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Abstract
The diaphragm is driven by phrenic motoneurons that are located in the cervical spinal cord. Although the anatomical loca‑
tion of the phrenic nucleus and the function of phrenic motoneurons at a single cellular level have been extensively analyzed, 
the spatiotemporal dynamics of phrenic motoneuron group activity have not been fully elucidated. In the present study, we 
analyzed the functional and structural characteristics of respiratory neuron population in the cervical spinal cord at the level 
of the phrenic nucleus by voltage imaging, together with histological analysis of neuronal and astrocytic distribution in 
the cervical spinal cord. We found spatially distinct two cellular populations that exhibited synchronized inspiratory activ‑
ity on the transversely cut plane at C4–C5 levels and on the ventral surface of the mid cervical spinal cord in the isolated 
brainstem–spinal cord preparation of the neonatal rat. Inspiratory activity of one group emerged in the central portion of the 
ventral horn that corresponded to the central motor column, and the other appeared in the medial portion of the ventral horn 
that corresponded to the medial motor column. We identified by retrogradely labeling study that the anatomical distribu‑
tions of phrenic and scalene motoneurons coincided with optically detected central and medial motor regions, respectively. 
Furthermore, we anatomically demonstrated closely located features of putative motoneurons, interneurons and astrocytes 
in these regions. Collectively, we report that phrenic and scalene motoneuron populations show synchronized inspiratory 
activities with distinct anatomical locations in the mid cervical spinal cord.

Keywords  Astrocyte · Cervical spinal cord · Interneuron · Phrenic nucleus · Phrenic motoneuron · Respiratory control · 
Scalene motoneuron · Voltage imaging

Introduction

The diaphragm is the principal inspiratory pump muscle 
that is essential to maintain adequate ventilation in mam‑
mals, and its dysfunction elicits respiratory failure (Poole 

et al. 1997). It is innervated by the phrenic nerves, and the 
anatomical localization of the phrenic motoneuron pool in 
the cervical spinal cord has been investigated in various ani‑
mal species (Keswani and Hollinshead 1955; Mitchell and 
Warwick 1956; Rao et al. 1972; Ullah 1978; Webber et al. 
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1979; Kuzuhara and Chou 1980; Rikard-Bell and Bystrzy‑
cka 1980; Goshgarian and Rafols 1981; Johnson and Get‑
ting 1988; Gordon and Richmond 1990) and in humans 
(Elliott 1942; Keswani and Hollinshead 1955; Hollinshead 
and Keswani 1956; Routal and Pal 1999). In addition, the 
somatic and dendritic morphology of phrenic motoneurons 
has been extensively investigated (Takahashi et al. 1980; 
Goshgarian and Rafols 1984; Rose et al. 1984; Takahashi 
and Ninomiya 1985; Furicchia and Goshgarian 1987; Ander‑
son et al. 1988; Johnson and Getting 1988; Cameron et al. 
1990, 1991; Lindsay et al. 1991; Monteau and Hilaire 1991; 
Torikai et al. 1996; Allan and Greer 1997; Prakash et al. 
2000; Song et al. 2000; Okada et al. 2010; Lane 2011). Fur‑
thermore, electrophysiological properties of phrenic moto‑
neurons have been investigated at a cellular level (Gill and 
Kuno 1963a, b; Berger 1979; St John and Bartlett 1985; 
Smith et al. 1988; Liu and Feldman 1992; Martin-Caraballo 
and Greer 1999, 2000, 2001; Cameron and Nunez-Abades 
2000; Lee and Fuller 2011). Despite the abundance of the 
research on phrenic motoneurons, most studies are either 
purely anatomical or physiological at a single cellular level.

