and larger

memory but databases are stored on its hard disk drive (HDD). Its configurations

are: CentOS Linux release 7.1.1503 (Core), 32 CPU Intel(R) Xeon(R) CPU E5-

2680 0 @ 2.70GHz. The laptop computer is a general purpose computer, which is

a MacBook Air 1.7 GHz Intel Core i7, 8 GB 1600 MHz DDR3 with OXS Yosemite

operating system. On this laptop, the databases are stored on an external SSD disk

(Samsung 850 EVO 500GB), connecting to the laptop via a USB 3.0 cable.

Table 7.2 shows benchmarks of these two computers for their CPU and I/O per-

formance. For benchmarking the performance, the following suites (libraries) are

used:

1. Intel R○Math Kernel Library (MKL) Benchmarks - Optimized LINPACK bench-

mark3: This benchmark, followed the introduction in the website, “solves a dense

(𝑟𝑒𝑎𝑙 * 8) system of linear equations (𝐴𝑥 = 𝑏), measures the amount of time

it takes to factor and solve the system, converts that time into a performance
2https://www.python.org/
3https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite
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Table 7.2: CPU and I/O performance benchmarks of two computers used in imple-
mentation.

Computer Laptop Desktop Benchmark suite
Computer
name

MacBook Air Linux Server

Operating sys-
tem

OSX Yosemite
10.10.2

CentOS 7.1.1503

Processor
name

Intel R○Core i7 Intel R○Xeon E5-
2680 (8 cores)

CPU model 1.7 GHz 2.7 GHz
Number of
CPUs

1 2

Memory 8 GB 1600 MHz
DDR3

16 sticks * 16 GB
1600 MHz DDR3

GFlops 47.57 274.19 Intel R○MKL Lin-
pack

Whetstone 1923.1 MIPS 2222.2 MIPS Whetstone
Pystone 69206.4 pys-

tones/second
94339.6 pys-
tones/second

Pystone

Storage disk Samsung SSD 850
EVO 500GB

HDD WDC
WD20EZRX-00D
2TB

Random read
IOPS

3267 97 Flexible I/O Tester
(FIO)

Random write
IOPS

3286 97 FIO

Random read 13069 KB/s 391 KB/s FIO
Random write 13146 KB/s 390 KB/s FIO

rate, and tests the results for accuracy. The generalization is in the number

of equations (N) it can solve.” This benchmark is used to measure the Intel

processor systems, equivalently to FLOPS (floating-point operations per sec-

ond) benchmarks. The results are in GFlops. A GFlop (gigaflops) is a billion

FLOPS.

2. Whetstone4: the Whetstone benchmark is another synthetic benchmark for

evaluating the floating-point arithmetic performance of computers [110].
4http://www.netlib.org/benchmark/whetstone.c
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3. Pystone5: The Pystone benchmark is equivalent to the Dhrystone benchmark,

which measures the performance of computers for integer and string operations.

The Pystone “measures the number of pystones (iterations) per second that can

be run over the machine. A higher number of pystones per second indicates a

better performance of a Python interpreter” [111].

4. Flexible I/O Tester (FIO)6: This thesis uses FIO tool, which is a workload gen-

erator, to benchmark the I/O performance of computer storage devices (HDD

and SSD drives). Using the FIO tool to define a workload of creating a 1GB

text file and test random read and write, the results return are the number of

input/output per second (IOPS), and number of KB per second (KB/s).

7.3 Feature Extraction

Three kinds of basic features represent low-level semantic information of a frame are

color, shape, and texture are extracted. There are many methods to extract those

features alone, and all of them have strong quality to be applied in common or specific

domains of content-based information retrieval field. The focus of this research is not

to propose a new method for feature extraction, therefore existing extraction methods

in literature are used in this thesis. Nevertheless, It is noteworthy that the choice

choosing such methods is limited by the scope of content to be applicable as discussed

in 1.3. If this requirement is satisfied, any feature extraction method would be suitable

to my proposing indexing and search architecture.

7.3.1 Color

A HSB color histogram is extracted for each frame by splitting HSB color space in

a non-uniform way. For example, to give more detail, hue can be split finer while

saturation is not. Good results have been reported with 7x2x2 and 7x3x3 splits [112].

In this thesis, I use 7x3x3 splitting scheme that creates 63 descriptors for color feature.
5https://pybenchmarks.org/u64q/performance.php?test=pystone
6http://freecode.com/projects/fio
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7.3.2 Shape

Shape feature can be statistically represented using a spatial pyramid kernel [113].

The feature is captured based on the spatial distribution of edges and formulated as

a “Pyramid of Histograms of Orientation Gradients (PHOG)” vector representation.

Each image is divided into a sequence of increasingly finer spatial grids by repeatedly

doubling the number of divisions in each axis direction. The pyramid at level 𝑙 = 𝐿

has 4𝐿 grids and if use 𝐾 orientations to generate histograms, the PHOG descriptor of

the entire image is a vector with dimensionality 𝐾
∑︀𝐿

𝑙=0 4𝑙. More details of generating

PHOG descriptors are discussed in [113].

This thesis uses 𝑙 = 1 (the pyramid has two levels: a root level (𝑙 = 0) and a

level 𝑙 = 1) and use 8 orientations 𝐾 = 8 so that PHOG descriptor vector for shape

feature has 40 elements in total.

7.3.3 Texture

Texture features of video frames are extracted using Gabor wavelet descriptors early

introduced in [114, 115] and implemented recently in well known libraries such as Lire

library [116] and JFeaturelib [112]. This method uses a multiresolution representation

based on Gabor filters that are considered as orientation and scale tunable edge

and line (bar) detectors because the statistics of these micro features in a given

region are often used to characterize the underlying texture information [115]. This

thesis uses five scales and six orientations, and consequently total 60 Gabor filters

to extract texture features. The details of Gabor filters and its characteristics are

discussed widely in literature that an interested audience might want to investigate

such as [114, 115, 117]

7.3.4 Integrated Descriptors

Generally above features (color, shape and texture) are not used alone but used

together in order to present images in more details. Additionally, the combinations of

those features might be at querying time as discussed in section 6.3.3. At one time,
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one person may be interested in finding results with similar color feature, whereas at

another time, she may be interested in similarity in both color and shape, etc. To

prepare such changing contexts, this thesis used combined features of color, shape

and texture that are already normalized and integrated.

7.3.4.1 FCTH: Integrated descriptor of color and texture features

A fuzzy color and texture histogram is introduced by Savvas et al. in [118] known

as FCTH feature. The method used a two-input fuzzy system to generate 24-bin

color histogram, then used Haar wavelet transformation for fixed 8 regions to export

texture elements, and consequently total 8 x 24 = 192-bin FCTH feature is extracted

as a packed feature of both color and texture features. This feature is chosen because

of its robustness to deformations, and noise. Ones might want to investigate [118] for

detail.

7.3.4.2 CEDD: Integrated descriptor of color and edge directivity fea-

tures

A compact descriptor of both color and edge directivity are introduced in [119]. Sim-

ilar to FCTH feature, the method used a two-input fuzzy system to generate 24-bin

color histogram, then applied to a set of 6 texture filters which contains 5 digital

filters of MPEG-7 edge histogram descriptor: vertical, horizontal, 45-degree diagonal,

135-degree diagonal and non-directional edges. It is to note that the sixth filter is for

filtering no edge region. Consequently, the CEDD histogram includes 6 x 24 = 144

elements.

7.3.4.3 JCD: Integrated descriptors of CEDD and FCTH

The JCD descriptor is a joint descriptor joining CEDD and FCTH descriptors [120].

