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Abstract
The provision of augmented motion information is a new research problem with increasing
relevance for motor skill acquisition and performance analysis in sports. Focusing on mobility
and usability, this thesis demonstrates how to obtain intelligent, computer-directed motion
information for diverse recipients from the measurement data of inertial sensor devices.
Methods for the implementation of respective motion information systems were developed
and put into use within an original data analysis framework. This framework was based on
four principal procedural stages and largely consisted of signal processing methods for the
inertial sensor data and machine learning methods for the recognition of motion activity.
First, numeric motion data for subsequent machine data processing was collected using
inertial measurement devices. Second, the information content of the acquired motion data
was augmented to provide accurate and reliable kinematic motion information. Third, the
augmented data was transformed so that meaningful data representations were created.
Lastly, biological or artificial motion knowledge was utilized to enable the retrieval of relevant
motion properties and its subsequent provision to the user. Every computational stage
required sophisticated algorithms that were illustrated with practical motion data from
rehabilitation, ski jumping and every day motion actions. The latter processing steps were
furthermore designed under two variant sample applications: the provision of auditive
feedback by means of movement sonification and the provision of performance scores
by means of motion evaluation. To date, no other work is known that would have used
computational methods on actual sport motion data in a similarly universal, yet applicable
way. Therefore, this work constitutes an important contribution to the future implementation
of motion analysis and training software tools that support multiple aspects of a motion
performance. Especially for judging-based sports, the presented intelligent style assessment
could provide fundamental and unique information to increase objectivity and measurability
of the final competition scores.

Key words: computational motion analysis, augmented motion feedback, body sensor net-
works, inertial motion capturing, motion signal processing, motion information retrieval
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Part IWhat is Inertial Sensor Based
Motion Information?
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1 Introduction

Improvement of the own performance and possibilities is an important motivation for most
sportsmen and can also be economically important to professional athletes. Consequently,
much effort is made to create an ideal training environment. One important component of
motor performance optimization is the process of learning how to execute a motor task in
the best and most efficient way, referred to as motor learning and motor skill acquisition.
Especially for complicated motor tasks, motor learning is a very essential neural process
for the acquisition of correct and flawless motor skills. Practicing sport motions under
the newest findings and principles of motor training is one part of this learning process,
as is the use of hard- and software for motion analysis. By combining both aspects to
one training structure in a meaningful way, one can expect to achieve a more ubiquitous
and professional training environment in future. Especially biological processes like the
preparation, anticipation, and guidance of movement could get considerably enhanced
by a suitable provision of relevant motion information. The development of augmented
motion feedback systems that detect and deliver such information is therefore gaining more
and more interest among both movement scientists and sport engineers. Numeric motion
information obtained from motion measurement and analysis systems could however not
only be utilized by the the performer (respectively athlete) itself, but also by any other person
actively or passively involved in a motion performance: here, the principal purpose would
be to enhance the general understanding of a respective motion performance. Application
examples are coaching, judging, sport broadcasting and spectator involvement. The demand
for comprehensive technology that provides motion performance information under various
level of detail can consequently be expected to increase within the next decade.

The implementation of such motion information system is linked to various research prob-
lems, ranging from technological aspects of data acquisition to psychological and biological
aspects of information reception and perception. In this thesis, I approach the topic from the
technical side. The focus is set on the development of original processing and computation
strategies for numeric motion data obtained from wearable motion sensing systems. By
investigating probable applications for real-world sport performances under different kind
of motion information, the following questions shall be answered: how can one employ the
most recent sensor technology for sensing a sports performance? How can one transform
captured motion data into more meaningful numerical representations? How can one re-
trieve and identify relevant information from these data representations that could not be
discovered otherwise? And how can such information be displayed?
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Chapter 1. Introduction

Figure 1.1: General design of the computer-based motion information system developed in
this thesis. The structure builds a framework for the evolution of the whole thesis.

Under the aspect of sport informatics, the resulting motion information system shall also
be denominated as computer-assisted training (CAT) tool. This term comprises the use of
various hardware and software solutions for the retrieval of knowledge on motion perfor-
mances and its provision to various recipients of differing interests. Universally designed, a
general CAT system (Figure 1.1) should then for example provide information about motion
technique, errors during motion performance and suggestions for improvements to athletes,
coaches, judges, officials or spectators.

The Rise of Mobile Motion Capture Systems

Electronic devices as video cameras and computers are common standard technologies in
modern computer-assisted training, but can generally either not provide immediate motion
information or numerical (and hence comparable) data. Positions can be acquired very
accurately and immediately by an optical motion capture system. However, optical motion
capturing cannot be applied to all kinds of sport motions. Especially movements that require
daylight conditions like outdoor sports or sports that have a large motion volume can hardly
be captured with an optical motion capture system. Then, it is feasible to find a different and
more suitable type of motion sensing device.

In recent years, much emphasis was put on the development and use of devices that capture
and transfer human motion data in an easier and more direct way. Some popular examples of
such kind of motion capture device are depth-cameras, 3−D cameras and wearable devices.
For this thesis, wearable sensors were chosen: with the progress of sensor technology, respec-
tive sensor units became smaller, lighter and more accurate, hence augmenting their usability
for recreation and sports. In concrete, I employed multidimensional inertial measurement
units (IMUs) in all subsequent fundamental data acquisition tasks. These devices consist of
accelerometers, gyroscopes and magnetometers. This means that they yield measurement
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data of gravity and acceleration, the earth magnetic field and angular velocities, but do not
contain or represent global or local translation and position data. Therefore, their data output
is sparse, abstract and less intuitive than the data output of other measurement devices. For
example, they do not directly provide motion information necessary for conventional motion
analysis: it is not possible to track the athlete or to directly determine motion properties
such as the position of body parts from the inertial sensor data. Here, sophisticated data
processing techniques are required to compute and determine meaningful motion features
that can then provide athletes and coaches with valuable information on the performed
motion.

In the same way as sensor hardware technology improved and mobile measurement devices
became common, the demand for new methods to process and make sense of the incurring
data rose, as well. Several different methods for the derivation of meaningful kinematic
motion data have been developed in the last two decades. Nevertheless, none of them
led to a standardized procedure so far, leaving the use and implementation of processing
methods to the user. Generally, sensors can be applied well to systems with medical and
rehabilitation purposes as for example gait analysis. However, those standard processing
methods developed for static situations or slow-motion measurements might be less suited
for use in sports where high-speed motions with large accelerations, angular velocities and
high-impact phases occur. A similar concern holds for commercial inertial capture systems,
which offer good accuracy, but are often restricted to their internal implemented methods that
have been developed under general assumptions. It is therefore first necessary to investigate
and establish accurate methods for data processing that are reasonable to use with high-
dynamic sports motions. Ideally, those methods are not only accurate, but also simple to use
for any system user to ensure a high level of usability of the future processing system.

After the establishment of reliable and accurate processing methods, the next question is how
to transform the obtained complex kinematic information into a suitable description of the
performed motion. Only then, the provision of a meaningful and (most importantly) intuitive,
understandable motion information can be ensured. Humans acquired the skill to perceive,
understand and evaluate sensory information on motor processes during years of practice
and experience. Similar to the complex biological processes of the human brain, it is in many
application scenarios reasonable to utilize machine learning algorithms. Computer science
developed various strategies to build artificial neural networks that resemble the human
brain. However, research generally focuses on different aspects of the human brain, such as
language processing or image processing. The simulation of biological motor perception and
understanding is a unique and new research problem that is – thanks to the availability of
cheap and ubiquitous mobile motion capture systems – likely to become a matter of growing
interest within the next years.
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Figure 1.2: Motion information types selected as sample applications for this thesis and their
interrelation to signal processing and machine learning methods.

Computer-Assisted Training and Motion Information Systems

Two concrete sample applications for motion information systems are given in this thesis.
They address different information recipients, and herewith illustrate the fundamental di-
verse applicability of computer algorithms for CAT systems. One type is auditory feedback
information for athletes, providing either concrete or abstract auditive motion hints during
movement execution. The other one is style and motion error information, providing point
scores and support for judges in subjective judged-sports as well as performance quality
information for athletes or coaches (Figure 1.2).

The first application illustrates a particular method of auditory information display referred
to as movement sonification. Sonification expands movement acoustics to silent phases
of actions which are usually not evoking sounds (e.g. actions or gestures of the limbs). It
furthermore offers a wide variety of technical implementations. In general, sonification
strategies depend on the underlying input motion data, the sonification purpose and the
intended sound mapping. Using MIDI or combinations of oscillating sine waves, sound can
be created and easily influenced with a computer program in real-time. The main question
that has to be answered here is how auditory feedback should be designed to convey motion
information with largest possible effect on the motor learning task. When set into meaningful
correlation to motion action events, a movement sonification can then be employed as source
of motion feedback information.

With the second sample application, I demonstrate the possibilities of automatic performance
quality assessment on the base of a motion’s common style and error conventions. By
introducing a system for the measurement and automatic rating of performance quality, I
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particularly address once certain negative aspect of sports: manipulation of competition
results by fraud and unfair means. Coinciding with the commercialization of sports and the
rising pressure of achievement on every individual athlete, manipulation is one of the main
issues in competitive sports. In pure result-oriented sports such as track and field, swimming
or cycling, the outcome of a competition can be measured objectively: the person who
arrives first, throws or jumps furthest is the winner. Judges are only necessary to survey the
compliance with common competition rules like for example keeping one’s own designated
track or starting from the official starting point. Similar conditions hold for goal-oriented
sports such as soccer, handball or basketball, where the team with the higher point score
wins. Here, judges (respectively referees) supervise the compliance with rules and are eligible
to fine unfair behavior like fouls. The results in many individual sports, however, cannot just
be put into scales and measures: their outcome is determined by several factors and elements
that need to be rated in a qualitative way. Those ratings are based on the subjective perception
and evaluation of referees or judges, and despite judges being trained for it, evaluations can
be biased and influence the final outcome of a competition (both willingly or unwillingly).
Assuring an adequate level of objectivity is therefore a major concern for most modern
judged-sports like gymnastics, figure ice skating and snowboarding. This led to changes
in the competition and grading rules (e.g. in figure skating), as well as to the introduction
of additional, more objective measures (e.g. the time of flight in trampolining). However,
for many affected sports, objectivity cannot be ensured completely, so that distrust is still
remaining. The idea was therefore to develop new evaluation measures that are immediately
related to the performed motion using current wireless motion sensor technologies. With
this additional performance assessment, it is then moreover possible to provide augmented
motion information for training of fundamental motor patterns and motion style.

As for the two presented sample applications, various different reasons exist that justify the
introduction of computer-assisted training technologies in sports. Examples are personal
performance improvement, performance surveillance, support to coaches and judges or
additional information for spectators. The resulting system output data used to convey
the desired motion information are as diverse as the intended application. Moreover, the
necessary computation methodologies and algorithms that need be applied to obtain the
specific information differs as well. Whereas for some applications, sufficient information
can for instance be retrieved from the transformed numeric motion data gained in signal
processing methods, it is necessary to additionally apply machine learning methods to the
transformed data for other applications. However, the fundamental stages and principles
for the provision of such augmented feedback systems are always similar and comply with
the basic questions that led to the development of CAT systems in this thesis. In concrete,
they comprise the following aspects: creation and collection of numeric data that can be
processed by the computer respectively (mobile) training device, augmentation of the ac-
quired numeric data into meaningful motion information, sense-making (or transformation)
of the augmented data so that intelligent machine knowledge or data representations can
be created, and retrieval of motion information by utilizing some sort of motion knowledge

7



Chapter 1. Introduction

Figure 1.3: Four main internal processing stages ((1) – (4), red) have to be passed through
before motion information can be obtained from wearable motion sensors.

to provide the desired motion information (Figure 1.3). All of those stages are discussed in
detail in the course of this thesis. For the concrete two sample applications, especially the
third and fourth step vary (Figure 1.2). For the provision of auditory feedback, the augmented
motion data is transformed into acoustic sound representations. They are then displayed
and can be directly retrieved by the recipient using internal biological motion knowledge. For
the rating of motion, it is first necessary to train a powerful machine motion knowledge from
the augmented motion data that is then used to retrieve relevant information displayed or
presented to the user as external information.

Every step in the development of the presented CAT system is supported by a concrete set of
inertial motion capture data takes – either by simulation motion data from a laboratory set-
ting or by sport motions executed in their real environments. Concrete application samples
for movement sonification are given in the context of rehabilitation and motor relearning.
Furthermore, possibilities for sonification and auditory display in sports are discussed. Meth-
ods for style assessment were designed in such a way that they could be used in various
subjective sports. Of particularly interest here were sports for which inertial sensors currently
are the only way to discover new and relevant motion information. Those could be sports that
are either multi-directional (so that two-dimensional analysis does not suffice), or that have
a very wide motion range and are executed under difficult capture environments (so that the
technical specifications of conventional motion capture systems cannot be used). Therefore,
the use of inertial sensors might support advanced judging as well as further performance
improvements, as for example in diving, snowboarding or ice skating. The fundamental and
important computations in this thesis were based on a sample set of ski jumping data. Ski
jumping is a judged-sport, despite its clear focus on length as main indicator of performance
quality. It is furthermore a technically demanding and complex sport which requires very
fine motor skills to adapt to even the smallest changes in aerial conditions during flight.
Erroneous motion execution and use of aerodynamic forces immediately influence the per-
formance and can furthermore increase the risk of fall and injury. Despite the complex motor
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task, motion analysis is currently largely depending on visual feedback, with the quality of the
general training and competitive structures bound to economical and logistical constraints.
In junior and intermediate level ski jumping it is for example common that many jumps are
executed within a very short span of time. Responsible coaches often observe jumps from one
perspective only (generally the coaches’ stand), while the assessment of every single jump
performance has to be instantaneous. Similar constraints hold for the formation of a final
score ranking in competitions. Ski jumping is subject to style points awarded by five judges
that indicate performance quality additionally to the jump length. This style assessment has
to be immediate: since the overall impression of a flight depends on several local parameters
such as the flight curve and the distance to the slope, it is necessary to observe a jump within
its natural environment on the ski jump hill for performance evaluation. Supporting video
data cannot display all necessary environmental information. Therefore, a mobile CAT plat-
form for performance assessment and judging can be a very valuable tool in future, which
might not only improve measurability in grading but also enhance the general fundamental
training environment.

1.1 Thesis Structure

The thesis consists of four main parts separated into multiple coherent chapters, whereas
Part II and Part III constitute the two main parts. They describe the innovative and original
work of this thesis and roughly follow the general application design given in Figure 1.1.

The first part of this thesis (Part I) is designed to illustrate and give elementary background
knowledge necessary to understand the idea and concepts presented within this thesis:

• The current Chapter 1 gives an introduction on the fundamental topic as well as on the
structure and main innovations of this thesis.

• Chapter 2 discusses the general scientific concept of motion feedback as form of motion
information under a sport scientific approach and shows the differences to a motion
information concept generated under a computer scientific perspective. It is explained
what kind of feedback types are commonly used in sports training, and how they refer
to motor learning. Furthermore, connections to the intended sample applications are
drawn and the respective motion information types set into context to motor learning.

• Chapter 3 provides background information that is necessary for the understanding
and lecture of this thesis. The sport of ski jumping, which was used for the main ex-
periments, is explained in detail, including background information on the general
properties of ski jumping within the family of Olympic winter sports, technical motion
specifications as well as the grading and scoring guidelines. The chapter furthermore
gives a general introduction into the mathematical concepts of orientation representa-
tions that underlie the main processing of the raw inertial sensor data. Lastly, I show
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how important works from proximate research fields (sport science, computer science
and engineering) influenced this thesis and how they are related to the present work.

The first main part of this thesis (Part II) is dedicated to provide a detailed description of the
process of collecting numeric motion data and its subsequent enhancement. In particular,
common signal processing methods for inertial sensor data are introduced, discussed and
set into context to the use within motion capturing of sports. Influences on the data accuracy
are presented and strategies proposed that counterbalance those influences and improve the
quality of the final processed data outcome. For this, innovative methods to handle possible
sources of error are proposed.

• In Chapter 4, a short summary on the existing motion capture technologies is given.
Furthermore, the principle of inertial sensors is illustrated. The specifications of the
sensors used for the acquisition of motion data in this thesis are listed, and relations to
current sensor technologies as well as problems in data processing shown. Furthermore,
this chapter illustrates all performed data acquisition sessions and the resulting data
bases which served as main experimental data sets for the following investigations.

• Chapter 5 then describes how the inertial capture data can be augmented so that mean-
ingful kinematic motion data is obtained. Current orientation estimation filter methods
that are widely used within many different applications are introduced. Besides, further
essential data processing methods such as the estimation of initial posture and joint
positions are discussed.

• Implementations of the previous processing methods are analyzed and verified in
Chapter 6. Accuracies as well as influences on the data accuracy are presented. Fur-
thermore, methodologies that can compensate those influences and eventual errors in
an automatic way are developed and included in the proposed processing framework
to increase accuracy and usability of the methods within motion analysis and training
systems.

Whereas Chapter 5 is primarily recapitulating important technologies from literature and
utilizes them as the base for the motion information system development, the results in
Chapter 6 are unique and constitute an innovative output of this work. They also led to two
journal publications written as lead and main author.

The second main part of this thesis (Part III) is designated to demonstrate how the data can be
transformed for the provision of motion information. Important research problems that have
to be solved for this task are how the derived kinematic motion data can be decomposed into
meaningful information and how this transformation process can be orchestrated to conform
with different levels of information content and performance and competition rules. To
create artificial motion knowledge, furthermore machine learning methods are introduced
and applied.
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• In Chapter 7, I present strategies to make sense of the previously derived body kine-
matics and discuss three different possibilities for the transformation of the processed
sensor data into motion descriptors. First, I show how body kinematics can be vi-
sualized. Second, I explain features that display motion information by sound for
movement sonification. Third, I discuss the formation of motion features for use in
subsequent machine learning methods. In this context, I present an algorithm to seg-
ment ski jumps into their main motion phases and extract different kind of motion
features (discrete signal based, body-model based and expert-knowledge based) on the
time segmented data.

• Chapter 8 then demonstrates the concept of movement sonification for rehabilitation.
I illustrate how auditive motion hints can be given during performance from the previ-
ously build auditory features and discuss the efficiency of selected features for motor
learning.

• Lastly, Chapter 9 demonstrates how machine learning can be used to provide motion
information for style and error assessment. First, a unique concept of motion features
is developed that confirms with the technical and aesthetic aspects of a motion. Next,
fundamental technologies necessary for the retrieval of useful motion information
from the transformed and sense-made motion information are introduced. Lastly,
these are utilized to evaluate the quality of the ski jumping field data under multiple
classification and style rating aspects.

Most of the methods presented in the third part have been developed exclusively for this
thesis and the problem of style and performance assessment. Furthermore, it is not known
that a similar work has ever been made public anywhere else before. I am therefore convinced
that the presented approach to the topic of augmented motion information offers a unique
composition of mathematical, algorithmic and procedural sub-parts that cannot be found
anywhere else so far. The contents of this part were summarized in a journal paper as lead
author as well as at three international conferences. Results of experimental studies using the
movement sonification system were furthermore conducted and published by the member
of the motor learning group at the Institute of Sport Science, Hanover University.

Part IV finally illustrates the chosen sample information types with a description of possible
application scenarios in Chapter 10. Results have been submitted for publication at a con-
ference and will be submitted to another journal paper as lead author soon. With the last
Chapter 11, Part IV then finally completes the thesis with a summary and conclusion and an
outlook on future work.
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Chapter 1. Introduction

1.1.1 Appeal Points and Innovations

With the presented methods and technologies for data processing, this work is intended
to serve as handbook containing basic, elementary information as well as guidelines for
the creation of computer-based motion information systems in the sports environment.
Contributing to unique ways of motion analysis by the acquisition and processing of wearable
motion information, I hope this thesis to lead the way towards new applications that support
training, performance improvement and talent recruiting in the future. The problem that
arises in this thesis is very interdisciplinary and multi-layered. It relates to the field of
engineering (sensor technology), mathematics (data processing, attitude representation and
algorithm development), computer science (programming, human-computer interaction:
application design and information visualization), sport sciences (principles of biomechanics
and motor learning) and psychology (information visualization). Therefore, it is also a very
unique research topic that is not known to have been addressed in a similar way before.

The first innovation of this thesis I want to emphasize is the development of a full-body
motion capture system for ski jumping. Inertial ski jump data is a very rare numeric motion
information, which has not been acquired more than three to four times before. Because I
chose ski jumping as sport for my main experiments, I have collected body information from
a large number of jumps that was sufficient to display all relevant parameters of a flight with
the presented and developed processing methods. In fact, I believe to have built the most
extensive data base of inertial ski jump data that is existing so far.

Knowing the orientation and position of body segments and joints is essential for a mean-
ingful and detailed analysis of human motion. A big part of this work has therefore been
dedicated to the acquisition of correct inertial sensor data and its processing into accurate
attitude and relative position of body segments. The main methods for data processing
have already been introduced several years ago and are actively used in various applications.
Unique for this work is that in dependance with the characteristics of the performed motion,
it is possible to choose between three different orientation estimation methods for the com-
putation of body kinematics that can then give more detailed motion information and create
higher motion information content for the end-user – athletes and coaches here. Moreover, I
evaluated the accuracy of main orientation estimators with several experimental data sets.
These contain data from four field experiments at ski jumping venues and data from sev-
eral smaller on-campus experiments in combination with optical motion capture cameras
serving as ground truth data. Based on those accuracies, I identified several data specialties
that influence the accuracy of the processed data and examined methods to deal with those
variations. This led to the development of two additional error compensation strategies - an
intelligent drift reduction strategy and an automatic magnetic bias compensation to reduce
the influence of varying magnetic field in sport venues. They contribute to the enhancement
of data accuracy and reliability without additional expert input given by the user and hence
considerable increase usability of future motion analysis system.
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1.1. Thesis Structure

Based on the results of the proposed intelligent drift compensation, every underlying filter
method might be universally applicable for any type of motion data in the future without
the need to change the fundamental system settings: dependent on the characteristics of a
motion, like the amount of maximal angular velocities or the number of motion dimensions,
fundamental system parameters can now be chosen automatically to ensure a high accuracy
of the estimated body kinematics irrespective of the motion pattern. The required informa-
tion on those motion characteristics can be estimated by any future user without the need
of technical background knowledge, which is an important step to enhance the usability
of a future application system. Including the proposed magnetic bias compensation in the
system, it furthermore becomes possible to use the sensors under any kind of magnetic field
condition. In other words, the system can be yield stable and reliable estimates from data
acquired at any type of sporting venue without additional complicated and time-consuming
magnetic calibration measurements.

In the second part of this work, I explain how to make sense of the numeric motion data. As
a first example, I introduce the concept of movement sonification, and illustrate a design
made for support in motor learning and motor skill acquisition. Second, I demonstrate the
application of machine learning methods for motion information retrieval and in particular
motion information systems. Some problems that are currently discussed in research, per-
sonal and even public life inspired the design and development of the sample application of
motion evaluation. Since all sources of inspiration are a unique and innovative application,
no existing technologies could be used as references and the framework has been developed
independently without any further supporting system design input. Several approaches
for activity recognition from wearable sensor data have been discussed in literature, but
they are mainly restricted on every day activities. Furthermore, they usually do not contain
information on the quality of an action, or alternatively do not evaluate the motion from an
overall, full-body kinematic perspective. The idea of rating a motion performance therefore
seems to be a new unique approach to the problem of machine learning in motion activity. I
believe that the innovative character of the machine learning pipeline for motion evaluation
is so fundamental that its further development can and will be of great interest for many
years to come in machine learning and sport engineering fields.

To summarize, the following innovations were made with the progress of this thesis (Fig-
ure 1.41):

• Full-body motion capturing of ski jumping motions and determination of the relevant
body kinematics

– Collection of the currently most extensive inertial ski jump data base worldwide

• Development of methods to enhance the usability of body kinematic estimators for the

1Image courtesy movement sonification: movement sciences group, Leibniz University Hanover
Image courtesy judging image: http://www.langsleysports.com/
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Chapter 1. Introduction

Figure 1.4: Overview of the main innovations presented in this thesis. The combination of
methods from computer science and sport science is unique and has not been found to be
presented in a similar form anywhere else.

diverse group of future system users

– Intelligent drift compensation using elementary a-priori motion annotations for
flexible use of orientation estimation filter with sport motions

– Magnetic compensation step for determination of body kinematics from data
captured at variate sporting venues

• Development and testing of a real-time movement sonification system for motor learn-
ing in rehabilitation

• Development of the system environment and methods for a kinematic data based
motion rating system in subjective judging-based sports

– Introduction of a motion feature categorization for full-body motion rating sce-
narios

– Testing of feature representations for motion rating scenario by feature selection
strategies

– Implementation of algorithms for error recognition and error assessment: activity
recognition in real sport motions with error gravity determination

More detailed information on the background of all concepts, as well as the related works
that had an impact on the system development and that emphasize the uniqueness of the
presented work, is given in Section 3.3.
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2 Fundamental Definitions and Terminol-
ogy

Any meaningful motion analysis relies on the availability of relevant motion information.
The general definition of such motion information however varies with the scientific point
of view: in sport sciences, the provision of motion information is part of the problem of
movement sciences and primarily supports motor learning and skill acquisition of an athlete.
Research in sport informatics on the other hand addresses motion information under a more
technically-focused intention that alters the fundamental sport scientific definition. As a
result, the information content also varies in dependence on the analysis purpose and the
target information recipient. In this chapter, basic terms are therefore explained from both
the perspective of sport and computer science. Furthermore, a concrete definition is given
for the implementation of all subsequent technologies and algorithms.

2.1 Motion Information from the Perspective of Sport Science

Sport sciences commonly refer to motion information as motion feedback. Generally speak-
ing, this is defined as any kind of sensory information given to an athlete before, during or
after performance with the goal of performance improvement. Motion feedback is perceived
by the human sense organs and then derived from the descending motor command in in-
ternal efferent neural processes to master and adapt sensorimotor transformations. As a
result of practice or novel experience, neural adaptation occurs that is finally retained over a
longer period of time. Such neural adaptation usually comprises all types of change in motor
behavior – meaning it involves not only the learning of new movement patterns, but also the
improvement of smoothness and accuracy in existing movement patterns – and is referred to
as motor learning.

One of the main research questions in motor learning is how and by which neural processes
changes in motor behavior are evoked, and how they are related to the knowledge obtained
from the various existing feedback parameters. From the middle of the last century, research
has been subject to constant additions and changes caused by new insights won over the
progress of time. To date, most studies that explore the mechanisms of motion feedback
consider motor learning from a cognitive psychological approach. This means that the
human brain is compared with a computer of limited capacities for the processing of infor-
mation [SW76]. Associating biological and neural processes as closed control loops [Wie49],
motor learning is then understood as a cause of internal error recognition (Figure 2.1 [Sch75])
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Chapter 2. Fundamental Definitions and Terminology

Figure 2.1: Closed-loop model of motor learning processes developed by Schmidt in 1975.

triggered by two different types of feedback parameters – intrinsic and extrinsic ones.

2.1.1 Motion Feedback Parameters

Intrinsic feedback is given by internal sensorimotor feedback sources like vision, proprio-
ception and audition. It is kinaesthetic, meaning that it is received simultaneously with the
execution of a movement, and always present during motor learning. Extrinsic feedback is
augmented information that can only be provided by an external source. Probable sources
vary within the scope of a motor task and a certain training environment. In everyday settings,
the most common sources are oral recommendations and instructions by coaches. However,
they can also be visual target-related (as for example when scoring or not scoring points after
a basketball throw) or supplied by any kind of electronic device respectively display. With
the goal of developing new machine-generated sources of motion information, I focused on
applications for the provision of extrinsic motion feedback in this work. Therefore, the term
motion feedback shall refer to extrinsic feedback in the following if not explicitly indicated as
intrinsic feedback.

Feedback relates the learner’s individual performance to either a desired performance, or to
an instruction that emphasizes and reminds of certain aspects of the movement or induces a
certain focus [SW08]. Such information can generally be assigned to one of the two categories
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2.1. Motion Information from the Perspective of Sport Science

knowledge of performance (KP) and knowledge of results (KR).

The information that is provided by KP is closely related to the proprioception of a movement
and motion process. It indicates the quality or pattern of a performer’s movement and
also includes kinematic information such as displacement, velocity or joint motion which
can generally not be perceived by intrinsic feedback. KP is often employed by coaches or
rehabilitation practitioners [MA07, WH79].

The information that is provided by KR is related to the result of a performance and indicates
the success of a performer’s actions with regard to an environmental goal. It can be redun-
dant with intrinsic feedback in real-world scenarios, but also exceed the information that is
received by internal processes. Visual target information for example is clearly result-related
and can be perceived intrinsically (one can see the immediate result of its own throw by
hitting or missing the target instead of one’s own execution of motion). However, other forms
of feedback can be either related to the course of a motion execution, the result of a motion
or both (e.g. too high, too fast) and not be perceived intrinsically. Especially KR is considered
to be a critical variable in the acquisition of motor skill [SSW84]. Its quality is dependent on
several variables that significantly influence the speed and process of motor learning.

2.1.2 Motion Feedback Variables

Motor learning is assumed to occur in multiple stages that depend on the current skill level
of a performer. With every stage, the activity and success of the learner varies. In the same
way, instructions given to a learner should differ along all of the stages. General properties of
a good feedback that are valid for all stages are: a timely manner of feedback provision (brief
period between performance and feedback), accuracy of the information, an appropriate
level of detail correlating to the individual skills of the recipient (meaning the learner’s stage)
and an appropriate amount of information.

Four principal variables have been identified which are known to influence the process of
motor learning. They contribute largely to the success of motor training and should also be
kept in mind for the implementation of any future mobile information system:

Information type: Motion information conveyed by a feedback strategy can either relate
the execution of a motion to a target value (e.g. too high, too fast) or describe the
current-state of the motion execution (e.g. 40cm, 20seconds).

Information content: Feedback can be negative and positive (e.g. ’wrong’ and ’correct’) and
general and specific (e.g. ’too fast’ or ’too high’ in contrast with ’10% too fast’ or ’5cm
too high’).

Distribution and frequency: Over a certain bandwidth, feedback can be continuous, inter-
mittent, faded or controlled (e.g. after every performance, in blocks after a certain
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Chapter 2. Fundamental Definitions and Terminology

Figure 2.2: Confirmed (solid) and hypothesized (dashed) effectiveness of a feedback strategy
for the enhancement of motor learning in dependence on functional task complexity after
Sigrist.

number of performances or on request of the learner).

Timing: The placement and timing of feedback can be varied with respect to the main
motion execution (e.g. before, during or after a performance).

Several aspects influence the acquisition of motor skill like the variation of practice conditions
and practice stimuli or motion feedback. Amongst all of them, feedback is considered as the
most prominent and influential one. With conventional and simple consumer electronics
still being the main source of extrinsic feedback, the development of innovative augmented
feedback systems therefore appears very promising for the future.

2.1.3 Augmented Motion Feedback

During the last century, augmented motion feedback was based on external motion informa-
tion given by a human expert that eventually got enhanced by visual feedback from video
displays. Over the last decade, additional strategies such as auditory, haptic, or multimodal
augmented feedback display were gradually introduced. Technical advances made it possible
to also investigate complex, realistic motor tasks with those training devices. However to
date, the most effective way of augmented feedback provision is still discussed controver-
sially among sport scientists. The potential and the limitations of concurrent unimodal and
multimodal feedback strategies for motor learning has been summarized in a review by
Sigrist [SRRW12]. This review can be seen as a guideline for the development of augmented
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2.2. Motion Information from the Perspective of Computer Science

Figure 2.3: Differences in the definition of motion information respectively feedback from a
sport scientific (left) and computer scientific (right) perspective.

feedback systems for the enhancement of motor learning. In particular Sigrist’s definition of
the relation between motor task complexity and applied feedback modality (Figure 2.2) is
important information for the development of real feedback applications.

2.2 Motion Information from the Perspective of Computer
Science

For the following work, motion information should be defined from a more technical per-
spective as any kind of method or action by which knowledge on the performance of an
athlete is provided to a user with the goal of performance analysis. Here, the main difference
to the previous definition of motion feedback is the modification of the problem’s target
information recipients: a possible user can either be the performer (respectively athlete)
itself, or any other person involved in a motion performance like coaches, judges, officials
and even spectators. This modified definition tremendously enlarges the group of possible
CAT system users as well as the number of possible application scenarios. For this reason,
it also correlates more closely to the general idea of human-computer systems: instead of
focusing on the different parameters and variables for optimization of the feedback provision
process, strategies for the enhancement and enrichment of human motor tasks are put into
focus. This means that the main interest is now set on the end users and the possibilities that
could be achieved with the provision of motion information (Figure 2.3). As under the sport
scientific approach, the intention of a motion information system can of course still be the
acquisition and improvement of motor skill then. However, intentions could additionally in-
volve support in performance surveillance, improvement of general competition conditions
or even entertainment.

Video and photographic data are currently the most common electronic source of motion
information. With the evolution of time, the wide range of probable applications and informa-
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Chapter 2. Fundamental Definitions and Terminology

tion systems is however likely to attract new technologies and devices that can be employed
for the acquisition of motion knowledge. Here, it is especially important to develop CAT
systems that comply to the most recent knowledge on motor learning processes: although
motor learning is investigated since decades, its underlying neural processes are still not
decoded and understood completely. Once considering the constant change in research,
possibilities for training and competition are then numerous and only bound by the state-of
art in motion sensing technologies. Consequently, I believe that a successful combination of
both research perspectives will notably accelerate and improve learning processes in humans
of various art and kind that are not only related to sport performances or recreation.
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3 Thesis Fundamentals and Related Works

The development of CAT systems is a multidisciplinary and multi-layered problem that
requires knowledge of different fields and studies – sports science, computer science, engi-
neering and mathematics. Specific terms and backgrounds that cannot be expected to be
known to all readers shall therefore be explained in this chapter.

For the development of a motion style assessment system, ski jumping has been chosen
as main sports. Although ski jumping is one of the most popular Olympic winter sports,
it is a relatively rare sport from a global perspective. It is mostly enjoyed by winter sport
affine nations like Austria, Germany, Switzerland, Finland, Norway, Slovenia and Japan, and
actively practiced by even a smaller group of athletes and sportsmen. If never having seen
a ski jumping hill and a training or competition ski jump, it can be difficult to understand
the sport’s concept, as well as to assess the training and coaching circumstances that impose
the use of further data insight and training machinery. Basic information on ski jumping is
therefore summarized in an own section to ensure the understanding of the following sample
applications under the specific motion task.

Handling human motion data, it is particularly important to know about the orientation of
body parts, since these kinematics have a huge impact on the progression, form and outcome
of a motion. Therefore, representation of orientation – respectively attitude and angular
information – is the most essential and fundamental mathematical concept of this thesis.
Strategies for the representation of orientation vary with the application purpose, and differ
between pure mathematical and computational usage. The most common strategies for
processing and computation are therefore explained in the second part of this chapter.

Lastly, the work made for this thesis is put into relation to important and influential research
from the various contributing sub-fields at the end of this chapter.

3.1 Ski Jumping

Ski Jumping originated in the 18th century in the Norwegian province of Telemark, when
farmers used small hills on alpine slopes for short jumps. With time, the interest and the
enthusiasm for this new discipline rose and ski jumping became a sport of its own that was
added to the Olympic winter schedule in 1924. In Japan, it was first performed in 1929, when
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Norwegian instructors arrived in Sapporo to train the Japanese in ski jumping. Since its
origins, ski jumping has developed into a highly specialized sport. Broadly speaking, it can
be described as follows: athletes sequentially descend a specially constructed take-off ramp
(known as the in-run slope) and jump from its end (known as the take-off table) as precisely
as possible and with as much power as they can generate to ’fly’ as far as possible down a
steeply sloped hill before landing and skiing safely through an outrun zone. Woman’s ski
jumping started during the end of the last century and finally got included in the Olympic
Winter Games in Sotchi 2014. Further disciplines that have been added to the Olympic Game
schedule over time are the team and mixed team competitions.

According to the Federation of International Skiing (FIS), ski jumping is currently one of
the most popular disciplines in winter sports. In particular, it is enthusiastically enjoyed in
Germany and Austria, with the four hills tournament constituting the climax of euphoria. The
tournament is extensively broadcasted in public television and visited by several thousands of
fans every winter. At the moment, the sport is practiced in about 20 countries on a World-Cup
level throughout the year. The classical scenario is winter ski jumping, where the athletes
jump on a surface made from ice and snow and during which all important competitions
take place. However, it is also practiced in summer season for training and preparation
competitions on watered artificial, grass-like surfaces made from plastic. Together with
cross-country and Nordic combined skiing (which is a mix of ski jumping and cross-country
skiing), ski jumping forms the Nordic skiing disciplines. As opposed to Alpine skiing, the
Nordic skiing disciplines are characterized by the fact that the heel of the ski boot cannot be
fixed to the ski. To enable the athletes to effectively glide long distances and for a safe landing,
jumping skis are furthermore considerably wider and longer than their cross-country and
Alpine skiing counterparts.

3.1.1 Competition Rules

After long and tedious competitions under the influence of changing wind conditions in
the 90s and 2000s, the winner of a competition is nowadays determined in a more robust
scoring system which combines flight distance, style points awarded by five judges as well as
wind conditions and in-run length to one final output score (Figure 3.1). This mixed system
compensates for the influence of variable outdoor conditions and makes the competition
more compact and attractive to the spectator at the same time. In concrete, it works as
described in the following.

Distance points: Each hill has a target landing point called the calculation point (K-point) in
the middle of the landing area. The K-point is set at the landing slope’s steepest point and
defines the place where the majority of jumpers is expected to land. In a competition, landing
on the K-point is rewarded with a certain fixed number of points. Jumpers earn extra points
for flying beyond the K-point, and lose points for every meter they land before the K-point.
Regular FIS World-Cup events take place on hills of three different sizes: the normal hill with
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3.1. Ski Jumping

Figure 3.1: Illustration of the current scoring system in ski jumping. By adding style points,
wind and in-run length scores, the final ranking does not necessarily conform with the jump
length.

a K-point of approximately 90 meters, the large hill with a K-point of approximately 120-130
meters and ski flying hills that allow jump of over 200 meters. The current World Record for
the longest jump without fall is 251.5 meters. It was set in February 2015 by Anders Fannemel
from Norway.
Style points: Jump style is rated by five judges simultaneously from a judging tower at the
side of the slope. Good style can be award with a style measure of up to 20 points per judge.
Indicators for a good motion execution are steady skis during flight, balance, aerodynamic
body position and a correct and safe landing.
So far until summer 2016, only 7 jumpers in the history of ski jumping are recorded to have
achieved a ’perfect jump’ with all five judges attributing the maximum style score: Anton
Innauer and Wolfgang Loitzl from Austria, Kazuyoshi Funaki and Hideharu Miyahira from
Japan, Sven Hannawald from Germany and Peter Prevc and Jurij Tepes from Slovenia.
Wind points: Changing wind conditions significantly influence the maximal length a jumper
can achieve under an optimal technical motion execution. The more wind blows up the
hill, the more a jumper-ski flying system is exposed to lift forces. This results in longer jump
lengths. Tail wind on the other hand exposes an athlete to drag forces that will reduce the
resulting jump length. Setting the wind condition at the start of a competition as base value,
plus and minus points are given for actual wind conditions at every jump and then added or
withdrawn from the original scores.
In-run length points: With changing wind conditions, also the optimal take-off speed to
reach the K-point differs. In case the in-run length (meaning the gate from which the ath-
lete starts the jump) has to be adjusted during a competition to adhere to changing wind
conditions, additional plus or minus points are determined that are added to the final score.
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Figure 3.2: Take-off and landing divide a ski jump into the three main motion phases in-run,
flight and outrun. Motion characteristics further separate in-run and flight into the four
sub-phases take-off initiation, transition to stable flight, stable flight and landing initiation.

In the past years, several changes in rules and material specifications have furthermore been
put into effort to regulate the use of aerodynamic effects, and to stop the trend of underweight
athletes [SM02, Mül09] for a reduction of drag forces: ski jumpers below the minimum safe
body mass index are penalized with a shorter maximum ski length, reducing the aerodynamic
lift they can achieve.

3.1.2 Technical Specifications

Ski jumping is a very technical sport. This means that the main motion parameters like body
posture, take-off timing and flight height are defined by biomechanical and physical laws
(e.g. aerodynamic forces such as drag and lift). In general, good motion technique correlates
to a higher flight curve and a longer jump length. Erroneous motion execution and use of the
aerodynamic forces like wrong body pose or too high rotational impulse can furthermore
increase risks of fall and injury. All these motion characteristics yield multiple indicators
to identify the quality of a jump, which on the other side leave many possibilities for new
application systems – as stated before, the provision of motion information and feedback
is often carried out in a very traditional way by observation from coaches and video data
analysis so far.

A ski jump is divided into five main parts: in-run, take-off (the actual biomechanical process
of jumping), flight, landing and outrun. In-run, flight and outrun comprise more than 90% of
the whole jump and are separated from each other by the take-off (separating in-run from
the flight phase) and landing (separating the flight phase from the outrun). Furthermore,
every ski jump consists of four sub-phases within the in-run and flight phase: the end of
the in-run is marked by the take-off initiation, and the flight phase is divided into the three
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3.1. Ski Jumping

Figure 3.3: The most characteristic flight elements of contemporary ski jumping are the
V-style flight position (left) and the Telemark landing (right).

parts transition into a stable flight after the takeoff, stable flight (where ideally no motion
at all is supposed to happen) and initiation of the landing [CFC+13, BKTG10, OHMS08]
(Figure 3.2). The creation and conservation of beneficial aerodynamic conditions during
those phases largely influences the length of the jump. Two examples are an ideal take-off
timing and an optimal transition of velocities and angular momentum generated during
take-off into flight. They ensure the athlete to reach a stable flight position immediately
after take-off, as well as to counterbalance pitching moments during the flight that might
arise by wind flow. However, it is important to note that no general and universally valid
ideal flight style exists, so that style recommendations cannot be quantified. How to reach
and maintain advantageous body poses and angles consequently always has to be put into
context with every athlete’s individual physical properties and motor skills [Mül09]. From
biomechanical and aerodynamic studies [MBG09a, MBG09b, SM05, VIK+05, ABVK95, SMY04,
SWM04, VKK01], it is on the other hand possible to generate guidelines for the execution
of a complete ski jump. They are used to learn and practice this sport and contributed to
increased safety and jump length over time. Since the late 80s, it is for example common to
open both skis to a V-shape during flight (Figure 3.3). This V-position enables the athlete to
create an ideal balance between lift and drag forces that result in a longer flight.

Indicators for Flight Quality - Style

The first guidelines on how to score a ski jump date back to the beginning of the 20th century
(see [Kei33] for an description of judging in the 1930s), and although flight style, material
and equipment have changed drastically since then, the main core of the scoring system still
remains the same: marks are not given for good style, but deducted for faults. A perfect jump
is awarded with a maximal style measure of 20 points per judge, and errors and deviations
from the desired motion style in every motion phase are fined by distracting points from the
maximum score. The jump phases that are part of the judging evaluation are flight, landing
and outrun. Faulty behavior during the flight phase and the landing can be punished with a
maximum point deduction of 5 marks each and during the outrun with a maximum point
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deduction of 7 marks under the current point deduction specifications set by the International
Ski Federation FIS [FIS13]. The exact definition for errors and their point deductions in jump
style can be found in Table 3.1, which was derived from a jump evaluation training sheet for
judges from the Japanese Ski Association.

Table 3.1: Guidelines for the judging of ski jumping style including points deduction rules
for errors. The guidelines were translated from an official jump evaluation training sheet for
judges from the Japanese Ski Association.