In the phrenic motoneuron pool, it is expected that not 
only motoneurons, but also interneurons play important 
roles in generation of inspiratory motor output (Bellingham 
and Lipski 1990), as in the locomotor central pattern genera‑
tor of the lumbar spinal cord (Butt et al. 2002). Understand‑
ing the functional anatomy of the phrenic motoneuron pool 
is of significance not only in understanding the physiologi‑
cal function of phrenic motoneurons and their responses 
to chemical stimuli (e.g., to CO2/pH changes), but also for 
medical purposes. For example, precise knowledge of func‑
tional anatomy of the phrenic motoneurons is necessary for 
the exact diagnosis and planning of surgery of various dis‑
eases and injuries of the cervical spinal cord (Warren and 
Alilain 2014).

It has been elucidated that not only neurons, but astro‑
cytes are actively involved in the formation of motor output 
in various regions of the central nervous system (Okada 
et al. 2012; Christensen et al. 2013). Furthermore, it has 
been recently clarified that intraspinal transplantation of 
human iPS cell-derived astrocytes preserve respiratory func‑
tion after cervical spinal cord injury in rats and mice (Li 
et al. 2015). We also reported the importance of astrocytes 
in therapy of amyotrophic lateral sclerosis model mice by 
intraspinal transplantation of human iPS cell-derived glial-
rich neural progenitors (Kondo et al. 2014). These reports 
suggest the existence of unexplored important significance 
of neuron–astrocyte interaction in the maintenance and 
recovery of motor function in the spinal cord.

Therefore, in the present study, we conducted detailed 
investigation of the spatiotemporal characteristics of 
inspiration-related neuronal activities and their responses 
to CO2/pH changes, generated in and around the phrenic 

motoneuron pool, by imaging with a fast-responding volt‑
age-sensitive dye (voltage imaging) (Onimaru and Homma 
2003; Yoshida et al. 2003; Fukuda et al. 2006; Okada et al. 
2007; Oku et al. 2007, 2008; Aoyama et al. 2011; Koshiya 
et al. 2014; Iizuka et al. 2016). We also conducted detailed 
histological examination focusing on not only motoneu‑
rons, but interneurons and astrocytes in and around the 
phrenic nucleus. Furthermore, since the scalene muscle 
is an important accessory inspiratory muscle (Campbell 
1955; Sant’ambrogio and Camporesi 1973; De Troyer and 
Estenne 1984; Fournier and Lewis 1996; Saboisky et al. 
2007), innervated by branches of the cervical ventral rami 
(Sakamoto 2012), we presumed that scalene motoneurons, 
located near the phrenic nucleus in the cervical spinal cord, 
might show inspiratory-related activity. Thus, we also inves‑
tigated the function and anatomy of the scalene motoneuron 
population, which, to the best of our knowledge, have not 
yet been documented.

Materials and methods

All experiments were carried out in accordance with the 
National Institutes of Health Guide for the Care and Use of 
Laboratory Animals (NIH Publications No. 80-23) revised 
1996 and with the Guiding Principles for the Care and Use 
of Animals of the Physiological Society of Japan. Experi‑
ments for voltage imaging and for anatomical analysis were 
approved by the Animal Experiment Ethics Committees of 
Keio University (Permit Number: 020062) and Shimane 
University (Permit Numbers: 03-34, H17-7, H19-53, H20-32 
and IZ25-14). The study was conducted in neonatal Wistar 
rats of either sex.

Brainstem–spinal cord preparation for voltage 
imaging

The brainstem and cervical spinal cord were isolated from 
the neonatal rat (n = 34 in total, 1–4 days) as previously 
described (Okada et al. 1993, 2005, 2007; Oku et al. 2007). 
Briefly, each animal was deeply anesthetized with diethyl 
ether, quickly decerebrated at the intercollicular level, and 
the brainstem and cervical spinal cord were together iso‑
lated. The cerebellum and brain structures rostral to the 
VIth cranial nerve root were removed, and the arachnoid 
membrane covering the medullary and spinal cord surface 
was carefully detached in a dissection chamber filled with 
mock cerebrospinal fluid (CSF; for contents, see below) 
that was equilibrated with 95% O2 and 5% CO2 at room 
temperature. For voltage imaging of the transversely cut 
surface, the cervical spinal cord was transected at the level 
between C4 and C5 segments with fine ophthalmologic 
scissors, and the preparation was incubated in oxygenated 