The joint descriptor includes 168 elements in total. The detailed method and imple-

mentation are reported in [112, 120].
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7.4 Scene Detection

7.4.1 Two Scene Detection Algorithms

Scene detection which is also known as scene segmentation is very significant in

summarizing content of videos data and is engaged in many research works such

as [121, 122, 123]. The most straightforward and conventional approach is using a

similarity threshold to detect changes between sequential video frames. The threshold

is either fixed or dynamically decided based on a sliding window through the sequence

of video frames [124]. In case of a fixed threshold, it can be chosen by an automatic

threshold finding algorithm either using histogram differences [125], entropy [126], or

the Otsu method [127] (from [124]).

In this thesis, an automatic threshold finding method is introduced. This method

will be apply to two scene detection algorithms: basic scene detection algorithm which

uses one threshold, and advanced scene detection algorithm which uses two thresholds.

The method contains a main training step to automatically learn the most effective

thresholds for different combinations of feature extraction and similarity distance

functions.

7.4.1.1 Basic Threshold-based Scene Detection Algorithm

The basic threshold-based scene detection algorithm detects a new scene simply by

comparing to previous scene and keeps only the starting frame in the consecutive

frames of a scene as a representative frame for the scene. The pseudocode of the

algorithm can be found in Algorithm 7.1. In this algorithm, the frame at 0 second

(the beginning of the video) is the first presentative frame of a video by default. A

frame is said to be on new scene if it is less similar to the current frame by a fixed

threshold.

7.4.1.2 Advanced Two-thresholds-based Scene Detection Algorithm

To reduce a penalty of missing a scene, an advanced scene detection algorithm using

two thresholds instead of one fixed threshold is introduced. The algorithm is based
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Algorithm 7.1 Basic Threshold-based Scene Detection Algorithm
Input:

∙ A sequence of frames of a video;
∙ Similarity threshold 𝐷𝑇 .

Output: A set of frames detected as representative scene frames.

1: [Initialize result set] 𝑆 ← {}
2: [Initialize] Current scene frame ← first frame.
3: while there is still a frame in video sequence do
4: if similarity(Current scene frame, frame) > 𝐷𝑇 then
5: [New scene is detected] 𝑆 ← 𝑆 ∪ {𝑓𝑟𝑎𝑚𝑒}.
6: Current scene frame ← frame.
7: end if
8: [Move to next frame] frame ← next frame in the sequence.
9: end while

10: return 𝑆.

on an observation that the temporal distance between two frames effects the decision

of whether the two frames are from two distinguishing scenes. In other words, two

frames separated in a long time window in a video might be in different scenes even

they are very much similar to each other. This observation also compensates to the

fact that the similarity metrics based on low-level features can mistakenly represent

two different frames by the same feature vectors.

The pseudocode 7.2 describes this two-thresholds-based scene detection algorithm.

In this algorithm, two similarity thresholds are required as input: one is called a direct

threshold (𝐷𝑇 ) and another one is called a conditional threshold (𝐶𝑇 ) with 𝐷𝑇 > 𝐶𝑇 .

𝐷𝑇 is regardless to the temporal distance (time window length (𝑃𝑇 )) of two frames,

while 𝐶𝑇 provides a delay step to check the distance in time whether is greater than

𝑃𝑇 .

Implementing the above two algorithms 7.1 and 7.2 requires a specific implemen-

tation of the 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 calculation function between two frames (line 4). As already

shown in the experiments in section 6.4.2, the performance of of the similarity calcu-

lation function depends on the choice of features that are used to represent a frame

(which is equivalent to an image), and a similarity metric (or distance metric). In the
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Algorithm 7.2 Advanced Scene Detection Algorithm with Two Thresholds
Input:

∙ A sequence of frames of a video;
∙ Two similarity thresholds 𝐶𝑇 and 𝐷𝑇 where 𝐶𝑇 < 𝐷𝑇 ;
∙ Optional: a time window length 𝑃𝑇 , by default 𝑃𝑇 = 5.

Output: A set of frames detected as representative scene frames.

1: [Initialize result set] 𝑆 ← {}
2: [Initialize] Current scene frame ← first frame.
3: while there is still a frame in video sequence do
4: if similarity(current scene frame, frame) > 𝐷𝑇 then
5: [New scene is detected] 𝑆 ← 𝑆 ∪ {𝑓𝑟𝑎𝑚𝑒}.
6: Current scene frame ← frame.
7: else
8: if Temporal distance between frame and current scene frame > 𝑃𝑇

AND similarity(current scene frame, frame) > 𝐶𝑇 then
9: [New scene is detected] 𝑆 ← 𝑆 ∪ {𝑓𝑟𝑎𝑚𝑒}.

10: Current scene frame ← frame.
11: end if
12: end if
13: [Move to next frame] frame ← next frame in the sequence.
14: end while
15: return 𝑆.

next section, a training method to automatically learn the most effective combination

of features and similarity metrics will be introduced.

7.4.2 Threshold Learning for Scene Detection Algorithms

As discussed in the previous section, a specific choice of 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 calculation func-

tion is required when implementing either Algorithm 7.1 or Algorithm 7.2. This

function containing a combination of choices of a feature type and a distance metric

greatly affects the efficiency of the detection algorithm. If the feature in use has a

discriminating power large enough, it would efficiently help us to distinguish a frame

from others. And the distance measure varying in their units undoubtedly affects

how we set a threshold for “how much is similar”.

The important task to find which combination is the most effective is named
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“feature engineering” with respect to the original idea which is widely in machine

learning field [128]. The goal of feature engineering can be summarized into two main

points:

∙ To promote discriminability of features that represent video frames (i.e., feature

selection)

∙ To control signal-to-noise sensitivity (i.e., measure selection)

The problems of feature selection and measure selection are widely studied among

literature such as [9], [10], [129], [130], and so forth. The researchers focus on the

behaviors of data objects in high dimensional representation of objects, and the cor-

relation between features. However, the feature and measure selection problems seem

to be studied independently. On one hand, a work on feature selection would choose

a specific distance measure and use it to understand how features are related to each

other, like of [129]. On the other hand, a work on behaviors of distance functions

would select a dataset of several specific distributions [9, 10]. It is observed that the

feature and measure chosen interact with each other. And the study of them would

benefit the understanding and selection properly specified for each data at hand. In

this section, a training method which uses relative contrasts to learn the most effective

combination of feature and distance function is introduced.

7.4.2.1 Relative Contrast

A relative contrast is the contrast of the maximum and minimum distances to a data

point from all data points in the dataset and is defined as:

C
(𝑁)
𝑘 =

𝐷𝑚𝑎𝑥𝑘 −𝐷𝑚𝑖𝑛𝑘

𝐷𝑚𝑖𝑛𝑘

(7.1)

In which C
(𝑁)
𝑘 is the relative contrast from a data point to 𝑁 data points in

𝑘-dimensional feature representation, and 𝐷𝑚𝑎𝑥𝑘 and 𝐷𝑚𝑖𝑛𝑘 are the farthest and

nearest distance of the 𝑁 points to the query point, respectively using measure 𝐷 as

the distance measure method. The value of C has an interesting property regarding
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the meaningfulness of choosing the distance metric 𝐷 that have been discussed in

[9, 10]. The low value of C “makes the proximity query meaningless and unstable

because there is a poor discrimination between the nearest and furthest neighbor”

[9].

7.4.2.2 Threshold Learning Algorithm

This section describes a threshold learning algorithm as shown in Algorithm 7.3 based

on the idea of relative contrasts in the previous section.

Algorithm 7.3 Threshold Learning using Distance-based Relative Contrast for a
Scene Detection Algorithm
Input:

∙ A scene detection algorithm (either Algorithm 7.1 or 7.2);
∙ A sequence of 𝑁 frames of a video;
∙ A feature extraction function 𝐹 for video frames;
∙ A similarity distance function 𝐷 for each pair of video frames;
∙ A scaling factor 𝑠 = [𝑠1] (if using Algorithm 7.1) or 𝑠 = [𝑠1, 𝑠2] (if using Algo-

rithm 7.2) with 0 < 𝑠𝑖 ≤ 1.0 and 𝑠1 ≤ 𝑠2.