A Aerial phase errors max. 5.0
1 Insufficient control over body or skis during the formation of the stable and

dynamic flight posture
0.5-2.0

2 Instability (unnecessary motion of the arms, uncontrolled body position,
bent knees, not completely stretched legs)

0.5-1.0

3 Unsymmetrical positioning of the arms 0.5-1.0
4 Unsymmetrical positioning of the legs 0.5-1.0
5 Unsymmetrical positioning or unevenness of the skis 0.5-1.0

L Landing phase errors max. 5.0
1 No Telemark landing at all (feet parallel, single fault) min.2.0
2 No smooth movement/transition from the flight pose to the landing 0.5-1.0
3 Slight Telemark landing, with little bending of the knees only 0.5-1.5
4 Insufficient absorption of the landing impact by the Telemark, or Telemark

position is not maintained until the end of the landing process (instability,
too stiff or not fully executed Telemark position)

0.5-1.5

5 Unstable or unbalanced movement of the arms to keep the balance of the
jumper-ski system

0.5-1.0

6 Insufficient ski control (skis are not parallel or more than 2 ski widths apart),
or skis are not equally in contact with the gliding surface (ski upright on
edge)

0.5-1.0

O Outrun phase errors max. 7.0
1 Small errors (momentary instability, skis are not equally in contact with the

gliding surface or not parallel, body is not in upright position before the
start of deceleration)

0.5-1.5

2 Errors (insecurity, missing impression of balance, skis are not equally in
contact with the gliding surface or not parallel, body is not in upright
position when reaching the fall line)

2.0-2.5

3 Large errors (instability, impression of risk of falling before or on the fall
line, touching the ground or ski with one hand)

3.0

4 Loss of control or balance (touching the ground or ski with both hands, the
back or lower back)

4.0-5.0

5 Fall before or on the fall line 7.0

A particularly important specification for the flight phase is the active use of air pressure
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and aerodynamic conditions. This is characterized by a bold and aggressive forward leaning
movement at the take-off and results in a rapid and smooth transition to the optimal flight
position. During stable flight, it is important to keep a steady and symmetric ski and body
positioning and good body balance. To achieve maximum landing points (meaning no point
deduction for the landing execution), the athlete is expected to hit the slope in a standardized
posture, the so-called Telemark position. The Telemark is a standardized, squat-like position
with one leg slightly shifted in front of the other and no other body parts touching the ground
(Figure 3.3). Remaining in the stable Telemark position for approximately 10 to 15 meters are
the main indicators for little or no point deduction in the outrun. Faults and deviations from
the defined style form are punished in dependance on their severity and time of occurrence
during flight. A fall after or during landing for example is weighted much more (up to 7 points)
than an asymmetrical arm position during flight (0.5-1 points).

3.2 Representing Orientation

Changes in position and angle of body segments and joints describe human motion. For mo-
tion analysis, it is essential to understand the fundamental concepts that define and represent
those changes, especially since representations of orientation and their naming conventions
differ between research fields and applications. In computer science and engineering, it is for
example common to refer to spatial rotations as attitude, whereas they are generally referred
to as posture in motion sciences and humanities.

Attitude representation – or orientation – of an object gives information on how an object is
rotated within the three-dimensional space. In other words, the attitude of an object defines
the direction in space an object is facing to. When measuring the orientation of human
body parts by sensors mounted on a subject’s body, orientation estimation will consequently
provide an estimate of the rotation between the local coordinate frame of the sensor and a
global fixed world frame.

Orientation can be expressed in different ways. Common representations are Euler angles,
rotation vectors, rotation matrices or quaternion representations [Die06]. Euler angles are the
most obvious and intuitive orientation representation since they are based on trigonometric
functions. They are defined by three variables that represent the rotational motion (angles)
around the three principal axes. Following their general definitions and naming conventions,
those are rollφ for rotation around the sagittal axis, pitch θ for rotation around the transversal
axis and yaw (or azimuth) ψ for rotation around the vertical axis (Figure 3.4). Because of
their intuitive representation, Euler angles are widely used in real-life, human sciences and
civil engineering as for example in navigation. However, the use of Euler angles to describe
orientation can result in a loss of one dimension of freedom in situations where one of the
rotation angles is equal or very close to 90◦. This makes two rotation axes coincide, so that
the orientation can then not be described uniquely anymore. One strategy to get rid of this
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Figure 3.4: Definition of orientation for the description of human posture following naming
conventions from navigation. Roll φ depicts the rotation around the sagittal axis, pitch θ the
elevation around the transversal axis and yaw ψ the rotation around the vertical axis.

singularity problem is to use a different attitude representation that does not suffer from such
an ambiguity (also called gimbal lock).

The most common alternative to Euler angles are quaternion representations. They offer
three main advantages that favor their use in complex attitude computations of technical
applications like computer graphics, computer vision and robotics. Those are the invariance
to the previously mentioned gimbal lock, the possibility to apply fundamental arithmetic
operations (whose general conventions hold for quaternions) on the orientation data, and
low computational costs. For those reasons, the majority of all computations on orientation
and angular change in this work is based on quaternion representations.

3.2.1 Quaternion Representations

Simply spoken, quaternions extend complex numbers to four dimensions and can be used to
represent the orientation of a rigid body or coordinate frame in three-dimensional space. For
this, the orientation of a body at a special time frame B shall be related to the orientation of
the body at another (previous) time frame A. Furthermore, A r̂ is defined as a unit vector in
A constituting the rotation axis for a specific rotation. This rotation can then be seen as the
rotation around an axis A r̂ which shifts frame A to frame B (Figure 3.5).

In the following, the quaternion at frame B relative to frame A will be noted as A
B q̂ , with the

leading sub-script denoting the frame that is described and the leading super-script denoting
the reference frame. The four-dimensional vector space is then for example written as

A
B q̂ =

[
q0 q1 q2 q3

]
= a + bi + c j + dk,
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Figure 3.5: The orientation of frame B (purple, with the axes XB , YB and ZB ) in relation to
frame A (blue, with the axes X A, YA and ZA) is represented by a rotation around axis n̂.

whereas q0 depicts the real and q1, q2 and q3 the complex (or vector) part.

Quaternion representations allow for arithmetic standard operations, which makes it simple
to add, separate or divide spatial rotations. In particular conjugation, multiplication, and
vector rotation are often used in attitude computations. For all operations, it is conventional
to work with unit quaternions, meaning the parameters of the quaternion A

B q̂ are normalized
so that they describe an orientation of unit length as q2

0 + q2
1 + q2

2 + q2
3 = 1.

Useful Arithmetic Conventions

Quaternion conjugate: The quaternion conjugate swaps the relative frames described by an
orientation. For example, A

B q̂∗ describes the orientation of frame A relative to frame B and is
defined as A

B q̂∗ =B
A q̂ =

[
q0 −q1 −q2 −q3

]
.

Quaternion product: The quaternion product of two quaternions a =A
B q̂ and b =B

C q̂ creates a
compound orientation A

C q̂ =B
C q̂ ⊗A

B q̂ . Mutually, a quaternion is decomposed into separate
consecutive rotations by division with the quaternion conjugate as B

C q̂ =A
B q̂ ⊗A

C q̂∗. This bi-
directionality makes quaternion multiplication one of the most useful operations in attitude
computation. In concrete, it is defined by the Hamilton rule as

a ⊗b =
[
a0 a1 a2 a3

]⊗ [
b0 b1 b2 b3

]
=


a0b0 −a1b1 −a2b2 −a3b3

a0b1 + a1b0 + a2b3 −a3b2

a0b2 −a1b3 + a2b0 −a3b1

a0b3 + a1b2 −a2b1 + a3b0


T
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It is important to note that unlike the multiplication of complex numbers, quaternion mul-
tiplication is non commutative. This means that a ⊗b 6= b ⊗a. Consequently, it is essential
to check the order of multiplication when using quaternion products: for example, i j = k,
whereas j i = −k.

Vector rotation: An arbitrary, three-dimensional vector in frame A can be rotated to frame B by
a simple quaternion-vector rotation. For this, the vector is first converted into a quaternion
by extending it to a four dimensional vector Aυ: a fourth vector element is added which
depicts the real part of the quaternion and is set to 0. A double multiplication A

B q̂ ⊗A υ⊗A
B q̂∗

with the spatial rotation A
B q̂ then results into the extended vector representation Bυ in the

new frame. The previous equation holds when Aυ and Bυ are the same vector described in
the respective frames A and B.

3.2.2 Transformation Between Representations

Although quaternion representations are very useful, fast, accurate and simple to use, it
can sometimes be necessary to transform them into other attitude representations. This
is because their convenience in computation comes with a trade-off in explicitness. Both
rotation matrices and Euler angles are more intuitive to understand, so that the following
transformations are helpful for the examination of the computed output spatial rotations.

The orientation defined by the quaternion A
B q̂ can be transformed into a rotation matrix A

B R
by

A
B R =

 2q2
0 −1 + 2q2

1 2(q1q2 + q0q3) 2(q1q3 −q0q2)
2(q1q2 −q0q3) 2q2

0 −1 + 2q2
2 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 −q0q1) 2q2
0 −1 + 2q2

3

 .

For ψ representing rotating around ẑB , pitch θ representing rotating around ŷB and roll
representing φ rotating around x̂B , it can furthermore be transformed into Euler angles by

ψ = At an2(2q1q2 −2q0q3,2q2
0 + 2q2

1 −1)

θ = −sin−1(2q1q3 + 2q0q2)

φ = At an2(2q2q3 −2q0q1,2q2
0 + 2q2

3 −1).

3.3 Related Works

Works and research questions related to the development of this thesis are as variate as the
different layers of the actual research problem. Research from computer science, electrical
and mechanical engineering, sport sciences as well as sports engineering and biomechanics
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all address different parts and aspects of the present problem. All of those differing parts
have to be taken into account to present a work that complies with the most current state of
the art possible. Consequently, works that are usually not inter-related have been merged
into one huge, combined pool of background information that influenced the development
of this thesis. In the following, the multivariate parts that are essentially contributing to the
work in its current form are discussed under the most relevant aspects.

3.3.1 Supporting Motor Learning

Motor learning is subject to extensive research since decades. Important examples that
had a big impact on the subsequent sport scientific research are the previously mentioned
studies that describe motor learning processes from an information scientific perspec-
tive [SW76, Wie49]. However, research is also subject to permanent changes, and various
investigations and new insights have been continuously discussed in public over the last
decades [SL88, GTM02, MA07]. Basic aspects of the problem, such as the distribution of
feedback information, the style of feedback distribution or the neural process behind skill
acquisition are under scientific investigation until current time [SKM12, SBKF+13, Ste14].
Newer interests focus on the neural processes of adaptation, motor re-learning or multimodal
feedback stimuli [SM93, SBD+09]. Only since the mid 2000s, movement sciences started to
move further towards the area of augmented feedback in its various forms, from visualiza-
tion to sonification and haptic systems [SRRW12]. Information on their impact on motion
feedback with respect to the motor task complexity can be found in Section 2.1.3.

Auditive Support

Research showed that the stimulation of additional sensory systems during training can
enhance motor control and motor learning within both sports and medical applications.
Especially auditory feedback in form of movement sonification is considered to be effective
for motor control and motor learning [Eff05, EFW11]. Sonification has been introduced
for various application areas and has been used in various fields of science and life over
the last two decades [DB11]. To sonify human movements, kinematic and dynamic data
representations have been derived from several types of measurement and motion capture
devices. Those data representations were for example signals from a force measurement
plate [Eff05], motions of a German wheel from a simple magnetometer [HHFS10] or proper-
ties of a hammer during throw [ARGB04]. However, it still remains unclear how to provide
and process the captured data to display sound in an effective and accurate way. Finding an
efficient movement sonification strategy can hence offer various new possibilities for training
applications, such as mobile devices being worn directly attached to the actor’s body.
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Computer Support

In both sports engineering and computer science, the awareness of the importance of CAT
and augmented motion information systems has risen. This led to a higher interest and
effort for technological implementation. Studies have already brought first proof of the
positive effects of augmented feedback [PFBH13, MSD+13] [AS10, KMH+13] and are likely
to be subject to further investigations in future by not only movement scientists, but also
natural scientists.

In general, current investigations from computer sciences are algorithmically advanced and
target mainly on the implementation and application of activity recognition systems and
robot control. Often, machine learning methods are applied to recognize and evaluate few
constrained defined motion patterns from daily life situations [PvSMW15, XL15, CCG+15,
BDP+12]. Sports engineering on the other hand approaches the subject from the other side,
putting the actual movement and acquisition of motor skill or performance improvement
into focus. As a result, they are generally less advanced and often focus on certain selected
body parts, low level features or pure analysis tasks only [MGSR+15] [WS13, KCGC12, SNSK16,
RPF15]. In this thesis, (some of) the more advanced strategies from computer science are
now combined with the expert approach of a sports engineer, which is a unique approach to
the topic of motion information provision under the current state of art.

3.3.2 Processing Sensor Signals

With the increasing popularity of inertial sensors as motion capture tools, many methods
have been introduced that estimate meaningful motion information like segment orienta-
tions or body angles from the inertial sensor input data. The most famous methods are based
on sensor data fusion of gyro rate integration and observation measurements from accelerom-
eter and magnetometer like variations of the Complementary Filter and the Kalman Filter. All
those methods originally got developed for non-dynamic situations like inertial navigation,
and later got optimized for a use in human motion capturing. They can enable fundamental
kinematic analysis in medical applications and rehabilitation where only motions of low
acceleration phases occur, and are especially common in gait analysis or stroke rehabilita-
tion [TTM13, GFF+14, BKB14, BLC+15, BBCL15]. With the absence of quick motions, it is easy
to estimate the orientations from the sensors’ accelerations and angular velocities. Natural
constraints of the restricted motion environment like ground contact phases can further-
more help to reduce drift and increase accuracy [YBMC07]. Inertial sensors were therefore
successfully employed under simulations of real motion data in laboratory settings or in
low speed motion scenarios [SGIA+15, GLJ16, JSN+15, FGM+16]. They were furthermore em-
ployed to monitor activity and fatigue in slow, non-sport motor performances as rifle holding
in war-fighters [DCM+16]. Most sports, however, consist of more complex motions with high
accelerations and angular velocities, so that filter properties developed in the rehabilitation
context might not be applicable to sports in the same way [LPR12, FSK+15, BWP08a]. One
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explanation for this is that rapid motion parts within a performance induce high accelera-
tions. They on the other hand significantly superimpose the linear accelerations originated
by gravity and bias the observation measurement vectors used for the estimation correction.
As a result, common methods can be insufficient here, and it might be beneficial to process
the multidimensional sensor data in a different way. A popular signal processing method for
inertial high speed measurements of alpine skiing for example introduces an independent
fusion algorithm [BWP08b] to handle the specific characteristics of the input data. Further-
more, it could be useful to consider the specific characteristics of a motion along the various
motion dimensions. Although the number of published research was steadily increasing over
the last years [VDSBB+15, FFC+15, MCG+15, SNSK16, ADM+14, GTNJ13], inertial sensors are
still less frequently applied for analysis of real sport motions than for medical purposes.
Exactly such eventual deficiencies in accuracy as well as the difficulty to adapt the filter to the
current sport situation might be the reason for this disparity. Therefore, it is essential to gain
deeper insights into the processes that influence the accuracy of orientation estimation algo-
rithms. In this regards, it is necessary to investigate common and available sensor processing
methods independently under the special requirements of sports so that the strengths and
weaknesses of different methods can be identified and eventual constraints and conditions
that arise in the context of insufficient sensor calibration and dynamic motion be discovered
to enable an appropriate use in varying sport disciplines.

3.3.3 Measuring Ski Jumps

During the last century, researchers from Austria, Germany, Finland and Japan started to
extensively analyze the ski jumping motion under biomechanical criteria. Findings from
those studies have led to a constant increase in the maximal jump and flight distance, as
well as to the adaptations and changes of competition rules to make the sports fairer and
safer for the athletes. However, as exact kinematic and dynamic properties of an athlete
are quite difficult to measure quantitatively during training and competition, registered
research activities were usually based on simulation calculations, wind tunnel measurements,
observation and video analysis [MBG09a, MBG09b, SM05, Mül09, SMY04, SWM04, ABVK95].
To set new standards for motion analysis during training and competition, it is now necessary
to make detailed and accurate motion information available to coaches and athletes by
means of a mobile platform.

As previously mentioned, ski jumping offers several aspects that favor an inertial motion
capturing and data processing, with the main aspects being the large motion volume and the
restricted number of possible conventional motion analysis methods. Especially in junior ski
jumping and local training and competitions (where many jumps are performed within a
short time frame), visual information often is the only source of motion information, whereas
all jumps are observed from the same position at the coaches’ stand. In this respect, the
creation of a new training technology that provides accurate, additional and more detailed
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motion information to athletes and coaches is very reasonable. Nevertheless, research efforts
on the ubiquitous capturing of ski jumping motions remain very unique - only a very small
number of research groups worldwide used wearable sensors for the capturing of ski jumping
so far. The first reported investigation using inertial sensors was completed in 2008 at Keio
University [OHMS08] and mainly focused on the extraction of direct information from the
inertial raw data. Further studies concentrated on the use of single sensors for the extraction
on motion characteristics and jump detections [LZL+15]. The first data capture of a ski jump
with a commercial system has been performed just recently and is currently promoted as ’first
ever full body 3D motion capture of an entire ski jump1’. Knowing that the present research
has determined full body ski jumping data before the publishing of the respective video
material, this marketing slogan cannot be considered correct in its current form. However,
it clearly shows the uniqueness of the topic. Apart from my own research, multiple sensor
devices have furthermore been used by two research groups in Europe. First in a study to
measure the flight of an Olympic champion in 2010 [BKTG10], and second in a series of
more detailed studies on the estimation of kinematic parameters during flight in 2012 and
2013 [CFLC+12, CFC+13]. Here, the different flight phases of a ski jump could be annotated
based on the raw inertial sensor data. Additionally, body segments could be estimated using
typical constraints found in ski jumping motion.

In contrast, the kinematic jump parameters should be computed on a more general and
generic basis without the help of sport-specific natural constraints in this thesis. Given the
mix of little to no acceleration and angular changes during in-run and flight, and shorter
periods of high acceleration and quick angular changes during take-off and landing, ski
jumping is likely to pose unique demands on the data processing. Furthermore, magnetic
disturbances caused by ferromagnetic material (e.g. steel structures) of the ski jump hill may
influence the accuracy of kinematic estimates obtained with conventional methods: research
has shown that variations in the magnetic field have a significant impact on the orientation
estimates from inertial sensor data [dVVBvdH09], and that the differences between a sensor
orientation estimate to an optical ground truth are larger when the sensors are in close
proximity to ferromagnetic materials such as force platforms [MGSR+15]. With no existing
guidelines available to adhere to, the system’s accuracy and functionality therefore needed
to be thoroughly validated with respect to the intended application. This ensured then that
the developed mobile system could be assumed as generic and applicable for the automatic
assessment of motion performances and the supply of real-time motion information.

3.3.4 Recognizing Motion Activities

The main question of this work is to find specific motion knowledge from the sensor data,
so that useful information can be extracted and provided to users like coaches and athletes.
In an automated, technology-supported training environment this means to create mean-

1A video on the ski jump capturing can be found here: https://www.youtube.com/watch?v=3Zt1q3qrriE
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ingful machine knowledge on the base of relevant motion information for classification and
evaluation tasks. Features that represent the semantic content of a motion performance
should be chosen in such a way that characteristics can be discovered, classified and rated
for support of the user. This intended application is a new task that requires specific and
extensive domain knowledge, and common machine learning algorithms need to get adapted
to satisfy the present task-dependent requirements.

A wide variety of possible features exists to transform motion kinematics from wearable sensor
data into meaningful information such as statistical raw-signal based features, event-based
features, multilevel features derived from clustered statistical occurrences and kinematic
body motion information [BBS14] [AB10]. In general, learning systems are very sensitive
to the feature quality. This means that low-quality features that have no relevance for the
learning task can have a negative impact on the performance when included in a feature
set. Many processing methods used in the context of sports focus on low-level signal-based
features and extract information directly from the raw sensor data [MF15, DMA14, GJ11a] for
computational simplicity. With a sensor data processing framework that estimates angles
of body segments and joint positions, additionally higher-level motion information like
positional and temporal evolution of joints or relational information between body parts
can be provided [HBMS11]. Such additional semantic motion information correlates to a
movement’s biomechanical specification and can be assumed to give more detailed motion
information under the aspect of time.

Concepts and strategies for recognition of motion activity have been introduced in former
research from both video and depth camera data as well as wearable motion sensors [CGG+09,
ZBMM06, PDLM15, HSSL13]. However, they mostly focus on every day motions with the
target of robot action handling and do not evaluate sport performances in their specific
motion context [JKBH15, SWDS15, ZB15]. Consequently, they either simulate a set of data
for input in the training and testing of the machine learning systems or concentrate on
clearly distinguishable motion patterns [CCG+15, XL15, PvSMW15]. However, working with
such simulated or manually created experimental data, learning methods can generally
easier be adapted and trained to their intended application since the system environment
is constrained and every activity can be simply described in a unique way. For the present
work and the technical evaluation of a motion performance quality on the other hand, even
small changes in body pose or the technical motion performance can significantly influence
the outcome of the performance. Body posture during the flight of a ski jump for example
immediately influences aerodynamic forces as drag and lift and hence the length of flight and
final performance. Because of this direct relation and the absence of large angular changes
like full body rotations, the general scale for changes during motion position is small. As
a result, differences between jumps occur on a fine scale, requiring additional accuracy
and discriminative power of eventual processing and machine learning system to retrieve
relevant fine-scaled differences among the different relevant motion activities. Only few
studies have tackled the problem of sport performance activity recognition so far, and usually
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concentrated on the measurement and retrieval of few key aspects of a motion, or very simple
raw sensor data features [HDK13, Sup10, HMHJ08, HJ10, Stu12]. Most of them furthermore
did not apply specific machine learning strategies as used in this work. Consequently, I
believe that this work has a very innovative and unique approach that could considerably
impact following works in the same field.

Evaluating the Beauty of Performances

The more subjective decisions a sport includes, the more it usually becomes unreliable and
prone to errors. While target sports as soccer and handball are mostly objective since the
referee only decides on minor and major rule violations, performance-oriented sports that
contain an aesthetic component such as gymnastics, diving, synchronized swimming or
ski jumping are subjective and hence prone to wrong evaluation or manipulation. As a
result at least every second year with the focus of the Olympic Games, discussions on fraud,
manipulation and bribery come up in judged-sports [PH06]. For the Sotchi 2014 Games,
rumors on unfair means have been particularly strong for figure ice skating – which is exposed
to rumors about fraud in many big, important competitions – and half pipe snowboarding.
For the Rio 2016 Games, boxing was in the focus of judging controversies. In both cases,
multiple non-scientific articles and blog entries have been published that discuss the fairness
of the events, or dubious scoring and ranking processes.

Research has shown that nationalism biases competition results [Zit06] and that reformations
in the competition rules initially made to increase transparency might favor corruption [Zit14]
even without the existence of explicit fraud. The respective study arguments that this is be-
cause a judge’s individual perception is typically biased, either unconsciously or on purpose,
so that it is difficult to maintain objectivity when subjective human decision making serves
as the base of the ranking.

To account for this problem and to enhance transparency, the International Olympic Com-
mittee (IOC) started to impose changes in competition rules for all Olympic judged-sports at
the beginning of the 21th century. Revised scoring and judging systems of respective sports
nowadays aim to assure a higher level of objectivity by reducing the influence of individual
judging decisions on the final results. In this process, it became a requirement for every
performance-oriented sport to include at least one objective measure in the evaluation re-
sults. In trampolining for example, the time-of-flight (TOF) measurement, which designates
the overall length of a trampoline routine, was added to the catalog of evaluation criteria.
However, such measures quantify just a very small and often minor part of the motion and
cannot record the complete performance. Inertial sensors can offer innovative motion as-
sessment possibilities here, and contribute to new credibility, but also understandability, for
both athletes and spectators. I am therefore convinced that the future of affected sports lies
within the implementation and creation of independent technical judging devices.
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To date, the problem of skill scoring has been explored vaguely by few research groups only.
One of the first works to address this issue was a study for the development of automatic
scoring system of horizontal bar artistic gymnastics from video data [SO08]. A scoring support
model for ballet based on ground truth data of judges was described in 2013 [YA13] with
the help of an optical motion capture system. However, in this work it was not made clear
how the chosen kinematic scoring features were concretely built from the identified feature
descriptors from the optical motion capture data. To rate a motion on the base of wearable
sensor data, subjective winter sports were the prime target so far. For snowboarding tricks, a
classification and evaluation system has been presented in literature several years ago, but
never got extended further to be used in general scenarios or on a worldwide scale [HMHJ08].
A related sensing solution for skill evaluation in downhill snowboarding, which focuses on
one single aspect of the motion (weight balance) determined from sensor devices attached to
the snowboard, was presented recently [MFTW16]. A more advanced system for skill scoring
in skiing and snowboarding based on one inertial sensor attached to the athlete’s trunk was
implemented in 2014 [YOS14]. This study was followed by a more detailed investigation on
the retrieval of retrieval skill from large body movement data bases [YKT+15].

For my evaluation algorithm, I primarily intended to find differences and similarities among
ski jumps to create a ranking order as result. This can be achieved using data mining methods
for activity recognition mentioned before. To date however, much more research effort has
been made for the development of various music information retrieval algorithms than for
motion data retrieval. Here, it is amongst others possible to recognize similar motions of
different speed, pitch and beat, or to find special parts of a partition in a musical piece [FZP03,
YLSC08, MRM+05, YLC09]. Most of the methods developed for music data processing have
never been used for other data types, however it appears to be very promising and reasonable
to also apply them to motion data evaluation, especially when evaluating beauty aspects of a
motion: one of the biggest questions is how subjective, aesthetic impression of a motion as
perceived by judges could be represented in a motion assessment and rating system. The
problem here is that they play an important role in the computation of the final score, but can
usually not be quantified and vary with every person. An idea is to consider influences on a
user’s aesthetic perception as a combination of certain dominant semantic data relations that
can be numerically determined over time. Similar problems exist for the parametrization of
aesthetic perception in music and video data and are known under the term computational
media aesthetics [NDV01, Ada03]. For those non-motion multimedia data, research already
generated feature description strategies as for example dynamics, flow, density, clarity and
neighboring relations [ZZZ15, YLSC08, YYC11, FZP03, WDFJ13]. They can be a good starting
point for the development of similar feature descriptors in future motion judging applications.
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Part IICollecting and Augmenting
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As it was explained in Chapter 1 (Figure 1.3), any computer-based motion analysis system
consists of a certain number of internal processing stages that have to be run through be-
fore meaningful motion information is obtained. Generalizing those internal processes,
a minimum of four main steps stand out for every system – data creation, data augmen-
tation, sense-making and retrieval of relevant information. In this part, I discuss the first
two main stages, data creation and data augmentation. They are essential for any potential
system as they ensure the supply with the fundamental and meaningful numeric motion data.
Therefore, they also comprise many components and algorithms from signal processing.

For a meaningful and detailed analysis of human motion that satisfies all aspects of kinesiol-
ogy, it is essential to know the orientation and position of body segments and joints. The first
activities to capture motion with technological devices have already been performed more
than hundred years ago with the aim to better understand the processes and key points of
human and animal locomotion. Since this time, more and more devices to capture human
motion were made available to the public audience, leading to systems of increasing accuracy
and usability. To choose suitable technology for a subsequent application, it is important to
know the advantages and disadvantages of commonly used motion capture devices. Local
and technical specifications of sports generally demand mobility and flexibility and condition
the use of wearable motion capture systems like inertial sensors. The first chapter of this
part therefore introduces current inertial motion capture devices, the hardware used for
the creation of the motion data bases and their strengths and weaknesses. Furthermore, I
describe the main data bases that resulted from the first main processing stage and that are
used in the following three processing stages.

The biggest challenge arising with the utilization of inertial sensors is that their data output
has to be postprocessed to make the best use of it. Ideally, the sensor data is processed in such
a way that motions can be qualitatively analyzed and evaluated under the same accuracy
as optical motion capture data. Because of their sparse data output, the most extensive
and important step for the acquisition of kinematic motion data therefore is to estimate the
orientations of the used sensors and the body segments the sensors are attached to. Apart
from this task, several other processing steps have to be made to obtain universally applicable
sensor data, like estimating the initial posture or sensor-bone displacement and positional
data of body joints. All methods are accumulated and described in one chapter as the base
and fundamental technology for any subsequent application.

To ensure that the estimated kinematic data is reliable enough for the remaining two process-
ing stages and any subsequent application, it is necessary to know about the accuracy of the
estimated orientations and positions. Accuracy measures are discussed in the last chapter of
this part. Investigating the performance of the implemented processing methods, it cannot
only be possible to verify their error and deviation from the ground truth, but also to discover
peculiarities in the data and the used sensors. During the course of this thesis, it was for
example possible to identify several variables that influence the sensor performance. As a
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result of this analysis, counter-measures were introduced that improved the data accuracy
and made the estimated motion kinematics more robust to errors. Those findings – that have
also been presented in two journal publications – enhanced the usability of the system, so
that a simpler and more intuitive interface could be provided to the diverse group of target
users in future. They are discussed at the end of this part.
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A photo series about a galloping horse by Eadweard Muybridge in 1878, and two following
publications about animal locomotion and human motion in 1887 and 1901 initiated the idea
of motion capturing at the end of the 19th century. Since the beginning of motion analysis,
motion capturing became a professional industrial branch and various kinds of technologies
for different application purposes were introduced. Nowadays, the main purpose is to deliver
three dimensional position information of selected points at a rigid object or body. The
most common systems are: optical marker-based systems, optical marker-less systems,
mechanical systems, magnetic systems and wearable capture devices as inertial sensors
used in this thesis. Every contemporary motion capture system has different properties and
requirements concerning the recording environment, the size of the capture volume and the
expressiveness of the provided data. Consequently, every system is characterized by special
setup and capture requirements, and the information content of the obtained motion capture
data varies with each system specification. These special properties have to be taken into
account to select the best method for every application.

4.1 Motion Capture Devices

Optical motion capture systems (as they are for example widely used in movie and game
productions) base on the tracking of marker positions from multiple camera views. Conse-
quently, they provide very rich data that is easy to interpret. On the other hand, they are very
expensive and restricted to indoor capture conditions (daylight interferes with the tracking of
the marker) and with respect to the size of the capture volume. They furthermore come with a
relatively big overhead for the system set-up and calibration, so that they do not recommend
themselves for a use in mobile consumer applications and most sport applications.

Marker-less systems use computer vision algorithms and methods to track motion of objects
and humans with either monocular camera views or multi-perspective camera views. Since
few years, it is also possible to obtain depth information from marker-less motion capture sys-
tems, such as from the Microsoft Kinect camera senors. The main contribution of marker-less
motion capture systems is that the motion can be captured in a natural capture environment.
This means that subjects are not required to wear special equipment or marker for tracking.
The main problem of marker-less systems is that tracking requires close proximity with the
object to be tracked to maintain a sufficient level of accuracy and information content. In
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Figure 4.1: Output of the three currently most common motion capture systems. Left: optical
marker-based devices, middle: optical marker-less devices, right: wearable sensor-based
devices.

other words, objects in large distance to the camera cannot be captured in detail or under
high resolution with respect to single specific aspects of a motion performance.

Sensors of mechanical motion capture systems are generally attached to the human body
with a skeletal-like structure and the performer’s relative motion is measured over the articu-
lated mechanical parts that move in the same way as the actor. Because the system has an
skeletal-like structure, this system considerably interferes with the actor’s performance and
is not used in a common way.

Magnetic systems utilize sensors that measure the low-frequency magnetic field generated
by a transmitter source. Sensors and source are cabled to an electronic control unit that
determines reported locations within the field and measures and tracks the range of motion
by the relative intensity of the voltage. Markers are not occluded by nonmetallic objects but
are very susceptible to magnetic and electrical interferences from ferromagnetic objects and
electrical sources in the environment. Those disturbances affect the magnetic field strongly.
The system is furthermore cabled to the electronic control unit and the actor’s mobility
restricted, making it less favorable for sports environments.

Wearable sensors on the other hand, do not impose any restrictions on the motion with
respect to lighting conditions and mobility. The sensors (most commonly inertial sensors)
are small and of low weight, and do not need any external cameras, emitters or markers.
Communication with such an inertial measurement unit (IMU) is wirelessly established via
Bluetooth. From a computer and software program, sensor commands can then be sent
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Figure 4.2: Capture volumes as they can be covered by optical marker-based and marker-less
systems are easily exceeded in many sports. Therefore, it is sensible to choose wearable
(inertial) sensors as motion capture device.

out and motions be recorded, saved and viewed. Restrictions on the size of the capture
volume only exist with respect to the maximal distance between sender and receiver of the
capture and program commands and can nowadays also be minimized by additional data
communication bridges and networks. However, ubiquity in the data acquisition comes
with a drawback in data quality - positional or angular data cannot be directly obtained
from the sensors, but has to be estimated from the raw sensor output that is very sparse.
Besides, inertial systems that use additional magnetometers can be sensitive to magnetic and
electrical interferences in the environment.

Most capture systems need to be immediately excluded as prospective data input systems
once the requirements of sports are considered. Although sports generally takes place in
locally restricted environments, their field of activity easily exceeds common capture volumes
as they can be covered by camera systems (Figure 4.2). Consequently, optical marker-based
and marker-less systems are not suited under the intended application. With additional
requirements of high mobility, minimal size and weight (to not disturb the athlete), magnetic
and mechanical systems also disqualify for any further use. This leaves wearable sensors, and
in particular the combination of multiple sensing modules within inertial sensors, as only
reasonable choice.

4.2 Current Inertial Sensor Hardware

IMUs offer many features that are ideal for mobile motion capture and tracking applications:
they are cheap, light and capture human motion in an easy, flexible and direct way. In general,
they consist of a combination of miniature three-axial accelerometers, gyro rate and magnetic
field sensors. Those sensors supply the user with information about acceleration, angular
velocity and the magnetic field and can then be processed in a next step to provide more
intuitive and meaningful motion data.
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Figure 4.3: General hardware specifications of inertial measurement units (MARG sensors)
and the special demands of sports that require independent sensor technology.

Technology for full body motion capturing of sport performances has been introduced com-
mercially at the beginning of the new century using a general Kalman filter and biomechanical
constraints as the rotational degree of freedom of body joints [RLS09]. Many research facili-
ties all over the world use the commercial X-Sens system (XSens Technologies B.V. MVN/MTw,
Enschede, Netherlands) for their research, and it serves as a quasi-standard since it offers
high accuracy and usability [XSe]. With the included data processing and the graphical user
interface software, it is especially popular in research areas with less electrical and technical
know-how [EMW14]. However, the relatively high initial cost, as well as disturbing sensor
sizes or vulnerability to water can detain sport research and training facilities from the acqui-
sition of this commercial system. In those cases, alternative hardware solutions that offer a
smaller and waterproof combination of inertial sensor modules are developed and employed
instead. Unlike commercial systems, independent sensor systems are not bound to certain
determined data processing methods and can consequently be used in a more flexible way
in future mobile applications. On the other hand, they usually do not evaluate full body
kinematics, but either retrieve direct knowledge from the measured accelerations and angular
velocities [MF15, DMA14], or from special aspects of a motion and specific body parts that
play an important role for the performance [GJ11a, TGAT11]. To enable a meaningful biome-
chanical full-body performance analysis, it is then additionally necessary to derive kinematic
data that should be of high accuracy. This constitutes a challenge in the development and use
of independent fusion filters, which is one of the reasons why many movement scientists rely
on the commercial system. For similar reasons, the sample sonification system demonstrated
in this thesis has also been implemented using X-Sens sensors, whereas the remaining parts
have been implemented with a different, less commercialized system.
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In recent years, several independent sensor modules for human motion capturing and the
estimation of body segment orientations have been introduced in literature [BKB14, HAW+10,
BM14, BAB+11]. One interesting example is the wireless micro IMU introduced in [HMZ+13],
that is of particularly small size, high sampling rate and fast performance thanks to efficient
sender to base communication and the outsourcing of data processing methods to basic
hardware components. With extensive sensor calibration, it can furthermore achieve a high
accuracy suitable for motion tracking that is similar to the accuracy of a commercial system.
In combination with a water-proof casing, such independent and considerably cheaper
sensor devices can become more useful and popular in the near future.

4.2.1 Used Sensor Hardware

For the majority of the subsequent applications, I used waterproof 9-axial measurement
units from Logical Product (Logical Product. SS-WS1215/SS-WS1216, Fukuoka, Japan) [Log]
containing triads of gyroscopes, accelerometer and magnetometer of 16 bit quantization rate
for the respective x,y and z axes. Depending on the captured sport and the body segment
a sensor got attached to, accelerometers with either a minimum full-scale range of ±5 G
(usually body placement) or ±16 G (ski placement and highly accelerated body parts) have
been used. Other specifications, as well as the specifications of the magnetometer and
gyroscope have not been changed in any other way. The full sensor specification then is as
followed:

• Gyroscope: full-scale range of ±1500 dps with 0.67 mV/dps sensitivity

• Accelerometer: minimum full-scale range of ±16 G with 62.7 mV/g sensitivity OR
minimum full-scale range of ±5 G with 191.7 mV/g sensitivity

• Magnetometer: full-scale range of ±1.2 Ga

Conforming to biomechanical definitions, the sensor was placed on the human body in such
a way that the y-axis was aligned to the bone of the corresponding segment (Figure 4.4). In
the same way, the sensor axis measuring data on the longitudinal axis was also defined as
y-axis, the axis aligned with the sensor’s short side as x-axis and the normal vector to the plane
spanned by the x- and y-axis as z-axis. This contradicts general naming conventions from
inertial navigation and tracking, where the longitudinal axis is defined as x-axis. Consequently,
this naming convention had to be considered when examining the data in subsequent
analysis steps: the x-y-z-axial representation was defined by pitch θ-roll φ-yaw ψ instead
of roll φ-pitch θ-yaw ψ. This meant that elevating a body segment was then for example
measured as a rotation around the sensor’s x-axis.

Possible sampling rates per sensor module ranged from 10 to 1000 Hz. The sensors were
started by a start command trigger sent from a sensor control program via Bluetooth, whereas
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Figure 4.4: Waterproof sensor from Logical Product used in this thesis and its local sensor
coordinate system (orange).

multiple sensor modules could be used simultaneously. The inertial measurement data
was captured and saved within a memory hardware of the sensor until a stop command
was received. Such stop command could be either sent manually from the sensor program
or be internally executed after a certain predefined sampling time in seconds. The raw
accelerations, angular velocities and magnetic field measures could then be read out for
subsequent use.

To draw a valid conclusion on the quality of each orientation estimator, it is essential to
know more about the sensor specifications in terms of drift, bias and noise. To adjust to the
measurement inaccuracies of every single sensor, a simple, fundamental calibration was
performed within the data acquisition processes of all following test data bases. For the
accelerometers and gyroscopes, the sensor offset was determined in rest along all sensor
axes under working temperature (meaning with the sensor running for a certain time in the
capture environment) to avoid temperature drift. This could also mean cold temperatures
below 0°C in case of winter ski jumping. For the magnetometers, I determined the local scale
and offset factors by rotating the sensors around the main motion axes before or after the
main data capturing.

4.3 Created Motion Data Bases

Two different kinds of inertial motion capture data sets have been created for this thesis
(Table 4.1). A simulated motion data base (DS) acquired in a laboratory was used to investigate
and adjust the general system’s accuracy for the set up of the subsequent system. For this,
both inertial sensor data and optical motion capture data – serving as accuracy ground truth
– were collected. Furthermore, motion data was captured in real application respectively
sporting environments from the X-Sens and Logical Product sensing devices. In particular
a real jump data base (DR ) of actual ski jumping data was important here since it served as
input data for the motion evaluation and rating application.
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Table 4.1: Comparison of the two main fundamental data sets DS and DR that determined
their subsequent use in the computational methods of this thesis.

Name Description Purpose Specifications
DS Simulated motions in lab-

oratory setting: 20 sam-
ple motion patterns with
varying motion dynamics
were performed by two
different participants.
Type: Optical motion cap-
ture (Vicon) and inertial
motion capture (Logical
Product)

Test the accuracy and
performance of imple-
mented orientation
and position estimation
methods.

30 second capture in-
tervals of permanent
motion execution.
Markers around every
sensors captured at 500
Hz with a 11 camera
optical motion capture
system (calibration accu-
racy higher than 0.8mm).
Body segment motions
captured at 500 Hz by
9 inertial measurement
units.

DR Actual motions in real-
world environments
and sport locations: ski
jumps (119 jumps in
main data base), every-
day motion, freestyle
body movements.
Type: Inertial motion
capture (Logical Product,
XSens)

Test the accuracy of the
system in actual applica-
tion environments.
Develop and adapt ma-
chine learning methods
for retrieval of relevant
motion information.
Demonstrate sample ap-
plication of motion rat-
ing.

Capture intervals of vari-
ant length depending on
application purpose (40
second capture intervals
for ski jumping).
Body segment motions
captured at 500 Hz by
9 inertial measurement
units.

4.3.1 Simulation and Test Data Base

The simulation and testing motion data base DS was captured using a sensor arrangement of
nine Logical Product sensors attached to pelvis (P), and both left and right thigh (rT, lT), shank
(rS, lS), foot (rF, lF) and arm (rA, lA) of the athlete. The sensors were positioned to measure
motion of all limbs and segments relevant for the execution of the intended target motions.
20 sample motion patterns with varying motion dynamics were performed by two different
participants in a common capture studio. Simultaneous and Bluetooth synchronized data
was captured by inertial sensor and optical motion capture systems for 30 second intervals.
Each inertial sensor was surrounded by 4 optical markers positioned in a rectangular shape
(Figure 4.5). These marker’s positional changes were captured at 500 Hz with a 11 camera
Vicon optical motion capture system (VICON Nexus version 1.7.1. Vicon Motion Systems Ltd,
Oxford UK) [Vic] to validate inertial sensor orientation data. The performed motions were
chosen in such a way that they could simulate varying motion dynamics and impact forces as
they occur in sports (and ski jumping). In concrete, they included walking, jogging, jumping,
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(a) (b)

Figure 4.5: Sensor placement for the collection of the simulation data base and the four
corresponding optical markers attached to every sensor for the acquisition of ground truth
reference data.

turns around the longitudinal axis, jumping jacks, kicking and throwing, leading to a total of
N = 28 data captures.

4.3.2 Field Motion Data Base

The data set DR comprised multiple independent data bases with data captures of actual
sport motions or movements as they occur in real life situations and training environments.
In general, they were subject to two different capture devices, the sensors from Logical
Product used for the development of all signal processing and machine learning methods,
and the XSens sensors used for the sonification of movement. Since the final movement
sonification functions in real-time without any fundamental underlying data base, only the
data acquired with the Logical Product sensors shall be described here. In this respect, it
is particularly important to discuss the main ski jump data captures and their acquisition
processes at a ski jumping hill.

Ski Jumping Data Base

To obtain a good collection of ski jump data, the following particularities that result from
the specifications and natural and environmental characteristics of ski jumping had to be
especially taken into account:

High impact: High impact is registered during take-off, and particularly during landing,
which can lead to perturbations in the sensor data, particularly the gyro rate measure-
ments of the sensors attached to the skis.
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(a) (b)

Figure 4.6: Sensor placement for the collection of the field ski jumping motion data base. The
sensors are directly attached to the body with adhesive and kinesiology tape.

Ski oscillations: During ground contact phases, the ski surface is subject to small oscillations
that lead to high noise in the acceleration measurement of the ski sensors and should
be suppressed as much as possible.

Run time: Under suddenly changing wind conditions, an athlete can prolong the time before
in-run start until the wind conditions improve. In training sessions, this phase can last
longer than 30 seconds, which requires a sufficient preset run time.

Sensor interference: Since the risk of fall and injury is prevalent in every ski jump, the
sensors should interfere as least as possible with the freedom of movement of the
athlete. Ideally, they should not be perceived at all when attached to the body.

Following the previous constraints and the biomechanical description of the motion, sensor
positions chosen for the subsequent jump assessment were: pelvis (P), and both left and
right thigh (rT, lT), shank (rS, lS), ski directly at the beginning of the ski boot (rF, lF) and upper
arm (rA, lA) of the athletes (Figure 4.6). This means that the sensor arrangement was almost
identical to the one used in the simulation and testing data base, where only the sensors
rF and lF have been placed differently on the top of the shoe. The sensors were securely
placed directly on the athlete’s body and ski using adhesive and kinesiology tape before the
beginning of every training session. Particular care was taken to ensure similar positions
throughout all training sessions.