59Brain Structure and Function (2019) 224:57–72	

1 3

CSF containing a fast-responding voltage-sensitive dye 
di-4-ANEPPS (100–200 µg/ml; Invitrogen, Carlsbad, CA, 
USA) for 30 min (Yoshida et al. 2003; Fukuda et al. 2006; 
Aoyama et al. 2011; Koshiya et al. 2014). For imaging of 
the ventral surface, the spinal cord was transected at the C6 
level and stained with a fast-responding voltage-sensitive 
dye di-2-ANEPEQ (50–100 µg/ml, Invitrogen) for 40 min 
(Okada et al. 2007; Oku et al. 2007, 2008). After staining 
with a dye, the preparation was rinsed in CSF for 15 min to 
eliminate any excessive dye and transferred to a recording 
chamber (volume 2 ml). For imaging of the transversely cut 
surface of the spinal cord, the brainstem was placed horizon‑
tally with the ventral side facing up and fixed with miniature 
pins on the chamber floor that was made of silicon resin. The 
spinal cord was bent upwardly, approximately at the C1–C2 
level. A cubic block made of silicon resin was placed on the 
chamber floor to mechanically support the dorsal side of the 
spinal cord. Thus, transversely cut plane of the spinal cord 
was horizontally secured. For imaging of the ventral surface 
of the spinal cord, the entire preparation was horizontally 
placed with the ventral side up and fixed on the chamber 
floor. The recording chamber was continuously superfused 
with CSF at a rate of 3 ml/min. The temperature of the 
superfusate was controlled at 27 ± 1 °C. The control CSF 
contained (in mM): NaCl 124, KCl 5.0, CaCl2 2.4, MgSO4 
1.3, KH2PO4 1.2, NaHCO3 26, glucose 30; it was equili‑
brated with 95% O2 and 5% CO2 (pH 7.4). When testing the 
effect of CO2/pH changes, preparations were superfused first 
with hypocapnic CSF equilibrated with 98% O2 and 2% CO2 
(pH 7.8), which was subsequently replaced with hypercap‑
nic superfusate equilibrated with 92% O2 and 8% CO2 (pH 
7.2) (Okada et al. 1993, 2007; Kawai et al. 1996, 2006). 
Inspiratory-related neuronal output was monitored from the 
C4 ventral root (C4VR) with a glass suction electrode. The 
C4VR signal was amplified using a bioelectric amplifier 
(AB651J, Nihon Kohden, Tokyo, Japan), band-pass filtered 
(λ = 15 Hz–3 kHz), and integrated using a leaky integrator 
(EI601G, Nihon Kohden, Tokyo, Japan) with a time constant 
of 100 ms without rectification.

Voltage imaging

Depolarizing activity either on the transversely cut surface 
or the ventral surface of the spinal cord (between the C3 
and C5 levels) was recorded using an optical recording sys‑
tem MiCAM01 (BrainVision, Tokyo, Japan) (Yoshida et al. 
2003; Fukuda et al. 2006; Aoyama et al. 2011). Briefly, prep‑
arations in the recording chamber that was placed under an 
epifluorescent microscope (Eclipse E600FN, Nikon, Tokyo, 
Japan) equipped with a 4× objective lens (Plan Apo, NA 
0.2, Nikon) were illuminated through an excitation filter 
(λ = 535 ± 10 nm) with a tungsten–halogen lamp (250 W; 
Oriel, Stratford, CT, USA) driven by a stable DC power 

source (PD36-20; Kenwood, Tokyo, Japan). Epifluorescence 
through a barrier filter (long pass λ > 610 nm) was captured 
using a MiCAM01-CCD camera (spatial resolution 60 × 90 
pixels). The change in fluorescence intensity (ΔF) relative 
to the initial intensity of fluorescence (F0) in each pixel was 
recorded at a rate of one frame/5 ms (total 681 frames) or 
one frame/20 ms (total 170 frames). In recording of a total 
of 3.41 s in both frame rates, C4VR activity was used to 
“pre-trigger” the recording system so that signals of C4VR 
activity and optical imaging data were recorded starting at 
0.85 s before the onset of inspiratory C4VR activity.