Output: Measures of the algorithm performance using 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 and 𝑟𝑒𝑐𝑎𝑙𝑙.

1: [Step 1: Initialize feature space] Using function 𝐹 to extract feature vectors of 𝑁
video frames .

2: [Step 2: Calculate distance matrix] Calculating distances using function 𝐷 be-
tween each pair of 𝑁 feature vectors in step 1 to create a 𝑁 × 𝑁 square matrix
A.

3: [Step 3: Get maximum distance] 𝐷𝑚𝑎𝑥← largest value in distance matrix A.
4: [Step 4: Get minimum distance] 𝐷𝑚𝑖𝑛 ← smallest non-zero value in distance

matrix A.
5: [Step 5: Calculate similarity threshold(s)] 𝑇 ← 𝑠 * (𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛).
6: [Step 6: Detect scene frames] Applying scene detection algorithm for the sequence

of video frames using threshold(s) in 𝑇 and a 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 method constructed by
functions 𝐹 and 𝐷 to get a set of scene frames 𝑆.

7: [Step 7: Measure compress rate] 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒← |𝑆|
𝑁

.
8: [Step 8: Measure recall] 𝑟𝑒𝑐𝑎𝑙𝑙 ← 𝑆

′
𝐺

where 𝑆 ′ is the number of scenes in 𝑆 that
belongs to different scenes, and 𝐺 is the number of different scenes in the video
(known ground truth information relating to the video).

9: return (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒, 𝑟𝑒𝑐𝑎𝑙𝑙).
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Algorithm 7.3 takes an input including a video sequence, a feature extraction

function, a similarity distance function, and a scaling factor to learn one threshold

value for the basic scene detection Algorithm 7.1 and two threshold values for the

advanced scene detection Algorithm 7.2. The scaling factor 𝑠 has one positive value

if it is used with Algorithm 7.1 or two positive values if it is used with Algorithm 7.2.

Since 𝐷𝑚𝑎𝑥 and 𝐷𝑚𝑖𝑛 are respectively thelargest and smallest distance between a

pair among all pairs of video frames in a video sequence, this scaling factor 𝑠, as used

in line 5 in Algorithm 7.3, indicates a probably useful proportion of relative differences

between frames to detect different frames out of the video sequence. In other words,

𝑠 * (𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛) can be used to detect the scenes in a video sequence.

After learning the threshold value(s), Algorithm 7.3 evaluates the scene detection

algorithm by comparing to the “ground truth” information regarding scenes in the

video7. Two measures are used to evaluate the performance of a scene detection

algorithm: 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 and 𝑟𝑒𝑐𝑎𝑙𝑙. The 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 measure refers to the

ratio of frames are detected as scene frames. It is defined as:

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 =
total number of detected scene frames

total number of frames
(7.2)

The 𝑟𝑒𝑐𝑎𝑙𝑙 measure expresses the quality of the detected scene frames, which is

the ratio of successfully detected scene frames to the number of scenes. It is defined

as:

𝑟𝑒𝑐𝑎𝑙𝑙 =
total number of detected scene frames belonging to different scenes

total number of scenes in the video
(7.3)

Obviously, a low 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 value and a high 𝑟𝑒𝑐𝑎𝑙𝑙 value are preferred.

Therefore, a balancing measure that combines these two measures are defined:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑟𝑒𝑐𝑎𝑙𝑙 = (𝑟𝑒𝑐𝑎𝑙𝑙 − 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒) * 𝑟𝑒𝑐𝑎𝑙𝑙 (7.4)

A high value of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑟𝑒𝑐𝑎𝑙𝑙 denotes a high performance of the scene detection
7The ground truth information is assumably available with the video dataset. In the experiments,

the “master shot boundary ground truth” of the TRECVid dataset will be used.
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aglorithm.

7.4.2.3 Automatic Threshold Selection Algorithm

This section introduces an automatic threshold selection algorithm for the scene detec-

tion algorithms. This algorithm will iteratively evaluate a scene detection algorithm

by applying it with different feature extraction functions and distance functions and

learning the most effective scaling factor 𝑠 for the scene detection algorithm for a

combination of a feature extraction function and a distance function. The algorithm

is described in Algorithm 7.4.

Algorithm 7.4 initializes several parameter settings including a list of random

videos, a list of feature extraction functions, a list of distance functions, and a list

of scaling factors that will be used for training the scene detection algorithm. This

algorithm returns the most effective scaling factor for each combination of a feature

extraction function and a distance function. These combinations will be used in a

testing process for remaining videos of the dataset as described in the next section.

7.4.3 Performance Evaluation of Scene Detection Algorithms

In this section, the performance of the two scene detection algorithms introduced in

section 7.4 will be studied by using the TRECVid dataset that is described in Table

7.1 in section 7.1.

Algorithm 7.4 will be used with 200 random videos from the dataset to obtain a

trained scaling factor for each scene detection algorithm. Interestingly, the scaling

factors are returned as the same for all combinations of feature extraction and distance

functions, which are 0.1 and (0.05, 0.1) for Algorithm 7.1 and 7.2, respectively.

As a testing process, Algorithm 7.3 will be repeatedly applied with the scaling

factors found above to each combination of feature extraction and distance functions

and each scene detection algorithm. Figure 7-2 shows the performance in terms of the

average 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 and 𝑟𝑒𝑐𝑎𝑙𝑙 of two scene detection algorithms. In this figure,

two sub-figures, Figure 7-2a shows the performance of Algorithm 7.1 and Figure 7-2b
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Algorithm 7.4 Automatic Threshold Selection for a Scene Detection Algorithm
Input: A scene detection algorithm (algorithm 7.1 or 7.2).
Output: The most effective scaling factor for pair of feature and distance functions
for setting threshold(s).

1: [Initialize a list of training videos] 𝑉 𝑆 ← a list of random videos.
2: [Initialize a list of feature extraction functions]

𝐹𝑆 ← [𝐶𝑜𝑙𝑜𝑟, 𝐶𝐸𝐷𝐷,𝐺𝑎𝑏𝑜𝑟, 𝑃𝐻𝑂𝐺,𝐹𝐶𝑇𝐻, 𝐽𝐶𝐷]. ◁ See section
7.3

3: [Initialize a list of distance functions]
𝐷𝑆 ← [𝐿1, 𝐿2, 𝐶𝑂𝑆𝐼𝑁𝐸,𝐶𝐻𝐼_𝑆𝑄𝑈𝐴𝑅𝐸]. ◁ See section 3.3.2

4: [Initialize a list of scaling factors]
5: if algorithm is basic Algorithm 7.1 then
6: 𝑆𝑆 ← [0.05, 0.1, 0.2, 0.3, 0.4, 0.5].
7: else
8: 𝑆𝑆 ← [(0.05, 0.1), (0.1, 0.2), (0.3, 0.4), (0.4, 0.5)].
9: end if

10: [Initialize training dictionary] 𝐵 ← {}
11: for each feature extraction function 𝐹 ∈ 𝐹𝑆 do
12: for each distance function 𝐷 ∈ 𝐷𝑆 do
13: for each scaling factor 𝑠 ∈ 𝑆𝑆 do
14: for each video 𝑣 ∈ 𝑉 𝑆 do
15: [Learn] Learning 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 and 𝑟𝑒𝑐𝑎𝑙𝑙 of the input scene detec-

tion algorithm using Algorithm 7.3 with parameters (𝑣, 𝐹,𝐷, 𝑠).
16: [Combine measures]

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑟𝑒𝑐𝑎𝑙𝑙← (𝑟𝑒𝑐𝑎𝑙𝑙 − 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒) * 𝑟𝑒𝑐𝑎𝑙𝑙.
17: [Store result] 𝐵[(𝐹,𝐷)][𝑠].𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑟𝑒𝑐𝑎𝑙𝑙).
18: end for
19: end for
20: end for
21: end for
22: return (𝐹,𝐷, 𝑠) values so that the corresponding list 𝐵[(𝐹,𝐷)][𝑠] of 𝑠 has the

largest average 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑟𝑒𝑐𝑎𝑙𝑙 value for each key (𝐹,𝐷).

shows the performance of Algorithm 7.2.