Over the last two years, I performed several experiments with multiple capture sessions in
both summer and winter season to optimize the capture processes and ensure high data
quality. The main ski jump data base within DR was then finally created during summer
ski jump season in 2015. During two experimental sessions, training jumps of four junior
athletes (three ski jumpers and one Nordic combined athlete) were captured at a normal
hill with a K-point of 90 meters (Figure 4.7). Every experimental session included multiple
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Figure 4.7: Impressions of the data acquisition of summer ski jumping. Pictures of the
measurement equipment used and the sensor attachment can be found on the following
pages.

training sessions on several days with five to eight training jumps each. As a result, a total of
180 ski jumps could be captured. Impressions on the field experiments can be found on the
following picture pages, which show the measurement technology, sensor device attachment
and camera calibration.

In addition to the inertial sensor data, I took note of the length of every jump and its style
point scores awarded by a human experienced ski jumping judge. The judge scores were
collected on paper in real-time during the data capture sessions and under real judging
circumstances from the judge’s tower. They therefore conform with score results as they are
obtained in real competitions. Collected point deductions were marked under the scoring
criteria listed in Table 3.1. After data acquisition, all score sheets were digitized to be used as
ground truth in the machine learning and testing step.

Out of the more than 180 jumps captured, 110 consisted of a complete data set with all sensor
data files (Appendix C). They were selected as input for DR . For 85 of those data captures,
furthermore jump length and judge score annotation were available, so that those captures
were additionally marked for a subsequent use in the sense-making and retrieval steps.
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5 Augmentation of the Collected Motion
Data

Having created numeric motion data (bases), it is now necessary to process the data so that
useful information can be retrieved in the next step. For the present motion data, this means
to determine kinematic properties (namely segment orientation and joint position) of the
moving body that define the motion under biomechanical and physical aspects. Therefore, I
next want to explain the fundamental computation methods and algorithms chosen for use
in the subsequent retrieval steps with DS and DR . They are introduced in sequential order as
they occur in the complete processing pipeline.

5.1 Estimating Initial Posture

To compare data and their kinematic parameters within different trials, it is necessary to know
the initial orientation of each sensor. Especially if trials from different venues and hence
differing starting positions are compared to each other, the main performance characteris-
tics should be independent of the starting environment and invariant to spatial variations.
Furthermore, a system that provides motion information in real-time at the start of every
jump is required to analyze motions during competition and training sessions. Consequently,
I added a method to the processing pipeline that can determine the initial orientation of the
sensors attached to the athlete’s body. From the initial posture, one can then compute the
spatial variations out of the data sets and hence get a uniquely valuable estimation result.
Using the initial orientation guess, it furthermore becomes possible to start the subsequent
data processing steps in any position, so that distraction of the athlete can be avoided.

I chose to determine the initial orientation of all sensors with a non-fusion vector-based
orientation estimator method V B , a variation of the QUaternion ESTimator (QUEST) algo-
rithm [YBM08]. V B originally got developed in the context of spacecraft attitude determina-
tion to solve the problem of determining attitude from magnetometer and accelerometer
measurements only. In the algorithm, attitude is represented as a combination of the rota-
tional displacements around the three principal axes in the global frame: a rigid body can be
placed in an arbitrary orientation by consecutive rotations around the three axes. In static
environments under no external acceleration, those rotations are described by trigonometric
correlations from the raw sensor (field) vectors. Therefore, the algorithm is very quick and
well suited to estimate the orientation of a static or slow-moving rigid body with no or little
external acceleration, as it is for example the case for the ski jump start where the athlete is
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Figure 5.1: Working principle of the vector-based orientation estimator V B to estimate the
initial posture in static position at the beginning of every data capture.

sitting on the start gate prior to any movement. For the creation of all other data captures,
participants were instructed to stay in a motionless position for approximately two seconds
before starting the performance of the requested motion task. This ensured the initial posture
estimate to yield stable and reliable results. In general, one observation vector from a static
time step is already sufficient to estimate the orientation at the designated frame. However,
I recommend to average the orientation estimate over several frames to get a result that is
more indifferent against temporary deviations and noise in the sensor data.

A principal sequence for the determination of any angular displacement in Euler angles
would be to first rotate the examined rigid object (meaning the sensor) about its z-axis by the
yaw angle ψ, then about its y-axis by the pitch angle θ and finally about its x-axis by the roll
angle φ. The local accelerometer and magnetometer readings will change in accordance to
the rotations and trigonometric correlations of φ and θ. The magnetic field measurements
are computed in reference to a ground magnetic field vector, which generally constitutes
the magnetic field vector of the local position on earth and are only used to determine the
estimate ofψ. Consequently, magnetic distortions do not affect the estimates of roll and pitch.
In this way, three quaternions for the rotations around the main axes in the sensor-earth
coordinate frame are computed - qp for pitch, qr for roll and qh for the heading - that are then
multiplied in the order qh ×qp ×qr to build the final normalized initial output quaternion
S
E q j 1 for body segment j (Figure 5.1).

During the implementation of the initial posture estimator, two points should be kept in
mind since they enable adaptations to the certain circumstances. First, V B can only yield a
complete orientation estimate if both magnetometer and accelerometer data are available.
Using only accelerations, it is possible to determine the initial estimates for pitch and roll
angles, but not for the heading. In such a case, the heading estimate either has to be guessed,
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Figure 5.2: Inertial capturing in the defined global coordinate system under the laboratory
setting (DS , left) and at the ski jump hill (DR , right).

set to zero or be computed by an additional preestimate. Second, the magnetic field reference
vector that determines the heading from the magnetic field data input in V B can be any
possible field vector appropriate for the intended application. This means, the field vector
can be adapted and that the heading can be defined with the semantic content of a motion
independently of general local environments and their magnetic heading. For example, the
direction parallel to the direction of view or the main direction of motion can serve as zero
yaw angle. Such reference vector has to be measured before the commencement of the main
data acquisition to serve as data input in the computation.

5.2 Estimating Sensor Orientations

Apart from the V B method, I implemented different attitude determination methods. They
are popular algorithms for the processing of inertial sensor data and have been widely
used over the last years. Especially when capturing jumping scenarios, one can assume
that free fall and aerodynamic conditions impose special requirements on the orientation
estimation algorithms, or that high-impact phases influence the accuracy of estimates during
the affected time periods. With several processing methods available, chances are higher
to identify and choose the best processing method for a specific motion task, so that all
implemented estimators shall be discussed in the following.

5.2.1 Global Coordinate Frame Settings

At every sample t, an orientation estimation filter returns an output orientation S
E qest ,t in the

sensor to global earth frame S
E . To make further use of the estimated orientations, it is helpful

to know the definition and directions of the global earth frame. Then, it becomes easier
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Figure 5.3: Working principle of the angular velocity integration estimator G I .

to reenact the computed postures and angular changes under semantic and sport-specific
aspects. For the following computations, the global earth frame was defined by Z functioning
as the vertical, Y as the transverse and X as the sagittal axis (Figure 5.2). For DS , X was aligned
with the x-axis of the optical motion capture system, for DR X was aligned with the landing
and outrun phase of the ski jump hill.

5.2.2 Angular Velocity Integration

Angular velocity can be derived from angular displacement in the same way as velocity
and acceleration can be derived from positional displacement. In theory then also the
opposite way must be true, so that orientation can be obtained by integrating angular velocity.
However, integration is never absolutely exact and always contains an unknown error that
sums up over time. Depending on the quality of the used gyroscopes, sensor bias might
further distort the estimate. As a result, the accuracy of the integrated data estimates will
deteriorate over time and the orientation estimate veer away from the actual orientation.
This error is broadly known and referred to as drift. Without any further constraints that
regulate the drift problem, a simple integration estimator is therefore not suitable for long
term orientation determination. In this work, gyroscope integration has been implemented
to test the effects of long term drift and to compare its results to other, more sophisticated
methods.

There are several ways to integrate angular rates computationally. The easiest would be to
work with Euler representations and numerically compute the integrated angular rate values
for every time step and all three rotation axes. However, as mentioned before, all estimators in
this application are intended to be free of any singularities induced by the use of Euler angles.
Therefore, I estimated the orientation with a simple quaternion data integration process G I
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on the base of quaternion multiplication (Figure 5.3). First, I expanded the three-dimensional
vector sω containing the angular rates ωx , ωy and ωz of the x, y and z axes in the sensor
frame to four dimensions. A quaternion derivative S

E q̇ that described the angular change in

the earth frame E relative to the sensor frame S was then defined as S
E q̇ = 1

2
S
E q̂ ⊗s ω. Finally,

the numeric integration of the earth frame relative to the sensor frame S
E qω,t at time step t

was determined by the following equations

S
E q̇ω,t =

1

2

S

E
q̂est ,t−1 ⊗s ωt and (5.1)

S
E qω,t =S

E q̂est ,t−1 +S
E q̇ω,t 4t , . (5.2)

Here, 4t is the sampling frequency, and the sub-script t indicates that the estimate is valid
for time step t .

5.2.3 Fusion Filter

A Fusion Filter is an orientation estimator that combines the integration estimate from a
gyroscope with the estimate from vector observations. The quaternion qω obtained from
integration of the angular velocities serves as fundamental orientation estimate, which is then
refined by adding information from the observation vectors to the final output estimate qest ,t

in every time step t . The idea is that this sensor combination creates a faster, more efficient
and nearly drift free output quaternion. Over short periods of time and for highly-dynamic
periods with much external acceleration, the integrated data from the gyroscope is used to
give an orientation estimate. This is because the short term gyroscope integration is very
precise and not susceptible to external forces. During phases of low external acceleration on
the other hand, the estimate obtained from the vector-observations is more precise as it is
drift-free and can be used to enhance the estimate. The positive effect of fusion filters on the
resulting sensor estimates are well known and shown in various works [BLS+14, RLMLP16,
LDJ+16].

Optimization Based Fusion Filter

The first implemented fusion filter C F 1 was introduced in 2010 and combines the gyro rate
estimate S

E qω,t with an estimate S
E q4,t obtained from the gravity and magnetic field vectors.

In the simplest form, the final orientation estimate S
E qest ,t for every time step t is built as

S
E q̂est ,t = γt

S
E q4,t + (1−γt )S

E qω,t , (5.3)

with γ being a filter value that represents the gyroscope measurement error that is removed
in the direction of the error estimated with S

E q4,t . While S
E qω,t is computed in the same way

as described in Section 5.2.2, the values for S
E q4,t are obtained using a gradient descent opti-
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Figure 5.4: Simplified working principle of the gradient descent optimization based comple-
mentary fusion filter C F 1.

mization approach [MHV11] motivated by the difference between the actual orientation and
the orientation estimated by the data from accelerometers and magnetometers (Figure 5.4).
In concrete, a unique orientation representing the spatial rotation S

E q̂ aligning a predefined
reference direction of the field E d̂ in the earth frame with the measured direction of the field
S ŝ in the sensor frame should be found. This optimization problem can be described by an
objective function f (S

E q̂ ,E d̂ ,S ŝ) that can then be minimized in the optimization step.

Several computational steps are taken to determine S
E q4,t under the formulated optimization

problem. First, the reference and measured direction vectors used in the objective function
are defined with respect to the observation measurements. For the accelerometer, E d̂ can
be defined in a simple way under the assumption that the vertical z-axis is parallel to the
direction of gravity, so that E ĝ =

[
0 0 0 −1

]
. Furthermore, the normalized accelerometer

measurement builds S ŝ as S â =
[
0 ax ay az

]
. Similar assumptions can be drawn for the

magnetometer measurements: the earth’s magnetic field E b̂ =
[
0 bx 0 bz

]
has compo-

nents in one horizontal axis and a vertical axis and can substitute E d̂ . For S ŝ, the normalized
magnetometer measurement Sm̂ =

[
0 mx my mz

]
is used. As a result, two simplified ob-

jective functions fg (S
E q̂ ,S â) and fb(S

E q̂ ,E b̂,S m̂), and two simplified Jacobian matrices Jg (S
E q̂)

and Jb(S
E q̂ ,E b̂) are obtained.

Next, the two objective functions and two Jacobians are combined to generate a unique
solution for the minimization problem. Based on the previous orientation estimate S

E q̂est ,t−1

and the objective function gradient ∇ f built from the objective function and Jacobian for
accelerometer and magnetometer, the estimated orientation S

E q̂4,t at time step t is

S
E q̂4,t =S

E q̂est ,t−1 −µt
∇ f

‖∇ f ‖ . (5.4)
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µt depicts the step size of the gradient decent estimation step. With 4t being the sampling
period and S

E q̇ω,t being the physical orientation rate measured by the gyroscopes, it can be
calculated as µt =α‖S

E q̇ω,t‖4t ,α > 1. The variable α is an augmentation of µ to account for
noise in the accelerometer and magnetometer. Assuming that the convergence rate of S

E q4
is equal or greater than the physical rate of change of orientation, the previous equations
ensures an optimal fusion between S

E q4,t and S
E qω,t . Therefore, α has no upper bound and

can be assumed to be very large, which implies that µt also becomes very large. A large µt

however means that S
E qest ,t−1 in the gradient decent estimator function becomes negligible

and hence the orientation filter equation 5.4 for the vector observation simplifies to

S
E q4,t ≈−µt

∇ f

‖∇ f ‖ . (5.5)

Having determined the optimization based orientation estimate, it has to be fused with the
integration estimate to a final estimate in the next step. First, the optimal γt value is defined
as that value which ensures that the weighted divergence of the primary input S

E qω,t is equal
to the weighted convergence of the correcting input S

E q4,t . This definition leads to

γt =
β

µt
4t

+β
and (5.6)

γt ≈ β4t

µt
under γt ≈ 0 (5.7)

with β functioning as a filter gain corresponding to the gyroscope measurement error in-
cluding sensor noise, signal aliasing, quantization errors, calibration errors or sensor miss-
alignment. Finally, all elements of the simple filter definition (Equation 5.3) are replaced
with one of the former variable definitions. The equation is then transformed a last time to
obtain a concrete estimation from the estimated rate of change of orientation S

E q̇est ,t and the
direction of the error S

E
˙̂qε,t of S

E q̇est ,t :

S
E q̇est ,t =S

E q̇ω,t −βS
E

˙̂qε,t with S
E

˙̂qε,t =
∇ f

‖∇ f ‖ . (5.8)

How to implement all of the previous computation steps is shown in Figure 5.5. Furthermore,
the filter can be made more robust against sensor measurement errors by adding magnetic
distortion and gyroscope bias drift compensation. For further information see the official
description from Magdwick [MHV11]).
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Figure 5.5: Detailed description of the working principle of C F 1 illustrating all computation
steps.

Rotation Matrix Based Fusion Filter

The next filter C F 2 was a modification of the simple filter fusion scheme and was introduced
in 2008 by Mahony [MHP08]. Similar as for the previous fusion filter, the final orientation
estimate S

E qest ,t for every time step t is built by correcting the gyro rate estimate S
E qω,t with a

vector observation estimate, whereas it is not necessary to determine the concrete values for
S
E q4,t in the present filter. The computation is based on the idea that the angular changes
determined with the vector observations can be represented in a rotation matrix, the Di-
rection Cosine Matrix (DCM) [ECM+08] (Figure 5.6). In the original DCM filter algorithm,
magnetic measurements are not included as vector observations. In this work, a filter version
is used that detects pitch and roll deviations from the accelerometer data and deviations in
yaw from the magnetometer, similar as in the V B method for estimation of the initial posture
(Section 5.1).

The divergence of integration and sensor measurement is weighted by means of two error
measures for the error induced by drift and sensor bias and the numerical integration error.
To determine the two error measures, one first computes the direction of gravity v̂ and
magnetic field ŵ with the previous estimated quaternion qω and the earth’s magnetic field
E b̂. Proportional (sensor induced) error feedback e is obtained by the cross product between
the estimated direction vectors from qω and the field measurements from the accelerometer
â =

[
ax ay az

]
and magnetometer m̂ =

[
mx my mz

]
:

e = â × v̂ + m̂ × ŵ . (5.9)
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Figure 5.6: Simplified working principle of the rotation matrix based complementary fusion
filter C F 2.

The error accumulating with integration over all previous time steps per time step 4t consti-
tutes the integration error correction term ei nt :

ei nt ,t = ei nt ,t−1 + e ∗4t . (5.10)

Having determined the fundamental definitions for the estimation of the error measures,
the general fusion filter equation (Equation 5.3) is adapted next. Under the present problem
definition, no γt value that controls the convergence between primary input S

E qω,t and
correcting input S

E q4,t is necessary. Instead, e and ei nt are weighted and added to the angular
velocities using the two filter gains Kp and Ki . They control the influence of the correction
terms e and ei nt on the output estimate by

sωt =s ωt + Kp ∗e + Ki ∗ei nt . (5.11)

Finally, the angular velocity data sωt in quaternion form is integrated (Section 5.2.2) to yield
the output estimate S

E qω,t .

Although the algorithm’s general work flow (Figure 5.7) looks very similar than the one for
C F 1, Equation 5.9 reveals that the algorithmic component of the filter is much simpler, which
keeps the implementation of the algorithm east and quick. Consequently, the computa-
tional complexity of the filter is also smaller, making it very fast and convenient to use. In
the same way as for C F 1, the filter can furthermore be made more robust against varia-
tions in the magnetic measurements by adding magnetic distortion compensation in the
implementation.
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Figure 5.7: Detailed description of the working principle of C F 2 with all computation steps.

Optimization Based Pseudo-linear Kalman Filter

The last fusion filter K F was a variation of the Kalman Filter, a general algorithm to estimate
unknown variables from multiple time series data of (one or higher dimensional) noisy,
randomly variable and inaccurate measurements. The basic idea behind the KF is that by
combining several measurements, a more precise output estimate is computed than by using
a single measurement. Consequently, it can be adapted well to the different data obtained
with an IMU. Many different variations and adaptations of the KF for fusion of the angular
velocity, accelerometer and magnetometer data have been proposed in literature, making it
the most common filter type for orientation estimation with IMU sensors.

The general working principle of a KF for orientation estimation is as follows: from a previous
or initial guess (the prior knowledge of state), a new value is predicted on the base of the
angular velocities of the next time step. This prediction is then compared to the observations
of the correcting sensor measurement data and the credibility of the prediction and observa-
tions dynamically rated using information about measurement noise and inaccuracies. This
means that the influence of every guess on the next estimate is dynamically adapted to the
certain conditions of that specific time step. As a result, an output estimate is determined
that is then again used as previous guess for the next time step. For the computation of
the estimates it is needed to specify the following variables at the beginning of the filter
computation:

– A description of the signal value xt

– A measurement value zt

64



5.2. Estimating Sensor Orientations

Figure 5.8: Simplified working principle of the optimization based pseudo-linear Kalman
fusion filter K F .

– A value for the control signal ut

– A value for the process noise wt representing the noise that arises by making a first
orientation estimate

– A value for the measurement noise vt

– Ft , which is called the state-transition model and which gets applied to the previous
state xt−1 to compute a first guess for the new time step

– Bt , which is called the control-input model and which gets applied to the control vector
ut ,

– Ht , which is called the observation model and which maps the true state space into the
observed space

– Qt , the covariance of the process noise
– Rt , the covariance of the observation noise

The KF was first introduced for linear systems, but can be extended to nonlinear systems
of complex input data. Such extended Kalman filter is the standard for the use of inertial
sensor data with its different input vectors (orientation from the previous time step, ac-
celerometer, gyroscopic and magnetometer measurements). However, its complexity and
computation time is higher than in linear filters. I therefore chose to use a KF that refines
the primary estimate S

E qω,t from the integration estimate with a precomputed vector-based
orientation quaternion S

E q4,t functioning as observation input in the Kalman Filter’s update
step [MYB+01, YB06] (Figure 5.8). In this way, the same number and types of input and
output values are used, so that the filter is of linear complexity and faster than a conventional
extended KF.
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Figure 5.9: Detailed description of the working principle of K F with all computation steps.

The process model is described by the quaternion integration process as

xt = Ft xt−1 + Bt ut−1 + wt (5.12)

zt = Ht xt + vt . (5.13)

In accordance to the process model, the signal value containing the states of x is a 7-
dimensional vector containing the angular rates among all three dimensions and the four
components of S

E qω,t .

The common approach of an extended KF would now be to use a 9-dimensional vector
containing the measurements for angular rate, accelerometer and magnetometer in all three
axes as measurement value vector z. To obtain the same number of input and output values
for the KF (and hence keep the KF less expensive), the orientation estimation from the vector
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Table 5.1: Number of process model state values x and observation measurement values z
used by the chosen Kalman filter.

Val # State x Observation z
1 angular rate of x-axis angular rate of x-axis
2 angular rate of y-axis angular rate of y-axis
3 angular rate of z-axis angular rate of z-axis
4 quaternion component q0 (scalar com-

ponent)
quaternion component q0 (scalar com-
ponent)

5 quaternion component q1 quaternion component q1

6 quaternion component q2 quaternion component q2

7 quaternion component q3 quaternion component q3

Figure 5.10: Working principle of the external orientation estimation and convergence step
used by K F .

observations is moved to an independent computation step as an outside loop of the KF.
This estimate is then used as observation measurement vector. Consequently, the elements
are exactly the same as the states listed in Table 5.1. The values for R, H , Q and the noise
vectors needed in the update step of the Kalman filter are determined experimentally for the
individual inertial sensor used. For this thesis, their values have been determined in a long
term observation of the sensors in rest.A more detailed, but also complex, possibility would
be to determine the noise values by the Allan Variance [ESHN08, Hou05].

Although the output equations are linear, it is still necessary to use an extended KF because a
part of the state equation is nonlinear. Therefore, the filter design is called pseudo-linear KF
in this work. The success of such Kalman filter design is strongly dependent on the prees-
timation method. To find the quaternion that best relates the measured accelerations and
earth magnetic field measurements to the reference directions in the earth coordinate frame,
any orientation estimation strategy can be used. Here, a Gauss-Newton optimization method
has been selected to be integrated in the overall filter process (Figure 5.10). This method
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resembles the gradient descent optimization, but was shown to be faster than the gradient
descent method since it requires less iterations for getting to a stable result. Furthermore,
it is invariant against ’zigzag’ effects, a moving around the minimal values in both left and
right direction. The conversion of the measurement data that will then be minimized in the
optimization step is described by an error function Q as

EQ = εT ε = (E ye −M B yb)T (E ye −M B yb), (5.14)

where E ye is a six-dimensional vector containing the measurements of accelerometer and
magnetometer in the earth frame and B yb is the vector in the body frame. Furthermore,

M =

(
R 0
0 R

)
with R being the common general 3x3 rotation matrix. From the quaternion nk

for the current time step k one can then iteratively compute the quaternion for the following
time step k + 1 via the Jacobian J as

n̂k+1 = n̂k −
[

J T (n̂k ) J (n̂k )
]−1

J T (n̂k ) Eε(n̂k ). (5.15)

Since there is not a quaternion that exactly converts what is measured - meaning the sensor
data in body frame - into the known values - meaning the sensor data in earth frame - it is
necessary to check the convergence of the preestimated observation quaternion. To make
sure that the error Q for converting the measurements to the earth frame is minimized, the
main goal of the algorithm is to find good initial values for the quaternion n. Besides, only
few calculations are necessary for the computation of the next quaternion estimate under
such good initial guess, which keeps the algorithm of low complexity.

5.2.4 Filter Designation

In the following chapter, I describe how the presented filters were tested for accuracy and
evaluated for their use in sports. Besides, all derived body kinematics should be utilized
within the sense-making step of the data processing pipeline, so that the filters herewith
serve as input for a motion information system. Therefore, Table 5.2 summarizes the type,
abbreviations (ID) and characteristics of all filters for reference in the subsequent chapters of
this thesis.
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Table 5.2: Overview of the implemented orientation estimation methods including the ab-
breviations used in the following investigations as well as references to the works describing
their original concept design.

Name Type ID Description Reference
Integration filter non-fusion GI Integrates the angular velocity

data by quaternion integration to
a quaternion output estimate.

FQA-QUEST filter non-fusion VB Determines a quaternion output
estimate by the measurement
from accelerometer and magne-
tometer only. The computation
is based on simple trigonometric
relations and half-angle computa-
tions.

[YBM08]

Gradient Descent
based Complemen-
tary Filter

fusion CF1 The integration estimate is re-
fined by accelerometer and mag-
netometer data with a Gradient
Descent Optimization algorithm
to a quaternion output estimate.
The influence of the correction
from the vector estimate is deter-
mined by the variable β.

[MHV11]

Rotation Matrix
based Complemen-
tary Filter

fusion CF2 The angular velocity data used for
the integration estimate to build
a quaternion output estimate is
corrected on the base of two error
measures Kp and Ki determined
via the rotation matrix and the ac-
celerometer and magnetometer
data.

[ECM+08]

Pseudo-linear
Kalman Filter

fusion KF Enhances the integration esti-
mate with an orientation estimate
precomputed by the observation
data of accelerometer and mag-
netometer to a quaternion out-
put estimate. The noise values wk

and vk are essential parameters of
the filter settings.

[YB06]
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5.3 Determining Body Segment Orientations

Ideally but not practical, the sensor could be directly placed on the bones of an athlete and
the sensor data be expected to represent the mounted body segment without any further
processing. However in the real world, varying anthropometrics of participants and the
manual sensor placement process create a displacement between the sensor placement and
the real bone structure which has to be considered for subsequent data analysis. For this, I
performed a sensor-bone calibration similar to a method previously described [LVB05] at the
commencement of every capture session. From this calibration data, the difference between
sensor frames to the global coordinate frame could then be determined. Since the sensor
placement did not change within one session, the displacement remained the same for all
captures of one training set.

Two calibration measurements are necessary. Firstly a static measurement to determine
the displacement to the direction of gravity. Secondly a rotational movement around one
predefined axis to determine the displacement to the respective rotational axis.

In the first step, the athletes are asked to stand still in the anatomical position with the
affected body segments perpendicular to the ground surface so that the longitudinal axes
of the bones are parallel to the direction of gravity and the z-axis direction of the defined
global coordinate system. The displacement of the sensor placement at segment j along
the global z-axis S z−

j is then given by the differences in the normalized acceleration vector
to the unit vector along z. Here, the − in the notation depicts that the direction vector will
be refined in a later step to keep the axes of the sensor frame perpendicular. In the second
step, the participants are asked to move all sensor mounted body segments around one of
the remaining two axes of the sensor frame, for example to swing the legs or to bend the
torso around the transverse axis. Ideally, the deviation S a j from the respective rotation axis a
can then be determined from the direction of the point of maximal angular velocity at the
rotation turning point.

From the two deviations one can then determine the axial displacements of the sensor to the
global coordinate system. The sensor frame is completed by two cross product computations
that determine the missing axis and the refined z axis S z j . The axes then build a rotation
matrix r M that depicts the sensor displacement. For a rotational calibration movement
around the y-axis, this is for example defined by

Sr M = [S y j ×S z−
j

S y j (S y j ×S z−
j )×S y j ]. (5.16)

Adding the sensor displacements Sr Mbs to the respective sensor estimates S
E qest ,bs then led

to the final body segment orientations S
E qbs . For all jump files within DR , the computed

displacements ranged between 0.7 to 13 degree. Large displacements mainly occurred as
heading deviations of sensors attached to the arm, where was difficult to align the sensor
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Figure 5.11: Working principle of a sensor-bone alignment. Calibration movements have to
be executed before the main data processing to determine the displacement of every sensor
placement.

perfectly to the bone’s dorsal axis. Consequently, the alignment process can be very useful and
increase the data reliability significantly in cases of large sensor bone displacements.However,
it should be emphasized that the accuracy of the sensor alignment was strongly influenced
by the execution of the sensor calibration movement. Since the method relies on the general
axial definition of the global coordinate system, the calibration poses and movements should
also be executed as closely as possible to the intended axial directions.

5.4 Estimating Positions

Kinematic data usually does not only comprise angular information on body segments, but
also positional information on body joints. In general, there are two different strategies for
the determination of positions or an athlete’s posture from inertial sensor data. One is to
work directly with the raw data, the other one is to use angular information to determine
position as a sequence of sub-positions within a kinematic chain.

Positional displacement is computed as the velocity of a moving object over time, and
velocity in turn by acceleration over time. Inverting this relation, a double integration of
raw acceleration sensor data then yields information on positional changes of the position
and location the sensor is mounted to. Although this double-integration is simple and
theoretically correct, it is generally not practicable and cannot be used in the processing
pipeline of applications without any further data correction. As for the integration of angular
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Figure 5.12: Forward kinematics under the defined global coordinate system for the estima-
tion of relative joint positions at the left arm.

velocities, inaccuracies and noise in the sensor data accumulates quickly (errors sum up even
more in the course of a double-integration), and the resulting posture can drastically differ
from the real posture. One strategy to account for errors and inaccuracies that occur during
the integration process is to add a control value input. In gait analysis, such a control value
can for example be taken at every instance of touching the ground [YBMC07]. However, in
case such motion events do not occur regularly or comprise a main part of the performance
(as in many sports), the implementation and addition of such control events is much more
difficult. Therefore, it shall not be discussed in more detail here. Instead, the previously
estimated orientation of body segments (respectively the orientation of the sensors mounted
to the body segments) were used.

5.4.1 Orientation Based Position Estimation

Consecutive body segments build a flexible kinematic chain by connecting segment start
and end positions through joints of various degrees of freedom. An arm for example usually
consists of shoulder, elbow, wrist and knuckle joints. In robotics, it is common to estimate
the parameters of connecting body segments from known or desired positions of the joints
and end-effectors towards the center of mass. This problem is called inverse kinematics (IK).
Starting at a root position, joint positions are vice-versa determined from specified known
segment parameters by forward kinematics (FK) (Figure 5.12 and Figure 5.13).

Under the condition that the sensors are aligned with the sensor bones during their at-
tachment, FK is simple and can be used well in the processing pipeline. In this case, the
sensor orientation S

E q̂ is the same as the orientation of the affected segment. With S
E q̂ already

determined in a previous step, the only additional segment parameter necessary for the
computation then is the length sl j of the segments, which can be easily measured before
data acquisition.
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Figure 5.13: Working principle of the relative pose estimation under the FK principle.

Knowing both segment orientation and length, the segment’s end position can be determined
in two easy calculations. First, the relative end position of every joint j in relation to the
segment’s origin is determined using a vector-quaternion rotation with the measured segment
length to be the rotated vector. Since it is assumed that the sensor orientations represent
the real orientation of the body segments, they are known to follow a straight line in the case
of no angular displacement. Then, the rotation vector can be build as a three-dimensional
vector ~ϑ = [sl j 0 0] with the previously measured segment length sl j of the respective j -th
segment along the x-axis. Second, the absolute position p j of every joint in the kinematic
chain is computed. Starting at the origin p0 of a kinematic chain, all joint end positions p are
then computed as a combination of the relative end position and the position of the previous
joint as

p j = p j−1 +S
E q j ⊗~ϑ⊗S

E q∗
j . (5.17)

One of the main restrictions for the FK pose estimation is that the position can only be
expressed in relation to a root joint, generally the center of body. This means that translational
motions of the whole athlete-sensor system cannot be determined. Since inertial sensors are
mainly intended to be used in sports with a large motion volume (that hence also contain
much translational motion), certain relevant motion parts will not be available from the
sensors. If such information should be desired, it can be possible to determine further
parameters by additional mobile devices like GPS or laser tracking systems. In this thesis, I
will only use positional data within the sensor-athlete system, so that a collection of global
positional data is not explicitly necessary.

5.5 Processing Work Flow

With the implementation of all previous sensor signal processing methods, I obtained a
full framework for the estimation of body kinematics. Starting with a raw data input, it
concretely consisted of the following sequence of computation steps: (1) raw data processing
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(filter, offset noise removal), (2) sensor-bone alignment to adhere for variations in the sensor
placement, (3) determination of initial sensor orientations with an algorithm based on
trigonometric relations in the field measurement vectors, (4) estimation of sensor orientation
estimation by a Complementary Filter, (5) combination of sensor orientation and sensor
displacement for determination of segment orientations, and (6) computation of relative
joint positions with a forward kinematics approach using manually measured segment
lengths (Figure 5.14). A stored or incoming live inertial sensor data stream passed through all
methods then results in the system’s output data in form of kinematic motion information.
Next, I tested whether this estimate is accurate and reliable to be used for the subsequent
sense-making step. The results are discussed in the following chapter.
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Figure 5.14: Overview on all data augmentation methods and their natural flow within the
motion information system.
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6 Validation and Enhancement of the Aug-
mented Motion Data

Being able to determine accurate and reliable sensor orientation estimates as well as derived
body kinematics is important for the usability of any inertial sensor measurement system. In
order to obtain the most accurate data, it is recommended to perform initial calibrations on
all sensor types before starting the data capturing and processing [HMZ+13, FSK+15]. This
is because sensor data is imposed by inaccuracies – based on temperature-induced noise
variations, angle misalignment and magnetic field bias – that result in errors and drift when
estimating angular and positional displacements from the sensor data. Knowledge on the
system noise can consequently help to reduce resulting error as much as possible. This is
especially important for the present target applications using sport motion data as primary
input: to represent and analyze all motion information correctly, a high level of data accuracy
is necessary.

After implementation of all necessary processing methods for the derivation of body kinemat-
ics, the accuracy of the augmented data was therefore conscientiously verified. Furthermore
important was to find alternative methods that enhance accuracy, in case that a correct and
reliable hardware calibration cannot be performed. To determine eventual constraints and
conditions that arise in the context of insufficient sensor calibration and dynamic motion,
the strengths and weaknesses of the different implemented estimation filters and all those
factors that have an influence on the data processing were examined.

Research was made to introduce applicable methods for system calibration and drift com-
pensation [YB16, KS16, OBT16, MBSS16, BSDD14]. The methodologies are usually based on
advanced mathematical algorithms. Considering the diverse group of future system users
(Section 2.2), simple methods that can be automatized and universally applied should be
better suited: then, an intuitive and universal application that does not require any technical
knowledge for the system set up can be developed. However, filter settings, environmental
parameters and motion characteristics might change in dependence on the motion pattern.
As mentioned before, conventional orientation estimation methods could for example be
insufficient when used with dynamic motion data, so that the underlying filter technologies
would require adaptations and changes. As a consequence, a good understanding of the
background filter methods and processes that influence the accuracy of the used filter algo-
rithms would then be fundamental to ensure data quality. Since this cannot be presumed
as valid with everybody, I introduced two simple algorithms for error reduction that can be
added to the overall processing pipeline.
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6.1 Accuracy of the Augmented Data

I verified the accuracy and functionality of the previous implementations and their resulting
computations with both the data from DS and DR (Section 4.3). First, the accuracies of the
orientation estimates from the three fusion filter C F 1, C F 2 and K F as well as their dependent
joint positions were determined using the data captures from the simulation data base. Next,
the filters were examined with respect to their use under the field motion data base and the
system functionality validated for the intended ski jumping application. Lastly, a main system
evaluation was performed with the actual ski jumping data.

6.1.1 Verification of The General System Applicability

To obtain information on the general system applicability, I computed sensor orientations,
displacements and initial orientations of all data captures within DS . Next, I compared the
resulting motion information to the optical ground truth data. With a calibration accuracy of
0.8mm or less, the orientations obtained from the Vicon system were highly accurate. The
accuracy of an estimated orientation S

E qest ,t in the global earth frame E at every time frame t
could then reliably be determined as numerical deviation to the camera system orientation
C
E qg t ,t . C

E qg t ,t was computed from two positional vectors ~p1 and ~p2 defined by three of the
four captured marker positions around each sensor (Figure 4.5) and a third orthogonal vector
~p3 built from the cross product of ~p1 and ~p2. They were combined in a rotation matrix and in
the last step transformed into quaternion representation to form C

E qg t ,t .

To evaluate changes on the overall accuracy values per filter strategy, accuracies were com-
pared in relation with each other. Using the same initial orientation values for every filter,
differences between estimate and ground truth remained the same in all computations, so
that just the drift and accumulating errors over time could be evaluated. The quaternion
representation of both orientations furthermore made the resulting estimates comparable.

Accuracy Measures

The difference between S
E qest ,t and C

E qg t ,t could be easily quantified via the distance E I P

defined by the inner product <S
E qest ,i ,SE qg t ,i >. E I P is 0 when the quaternions represent the

same orientation and 1 when the difference between the two orientations is 180°. The overall
accuracy per take was then determined as the root mean square error ERMS (RMSE) over E I P

as

E I P = 1− <S
E qest ,i ,CE qg t ,i >2 and (6.1)

ERMS =

√
1

n

n∑
i =1

(E I P,i )2, (6.2)
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whereas i stood for the current examined sample within the data capture of length n. Using
the quaternion representation as a combination of the three Euler components pitch, roll,
and heading, this error measure was not prone to errors caused by singularities in the Euler
angles and the gimbal lock. However, it also did not give a concrete information about angular
deviations per sensor rotation axis. I therefore defined an additional RMSE measure ERMS 6
with 6 representing the decoupled Euler values φ, θ and ψ in radians computed from the
quaternion representations as

ERMS 6 =

√
1

n

n∑
i =1

( 6 g t , i − 6 est , i )2. (6.3)

For a meaningful comparison between S
E qest ,i and C

E qg t ,i , it was necessary to bring both into
the same reference frame. Since the origin of the optical motion capture system was set
parallel to the ground surface, the z axes of both coordinate frames were expected to be
parallel (Section 5.2.1). Consequently, it was only necessary to compensate for the heading
difference ψ′ between the x-axes of the global and camera system. Such alignment was
simple, while knowing the sensor headingψS from the initial posture estimation step and the
initial heading of the camera system ψC : in that case, the quaternion product S

E qest ,i ⊗q∗
ψS

with qψS built from ψS should be equal to the quaternion product C
E qg t ,i ⊗q∗

ψC
with qψC built

from ψC .

Accuracies

As principal investigation, I determined the general accuracy of the three fusion filters from
Section 5.2. Their mathematical description clearly shows that the accuracy of every filter
model is dependent on the filter values chosen: in general, the accuracies of the fusion
filters depend on how much influence on the overall estimate is internally granted to every
sensor data type (respectively the correcting sensor observation data from accelerometer and
magnetometer). To obtain good orientation estimates, it was therefore essential to choose
appropriate settings for the noise values β in C F 1, Kp and Ki in C F 2 and wk in K F .

To find reasonable filter settings, I first estimated the orientations of randomly selected
data captures with arbitrary filter values. From visualizations of the orientation data, I then
identified a range of possible filter values for every filter method and built a sequence of
linearly increasing filter values from those intervals. Estimating the orientations of all data
captures with the collection of selected filter values, I finally chose the best estimates per filter,
sensor location and motion pattern from the data for evaluation of the maximal accuracy. As
concrete filter values, I used

0.01 ≤β≤ 0.5,0.05 ≤ Kp ≤ 1.25, and0.01 ≤ wk ≤ 0.2,
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(a) (b)

(c) (d)

Figure 6.1: Orientation estimates obtained with C F 1 (purple), C F 2 (green) and K F (light
blue) and the ground truth orientation determined from optical camera data (black). Upper
row: estimates for pitch θ in throwing and kicking at P. Bottom row: estimates for pitch θ in
jumping (rope skipping) and jumping jacks at P.

whereas the values for β were increasing by steps of 0.02, the values for Kp by steps of 0.05
and the values for wk by steps of 0.01. Ki was set to a constant value of −0.45 to reduce the
number of variables.

As a result, I could obtain accurate orientation estimates for all three filter models. For
all sensor placements and motion types, ERMS values could be constantly brought under
0.03 for C F 1 and C F 2 and under 0.1 for K F . The values of ERMS 6 remained within 0.2 rad
(meaning ≈ 10° or less) along all axes of C F 1 and C F 2 and 0.4 rad for K F (Figure 6.1, Table 6.1).
Here, it should be emphasized that K F might have also produced more accurate estimates
under different observation noise values, which were used to build the covariance matrix R
(Section 5.2.3). They were estimated from data bias measured with the sensors in rest and
have not been modified in this investigation. Consequently, more accurate and specific noise
measures by for example the Allan Variance could have increased results [ESHN08, Hou05].
Leaving out deviations already existing between the initial postures S

E qest ,1 and C
E qg t ,1, the

quality of the filter models could be considered as sufficiently high and accurate. These good
accuracy measures brought me to the conclusion that all implemented filters could generally
be well applicable for a subsequent motion analysis.

Besides the sensor orientation estimates, I furthermore determined the accuracy of the initial
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Table 6.1: Mean error values of C F 1, C F 2 and K F for the orientation estimates of all sensor
placements with filter values adapted to specific drift prevalent in every sensor placement
and motion type.

Motion ERMS ERMS 6
C F 1

Kicking 0.0121 [0.1412,0.0730,0.1334]
Jumping 0.0098 [0.1199,0.0720,0.0808]

Jump-Turn 0.0142 [0.1332,0.0783,0.1479]
Jump.Jacks 0.0204 [0.1900,0.1260,0.1427]
Throwing 0.0103 [0.1470,0.0716,0.1026]

C F 2
Kicking 0.0128 [0.1434,0.0740,0.1405]

Jumping 0.0238 [0.1655,0.1245,0.1122]
Jump-Turn 0.0190 [0.1649,0.0952,0.1681]
Jump.Jacks 0.0338 [0.2157,0.1561,0.1730]
Throwing 0.0091 [0.1374,0.0679,0.0965]

K F
Kicking 0.0642 [0.2740,0.1758,0.3101]

Jumping 0.0516 [0.2439,0.1601,0.2014]
Jump-Turn 0.0913 [0.3078,0.1912,0.3921]
JumpJacks 0.0575 [0.2566,0.1586,0.2524]
Throwing 0.0419 [0.2483,0.1499,0.2479]

posture estimates obtained with V B as well as the positional accuracy with deviations in
mm. Comparing the accuracy of pitch θ and roll φ from ERMS 6 with the initial orientation
obtained with the Vicon system, accuracies were within ≈ 2.5° for θ and ≈ 5° for φ. Since the
roll depended on the preceding pitch estimate, the error accumulated in the roll estimate.
However, accuracy should be considered as accurate enough - especially given the fact that
the orientation obtained from the optical marker points could also not be considered as
absolutely identical to the sensor casing and proportions. Lastly, the deviations between
estimated joint positions and ground truth marker positions from the optical motion capture
system were considered. Under the previous highly accurate sensor (and hence segment)
orientations, positional differences could be kept within 25 mm for all orientation estimates,
sensor locations and samples. For the best estimates, deviation was less than 10 mm distance,
which I considered a highly satisfying value given the intended follow-up application as well
as reference values from literature [Sab06, LVB05].

6.1.2 Verification of The In-field System Applicability

With the confirmed general system accuracy, the functionality of all fusion filters should
subsequently be tested with the data captures DR acquired at actual sporting venues. In those
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(a) (b)

Figure 6.2: ERMS averaged over all motions in DS at (a) P and (b) an extremity (right shank or
arm) and their standard deviation with the chosen filter values. Possible error values range
between 0 and 1.

locations, generally no ground truth data is available that could provide information on the
system’s error and accuracy. Therefore, it is difficult to modify the filter values in a variable
way for every individual data stream and with changing conditions or sensor placement. In
contrast to the previous accuracy validation, it is hence economical to employ a fixed filter
value. However, such fixed filter setting cannot guarantee for permanently accurate estimates.
To find the best method under the present prerequisites, I therefore first examined the sensor
estimates of the simulation data in more detail, before I then progressed my evaluation with
the ski jump data from DR .

Conclusions from Simulation Data Base

To evaluate accuracies of the implemented methods with one filter value, I determined the
best filter value on average for every filter model. For this, I weighted all selected best filter
values with their accuracy and averaged them to VI constituting of the rounded β = 0.19,
Kp = 0.56 and wk = 0.02. The accuracies of all data files with VI were then computed and then
compared to the Vicon ground truth data. Taking effects of inconstant sensor background
noise out of account, results indicated that the performance and applicability of every filter
model varied with the motion pattern. Those differences were likely to be induced by each
filter’s algorithm. To identify suitable motions of every fusion algorithm, I averaged the VI

ERMS values for two sensor locations of differentiating motion characteristics (Figure 6.2).
While the averaged ERMS values of the K F estimates showed the largest deviations to the
ground truth in both cases, C F 1 had slightly better averaged accuracies for the static sensor
data than C F 2, but also a higher standard deviation. Furthermore, C F 2 suffered from less
drift at the higher accelerated sensor data.