The recording was repeated ten times at 10-s intervals, 
and the fluorescence signals were averaged across all repeti‑
tions. To normalize the difference in the amount of mem‑
brane-bound dye and illumination within the preparation, 
background fluorescence intensity at each pixel was divided 
by the maximal background fluorescence. Then the ratio of 
ΔF to the normalized background fluorescence intensity (F), 
i.e., the fractional change in fluorescence intensity (ΔF/F), 
was calculated at each pixel in each frame. If F was less than 
0.25, then ΔF/F was set to be zero. A negative ΔF/F cor‑
responds to membrane depolarization (Fukuda et al. 2006; 
Okada et al. 2007; Oku et al. 2007, 2008; Aoyama et al. 
2011; Koshiya et al. 2014).

Voltage imaging was initiated, after we confirmed that 
inspiratory C4VR activity was stabilized while superfused 
with control or hypocapnic CSF (normally in 20 min after 
placing the preparation in a recording chamber). In the anal‑
ysis of the effect of CO2/pH changes, voltage imaging was 
first conducted with hypocapnic CSF, and the superfusate 
was replaced with hypercapnic CSF. Voltage imaging with 
hypercapnic CSF was initiated in 5 min after superfusate 
replacement (Okada et al. 1993).

Statistical analysis

To quantitatively examine the effects of hypercapnia on 
inspiratory depolarizing activities in the central and medial 
regions (details of these two regions are described later), 
the peak amplitudes and areas under the depolarizing wave 
curves between 0.84 and 2.5 s after the onset of recording 
in the hypocapnic condition were compared with those in 
the hypercapnic condition by a paired t test. The signifi‑
cance level was set at p < 0.05. For this purpose, signals in 
voltage imaging were pre-processed as follows: (1) visual 
identification of central and medial motor regions, (2) spatial 
averaging (3 pixels × 3 pixels binning), (3) removal of linear 
trend, (4) detection of the peak of inspiratory depolarization 
between 0.84 and 2.5 s after the onset of recording, and (5) 
integration of depolarizing inspiratory signals between 0.84 
and 2.5 s after the onset of recording to obtain areas of depo‑
larizing optical signals. The mathematical processing was 
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performed using a software MATLAB (MathWorks, Natick, 
MA, USA). Data were presented as means ± SD.

Retrograde tracing of phrenic and scalene 
motoneurons

We examined the anatomical distributions of phrenic 
and scalene motoneurons in the cervical spinal cord by 
retrograde tracing with fluorescent carbocyanine dye, 
1,1′,dioctadecyl-3,3,3′,3-tetramethylindocarbocyanine 
perchlorate (DiI, Molecular Probes/Thermo Fisher Scien‑
tific, Eugene, OR, USA) (Ono et al. 1998). Application of 
DiI to the phrenic nerve (n = 17) or to the scalene muscle 
(n = 14) was made in diethyl ether anesthetized neonatal 
rats (1–2 days). To stain phrenic motoneurons, the proximal 
cut end of the right phrenic nerve was dipped in 10% DiI 
solution dissolved with dimethylformamide. To stain sca‑
lene motoneurons, three to five injections of DiI solution 
(0.05 µl/injection) were made into the right scalene muscle 
through a fine glass pipette attached to a 1.0 µl Hamilton 
microsyringe. After 24 h survival, the animals were deeply 
anesthetized with chloral hydrate (350 mg/kg), and fixed by 
transcardial perfusion with 5 ml of saline, followed by perfu‑
sion with 10 ml of 4% paraformaldehyde in 0.1 M phosphate 
buffer (PB, pH 7.3). The brainstems together with spinal 
cords were isolated, post-fixed overnight in 4% paraformal‑
dehyde in PB and then saturated with a cold solution of 20% 
sucrose in PB. Subsequently, spinal cords were cut serially 
into frontal or horizontal sections of 50 µm thicknesses on 
a freezing or vibrating microtome. Sections were mounted 
onto gelatinized slides, and observed under an epifluorescent 
microscope (Eclipse E-800, Nikon) as well as under a con‑
focal laser scanning microscope (FV300, Olympus, Tokyo, 
Japan).