Overall, both 𝑟𝑒𝑐𝑎𝑙𝑙, 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒, 𝑟𝑒𝑐𝑎𝑙𝑙 at the worst case measurements of

Algorithm 7.1 based on one threshold are lower than of Algorithm 7.2 based on two

thresholds. While low 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 is desirable, it’s more desired that the 𝑟𝑒𝑐𝑎𝑙𝑙

and 𝑟𝑒𝑐𝑎𝑙𝑙 at the worst case are reasonably high. By this criterion, the scene detection

algorithm, Algorithm 7.2 based on two thresholds seems to be more applicable.
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(a) Performance of the basic scene detection Algorithm 7.1 (scaling factor 𝑠 = (0.1))
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(b) Performance of the advanced scene detection Algorithm 7.2 (scaling factor 𝑠 = (0.05, 0.1))

Figure 7-2: Performance of two threshold-based scene detection algorithms with dif-
ferent settings of feature extraction and distance functions.
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Also in these figures, we can see the poor performance of some combination of

feature extraction and distance functions: “Gabor” (texture) feature and Euclidean,

Manhattan, Cosine and Chi-square distance, and “PHOG” (shape) feature and Cosine

distance. Several explanation for the poor performance returned by texture feature

can be suggested as: (1) the original data was compressed very much causing poor

quality video, (2) the videos were old data in which texture features are not distinc-

tively changing between frames.

Finally, the “CEDD” feature combined with 𝐶𝑂𝑆𝐼𝑁𝐸 distance function using

two-thresholds-based scene detection algorithm is chosen as the best combination for

applying to video data. It has comparative high 𝑟𝑒𝑐𝑎𝑙𝑙, even in worst-case scenarios

and has reasonably low 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑟𝑎𝑡𝑒. This setting will be applied for detecting key

frames of the Movie dataset, which will be used intensively in section 7.5 to study the

performance of the proposed Bamboo Forest database model and search algorithms.

7.5 Experiments on Frame-wise Video Search Sys-

tem

7.5.1 Video Indexing

Using the experimental results and observations in section 7.4, the advanced scene

detection Algorithm 7.2 is used to extract scene frames for each video in the movie

dataset (described in 7.1), with the 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 function is constructed using a com-

bination of 𝐶𝐸𝐷𝐷 feature extraction function and Cosine distance function. The

threshold values for Algorithm 7.2 are learnt by using Algorithm 7.3 with scaling

factor 𝑠 = (0.05, 0.1). The number of extracted scene frames and compress rate are

already shown in Table 7.1.

The detected scene frames for the movie dataset will be divided into six subsets

which include 10,000 frames, 50,000 frames, 100,000 frames, 200,000 frames, 300,000

frames, and 485,000 frames and construct the respective database for each using the

indexing method as introduced in chapter 4. The six databases are named “10k”, “50k”,
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“100k”, “200k”, “300k”, and “500k” respectively. Table 7.3 shows the six databases

and their file counts and on-disk storage size. Without applying any compression

technique on inverted indices, the size of database is relatively large. However, it is

assumed that that can be ignored at present time. Firstly, it is because the price of

disk memory is cheap comparing to working memory. Secondly, it’s because given a

query, there is only a small part of this database will be loaded into memory for a

search process.

Table 7.3: Six databases constructed from the Movie dataset and their file counts and
storage size.

Database # .pi file # .meta file # .t files Size of database

10k 1 1 667 105M

50k 1 1 667 517M

100k 1 1 667 1.0G

200k 1 1 667 2.0G

300k 1 1 667 3.0G

500k 1 1 667 4.9G

7.5.2 Setting of Baseline and Test Process for Search Algo-

rithms

7.5.2.1 Setting of Test Process

The test process for each search algorithm proposed in chapter 5 including Maxfirst

search, Combinatorial search, and Exact-match search algorithms are shown in pro-

cedure 7.5. Each test process will be conducted on two computers whose benchmarks

can be found in Table 7.2.

In this test process, each algorithm will be evaluated for different database with

increasing size and different settings of its parameters. The baseline for the evaluation

is the search results by a brute force search algorithm (algorithm 7.6) and the measure

for the performance is the 𝑅-precision which will be described in the following sections.
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Algorithm 7.5 Test Process for a Search Algorithm
Input: A search algorithm
Output: A dictionary of search performance with different keys as setting
parameters.

1: [Step 1: Reboot the test system]Reboot the computer.
2: [Step 2: Initialize a list of databases]

𝐷𝐵𝑆 ← [10𝑘, 50𝑘, 100𝑘, 200𝑘, 300𝑘, 500𝑘].
3: [Step 3: Initialize a list of feature types]

𝐹𝑆 ← [𝐶𝑜𝑙𝑜𝑟, 𝐶𝐸𝐷𝐷,𝐺𝑎𝑏𝑜𝑟, 𝑃𝐻𝑂𝐺,𝐹𝐶𝑇𝐻, 𝐽𝐶𝐷]. ◁ See section
7.3

4: [Step 4: Initialize a list of search time limits]
5: if search algorithm is NOT Exact-match search algorithm then
6: 𝑇𝑆 ← [0.1, 0.5, 1, 2, 3, 5].
7: else
8: 𝑇𝑆 ← [].
9: end if

10: [Step 5: Initialize result dictionary] D← {}
11: for each 𝑑𝑏 ∈ 𝐷𝐵𝑆 do
12: [Step 6: Generate random queries] 𝑄𝑆 ← 50 random 𝑟𝑖𝑑 in the database.
13: [Step 7: Repeatedly evaluate search performance]
14: for each 𝑓 ∈ 𝐹𝑆 do
15: for each 𝑡 ∈ 𝑇𝑆 do
16: for each 𝑞 ∈ 𝑄𝑆 do
17: Applying the search algorithm with input parameters (𝑞, 𝑡, 𝑓, 𝑑𝑏) to

get the result list 𝑅𝐿.
18: Calculating the 𝑅-precision 𝑝 (equation 7.5) by comparing 𝑅𝐿 with

the results returned by the brute force search algorithm (algorithm
7.6) with input (𝑞, 𝑓, 𝑑𝑏).

19: D[𝑑𝑏][𝑡].𝑎𝑝𝑝𝑒𝑛𝑑(𝑝).
20: end for
21: end for
22: end for
23: end for
24: return D.

It is to note that in the test process 7.5, several feature types 𝐹𝑆 is used for each

test. For each feature type 𝑓 ∈ 𝐹𝑆, it can be converted to a preference vector using

the reference dictionary in a .meta file in the corresponding database as described in

section 4.2.1.3.

Since a Bamboo Forest database is stored on disk, it is needed to reboot the

computer system that implements the search algorithms every time conducting a
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performance test. For more precise tests, some other memory cleansing techniques

can be applied.

7.5.2.2 Baseline Setting

The top 20 results returned by a brute force algorithm will be used as the baseline

for a query search. The brute force algorithm used in this thesis is designed to be

compatible with the Bamboo Forest database model as shown in Algorithm 7.6.

Algorithm 7.6 Brute Force Search Algorithm
Input:

∙ A query vector 𝑞 ∈ R𝑑
+;

∙ A Bamboo Forest database B that indexes a dataset X ⊂ R𝑑
+;

∙ A preference vector 𝑝 ∈ R𝑑
+ such that 𝑝𝑖 = 1 if 𝑖-th feature is preferred and

𝑝𝑖 = 0 otherwise.