General observations were slightly different when looking at the changes in accuracy every
filter achieved in relation to the G I estimates: the difference between the accuracy of G I and

82



6.1. Accuracy of the Augmented Data

(a) (b) (c)

Figure 6.3: Sample plot of a throwing motion with the ground truth data and the respective
estimate from the three filter models along x, y and z.

a more sophisticated fusion filter gave an idea about the effect and impact of the fusion filter
with the chosen filter settings. Mathematically, I described this difference as relative change
RC between the error values ERMS,T V of the fusion filter estimates to the error value ERMS,BV

of the base error values from the G I :

RCT V =
(ERMS,T V −ERMS,BV )

ERMS,BV
. (6.4)

The RC for K F for example was defined as RCK F =
(ERMS,K F,i−ERMS,G I ,i )

ERMS,G I ,i
at every frame i in a

motion take. The average relative change RCK F = −0.7843 gave the impression that K F
was especially useful for primary low speed motions. With an average relative change of
RCC F 2 = −0.7725, C F 2 in contrast offered particularly high accuracy for motions and body
segments that constantly reached high angular velocities. C F 1 improved the estimator
performance in all cases, but was of lower accuracy or higher standard deviation than C F 2.

To draw a conclusion about the main DR field data, I examined only motions of similar
characteristics as ski jumping in the next step. Motions were considered a similar motion
pattern when they contained both static and high-impact motion phases as for example a
sequence of throwing motions of the throwing arm. Angular changes during quick and high-
impact phases could not be represented to a full extend by any of the estimation methods
(Figure 6.3). However, less accurate estimates during dynamic motion phases were stabilized
well during the more accurate data in the static motion phases. In those phases, data was
stabilized best by C F 2 that was of constantly accurate values and seemed to be less prone to
drift than the other two estimators. As a result, I chose C F 2 as principal orientation estimator
for the actual ski jump data captures.

In-field Accuracy

The ski jump data captures were verified from two high-speed video cameras facing towards
the take-off table and the middle of the flight path and one consumer camera facing towards
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Figure 6.4: Magnetic disturbances between different takes on the start gate at the top of the
ski jump hill led to differences in heading φ of estimated segment orientations, as well as
differences in joint positions estimated from the posture data.

the start gate. Pitch values of body segments were manually annotated from the camera data
and correlated to pitch values θ of the estimated orientations within a 5° accuracy range.
Furthermore, pitch values from the orientation estimates at the ski were compared to the hill
construction properties of the in-run slope with an elevation angle θI R = 35°, the take-off table
with an elevation angle θT O = 10° and the landing slope with an elevation angle θK P = 34.7° at
the K-point. Their difference was in a range of less than 3−5° during all annotated motion
phases. To examine the progression of error caused by drift, I additionally computed the
average changes in ski elevation and heading during in-run. Given the natural constraints of
the slope, variations along both X and Y axis should be minimal during those approximately
10 seconds. Within all jumps, pitch angles varied by maximally 0.5−5° with an average change
of orientation of 1.15° per data capture, and heading angles by 1.4−3° with an average change
of orientation of 1.56° per take. Consequently, drift could be assumed to be sufficiently small
in the chosen setting.

However, large variations could be found in the sensors’ heading values ψ among all jumps.
In particular, initial heading differences were present throughout the complete data set
DR in dependence on the sensors used during every capture session, the mounted body
segment and the date of the data acquisition. Since the angular changes S

E qbs were used to
determine body joint positions, large variations were observed in the positional data as well.
Visualizing the estimated data as data plots or stick figure animations, it was not possible
to reliably display the full body kinematics. Figure 6.4 shows animation visualizations of
sample jumps during the in-run and their corresponding time-series plot for the segment
orientation S

E qr T and knee position pr T obtained from the sensor attached to rT. Differences
>π in ψ (visible in the top row of the figure as the yellow curve for the angular changes in z)
led to sign errors in the relative positional data (visible in the middle row of the figure as the
blue curve for the positional changes in x-direction and red curve for the positional changes

84



6.2. Enhancing Usability of the Data Augmentation Step

in y-direction) and unnatural and impossible body poses. Similar differences and errors
appeared randomly within other jumps of DR and different capture sessions. They were also
numerically represented within the full data set as heading variations with an unnaturally
large range of occurring ψ values (Table 6.4, Figure 6.16). In the top row of the pie chart
(Figure 6.16) for example, the heading values of rF varied within the complete range of 0 to −π
as well as around +0.6 to +1 rad – a heading range that is not possible to fulfill naturally given
the fact that all jumps have been captured on the same jump hill, with the athlete sitting at
the start gate.

As a conclusion, body kinematics were unreliable with respect to their initial heading states
that appeared to be influenced by the following properties: varying sensitivities in the sensor’s
magnetometers (every sensor measured a slightly different magnetic field at the same position
of the ski jump hill), proximity to the in-run slope and jump hill (with evidence: sensors
attached to the arms were less variant than those attached to the thigh, or near the magnetic
start gate), as well as differences in the magnetic field with changing weather conditions. To
enable a generic system it was consequently necessary to find the reason of those heading
variations, in order for the variations to be held to a minimum.

6.2 Enhancing Usability of the Data Augmentation Step

I have seen that the system accuracy can be high when the filter values and noise simulations
were adapted well to the requirements of a certain motion task. However, this adaptation can
be very complicated, time-consuming and tedious. Especially for users that are not familiar
with the underlying mathematical concepts, the adaptation of the sensor noise can be a very
difficult task. In other words, a future analysis system would either be little user-friendly (in
case that filter settings get fine-tuned) or inaccurate (in case that filter settings would not get
fine-tuned) when the previous processing framework is employed. A similar trade-off persists
when compensating the variation in heading angle discovered in the real field motion data:
using additional settings and filter values might be successful for reduction of distortions, but
would on the other hand complicate the system use. Therefore, I aimed to develop additional
intelligent strategies for data enhancement that would contribute to both higher data quality
and system usability.

6.2.1 Intelligent Gyroscope Drift Reduction

Indexing all filter values that achieved best accuracy values in the previous accuracy evalu-
ation (Section 6.1.1), I could observe large differences for every specific sensor placement
and motion pattern. Best filter values were variate and could differ considerably between the
data captures and under various properties of the motion data stream. One reason for this
variation was that huge differences among sensors and rotation axes were already present in
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(a) (b) (c)

Figure 6.5: Changes in the accuracy values ERMS of all filter models with a fixed noise value
in relation to the ERMS values of G I (here depicted as base value 0) per motion pattern and
their mean relative change values RC.

the accuracies of the pure G I estimates: specific sensors for example continuously generated
estimates of higher accuracy than other sensors independent of their mounted position.
Therefore, a fusion filter of one fixed noise value was not equally suitable for all sensor es-
timates. A K F noise value of wk = 0.07 for example could produce better estimates than
wk = 0.01 for certain sensors, but on the other hand significantly deteriorate the estimates
of other sensor data. Those differences were likely to stem from technological hardware
differences between sensors or insufficient calibration of specific sensors. The other main
reason for this variation was drift. Evolving from white noise in the gyro rate sensor readings,
it cannot be controlled as a constant offset – even tiny deviations from the underlying raw
sensor data like very small oscillations around a sensor’s reading in rest are significantly
enhanced in the integration process. To determine fluctuations in drift over different motion
patterns, I examined the RC values averaged over all data captures in DS with the VI filter
values (Figure 6.5). With their relation to the G I estimates, they comprise accuracy differences
per sensor: the better the sensors, the more accurate already integration estimates from G I .

The different distributions of accuracy per filter model can be easily distinguished from the
data plot: while the chosen wk for K F generates the least improvement, C F 1 yields stable
and large improvements for all motion pattern. C F 2 on the other hand can both considerably
improve and degrade accuracies in dependance on the motion pattern. For jumping motions
and jumping jacks for example, the filter models could be considered as less effective as for
kicking, throwing or jumps with turn. From Equation 5.11 and Equation 5.12, one can see
that C F 2 and K F already include an error measure for the sensor noise induced drift and
require additional noise input values. The resulting accuracy values showed that this internal
drift compensation was not sufficient to equally remove the drift from the sensor signal of all
data captures, respectively of all motion types. Positive RC values furthermore denoted that
the chosen noise values could even influence the final output estimate in a negative way for
certain motion patterns.

To get more detailed information on the accuracy distributions, the RCC F 1 values of different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: Changes in the accuracy values ERMS of C F 1 in relation to the ERMS values of G I
(here depicted as base value 0) per sensor location and their mean relative change values RC.

sensor placements should be examined next, since C F 1 is the only filter model whose accu-
racy only depended on one variable (β). It became clear that different sensor locations were
not equally accurate, but varied along the different motion categories (Figure 6.6). Jumping
jacks for example could not be estimated well with the measurements of P and lS, but with rF.
Kicking in reverse could be handled well by P and lS, but not with rF. In throwing, the chosen
filter values contributed to higher data accuracy of the right leg (middle row) than of the left
leg (bottom row), whereas the relation was inverse for the arms. Considering the execution of
the present right-handed throwing motion, the left leg was used as swing leg and exposed to
high impact during ground contact and release of the thrown object, whereas the grounded
right leg and the left arm were more static.

It is logical to assume that specialties within the underlying measurement affected the data
accuracy of the fixed value estimates. To be able to automatically react to such variances
and inconstancy, my idea was to introduce a flexible drift compensation that could be added
to the processing framework if necessary (meaning in cases where the chosen filter setting
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could not yield accurate results). For the implementation of such method, I first verified the
variation in accuracy, examined influences responsible for it and then developed a strategy
for their compensation.

Verification Using Principal Component Analysis

To verify the previous assumptions, I determined the principal components of all data cap-
tures with G I and the Vicon ground truth data and visualized their coefficients in the space
of the first three principal components. Using G I estimates, results were not influenced by
any filter specific properties, but only represented the variance obtained with the simple and
fundamental data processing.

As a result, I could observe that the coefficients of data captures that were estimated well
with the simple integration estimate were of similar distribution than the coefficients of
the ground truth data. For data captured with the same sensor, component coefficients
on the other hand had a distribution very variate to the ground truth distribution when
orientation estimates were less accurate. Estimates for P and lS for example were similarly
scattered with a kicking motion, but seemed unrelated during jumping jacks (Figure 6.7).
Although differences in distributions are obvious, the circular motion shape is clearly visible
for both Vicon and estimated orientation in kicking. Coefficients of the estimated orientation
appear more noisy and variant, especially as the outer extremity, which constituted the higher
accelerated motion parts. Distributions of the coefficients of jumping jacks on the other hand
did not suggest any visual similarities. Here, the ground truth coefficients were scattered in
a point cloud (for P) and U-shaped form (for lS), the estimate coefficients were distributed
along a line. For lS, even a repetitive sequential pattern was visible, which could be associated
to the sequential motion form of jumping jacks. Reconfirming the data plot of Figure 6.6, the
same interrelation was also represented in the RCC F 1 values.

The component visualization and analysis brought me to the conclusion that indeed certain
data captures must be more prone to drift than others, which is independent and unrelated to
hardware specifications and sensor background noise. Consequently, the task was to create a
processing system able to handle those motion data streams differently in consideration of
their internal drift potential. For this, rules describing the occurrence of drift had to be found
in the first step.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: Visualization of the three main principal components for (left column) the Vicon
ground truth data and (right column) G I for highly accurate data captures (kicking, top) and
less accurate data captures (jumping jacks, bottom) at P and lS.
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Identifying Influences on the Accuracy

Motions that were suffering from higher drift could be identified by either high indexed ideal
filter values (as estimates of strong data fusion) or by reaching smaller or positive RC values.
Considering the differences and commonalities within the variate motion types for different
sensors and sensor placements, I came to the conclusion that the maximal amount of angular
velocity within a motion could impact the estimation accuracy. For every motion pattern,
different body segments underwent different angular velocities (Table 6.2). Angular velocities
during a kicking motion for example were much higher at the outer lower extremities than
around the body center. In the same way, high rotational movement occurred at the right
arm in a right-handed throwing motion, whereas less rotational movement occurred at the
left arm and the relatively static legs. It was therefore logical to conclude that varying angular
velocities between different motions influenced the filter performance, especially when
considering the conventional target use of orientation estimation filters: generally, they are
designed for slow motions like walking and gait analysis where all sensors are only exposed
to low angular velocities.

The second parameter that appeared to influence the data accuracy was the dimensionality
of a motion pattern: the principal motion axis, the amount of changes along a motion axis
and the number of motion planes involved in a motion also differed between the captured
motion patterns. Generally, data takes containing motions in primarily one motion plane
(e.g. jumping motions) seemed to suffer more from drift than data takes containing motions
with rotations around more than one motion axis (e.g. throwing or kicking). Besides, the
accuracy of an estimate increased with larger angular changes along a motion axis. One
explanation for this behavior could be that white sensor noise remaining after an imperfect
sensor calibration and leading to drift during the integration was automatically reduced with
changing and varying motion directions.

Finding rules for the prevalence of drift in an orientation estimate, it should also be possi-
ble to introduce a compensation that could react to the drift (and change the filter values
accordingly). Since the integration of the gyro rate measurements is the base for all ori-
entation estimators, reducing the integration drift should also help to improve the overall
accuracy of an orientation estimator. A similar approach to drift reduction was introduced
before [LBCP08] and should function as inspiration in the following: noisy frequencies preva-
lent in the measurement data have been analyzed and could then be prefiltered to reduce the
drift of the final estimate.

Frequency Band Analysis

To verify the influences of speed and motion dimension, I investigated the frequency band of
the angular velocity data of different motion patterns. The angular velocities of all motions
had their frequencies within the interval [0,20] Hz, whereas variances in the spectrum of gyro
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.8: Power-Frequency plots of the DFT of the angular velocity data at lS for (a-c) kicking
and (d-f) jumping jacks as well as for (g-i) throwing at P along x (red),y (green) and z (blue).

rate data streams were visible per motion pattern and sensor placement. Visualizing the data
plots (Figure 6.8), I discovered that gyro rate data of high motion dimensionality (e.g. lS in
kicking) had a unspecific range of frequencies contributing to the measured signal. Gyro
rate data of higher drift potential (e.g. lS at jumping jacks) on the other hand had multiple
frequencies contributing to the measured signal. Lastly, gyro rate data of little drift potential
and small angular velocities (e.g. P in throwing) had mostly one main frequency contributing
to the measured signal. In other words, the frequency band of the angular velocity data of
different motion pattern conformed with the factors previously identified as influences on
the estimation drift. Consequently, I could progress with the development of an intelligent
drift reduction on the base of the assumptions in the next step.
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(a) (b) (c)

Figure 6.9: a) Global ground truth pitch θ (blue, solid), roll φ (red, dotted) and yaw ψ (yellow,
line) in degree for a continuous sequence of jumping jacks at P. b) Angles estimated from the
sensor data with G I for the same motion with drift. c) Same estimated angles with G I and
drift compensation.

Simulating Intelligent Drift Reduction

To develop an intelligent drift reduction strategy, I simulated the effects of flexible filter values
with a simple drift compensation first. Various drift compensation approaches exist, and I
chose to use a very simple one here: assuming the sensor offset value to be varying around
the zero value, I responded to the resulting drift by subtracting an additional, small offset
from the gyro rate sensor reading in the angular velocity integration step. First, I computed
the drift di per frame i as multiplication between its angular velocities ωi and a defined
gyro rate bias (e.g. b = 0.05) with the respective sampling rate fS , whereas the gyro bias rate
was a constant that included all possible sources of error like sensor noise, signal aliasing,
quantization errors or variations caused by temperature differences. I then added the current
drift di to the previous drift di−1. In the subsequent computation step, the new summed drift
was subtracted from the next angular velocities, and the influence of the sensor noise reduced.
In this way, an accumulated drift compensation value was created over time, functioning
as low pass and hence accounting to the temporal progression of drift. As for the noise
values of the filter models, this simple drift compensation could have positive or negative
effects on the data streams: for highly drifting estimates b reduced the linear accumulating
drift errors visibly (Figure 6.9), for estimates with low drift rates b could reverse the positive
effect and lead to negative compensation. In such cases, a better adaptation to the present
motion data could be obtained with a different, smaller b value (e.g. b = 0.02). Therefore, the
compensation could be utilized well to develop and examine the effects of a flexible filter.

To categorize drift types, I built three semantic groups L low speed, M medium speed and H
high speed rotational movement. Under consideration of the general sensor specifications,
the threshold ranges thl m = ±400 and thmh = ±800 [dps] were chosen. Based on the rounded
measured maximal angular velocity averaged over all three motion axes, every sensor data
was then assigned to one of the respective groups. Body parts that were exposed to a rotational
movement of equal or less than ±400[dps] in average over all three motion axes were classified
as low speed, body parts exposed to rotational movement between ±400[dps] and ±800[dps]
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(a) (b) (c)

Figure 6.10: Angular velocities at x (blue, dotted), y (green, solid) and z (red, line) for three
sample motion types jogging (a), jumping jacks (b) and throwing (c) at rA in relation to the
thresholds thl m at ±400dps and thmh at ±800 dps.

in average as medium speed and any other as high speed motion. According to the definitions
of thlm and thmh , the sensor attached to rA was for example classified as low speed motion for
jogging with angular velocities lower than thlm , as medium speed motion for jumping jacks
with angular velocities lower than thmh and as high speed motion for throwing (Figure 6.10).
Other body parts were not necessarily classified under the same motion speed. During
throwing for example, P with a maximal angular velocity of ωmax = 295 dps was annotated
as low speed, while the legs with rS, lS and rT and lT underwent medium angular velocities
(Table 6.2).

Table 6.2: Rounded mean maximal angular velocities (AV) along x,y and z in dps at the pelvis
and at an extremity E (right shank or arm) with kicking, jumping and right-handed throwing
and their resulting classification to a speed label.

Motion AV P max/mean Classif. AV E max/mean Classif.
Kicking [209,367,212]/263 low [338,716,501]/518 medium

Jumping [250,565,133]/316 low [529,925,480]/645 medium
Jump-Turn [519,803,326]/549 medium [1011,1750,1101]/1287 high
Jump.Jacks [179,290,110]/193 low [458,762,494]/571 medium
Throwing [423,265,68]/252 low [935,1487,413]/945 high

As second categorization criteria, I defined two further groups that referred to the discussed
variations in the number of rotation axes involved within a motion. Sensor data from motions
that were of generally less drift did not require a high compensation value, even if only small
angular velocities were measured by the gyro rate sensors. In other words, the effect of drift
compensation values did not only depend on the angular velocities, but also on the general
drift potential of every motion pattern. Therefore, motions around one principal rotation
axes should be classified as Type 1 (designating high drift potential) and motions around
more than one rotation axis as Type 2 (designating low drift potential).

The previous categorizations finally led to the six different bias compensation categories
L1, M1 and H1 and L2, M2 and H2, whose values have been determined experimentally
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Figure 6.11: Graph visualization of the relative change in ERMS for the drift compensated
G I estimates under a logarithmic scale. Every motion type is represented by a unique color,
whereas color saturation represents the different bias rate values (from little saturation for
bl1 to high saturation for bh2).

for the subsequent comparison. First, the sensor data of all data captures was annotated
and assigned to one of the six respective categories. Every category was then tested under
several probable bias rate values of linearly increasing distance, and the value of best average
accuracy over all estimation filters per sensor category chosen. This brought me to the
error values bl1 = 0.05, bm1 = 0.026 and bh1 = 0.002 as well as bl2 = 0.003, bm2 = 0.001 and
bh2 = −0.001.

Evaluating Enhanced Accuracies

For verification of the previously defined flexible compensation values, I first estimated the
angular changes of all data captures with G I and the respective variant b values. Next, I
compared the resulting ERMS values to the ERMS values of pure G I estimates without drift
compensation. To emphasize changes on the overall accuracy values, I compared accuracies
in relation with each other, whereas in all computations, the initial difference between
estimate and ground truth remained the same. By this data consistency, just the drift and
accumulating errors over time were evaluated.

Visualizing the relative accuracy changes, it became clear that the drift compensation worked
well when appropriately put into context to the motion type and bias rate values (Figure 6.11,
Figure 6.12). Accuracy could especially be increased for Type 1 motions that were suffering
from larger drift (meaning the motions categorized as L1 and M1). For those motions - as for
example P in jumping or the thighs in throwing - the average relative changes RCl1 and RCm1

under bl1 and bm1 were very good. In those cases, drift was dominant along certain motion
axes, but could be efficiently reduced to a large extend with the compensation. For Type 2
motions of high angular velocities (meaning the motions categorized as M2 and H2) on the
other hand, additional drift compensation was not recommendable under the generalized
gyro bias rate values. I concluded that the drift arising as a result of missing variation in the
rotational axes had a much bigger effect on the estimates as the motion speed. The amount
of angular velocities mainly had an influencing effect on Type 2 motions, where drift was gen-
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Figure 6.12: Matrix visualization of the relative change in ERMS for the drift compensated G I
estimates under a logarithmic scale.

erally smaller. It furthermore became obvious that accuracy values did not notably improve
with drift compensation for high speed motions and even deteriorated for most motions
of Type 2 when the chosen bias compensation value was not ideal. Consequently, finding
useful bias rate values was more difficult in those cases due to the higher compensation effect
on the overall estimates: already small changes in the b value could turn an appropriate
drift compensation into an overcompensating value or vice-versa. In accordance with the
previous results and assumptions, it was especially difficult to compensate H2 motions.

From the relative changes of all drift compensated accuracy values I could see that accu-
racy improvements were primarily achieved when drift was heavily prevalent in the data
(Table 6.3). However, error values were relatively high since only the G I method was used for
analysis. Therefore, accuracies should be improved by applying data fusion filtering in the
next step. For simulation, I added a drift compensation to the implementation of all fusion
filter models that was performed before the integration of the gyro rate data.

Table 6.3: ERMS error values over all orientation estimates for G I under the presented rate
bias values and the relative change values RC to the uncompensated G I estimates.

Motion Type bl1 bm1 bh1 bl2 bm2 bh2

Type L1 0.0907 0.1314 0.2295 0.2246 0.2343 0.2440
Rel. Changes -0.5950 -0.4640 -0.0435 -0.0655 -0.0213 0.0239

Type M1 0.1446 0.1777 0.2825 0.2772 0.2878 0.2986
Rel. Changes -0.3564 -0.3769 -0.0497 -0.0689 -0.0302 0.0098

Type H1 0.1834 0.2009 0.2219 0.2189 0.2251 0.2325
Rel. Changes -0.1065 -0.0707 -0.0354 -0.0481 -0.0211 0.0124

Type L2 0.5036 0.3608 0.1802 0.1736 0.1909 0.2222
Rel. Changes 1.8595 1.1396 -0.1867 -0.2339 -0.1079 0.1310

Type M2 0.5749 0.5047 0.1720 0.1856 0.1649 0.1672
Rel. Changes 11.4479 8.1154 0.0212 0.3035 -0.0676 0.2314

Type H2 0.6089 0.5542 0.1563 0.1748 0.1468 0.1574
Rel. Changes 8.9963 8.1570 0.3694 0.8323 0.0820 0.1197
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Figure 6.13: ERMS error values averaged over all motion takes and sensor locations for G I ,
C F 1, C F 2 and K F without drift compensation (purple), with drift compensation of a simple
fixed value (orange) and with the proposed flexible drift compensation (yellow).

As for the G I estimates only, an additional drift compensation step could enhance the ori-
entation estimates, whereas the effect was again especially obvious in motions prevalent to
high drift. With no additional drift compensation, the filter models improved the accuracy
measures of G I by RCC F 1 = −0.6508 for C F 1, RCC F 2 = −0.5981 for C F 2 and RCK F = −0.0326
for K F on average. Using the additional two step drift compensation improved the relative
changes to RCC F 1 = −0.6687, RCC F 2 = −0.6975 and RCK F = −0.6358. Especially for the K F
estimates, a much higher accuracy could be achieved. Here, the chosen wk noise values
might have not been ideal for all motions beforehand. Under H2 motion types, where it was
difficult to predict and compensate drift, I abstained from additional drift-compensation
and used only the fundamental fusion filter algorithm, which enhanced the estimates by an
average relative change of RCC F 1 = −0.4668, RCC F 2 = −0.4933 and RCK F = −0.1473.

Furthermore, I investigated the effects achieved with the flexible filter in comparison to an
identical drift compensation using a simple, fixed bias rate value (Figure 6.13). This fixed
value was chosen as the mean value between the six values of the flexible strategy and hence
set to b = 0.0135. Results showed that the compensation with flexible filter values could
address and reduce drift effects much better than the compensation with the fixed bias rate
value. The former increased accuracy and performance of every investigated filter strategy in
comparison to the averaged ERMS error values without drift compensation. The latter did
not perform better than the conventional filter design without additional drift compensation,
since no ideal b value that respected all different motion types was set. As a result, I concluded
that it is reasonable to extend the filter design by the proposed drift compensator when the
flexible strategy that respects a motion’s innate drift potential is employed. Then, the general
applicability of orientation estimation methods can be improved, independently of the
chosen fusion filter algorithm. Moreover, it was again obvious that a flexible use of the
orientation estimation method is highly necessary when the underlying system should be
employed for inertial data captures of different motion characteristics.
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6.2.2 Intelligent Compensation of Heading Variability

To enable a generic measurement system it was not only necessary to employ a structure for
accurate and target-specific orientation estimation, but also to hold any other variation in
the data to a minimum. For the jumping data DR , this meant to identify the reasons for the
discovered variations in the sensor headings.

In common simple sensor applications, the heading ψ of a sensor is determined with the
measurement vector from the three magnetic field sensors. This was also the case for the
proposed processing framework, where ψS of every sensor S was computed during the
initial orientation estimation. Research has shown the negative influence of ferromagnetic
materials on the accuracy of orientation estimates [dVVBvdH09, MGSR+15]. Further work
suggested that even in free field measurements, where only the earth’s magnetic field should
be prevalent, sensors are subject to magnetic measurement errors that should be removed in
a calibration step [HMZ+13]. Considering that differences already occur in less electric and
magnetic environments, magnetic bias is likely to be even larger in man-made environments
that include jumping ramps, slopes and technical equipment. The magnetic measurements
should consequently not be blindly accepted. Indeed, magnetic bias in form of randomly
varying sensor measurement offset could be observed in the raw magnetic field measurement
data that may be responsible for the registered heading variations. Before deriving body
kinematics from the sensor measurements, the processing system should therefore be made
invariant to variances in the magnetic field first [RLBV05]. Magnetic bias in form of variation
within the magnetic field measurement was included in the used orientation estimator C F 2.
However, constant differences present over a complete data capture as observed with DR

were not addressed. As a consequence, an additional compensation method for variant initial
field measurements was introduced and added to the full measurement system.

Compensating Magnetic Disturbances

To compensate for magnetic disturbances, I made use of the fact that the sensors’ heading
angle was defined in reference to the direction of the location’s magnetic field. In a first step, a
premeasure was added to the processing system to compensate for constant larger variations
in ψ. For this, an independent set S f V was created containing reference magnetic field
vectors for the individual sensors at the jump start location. As explained before, the x-axis of
the global coordinate system was set to be aligned in the direction of motion (Section 5.2.1).
Consequently, the reference field vectors were built from the magnetic sensor readings of
the x-axis alignment without roll and pitch rotation considered. For every sensor n, its initial
heading angle was then determined with the respective field vector ~f Vn in S f V .

The second step addressed inconstant differences in the field measurements by integrating an
additional field compensation method to the framework after the initial orientation estimate
(Figure 6.14). The general idea here was to compare ~f Vn with the current real magnetic
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Figure 6.14: Working principle for the additional magnetic bias compensation method equal-
izing disturbances in the magnetic field measurements.

data ~mVn . The difference is then added to the magnetic measurements as offset values to
stabilize and equalize the distorted magnetic field measurements over all data takes. For this,
~mVn was rotated by the estimated initial pitch and roll values θi and φi to get a vector ~r Vn

that was only influenced by the heading component. Furthermore, ~f Vn was rotated by an
average heading ψa j for the respective sensor location at segment j : the longitudinal axes
for the sensors attached to rF, lF and P in the start position were for example bound to the
in-run slope and start gate (ignoring changes that occur from pitch). They were therefore
aligned forward, approximately parallel to the coordinate system’s x-axis, so thatψa was close
to 0°. The hip joint is generally lightly spread in a natural relaxed sitting position - stable
magnetic conditions should consequently lead to an average ψa of approximately 30° for rT
and lT. Finally, the rotation of ~f Vn yielded a reference vector ~hVn that represented the field
measure for the general start position per placement and sensor. This allowed to determine
the heading difference ψ´ from ~r Vn and ~hVn by the simple trigonometric relation in the x-y
plane [

Hnx

Hny

]
=

[
cosψ´ −sinψ´

sinψ´ cosψ´

][
Rnx

Rny

]
,

where Rn and Hn are the two-dimensional normalized vectors built from ~r Vn and ~hVn . To
account for style differences from the average sitting start position, existing deviations in the
magnetic data were only compensated if ψ´ was larger than a certain threshold tc set to 10°.

98



6.3. Results and Discussion

In the main compensation cycle, the difference ~dn to the current magnetic field vector ~mVn

was then determined with a new vector ~cVn built from ~r Vn , a quaternion qψ representing the
heading difference ψ´ and a quaternion qer representing the previously determined initial
pitch and roll values as

~r r Vn = qψ⊗ ~r Vn ⊗q∗
ψ

~cVn = qer ⊗ ~r r Vn ⊗q∗
er

~dn = ~mVn − ~cVn .

In a last step, ~dn was added as offset value to the magnetic field data of the full jump and the
initial orientation estimated a second time with the new magnetic data. Finally, the general
processing and determination of body kinematics could be resumed with the new initial
states to estimate the necessary orientations and joint positions.

Since only the initial heading state was changed by this bias compensation, the proposed
magnetic compensator did not have any influence on the general estimation of the angular
changes with C F 2. Instead, the magnetic field measurements were corrected in form of a
general offset only. Therefore, the resulting orientation estimates within the captured jumps
were invariant and only changed with respect to their initial start values.

6.3 Results and Discussion

The presented data augmentation and processing methods could be considered a robust
tool for the determination of kinematic motion data. Final accuracies deviated less than 3°
from the Vicon ground truth data, and less than 10° from environmental and biomechanical
constraints. As a conclusion, the methods could be considered as well suited for use in
augmented motion information systems. However, I have shown that the accuracy of orien-
tation estimates varied with the characteristics of a performed motion and environmental
conditions. Of particular influence were the amount of angular velocity and the number of
rotation axes occurring in a motion, as well as disturbances in the magnetic field. By manually
adapting the processing settings to those influences, a system can be made invariant to errors
in the data, but cannot be considered user-friendly anymore. To ensure a generic framework,
I introduced additional methods for intelligent enhancement of the basic numeric motion
data. For the purpose of system re-implementation, the most important findings shall be
summarized in the following.

Simulation Data

Common strategies for the estimation of orientation estimates address measurement and
system process errors (drift) by combining the data of multiple measurement sources. In
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general, the performance and accuracy of such a filter model is determined by a predefined
fixed value. However under diverse applications of the motion measurement devices, it might
not be sufficient to rely on one fixed filter value – under specific motion performances, the
set filter values might not be able to remove drift that occurred as a result of accumulated
variate sensor noise.

Differences in the individual sensor specifications led to variations in the amount of drift per
sensor: to handle those fundamental differences, I recommend to investigate each sensor’s
behavior in a prestudy, so that hardware specific differences could be taken into account in
the experimental setup.

Moreover, data analysis showed that the accuracy of attitude estimators varied in dependence
on the performed motions, their occurring angular velocities, the number of rotation axes in-
volved and the amount of external acceleration acting on the measurement sensors. Motions
that underwent high angular velocities over several dimensions for example suffered from
significantly less drift than monotonous motion patterns of low angular velocities. Using an
extra computation step, I simulated an intelligent drift computation that could flexibly adapt
to the characteristics of specific motion patterns. Results suggested that under motion data of
varying dynamics, it is recommendable to employ an automated motion classification system
that annotates the drift potential of a motion: taking into account simple elementary motion
knowledge like the amount of angular velocities and motion dimensionality, the chosen drift
compensation could be adapted well to the expected amount of drift per motion, and the
accuracy be improved considerably. Those accuracy improvements were independent of the
chosen filter design, and can hence be expected to apply to any orientation estimation filter.

Including the proposed intelligent drift compensation as flexible filter strategy to the orien-
tation estimates, variations within the data could be significantly reduced. Repeating the
previous principal component analysis, distribution of the first three components was clearly
modified, so that it is resembling the distribution of the ground truth data (Figure 6.15). For
example for the sensor data at lS illustrated beforehand, one can see that the flexible filter
values resulted in a u-shaped distribution of the principal components’ coefficients similar
to the ones of the ground truth data. A fixed value on the other hand resulted in a variant
distribution pattern.

As a conclusion, a flexible system that adapts to the specifications and characteristics of a
captured motion does not impose the need of changing the fundamental system parameters
while providing better, more accurate and significant kinematic motion data. Analyzed
motion types should be annotated with respect to the amount of rotational axes involved and
the expected maximal angular velocities, ideally before the main motion analysis task: both
factors considerably influence and change the general accuracy values, whereas the amount
of rotational axes involved had a bigger impact on the simulation data. Biomechanical
knowledge of the performed motion and its principal axes is useful to further advance and
automatize the data processing from inertial measurement units, whereas it is also possible
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(a) (b) (c)

Figure 6.15: Visualization of the three main principal components for the Vicon ground truth
data and the C F 2 estimates with the former less jumping jack data capture at lS. The flexible
value (c) brings the coefficient distribution closer to the ground truth distribution.

to retrieve the fundamental information from the user by a user interface or text input.

Field Data

Investigations on the field data showed that magnetic sensor data from a standardized or
conventional inertial capture framework cannot be expected to be reliable within the ski
jumping environment. Rather, it should be considered that standard processing methods are
not appropriate under magnetic disturbances of the ski jump hill. This observation is likely to
hold for other motions being executed at sporting venues of high ferromagnetic construction
material as well.

While accuracies could be determined to be within 3−5° accuracy in pitch and roll with an
appropriate noise value of the utilized filter model, body segments’ heading estimates were
influenced by magnetic bias. This heading variation did not allow for automatic processing
of the computed data and required additional compensation of the magnetic bias during the
data processing framework.

Orientations and heading values after error compensation allow for the conclusion that the
newly developed magnetic bias compensation algorithm made the measurement system
robust against magnetic variations under different capture situations: results were consider-
ably improved for both data visualizations and the range of computed initial heading angles.
Before compensation, many different ψ values for all sensor placements of all data base cap-
tures could be observed that appeared randomized and uncontrollable. After compensation,
the largest variances in the sensors’ heading angle could be eliminated or at least be reduced
to a very small range of heading difference (Table 6.4). The remaining differences can be
considered natural variations created by differences in the initial start position per athlete
and jump. It was clearly visible (Figure 6.16 bottom row) that the proposed compensation
method drastically reduced the variation in initial alignment, as the motion ranges within
the initial heading values ψ were reduced significantly. With the additional compensator, the
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Figure 6.16: Visualization of the differences in heading ψ before (top) and ψC after (bottom)
compensation. Heading angles are of positive values 0 to π on the right side of the circle and
of negative values 0 to π on the left side of the circle, whereas 0 is at the bottom and ±pi at
the top of the circle plot. Red pies represent the angular areas in which initial heading angles
occur.

Table 6.4: Absolute maximal variances in the heading angle ψ occurring over the complete
data set DR . After compensation, the absolute maximal heading deviations ψC were signifi-
cantly reduced. Both heading angles are depicted in radians.

Sensor max Variance ψ max Variance ψC

P 1.39 0.18
rT 1.85 0.38
rS 2.13 0.37
rF 2.77 0.79
rA 1.37 0.35
lT 2.44 0.36
lS 1.32 0.20
lF 2.22 0.37
lA 1.50 0.20

framework is therefore likely to produce meaningful results that allow for further data use
under real-time conditions in various sporting events.

The additional compensation method requires initial sensor orientation estimates, which
does not only help to detect variations in magnetic heading, but also yields stable results in
the orientation estimate directly from the beginning of data capture. It is furthermore relative
to the local properties of the capture and sporting venue and can therefore be used in various
locations and environments. This is not only useful for ski jumping, but also any other inertial
capture application in both sports and rehabilitation. Since both the magnetic heading
compensation and the initial orientation estimate are based on very simple trigonometric
relations and quaternion calculations, they hardly influence the overall computation time
and are eligible for a possible future use under real-time conditions.
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Figure 6.17: Working principle of the complete processing system with the developed ad-
ditional methods that enhance or maintain high accuracy of the derived body kinematics
independently of the sporting venues and the captured motion data.

6.3.1 Usability Enhancement

I believe that the utilization of the previous two strategies will notably enhance the usability
of an overall motion data processing pipeline (Figure 6.17). This is because they ensure the
derivation of accurate and reliable data without any user interventions. Herewith, they allow
for a subsequent use of generic and automated information retrieval methods in the overall
feedback pipeline which would not be possible otherwise: accuracy values suggested that to
obtain accurate orientation estimates in the conventional way, the filter values have to be
manually adapted. Moreover, random magnetic bias at sporting venues can lead to unreliable
body joint positions and kinematic motion information from the sensor data.

Whereas the flexible drift compensation is subject to system user input data, the magnetic
bias compensation is a self-contained, autonomous method. For this reason, I will first
dwell on the usability factor of the latter strategy. Being included in the processing pipeline,
the presented magnetic compensation does not require any additional interaction with the
system. The only parameter necessary for the execution of the compensation function within
the processing framework are reference direction vectors of every sensor’s magnetic field in
the capture environment. Those reference vectors can be easily obtained as measurement
data from the static sensors placed close to the start of motor action and aligned in forward
direction. By adding one additional measurement to the data collection procedures, the
system is consequently made robust to variances in the magnetic field, and the simplicity of
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Figure 6.18: Sample user interface for man-machine communication to define the elementary
a-priori motion knowledge for drift reduction. Simple motion descriptions are specified by
the user and then internally translated to the use of a predefined filter value.

use for inexperienced or technically less versed users maintained.

Implementing the intelligent drift compensation, accuracy values of orientation estimates
should ideally be improved on an individual basis for every specific motion performance.
A certain number of possible filter values could for example be saved beforehand for every
used (or the chosen) fundamental estimation filter. Filter values of the processing system
could then change dynamically with the current motion characteristics. Such strategy could
be implemented in a very simple set up: the target motion is annotated with respect to its
angular velocities and motion dimensions in a basic way before the motion performance.
This annotation can for example be provided by a simple, elementary user interface (Fig-
ure 6.18). The program’s filter values and drift compensation could then be automatically
modified according to the annotations and predefined internal motion specifications, and the
estimation filter be universally used for all motion patterns. In a more ubiquitous scenario,
the filter values could furthermore change dynamically under the currently measured angular
velocities, taking into account also sudden phases of high impact or angular changes of body
parts. As a result, the accuracy values of orientation estimates are improved on an individual
basis for every specific sport motion performance, while it is not required to individually
change the fundamental setting.

The successful implementation of a generic and universally applicable estimation filter is a
key factor for the future use of inertial sensors in motion performance scenarios. Providing a
simple use for any kind of system users, the proposed drift and magnetic bias compensation
consequently constitute valuable data enhancement strategies: by refining the estimates
while maintaining simplicity and universality of the processing framework at the same time,
it should be possible to ensure more sophisticated data analysis applications and software
tools in future.
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In the next part, the remaining two processing stages of a motion information system (sense-
making and retrieval of relevant information) are examined. They can take up various forms,
and their algorithms mainly depend on how the final stage of information retrieval is designed
to occur within any specific system. This means that information retrieval can be induced by
both internal perception of a user, or by external enforced impulses. However, both scenarios
target on the existence of information understanding and retrieval intelligence, either from an
existing biological motion knowledge or from an artificially created one. Much information
given in this part therefore comprises components and algorithms from machine learning.

In the first chapter, I discuss three different strategies for the sense-making of the derived
body kinematics that prepare the implementation of the final application samples. One is the
transformation of motion data into visual information, one is the transformation of motion
data into sound feature representations that can then be used to sonify a motion, and the last
one is the transformation of motion data into motion feature representations that can the be
used to learn machine knowledge for a certain information retrieval. Whereas the first one is
a very universal transformation, the idea of the latter two is to extract highly discriminative
and representative features from a motion performance that can give information on specific
points of interests during the motion exertion. An additional part of the numeric feature
transformation is furthermore the semantically significant segmentation of the input data.
With respect to the sport scenario, this means for example to use either raw inertial or
processed motion data to determine different motion phases and to segment and temporally
annotate motion performances. This can help to investigate only specific parts of a motion
instead of a complete motion take, making the computation faster, quicker and also more
specialized towards specific analysis targets like the exertion and motion behavior in key
motion phases.

Lastly, the two final applications – movement sonification and motion rating – are discussed
in more detail in the remaining two chapters of this part. Since motion sonification is subject
to internal feedback reception, I mainly focus on the evaluation and rating of performance
qualities (a new, innovative scenario which was initially born out of personal interest and
affliction). To automatically retrieve motion information necessary for the provision of
specific style and error assessment, it is reasonable to include intelligent learning methods
in the processing pipeline. They can create permanent, latent machine knowledge that is
then retrieved and used to provide deeper data insights at all times. For example, they are
very likely to be useful for performance surveillance, monitoring of aerodynamic conditions,
motion evaluation and further motion analysis tasks. Common methods are introduced
and explained with respect to the present problem. This comprises the implementation and
training of learning methods for classification and error recognition of a motion action, as
well as the identification and selection of meaningful motion features by means of automatic,
unsupervised motion feature selection.

As a result, a categorization system is introduced that labels the transformed motion features
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as either technical or aesthetic rating features with respect to various style criteria. Moreover,
a design for a full ski jump evaluation system is presented. Here, the focus of the demonstrated
and implemented methods was put on the creation of methods to rate technical aspects
of a motion, since it is much easier to numerically define a motion quality with respect to
technical descriptors (e.g. body angles or conduct in landing) than with regard to aesthetic
impressions of a performance.
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The main task for every augmented motion information system is to process the collected
sensor data in such a way that useful information is extracted and provided to users like
coaches and athletes. More and more training and activity surveillance devices appeared in
leisure, health and recreation over the last years, providing data insights or recommendations
on future activities. However, similar technologies did not become standard in competitive
and professional sports so far. With more complex motion data and the demand for higher
information content, more accurate information retrieval and computation algorithms are
necessary in those application fields.

To enhance the information content of available numeric motion data, it is very useful to
define meaningful features that represent the structure and characteristic of the underlying
data. Common strategies to build such features used in many motion action recognition
learning scenarios are segmentation and motion feature transformations. Either raw inertial
or processed motion data can for example be used to determine and temporally annotate
a motion performance into semantically significant motion parts. Instead of a complete
motion take, only specific parts of a motion need to be investigated then, making the com-
putation faster, quicker and also more specialized towards phase-related analysis targets.
Besides, the present numeric motion data can be used to extract highly representative fea-
tures from a motion performance that give information on specific points of interests during
the motion exertion. Apart from the previous two strategies, also other approaches and
possibilities can be applicable for a transformation into usable features such as auditive or
visual representations.

Knowledge about the specific characteristics of a certain motion is beneficial for the success
of any kind of feature transformation. In the following, I discuss how to use knowledge on
motion techniques for the creation of meaningful feature representations under the two
sample applications movement sonification and motion rating.

7.1 Transforming Data into Visual Features

The simplest way of transforming the augmented kinematic motion information into more
intuitive and comprehensible data data is visualization. Body segment orientations, joint
positions and joint angles can be easily presented to the user (may it be athletes, coaches or
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Figure 7.1: Data plot of the relative position of the lower back computed from of two sample
data captures and their respective phase annotations for the beginning of the in-run phase,
the take-off and the landing (vertical black lines).