Histological examination of cell marker 
distributions

The distribution of neurons, putative motoneurons and astro‑
cytes in the cervical spinal cord was examined. For this pur‑
pose we stained the cervical spinal cord tissue with cresyl 
violet (Nissl stain) that preferentially stains neurons (Gittins 
and Harrison 2004; Korzhevskii and Otellin 2005). In addi‑
tion, we conducted immunohistochemistry for neuronal 
nuclear antigen (NeuN) for neurons, choline acetyltrans‑
ferase (ChAT) for cholinergic cells to identify putative moto‑
neurons, and glial fibrillary acidic protein (GFAP) as well as 
S100-protein β-subunit (S100) for astrocytes as previously 
described (Yokota et al. 2004, 2007, 2008, 2010; Aoyama 
et al. 2011; Koshiya et al. 2014). Briefly, neonatal rats (n = 5, 
2–3 days) were deeply anesthetized with diethyl ether or 
chloral hydrate (700 mg/kg) and transcardially perfused with 
10 ml of saline, followed by 20 ml of 4% paraformaldehyde 

or 10% formalin in 0.1 M PB. The spinal cords were iso‑
lated, post-fixed overnight in the same fixative at 4 °C, and 
then immersed in cold 20% sucrose in PB. Subsequently, the 
spinal cords (C3–C5 level) were cut into 40 or 50 µm thick 
transverse sections or 40 µm thick horizontal sections on a 
freezing microtome.

For light microscopic observation, sections were incu‑
bated in blocking solution composed of 3% normal donkey 
serum and 0.2% Triton-X in phosphate buffered saline (PBS, 
pH 7.3) for 30 min, and then incubated overnight in block‑
ing solution containing mouse anti-NeuN (MAB377, EMD 
Millipore, Billerica, MA, USA; 1:100) or rabbit anti-S100 
(ab41548, Abcam, Cambridge, UK; 1:500). For detection 
of GFAP, sections were incubated in sodium citrate buffer 
(10 mM, pH 6.0, 100 °C) for 15 min for antigen retrieval, 
and then incubated overnight in blocking solution containing 
mouse anti-GFAP (G3893, Sigma-Aldrich, 1:500). Subse‑
quently, sections were incubated in blocking solution con‑
taining biotinylated donkey anti-mouse IgG (Jackson Immu‑
noresearch Laboratories, West Groove, PA, USA; 1:500) 
for NeuN and GFAP or biotinylated donkey anti-rabbit IgG 
(Jackson Immunoresearch Laboratories; 1:500) for S100 for 
4 h. Subsequently, the sections were incubated in PBS con‑
taining 0.2% Triton-X and avidin–biotin–peroxidase com‑
plex (Elite-ABC; Vector Laboratories, Burlingame, CA, 
USA; 1:1000) for 1 h, and then developed in 25 ml of 0.1 M 
PB containing 10 mg diaminobenzidine (DAB) and 10 µl 
of 30% hydrogen peroxide. For detection of ChAT, sections 
were treated with 1% H2O2 to inhibit intrinsic peroxidase 
activity, incubated overnight in blocking solution contain‑
ing goat anti-ChAT (AB-144P, Chemicon; 1:1000), further 
incubated in blocking solution containing biotinylated don‑
key anti-goat IgG (Jackson Immunoresearch Laboratories; 
1:500) for 4 h, and then in PBS containing 0.2% Triton-X 
and Elite-ABC for 1 h. Afterward, sections were reacted 
with biotin-conjugated tyramide (Perkin-Elmer Life Sci‑
ence, Waltham, MA, USA; 1:50) for 10 min. Subsequently, 
sections were incubated in PBS containing Elite-ABC for 
1 h, and developed with DAB as outlined above. Finally, 
sections were mounted onto gelatinized slides, coverslipped 
with VectaMount (Vector Laboratories), and observed under 
a light microscope (Eclipse E800, Nikon). In the absence 
of primary antibody, no positive immunoreactivity was 
observed. Cytoarchitecture of the spinal cord was evaluated 
based on the anatomical atlas of the neonatal rat spinal cord 
(Paxinos et al. 1991).