Output: Top 𝑅 ranked relevant 𝑥 ∈ X.

1: [Step 1: Reflect content preference onto query] Set 𝑞 ← 𝑞 ⊙ 𝑝 where ⊙ is the
elementwise multiplication or Hadamard product.

2: [Step 2: Repeatedly calculating relevance scores]
3: List of results C← {}
4: for each 𝑑𝑎𝑡𝑎𝑏𝑙𝑜𝑐𝑘 in .pi file of database B do
5: Target vector 𝑥← feature vector from 𝑑𝑎𝑡𝑎𝑏𝑙𝑜𝑐𝑘.
6: score = relevant(q , c ⊙ p)
7: Update C with (𝑥, score)
8: Sort C by a descending order of scores.
9: end for

10: return Top 20 of C.

In Algorithm 7.6, when searching for “similar” or “exact”, the relevant similar-

ity will be calculated by the Cosine similarity. In this case, the candidates will be

ranked by an ascending order of scores. But when search for “dominant”, the sum of

corresponding prioritized features are calculated as relevance scores and the ranks of

candidates will be on a descending order of those scores.

For each database, a list of 50 frames are randomly selected as input images. For

each input image, and each feature extraction function for six feature types (section
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7.3), the brute force algorithm is applied to obtain the top search results. In total,

we have 50 * 6 = 300 queries for each database.

7.5.2.3 R-precision Criterion for Measuring Search Performance

The ‘𝑅-precision’ will be used to measure the quality of a search algorithm. The

definition of 𝑅-precision is as follows: “For a given query topic 𝑄, 𝑅-precision is the

precision at 𝑅, where 𝑅 is the number of relevant data for 𝑄. In other words, if there

are 𝑟 relevant frames among the top-𝑅 retrieved frames, then 𝑅-precision is 𝑟
𝑅
” [131].

In the test process (Algorithm 7.5), if the top 20 search results, 𝐵𝐿 (where |𝐵𝐿|=

𝑅 = 20) of the brute force algorithm given a query are used as a baseline, the testing

search algorithm returns a list 𝑅𝐿 of 20 results then:

𝑅-precision =
|𝐵𝐿 ∩𝑅𝐿|
|𝐵𝐿|

* 100(%) (7.5)

It is to note that the 𝑅-precision is highly correlated to the well-known mean

average precision (𝑀𝐴𝑃 ) as discussed by Christopher et. al [132].

7.5.3 Running Time and Confidence of Finding an Exact Match

In this experiment, we examine the running time of our Exact-match algorithm at dif-

ferent settings of database size and number of prioritized features used (#𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =

{2, 5, 10, 𝑎𝑙𝑙}). Since the default number of result of the Exact-match algorithm is

only one (𝑅 = 1), instead of using 𝑅-precision, an “average confidence” measure,

which is defined as a measure of the percentage when the algorithm returns a right

exact match, will be used.

The results are shown in Figure 7-3. In this figure, we can see the correlation

between the average search time and the data size and the correlation between the

number of prioritized features and the average time and average confidence. It is not

surprising that when all features are used, the Exact-match search algorithm returns

a result with 100% confidence that it is the exact match. Although the search time

is high and increases proportionally to the data size, it is reasonably low (about 0.15
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Figure 7-3: Performance of the proposed Exact match search algorithm by different
data sizes and settings of number of prioritized features.

second).

Table 7.4 shows the average number of non-zero features of a query which is used

as prioritized features at the default search mode (𝑚 =
∑︀𝑑

𝑖 ⌈𝑞𝑖⌉ × 𝑝𝑖 in Algorithm

5.3). In this case, 𝑚 is the number of features with positive values for each query. In

other words, these values of 𝑚 are the ones that guarantee returning exact match with

confidence of 100%. It is to see in this table, as 𝑑 increases, 𝑚 decreases, meaning

the number of positive features decreases as the number of dimensions increases.

On the other hand, we can reduce the average search time by using a smaller

number of prioritized features (let 𝑚 denote this number) although if applying this,
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Table 7.4: Average number of prioritized features 𝑚 at default search mode.

Feature type PHOG Gabor Color CEDD JCD FCTH
Number of features (𝑑) 40 60 63 144 168 192
Average 𝑚 (10k databse) 40 60 34.84 28.68 33.24 16.52
Average 𝑚 (50k databse) 40 60 36.24 28.42 34.1 17.14
Average 𝑚 (100k databse) 40 60 36.56 28.64 33.52 18.02
Average 𝑚 (200k databse) 40 60 36.14 29.4 34.98 17.76
Average 𝑚 (300k databse) 40 60 31.54 26.44 30.42 15
Average 𝑚 (500k databse) 39.2 58.8 33.22 26.56 30.38 15.12

the returned result can only be guaranteed to be the right match with some proba-

bility. When 𝑚 = 2, which is the lower bound of 𝑚 in the Exact-macth algorithm

(algorithm 5.3), we see the average search time is very low and stable regardless of

data size. However, the average confidence is only about 60%.

As 𝑚 increases, the average search time increases but also the the average con-

fidence. When 𝑚 = 5 and 𝑚 = 10, we see that the average confidences are almost

the same (slightly higher in the case 𝑚 = 5) but the average search time are quite

different, especially when the size of data is large (the number of data is greater than

300,000).

7.5.4 Comparative Search Time and Precision versus Data

Size

In this second experiment, we compare the average search time for one query and the

average R-precision of the proposed Combinatorial search algorithm with the brute

force algorithm, and two spatial tree algorithms (KD-tree [133] and Ball-tree [79]) and

a hashing algorithm (Local sensitive hashing (LSH) forest [134]) for different sizes of

data8. The result is shown in Figure 7-4.
8(1) KD-tree, ball-tree and LSH forest algorithms are implemented using scikit learn nearest

neighbors modules. Source: http://scikit-learn.org/stable/modules/neighbors.html. (2) For large
data sets, the maximum recursion limit of a tree algorithm can be exceeded, therefore set it before
running to 10,000.
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Figure 7-4: Comparative average search time and R-precision of the Combinatorial
search algorithm to other search algorithms with increasing size of data.
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In Figure 7-4a, the KD-tree and LSH forest algorithms response remarkably quick

(less than 0.5 second for all databases), however, their precisions as in Figure 7-4b are

also noticeably poor: less than 50% (LSH forest) or about 70% (KD-tree). On the

contrary, Ball-tree algorithm obtains very high precision (Figure 7-4b) but responses

comparatively as the brute force algorithm (Figure 7-4a).

In figures 7-4a and 7-4b, we can see the proposed Combinatorial search algorithm

responses with reasonably high precision and short average search time. Although the

average search time proportionally increases as the size of data increases, comparing

to Ball-tree and brute force algorithms, this search time is fairly acceptable. It is to

note that the response time of the Combinatorial search algorithm can be controlled

by setting a time limit for it. In Figure 7-4a, the average search time is set so that

the corresponding precision in Figure 7-4b is above 90%.

7.5.5 Precision of Combinatorial Search Algorithm

The third experiment examines the performance of our proposed Combinatorial search

algorithm running with different settings of number of prioritized features (𝑚) and

response time limits and database size. The results are shown in Figure 7-5. In

this figure, the overall precision drops as the size of database increases but gradually

obtains reasonable precision as the limit time increases.

By comparing the average precision by different settings of 𝑚, we can see that a

larger 𝑚 does not return better precisions. It is because when 𝑚 is large, the algorithm

have to look for the candidates from more number of feature indexes, which can be

useful until a some value of 𝑚. As we can see in Figure 7-5, when increasing 𝑚 from

5 to 10, we obtain some better precisions for large databases (“300k” and “500k”) but

not when 𝑚 is larger than 15.