Figure 7.2: Screen shots of an animated figure visualization during in-run, flight and initiation
of the landing of a ski jump computed from estimated joint positions along the kinematic
chains of spine, arms and legs.

spectators) as plots of the temporal data evolution (Figure 7.1). For ski jumping for example,
especially parameters that influence the aerodynamics and hence the length of a ski jump
like the body-ski angle, the ski attack angle, the hip angle or the ski-opening angle might be
useful.

Using segment joint positions and additionally measured lengths of body parts that are
connecting the kinematic chains of interest, it is furthermore possible to create a full body
motion visualization in animated figures over the complete flight – from the sitting position at
the top of the jump hill through to the landing and outrun (Figure 7.2). Rendering a sequence
of consecutive frames, it becomes then possible to create video sequences that could be
watched on the computer or any other playback device.

Both visual feature transformations were furthermore also already used before to verify the
accuracy of the field motion data (Section 6.1.2).
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7.2 Transforming Data into Sound Features

The provision of auditive motion feedback to the athlete by sound (respectively movement
sonification), is considered to be an effective additional source of information for motor
control and motor learning [Eff05, EFW11]. So, it was for example shown that auditory infor-
mation enhances human action observation systems of the brain [SMH+13]. In contrast to
visual feedback, which is explored very well, there are only a few studies on efficient transfor-
mation of biological motion into auditory feedback [DB11]. Neural adaptation and learning
processes evoked by auditive feedback are still under empirical examination with respect to
the selection of suitable movement features, kinetic–acoustical mapping strategies and the
number of regarded transformed feature dimensions. Efficient movement sonification strate-
gies and principles for accurate display of the captured data are not commonly established
yet. As a general rule, significant motion features should be built in such a way that they can
be understood intuitively and reflect specific motion structures such as singularity within
motion patterns or motion range. From the perspective of kinesiology, this means that the
most relevant aspects within a motion - for example segment orientation, joint position data
and motion velocity of the joint of interest - should be described. In the present study, the
parameters position and velocity were chosen to represent the desired acoustical kinematics.
They are part of the previously augmented motion data, but can be presented in various ways
like pure axial coordinate values, pure angular coordinate values or a mix of both during the
sonification process. All of those data representations offer a different level of complexity
which might be more or less intuitive and useful for certain sonification tasks.

Finding the right data representation for a sonification strongly depends on the sonification
purpose, the performed motion and the intended sound mapping. First, it is therefore
necessary to choose the data representation most suitable for the intended sonification
purpose. Various possibilities exist to process inertial motion data for further application in
movement sonification [YH83]. Three primary data representations are introduced and their
potential efficiencies within the movement sonification framework discussed here. In the
second step, positional information in the chosen data representation is then transformed
into sound parameters.

7.2.1 Data Representations for Sonification

Using a simple forward kinematics approach, joint positions are easily computed as Cartesian
point coordinates along the global frame from the length and orientation of a chain of neigh-
boring body limbs (Section 5.4). This computation defines every joint position p as a three
dimensional vector so that p = [Xp Yp Zp )] with Xp , Yp and Zp containing the values along
the corresponding axis. However, biological motion perception does not follow mathematical
definitions. Instead of such absolute representation of joint position, a continuous relative
change of related positions is perceived [TWL05]. For example, moving the hand along the
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Figure 7.3: Defined coordinate systems for (a) Cartesian, (b) spherical coordinates and (c)
angular representations. Changes in the position of a joint are differently displayed within
each coordinate system. The definition for the coordinate systems is corresponding to the
sensorimotor reference frames in humans.

horizontal axis is not only equivalent to a change in the hand’s position along this axis, but
also linked to positional and angular changes of further joints. Cartesian data representation
uses only biological information on one selected joint (Figure 7.3a) and cannot display this
information: moving the wrist along a horizontal line would only evoke a change in the x-
coordinate data. When sonifying a biological movement for motor learning, it is consequently
necessary to use another representation that includes the full motion characteristics of all
related joints.

A data representation that is closer related to the principles of internal human motor control
are spherical coordinates [YH83]. Here, joint position is defined by a radius r and the two
angles azimuth ψ and inclination θ. The radius represents the distance of a joint to the origin
of the relative coordinate system, which is located in the middle of the actor’s body in the
present case. Every point p is then defined by a three dimensional vector so that p = [r θ ψ].
Research has shown that spherical coordinates control arm movement in similar ways as the
central nervous system [GTM02, SBGI10]: using angular movement features, more detailed
and essential movement information can be displayed by only one joint (Figure 7.3 b). For
the current example, moving the wrist along the horizontal axis is described by changes in the
parameters ψ and r. Consequently, the positional data does not only represent the motion
along this axis but also include a decrease of the hand’s distance to the body center. This also
means that additional information about the enclosed angle between elbow and radius is
obtained.

A third strategy for the representation of positional data is to not involve any positional
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information at all by using only angular movement features. To display the motion of a joint
under this constraint, it is necessary to include the degree of freedom of every preceding
related joint within the kinematic chain. This representation produces much more detailed
information (and hence also a richer sound), but is also very complex: towards the end of a
kinematic chain of several joints with two or three degrees of freedom, it might be necessary to
display 10 or more parameters at the same time. To display the axis parallel horizontal sample
motion of the wrist, all angles in shoulder, elbow and hand would need to be displayed,
which means at least two angles at shoulder and elbow joint (Figure 7.3 c). The complexity of
angular data representations can hence swell up very easily, and thus make motion feedback
very difficult to perceive and understand.

Every data representation has its own advantages and disadvantages for respective use cases.
The intention of a movement sonification in an augmented feedback system generally is to
support neural motor skill acquisition processes. Therefore, it is recommendable to chose a
data representation that confirms with the internal biological motion perception. As angular
representations tend to be too complex to be perceived clearly, spherical coordinates were
chosen for the transformation of motion information into sound parameters. They are
satisfying for use in the next step with respect to both representation accuracy and amount
of necessary data.

7.2.2 Sound Mapping Strategies

Sound can be produced in many different ways, such as by instruments or by the superimpo-
sition of oscillating sine waves of various frequencies. Here, it was chosen to display motion
data streams as sound on the base of the MIDI standard. Its specification offers a consequent
and well-defined way to control and generate sound that make it convenient to map motion
data onto sound. Tones in MIDI are for example generated by sending a respective control
demand, and sound properties easily influenced and changed by a variation of sound control
messages. Furthermore, the timbre or constitution of a sound can easily be changed before
or even during a performance with so called ’sound programs’ simulating different sounds
and instruments (similar as in an electrical keyboard).

MIDI offers a broad range of predefined standard control commands that leaves various
possibilities to map motion data onto auditory features. They are amongst others attack and
release time, timbre, tone frequency, velocity or sound effects as reverb and echo. The coarse
resolution of any of such MIDI control messages consists of 128 steps in the interval [0,127]
to trigger sound properties. For example, every time the motion velocity within a motion
performance reaches or exceeds the set maximal velocity, the corresponding MIDI controller
could be of maximal value 127. For static phases with no motion velocity at all, the MIDI
controller could in contrast be of minimal value 0.

As software for the manipulation of such sound parameters, I chose Miller Puckette’s software
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Figure 7.4: Sample PD patch to control sound by incoming motion data.

Pure Data (PD) [Pur] for electronic sound creation. PD is a graphical open source program-
ming language and offers the possibility to send MIDI control messages that produce and
influence sound within MIDI sound systems. Furthermore, it has been used for MIDI move-
ment sonification before, for example to display rowing motion [Hen07]. Figure 7.4 shows a
simple sample PD patch that creates MIDI notes and sends MIDI control messages to change
sound properties in accordance with the corresponding motion feature. Here, spherical
motion data (spher i cal_coor d_el evati on and spher i cal_coor d_leng th) is constantly
sent to create notes by the commands makenote and noteout. The MIDI controller 93 and 7
representing chorus and volume are constantly triggered by incoming data via the command
ctlout, so that the resulting sound changes in real-time. Many other MIDI controllers can be
accessed in the same way, leading to different sound results according to their MIDI specifi-
cation [Rot95]. Sound mappings that have already been realized for sonification purposes
are listed in [DB11].

To have access to a broad variety of simulated electronic sounds, the PD software output was
connected to the Synth Modul ’SonicCell’ (Roland Germany GmbH, Nauheim, Germany),
which offered more than 300 predefined sound sets ranging from instruments like classical
viola and flutes to percussion instruments and artificial sound creations. One frequently used
sound was the sound called ’Jupiter Lead’, a permanently held electronic sound creation that
enables an easy modulation of the chosen sound parameters. Using PD software for internal
sound manipulation of the Roland Synth Modul, the resulting system then displayed the
selected acoustical kinematics in real-time. Consequently, a motion could be sonified for
longer time periods of more than two hours, only restricted by hardware specifications such
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as battery lifetime and others.

Various upper body motions by different motion actors were sonified and tested in first
empirical studies: large and spacious movements such as arm rotation or throwing, as well
as small and spatially centered motions such as drinking, grasping or writing. The sound
parameters and their mappings were chosen under semantic aspects from a movement
science related perspective and included the pitch (tone frequency), volume, brightness
(spectral composition) and stereo effects (Table 7.1). All motions could be displayed well in
real-time under different selected sound properties and sound mappings while maintaining
characteristics of each motion. By mapping motion velocity onto volume, highly accelerated
throwing was for example perceived as much louder than drinking. Under the implemented
system, the chosen sound mappings could furthermore be freely combined to one-, two-,
three- or four-dimensional auditory motion information.

Table 7.1: Description of the MIDI sound mappings chosen for experimental investigations
on the effect of auditory feedback for motor learning in rehabilitation.

Feature MIDI Controller Mapped Motion Parameter
Pitch tone bend Inclination θ of a body joint (height information)

Channel Volume controller 7 Motion velocity of a body joint, static motion - zero
volume

Brightness controller 74 Radius r (distal information)
Pan (Stereo effect) controller 10 Azimuth ψ of a body joint (left-right information)

7.3 Transforming Data into Motion Features

For many motion analysis tasks, it is reasonable to include machine learning methods in the
system’s processing and computation pipeline. The creation of permanent, latent motion
knowledge is for example very useful for performance surveillance, monitoring of aerody-
namic conditions or motion evaluation. Generally, those problems are of fundamental design
and include the retrieval of meaningful information from the sensor data and the identifica-
tion of anomalies or specialties of further interest to the user. To make use of the raw multi-
dimensional inertial sensor data in such scenario, good strategies for the extraction of the
relevant motion features are necessary. Machine learning and data base retrieval technologies
offer a wast variety of algorithms for speech and multimedia processing. Research in activity
recognition from wearable sensor data for example has resulted in statistical raw-signal
based features, event-based features, multilevel features derived from clustered statistical
occurrences and kinematic body motion information [BBS14]. Many of the methods used
in the context of sports data [Bac12] focus on low-level features and extract information
directly from the raw sensor data [MF15, DMA14, GJ11b, PLY10, MCG+15, VDSBB+15]. For
this work, I focused on both signal-based and body model features for two reasons. First,
signal-based features are immediately available from the sensor data. Second, model-based
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features as obtained from the augmented numeric motion data are closest related to the
biomechanical descriptions of a motion performance. With the derived body kinematics,
higher-level motion information like positional and temporal evolution of joints or relational
information between body parts can be provided [HBMS11].

7.3.1 Segmenting Motion Data into Parts

Machine learning programs for human activity recognition usually contain a data segmenta-
tion step before the main computation to segment the data stream into correlated motion
parts [KC14]. For this thesis, I developed a segmentation method for the principal ski jumping
data of the field data base DR : in ski jumping, the style criteria are separated into the main
jump phases flight, landing and outrun (Section 3.1.2). Consequently, it was sensible to
first annotate the incoming inertial sensor data into the respective jump phases. I chose to
implement a two-step phase identification that first approximated the start and end of the
flight phase in a coarse way by the raw acceleration data of the ski mounted sensors. The
main purpose of this step was to shorten the long data streams into smaller time frames, so
that the following accurate segmentation could be performed faster and more efficiently. It
furthermore increased the robustness towards outliers that satisfy the segmentation condi-
tions outside of the actual phase timings. The second step was then to refine the first estimate
by a more precise and accurate computation yielding the exact time annotations for all flight
phases.

Coarse Phase Segmentation

The data of the two ski sensors is superimposed by high noise during ground contact as a
cause of wobble and small oscillations of the ski surface. During flight in contrast, this noise
is not present in the sensor data (Figure 7.5). This means that the aerial phase can be easily
distinguished from the preceding and subsequent ground contact phases as the noise-free
period in the middle of every jumping data stream. Implementing this relation, the aerial
phase was then described as that phase where the function fSG = std(aSK I ) built from the
standard deviation in the accelerometer data was below a certain (freely chosen) threshold
t f . To get a robust annotation for the start and end point, aSK I constituted the sum of all
acceleration data along all three sensor axes and the right and left ski sensor. As a result, fSG

contained significant peaks before and after the flight phase that could be used to annotate
the flight interval: the start of the flight phase was assigned to the last peak in fSG before the
period below t f , and the end of the flight phase to the first peak after the period below t f .
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Figure 7.5: Raw acceleration data from the ski sensors was used to obtain a first coarse
estimate on the start and end timing of the flight phase: noise superimposing the sensor
signals during ground contact of the ski clearly separates in-run and landing from the flight
phase.

Figure 7.6: Characteristics of the different jump phases made it possible to segment the jump
into different phases under a fine annotation level.

Fine Timing Annotation

In the second step, the coarse start and end timings of the flight phase were refined and
complemented by the missing primary phase timings and sub-timings (Section 3.1.2). For
this, I used the biomechanical descriptions of every phase and defined segmentation func-
tions for the raw acceleration or the angular velocity data from various sensor locations. The
beginning of the knee angle extension for example characterizes the initiation of the take-off,
establishment and dissolving of the static v-opening characterize the start and end point
of the stable flight phase, and high impact at the legs characterizes the moment of ground
contact during landing (Figure 7.6). In concrete, the full segmentation functions were defined
as follows:

• Take-off Initiation The take-off initiation is characterized by the start of an upward
motion of the legs, where the knee angle of the sitting in-run position is extended
towards the maximum at the instant of the take-off. With the sensor y-axis aligned
in line with the bones of the legs, the z-axis was pointing towards the transversal axis.
Therefore, I could describe the take-off initiation by the function fT OI = abs(gzr T +gzl T )
of the summed absolute z-axis angular velocities of the sensors attached to lT and rT.
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Figure 7.7: Determination of the start and end timing of the stable flight phase using the
angular velocities at the z-axis of lF and rF. The selected phases depict the end, respectively
the dissolution of the v-angle opening.

The take-off initiation timing tT OI was finally determined as the first minimal peak
before the maximal value of t f around the take-off timing.

• Take-off In the moment of take-off, the legs are stretched and the knee angles ex-
tended to a maximum, with the highest impulse upwards from the in-run position.
Consequently, the acceleration measured by the y-axis (pointing downwards) should
also be maximal. I therefore determined the precise take-off timing by the maxi-
mum of the summed absolute y-axis acceleration of the sensors attached to lT and rT:
tT O = max(abs(ayr T + aylT )).

• Start and End of Stable Flight During flight, a jumper’s body posture should be static,
so that no motion occurs. Such stable flight is characterized by a forward lean position
with the skis held in a v-shape. Start and end of the stable flight can therefore be
determined by lF and rF via the rotational motion that brings the skis into or out of the
v-opening position (Figure 7.7). With the sensors’ y-axes aligned with the length of the
skis in forward direction, the z-axes are pointing downwards. Therefore, I described the
start of the stable flight as the instant of no angular velocity around the z-axis, which
represents the end of the ski opening motion. Averaged over both sensors attached
to the skis, it was determined by tSF S = cei l (t(gzr F <0 + t(gzl F > 0))). In the same way,
I described the end of the stable flight position by the dissolving of the v-ski angle,
meaning the initiation of the landing. Averaged over both sensors attached to the skis,
it was determined by tSF E = cei l (t (gzr F >0 + t (gzlF < 0))).

• Landing In the moment an athlete gets in contact with the ground, a high impulse in
downward hill direction is created that is reflecting in the data of the sensors mounted
to the legs and skis. With the sensor y-axis aligned in line with the bones of the legs,
the instant of landing was described by the summed absolute y-axis acceleration of the
sensors attached to lS and rS. The maximum of this sum then determined the landing
instant as tLD = max(abs(ayr S + aylS)).

118



7.3. Transforming Data into Motion Features

Figure 7.8: Aligning the segmentation functions fT OI , fT O and fLD of all jumps to a reference
peak (red line) showed that the chosen strategies for phase segmentation (maximal peaks)
were consistent among athletes and capture sessions. The mean over all curves (black) as
well as the minimal peak (green) and maximal peak (blue) curves are shown. All other curves
lie in between the extreme curves.

Using the previously determined coarse phase estimations, the defined segmentation func-
tions only had to be considered within restricted time intervals around the respective point
interest, meaning either the start or end of the flight phase or both. To determine for example
the exact timing of take-off initiation and take-off itself, only a certain time before and after
the coarse flight phase start annotation was relevant. To determine the beginning and end
of the stable flight phase, only the coarse flight phase interval plus some margin buffer had
to be respected. Lastly, to determine the exact instant of landing, it was only necessary to
investigate a certain time before and after the coarse flight phase end annotation.

To verify the annotated timings, I captured the complete in-run slope area from the start
gate to the take-off table with a wide angle Go Pro video camera positioned along the in-run.
The video data was then synchronized to the sensor data from the start of the in-run motion,
and take-off initialization, take-off and start of the stable flight manually annotated for all
jumps. The manual annotations coincided with the sensor-annotated segmentations within
the accuracy of the camera sampling rate of 60 Hz for all takes. Consequently, I came to
the conclusions that the annotations were reliable for use in the subsequent retrieval step.
I furthermore tested all data captures for consistency with respect to the chosen segmen-
tation strategies for the instants tT OI , tT O and tLD . For this, I determined the position of
all segmenting peaks within the respective segmentation functions and aligned them along
the maximum of a reference jump that was chosen freely from the data set. As a result, I
could see that for every function all jumps followed a uniform pattern that made all primary
peaks occur at the position of the peak they were aligned to (Figure 7.8). In other words, the
chosen segmentation properties showed to be consistent among jumps and athletes and
hence useful for the proposed phase segmentation. Finally, this consistency confirmed the
previous conclusion that the automatically annotated phase timing were reliable for a use in
the following machine learning steps.
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7.3.2 Computation of Motion Features

Variables like the number and placement of the sensors used, the length and especially the
type of the motion to be evaluated have an influence on the formation of general motion
descriptions and should be taken into account for the creation of efficient and meaningful
feature extractors. This is important for any data base mining system: poor features can miss
out on true hits, whereas too many or irrelevant features can lead to over selection and false
hits [BBS14].

Before using features in the final machine learning environment and an evaluation of retrieval
results, the usability and significance of a chosen feature set cannot be ensured completely.
In this respect, it is sensible to test a learning application under multiple types of features to
identify the most powerful setting for the intended target. For the establishment of the fol-
lowing system, I therefore designed three different feature sets: two general and one specific
feature sets. Since the majority of all data captures in DR were ski jumps, all three feature sets
were used in the ski jumping context in this thesis. However, the two general feature sets were
designed in such a way that they could also be used for any other movement or sports data.
They were formed by feature representation strategies as specified in various motion activity
recognition literature and constituted of one discrete (descriptive statistics) feature set based
on the raw and augmented signal data and one continuous (time-series) feature set based on
the augmented body kinematics. The specific feature set was created from the augmented
body kinematics under consideration of the semantics and biomechanical description of the
target sport ski jumping.

General Feature Sets

Various motion descriptors that can be extracted from the sensor data and that are common
in learning scenarios for motion pattern analysis were chosen to provide motion information
for the jump phases A and L. Here, it turned out to be more efficient to consider a flight
performance and eventual error in the motion execution from a whole body perspective than
investigating every sensor location independently on its own. The data of every sensor was
consequently combined to build two large sets of possible feature set.

The first general feature set FD was a set of discrete statistical descriptors, meaning it con-
tained only one-dimensional data points that were obtained using standard descriptors
for basic time-series data. They are: the mean value FD1, the variance FD2, the skewness
FD3, the kurtosis FD4, 10 equally spaced samples from the autocorrelation sequence FD5,
the zero crossing rate (ZCR) FD6, the mean crossing rate (MCR) FD7 and the power of the
spectrum obtained with the FFT FD8. The signal properties have been computed from the
raw acceleration a, gyro rate g and magnetometer data m (processed in this order) as well
as from the angular data in Euler angles 6 and the positional data p along all motion axes x,
y and z. This means that I obtained 120 discrete feature values for every sensor (Table 7.2),
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leading to a total of nd = 1080 available features with the 9-sensor based experimental motion
measurement set up. All nd features of FD were normalized to the interval [0,1] by

F ′
Dnd

=
FDnd∣∣FDnd

∣∣ . (7.1)

This normalization ensured the standardization of every feature range and hence equalized
the influence of every feature on the learning algorithms. Lastly, the discrete data points of
all or selected features were united into a feature vector, whereas every feature represented
one element of the vector.

Table 7.2: Description of the discrete (descriptive statistics) features FD with their feature ID
for all sensor axes.

ID Type Description
FD1 mean([ax ay az], [gx g y gz], [mx my mz],

[ 6 x 6 y 6 z], [px py pz])
Signal data mean value

FD2 std([ax ay az], [gx g y gz], [mx my mz],
[ 6 x 6 y 6 z], [px py pz])

Signal data variance value

FD3 skew([ax ay az], [gx g y gz], [mx my mz],
[ 6 x 6 y 6 z], [px py pz])

Signal data skewness value

FD4 curt([ax ay az], [gx g y gz], [mx my mz],
[ 6 x 6 y 6 z], [px py pz])

Signal data kurtosis value

FD5 autocorr([ax ay az], [gx g y gz],
[mx my mz], [ 6 x 6 y 6 z], [px py pz])

10 samples of signal autocorrelation se-
quence

FD6 zcr([ax ay az], [gx g y gz], [mx my mz],
[ 6 x 6 y 6 z], [px py pz])

Zero crossing rate (ZCR)

FD7 mcr([ax ay az], [gx g y gz], [mx my mz],
[ 6 x 6 y 6 z], [px py pz])

Mean crossing rate (MCR)

FD8 pow(fft([ax ay az], [gx g y gz],
[mx my mz], [ 6 x 6 y 6 z], [px py pz]))

Power of the spectrum obtained with the
signal FFT

Biomechanic specifications of a motion are mainly related to angular or positional differences
between body segments and joints over time. One-dimensional discrete data points display
those differences implicitly, whereas it cannot be excluded that differing signal progressions
never result in the same or a similar output value. It is therefore reasonable to build features
that can also represent the temporal evolution of a motion performance. Time-series features
representing all those motion properties that are described by either positional and angular
data or relations between body parts and body joints are gathered in the second general
continuous feature set FC . Examples are the v-opening angle, the forward-lean angle of the
human upper body or the knee angle as indicator of straight and bend legs.

For the formation of FC , I chose 2 orientation-based features FCO , 3 position-based features
FC P and 3 additional types of relational features FC R for every sensor location. In concrete, the
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features were formed as FCO := (FC 1,FC 2)T , FC P := (FC 3,FC 4,FC 5)T and FC R := (FC 6,FC 7,FC 8)T

(Table 7.3). For FC 6, hip, knee, shoulder, ski elevation, ski opening and arm opening angle
were used, whereas for every body segment the two spatially related, neighboring relative
angles were determined. For rT this for example means that the angle between P and rT as
well as the angle between rT and rS were computed, and for lF that the angle between lS and
lF and the angle between lF and rF were computed. For FC 7 and FC 8, the positional relations
between right and left body parts (shoulder, hands, hip, feet, ski tips) along all three axes were
used. Counting the number of all features and sensor axes, 23 features were available for
sensor, leading to a total of nc = 207 features with the 9-sensor based experimental motion
measurement set up. The nc features of FC were rescaled to the interval [0,1] by

F ′
C nc

=
FC nc −min(FC nc )

max(FC nc )−min(FC nc )
(7.2)

to standardize the range of the various features, as well as to scale out anthropometric dif-
ferences such as different body length between athletes. The temporal sequences of all or
selected continuous features could lastly be united and represented by so called feature ma-
trices [MR06]. In those matrices, every row represents one feature. The temporal evolution is
displayed within the columns that contain the sample-wise feature values (Figure 7.9).

Table 7.3: Description of the continuous (time-series) features FC with their feature ID for all
sensor axes.

ID Type Description
FC 1 φ, θ, ψ Roll, Pitch and Yaw
FC 2 4φ, 4θ, 4ψ Change in Roll, Pitch and Yaw
FC 3 xr el , yr el , zr el Segment end position in x,y,z
FC 4 mxr el , myr el , mzr el Slope of segment end position in x,y,z
FC 5 ρxr el , ρyr el , ρzr el Curvature of segment end position in x,y,z
FC 6 6 s1,s2 Angle between neighboring body segments s1 and s2
FC 7 x j 1, j 2, y j 1, j 2, z j 1, j 2 Relative position differences of joints j 1 and j 2
FC 8 4x j 1, j 2, 4y j 1, j 2, 4z j 1, j 2 Change in relative position differences of joints j 1 and

j 2

Kinesiology-induced Feature Set

The general continuous feature set FC consisted of a relatively high number of probable
motion features and it is unlikely that all of them would be relevant for the description of a
ski jump and its respective style errors. With the evaluation of a ski jump being subject to
assessment made from judges’ observation, main points of interest for a motion rating are
the proximity of a motion execution to the defined elementary bio-mechanical specifications.
The augmented features from FC were therefore used to build a third, motion specific feature
set FK that corresponds to the semantic biomechanical motion description.
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Figure 7.9: Visualization of a feature matrix and a sample feature ski opening (v-angle). Every
row contains another motion feature with the temporal evolution sample-wise displayed in
the columns.

Generally speaking, a ski jump performance is characterized by little motion to a large extent.
Especially during flight, but also in landing and outrun, the absence of any irregularity is
considered as good motion style. For the acquisition of high style points, it is important to
convey an impression of safety and motor control, which is primarily influenced by a rigid
body pose during flight and a safe landing. Consequently, it was especially necessary to select
features that could depict all small variations in the data constituting the difference between
a good and a worse jumping performance.

The final formation of the simple kinesiology-induced feature set FK was inspired by the
style criteria from Table 3.1. Here, concrete technical specifications exist for the flight and
landing. Relevant angles during flight are for example the body-ski angle β, the ski attack
angle α and the hip angle γ as well as the v-opening angle of the ski. Landing is particularly
defined by the Telemark landing, during which the skis should not be further than two ski
widths apart and the knee angle 4 sufficiently large to display a bend knee position. For the
remaining style criteria, I especially wanted to grasp insufficiency in the motion execution
that is for example characterized by incompletely stretched legs, and instabilities that are for
example described by arm movement during flight or body parts touching the ground during
landing. For every style criteria, another combination of features was relevant (Table 7.4).
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Table 7.4: Description of the simple kinesiology-induced features FK with their feature ID
and the represented style error.

ID Type Description Error, style criteria C
FK 1 6 P,r S , 6 P,lS Hip angle γ General flight and landing

posture
(A1, A2, A4, L2, L4)

FK 2 6 r T,r S , 6 l T,lS Knee angle 4 right and left Straight knees during flight,
Telemark position during
landing
(A2, A4, L1, L2, L3)

FK 3 φr F , φl F Ski attack angle α right and
left

Ski posture during flight, sym-
metry of skis
(A1, A2, A5)

FK 4 6 r F,lF V-opening skis Ski posture during flight, sym-
metry of skis and distance
during landing
(A1, A2, A5, L4)

FK 5 xr S,lS , yr S,l S , zr S,lS Positional difference legs
right and left

Posture and symmetry of legs
during flight, posture of Tele-
mark
(A2, A4, L1, L2, L3, L4)

FK 6 xr F,lF , yr F,lF , zr F,lF Positional difference ski right
and left

Ski posture during flight, sym-
metry of skis and distance
during landing
(A1, A2, A5, L4)

FK 7 6 P,r A, 6 P,l A Shoulder angle right and left Posture and Symmetry of
arms during flight and land-
ing
(A1, A2, A3, L4, L5)

FK 8 6 r A,l A Angle between shoulders Posture and Symmetry of
arms during flight and land-
ing
(A1, A2, A3, L4, L5)

FK 9 xr A,l A, yr A,l A, zr A,l A Positional difference arm
right and left

Posture and Symmetry of
arms during flight and land-
ing
(A1, A2, A3, L4, L5)
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8 Retrieving Auditory Motion Information

For the establishment of the intended motion information system, the previously imple-
mented processing and learning methods need to be used in such a way that they make all
relevant information perceptible by the target user. In other words, a system is required that
translates the implicit information contained in the processed motion data into a universally
understandable ’language’, respectively level of data content – generally represented by some
kind of intelligent data knowledge.

The creation and utilization of such system intelligence constitutes the fourth and last stage
of the overall processing pipeline passed through in the course of this thesis. In dependence
on the application system, this problem is designed and realized differently under consid-
eration of specific constraints of the problem description. Consequently, an analysis of the
resulting output to determine the efficiency of the previously implemented system also has to
follow different methods and validation criteria. As first information type, I discuss auditory
feedback in form of movement sonification using real motion data from DR . Movement soni-
fication relies on the biological structures of the human brain with its corresponding internal
motion knowledge to access and make sense of the provided motion information. Therefore,
the present application considerably differs from the second application of performance
assessment discussed in the following chapter.

8.1 Movement Sonification

The provision of auditory motion feedback is subject to internal biological motion perception
evoked in certain areas of the human brain like the mirror neurons [LSS07, YRC13, Riz05].
Consequently, it is not necessary to develop and train any artificial motion knowledge for
the final retrieval step. Instead, one can make use of existing, intuitive human knowledge
learned over years or even decades of experience. However, this convenience does not
come easy for analysis: the more an information retrieval process takes place internally,
the more complicated it is to be quantified. Information on the power of chosen feature
transformations, and the outcome of a retrieval process cannot be obtained directly. For
analysis, it is therefore necessary to test the auditory feedback in experimental studies. Results
of the studies using the implemented MIDI-based sonification system and sound mapping
are shortly explained in the following.
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Figure 8.1: Schematic overview of the proposed sonification framework consisting of motion
capturing procedures, motion data processing procedures and the final auditory display.

General Specifications

Auditory and visual stimuli are perceived as originating from a single event when their in-
termodal delay lies within an approximate interval of t I M = 100ms during the activation of
multisensory areas within the central nervous system [SM93]. As a consequence of these
neural mechanisms, the maximal acceptable delay for the emission of auditive information
was set to tmax = 30ms. This benchmark ensured that subjects could perceive auditory
display in real-time and merge it with feedback of other modalities during motor perfor-
mance [SBD+09] (Figure 8.1). The sampling frequency was set to the (XSens internal) maximal
rate of 100 Hz, which was dense enough to contain sufficient information for the primary
target rehabilitation.

8.1.1 Sonification for Rehabilitation

The effects of the selected sound mappings on motor learning and skill acquisition have been
investigated in two empirical studies for rehabilitation as well as in a study on character writ-
ing by children. As general result, it could be shown that users were able to adapt themselves
quickly to the auditory feedback by both intuitively understanding the represented sound
mappings as well as by learning precise executions of a motion task.

In a first study, the informational content of the transformed acoustical kinematics was
examined using an intermodal discrimination paradigm [VKF+13]. In particular, the intention
was to find out whether humans were able to discriminate and intuitively understand the
artificial movement specific sound sequences. For this, six common everyday upper limb
actions – drawing a circle, stirring in a pot, pouring water, drinking from a glass, rasping one’s
nails and brushing one’s teeth – were captured by five inertial XSens sensors mounted on
shoulder, upper arm, lower arm, back of the hand and center of the right backs of the fingers of
an actor’s dominant hand. Body segment orientations were estimated and used to determine
positional information of the distal finger tips relative to the body center under the forward
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Figure 8.2: Identification rates of the sonification patterns with different dimensionalities
over the course of empirical testing.

kinematic approach (Section 5.4). Represented in spherical coordinates (Section 7.2.1), the
positional data was next transformed into the defined auditive motion representation. To
evaluate dimensionality complexity and semantic significance of the present sound features,
seven independent movement sonifications of differing feature combinations (from two up
to four sonified parameters) were created.

In a repeated measure design, the six limb action sonifications were randomly presented
to participants of the empirical study for identification. Subsequently, discrimination rates
for correctly identified motion actions as well as confidence of choice were registered. Data
indicated an immediate comprehensibility of the artificial movement acoustics as well as
short term learning effects: already above chance level during the first trials, motion dis-
crimination further improved with the progress of the study (Figure 8.21). Comparing the
seven sonification patterns, no differences between the encodings became evident in the
discrimination rates. Even listening to low-dimensional sonifications resulted in high identi-
fication rates, indicating that each kind of sound feature mapping provided similar amounts

1Image taken from [VKF+13]
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of information about a certain action pattern. This was likely due to the composition of
the designed feature mappings that all contained amplitude as a transformation of motion
velocity. The acoustically coded velocity information could therefore be assumed as highly
efficient for intermodal pattern discrimination. As a main result, the study showed that
the human brain allows for auditory pattern based action discrimination and perceptual
learning.

After the perceptual impact of the chosen sound mapping was proven, the system was
tested in a feasibility study with acute stroke patients [SKE14]. Here, the position of the
wrist was sonified in real-time during the execution of goal-directed motion tasks of varying
complexity. To assess the effect of movement sonification, motor and movement functions
were tested before and after the intervention under a standardized medical test catalog.
Analyzes showed that auditive feedback yielded significant positive effects on the general
motor skill of the patient’s impaired arm. As a conclusion, the utilization of auditory feedback
for motor learning could be shown as encouraging with respect to ambulatory use, as well as
an application in more sport-related training.

In a different setting, the basic sonification approach was further developed to a system that
encodes the kinematics of character writing obtained from an electronic writing tablet as
sound [ESB+15]. This so-called SoundScript system creates real-time sound information
on the writing trace and consequently enforces an integrated audio-visual perception of
handwriting. The hope is that the system can stimulate the acceleration of the handwriting
learning process in children in future. Data obtained in a pilot study gave promising results,
indicating that writing kinematics can be reproduced more adequately under the additional
display of auditive motion traces.

8.2 Discussion

Results of the first experimental studies showed that artificial movement acoustics based on
kinematic movement parameters can be decoded by naive listeners. Discrimination rates of
the performed actions were high from the first testing block, and increased over the duration
of the empirical testing. Since no feedback on the correctness of their motion identifications
was given to the participants, this enhancement of the discrimination rates was assumed to
be a cause of increasing knowledge about sound sequences of concurring action patterns.
Besides, errors in action identification were larger within than between categories. This
confirmed that discrimination rates depended on the (dis)similarity of action structures.
Moreover, discrimination rates were not related to the different dimensional sonifications.
Since it was contained in all sound combinations, the acoustically coded velocity information
was considered as main parameter for correct motion pattern identification: velocity (which
was defined as the length of the action vector in three-dimensional space within a given time)
reflected positional changes in time independent of action direction. Therefore, the implied
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information about action structures might have been sufficient for discrimination by itself
only.

With the second and third experimental study, the positive effect of auditory feedback on
motor learning were shown, and the utilization of audio feedback in larger scale motor
training scenarios encouraged. Considering all conclusions of the previous studies, similar
auditory feature transformations are likely to be well applicable to sports and motor training.
With motion velocity as intuitive and highly discriminative sound mapping, possibilities
for future sonifications are numerous. They do not only apply to permanent, continuous
sound information as used in most previous studies [DB15, CHU14, SH13, SOW11], but can
also be expanded to auditory cues given before or during a motor performance. Auditory
feedback can hence open up many possibilities for supporting the acquisition of motor skill
in rehabilitation and high performance sport. Premotoric auditory cues could for example be
applied in a priming context, fostering the development of motor precision. Two concrete
examples for such sonifications are given in Section 10.1.1.
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For the motion rating application, the idea is to introduce algorithms that enable a technical
evaluation of the quality of a motion performance which can then provide motion informa-
tion to judges, but also athletes and coaches or other users. Different than auditory feedback,
such intended error information constitutes an application problem bound to a technical
solution – motion knowledge is not naturally available for use of automated information
retrieval, but has to be built artificially. As a last step before the completion of the fundamen-
tal information system development, a computational method for this problem should be
developed using real motion data from DR .

The basic idea for the development of a motion rating system was to define objective measures
that score or rank different performances of subjective judged-sports on the base of intelligent
machine motion knowledge (Figure 9.1) – and herewith exceed the possibilities of current
grading systems (Section 3.3.4). In a general training and motor learning scenario, it is
common to compare the athlete’s current state of art to a predefined target outcome or
performance skill. Similarly, performance knowledge of a machine could be created using
the motion data of a reference (ideal) performance, to which the incoming motion data are
then compared. In practice, however, is not possible to assess performances on the base of
an absolute athlete-independent, ideal motion pattern serving as evaluation benchmark: a
performance is subject to individual motion styles that are, amongst others, influenced by
physical differences in the anthropometrics of every athlete. By using the previous normalized
and re-scaled motion features, physical differences between athletes are partly compensated,
so that variations as for example different body lengths do not reflect themselves in the motion
data. Nevertheless, an universally valid, ideal reference motion cannot be defined. Therefore,
I aim to evaluate motion performances in relation to each other under consideration of their
feature values at the segmented primary motion phases.

In the following, I focus on the collection of ski jumping motions from DR , but all evaluation
methods should be designed in such a way that they can be transferred to other sports in fu-
ture. Before starting the final jump assessment step, it is necessary to introduce fundamental
data definitions, to re-structure the main motion data as well as to implement the underlying
functions. To get an overview into the topic, I first want to explain a possible semantic feature
categorization system developed for assessment of relative performance qualities. Next, I
illustrate and discuss the methods used for subsequent error recognition. Finally, multiple
error classification strategies are designed and their recognition results validated at the end
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Figure 9.1: Flow of a general wearable motion rating and performance assessment system.

of this chapter.

9.1 Motion Feature Categories for Performance Assessment

From the style evaluation criteria in Section 3.1.2, one can seen that a ski jump should be
primarily assessed by the outer appearance of the succession of a jumper’s movements from
the take-off to the passing of the ’fall line’ in the outrun. Particularly important motion
aspects are precision, perfection, stability and general impression, separating the process
of motion assessment into two evaluation strategies: verification of the correct motion
execution under consideration of the principal technical motion determinants (e.g. the
existence of the Telemark), and rating of the overall flight impression under consideration of
aesthetic determinants. Following this categorization, I therefore introduced the two motion
feature categories ’Technical Motion Features’ and ’Aesthetic Motion Features’. Since the
final rating system should offer the possibility of universal use in future judging applications,
the categories describe the motion assessment task in a broad and general way. As required,
the rating features could then be modified for a use in a specific motion. For this reason, both
categories will be illustrated by not only the present ski jumping problem, but also by figure
skating intended to function as inspiration for any probable follow-up system design.

9.1.1 Technical Motion Features

In the following, FT shall be the feature category containing all motion descriptors that
extract kinematic quantities or display sequences of body movements within a performance
under the principle of biomechanics. They can be computed for both performance- and
result-oriented motions, as well as even target-oriented team sports. Therefore, they can
also be used for various other information provision tasks like motion analysis and motion
visualization.

For ski jumping, FT motion features depict all variables correlating to the skilled use of
outer aerodynamic conditions with the goal of maximizing jump length, like for example the
minimization of drag and the maximization of lift forces during in-run and flight. Particularly

132



9.1. Motion Feature Categories for Performance Assessment

Figure 9.2: Visualization of technical motion features (purple) for the assessment of ski jump
style.

relevant body angles during flight are the body-ski angle (conventionally referred to as β),
the ski attack angle (conventionally referred to as α), the hip angle (conventionally referred
to as γ) and the characteristic v-opening angle of the ski (here referred to as υ) (Figure 9.2).
Biomechanical analyzes [SMY04, MRM+06, MS03] quantified the angles resulting in best
aerodynamic conditions as α≈ 35°, β≤ 10°, γ≈ 160° and υ = 35°. However, their exact values
vary per jumper, as every athlete uses an individual jump length maximization strategy
dependent on individual motor abilities (including implicit motor knowledge), aerodynamic
features of an athlete’s anthropometrics and the equipment used. The Telemark landing is
another technical part and is described well by the present angular, positional and relational
motion features (Figure 9.2). By the moment of hitting the ground, one leg should be placed in
front of the other with the skis not further than two ski widths apart. Furthermore important
are appropriate flexibility (with knee and hip angles neither too small nor too large) and
safety (no body part should be in contact with the ground) of the athlete.

In consideration of the previous aspects, I designed the general definition for the technical
motion feature category. The design contains many motion features listed under FC and FK

in Section 7.3. The features can flexibly be adapted to the individual needs of an assessed
sport, as exemplary demonstrated for ice skating in the following.

FT 1 Body Segment Orientation
The estimated segment orientations S

E q give information on how specific body parts
are oriented in the global space with respect to the Euler angles roll φ, pitch θ and yaw
ψ around the motion axes x, y and z as in FC 1.
Inclination θlT at the elevated left leg measured from a sensor attached to the thigh
would be a relevant quality measure for charlotte spirals and camel positions in fig-
ure skating (Figure 9.3a). Heading ψr F at the (right) foot could be useful to detect
incomplete jump rotations by the time of landing when the leg to land is the right one.

FT 2 Angles Between Body Segments
The difference between two neighboring segment orientations S

E qS1 and S
E qS2 deter-
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Figure 9.3: Illustration of a possible use for the technical motion features (a) FT 1, (b) FT 2 and
(c) FT 3 with the proposed sample implementation in figure skating.

mine an angle 6 s1,s2 at the connecting body joint as in FC 6.
The knee bend angle δlT,lS at the left standing leg could assess the depth of a left-sided
sit spin in figure skating (Figure 9.3b).

FT 3 Joint Positions
The segment end positions p j give information on the x, y and z positions x j , y j and z j

of selected body joints in relation to the origin pO of their respective kinematic chain
as in FC 3.
Double footed landings in figure skating could be identified with the position zlF of the
right foot when the right leg is the leg to land (Figure 9.3c). Unwanted ice contact with
the hands could be annotated from the positions zr F and zl F of the finger tips.

FT 4 Relation Between Joint Positions
The distances p j 1, j 2 between two joint positions (either within the same or a different
kinematic chain) along x, y and z can be expressed in the spatial relations x j 1, j 2, y j 1, j 2

and z j 1, j 2 as in FC 7.
The positional difference zr T,r S between right thigh and shank could measure the
spread in the hip joint in right-sided charlotte spirals and camel positions in figure
skating. zr H ,r S and zl H ,l S could indicate a general low positioning of the wrists in
relation to the shoulder joints.

FT 5 Temporal Course Information on the temporal evolution within the complete technical
course of a motion is automatically included in all previous features when generated
from the raw sensor data as continuous features like FC .

The proposed design for FT allows for performance description relative to the principal
kinematic factors and information retrieval tasks such as error recognition under coarse
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and abstract reference descriptions. Due to individual style patterns, FT features cannot
be used for analysis purposes that numerically compare single kinematic aspects between
different athletes. Making use of the feature re-scaling, relative comparisons are possible that
do set the kinematic parameters within the standard motion ranges per athlete. Furthermore,
numerical performance monitoring by the assessment of differences between body angles or
joint positions of single athletes over time can be deemed possible.

9.1.2 Aesthetic Motion Features

The feature category FA shall constitute the collection of features that help to unveil aspects
of a performance’s impression and beauty which are generally a matter of subjective percep-
tion. The fundamental idea behind this category is to find several quantifiable factors that
impact the individual impression of an observer about a motion’s aesthetic quality based on
the information obtained with the technical motion features.