Apparently the performance of the Combinatorial search algorithm is affected by

the I/O access speed as shown in Figure 7-6. In this figure, the queries are set with

𝑚 = 10 and done on two computers as described in section 7.2.2. The details of

benchmarks for I/O performance of the two computers are in Table 7.2 in section

7.2.2. Figure 7-6 shows that the search algorithm is likely effected by the I/O access
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Figure 7-5: Precision of the proposed Combinatorial search algorithm by different
response time limits, number of prioritized features, and data size.

speeds to the Bamboo Forest databases stored on storage devices. Averagely, the

performance on the laptop computer which configures the databases on a SSD device

yields about 10% higher in average 𝑅-precision. Based on the benchmarks of the

two computers in Table 7.2, in which the desktop computer has nearly six times

in terms of CPU power (GFlops) than the laptop, however, its random read/write

performances are about 33 times less than of the laptop, it is reasonable to conclude

that the performance of the Combinatorial search algorithm can be improved by

implementing the databases on faster I/O storage devices.
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Figure 7-6: Performance of the proposed Combinatorial search algorithm imple-
mented on two computers with different CPU and IO-access speeds.

7.5.6 Precision of Maxfirst Search Algorithm

In this experiment, the performance of the proposed Maxfirst search algorithm will

be examined by setting its parameters with various values of response time limits,

numbers of prioritized features, and size of data indexed in Bamboo forest databases.

The response time limits are 0.1, 0.5, 1.0, 2.0, 3. 0, and 5.0 seconds. The number

of prioritized features (𝑚) is one from the set (#𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = {2, 5, 10, 15}). The

databases are as described in Table 7.3.

The result using R-precision measurement in this experiment is shown in Figure

7-7. In this figure, the proposed Maxfirst search algorithm performs more stable and
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Figure 7-7: Average precision of the proposed Maxfirst search algorithm by different
settings of number of prioritized features, data size, and response time limits.

efficient when the number of prioritized features (𝑚) is small or the limited response

time is large. As 𝑚 increases, the average precisions decrease and apparently correlate

to the size of data and the limited response time. This can be explained by the sparse

distribution of the values of features when the number of features are large, meaning

the “dominant” characteristics are lost and shared by many dimensions.

When 𝑚 is small, increasing time limit does not necessarily increase the precision

unless the time limit is set to infinite and in this case the Maxfirst search algorithm

works equivalently as a brute force algorithm. However, when 𝑚 is large, increasing

time limit can increase the precision up to some limits.
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7.5.7 Revisiting Complexity of Search Algorithms

In this section, we revisit the theoretical complexity analysis of three search algorithms

which is discussed in section 5.4 of chapter 5 by empirical experiments. The average

number of retrieved candidates for a setting of a fixed number prioritized features

(𝑚 = 5), a feature type (Color) and varying data size and search time limits will be

used as the representative values for complexity.

Figure 7-8 shows the results for the Combinatorial search algorithm. There are

two subfigures in this figure: a subfigure, Figure 7-8a shows the average time to

retrieve first candidates by increasing data size and a subfigure, Figure 7-8b shows

the average number of retrieved candidates on each database of different data size by

different time limits.

Figure 7-8a has two curves that describe the time measured on the laptop and

desktop computers. Both curves indicate a log-like behavior that confirms the com-

plexity 𝑂(𝑚 log𝑁) to retrieve first candidates as discussed in section 5.4.

Figure 7-8b shows three important points: (1) “flat” heads for small time limits

indicates the cost to open the feature index files and find the first candidates, (2) the

linearly proportional to the time limits at the middle, and (3) the “flat” tails again,

which indicate all records in each index file are already retrieved. Also in this figure,

we can see the “flat” head becomes longer as the size of data increases. This is due

to the 𝑚 log𝑁 factor in the complexity 𝑂(𝑚 log𝑁 + 𝐶). Moreover, the line of a

database with a small size is higher in the plot comparing to other databases with

bigger size databases. This can be explained as the number of 𝐶 retrieved for a fixed

time limit descreases due to 𝑚 log𝑁 factor in the complexity 𝑂(𝑚 log𝑁 + 𝐶).
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(a) Confirming 𝑂(𝑚 log𝑁) complexity of Combinatorial search algorithm to retrieve first
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(b) Complexity of the proposed Combinatorial search algorithm based on average retrieved
candidates: “flat heads” due to 𝑂(𝑚 log𝑁), linear area 𝐶 by increasing response time limits,
and saturated “flat tails” due to data size. (Run on the desktop computer.)

Figure 7-8: Confirming 𝑂(𝑚 log𝑁+𝐶) complexity of Combinatorial search algorithm.
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(b) Complexity of Maxfirst search algorithm based on average retrieved candidates: “flat heads” due

to 𝑂(𝑚), linear area (corresponding to 𝐶) by increasing response time limits, and saturated “flat tails”

due to data size. (Run on the desktop computer.)

Figure 7-9: Confirming 𝑂(𝑚 + 𝐶) complexity of the proposed Maxfirst search algo-
rithm.
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Similarly, Figure 7-9 shows the confirming results for the proposed Maxfirst search

algorithm. There are two subfigures in this figure: a subfigure, Figure 7-9a shows the

average time to retrieve first candidates by increasing data size and a subfigure, Figure

7-9b shows the average number of retrieved candidates on each database of different

data size by different time limits.

Figure 7-9a has two lines that describe the time measured on the laptop and

desktop computers. Both lines indicate a linear-time behavior that confirms the

complexity 𝑂(𝑚) factor in the 𝑂(𝑚+𝐶) of the Maxfirst search algorithm to retrieve

first candidates as discussed in section 5.4.

Similar to Figure 7-8b, Figure 7-9b shows three important points: (1) “flat” heads

for small time limits indicates the cost to open the feature index files and find the first

candidates, (2) the linearly proportional to the time limits at the middle, and (3) the

“flat” tails again, which indicate all records in each index file are already retrieved.

However, the most noteworthy attribute in this figure comparing to Figure 7-8b is

the heads of the lines. They are not as “flat” as in Figure 7-8b which corresponds

to the Combinatorial search algorithm. However, there is still a dramatical changes

in each line in Figure 7-9b. It is likely due to the page caching of the Linux system

on which the experiment was tested. As described in Algorithm 7.5, rebooting the

computer was done only once before running the program for this experiment but not

everytime the program tries to access the database. As a consequence, it is likely that

the “sudden changes” at result lines in Figure 7-9b were because the corresponding

database files have been cached mostly to the memory. The size of databases are

in Table 7.3. A more accurate experiment regarding this “phenomenon” is left as a

future work. Nonetheless, the results in Figure 7-9 reasonably confirm a complexity

𝑂(𝑚 + 𝐶) of the proposed Maxfirst search algorithm.

Figure 7-10 shows both the average number of retrieved candidates (𝑦-axis) and

average search time (𝑧-axis) for different sizes of data. In this experiment, the default

search mode for configuring the number of prioritized features (𝑚 =
∑︀𝑑

𝑖,⌈𝑞𝑖⌉=1 𝑞𝑖 × 𝑝𝑖

in Algorithm 5.3) is used. As shown in Table 7.4, the average value of 𝑚 is 34.

In Figure 7-10, we can see the complexity of the Exact-match search algorithm
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Figure 7-10: Confirming 𝑂(𝑚 log𝑁 + 𝐶) complexity of the proposed Exact-match
search algorithm using average number of retrieved candidates (complexity analysis
in section 5.4).

depends on the data size (𝑁) in a 𝑙𝑜𝑔-like relation. This figure also shows that the

number of candidates needed to be retrieved to induce an exact match for the query

increases as the data size increases. This is referred to the factor 𝐶 in the complexity

analysis of the algorithm of 𝑂(𝑚 log𝑁 + 𝐶) as shown in Table 5.2.

Comparing the average number of retrieved candidates in figures 7-8b and 7-9b

to Figure 7-10, we see that the number of retrieved candidates to find exact-match

candidates is greatly less. This indicates the factor 𝐶 in the Maxfirst search and

Combinatorial search algorithms affect the complexity more than in the Exact-match
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search algorithm.

Based on the above experimental results on complexity of the proposed search

algorithms, we can see that there exists some lower bounds for response time limits

due to configuration and file access and some values at which the search algorithms

gain a steep “linear” performance. These values are shown in Figure 7-8b and Figure

7-9b.

7.5.8 Discussion

The previous sections have discussed the performance evaluation of the proposed

search algorithms by several settings of their parameters. It is not surprising that in

all three search algorithms, increasing the time limits gains better precisions. How-

ever, it is interesting to notice that the choice of the number of prioritized features

(𝑚) is critical in order to avoid redundant computations while aiming for higher

performance.

7.5.8.1 Interesting Choices of 𝑚

In the case of exact match finding (using the Exact-match search algorithm), if the

goal is to find the guaranteed right answer (100% confidence), then 𝑚 should not

be chosen less than the number of features that the content preference indicates. In

other words, all dimensions in the selected subspace will be used. However, if the goal

is to find the right answer with some (high) probability and in a short time, then 𝑚

can be set for a value not very low or high. Figure 7-3 shows 𝑚 = 5 is a reasonable

setting.

In the same way for similar matches finding (𝑘-NN problem) using the Combi-

natorial search algorithm, a low or high value set for 𝑚 does not gain the higher

performance. Figure 7-5 shows 𝑚 = 10 is a reasonable setting.

On the contrary, the Maxfirst search algorithm performs stably when 𝑚 is low

and when 𝑚 is high, it can only gain higher precision with higher settings for time

limits.

130



7.5.8.2 Analysis of Bad Search Cases

This discussion focuses on the question “When do the proposed algorithm suffer?”. A

typical bad case is intuitively shown in Figure 7-11.
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Figure 7-11: A typical bad case of the proposed heuristic search strategy in which
the searching process wastes time at “local” candidates.

Figure 7-11 shows a query point (the big red point) and many other target data

points (red and blue points) in two-dimensional space. The query point has 𝑥-axis

value larger than 𝑦-axis value, therefore the 𝑥-axis is prioritized higher than the the

𝑦-axis. A search process based on a heuristic search strategy described in section 3.1

will start checking the candidates which has 𝑥-axis value close to the 𝑥-axis value

of the query point. In this case, those candidates are the red points. Intuitively,
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the actually distances from the query to those data points are larger than to some

blue data points. In other words, the search process wastes time at some “local”

candidates.

This kind of bad cases is supposed to happen in several special situations: (1) the

size of dataset increases, (2) there are two many duplicated data in the dataset, or

(3) there are non-discernible features used for representing data.

The degree of a proposed search algorithm suffering from this “local candidate”

phenomenon depends on the distribution of data on the search space. However, it is

likely that the Maxfirst search algorithm will suffer more than other two algorithms.

7.5.8.3 Comments on Indexing Time and Size of Databases

The final comment is regarding to the indexing time and size of indexed databases.

In section 7.5.4, only the average search time per query of each algorithm was used

to compare the performance of the proposed Combinatorial search with other search

algorithms. It is to note that the brute force algorithm performs similarity directly on

the data without any pre-indexed database. KD-tree, Ball-tree and LSH forest search

algorithm index the data into their defined data structures (in-memory database) and

query for results on those database. The indexing time for each algorithm for each size

of data was not counted in the search time. Likewise, the proposed search algorithm

works with the pre-indexed disk-resident databases and the index time was not taken

into account. The storage size of the databases have also not yet concerned.
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Chapter 8

Discussion and Conclusion

Intelligence does not always define

wisdom, but adaptability to change

does.

Debasish Mridha

There has never been like the world we are now living in. Everything is changing

so fast, so diversely. “Preferences” of users have become essential factors in computing

models and are put at the center of the design for new technologies as well as new

services. As a consequence, the “adaptability” has gained many attentions in research

fields as an important evaluation measure of a computing system.

This thesis addresses the dynamic adaptability of a multimedia search system

to the contexts of its users by proposing a new query creation and search system.

The system aims to give an integrated solution for three-pillar search problem which

includes (1) the emergence of multimedia data to many large scales, (2) the varying

contexts of users at query time, and (3) the computing complexity. By explicitly

defining three distinctive contextual aspects of user preferences, the proposed system

is a yet straightforward but powerful indexing and search system for multimedia data.

The dynamic contexts vary from the imaginations of the users expressed in the

queries to their expectations to the results returned by the search system including

their desire to control the response time of each search. In such contexts, the pruning
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search mechanism shows its attractive adaptability. For example, to search by dom-

inant features of the input image, the Maxfirst search algorithm is the most proper

due to its intrinsic characteristic when searching for candidates. On other hand, the

Combinatorial search algorithm targets for similars searching with capacity to con-

trol the response time. The Exact-match search algorithm using an ingenious idea

of covering rectangles to find perfectly matched candidates. It has been shown by

experiments in the previous chapter that those changing expectations of querying and

searching can be done effectively without changing the structure of database, meaning

on a same indexed database. This is the essential difference to other approaches to

the adaptability and high performance of a search system.

The next sections will discuss the applicability of the multicontext-adaptive query

creation and search system and conclude this thesis by some major research findings.

8.1 Applicability of the Multicontext-adaptive Query

Creation and Search System

The proposed multicontext-adaptive query creation and search system can be used as

a general content-based multimedia search system. However, some representatively

specific applications can be designed such as an imagination-based image search ap-

plication, a frame-wise video navigation application, and a video monitoring and ana-

lyzing application. Table 8.1 describes some representative use cases of the proposed

query creation and search system.

8.1.1 Imagination-based Image Search Application

The imagination-based image search application is the most suitable to the task of

exploring visual art archives where colors are greatly important in conveying ideas,

impression, and emotions. By using the hierarchical color sampling method discussed

in section 6.2, it is possible to index the complex information of hue, saturation, and

intensity values of colors into a systematic structure that can be used for later querying
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Table 8.1: Some representative use cases of the multicontext-adaptive query creation
and search system.

Representative
application

Representative
task

Sample users Applicable
methods

Imagination-
based image
search

Exploring visual
art space by colors

Art students, art
professionals

Adaptive color-
based query
creation func-
tions (section 6.3),
adaptive search al-
gorithms (chapter
5)

Frame-wise video
navigation

Navigating to rel-
evant frame loca-
tions in videos

General video
search users, film
editors

Combinatorial
search, Exact-
match search al-
gorithms (sections
5.2-5.3)

Surveillance
video monitoring
and analyzing

Monitoring and
alerting environ-
mental situations

Building man-
agers, environ-
mentalists

Adaptive color-
based query
creation func-
tions (section 6.3),
Maxfirst search
algorithm (section
5.1)

using colornames in natural languages. The adaptive color-based query creation in

section 6.3.2 supports a query of both a keyword and an input image to discover the

colorful space of visual art. This combination of words and input images is useful

since the shade of colors are often greatly delicate and hard to express or recall when

searching for images. Instead of searching for a general image with a “blue” color

which is not refined enough, using an input image which has the desired colors and

inputing a keyword “light blue” suggesting an imagination of the result images that

contain these “light blue” color.

Furthermore, the supporting functions for combining subspaces of adapted colors

which are described in section 6.3.3 are rather advantageous. By using them, it

is possible to dynamically express the imagination of the result images which are

helpful when finding new visual information in the visual space. For an art student

or professional, this can also helpful in finding a useful combination of colors to create
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a painting palette for practice.