For ski jumping, aesthetic impression is the factor of style evaluation that cannot be described
semantically. The official FIS rule book [FIS13] reads like follows on this matter:

The calculated points that should be given for the ideal performance of the jump
are concerned with the utilization of the aerodynamic efficiency of body and
ski, the posture of arms and legs, as well as the ski position during flight, the
succession of movements during landing and the conduct during outrun. Also,
flight, landing and outrun should convey an aesthetic overall impression.

Considering the motion progression of a ski jump, aesthetic impression is largely influenced
by the impression of safety and sovereignty during almost the entire jump, and especially
the aerial phase. In concrete, the athlete has to establish a static, rigid pose, with no motion
and a wide forward lean of the upper body to make best use of the aerodynamic forces. A
general description here is that anything visible is unaesthetic and should hence induce point
reduction. For example, it might be reasonable to tracks the number of all motion actions
happening during the ideally static phase. Especially large-scaled motions like balancing
motion of the arms – which are also included in the official judging guidelines used for
the subsequent retrieval tasks (Table 3.1) – should be kept minimal. Further benchmarks
for the determination of aesthetic impression are body stiffness and a smooth transition
between the flight phases. Sovereignty is furthermore conveyed by courage and high jumping
skill, which are indicated by a wide forward lean angle, a wide ski opening and a high flight
path. Especially the flight path might be an important influence on a jump’s style rating: the
assisting judges, whose scores were used for the ground truth evaluation, reported to rate
jumps from an overall perspective from take-off to outrun, including the flight trajectory and
distance to the slope. In this context, it usually holds that the higher the athlete stands in the
air, the better the jump. This relation has been investigated and will be discussed in more
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detail later.

Based on the previous considerations and feature description strategies generated for sim-
ilar questions of aesthetic perception in non-motion multimedia data [ZZZ15, YLSC08], I
designed the general aesthetic motion feature category in the next step. Since aesthetic
impression is generally formed over the course of a motion, I came to propose the following
aspects based upon the parameters dynamics, flow, density, clarity and neighboring relations
that are again demonstrated under the example of figure skating.

FA1 Motion Expression - Dynamics
Assuming that a larger motion range, and therefore a higher spatial coverage, is more
impressive to the human eye, the range r p j of the position of certain body joints along
r x j , r y j and r z j could describe motion expression. Assuming that among two exe-
cutions of the same motion, the one of higher angular velocity appears to be more
dynamic, the maximum angular velocities m AVs reached within a performance at a
body segment could describe motion expression.
The sequences {r zr H ,1,r zr H ,2, . . . ,r zr H ,n} could rate the expression during a step com-
bination of length n at the right wrist in vertical direction in figure skating. Simi-
larly, {r xr H ,1,r xr H ,2, . . . ,r xr H ,n} depicts the lateral direction, and {m AVr H ,1,m AVr H ,2 ,
. . . ,m AVr H ,n} the expression on base of the angular velocities.

FA2 Motion Flow
Skillful motion execution generally follows a smooth flow without sudden, unexpected
events. Disturbances like sudden changes of directions and positions are displayed
in the data in form of irregularities, curbs or data peaks. Positional difference of
neighboring positions along all axes sp j and the rotational difference of neighboring
quaternions at a certain joint sr j should not undergo any sudden large deviations from
the mean sp j and sr j values of the selected time frame in smooth motions.
Stumbling might result in sudden counter movements at the upper extremities in figure
skating. Those errors could then be retrieved as peaks in the sequence {sr H ,1, sr H ,2, . . . ,
sr H ,n} or {sl H ,1, sl H ,2, . . . , sl H ,n} of length n.

FA3 Performance Density
Counting the number of events nE j that occur within a certain time frame at a specific
body part gives a density measure, whereas the definition of an event depends largely
on the specific requirements of a sport. After determining events that give a positive
impression of skill and strength to an observer, it is first needed to classify them to be
then able to detect their number of occurrences

∑
nEP .

Events that could be detected easily from the sensor data in figure skating are spin
jumps represented as heading changes ψP of a sensor attached to the athlete’s pelvis,
or landings by counting the number of times the acceleration at the pelvis surpasses a
certain threshold AccT within a defined time frame n.
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FA4 Motion Clarity
The clarity of a motion performance shall be determined from the occurrences of
’noisy’ motions in form of the sum of one or more translations in the x, y and z axes
or rotational changes at a certain joint or body segment that is not directly related to
the main performance. The easiest way to describe such sequences is by motion jitter∑n

t=1 ex AVr H ,n as the accumulation of extreme points ex AV (and hence data peaks) in
the respective angular velocities during the time frame n.
The motion of the arms could be noisy motion during a spin in figure skating.

9.2 Fundamental Information Retrieval Methods

The intended evaluation can be represented as a recognition problem assessing and weighting
the presence or absence of a certain performance error. In other words, all ski jump data
within DR shall be classified as either erroneous or non-erroneous, which is nothing else than
a binary classification task. To verify machine learning methods, it is furthermore common
to have at least two different data sets, of which one is used to train the learning methods and
one to test the trained data. Information on the chosen basic strategy for data base separation
as well as the implemented methods for error classification is given in the following.

9.2.1 General Data Base Separation

For all subsequent learning processes, the 85 ski jump captures with jump length and judge
style annotation within DR should be split into a training and testing data subset per A
and L style criteria (Table 3.1). Every jump was therefore separated into its relevant motion
segments under the previously annotated key phase timings (Section 7.3.1). For the aerial
phase A, this phase separation meant all samples from tT O−250 frames until tLD−150 frames.
The landing L comprised all samples from tLD −300 until tLD + 400 frames.

The general concept of the splitting process as performed for all subsequent retrieval tasks
then looked as follows. First, I randomly assigned the data captures to a sub-training data
base DRF and a sub-test data base DRT under consideration of the A and L phase-wise ground
truth style annotations. For this separation, I created two labels: one group JF that contained
all the jump data that were fined a point deduction in the collected judging score sheets
and one group J N of all remaining jumps that were not fined a point deduction. For all
determinants, the number of jumps n JF from JF and n J N from J N was identified and a data
base separator r determined to randomly split the jumps into subsets. For an equal split, r
was defined as rF = 0.5∗n JF , respectively rN = 0.5∗n J N . rF jumps of JF and rN jumps of J N
were then assigned to DRF , and all remaining jumps were assigned to DRT for validation later
(Figure 9.4). By this separation principle, both subsets could then be equally used as training
and testing data in a two-fold or multi-fold validation, increasing robustness against bias
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Figure 9.4: Schematic explanation of the data base preparation step separating the collected
data captures into a training and a test data subset for the machine learning steps. Here, an
equal split for 2-fold validation purposes is illustrated. The splitting process can be modified
to any other desired multi-fold validation.

induced by the random data split.

9.2.2 Classification Methods for Error Recognition

Two different binary classification approaches were chosen and implemented for the present
binary machine learning task - one similarity-induced method based on Dynamic Time
Warping (DTW) and one kernel method based on a support vector machine (SVM). The
principal idea of both classifiers is to determine (and evaluate) commonalities between two
or more motion performances. However, for numerical computations this is often not as
simply defined as it can be expressed verbally: motions can undergo various variations, and
especially if performed by different athletes or under different capture conditions, semanti-
cally similar motions do not need to be numerically similar. Performance data for example is
often exposed to spatial variations caused by different capture locations or capture circum-
stances, variations caused by individual motion styles of different athletes as well as temporal
variations caused by differences in timing and speed.

Since the main data in DR was captured at a single ski jump hill under constant conditions,
and variations in heading were excluded by the developed magnetic heading compensation
(Section 6.2.2), spatial variations could be neglected. Style variations on the other hand had
to be considered as present in the motion data for the implementation of the classifiers. To
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handle them in the best possible way, it is sensible to select robust feature representations
that do not vary with different motion styles. Temporal variations cannot occur for the
discrete features FD , and it was only necessary to compensate temporal differences within
the time-serial feature sets FC and FK . Both classifiers respond to the variations in a different
way that shall be explained in the following.

Similarity-Based Classifier

The first classifier compares two different motion performances under the aspect of similarity.
This means that a metric is defined that compares the similarity of the two feature vectors (in
the discrete case) or every single column of the two feature matrices (in the continuous case).
For the comparison of two feature matrices of different length, global, document-wise DTW
can align the matrices so that they are brought to the same length: for motion performances
of the same motion type, it can be assumed that motion feature sequences are of similar
length, and temporal variations be excluded by computing local similarities.

The mathematical definition of global DTW shall be explained under a general scenario in
the following. The optimal alignment between two time-dependent motion sequences X =
(x1, x2, . . . , xN ) of length N and Y = (y1, y2, . . . , yM ) of length M has to be determined. Usually,
X is associated to a matrix MX := [x1x2 . . . xn] ∈R f ×N and Y to a matrix MY := [y1 y2 . . . ym] ∈
R f ×M , with the columns of MX and MY representing f multidimensional data vectors of
X and Y . The difference between two data vectors x, y is then determined by a local cost
measure or local distance measure c. If the cost c(x, y) is small, x and y are called similar to
each other, if the cost c(x, y) is large, x and y are different to each other. With computing the
local cost measure for each pair of elements of X and Y , one obtains a cost matrix C ∈RN×M

with C (n,m) := c(xn , ym). For this thesis, the Euclidean L2 norm that defines the cost as
c(x, y) := ‖x − y‖ has been used. Once the cost measure is defined, the next step is to find
an alignment between X and Y of minimal overall cost. Such an alignment is represented
by a warping path p` = (n`,m`) ∈ [1 : N ]× [1 : M ] with ` ∈ [1 : L] where L is the length of the
warping path. The cost of a warping path p between X and Y with respect to the local cost
measure c is defined as cp (X ,Y ) :=

∑L
`=1 c(xn` , yn`). The warping path with minimal overall

cost is then called the optimal warping path. It can be used as quantity to measure similarity
of two feature sequences under the given cost measure c.

The optimal warping path can be determined by an accumulated cost matrix D ∈RN×M and
has to satisfy three conditions - the boundary condition, the monotonicity condition and
the step size condition. The boundary condition forces the warping path to start at position
p1 = [1,1] and to end at position pL = [N , M ], which means that the entire sequences X and Y
will be aligned. The monotonicity condition assures the warping path to respect issues of
timing and sequential time procession, so that going backward for example is not possible.
The step size condition is closely related to the monotonicity condition and ensures that no
element will be omitted and that there are no replications in the alignment (the classical step
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sizes to describe this requirement are [0,1], [1,0] and [1,1]). Under the previous constraints, D
has to satisfy the following requirements:

D (n,1) =
n∑

k=1
c
(
xk , y1

)
for n ∈ [1 : N ] , (9.1)

D (1,m) =
m∑

k=1
c
(
x1, yk

)
for n ∈ [1 : M ] and (9.2)

D (n,m) = min{D (n −1,m −1) ,D (n −1,m) ,D (n,m −1)} +C (n,m) (9.3)

for 1 < n ≤ N and1 < m ≤ M .

The accumulated cost D(N , M) - also referred to as DTW distance DT W (X ,Y ) - finally
represents the cost of the optimal alignment of X and Y (and herewith the overall cost for the
similarity measure between the two sequences X and Y ).

For the present error recognition, the presence and absence of a style error in a ski jump
should be determined by computing the jump’s similarity to a reference feature matrix.
Precisely, two feature matrices RC E for the erroneous and RC F for the error-free jumps were
built for all style criteria. The feature matrices contained the averaged values of all JF
respectively J N jumps in the training data set DRF . The similarity MS between RC E and
RC F to the feature matrices of all jumps in the test data set DRT was then measured under
the global DTW similarity principle. For the discrete features, the two vectors υ1 and υ2
compared in the similarity (cost measure) were simply formed from the feature vector of
the chosen reference jump and the feature vector of the compared jump. Their L2 norm
then yielded the similarity MSD . For the continuous features, υ1 and υ2 constituted the
feature values of one sample within the reference jump feature matrix and the examined
jump feature matrix. Summing up the frame-wise distances as defined for the global DTW, I
obtained the accumulated cost matrix D whose entry D(n,m) was used as similarity measure
MSC .

Based on the MSD or MSC similarity measure, a jump was finally labeled as either faulty
or non-faulty by a simple kNN-like classification metric with k = 1: the label of the simi-
larity measure of smaller value was simply assigned to the examined jump. The MSD and
MSC computations as well as their classification were repeated for all style criteria with the
respective style reference matrices RC E and RC F .

SVM-Based Classifier

The second classifier is a straight-forward implementation of the common binary SVM that
assigns a label to an input data vector on the base of a trained separator (margin). In the
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simplest definition of such SVM [FHT01, CST00], the training data is a set of points (vectors)
x j of specific categories y j = ±1 in a certain feature dimension d . Then, the primal function
of a hyperplane separating points of different label is

f (x) = x ′β+ b = 0, (9.4)

whereas b is a real number and β ∈ Rd . The best β and b values for a separating hyperplane
are then found by a minimization problem that tries to assign y j f (x j ) ≥ 1 to all data points
(x j ,y j ). All x j for which y j f (x j ) = 1 are the so-called support vectors and located on the
decision boundary. The parameters chosen for β and b determine the computation of a
hyperplane and the classification of data points close by the separating margin. Those metrics
in turn influence and affect the accuracy of an SVM classifier. Consequently, the SVM was
first tested under the specific inertial sensor data input to determine the best settings for the
present task, using data captures in DR that were not part of the main ski jump data captures.
Best classification results were obtained with a Gaussian radial basis function (RBF) kernel
and standardized input data. The kernel scale parameter was automatically set by a heuristic
procedure based on sub-sampling and the margin parameter C was chosen as 1.

The main classification metrics were then computed using the feature descriptions of all JF
or J N jumps in DRF , and the remaining JF and J N jumps in DRT labeled under the trained
kernel settings. Here, it has to be noted that a SVM is conventionally based on a sequence
of input observations, but does not accept any two-dimensional input sequences. In other
words, the training data from FD could be used as SVM data input without any further data
conversions by concatenating the feature values for every selected feature. For FC however,
it was first necessary to include an additional data transformation that made the temporal
information contained in the continuous data features representable within the observation
input sequence.

For this feature transformation, I chose a weighted-sum singular value decomposition (SVD)
algorithm that was introduced before for spatially invariant, but temporally varying motion
data [LKP05]. This strategy represents the temporal data in a lower dimension. In concrete,
the motion matrix Ak in the training data set was decomposed as

Ak = U SV T , (9.5)

whereas U and V were two orthonormal matrices containing the principal components and
coefficients and S was a diagonal matrix containing the singular values. The obtained first
singular vector υk was then projected to the first principal component. Lastly, a reduced
feature vectors rk was built by concatenating the projected singular vector tk and the nor-
malized singular value vector ~λk of Ak . The resulting reduced feature vectors are close to
each other if two motions are similar, and different if two motions are dissimilar. After feature
transformation, the single feature vectors could be concatenated and used as both training
and testing input data for the SVM in the same way as the FD features.
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Figure 9.5: Flow of the evaluation system in ski jumping. Motions can be compared either
among different athletes, giving a score and ranking for judging, or within one athlete to
monitor different training sessions and the evolution of skills and jumping technology over
time.

9.3 Ski Jump Style Assessment

To assess the quality and style of a ski jump, the existence of style errors or unfavorable
motion behavior should be determined independently for every motion performance by
learned machine motion knowledge. Their gravity can then be rated either quantitatively or
qualitatively, and an error rating of a performance be obtained by summing up the single style
error evaluations to an overall performance score in the next step. Sorting all performance
assessments along each other, lastly a top-to-bottom ranking can be generated. Additionally,
it might be sensible to include further information on the distance between two consecutive
motions performances to the final ranking. This would allow to create groups of similar
performance quality. For such distance information, measures are required that determine
similarities between motion features of two different performances and numerically weigh or
score the closeness between each other in an appropriate way.

Besides providing a competition score, such a functional evaluation and ranking method
also enables the comparison of jumps from one individual athlete, showing trends in (recent)
performances like the evolution of motor skills over time or the course of a training session.
Such system data output can then also provide important information for training and
performance surveillance. For the ski jumping scenario, the concrete work flow then looks
as shown in Figure 9.5. In total, I obtained three different feature sets that were used for
the subsequent retrieval task. For reference, a summary of their specifications and main
definition is listed in Table 9.1 by the order they were introduced in this work.

One of the most important variables for the development of a performance rating system
is the principal data annotation used as benchmark knowledge for the creation of semantic
machine knowledge. In this thesis, the ground truth measure used for the training and
validation of the performance rating methods is based on scores awarded by judges during
the data capturing. As shortly mentioned in Section 9.1.2, judge’s individual style impression
might be correlating to the general technical motion execution, and it can contain bias due
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Table 9.1: Overlook on all feature sets and feature selection strategies ordered by their occur-
rence in this thesis.

ID Description Specifications
FD discrete feature set Set of data points built from standard statistical

data descriptors of both raw and processed signal
data data.
Multiple features are combined in feature vectors.

FC continuous feature set Set of time series built from body-model data de-
scriptors of the processed signal data.
Multiple features are combined in feature matri-
ces.

FK kinesiology-induced feature set Set of time series built from body-model data
descriptors of the processed signal data and re-
duced under supervised feature selection based
on biomechanical motion definitions.
Multiple features are combined in feature matri-
ces.

to differences in individual perception. In the following, I therefore want to shortly discuss
this issue.

Side note: The quality of the ground truth data

The idea for applying the chosen ground truth measure was to utilize style scores that are as
close to the actual judging as possible. Whereas video data would enable judges to scroll back-
and forwards in single jumping sequences, and to a make their scores without time pressure
(consequently reducing possible bias in perception), it cannot display all environmental
information necessary for judging. Since the overall impression of a flight depends on multi-
ple local parameters such as the flight curve and the distance to the slope, it is necessary to
observe a jump within its natural environment on the ski jump hill for high-quality evaluation.
For this reason, gravity and type of style errors were given in real-time from the usual position
at the judge’s tower.

Most of the parameters that define good flight style – like the ideal use of air pressure, an
active take-off and the formation of an aerodynamic flying system with body and ski – also
significantly influence the length of a jump. Judges reported that a longer jump enhances
their impression of good style during flight. In reverse, this confession implies that a longer
jump might yield higher style points, and that the length of jumps could serve as fundamental
indicator for the quality of the captured flight performances. To verify this impression, I
examined the correlation between lengths and style points of the present ski jump captures.
To exclude the influences of poor landing style, I furthermore investigated the correlation
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(a) (b)

Figure 9.6: Correlation between length and flight style in the experimental data collected for
this thesis. (a): style points with landing deductions, (b): style points for in-flight deductions
only.

between aerial flight style and length only. The reason for this comparison is that landing,
and particularly a missing Telemark, has a big influence on the overall points to be deducted.
On the other hand, it is more difficult to land a Telemark in either very short distances at the
steepest points of the landing slope (meaning far shorter jumps than the K-point) or in very
long distances where the landing slope is flattening (meaning far longer than the K-point).

Although superimposed by natural outliers, both correlations show a linearly inclining func-
tion indicating that higher jump lengths indeed related to higher style points (Figure 9.6).
Knowing this dependency, longer jumps generally correspond to fewer point deductions and
can hence serve as a basic indicator for the quality of flight performances. Therefore, length
should be used as additional evaluation metric later.

Lastly, using judges data as ground truth is not optimal for the general system development:
the main reason for the development of an intelligent, fully automatic performance rating
system is that grading is subject to individual bias. The discrimination between the different
landing criteria as defined in Table 3.1 can for example be difficult and even be perceived
differently between the human judges. Consequently, also the different feature representa-
tions within the training data base can be variate and as a result, the built average matrices
functioning as evaluation measures not be significant enough. In other words, the data used
to build a system of higher objectivity is based on subjectively made decisions. However, this
shortcoming cannot be avoided, since no other measure for style assessment exists so far.
For future investigations, it is therefore advisable to collect data of more than three judges at
the same time, whereas the larger the number of judges would be, the higher the reliability of
the ground truth measure would become. The data of all judges could then be averaged, so
that the influence of outliers and individual bias is reduced. Practically, the acquisition of a
high number of volunteering judges appears to be difficult to achieve though.
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9.3.1 Style Error Recognition

A good and stable recognition of errors builds the foundation for any further style evaluations
that weigh errors or award point deductions to determine a fixed style value. To start, I
therefore implemented an error evaluation without the determination of point scores that
could assess the presence or absence of style errors. Using the two implemented classification
methods (Section 9.2.2), the presence and absence of style errors within every data capture
in DRT shall be determined per style criteria and feature set (Section 7.3.2) in the following.

In general, both the DTW-based classifier and the SVM-based classifier offer different ad-
vantages and disadvantages that should impact the choice of their utilization in future
applications. Whereas the DTW based-classifier gives a direct similarity measure between
the compared data segments, it is slow due to the frame-wise comparison of the warping
step. Furthermore, it is dependent on the input reference matrix that has to be built in a
precomputation step. The SVM-based classifier on the other hand is much faster and, since
it is designed for large clouds of data points, can handle the input feature sequences well.
However, it is more dependent on the general kernel and vector machine settings and re-
quires the definition of an additional distance measure for subsequent score computation.
To demonstrate the differences, the classifiers are used interchangeably in the following.

Error Assessment with FK

First, I wanted to have a look on the kinesiology-induced feature set FK with a two-fold
data base split validation. Using the DTW classifier, I labeled all data segments within DRT

with the help of the precomputed reference matrices XF for erroneous motions and XN for
error-free motions for every style criteria. In the next step, I compared the annotations with
the ones made by the human judges. Every correct and incorrect labeling was count and the
final error classification used to determine the overall values for precision P , recall R and
the F1-measure of the error recognition. In the present scenario, precision could be thought
of as a measure of the classification’s exactness, recall as a measure of the classification’s
completeness and F1 as combination of both precision and recall. In concrete, precision was
the number of correctly classified errors nt p divided by the number of all classified errors
nt p + n f p , recall the number of correctly classified errors nt p divided by the number of all
elements that were actual errors nt p + n f n for every style criteria, and F1 the harmonic mean
between P and R:

P =
nt p

nt p + n f p
, R =

nt p

nt p + n f n
, F1 = 2∗ P ∗R

P + R
. (9.6)

In general, a low precision indicates a large number of false positives (n f p ), and a low recall
many false negatives (n f n). Ideally, both should be close to 1 to show a good error recognition
accuracy, which can be represented in a high F1. The values were determined separately for
both of the two validation cycles and were then averaged to yield the final accuracy measures.
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Figure 9.7: Precision and recall values and F1-measure for the DTW error classification per
style criteria. The red line represents the probability border of 50%.

The resulting P and R indicated an imprecise error recognition for most style criteria and did
not show any remarkably good retrieval accuracy except A1 (Figure 9.7). Only for four style
errors (which were A1, A2, A3 and L2), all P , R and F1 were higher than the chance rate. For
the remaining style criteria, at least either one of P and R were low, indicating either many
wrong error recognition or non-recognition of erroneous jumps within the two-fold error
recognition cycle.

Considering the distribution of classification accuracy among the style criteria, A4, A5, L1
and L5 stood out as criteria of poor error recognition. For L5 the reasons for the poor retrieval
could be found in the consistence of the data base: L5 was a non-frequent style error with by
far less occurrences in the complete ski jump data set than any other error. Consequently,
the number of available training data was not significant enough to build a good learning
model for the testing under the two-fold data base split. Looking at the semantic description
of the remaining affected style criteria, I assumed that not enough significant discriminative
information that separated the erroneous and error-less label was represented within the
training and/or test data sets. A1, A2 and A3 that were of higher precision for example were
subject to intuitive and relatively obvious (from the perspective of a human observer) error
descriptions. The criteria A4 and A5 on the other hand focused on one aspect of the motion
that might be subject to very small and subtle errors: during the flight of a ski jump, deviations
from the perfect symmetric position at the legs and ski are generally bound to a very fine-
scaled, small range due to aerodynamic constraints. Furthermore, (symmetric) position of
legs is correlated to athlete-dependent style variations that might impede a generalization
of the jump features. For L1 on the other hand, misclassifications were likely evoked by the
non-symmetrical landing position. Every athlete is free to choose either the left or right foot
as principal (front) leg for the Telemark landing, and position can even vary within athletes
over different jumps – a variation that was not considered within the feature transformations.

Next, the same error recognition process was repeated using the SVM under its respective
classification principle. While it was possible to improve most of the P , R and F1 values, it was
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Figure 9.8: Precision and recall values and F1-measure for the SVM error classification per
style criteria and the probability border of 50% (red line).

not possible to determine the accuracy metrics for L1 and L5 (Figure 9.8). For both criteria,
this was due to the fact that no significant classification model could be learned, so that no
data segment in the test data was correctly recognized by the SVM. This, on the other hand,
resulted in a division by zero in the precision’s denominator, leading to P being not a number.
Similarly, R resulted in a zero value. For criteria L5, I assumed this misclassification to be
again a cause of the small number of available data segments with error. For L1, it was likely
that the chosen kinematic features were not significant enough. This may either be due to
bad feature selection, or the previously mentioned variations on the front leg of the Telemark
landing position.

All in all, the results were encouraging that the designed system could be meaningful to
retrieve errors. However, they also imposed the conclusion that the error recognition is style
error and feature selection dependent. For a meaningful performance assessment, it is neces-
sary to use a system with higher classification rates. To examine whether the semantically
induced feature selection of FK was meaningful and whether better or differently distributed
error classification results could be achieved with other features, I repeated the previous
computations with the remaining more extensive feature sets in the next step.

Error Assessment with FD and FC

To obtain a better balance between the number of available testing and training data, I chose
k = 8 instead of the described k = 2 for the subsequent k-fold cross-validation (CV). For
the SVM classifier, I furthermore extended the validation process to a k-fold nested cross-
validation functioning as regularization for the complexity of the classification model. This
meant that the computation of classification precision for final evaluation was performed
within two different k-fold CV steps: one external CV splitting the data base into k training
and testing subsets, and an internal CV for parameter tuning on the current training subset
only. The intention of this internal CV was to prevent over- or underfitting of the SVM. Given
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Figure 9.9: Scheme of the k-fold double-nested cross-validation used for error recognition
along the different style criteria.

the number of data captures, I chose an internal k-value of ki = 5 for the inner model training
and parameter tuning step here. I then determined the ki -fold classification error for ten sets
of random, initial Gaussian RBF kernel scale and margin parameter values. Lastly, I selected
the parameters of the set of smallest error for the subsequent k-th error recognition of the
outer CV (Figure 9.9).

As Figure 9.8 shows, P and R can be contradictory, so that P reaches high or full value,
while R remains small. One way to combine the two accuracy measure was the previously
introduced F1 score representing the harmonic mean between P and R. Another way of
representing all relevant classification statistics would be to visualize the classification in a
binary confusion matrix showing the true positives nt p , false positives n f p , true negatives ntn

and false negatives n f n . In general, a good classification is then represented by high values
along the diagonal axis:

nt p n f p

n f n ntn

In the data plots, high vales (with a max value 1) shall be denoted as black and low values
(with a min value 0) as white. To exactly represent the recognition rates of every style error,
I normalized the confusion matrix over the number of n JF and n J N for plotting. Besides
confusion matrices, it is possible to use other accuracy numerical precision criteria instead
of precision and recall. Measures related to the representation of confusion matrices are the
classification accuracy C A and the error rate ER. They are defined as

C A =
nt p + ntn

nt p + ntn + n f p + n f n
,ER =

n f p + n f n

nt p + ntn + n f p + n f n
. (9.7)

Containing information on both correctly classified jumps with errors and jumps without
errors, the C A and ER metrics (which are oppositional and sum up to 1) as well as confusion
matrices were used additionally to the P , R and F1-measures in the following investigations.
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After running through the full proposed error classification, I obtained a similar distribution
of the accuracy measures than with FK : all P , R , F1, C A and ER were obviously variant along
the different style criteria for both the DTW classifier model as well as the SVM classifier
model (Figure 9.10). Similarly as with the kinematic-induced features FK , data segments
could be accurately classified under the style criteria A1, A2, A3 and partly also A5, and
less accurately under A4 and all landing criteria. This disparity was also reflected within the
inner parameter tuning CV. Despite the randomly chosen parameters of the classifier, the
majority of all cross-validation losses (errors) was much smaller for certain style criteria (e.g.
A1) than for others, indicating that they were of higher discriminative power. Apart from
the previously mentioned differences in semantic description and distinctiveness, two other
reasons could be the cause here: one would be the general lack of sufficient discriminative
data (so that the ideal separation between error-free and erroneous data captures could not
be learned), the other one would be the specific lack of sufficient discriminative data (so that
no definite separation between error-free and erroneous data captures could be learned).
Whereas the former would result from the restricted number of motion takes within the used
data base DR , the latter would result from the bias in the judges’ ground truth data caused by
individual perception of the flight performance. Especially for the poor landing classification,
this assumption could hold true: all of the style criteria are concerned with the same main
motion feature (meaning the landing process itself), and the recognition of a landing error
might be difficult to separate into its certain error sub-categories represented as L1-L5.

As a foremost unexpected observation, all of the computed data measures suggested that
errors could be recognized better with the FD features than with the time-serial FC features.
Continuously throughout all ten style criteria, P , R, F1 and C A values were larger here, and
ER values smaller. Especially easy to spot was this difference at the C A and ER measures
for the SVM classifier: classification accuracy was high with FD (ranging between 65 to
95%), whereas it was only ≈ 50% with FC (meaning around chance rate) and with certain
landing criteria even smaller than the error rate. Here, an explanation could be that the
transformation of the time-series data into a lower dimension did not represent enough
information for the set up of a discriminative classification model. However, it should be
emphasized that the C A and ER measures should not serve as single indicator for the quality
of the present classifiers. This becomes particularly obvious when looking at the classification
results for L5. Although no P , R and F1 measures could be determined, classification reached
a very good value for C A – misclassification of the error-free jumps was rare and the respective
data segments had a recognition rate of close to 100%. The erroneous jumps on the other
hand could not be retrieved at all, so that the actual error recognition rate of L5 would be 0%.
Visualizing the classification relations in the normalized confusion matrix, the differences in
recognition rate became visible (Figure 9.11).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.10: Accuracy measures for the error classification per style criteria using the DTW
classifier ((a)-(d)) and the SVM classifier ((e)-(h)) for both FD and FC . Upper row each: P , R
and F1 values, lower row each: C A and ER values.
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(a) (b) (c) (d)

Figure 9.11: Sample normalized confusion matrices for the full feature classification with
FD and DTW classification. From (a)-(d): confusion matrix for an accurate classification
with A1, confusion matrix for an average classification with A2, confusion matrix for a poor
classification with L3 and confusion matrix for L5.

Despite this ambiguity, descriptive statistics seemed to offer an universal advantage over
time-series data representations. These results indicated that for ski jumping, all the relevant
motion information describing differences between data captures were fundamental, mo-
mentary signal properties that could be discovered well with basic analysis methods. Looking
at the accuracy measures of single k-fold cycles for style criteria of good classification results,
I could discover that classification accuracy was high in the majority of all cycles (usually in
either 6 or 7 cycles), and less accurate in the remaining cycles. This confirmed the previous
apprehension that bias in the judging data might influence and diminish the accuracy of the
classifiers: with a higher number of misclassification, the data segments for testing might
contain outliers that do not contain the same motion information in those cases.

Error Assessment with reduced FD and FC

The previous error assessment showed that retrieval accuracy varied per style criteria under
a similar distribution than for FK . It furthermore suggested that FD is better suited for the
present classification task than FC . Especially the latter was not anticipated beforehand.
Generally, the continuous time-serial features were assumed to be more precise for the
assessment of a temporal sequence of body motion features. This imposed the question
whether all of the chosen features were meaningful for the subsequent machine learning
task, especially as the power of different features was unknown: learning algorithms are very
sensitive to poor features that might not be able to display the information of interest for
retrieval. In case that not all features are relevant to describe a certain motion characteristic, it
can be useful to reduce the dimensionality of a feature set. Therefore, I repeated the described
k-fold CV under three smaller feature sets that were built by reducing FD and FC under
generic feature selection methods.

Generally, two approaches are possible to create valuable motion descriptors: defining
relevant features individually on the base of expert knowledge on a motion’s characteristics
in a supervised environment, or defining relevant features from a set of possible features on
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the base of machine computations without any specific domain knowledge. The feature set
FK was built under the former approach. Unsupervised feature selection was now applied to
the two full general feature sets. Three different feature selection strategies were used and
the resulting phase-wise feature selections validated with respect to their performance error
classification to examine if a reduced sub-feature set could generate better results:

F SS1: The first feature selection strategy was a filter selection using leverage scores computed
from a principal component analysis (PCA) [MD09]. In concrete, a PCA was used to
reduce the dimensionality of the feature set and the most relevant features were then
chosen by leveraging their relevance. This relevance was defined by the eigenvectors
that retained 97% of the variation in the data and computed as the squared norm of the
respective eigenvalues. The most and least significant features were revealed by sorting
all feature leverage scores in descending order.

F SS2: The second feature selection strategy was performed by assigning correlations and their
eigenvalues to clusters of similar variance [LCZT07] to select the most relevant features
of large spread in lower dimension. This means that the points in the transformed space
should be kept as far apart as possible to retain the variation in the original space and to
select features that are distinctive from each other. Clustering was performed by using
a binary decision tree built from the eigenvectors of the singular value decomposition
(SVD) of the correlation matrices of all feature streams. The depth of the decision tree
was again determined by the number of most dominant eigenvectors (retaining 97% of
the variation in the data).

F SS3: The last strategy was a custom-made, logically-induced feature selection based on the
idea of maximal relevance minimum variance: all those parts in the features that are
reliably of high difference among all data takes (meaning of little variation over all takes)
shall be identified and selected. For this algorithm, I first computed a mean matrix
X over all data captures separately for JF and J N . In the second step, the features of
highest difference in the mean values were identified, whereas features that underwent
too many variations within the data base were excluded as unreliable.

Qualitative analysis of the three feature selections did not show any particular selection
pattern. Amongst others, I for example determined the distribution of selected features for
every reduced set of features. For this, I counted the number of occurrences at every style
criteria and sensor location per feature category without distinguishing between sensor type
and motion axes (Figure 9.12). Distribution of the selected features did not show significant
peaks in distribution valid for all feature selections, which could indicate particularly high
discriminative power of certain features. On the other hand also no feature could be excluded
as completely irrelevant over all feature selections.

For quantitative analysis of all three feature selections, classification accuracy of the CV was
analyzed under the same metrics as for the full feature CV before. To evaluate the effects a
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(a) (b)

(c) (d)

(e) (f)

Figure 9.12: Visualization of the selected features for the reduced feature sets F SS1 (green),
F SS2 (blue) and F SS3 (magenta) over all sensor locations and style criteria in absolute
occurrence. Left: discrete features FD . Right: continuous features FC

of a feature selection on the error classification, I compared all sets F SS1, F SS2 and F SS3
with the complete feature sets FD and FC , which I designated as F SS0 for easier reference.
Positive effects of the feature selection should easily be identified by improved evaluation
measures, and eventual negative effects (caused by a bad feature selection) by degradation of
the evaluation measures. Good retrieval under F SS0 would furthermore give information
whether all features contained relevant information, or whether the underlying data was so
significant that irrelevant features might not have influenced the overall classification. Results
did not show any significant improvements in error recognition for the three feature selections
for both classification models. Instead, accuracy even diminished under certain style criteria
throughout all reduced feature sets. As already presumed under F SS0 beforehand, the
accuracy metrics of both classifiers furthermore indicated that style errors during flight
phase were of better recognition rate than style errors during landing. Differences in error
recognition rates as a cause of different feature types were not discovered. For visualization,
the P , R and F1 measures averaged over all aerial and landing criteria shall be shown here
with the DTW classifier (Figure 9.13). Distribution was similar for the SVM classifier.

As a result of both the qualitative and quantitative analysis, my first conclusion was that
the two general feature sets FD and FC did not suffer considerably from irrelevant or bad
feature sets. Assumptions on higher error recognition rates by use of the discrete feature
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(a) (b)

(c) (d)

Figure 9.13: P , R and F1 measure for k-fold CV of all sets of feature selections with the DTW
classifier averaged over the jump phase for (a) and (b) FD and (c) and (d) FC .

types on the other hand could neither be confirmed nor invalidated, since accuracy measures
were of similar values. Furthermore, I concluded that no feature reduction was available that
would considerable improve the results of the style error classification. Consequently, it was
not necessary to repeat the k-fold CV and its subsequent detailed analysis with a different,
reduced feature set. However, it should be noted that classification accuracy might well be
improved by good feature engineering. This could amongst others also be implemented
by determining significant motion parameters from other ground truth input (e.g. video
information using deep learning), but should not be further discussed in this thesis.

Combined Landing Style Assessment

Within the previous evaluations, I discovered that errors in motion style during flight could
be recognized more accurately than errors in landing. As responsible for this distinction
I suspected outliers in the judging data caused by differences in clear separation between
the five style criteria. By looking at the concrete judge scores, I could indeed already find
discrepancies that seemed to support this hypothesis: while the official regulation required
a minimum point deduction of 2.0 points for the L1 error (Table 3.1), three of the 26 data
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9.14: Confusion matrices for landing error recognition with DTW classification. From
(a)-(d): confusion matrices for L1, L3, L4 and the combination of L1 and L3 with FD . From
(e)-(h): confusion matrices for L1, L3 and L4 and the combination of L1 and L3 with FC .

captures annotated as L1 error had an point deduction of less than 2.0 points. Besides,
two data captures were awarded a point deduction for both L1 and L3. Since both are
directly related to the absence of the Telemark position (L1 fines the complete absence of
the Telemark, L3 fines an insufficient execution of the Telemark), they should not occur
simultaneously in practice. As last error recognition validation, I therefore classified the
landing data segments under a combined metric respectively learned motion knowledge.

All of the 85 data captures within DR were awarded a point deduction in landing. This meant
that I could not compare groups of combined style errors to jumps with a perfect landing. To
evaluate whether a combined measure could be useful, I therefore divided the landing errors
into two groups: the direct assessment of the Telemark execution by L1 and L3 and all other
remaining landing style errors including L2, L4 and L5. After running through the k-fold CV
under the L1−L3 error classification, one could presume that such combined measure might
indeed be useful for the present task. Differences in classification accuracy were less obvious
when compared to the error recognition of L1, but considerably visible when compared to
the error recognition of the remaining jumps (Figure 9.14). Here, not only L3 classification
was enhanced. Also the recognition of the group with L2−L4−L5 jumps (which served as
counterpart to the group with L1−L3 jumps) was more accurate than in the single error
recognition. Even better results could be obtained with the discrete features under the SVM
classifier, where C A reached 94% correct classifications.

As a result, it should be noted that restructuring of the basic error annotations might gen-
erate better classification results when certain style errors cannot be clearly distinguished
semantically. It was shown that the combination of error categories that are easy to intermix
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can result in more distinct separation of affected and unaffected data takes. Here, a semantic
grouping of L1−L3 and L2−L4−L5 data segments was chosen, but also other combinations
such as L1−L2 and L3−L4−L5 or only L3−L4 could be possible and might yield even
larger improvements. Testing the same assumption under a slightly different pairing L1−L3
and L2−L4 that excluded the L5 errors, results could for example be slightly improved. In
general, it should be stated that the better the interrelation between different grading criteria
is known, the better a semantically meaningful combination can be built. Moreover, it is
important to remember that all of the data captures used for the machine learning were
annotated as superimposed by landing errors. Consequently, all landing data segment also
were of semantically similar motion information content. It can be expected that much better
classification results are achieved when jump segments with a landing error are compared to
jump segments without a landing error. Considering that landing is one of the most difficult
and error-prone part of a ski jump, the collection of data captures with perfect landing scores
is however likely to be bound to performances of professional ski jump athletes.

Leave-one-out (LOO) Error Assessment

The previous error recognitions include data of all participating athletes in both the training
and testing data subset per CV cycle under a randomized distribution. While the CV neglects
distribution effects caused by this randomization, it might still be possible that good accuracy
results are mainly influenced by good error classification of one athlete’s motion errors. For
this reason, and to test the performance of the classifier with completely unknown motion
data, I next performed a leave-one-out (LOO) classification. For this, I changed the basic
CV implementation into a na-fold CV, whereas na constituted the number of participating
athletes in the data collection (here na = 4). In every cycle, the data of one athlete was retained
as testing data, and the data of all remaining na −1 athletes used for training of the machine
knowledge.

As first analysis, I determined the averaged accuracy measures P , R, F1, C A and ER over all
LOO-CV cycles. The results were little satisfying: for most style criteria, the classification
accuracy was around or even below the probability border of 50% (Figure 9.15). This indicated
that the system was not capable of identifying motion errors of an athlete when his motion
errors were not known and learned beforehand. In other words: every athlete seemed to
have an individual motion style of a style error execution that was differing considerably
from the motion style of all other athletes. In this context, I noted that the distribution of
classification accuracy of the LOO-CV deviated to the ones previously obtained. In particular
A1 was of poor error recognition, whereas A5 and L1 were of similar classification accuracy
as before. This under-performance of A1 was likely to be a cause of the semantic description
of every motion error. A1 was defined very vaguely as instability and could be referred to any
of the measured body parts arms, legs and skis. Consequently, it was indeed possible that a
different type of body instability occurred per athlete, and that their uniform categorization
into A1 led to different error motion styles per actor.

156



9.3. Ski Jump Style Assessment

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.15: Accuracy measures for the LOO error classification per style criteria and the
probability border of 50% (red line) using the DTW classifier ((a)-(d)) and the SVM classifier
((e)-(h)) for both FD and FC . Upper row each: P , R and F1 values, lower row each: C A and
ER values.
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(a) (b)

(c) (d)

Figure 9.16: C A and ER for the LOO error classification per style criteria and CV cycle using
the SVM classifier and FD .

Next, I therefore wanted to see whether error recognition was poor for all na CV cycles, or
whether errors of certain athletes had a higher chance of correct error recognition. For this, I
denoted the four jumpers as J1, J2, J3 and J4 and investigated the classification accuracy of
their respective LOO-CV cycles separately. Indeed, accuracy metrics varied largely per cycles
along all style criteria with both classifiers and FD and FC , suggesting that certain motion
errors of certain athletes were easier to assess. In the present data collection, especially A1
of athlete J1, A2 of athlete J4 and A5 of athlete J3 had clearly higher classification accuracy
than the same style errors in their respective three remaining counter cycles (Figure 9.16).
Specific reasons for these particular discriminative strength were not found, but it could be
assumed that differences in the motor execution between JF and JN jumps were particularly
clearly defined in those motions. To investigate and explain any eventual relations, it might
be useful to verify all motions from the collected video data in future.

9.3.2 Full Performance Quality Assessments

The previous style assessments were made on the assumption that relevant errors (meaning
errors that have to be fined) of a motion performance can be put into single style criteria.
However, judges reported a tendency to evaluate a performance under the complete im-
pression of a jump within its environmental surroundings and including aspects such as
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flight curve or distance to the landing slope. Earlier, I have already shown that style points
correlated to the flight length (Figure 9.6). Consequently, the jumps should be tested under
an overall performance quality aspect next, leaving behind the previous style criteria. Instead,
I used the overall performance scores and jump lengths for grouping of the motion data
streams. In consideration of the properties of the available data captures, jump quality was
classified as good (G), medium (M) and poor (P) performance. Since the flight was considered
as a whole motion performance, no phase separation was necessary. Therefore, motion data
streams F for the complete jump were considered starting at tT OI −200 frames and lasting
until tLD + 400 frames.

Apart from the modified design specifications, the general classification principle remained
the same in both scenarios. This meant that the classification accuracy was evaluated with a
k-fold CV for the DTW classifier (with k = 8) and a nested CV for the SVM classifier (with k = 8
and an inner ki = 5).

Assessments Based on Overall Scores

In consideration of the overall jump scores from all data captures in DR , every jump with a
score of 15.5 points or less was classified as P jump, every jump with a score of 16 or 16.5
points as M jump, and every jump with a score of 17.0 points or more as G jump. By this
separation, a relatively equal split between all 85 data captures could be obtained. Herewith,
the chosen threshold values of tpm = 15.5 and tmg = 17.0 points were a reflection of the skill
level of the participating junior athletes. Including the motion data of more experienced,
professional jumpers in the training and testing data base, other threshold values might need
to be found (e.g. tpm = 16.5 and tmg = 18.0 points).

Analysis of the resulting performance quality assessments showed that accuracy measures
were of similar level than for the previous classification under the ten style criteria (Fig-
ure 9.17). Especially good P measures were obtained by G jumps for the DTW based clas-
sification, whereas for the discrete features also the R and F1 measure were high. M jumps
were of smallest retrieval accuracy for the discrete features, and P jumps for the continuous
features. Given the mediocrity, it is not surprising that M jumps were recognized with less
accuracy than the jumps within the outer boundary groups – their motion data is likely to
be closer to both G and P jumps than the motion data of G jumps is to P. For this reason, I
repeated the CV with only P and G jumps, to see whether the discrimination rate of jumps
would increase. Comparing the classification accuracy of P and G under both CV, results
could be improved. C A values rose from ≈ 80% to ≈ 85% for P and from ≈ 75% to ≈ 80% for G
with the DTW classifier. For the SVM classification, C A was improved for P (≈ 80% to ≈ 90%),
but diminished for G (≈ 80% to ≈ 72%). More evident became the positive effect however for
P , R and F1: from values between 0.3 and 0.75, values grew tremendously (Table 9.2).

Classification accuracy brought me to the conclusion that in general, performance quality can
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Table 9.2: P , R and F1 measures for classification of performance quality labeled under full
flight scores with P, M, G and P and G only.

Type P P R P F1 P P G R G F1 G
P, M, G DTW 0.571 0.604 0.591 0.721 0.740 0.714

P, G DTW 0.875 0.688 0.857 0.829 0.865 0.839
P, M, G SVM 0.733 0.313 0.700 0.586 0.646 0.598

P, G SVM 0.875 0.625 0.810 0.908 0.958 0.931

be retrieved from the present data when a sufficient number of data takes is available. Besides,
two further points could be verified that should be mentioned shortly. First, FD features
again yielded better retrieval results in all P , R, F1, C A and ER than FC features. Averaging
the metrics for the error assessment with full feature sets over all ten style criteria, and
the full performance assessment over all three quality descriptors, in both cases significant
differences in retrieval efficiency became obvious. For the DTW classifier, an error recognition
under FC was 5-17% less accurate than an error recognition under FD . For the SVM classifier,
an error recognition under FC was even 10-75% less accurate than an error recognition under
FD . It should therefore be acknowledged that the discrete features were better suited for the
given motion rating task. Second, results once again indicated the difficulty of classifying
time-serial features with the SVM. While P jumps had the better classification accuracy with
the SVM and FC features, M and G jumps had a better classification with the similarity-based
DTW approach. Here, one could assume that errors of poorest performance quality were
related to obvious data descriptions such as uncontrolled arm movement during flight. Style
differences between M and G jumps on the other hand would then be subject to a finer, more
detailed error assessment that could not be depicted in the dimension reduced FC feature
input of the SVM. The normalized confusion matrices visualized this classification accuracy
problem in an especially obvious way: especially M and G jumps could not be assigned to
their class real labels in a reliable way, whereas they could be distinguished much better
under the DTW classifier (Figure 9.18). P jumps could be recognized well as both either P or
non P by both classifiers.

Concluding the current investigation, I want to state that the assessment of performance
quality on the base of the overall jumps scores appeared to be another promising approach
to the problem of motion performance assessment. However, results are dependent on the
score thresholds chosen for annotation of the data captures. These on the other hand require
a large amount of variant point scores within the underlying motion data base. Ideally – and
with a sufficient number of data captures, every point score between 10 to 20 or 19.5 points
(the perfect flight is difficult to achieve even for the best ski jumpers) should be used to build
an own group for the learning of the fundamental artificial motion knowledge. In case of
good classification accuracy, this performance quality assessment would then automatically
include a numeric scoring for the creation of an overall ranking.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.17: Accuracy measures for the classification of performance quality determined by
overall flight scores using the DTW classifier ((a)-(d)) and the SVM classifier ((e)-(h)) for both
FD and FC . Upper row each: P , R and F1 values, lower row each: C A and ER values.
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(a) (b) (c) (d)

Figure 9.18: Confusion matrices for the classification of performance quality determined by
overall flight scores with FC for M and G jumps with both DTW and SVM classification.

To put the results into relation, it should be stated that the resulting classifications have to
be considered carefully: with all of the jumps performed by four different athletes only, the
discrimination of performance quality on the base of the overall scores (and also length)
is endangered to be less significant if the majority of poor or good jumps was executed
by one single athlete. In such case, the test and training data would be suffer from less
athlete-specific differences and classification results should be naturally higher.

Assessment Based on Flight Length

Similar as before, I next assigned every jump to one of the three categories G, M and P, whereas
I used the jump length as categorization criteria this time. Jump lengths ranged from 66 to 91
meters, whereas the majority of jumps ranged within an interval around 80 meters. Therefore,
I chose tpm = 76 meters as threshold for the separation between P and M and tmg = 84 meters
as threshold for the separation between M and G.

Again, no significant classification results were obtained with FC . Here, classification rates
ranged around ≈ 60% for all groups. For FD however, accuracy measures reached much
higher classification rates, and differences in accuracy distribution between the groups stood
out more clearly than for the score based performance quality assessment. Classification
rates of P jumps were ≈ 90%, classification rates of M jumps were were ≈ 55% and hence
less significant, and classification rates of G jumps reached ≈ 70%. Consequently, P jumps
showed to be particularly discriminative. Throughout P , R, F1, C A and ER, they were of
extremely high respectively low accuracy measures (Figure 9.19). This imposes the conclusion
that the underlying motion data of poor jumps were particularly discriminative. Since poor
jumps are likely to be affected by errors in the motion performance, this would confirm that
style errors were described by instantaneous events within the motion data (e.g. sudden
motion of the arms after take-off). In total, it could be concluded that flight length serves as
relative accurate indicator for motion style. This was also assumed before evaluation from
the indications given by the volunteering judges. However, it should be repeated here that
classification results have to be considered carefully in the given case, since P or G jumps
might be performed by mostly one athlete.
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(a) (b)

(c) (d)

Figure 9.19: Accuracy metrics for the classification of performance quality determined by
flight length with FD .

9.3.3 Feature Type Evaluation

Feature engineering is a very important part of any information retrieval process that con-
siderably influences the performance of the complete learning system. No improvement in
accuracy could be noted with any of the reduced feature sets obtained from three different
feature selection strategies. However, in all of the previous style and error classifications,
results suggested that errors were recognized better with the descriptive statistic feature set
FD than with the body model feature set FC . To verify this assumption, I determined and
compared the average accuracy metrics for both feature types and classifiers under both the
criteria-wise error recognition and the overall flight quality assessment.

Independently of the chosen classifier and general performance evaluation strategy, P , R, F1

and C A values obtained with FD were larger than with FC , and ER values smaller, respec-
tively. This observation held true for most CV cycles (Table 9.3), for each individual error
category or quality label, and for all categories on average (Figure 9.20).

For the DTW classifier, an error recognition under the continuous feature set was 5-17%
less accurate than an error recognition under the discrete feature set. For the SVM classifier,
an error recognition under the continuous feature set was even 10-75% less accurate than
an error recognition under the discrete feature set. Particularly large differences in the
performance of the SVM classifier might be caused by the additional preprocessing step
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(a) (b)

(c) (d)

Figure 9.20: Comparison of the averaged accuracy values for the FD and FC feature sets
with both classifiers. Top row: accuracy metrics for the basic, criteria wise error recognition.
Bottom row: accuracy metrics for the overall flight quality assessment.

Table 9.3: C A values of the error recognition averaged over all error categories under the eight
CV cycles. ER values can be determined as the difference between C A and 1.0.

k C A DTW FD C A DTW FC C A SVM FD C A SVM FC

1 0.6356 0.6767 0.7189 0.5833
2 0.7100 0.6336 0.7736 0.5682
3 0.5791 0.6145 0.7491 0.5800
4 0.7182 0.6364 0.7364 0.5727
5 0.6500 0.5645 0.7845 0.5218
6 0.7482 0.6636 0.8045 0.6082
7 0.6555 0.6073 0.7518 0.5909
8 0.6038 0.5955 0.8205 0.6197

that transformed the multidimensional feature matrices into a conventional input vector.
However, this transformation could not be held responsible for all losses in performance
quality, hence indicating the lower discriminative power of the continuous features. In other
words, the present data collection indeed indicates that the most relevant motion information
were fundamental, momentary signal properties that could be discovered well with basic
analysis methods. This finding might be important for future system implementations:
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for a robust recognition and identification of motion error it should consequently not be
necessary to implement and run through an expensive preprocessing pipeline. Knowing that
the estimation of body kinematics does not contribute any additional information content
to the sensor data, the implementation of future hard-and software tools for motion error
analysis could hence be drastically facilitated in future.

9.3.4 Numeric Style Error Assessment

The previous error recognition and performance quality assessments evaluated jump seg-
ments under the presence or absence of style errors, respectively a specific performance
quality pattern. To enable a complete and functional scoring system, a quantitative evalua-
tion is however not enough. In this case, it is furthermore necessary to enable discrimination
within every group of errors or style quality. For the performance quality assessment based
on overall scores, results indicated that under sufficient learning data, performances can
be numerically rated in future. For the error recognition, it is necessary to develop further
strategies that can award point deductions within a style category. The idea here would be to
develop methods that can determine the gravity of every occurring error. Representing all of
the previous error recognition retrieval tasks, the initial error recognition per style criteria
shall be used next to investigate the probable set up of such numeric style error.

My idea to obtain a measure of error gravity was to compute the distance between the two
categorization labels error (JF ) and non-error (J N ). Ideally, data segments that were awarded
a higher point deduction (e.g. 1.5 points) should be more distant to the non-erroneous data
segments than the data segments that were awarded a small error (e.g. 0.5 points). Two
strategies are possible for such numeric error assessment. Strategy 1 computes the distance
of every error classification to the error classifications of the respective other class under
the previously classified labels. Strategy 2 uses regression instead of classification to directly
obtain a numeric distance output from the error categorization process.

Strategy 1: Distance Assessment from Class Distance Measure

To be able to determine a distance measure of every error classification it was first necessary
to mathematically define distance between variant data points for the two chosen classi-
fiers. According to the definition of the present global standard DTW, the DTW distance
DT W (X ,Y ) gives a measure of similarity for the two sequences X and Y . I therefore as-
sumed that the accumulated cost D(N , M) could also serve as indicator for the error gravity:
the larger for example the distance DT W (X ,Y1) than the distance DT W (X ,Y2), the more
serious the motion performance error referred to as gravity G :

G = DT W (X ,Y2)−DT W (X ,Y1) , (9.8)
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whereas X represents a test data segment and Y2 the reference matrix RC F for error-free
jumps and Y1 the reference matrix RC E for erroneous jumps.

For the SVM, I hypothesized that a metric should be contained within the distance of a data
point to the separating hyperplane. This means that the support vectors should be those
feature points that were awarded the smallest error deduction (that means 2.0 points for
L1 and 0.5 points for all remaining style criteria). In the same way, larger point deductions
would be further award from the boundaries. To determine the distance of every point, it is
necessary to know the exact definition of the trained hyperplane. This shall be represented
by a vector w built from the weight factors of every support vector. With K being the chosen
kernel, x a support vector and α the weight of the respective support vector, w is defined as

w T = [(
n∑

i =1
αi K (xi , x))T b] (9.9)

for the number of support vectors n. b represents a bias value that describes the intercept of
the hyperplane in the normalized data space and is added to w as d + 1-th vector element,
whereas d is the dimension of the feature vector. Contrary to the distance evaluation with
DTW that was based on the distance of the testing data set, the distance evaluation of the
SVM should be based on the distance of the training points to the hyperplane.

To examine whether the previous assumptions would hold true under the present motion
data, I determined the distance with the DTW classifier and analyzed the support vectors of
the SVM classifier. Since the classification results were better under FD , only the discrete
features were considered in the following. Distance computations for all DTW classified test
jumps over all k-fold CV cycles showed that the largest point deductions were not associated
to the largest differences (Figure 9.21). For visualization, every list of distance measures was
sorted in ascending order per style criteria.

Although the occurrence of point deductions did not correlate with the distance measure,
it became obvious that most misclassifications (represented by negative values) were jump
segments on the boundary, meaning segments of smallest possible point deduction (usually
0.5 points). This held especially for style criteria that had a larger variety of possible point
deductions such as A1. It is natural to assume that the errors in the respective misclassified
jumps have been too small to be recognized by the trained system. Considering the classifier’s
design, such misclassification might be caused by the lack of discriminative data. This, on the
other hand, might be a result of the averaging process building the reference feature matrix
or the bias in the ground truth data. Results consequently indicate that there might be a
possibility for the assessment of distance in future data bases, however, this does not hold for
the present collection of ski jump data.
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(a)

(b)

(c)

(d)

Figure 9.21: Sorted distance measures in ascending order with their correlating ground truth
point deduction for sample style criteria under FD . The black line separates misclassifica-
tions and correct error recognitions.
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Determining the support vectors of the training data per k-fold CV cycle gave me even less
useful results. First, only ≈ 10% of the number of trained data did not function as support
vectors. Second, the data points that did not function as support vectors were often data
points that should have been labeled as support vectors and vice-versa. Consequently, my
previous hypothesis was contradicted: under the given data, it was not possible to determine
the gravity of points on the base of the distance to the hyperplane. Several reasons might be
responsible for the large number of support vectors, which did not enable a distance measure.
On the one hand, the SVM could be subject to overfitting – especially considering the sparsity
of the SVM with the relatively small number of overall training data. On the other hand, the
nested CV design with the previous kernel parameter optimization step commonly generates
a very smooth classifier model with a large margin and many support vectors.

As a main conclusion, it should therefore be noted that it is recommended to supplement
the data collection with a larger number of jumps and more robust ground truth judging
data, and to then repeat the data analysis. In case of a powerful system design and discrimi-
nant available data, it should then be possible to better distinguish between the gravity of
performance errors.

Strategy 2: Distance Assessment by Regression Analysis

So far, I used the binary SVM to build a classification model and predict a label for every jump
data segment. However, a SVM can also be employed to build a regression model. Regression
analysis is a statistical process for estimating the relationships among variables and is widely
used in predicting and forecasting. Simply said, it estimates a numeric value for an unknown
jump segment in the testing data instead of a class label. As for SVM classification, the
training data of a SVM regression model consists of predictor variables (here the feature
inputs) and observed response values (here the ground truth error deduction points awarded
by the judge).

Mathematically, a regression model is formulated as a convex optimization problem that has
to be minimized. In concrete, a linear function f (x) = x′β+ b should be found that deviates
from a response value yn by a value no greater than ε for each training point x. At the same
time, f (x) should be as flat as possible, which means that the f (x) with minimal norm value
β′β should be found. The optimization problem is then defined as

J (β) =
1

2
β′β, (9.10)

and the condition of all residuals having a value less than ε as

∀n : |yn − (xn′β+ b)|≤ ε. (9.11)
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(a) (b)

(c) (d)

Figure 9.22: Estimated error values obtained from regression analysis in relation to the
awarded ground truth data with FD for A1, A2, L1 and L3.

The present SVM regression was implemented in the same way as the basic nested SVM
classification, whereas JN jumps were labeled with the no error value 0. Again, the SVM
kernel parameters were trained in an inner CV cycle. Plotting the output of every machine
per style criteria in relation to their ground truth data (Figure 9.22), I could discover similar
patterns as for the basic style error classifications. This means that A1, A2, A3 and A5 showed
linear relations between estimated and real point deduction values, whereas landing features
did not show any correlations to the ground truth data.

In general, results are promising and encourage the conclusion that regression analysis
could be used for error gravity determination in the future. Analysis of the regression and
ground truth point values reveals high precision in the point forecast for multiple data points.
However, also several aspects present themselves that should be resolved before a final
conclusion can be drawn. First, it is likely that the general input data was too small to learn
a completely meaningful regression model. In common forecasting, thousands or even
millions of data points are used – in the present scenario, we used ≈ 80 data points per CV
cycle. Second, the judges scores are awarded in steps by 0.5 points. To conform with this
grading conventions, the regression estimates would need to be rounded in future. Third,
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estimated values for error-free jumps hardly reach their actual zero value. Eventually, better
overall results could be obtained by using a different training response value for JN jumps
that is more distant to the actual error values. Lastly, grading conventions of L1 require a
minimum point deduction of 2.0 points. Output of the regression model should therefore also
only contain values around 0 (for error-free jumps) and around 2.0 and more (for erroneous
jumps). For this, a variation of the general SVM regression might be necessary.

9.4 Discussion

In the course of the current chapter, I developed an automatic system to evaluate and rate the
style of a ski jump performance. For this, I first introduced a feature categorization system
on the base of conventional judging guidelines. I then demonstrated the use of machine
learning and binary classification method with the given problem and finally examined the
implemented system methods for accuracy and reliability. I cross-validated the system under
a variety of possible evaluation and retrieval aspects. Those were the existence of single
style errors, the existence of style errors in a combination of possible errors, the quality of a
complete jump as defined by overall score and length, and the computation of distance as a
measure for error gravity.

Under the basic nested CV, error recognition results were accurate and reliable for the aerial
flight criteria such as A1, and prone to misclassification for the landing criteria. For the
latter, classification results could be improved by combining semantically similar style errors,
indicating that the single style error annotations were difficult to distinguish in practice.
Analysis with reduced sets of features furthermore showed that no improvements in accuracy
could be achieved, and none of the chosen feature selection strategies could provide a feature
set of better classification accuracy. However, the importance of feature engineering on
the overall system performance shall be emphasized here: it cannot be excluded that error
recognition might be drastically enhanced by different, unused feature transformations.
For the sensitive landing criteria, I for example recommend to introduce further feature
transformations that are unaffected by body-sided motion executions. A leave-one-out
classification furthermore indicated the benefit of features that equalize athlete-dependent
style variations well, so that motion errors are also classified well when tested with unlearned
motion data.

For all discussed motion evaluation designs, the FD feature set obtained better retrieval
results than the FC feature set, indicating the lower discriminative power of the continuous
features. Since these were initially designed to better represent the essential biomechanical
specifications of the underlying (ski jump) motion data, this finding is very unexpected at
the first sight. However, it appears sensible when considering the semantic meaning of mo-
tion performance error: whereas different motion patterns and motion types (like different
jumps of a trampoline sequence or performances in a skating routine) are described and
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discriminated by their temporal evolution, a motion error is a mostly momentary event that
superimposes the main temporal performance event. Therefore, it is also more likely to
display itself under statistical descriptors that are specialized in finding data abnormalities
than in temporal descriptions. This conclusion conforms to the (degraded) classification
results obtained with the reduced feature sets – rather than the number and quality of feature
extractors, the information content of the motion data itself appeared to be important. Re-
spective error information should in conclusion be assumed to considerably superimpose the
principal motion data structure in a large number of features, which is a characteristic most
likely for outliers and data peaks. A similar correlation was also displayed in the classification
results of the performance quality assessments, where P and G jumps could be discriminated
well from each other. Especially poor jumps were accurately and reliably classified under the
discrete features, affirming errors in a motion performance to be primarily instantaneous
motion information easily retrievable by signal analysis methods. Consequently, it is also not
surprising that the kinematic feature set FK consisting of a sparse set of continuous features
could not generate satisfying error recognition results.

Results furthermore showed that the implemented SVM classifier was less suited for time-
series features. This is likely to be a cause of the additional transformation necessary to
bring the multidimensional temporal information into a lower dimensional feature space.
Since the previous conclusions however suggested an advantage of the discrete features, it is
recommended to implement the presented style assessment system for use under discrete
features in future. Here, the SVM classifier can be used on equal terms with the DTW classifier,
without loss of important information or eventually even better performance.

So far, I only used defined parameters for both classifiers. Although the SVM got trained as
inner CV cycle within the nested CV, the main kernel setting remained the same – namely the
Gaussian RBF kernel. Given all previous data analysis, it is likely that the present classification
problems does not have a simple hyperplane as a useful separating criterion. In this case,
other kernel might be better suited, such as a polynomial kernel or the sigmoid kernel.
Similar presumptions can be made for the DTW classifier. Here, only standard step sizes
([0,1], [1,0] and [1,1]) were allowed, and the cost was determined using the Euclidean L2 norm.
Different step sizes and cost measures might therefore yield to different (and eventually
better) classification results. Consequently, much more possibility and freedom is left for
system implementation, and an absolutely accurate and reliable style assessment might be
obtained in future under different basic system properties.

Another way to improve error recognition might be to use a different classification model that
is specialized in the classification of time-varying processes, such as a Hidden Markov Model
(HMM). Research on activity recognition in surfing showed for instance that classifications of
a common HMM classifier reached 8% better accuracies than the same classifications under
a SVM classifier [HMS16]. For future system implementation, those result should be verified
and eventually included in the final framework to ensure the utilization of the most accurate
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algorithm available.

To summarize, results are promising that meaningful machine knowledge can be trained as
basic input for the assessment of new incoming motion data in a mobile motion information
system. Data can either be classified with respect to certain style errors, or with respect to the
overall style performance under categories as good, poor or average. With a larger training
data base, it might also be possible to obtain a finer graduation of the overall performance,
or an estimate of the achieved style score of a performance. Besides, such extended data
base could also enable the numeric determination of error gravity from an SVM regression
analysis. Current results are promising that such distance evaluation can be learned, once
more significant samples are available. In this case, the resulting system could then serve as
quality indicator for training or for score ranking in competitions.

All in all, I consider the system a useful application for training and competition. Espe-
cially in amateur and junior ski jumping (where less technology-support is available and
motion performances cannot be constantly supervised), the presented error recognition
system constitutes an important contribution to the training and competition environment.
Here, motion errors usually have a higher impact on correct motion technique and hence
a jumper’s safety due to a lack of experience and proficiency. Besides, motion errors can
be expected to be more intense and herewith easier to discover by the learned machine
motion knowledge. Although the classification results are not perfectly accurate for all style
criteria or performance quality criteria, I believe the proposed system as very important for
the development of mobile judging tools in future. As discussed before, no similar system
design using real field data has ever been published before. The present analysis therefore
represents the first investigation of this kind, and provides much new information as well as
guidelines for development and implementation of the current and new system methods.

9.4.1 Outlook: Rating Further Sports

Judging bias in ski jumping is considered to be much smaller than judging bias in figure
skating1. In fact, it is even discussed that ski jump style points are rather a protective measure
for the athlete (to prevent any dangerous flight styles) than a measure for the evaluation of
performance quality. Consequently, the developed rating system might also be better suited
for different subjective, judged sports.

The general design of the processing framework allows for its quick adaptation to any kind
of motion data. Body model based variations of the continuous motion features were listed
in Section 9.1 under the example of figure skating. For the initial system re-implementation
however, I recommend to use a different target sport which is spatially and temporally more
restricted. Ideally, this sport is also subject to less aesthetic motion features than figure

1Information on this issue can be found here: https://www.washingtonpost.com/news/monkey-
cage/wp/2014/02/12/how-ski-jumping-gets-olympic-judging-right-and-figure-skating-gets-it-wrong/
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skating. Possible applications would be trampolining, water diving or any other gymnastic-
related motion form. Another sample sport would be boxing, which just recently suffered
from a big judging scandal during the Olympic Games in Rio de Janeiro2. Here, modifications
of the grading system started a big controversy on the fairness in judging in boxing, which
eventually even led to the suspension of all judges that were officiating during the Games in
early October3.

For all of the above motion forms, I am confident that my proposed system would yield precise
and applicable results with even higher accuracy than the ski jumping error classifications.
While the differences within body posture and motion are very small in a ski jump, they are
much larger in sports with gymnastic elements (e.g. in somersaults, spins and any other form
of twists). Consequently, differences between performances and their respective error-free
and erroneous motion data should also be larger, and herewith easier to display and retrieve.
For boxing on the other hand, I believe that a wearable measurement and retrieval system
should be particularly efficient since punches are the primary motion events. These should
be relatively easy to discriminate and detect with respect to both frequency and power via
discrete motion features built from both the raw and processed measurement data.

However, this characteristic of boxing brings me directly to the essence of the problem that is
underlying all of its current fairness discussions: its so called ’10-point must’ grading system,
which was employed during the Rio Games for the the first time in Olympic boxing history. In
contrast to previous judging systems, this system offers a wider catalog of quality indicators
for the scoring of a boxer’s performance in a bout. Apart from the number and strength
of quality blows landed on the opponent’s target area, it is now also possible to evaluate
domination by technical and tactical superiority, competitiveness and infringement of the
rules4. These criteria all require subjective rating, and can hence be assumed to open the
door to manipulation.

This evolution of boxing rating clearly opposes the most recent efforts of traditional judged
sports that alter their grading system to include objective measures in the final score. Besides,
this problem makes obvious that it is much easier to rate and evaluate a performance under
technical motion features than under aesthetic ones. For this reason, also mainly technical
motion parameters were used in this thesis. In near future, the current system should
therefore definitely be extended and also include delicate, subjective performance parameters
that make a sport prone to controversies on fraud and judging bias.

2A full article on this issue can be found here: https://www.theguardian.com/sport/2016/aug/01/rio-2016-
olympics-boxing-corruption-allegations

3A full article on this issue can be found here: https://www.washingtonpost.com/news/early-
lead/wp/2016/10/06/every-boxing-referee-and-judge-from-the-rio-olympics-has-been-suspended/

4Read more about the scoring rules here: http://www.nbcolympics.com/news/boxing-101-rules-scoring
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10 Information Provision

From the consumer and user perspective, the most important part of an augmented mo-
tion information system is the provision of the retrieved information to enhance motion
understanding. The processed inertial sensor data can be used for the provision of motion
information from several stages of the implemented system framework. So, it is for example
already possible to provide a first, visual impression on a motion performance with the
augmented kinematic motion information (Chapter 5). In the same way, information can be
displayed after the augmented motion data has been transformed into meaningful feature
representations (Chapter 7), or after the specific, relevant information has been automatically
recognized and retrieved from the larger, general set of motion data (Chapter 9). One can see
that the level of detail varies with the stage of data processing: whereas a data visualization is
very general and motion information has to be understood intuitively, the latter information
retrieval can be very directed and targeted. With respect to a future application in motion
information systems, especially the latter is interesting.

As mentioned before, motion information can be processed both internally by multimodal
integration in the human brain (as for the movement sonification) and by means of external
modalities (as for the style error evaluation). Under the sport informatics based definition
presented in this thesis, it can furthermore take on many different ways for the diverse
group of users. In the following, a number of possible applications are given. For coarse
organization, the applications shall be discussed with respect to their final utilization for
different user groups, namely athlete (motion feedback) and judges (style knowledge) here.

10.1 Athlete Feedback

Motion feedback for athletes is the most common and conventional use case and subject
to many investigations in sport scientific research. Here, the focus is usually put on the
enhancement of motor skill acquisition and motor learning. In a technology-supported motor
training environment, especially the development of automated, unsupervised training
systems that provide additional motion information is important [KMH+13]. Implementing
techniques that provide motion information on an easy-to-use basis which could not be
obtained otherwise, the idea is to improve motor understanding, accelerate correct motor
skill acquisition and eventually increase safety – or gain advantage in competition.
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In compliance with the previously developed methods and the two chosen information types
auditory feedback and performance ratings, I will illustrate four possible athlete feedback
applications here.

10.1.1 Outlook: Auditory Feedback in Sports

Movement sonification has not only been proven to be useful for motor skill acquisition
in health care and rehabilitation, but also for sport applications [DB15, SMBE09, EFW11,
CHU14]. However, such auditory feedback systems are usually applied and evaluated in ei-
ther a laboratory, or under environmentally restricted settings. This is because in competitive
sports, it is difficult to set up a sonification system of several inertial sensors without influenc-
ing the motion performance, or at least detracting the athlete’s attention. Especially in a fine
motor skill and dangerous sports like ski jumping, athletes are very sensitive to any changes
in their accustomed environment. With the reduced size and wireless waterproof design, the
Logical Product sensors are auspicious to a future use in real-time movement sonification for
sports training, given a wireless data transmission with immediate auditory display of the
motion. The simplest method here would be to sent the processed real-time sound feedback
to the sensor-equipped athlete via wireless head phones, or to use a customized application
in a smart phone device.

In the following, I want to give two ideas for future sonification applications, one for the
present primary motion data ski jumping and one for the improvement of motor stability
in long-distance result-oriented sports (Figure 10.1). In difference to the sound setting
chosen for rehabilitation (Section 8.1), which were designed under general assumptions, they
are developed under sport-specific aspects and in consideration of their target application.
Consequently, their auditory information content is focused and directed to the immediate
internal retrieval of specific core motion aspects.

Sonification of Ski Jumping

One of the key aspects in the execution of a ski jump is the take-off, since it decisively
affects the flight curve and the overall jumping distance. Approaching the end of the in-run
slope with a speed of ≈ 25 m

s , the optimal time instant within a take-off should happen is
of very short duration. Early or late take-off initiation can already reduce jump length by 5
meters or more. Furthermore, research showed that the posture during in-run drastically
influences aerodynamic forces that can result in decreased take-off time or loss of take-off
impulse [VKK01].

Providing additional information during the in-run phase consequently might be useful to
support the athlete in the execution of an ideal take-off. Here, two sonification strategies for
display of motion-specific information are probable: kinematic sound features related to
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Figure 10.1: Probable sonification scenarios for the support of motor skill and motor perfor-
mance in sports.

body posture on the one hand, and global sound features representing the distance to the
take-off table and end of the in-run slope on the other hand. Knowing the velocity of the
athlete-ski system and the in-run length, distal information could for example be provided
by the increase or decrease of a permanent sound linear to the approach of the take-off table.
Another idea would be to increase the attack frequency of a continuously generated tone as it
is often employed in proximity sensors used for parking of automobiles.

The development of such sonification feedback system however is a very sensitive task
requiring several assessment steps in wind-tunnel or other simulations before an in-field use.
In particular, it is important to ensure that any negative impact on the take-off execution can
be excluded: distracting the athlete from the main motion task by any sort of sonification
could lead to mistakes in the motion execution resulting in problems during flight and severe
injuries. Consequently, it is not planned to implement and realize such system in near future.

Sonification for Motion Synchronization and Consistency

Another, more feasible sonification scenario is the support of motor synchronization and
consistency in training of long-distance speed skating. Here, the idea is to sonify the main
properties of the distal part of all extremities and hence rhythmify the overall skating per-
formance: under the demonstrated pattern based action discrimination, it can be assumed
that the brain can intuitively perceive differences and changes in the sound pattern during
long-term skating. In other words, deceleration and asymmetries of the general motion
pattern occurring over the course of a race or training run as a cause of fatigue could be made
perceptible. As a result, it might be easier for the athlete to intuitively keep the initial rhythm
and speed despite exhaustion.

Sonification of speed skating motion for training has been reported before [SOW11]. To date
however, only force data of the skating shoe were transformed into auditory motion feedback.
With the developed measurement framework capable to determine full-body kinematics
from wearable devices, more sophisticated motion information can now be made available
to the athlete. Wrist and ankle joints should be ideal to sonify the primary motion pattern of
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continuously swinging arms and legs (either full body in the straight parts, or half-body in the
curves). For synchronization of two or more extremities and the maintenance of speed, the
two kinematic parameters velocity and distance to the body center (meaning the radius of
spherical coordinates) should be sufficient to display all necessary information. One possible
setting would be to encode velocity by any kind of spectral modulation (e.g. brightness)
and the radial distance by volume. By this mapping, both the counter movement of the
weaving left and right body limbs as well as a probable decrease in speed are represented
in an intuitive way. Whereas the positional parameters would be encoded in the same way
for all four extremities, every joint would be furthermore represented by its own, clearly
distinguishable sound timbre. These different sound sources ensure that motion information
of all extremities can be perceived simultaneously and then be discriminated by the athlete.
The continuity in sound mapping on the other hand keeps the dimensionality of the sound
mapping small, so that the implicit motion information is understood immediately.

Furthermore, possibilities for coaches to influence and control training could be increased
by providing reference speed audio patterns to be reached and maintained by the athlete
throughout a training session. Together with sending the athlete’s real-time sonification, it
could then for example be possible to send an additional sound stream for the target speed. If
possible, the previously described setting shall be implemented and tested in the near future.

10.1.2 Motion and Style Feedback in Ski Jumping

Based on the large data base DR and the variety of implemented signal processing and
machine learning methods, several motion feedback platforms of various level of detail are
possible for athlete support in ski jumping. Of particular interest here is to assess relevant
biomechanical parameters to retrieve information on motor style (defined by the criteria
in Table 3.1) and performance quality. In contrast to the provision of auditory feedback,
such motion and style feedback is acquired by the user in a self-controlled way. This means
that the feedback parameters timing, distribution, frequency and content (Figure 2.3) are
left subject to the individual decision of a user. While this might contradict insights from
sport sciences, it correlates to the definition of motion information created for this thesis
(Chapter 2) and the conditions of modern, connected times.

Data Visualization

The simplest motion feedback are data plots on the augmented motion data described in
Section 7.1. Combining the data plot information with the animated stick figure visualization,
it is possible to create multi-view displays that enhance the understanding of the temporal
evolution of a motion. I want to give a small example here, visualizing the positional data
of the lower spine for the complete flight in x-,y- and z- direction relative to the start of the
kinematic chain at the spine top at the lower neck (Figure 10.2). Similar kinematic time-series
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Figure 10.2: Visual feedback plot providing positional motion information, as for example on
the relative end position of the spine during a ski jump. Additional video figure visualization
enhances motion understanding.

data are available for multiple jump and athletes in DR . Amongst others, they can for example
be compared to each other with respect to positions, pitching angle in the upper body during
flight phases and landing and many more in a next step. In general, motion information
presented to the athlete by visualization is likely to be based on technical motion features.

Especially the latter animated data plot is likely to be useful for future training and feedback
systems: the human brain is able to intuitively understand motion patterns from even abstract
data representations like point clouds and stick figures. This process is called biological
motion perception [Joh73, TRS02]. In other words, such simple and sparse data visualization
in form of an animated figure video plot can already be enough to provide first information
and impression to athletes (and coaches). Adding visual time-synchronized information to
the data plot (e.g. via a time mark running along the data plot), the comprehensibility of the
data plots could be facilitated even more and motion information be made more accessible
and intuitive even for users of less experience or expert knowledge.

Automated Intelligent Style Training

Using the learned motion knowledge on jump style and errors, a wearable, automated frame-
work for detailed assessment and training of motor style can be created. For ski jumping,
I consider such a mobile feedback platform as particularly beneficial for junior and inter-
mediate level athletes. Here, economic and logistic constraints influence the quality of the
general training structures: for example it is common that many jumps are executed within a
very short span of time. Consequently, responsible coaches often observe jumps from one
perspective only (generally the coaches’ stand), while the assessment of every single jump
performance has to be instantaneous. Internal motor representations in intermediate level
jumpers on the other hand are less stable than in professional athletes, making additional
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Figure 10.3: Example of a graphical user interface for the provision of directed motion
feedback for ski jumping athletes.

information on previous motion performances very valuable. For good usability of such style
training system, a graphical user interface should be programmed that can communicate
with the athlete to give directed feedback on the motion (Figure 10.3).

To make best use of the previously implemented machine learning framework, the design
of the athlete-system communication should be as follows. First, incoming sensor data
of a current motion performance is received, processed and classified under the judging
style criteria. Once the basic system computation is done, the athlete can ask for specific
information on motion parts or motion properties by sending retrieval requests. Next, the
respective information will be retrieved and delivered to the user.

Here, it is important to note that search criteria and keywords for communication with the
training system were held general and intuitive by predefined search queries. Internally,
those search queries were associated to one of the nine style criteria for information retrieval.
A possible query in the user front end could for example be whether the arms have been held
parallel during flight. In the back end this information would be labeled under the criteria
A3, and the respective error recognition result for A3 could therefore be used to display an
either positive (in case of J N ) or negative (in case of JF ) output information (Figure 10.4).

From the validation of the underlying machine learning methods, one can conclude that
such proposed system will be capable to identify style differences and errors well (Chapter 9).
Previous results showed that it is possible to provide and directly deliver motion information
by learned machine knowledge. Therefore, I believe that the previous system design is a

182



10.1. Athlete Feedback

Figure 10.4: Principal front and back end processes establishing a dialog between athlete and
motion style training application.

very promising and powerful approach to the question of future motor training systems.
To enable a more specific training system for individual athletes, it might furthermore be
reasonable to use different quality measures independent of universal style criteria. Alter-
natively, it is for example also possible to use the full flight performance quality assessment
(Section 9.3.2) to display general feedback on the complete flight performance. Instead a
concrete information on a specific aspect of the motion, the query would then simply be
how good the flight performance was, or how good the current flight was in comparison
to previous ones. The respective feedback information can simply be retrieved from a re-
spectively trained motion knowledge, as demonstrated under the previous categories P, M
and G. In dependence on the available training data, further categories for the classification
of performance quality (enabling a finer separation between jumps) might also be feasible
for system development. For the latter application, it should generally be useful to build
individual motion knowledge for every athlete, so that the progression of motor skill over
time could be monitored. However, this would require a large data base of jumps per athlete
before a meaningful motion knowledge could be created – something which is difficult to
organize in practice. On the other hand, it would also enable the inclusion of numerical
parameters known to influence a ski jump performance (e.g. the body forward angle or the
ski attack angle) that can otherwise not be respected due to individual differences in the ideal
flight style influenced by every athlete’s anthropometrics and motor skills. In reverse, the
inclusion of motion data from professional, highly skillful athletes could be a very helpful
indicator for junior athletes towards the acquisition of higher motor skills. Then for example,
the distance and continuous approach or eventually also depart (in case of incorrect motor
skill acquisition) to the system’s learned G performances could be made understood in an
easier and more intuitive way.
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Figure 10.5: Technical implementation of a future online judging system at the ski jump hill.

10.2 Judging Knowledge

When developing a system for the provision of motion information to a use group different
than athletes (and coaches), one usually follows a clear defined concrete intention that is
much more specific than the support of motor skill acquisition. Conventionally, it got inspired
by problems and constraints that occurred in daily situations and that require profound and
detailed motion understanding. This can take on any possible form, such as the visualization
of additional background information and content to the spectator, or precisely the chosen
style assessment for judging support and increase of objectivity. As a last step of this work, it
shall next be illustrated how such judging system can look like on the base of the previously
developed methods.

The general idea for this performance scoring scenario is to implement an executable com-
puter program file that awards point scores to a motion performance on the base of previously
learned and stored motion knowledge. Incoming sensor data is transferred to the computer
in either offline or – in case that stable data transmission via wireless network connections
is enabled – online mode (Figure 10.5). For the former, this data transfer could be executed
from a standard file load dialogue. For the latter, data could be sent out by the sensors and
fetched on the fly by a receiving computer located in the judge’s tower.

Designed and implemented with a common option window and dialog framework, the
judging system executable should be intuitive and easy to use for any experienced computer
user (Figure 10.6). Then, the computation of all relevant parameters can simply be started
as full analysis including (a) the derivation of body kinematics, (b) the computation of error
points per style criteria and (c) the determination of the resulting summed output score.
Alternatively, it is also possible to execute all steps (a)-(c) independently. In the last step, the
resulting rating is then presented to the user respectively judge. Possible motion information
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Figure 10.6: Illustration of a program interface and its possible functions for judging in ski
jumping.

Figure 10.7: Illustration of a sample information output given by the judging program inter-
face.

output are a video of the processed data in animated figures (Section 10.1.2), the error
deduction scores per criteria and the resulting score (Figure 10.7). In the example, the point
scores are listed under the error recognition approach to be then summed up to the overall
point deduction. Under a reliable performance quality assessment with trained knowledge
for the full standard point range (e.g. 13.0 to 20.0 points), it is additionally possible to directly
retrieve the performance score.

By the provision of the video output, the system aims to improve the general circumstances
of conventional judging, where a decision is made within a very short instant of time. Now, a
jump can be watched repeatedly under arbitrary playback speed and abstract and uniform
visualization parameters that do not distract from the main motion execution. The two score
outputs (or one for use of the overall performance quality assessment) furthermore display
the quality of the examined motion performance in numbers as result of the internal data
processing.

One can see that the judging tool offers considerably less dialog options and possibilities of
parameter choice than the previously demonstrated athlete feedback system. This system
efficiency is due to the circumstance that the principal function of the system (determination
of the final score) is very clear and more formulated more precisely. As a result, the communi-
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cation between system and user is less ambiguous and does not require internal translations
to increase usability. Furthermore, it is not dependent on self-controlled system use mecha-
nisms. Instead, it is continuously employed for all situations that require a solution to the
underlying problem, meaning competitions. Consequently, it is very target-oriented and can
be expected to be beneficial without short comings or disadvantages once the reliability and
accuracy of its output is confirmed.

10.3 Discussion

With the last chapter of this thesis, I have shown how the developed methods for retrieval of
augmented motion information can be used to support humans involved in sport motion per-
formances. I think that all presented applications with their implicit hardware and software
solutions are promising designs for a future use in real sports, and could be implemented
without additional effort as presented here.

For the applications based on artificial motion knowledge, a variety of possibilities for style
and performance analysis were made available with this work. Consequently also various
system implementations can be imagined, ranging from performance assessments with
respect to specific motion aspects to temporal monitoring of overall skill acquisition to the
awarding of style points for automatic judging. For all applications, however, one point
remains particularly important: the availability of sufficient and variate motion data data for
learning of the machine knowledge. It should therefore be emphasized that the first steps of
the information provision pipeline – collection of numeric motion data and augmentation of
the motion data – are essential and should not be taken easy, since they build the foundation
for any subsequent analysis task.

The two biggest issues the proposed platforms have to face under the current state of technol-
ogy are the provision of real-time information or feedback, as well as the correct handling and
attachment of the motion sensors by the athletes required for a future independent system
use. Whereas the former can be addressed by the establishment of a wireless data network
for data transmission at the ski jump hill (or any other sporting venue), the latter is subject to
the user. Consequently, possible sources of error should be held as small as possible. With
the ongoing process of hardware enhancement, sensors would ideally be smaller and easier
to use in future, such as for example by inclusion within the jump suit. I am convinced that
as soon as those issues are solved, the systems could be implemented to full function. Then,
they could even be marketed and brought into market by crowd funding or similar financial
concepts.
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11.1 Summary and Conclusion

In this thesis, I illustrated the development of augmented motion information systems from
wearable inertial sensor data for computer-assisted training and motion analysis. In contrast
to the common, general expression of motion feedback in sport sciences, I designed and
implemented my work under a broader, technological perspective. In concrete, this work
comprised the provision of any kind of motion information to a variate group of end-users.
This means that a system development is not only restricted to athletes and coaches, but
also included judges, spectators or any other person involved in the (public) execution of a
motion.

In both sports engineering and computer science, the awareness of the importance of CAT
and augmented motion information systems has risen. This also led to a higher interest
and effort for technological implementation. To address this research problem, various
signal processing and machine learning methods were implemented in this thesis. They
transformed the raw and sparse data obtained with inertial sensors into meaningful numeric
motion representation or intelligent machine motion knowledge. This artificial motion
knowledge can be used either additionally or as replacement for the internal, biological
motion knowledge of a human and herewith increase the possibilities and objectivity of
kinematic motion analysis. To summarize all algorithms and set them into relation to real
world problems, I furthermore discussed how to employ the newly determined motion
information in concrete applications to provide the desired system output to the user.

With the evolution of this thesis, I step-wise explained all stages that a general augmented
motion information system has to pass through before the provision of a final data output
(Figure 11.1). Those are (1) collection of numeric motion data, (2) augmentation of the
numeric motion data, (3) sense-making of the augmented motion data and (4) retrieval of
relevant motion information. Every step was illustrated in detail by the inertial capture data
collected for this thesis and the chosen sample applications.