8.1.2 Frame-wise Video Navigation Application

This application is used for the representative task: navigating users to relevant frame

locations in long duration videos which are similar to the objects of interest in the

input image. It is obviously useful to general end-users of a video search system

since such a system is not yet existing in practice. Moreover, it can also be thought

helpful for film editors when they need to find relevant materials from a list of videos

for demonstration. In such scenarios, the users can input an image which contains

the interested objects regarding their color, shape, or texture to find similar objects

that appear somewhere in the videos. The proposed Combinatorial and Exact-match

search algorithms (Algorithms 5.2 and 5.3) are the most suitable to find the answers

in these search scenarios.

8.1.3 Video Monitoring and Analyzing Application

The Maxfirst search algorithm (Algorithm 5.1) presents a new type of search for

information. Unlike conventional search problem which is often searching for “similar”,

the Maxfirst search algorithm conducts a search for substances which has “dominant”

features. This kind of retrieval tasks emerges representatively in monitoring and

analyzing tasks such as video surveillance.

A manager of a building, for example, wants to check when and where the room

temperature is coolest or hottest. She or he can use the adaptive color indexing in

section 6.2 to index the thermal colors of video frames with several levels from “cool”

to “hot”, then apply the Maxfirst search algorithm to find the relevant information.

This representative task is demonstrated in Figure 8-1. In this figure, subfigure 8-

1a shows when the room is “cold” sorted by the coldness of the room temperature

represented by the proportion of more vivid blue colors. Comparatively, subfigure

8-1b shows when the room is the “hot” by a order of timeline.
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Query:

cold

Results:

MDBL	2016-08-08	10:39:02

score:	0.969

MDBL	2016-08-08	10:28:52

score:	0.947

MDBL	2016-08-08	11:11:40

score:	0.928

MDBL	2016-08-08	11:11:45

score:	0.922

MDBL	2016-08-08	11:29:10

score:	0.914

MDBL	2016-08-08	11:02:23

score:	0.913

MDBL	2016-08-08	11:02:53

score:	0.909

MDBL	2016-08-08	10:57:30

score:	0.895

MDBL	2016-08-08	11:03:54

score:	0.891

MDBL	2016-08-08	11:07:39

score:	0.890

MDBL	2016-08-08	10:50:03

score:	0.888

MDBL	2016-08-08	11:30:47

score:	0.886

MDBL	2016-08-08	10:45:51

score:	0.885

MDBL	2016-08-08	11:13:50

score:	0.884

MDBL	2016-08-08	10:40:29

score:	0.878

MDBL	2016-08-08	10:50:45

score:	0.877

MDBL	2016-08-08	11:31:29

score:	0.876

MDBL	2016-08-08	11:27:00

score:	0.872

MDBL	2016-08-08	11:12:12

score:	0.872

MDBL	2016-08-08	11:23:27

score:	0.869

(a) Navigating to relevant frames and sorting by relevance scores to the input context “cold”

Query:

hot

Results:

MDBL	2016-08-08	10:27:32

score:	0.108

MDBL	2016-08-08	10:27:37

score:	0.133

MDBL	2016-08-08	10:28:16

score:	0.145

MDBL	2016-08-08	10:28:25

score:	0.168

MDBL	2016-08-08	10:39:09

score:	0.196

MDBL	2016-08-08	11:04:47

score:	0.119

MDBL	2016-08-08	11:15:30

score:	0.154

MDBL	2016-08-08	11:15:35

score:	0.221

MDBL	2016-08-08	11:15:41

score:	0.165

MDBL	2016-08-08	11:15:47

score:	0.323

MDBL	2016-08-08	11:16:02

score:	0.281

MDBL	2016-08-08	11:16:17

score:	0.261

MDBL	2016-08-08	11:16:23

score:	0.141

MDBL	2016-08-08	11:17:22

score:	0.108

MDBL	2016-08-08	11:17:50

score:	0.170

MDBL	2016-08-08	11:18:49

score:	0.282

MDBL	2016-08-08	11:19:08

score:	0.186

MDBL	2016-08-08	11:19:21

score:	0.161

MDBL	2016-08-08	11:20:09

score:	0.137

MDBL	2016-08-08	13:54:53

score:	0.126

(b) Navigating to relevant frames and sorting by timestamps regarding the input context

“hot”

Figure 8-1: A demonstration of an environmental monitoring application with
context-adaptive querying.
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8.2 Summary of Research Findings

The following list summarizes the major findings in this thesis:

∙ Context-dependent Query Formulation: The experiments on the context-

dependent image search system using color features show that by indexing color

features of image data systematically so that they can be appropriately selected

to construct subspaces for search algorithms, the “curse of high dimensional-

ity” can be alleviated. Moreover, it can yield more powerful consequences: (1)

preserving delicate contents of image data, (2) achieving higher precisions, and

(3) providing capability to combine and manipulate subspaces to reflect users’

content preferences that are expressed in either natural language words or imag-

ination.

∙ Multicontext-adaptive Search Pruning Mechanism: The proposed search

mechanism that including three search algorithms is studied intensively using

the frame-wise video navigation system. The experiments show the effective-

ness of the heuristic search strategies based on value-sorted inverted indices in

the Bamboo Forest database model. The search algorithms can obtain com-

paratively high precisions in a relative low response time comparing to other

state-of-the-art methods including tree-based and hashing methods. The exper-

iments also show the scalability of the system for large-scale datasets. Beyond

that achievement, it is shown the advantages of using independent indices to

construct disk-resident database in providing more dynamic controls over users’

contextual preferences including content, intention, and response time.

8.3 Open Questions in Future Work

The previous chapters in this thesis have described the essence of the multicontext-

adaptive query creation and search system but there are still many adaptations,

improvements, and tests have been left for the future. Future work concerns more

refined design implementation of the proposed indexing and search algorithms to yield
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more efficiency and deeper analysis of applications of the proposed system. At the

same time, some new questions are to be asked based on the work in this thesis, which

suggest some future research directions.

The following sections introduce some ideas.

8.3.1 Improvement of Indexing and Search Methods

The current design of the Bamboo Forest database model has not yet supported

deletion of records from an indexed database. Moreover, some further studies such

(1) index compression in order to reduce the storage size of a Bamboo Forest database

and (2) fast access to index including memory buffering or page caching are expected.

Regarding search algorithms, it is a potential direction to investigate a parallel

search process on each prioritized feature when finding candidates. This is supposed

to improve the performance of the search algorithms (or is it not? ). In addition, a

further work on how to avoid wasting time in local candidates as discussed in section

7.5.8.2 would be both interesting and important.

8.3.2 New Questions

Is there any new type of “contexts” of users that a search engine can (or should) adapt

to? Can the proposed search mechanism adapt to such contexts? And how?

This thesis defines and uses three types of contexts of users to organize an adaptive

search process: content, intention, and response time. But an eager and curious

audience would doubt if there is more. The answer is, obviously, yes. A simple

example of content-related context can be: “I want to search for video frames similar

to this image in the last 10 days.”1

The question is yet so simple and reasonably useful but also challenging to the

current indexing and search methods to get a desired performance. It reveals a range

of problems: context-based filtering. The intuition for this type of problems is shown

in Figure 8-2.
1Thanks Professor Yoshiyasu Takefuji for raising this question.
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Figure 8-2: New questions in future work: (1) how to express more complex contexts
(shown as the “context-based filtered area”) and (2) how to quickly find candidates
with respect to this filter (quickly find the intersecting area without checking the
whole “candidate area”.)

In Figure 8-2, a new context (e.g., “in the last 10 days”) is treated as a filter to

limit the desired candidates into a complicated polygon, while the search mechanism

proposed in this thesis (chapters 3 and 5) expands the area of candidates based on

orthogonal dimensions (a rectangle). How can we quickly find the candidates in the

intersected area without wasting time checking unrelated candidates? One potential

solution for this question is to organize the indices of the current Bamboo Forest

database model using a spatial partition methods if given a new well-defined context.

Final comment It is an exciting future to discover the answers to those questions

and to explore the new territory of dynamic context-based query creation and search

methods.
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