The main part of this work was developed using an extensive motion capture data base of
ski jumping. As concrete application examples for the development of a functional motion
information system, I presented two very different type of information: the provision of
auditive feedback to athletes or patients in rehabilitation for support and acceleration of
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Figure 11.1: Recapitulation of the general design of the computer-based motion information
system introduced in this thesis with the most important developments for system input and
output highlighted in pink.

motor skill acquisition, and the provision of a style assessment and performance rating to
(ski jump) judges for an increase of objectivity in scoring systems (Figure 11.3). I believe both
of them to become very important applications in future augmented training scenarios and
in the world of competitive and professional sports.

While correct and diligent work is important in all phases to generate a reliable and meaning-
ful system output, the following points are particularly important for a general design of an
augmented motion information system. They have been extensively examined and discussed
with this work:

• The augmented numeric motion data has to be accurate and reliable, whereas sensor
data is often imposed by hardware induced noise and bias. To increase the accuracy of
a given data set, it might therefore be necessary to adapt the fundamental methods to
the characteristics of a given task.

• Usability is very important for the future utilization of an augmented motion infor-
mation system in sports: adaptation of the system methods for enhancement of the
data accuracy for example might either require expert knowledge of the user, or the
availability of further methodologies and strategies that can flexibly react to the system
circumstances without specific user knowledge. In this work, I particularly engaged my-
self in the latter and developed two methods that can contribute to the enhancement
of user-independent usability in future. One is a motion categorization system that
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annotates the drift potential of certain motion patterns and that can amongst other
be included in the estimation of sensor orientation in form of a two-step filter. The
other one is a magnetic bias compensation that reduces random disturbances of the
magnetic field data, and hence makes the inertial sensor data and their orientation
estimates more reliable and robust towards local properties. As a result, it is not nec-
essary to change computation settings within orientation estimation filters to tweak
the resulting output estimates. Furthermore, the sensors can be employed more freely
within any kind of sporting venues, such as ski jumping hills or snowboard half pipes,
without the need to perform complicated field measurements for the calibration of the
magnetic sensors.

• To make good use of the augmented motion data, it is necessary to define semantically
and numerically meaningful feature transformations. Data analysis showed that those
features might differ from one’s own semantic ideas that are put into the system devel-
opment. Consequently, the underlying motion data should also be investigated and
verified with respect to their numerical data representation. In this respect and when
suitable feature transformations are not known, it can help to investigate a large set of
features under methods of unsupervised feature selection. Furthermore, it is generally
recommendable to use features that can be universally applied and do not change their
information content under different motion styles or varying spatial conditions.

• Auditory feedback is known to be effective for the support of motor skill acquisition.
Experimental studies additionally showed that artificial movement acoustics based
on kinematic movement parameters can be decoded by naive listeners. Especially the
(dis)similarity of action structures was relevant for discrimination of different motion
patterns: the human brain allows for auditory pattern based action discrimination and
perceptual learning similar to visual biological motion perception. Acoustic kinematic
features can therefore be both based on permanent, continuous sound information
and directed auditory cues.

• Whereas auditive feedback is relying on internal motion knowledge built up by the user
over years of experience, the assessment of style and error is bound to the existence of
a newly learned intelligent machine knowledge. Ideally, this motion knowledge should
be of similar power than biological human motion knowledge and imitate neural struc-
tures while being insensitive to bias and misperception. Using data annotations based
on the official guidelines of a sport, it is possible to create intelligent machine knowl-
edge that can retrieve motion information from an incoming data stream of augmented
and transformed motion features. In this information retrieval and provision step, a
fundamental ground truth is required that can be generated from (averaged, robust)
human assessment if no other data is available.

• When using the style assessment of human judges as a ground truth data for the learn-
ing of artificial motion knowledge, one should be aware that the ground truth measure
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is subject to bias. Therefore, outliers that influence the outcome of the overall classifi-
cation accuracy can be present in the data. Ideally, judging based ground truth data is
therefore made robust by averaging the point scores awarded by multiple independent
judges.

• Assessing the quality and style of a motion performance is subject to different aspects
of a motion. In most cases, those aspects can be assigned to one of two fundamental
categories. Technical motion features that designate the biomechanical description
of a motion execution can generally be measured quantitatively and are commonly
known from kinesiology. Artistic motion features on the other hand are all those parts
of a motion that influence the impression of beauty and motor skill and that cannot be
quantified since they are subjective and perceived differently by every person. They are
also those determinants of a performance score that are more difficult to retrieve and
learn with neural network methodologies.

• For ski jumping, discrete motion features based on descriptive statistics (e.g. data mean,
standard deviation, skewness and kurtosis) are more significant than time-serial data
representations. Classification results indicated that the relevant motion information
that describes style errors is defined by fundamental, momentary signal properties.
These can be discovered well with basic analysis methods. The same is likely to hold for
other sports, as well: whereas recognition of different motion patterns is more effective
with time-serial features, error recognition might be better suited for the retrieval of
errors.

• Besides error assessment, intelligent motion knowledge can be used for the provision
of motion information in various different tasks (e.g. motion analysis). The methods
developed and presented in this work can be modified for many similar applications,
making use of either the internal biological motion knowledge, the newly learned
artificial motion knowledge or both. The content of the desired motion information
generally varies in dependence on the target user and his or her main field of interest
for analysis. Commonly, all applications are used in a self-controlled way, meaning that
the provision of feedback is regulated by the needs of the user himself.

Lastly want to recapitulate the innovations of this thesis (Figure 11.2), as well as the contribu-
tions to the existing state of art in research. They are the ...

...full-body motion capturing of ski jumping motions and the determination of the rele-
vant body kinematics, which led to the currently most extensive inertial ski jump data base
worldwide,

...development of methods to enhance the usability of body kinematic estimators for the
diverse group of future system users represented by an intelligent drift compensation using
elementary a-priori motion annotations for flexible use of orientation estimation filter with
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Figure 11.2: Recapitulation of the main innovations presented in this thesis.

sport motions and a magnetic compensation step for determination of body kinematics from
data captured at variate sporting venues,

...development and testing of real-time movement sonification system for motor learning
in rehabilitation,

...development of the system environment and methods for a kinematic feature based
motion rating system in subjective judging-based sports including a motion feature cate-
gorization for motion rating scenarios, the testing of feature representations for motion rating
by feature selection strategies and algorithms for error recognition and error assessment used
for activity recognition in real sport motions with error gravity determination.

To summarize, one can see that this work addresses many different research problem, as well
as scientific fields of research, including engineering (sensor hardware and data processing),
mathematics (attitude data representations), computer science (machine learning, data
visualization) and sport sciences (motor learning and multimodal integration of motor
feedback). I believe that the combination of methods and strategies connecting the various
fields of technology with each other and with the field of sport science is unique. While
the basic methods used in this thesis are well-known in computer science, they have never
been used on real sport motion data before: usually, machine learning methods are applied
to recognize and evaluate constrained motion patterns defined by daily life situations and
simulated in a laboratory setting for the implementation of the respective methods. Here,
on the other hand, I used sport motions collected in their natural environments. Athletes
were not asked to perform motions in a certain specific way to collect meaningful motion
data. Instead, performances were used as is and learning methods had to be adapted to the
obtained real data. In this regard, also various ways of problem solving were discovered and
examined in this thesis. As far as it is known, no other work has been presented in a similar
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form anywhere else – approaches to augmented motion feedback provision from sports
engineering or sport science research generally handle real motion data, but concentrated on
certain selected body parts, low level features, neural networks from wavelet and frequency
filters or pure analysis tasks only so far. Consequently, this thesis represents a valuable
source of information for the development and implementation of future augmented motion
information and feedback applications.
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Figure 11.3: Flowchart of the complete, developed motion information system with process-
ing methods and its final feedback output possibilities.
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11.2 Outlook and Future Work

I believe that with the presented basic, elementary guidelines on the creation of computer-
based motion information systems in the sports environment and the presented methods and
technologies for data processing and machine learning, this work can serve as a handbook
for future motion analysis tools. With the implementation and modification of conventional
computer science method for use in real sport motion data, a new level of computational
methods and data quality was provided that can considerably impact sport scientific research
and motion analysis. Contributing to unique ways of motion analysis by the provision of
enhanced motion information and wearable sensor based motion information, this work
is intended to lead the way towards new applications that support training, performance
improvement and talent recruiting in the future.

As the next step in the development of augmented motion information systems for training
and motion analysis, the following points could further enhance the power and applicability
of the present system. First, the currently existing methods for the determination of kinematic
parameters could be extended to use with additional sensor data (e.g. a laser tracking system).
Such increase in data input streams is for example reasonable for the FK pose estimation,
which is at the moment only expressed in relation to the root joint. In other words, transla-
tional motions of the whole athlete-sensor system can currently not be determined. Here,
the idea would be to introduce an additional method, so that the motion and displacement
of the whole athlete-sensor system can be determined as a complete moving system.

Second, it might be reasonable to test both the DTW and the SVM classifiers under different
basic settings, meaning a different kernel for the SVM and different step sizes and cost
measures for the DTW. Then, one could evaluate whether the classification results can be
improved under different method settings, and the functionality of the presented system
design eventually be demonstrated even better. As discussed before, it might furthermore be
reasonable to test further classification models, such as cluster methods, or methods that are
developed for time-serial data like the HMM.

Third, it could be useful to demonstrate the sample information types in more than one
application each. Respective ideas for implementation are presented in this thesis. Especially
for movement sonification (that was developed for rehabilitation), it will be reasonable
to illustrate the concept of audio clues with sports motion data sets. However, to prove
the positive effects of such auditive motion feedback, it would also be necessary to set
up empirical studies that can investigate eventual learning effects. This problem on the
other hand is subject to (sport) psychological investigations and not in the scope of the
presented work. A different case is the motion evaluation application, which can be executed
under the established framework without additional investigations. Therefore, I hope that
the system can be extended to a complete and universally useful evaluation program for
many judged-sports in near future. Ideally, this system implementation can then also assess
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performance under both technical and aesthetic aspects. Affected sample sports are certainly
broadly available – may it be gymnastics, trampolining, water diving, snowboarding or, as
most recently, boxing. In this context, I want to emphasize again that it is much easier to
numerically grasp the quality of a motion with regard to technical motion descriptors than
with regard to aesthetic impressions of a performance – a problem that also led to the current
controversy in box in the first hand. Therefore, the main focus of my current work was put on
the creation of methods to rate technical aspects of a motion. The development of methods
that can ’translate’ the aesthetic motion aspects of an artistic performance into numeric
criteria (e.g. in gymnastics or figure skating) constitutes the next step and might be subject to
further investigations after my PhD.

I am aware that the presented structural organization of the proposed style assessment
system has two specific limitation. For my final conclusion, I want to highlight them another
time: one is the bias within the collected judging scores that served as ground truth data, and
one is the relatively restricted number of data captures used for testing and training of the
intelligent machine knowledge.

As discussed before, a separation between different style criteria (as also the awarding of
point deductions for certain style errors) can be subject to individual perception. Ideally, the
system should therefore be tested under more objective ground truth data in the following.
For sports that have a smaller field of activity than ski jumping (e.g. trampolining), it could
theoretically be possible to capture motions with optical capture systems to search for and
analyze differences in the data. However, a reference annotation is still required to identify the
different style errors. Besides, sport motions are commonly not executed within sufficiently
small motion capture volumes – and the results of the ones that can be captured are generally
not based on subjective decision-making. Since consequently no other style evaluation
except human judging is available, it is recommended to use a larger number of judges that
simultaneously award point scores in the next experimentation. All scores could then be
averaged to a final ground truth more robust against outliers and individual perception,
which should also further increase the retrieval and classification results. Ideally, an even
bigger motion data base would be made available at the same time: although the collected
motion data base constitutes the largest known inertial full-body kinematic ski jump data
base so far, the number of data captures for the creation of artificial motion knowledge
could be even larger for future system use. In general machine learning applications, several
hundreds or thousands of sample data are used to build the system knowledge.

To make the system fully valid for universal use, it would be furthermore necessary to collect
additional data of different jumpers with varying skill levels. This would for example enable
the introduction a larger number of categories for performance quality assessment: given
the number of available motion data in the present motion data base, it was not reasonable
to build more than three performance quality groups (G, M and P). Furthermore, a larger
collection of ski jumps could serve to verify (or invalidate) the usefulness and accuracy of
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Chapter 11. Final Words

the developed numeric error assessment concept. This was not possible with the present
restricted number of input data. Under the scope and financial possibilities of this research,
it is however difficult to both plan, organize and generate such a huge data collection. I
therefore deem the presented jump collection as sufficient for the implementation and first
demonstration of the developed system pipeline.

As a last point, I want to state that the proposed platforms and interfaces for the provision of
information involve man-machine interactions. When designing interfaces for technology
support of humans, it is conventional to first validate the system in a beta version with a small
group of test users. In case a system should be realized for actual training or style assessment,
it is therefore reasonable to verify its effect and usability under real conditions in a feasibility
study soon. Shortcomings in design and usability can then be discovered and corrected
for implementation of the final user system. Before a final system could finally be brought
to market, it is furthermore reasonable to collect even more data for the creation of the
intelligent motion knowledge. This comprises additional data from both the same athletes
and different athletes including female jumpers, as well as several judges to increase the
robustness of the ground truth annotations. Under the developed learning concept from style
guidelines, is would furthermore be necessary to collect a full range of style errors: with the
current main ski jump data set, I could mainly acquire data for the style criteria A1-L4, while
the number of L5 errors in the data base turned out to be too small for the machine learning.
Outrun errors could not be captured even once. However, this collection of missing data also
brings the system to the end of technological possibilities. Additional error categories do
not constitute a problem for the underlying system methods, since the new style errors can
be handled in the same way as the existing ones. However, they constitute a problem from
an ethical side – an athlete cannot be simply asked to intentionally perform a certain error
(especially errors like fall) for the creation of sufficient learning data.

All in all, I believe that the innovative character of the machine learning pipeline for motion
evaluation is so fundamental that its further development can and will be of great interest for
many years to come in machine learning and sport engineering fields. I hope that this work
will inspire further research, promoting the implementation and introduction of augmented
motion information systems in sports. In particular, I hope that this work will contribute to
the establishment of new objective motion assessment measures, employed to support the
decision making and performance ranking in actual judging-based sports that are known to
be prone to bias and error.
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A Author Publications

I published the majority of all work presented in this thesis as lead author in either peer-
reviewed journal or peer-reviewed conference proceedings.

Journal Publications:

The thesis includes the recognition of five journal papers referred to by their Roman numerals.
The following two papers have been published or are accepted for publication as first author:

I Brock, H., Ohgi, Y. Intelligent Drift Reduction in Inertial Sensor Orientation Estimates
Using Elementary Motion Knowledge. SFC Journal. Vol.16 No.1. 2016. (Peer reviewed).

II Brock, H., Ohgi, Y. Development of an inertial motion capture system for kinematic
analysis of ski jumping. Proceedings of the Institution of Mechanical Engineers, Part P:
Journal of Sports Engineering and Technology, 2016. (Peer reviewed). In print

A third paper is currently under review:

III Brock, H., Ohgi, Y. System and Feature Engineering for Automated Style Error Recogni-
tion from Wearable Motion Sensor Data. Information 2016. (Peer reviewed).

Apart from the previous works, I have contributed to the following manuscripts:

IV Vinken, P.M., Kroeger, D., Fehse, U., Schmitz, G., Brock, H. and Effenberg, A.O. (2013).
Auditory Coding of Human Movement Kinematics. Multisensory Research, 26(6), 533−
552. (Peer reviewed).

V Helten, T., Brock, H., Müller, M. and Seidel H. (2011). Classification of trampoline jumps
using inertial sensors. Sports Engineering, 14(2), 155−164. (Peer reviewed).
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Appendix A. Author Publications

Division of work between authors: Each authors’ contribution at different stages of the
reported studies is given in the following. Name lists are sorted alphabetically by surname
and do not reflect any further weight in contribution.

Manuscript I
This manuscript describes the algorithmic work and experiments done to improve the orien-
tation estimates used for subsequent motion information provision methods. The study was
designed and planned by Brock. Data was collected by Brock and analyzed and reported by
Brock with advice from Ohgi.

Manuscript II
This manuscript describes the development of a mobile system for the computer-based
collection and processing of ski jumping motions free of error or magnetic bias. Brock and
Ohgi planned and executed the main data acquisition. Data analysis was performed by Brock
with advice from Ohgi, and results reported by Brock.

Manuscript III
This manuscript illustrates the implemented system for assessment of motion style in ski
jumping and presents results of its fundamental error classification. Brock and Ohgi planned
and executed the data acquisition of the used ski jumping data. Data analysis and feature
evaluation was performed by Brock with advice from Ohgi, and results reported by Brock.

Manuscript IV
The study describes the results of an empirical study on the effect of the developed movement
sonification system. The study details were planned by Brock, Effenberg, Kröger, Schmitz and
Vinken. The sonification system was implemented by Brock, and sound mappings created
by Brock, Effenberg, Kröger, Schmitz and Vinken. Data acquisition was executed by Kröger,
Schmitz and Vinken. Data was analyzed by Fehse, Schmitz and Vinken and reported by
Vinken under advice from Effenberg and Schmitz.

Manuscript V
The manuscript is based on previous research on motion classification. The study details
were planned by Brock, Helten and Müller. Data was collected by Brock and Helten. Brock
and Helten analyzed the data with supervision from Müller and Seidel. Helten reported the
results under advise of Müller and Seidel.
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Conference Publications

I have given five oral and one poster presentation at the following conferences:

• Brock, H., Schmitz, G., Baumann, J. and Effenberg, A.O. If motion sounds: Movement
sonification based on inertial motion data. 9th Conference of the International Sports
Engineering Association (ISEA), Boston, USA, 2012. (Peer reviewed).

• Brock, H., Ohgi Y. Evaluating Orientation Estimation Methods from Inertial Sensor Data
for Sports Motion Analysis. International Association of Computer Science in Sports,
IACSS Conference 2014, Darwin, NT, Australia, 2014.

• Brock, H., Ohgi Y. Estimating kinematics in ski jumping using inertial sensors. Interna-
tional Society of Skiing Safety, ISSS Congress 2015, San Vito, Italy, 2015.

• Brock, H., Ohgi Y. Towards Better Measurability - IMU-Based Feature Extractors For
Motion Performance Evaluation. 10th International Symposium on Computer Science
in Sport (ISCSS), Loughborough, UK, (2015). (Peer reviewed).

• Brock, H., Ohgi Y. Development of an automated motion evaluation system from
wearable sensor devices for ski jumping. 11th International Conference on Sports
Engineering (ISEA), Delft, Netherlands, July, 2016. (Peer reviewed).

• Brock, H., Ohgi Y. A Visual Feedback System for Full-Body Motion Analysis from Inertial
Sensor Data. ASTN-Q Conference, Brisbane, Australia, August, 2016. (Peer reviewed).

I furthermore expect to present my work at one more conference this autumn:

• Brock, H., Ohgi Y. An Intelligent System for Motor Style Assessment and Training from
Inertial Sensor Data in Intermediate Level Ski Jumping. 4th International Congress
on Sport Sciences Research and Technology Support, icSports 2016. Porto, Portugal,
November, 2016. (Peer reviewed).

Awards

At the 11th International Conference on Sports Engineering (ISEA), Delft, Netherlands, I was
awarded the Adidas Best Student Paper Award for my work on the automatic style assessment
of ski jumping motion1).

1Image courtesy (pictures next page): Institute of Sports Engineering, Delft Technical University
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B System Promotion

In the following, I give information on all activities made in the course of my research work
to promote the developed technology and systems outside of academic conferences and
societies.

Sonification System:

In summer 2011, the real-time movement sonification system has been presented at the
German science fair ’Ideen Expo’ in Hanover, Lower Saxony (Figure B.11). The ’Ideen Expo’
is a biannual educative fair for children and young adults established to present innovative
systems and applications for the promotion of science and technology and the recruitment
of new talent. It is held at the Hanover fair, venue of the 2000 World Exposition, and attracted
more than 310.000 visitors in 2011.

Figure B.1: Presentation of the real-time sonification system at the ’Ideen Expo’ science fair.

Besides, I have programmed a homepage for the movement sciences working group at Leibniz
University, Hanover, to present the latest research outcomes on the provision of auditory
feedback to the public in a suitable form (Figure B.2)2. The homepage was developed using
WordPress [Wor], which offers high usability with a intuitive back end administration tool.
The style of the homepage was then adapted on an individual basis using CSS-style sheets
(e.g. background color, image slider and fontsize). It conformed to the most recent principles
of fundamental internet security available in 2011.

1Image courtesy: Institute of Sport Science, Leibniz University Hanover
2http://sonification-online.com/en/, Accessed 2016-10-06
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Appendix B. System Promotion

Figure B.2: Screen shot of the homepage developed for the movement sciences group at the
Leibniz University Hanover for promotion of auditory feedback system research.
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Ski Jump Measurement and Evaluation System:

I consider my research as unique and inspiring for similar system implementations in future.
Therefore, I strove to present the work to a broader audience and larger platforms outside
the field of sports engineering, such as for example the ’Wissenschaftlicher Gesprächskreis’
(Scientific Discussion Group) of the German Academic Exchange Service (DAAD) and various
research institutes all over the world (Table B.1).

Table B.1: Summary of all lectures and talks given during the PhD.

Date Location Description
2014/06/04 Tokyo, Japan Invited talk. ’Wissenschaftlicher Gesprächskreis’ (Sci-

entific Discussion Group), DAAD
Title: Menschliche Bewegung messen und verstehen -
wie der Computer zum Sportzuschauer wird (German)

2016/07/07 Stuttgart, Germany Invited lecture. University of Stuttgart. Faculty of Com-
puter Science, Electrical Engineering and Information
Technology – Department of Computer Science – In-
stitute for Visualization and Interactive Systems (VIS),
Socio-Cognitive Systems Group
Title: Development of Signal Processing and Machine
Learning Methods for Inertial Sensor Based Motion
Feedback Systems

2016/08/05 Brisbane, Australia Invited lecture. Griffith University. School of Engineer-
ing – Department of Electrical and Electronic Engi-
neering – Sports and Biomedical Engineering Labora-
tories (SABEL labs), Queensland Academy of Sport
Title: Towards Intelligent Motion Feedback Systems
-The Use of Information Retrieval Methods in Sports

2016/08/11 Darwin, Australia Invited lecture. Charles-Darwin University. Psycholog-
ical and Clinical Sciences – Department of Exercise
and Sport Science
Title: Towards Intelligent Motion Feedback Systems
-The Use of Information Retrieval Methods in Sports

2016/09/01 Rennes, France Invited lecture. INRIA Research Institute Bretagne-
Atlantic. MimeTIC Group (Analysis-Synthesis Ap-
proach for Virtual Human Simulation)
Title: Towards Intelligent Motion Information Systems
– Applying Information Retrieval to Sport Motion Data

2016/09/06 Bordeaux, France Invited lecture. INRIA Research Institute South-West.
Potioc Group (Popular Interaction)
Title: Developing Intelligent Motion Information Sys-
tems for Performance Support in Sports
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Besides, I submitted the second part of my PhD research as a project to the 2016 Student
Project Competition of the International Sports Engineering Association (ISEA). This com-
petition was open to undergraduate, masters, and PhD students of years 2015 and 2016 at any
institution of higher education in the world, who had undertaken an individual project on a
sports engineering topic. The judging of the submissions will be carried out by the members
of the executive committee of the ISEA this fall. Judging criteria will be based on the origi-
nality of the project, the quality of the work and its presentation. Submission deadline was
September 1st , and results of the screening are expected to be announced in early December.
Comprising all my thesis work concerned with the retrieval of motion information (to be
found in Part III and Part IV), my contribution had the project title ’Engineering Intelligent
Wearable Motion Information Systems with Information Retrieval Methods – A Study Under
the Example of Ski Jumping’. A large part of the discussed information was based on the
performance evaluation system described in Chapter 9, which – in still relatively fundamental
form – was already awarded the Best Student Paper Award at the last ISEA conference in Delft,
Netherlands. However, the system was presented as a sample application within the larger
task of developing intelligent motion information systems.

Falling Walls Lab Tokyo 2016

Challenging was another public presentation which I gave at the Falling Walls Lab Tokyo at
August 29, 2016. The Falling Walls Lab is a speech contest that offers an interdisciplinary
forum for aspiring scientists and professionals from around the world to present their work.
Official information3 describes the Falling Walls Lab as follows:

The Falling Walls Lab is part of the annual, internationally renowned, conference
for breakthroughs in science and society, the Falling Walls Conference. With the
slogan “Share Your Idea!” the Falling Walls Lab offers hundreds emerging talents,
entrepreneurs and innovators a stage to pitch their research work, initiatives
or business models to their peers and a distinguished jury from academia and
business.

In the course of the year, international Falling Walls Labs are organized by aca-
demic institutions throughout the world. The winners of each international Lab
travel to the Falling Walls Lab Finale in Berlin, which takes place every year in
November. At the Berlin Lab, 100 innovators receive the opportunity to present
their work in front of a distinguished jury and attend the Falling Walls Conference
the following day where they meet the world’s top scientists. The three winners of
the Berlin Lab will get the chance to present their ideas once more on the grand
stage of the Falling Walls Conference to an international audience.

The intention of the event is to offer a platform for work and ideas of young researchers

3http://falling-walls.com/lab/faq1
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dedicated to innovation and new ideas. As the name suggests, a presentation at the Falling
Walls Lab should discuss a currently existing wall (= a research problem), and an approach or
idea on how to break down this wall. Coherently, the title of every presentation starts with
’Breaking the Wall of ...’ and gives a sketch on the idea within 3 minutes. Such so-called
’elevator pitch’ is a challenging restriction, but also emphasizes what is most essential about
the idea: What it is, how it works and what it can be used for.

2016 was the first time a local sub-event of the Falling Walls Lab was launched in Tokyo. The
contest was co-organized by EURAXESS Japan (pan-European initiative providing support
services to European researchers located outside of Europe and researchers wishing to pursue
their research careers in Europe) and the German Research and Innovation Forum Tokyo.
A preselection of the participants was made on the base of a short submitted abstract in
early August, leading to 16 presenters on the actual competition day (out of more than
30 applications). The short abstract and motivation that I submitted for application of
participation are:

Issue: In many sports, the evaluation of motion performance quality is based on subjective
decision by judges. To restrict bias, motion aesthetics should be translated into objective,
computational measures.
Idea: Using wearable motion sensors, artificial machine knowledge on relevant motion
aesthetics is learned. New performance data streams are then assessed and ranked by the
learned motion knowledge.
One-line description: Fair play with modern technologies and algorithms.
Statement of motivation: Having been a competitive athlete, I know how bad it feels to
become second in a competition where you (believe to) have been best. With ubiquitous
motion sensing technologies, performances could soon be made comparable. Presenting my
work in broad public will drastically draw attention to my research efforts, which in the end
might alter traditional grading patterns and reanimate Olympic spirit.

Preparing my speech was a very interesting task which helped to rethink and rediscover my
own work: while the presentation time was very short, the core point of the research had to
be presented precisely and in a focused, yet entertaining way to the audience with various
and diverse backgrounds. I titled my presentation as ’Breaking the Wall of Computational
Motion Aesthetics’. Both my presentation style as well as my research topic got a lot of positive
feedback from the audience at the end of the event. The full presentation was uploaded on
Youtube by the responsible organizers of EURAXESS4.

4https://www.youtube.com/watch?v=PXjKp06io6U
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Homepage and Code Sharing

Establishing the fundamental framework and sensor data processing methods necessary
for the implementation of my information retrieval systems was a very tedious and time-
consuming task, which took me more than 2 years until completion and verification. Talking
with researchers and graduate students from other universities, I realized that many sport
engineers are in a similar situation, especially when working with sensor measurement data
from non-commercial systems.

To spread knowledge that I acquired within my PhD and to contribute to the sports engineer-
ing community, I therefore decided to make detailed information available to the public. For
this, I programmed my own personal homepage (Figure B.3)5. It is dedicated on the use of
wearable sensor data for motion information retrieval and contains simple, yet complete and
intuitive descriptions of my work. The content of the homepage is divided into three main
parts that contain essential explanations on the topics: motion sensor data collection, motion
sensor data processing and motion information retrieval from sensor data. The homepage
furthermore contains a link to a sample data base of ski jumps published under Creative
Commons license and a link to essential code written in Matlab and posted on Github under
GNU public license.

5http://motionsensorcomputing.com, Accessed 2016-10-06
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(a)

(b)

Figure B.3: Screen shots of the homepage developed for the promotion of my PhD work and
the spread of knowledge on motion sensor data processing.
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C Overview Ski Jump Data Base

A tabular overview on the captured data takes acquired during the main ski jumping experi-
ment (Section 4.3) can be found here. Available sensor data was marked as o, missing sensor
data as x. Data that was biased as a result of high landing impact at the ski is marked as yellow
shimmed x. C-NP and C-LS represent the availability of the calibration files for the static
normal pose (NP) and the rotational movement (LS).
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Filename S1 S2 S3 S4 S5 S6 S7 S8 S9 C_NP C_LS Quality Group Judge Length
25.07.
2507_A1_Shiraki_Take_01O O O O O O O O O O O 4 Test
2507_A1_Shiraki_Take_02O O O O O O O O O O O 5 Test
2507_A1_Shiraki_Take_03O O X O O O O O O O O
2507_A1_Shiraki_Take_04O O O O O O O O O O O 4 Test
2507_A1_Shiraki_Take_05O O O O X O O O O O O
2507_A1_Shiraki_Take_06O O O O O O O O O O O 4 Test

2507_A2_Igarashi_Take_01O O O O O O O O O O O 5 Test
2507_A2_Igarashi_Take_02O O O O O O O O O O O 4 Ski 2 Test
2507_A2_Igarashi_Take_03O O O O O O O O O O O 5 Ski 2 Test
2507_A2_Igarashi_Take_04O O O O O O O O O O O 5 Ski 3 Test
2507_A2_Igarashi_Take_05O O O O O O O O O O O 5 Test

2507_A3_Sato_Take_01O O O O O O O O O O X 4 Test
2507_A3_Sato_Take_02O O O O O O O O x O X
2507_A3_Sato_Take_03O O O O O O O O x O X
2507_A3_Sato_Take_04O O O O O O O O x O X
2507_A3_Sato_Take_05O O O O O O O O x O X
2507_A3_Sato_Take_06O O O O O O X O x O X

26.07.
AM
2607_A1_Shiraki_Take_01O O O O O O O O O O O 4 Test
2607_A1_Shiraki_Take_02O O O O O O O O O O O 4 Training x
2607_A1_Shiraki_Take_03O O O O O O O O O O O 3 Test x
2607_A1_Shiraki_Take_04O O O O O O O O O O O 4 Training x
2607_A1_Shiraki_Take_05O O O O O O O O O O O 4 Training x
2607_A1_Shiraki_Take_06O O O O O O O O O O O 4 Test x

2607_A2_Igarashi_Take_01O O O O O O O O O O O 2 Test
2607_A2_Igarashi_Take_02O O O O X O O O O O O x
2607_A2_Igarashi_Take_03O O O O O O O O O O O 2 Training x
2607_A2_Igarashi_Take_04O O O O X O O O O O O x
2607_A2_Igarashi_Take_05O O O O O O O O O O O 2 Training x
2607_A2_Igarashi_Take_06O O O O O O O O O O O 1 Training x

2607_A3_Sato_Take_01O O O O O X O O O O O
2607_A3_Sato_Take_02O O O O O O O O O O O 4 Training x
2607_A3_Sato_Take_03O O O O O O O O O O O 5 Test x
2607_A3_Sato_Take_04O O O O O O O O O O O 5 Training x
2607_A3_Sato_Take_05X X X X X X X X X O O x
2607_A3_Sato_Take_06O O O O O O O O O O O 3 Test x

PM
2607_A1_Shiraki_Take_02O O O O O O O O O O O 4 Test
2607_A1_Shiraki_Take_03O O O O O O O O O O O 5 Training x
2607_A1_Shiraki_Take_04X O O O O O O O O O O
2607_A1_Shiraki_Take_05O O O O O O O O O O O 4 Training x
2607_A1_Shiraki_Take_06O O O O O O O O O O O 4 Test
2607_A1_Shiraki_Take_07O O O O O O O O O O O 4 Training x

2607_A2_Igarashi_Take_02O O O O O O O X O O O
2607_A2_Igarashi_Take_03O O O O O O O X O O O x
2607_A2_Igarashi_Take_04O O O O O O O X O O O
2607_A2_Igarashi_Take_05O O O O O O O X O O O x
2607_A2_Igarashi_Take_06O O O O O O O X O O O
2607_A2_Igarashi_Take_07O O O O O O O X O O O x

2607_A3_Sato_Take_02O O O O O O O O O O O 4 Test
2607_A3_Sato_Take_03O O O O O O O O O O O 4 Training x
2607_A3_Sato_Take_04O O O O X O O O O O O
2607_A3_Sato_Take_05O O O O O O O O O O O 5 Training x
2607_A3_Sato_Take_06O O O O O O O O O O O 5 Test
2607_A3_Sato_Take_07O O O O O O O O O O O 5 Training x



27.07.
AM
2707_A1_Shiraki_Take_01O O O O O X O O O X X x
2707_A1_Shiraki_Take_02O O O O X O O O O X X x
2707_A1_Shiraki_Take_03O O O O O O O O O X X x
2707_A1_Shiraki_Take_04O O O O O O O O O X X x
2707_A1_Shiraki_Take_05O O O O O O O O O X X x
2707_A1_Shiraki_Take_06O O O O O O O O O X X x
2707_A1_Shiraki_Take_07O O O O X O O O O X X x

2707_A2_Igarashi_Take_01O O O O O O O O O X O 4 Training x
2707_A2_Igarashi_Take_02O O O O O O O O O X O 2 Test x
2707_A2_Igarashi_Take_03O O O O O O O O O X O 2 Test x
2707_A2_Igarashi_Take_04X X X X X O X X X X O x
2707_A2_Igarashi_Take_05O O O O O O O O X X O x
2707_A2_Igarashi_Take_06O X X X X X X X X X O x
2707_A2_Igarashi_Take_07O O O O O O O O X X O x

2707_A3_Sato_Take_01O O O O O O O O O O X 3 Test x
2707_A3_Sato_Take_02O O O O O O O O O O X 4 Training x
2707_A3_Sato_Take_03O O O O O O O O O O X 4 Test x
2707_A3_Sato_Take_04O O O O O O O O O O X 5 Training x
2707_A3_Sato_Take_05O O O O O O X O O O X x
2707_A3_Sato_Take_06O O O O O O O O O O X 4 Training x
2707_A3_Sato_Take_07X O X X X X X X X O X x

PM
2707_A1_Shiraki_Take_01O O O O O O O O O O O 4 Training x
2707_A1_Shiraki_Take_02O O O O O O O O O O O 4 Test x
2707_A1_Shiraki_Take_03O X X X O X X X X O O x
2707_A1_Shiraki_Take_04O O O O O O O O O O O 3 x
2707_A1_Shiraki_Take_05O O O O O O O O O O O 3

2707_A2_Igarashi_Take_01O X X X X X X X X O O x
2707_A2_Igarashi_Take_02O O O O O O O O O O O 5 Training x
2707_A2_Igarashi_Take_03O O O O O O O O O O O 3 Test x
2707_A2_Igarashi_Take_04O O O O O X O O O O O x
2707_A2_Igarashi_Take_05O O O O O O O O X O O

2707_A3_Sato_Take_01O O O O O O O O O O O 4 Training x
2707_A3_Sato_Take_02O O O O O O O O O O O 5 Training x
2707_A3_Sato_Take_03O O O O O O O O O O O 4 Test



Filename S1 S2 S3 S4 S5 S6 S7 S8 S9 C_NP C_LS Quality Group Judge Length
17.08

1708_A1_Shiraki_Take_01X X X X X X X X X O O
1708_A1_Shiraki_Take_02X X X X X X X X X O O
1708_A1_Shiraki_Take_03X X X X X X X X X O O

1708_A3_Sato_Take_01X O O O O O O O O O O
1708_A3_Sato_Take_02O O O O O O O O O O O 3 Test

1708_A4_Seino_Take_01O O O O O O O O O O O 3 Test

18.08
AM
1808_A1_Shiraki_Take_01O O O X O O O X X O O x 87
1808_A1_Shiraki_Take_02O O O O O O X O O O O x 82
1808_A1_Shiraki_Take_03O O O O O O O O O O O 4 Training x 82.5
1808_A1_Shiraki_Take_04O O O O O O O O O O O 4 Test x 86.5
1808_A1_Shiraki_Take_05X X X X X X X X X O O x 79
1808_A1_Shiraki_Take_06O O O O O O O O O O O 5 Training x 81
1808_A1_Shiraki_Take_07O O O O O O O O O O O 5 Test x 82
1808_A1_Shiraki_Take_08O O O O O O O O O O O 4 Training x 85
1808_A1_Shiraki_Take_09O O O O O O O X O O O 87

1808_A3_Sato_Take_01X X X X X X X X X O O
1808_A3_Sato_Take_02X O O O O O O O X O O x 87.5
1808_A3_Sato_Take_03O O O O O O O O x O O x 90.5
1808_A3_Sato_Take_04O O O O O O O O x O O x 85
1808_A3_Sato_Take_05O O O O O O O O x O O x 83

 
1808_A4_Seino_Take_01O O O O O O O O O O O 4 Test
1808_A4_Seino_Take_02O O O O O O O O O O O 5 Training x 86
1808_A4_Seino_Take_03O O O O O O O O O O O 5 Training x 81
1808_A4_Seino_Take_04O O O O O O O O O O O 5 Test x 84
1808_A4_Seino_Take_05O O O O O O O O O O O 5 Training x 84
1808_A4_Seino_Take_06O O O O X O O O O O O x 82
1808_A4_Seino_Take_07O O O O O X O O O O O x 89
1808_A4_Seino_Take_08O O O O O X O O O O O x 86.5
1808_A4_Seino_Take_09O O O X O O O X X O O x 88.5

PM
1808_A1_Shiraki_Take_01O O O O O O O O O O O 5 Training x 81
1808_A1_Shiraki_Take_02O O O O O O O O O O O 5 Training x 89
1808_A1_Shiraki_Take_03X X X X X O X X X O O x 73
1808_A1_Shiraki_Take_04O O O O O O O O O O O 4 Test x 87
1808_A1_Shiraki_Take_05O O O O O O O O O O O 4 Training x 87
1808_A1_Shiraki_Take_06O O O O O O O O O O O 5 Test x 83
1808_A1_Shiraki_Take_07O O X O O O O O O O O x 85
1808_A1_Shiraki_Take_08X O X X O O O O O O O x 86

1808_A2_Igarashi_Take_01O O O O O O O O O O O 4 Training x 75
1808_A2_Igarashi_Take_02O O O O O X O O O O O x 69
1808_A2_Igarashi_Take_03O O O O O O X X O O O x 75
1808_A2_Igarashi_Take_04O O O O O O O O O O O 5 Training x 75
1808_A2_Igarashi_Take_05O O O O O O O O O O O 4 Test x 73.5
1808_A2_Igarashi_Take_06O O O O O O O O O O O 4 Training x 75
1808_A2_Igarashi_Take_07O O O O O O O O O O O 3 x
1808_A2_Igarashi_Take_08O O O O O O O O O O O 4 Test x 74

1808_A4_Seino_Take_01O O O O O O O O O O O 4 Training x 88
1808_A4_Seino_Take_02O O O O O O O O O O O 5 Test x 89
1808_A4_Seino_Take_03O O O O O O O O O O O 5 Training x 86
1808_A4_Seino_Take_04O O O O O O O O O O O 5 Training x 88
1808_A4_Seino_Take_05O O O O O O O O O O O 5 Test x 84
1808_A4_Seino_Take_06O O O O O O O X O O O x
1808_A4_Seino_Take_07O O O O O O X X O O O x 91
1808_A4_Seino_Take_08O O O O O X X X O O O x 91



19.08
AM
1908_A2_Igarashi_Take_01O O O O O O O O O O O 4 Training x 71.5
1908_A2_Igarashi_Take_02O O O O O O O O O O O 5 Test x 67
1908_A2_Igarashi_Take_03O O O O O O O O O O O 5 Training x 72
1908_A2_Igarashi_Take_04O O O O O O O O O O O 4 Training x 72.5
1908_A2_Igarashi_Take_05O O O O O O O O O O O 4 Test x 74
1908_A2_Igarashi_Take_06O O O O X O O O O O O x 71
1908_A2_Igarashi_Take_07O O O O X O X O X O O x 73
1908_A2_Igarashi_Take_08O O O O O X X O O O O x 71

1908_A4_Seino_Take_01O O O O O O O O O O O 5 Training x 81
1908_A4_Seino_Take_02O O O O O O O X O O O x 87
1908_A4_Seino_Take_03O O O O O O X O O O O x 87
1908_A4_Seino_Take_04O O O O O O O O O O O 5 Training x 81
1908_A4_Seino_Take_05O O O O X O O O O O O x 84
1908_A4_Seino_Take_06O O O O O O O O O O O 5 Training x 88
1908_A4_Seino_Take_07O O O O O O O O O O O 5 Test x 86
1908_A4_Seino_Take_08O O O O O O O O X O O x 84

1908_A3_Sato_Take_01O O O O O O O O O O O 4 Training x 82.5
1908_A3_Sato_Take_02O O O O O O O O x O O x 86
1908_A3_Sato_Take_03O O O O O O O O x O O x 82
1908_A3_Sato_Take_04O O O X O O O O x O O x 77
1908_A3_Sato_Take_05O O O O O O O O x O O x 82.5
1908_A3_Sato_Take_06X O O O O O O O x O O x 79
1908_A3_Sato_Take_07O O O O O O O O x O O x 88

PM
1908_A1_Shiraki_Take_01O O O O O O O O O O O 4 Test x 83
1908_A1_Shiraki_Take_02O O O O O O O O O O O 4 Training x 85
1908_A1_Shiraki_Take_03O O O O O O O O O O O 4 Test x 87
1908_A1_Shiraki_Take_04O O O O O O O O O O O 4 Training x 86
1908_A1_Shiraki_Take_05O O O O O O O O O O O 4 Training x 88
1908_A1_Shiraki_Take_06O O O O O O O O O O O 4 Test x 81.5
1908_A1_Shiraki_Take_07O O O O O O O O O O O 4 Training x 87.5

1908_A4_Seino_Take_01O O O O O O O X O O O x 78
1908_A4_Seino_Take_02O O O O O O O O X O O x 86
1908_A4_Seino_Take_03O O O O O O O O X O O x 89
1908_A4_Seino_Take_04O O O O O O O O X O O x 93.5
1908_A4_Seino_Take_05O O O O O O O O X O O x 89
1908_A4_Seino_Take_06O O O O O O O O X O O x 81.5
1908_A4_Seino_Take_07O O O O O O O O X O O x 83.5

1908_A3_Sato_Take_01O O O O O O O O O O O 4 Training x 80
1908_A3_Sato_Take_02O O O O O O O O O O O 4 Training x 86
1908_A3_Sato_Take_03O O O O O O O O O O O 4 Test x 87
1908_A3_Sato_Take_04O O O O O O O O O O O 5 Training x 86.5
1908_A3_Sato_Take_05O O O O O O O O O O O 5 Test x 90
1908_A3_Sato_Take_06O O O O O O O O O O O 5 Training x 87
1908_A3_Sato_Take_07O O O O O O O O O O O 5 Training x 75

20.08
2008_A2_Igarashi_Take_01X X X X X X X X X O O x 88
2008_A2_Igarashi_Take_02X X X X X X X X X O O x 70
2008_A2_Igarashi_Take_03O O O O O O O O O O O 4 Training x 67.5
2008_A2_Igarashi_Take_04O O O O O O O O O O O 4 Test

2008_A4_Seino_Take_01O O X O O O O O O O O x 78
2008_A4_Seino_Take_02O O O O O O O O O O O 4 Training x 86.5
2008_A4_Seino_Take_03O O O O O O O O O O O 4 Test x 85

2008_A3_Sato_Take_01O O O O O O O O O O O 4 Training x 80
2008_A3_Sato_Take_02O O O X O O O O O O O x 84
2008_A3_Sato_Take_03O O O O O O O O O O O 4 Training x 82





D Judge Score Sheets

In the following, I want to show some sample scans of the judge score sheets collected during
the ski jumping experiments (Section 4.3).
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