For immunofluorescent observation, sections were 
treated with 1% H2O2, incubated in blocking solution 
containing antibody mixture of goat anti-ChAT (1:1000), 
rabbit anti-S100 (1:500), and either mouse anti-GFAP 
(1:500) or mouse anti-NeuN (1:100). Subsequently, sec‑
tions were incubated in blocking solution containing 
biotinylated donkey anti-goat IgG, next in Elite-ABC 
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(1:1000), and then reacted with Cy3-conjugated tyra‑
mide (Perkin-Elmer Life Science; 1:50) for 10 min. Sec‑
tions were further incubated in blocking solution con‑
taining Alexa488-conjugated donkey anti-rabbit IgG 
(Molecular Probes/Thermo Fisher Scientific; 1:500) and 
Cy5-conjugated donkey anti-mouse IgG (Jackson Immu‑
noresearch Laboratories; 1:500), mounted on gelatinized 
slides, counterstained with 4′,6-diamidino-2-phenylindole 
(DAPI; diluted with PBS at 1:2000; Dojindo, Kumamoto, 
Japan; catalog number FK045), and then coverslipped 
with VECTASHIELD (Vector Laboratories). Finally, the 
sections were observed under a confocal laser scanning 
microscope (FV1000, Olympus). The distributions of 
ChAT-immunoreactive (ir) neurons, S100-ir and GFAP-
ir astrocytes, NeuN-ir neurons, and DAPI-positive nuclei 
were assessed from confocal images.

Results

Spatiotemporal activity of inspiratory‑related 
depolarizing signals on the transverse cut plane

In voltage imaging with 5 ms sampling rate on the C4/5 
transverse plane of the cervical spinal cord with normocap‑
nic CSF (n = 3), the depolarizing optical signal appeared in 
the ventral horn, rapidly expanding concentrically in the 
medial direction. The size of a depolarized region became 
maximum in approximately 10 ms after the peak of C4VR 
activity, which was followed by a gradual decrease during 
the inspiratory phase. Figure 1 shows representative opti‑
cal images of the inspiratory-related depolarizing activity. 
We found that the inspiratory-related depolarizing region 
consisted of spatially distinct two subpopulations; one in 
the middle portion (central to the unilateral side) of the 

Fig. 1   Inspiratory-related activity imaged on the transverse cut plane 
at the C4/C5 spinal cord of brainstem–spinal cord preparation super‑
fused with normocapnic CSF. a Time course of optical inspiratory-
related activity from − 10 to 800 ms. Traces below the optical images 
are integrated C4 inspiratory activity, where the peak of C4 inspira‑
tory activity was defined as 0 ms, and red broken lines on these traces 

indicate the timing when the images shown above the traces were 
captured. b Integrated C4 activity. c Depolarizing optical signal in 
the central region. d Depolarizing optical signal in the medial region. 
Central and medial regions are indicated with red and blue circles, 
respectively, b–d were recorded simultaneously
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ventral horn corresponding to the central motor column 
and the other in the medial portion corresponding to the 
medial motor column. The activity appeared simultane‑
ously in the central and medial portions of the ventral horn 
20 ms before the peak of C4VR activity that was taken 
as 0 ms. Each activity gradually diminished with C4VR 
activity and disappeared in about 800 ms. Peak activity in 
the central portion appeared at about 20–30 ms after the 
peak of C4VR activity, and peak activity in the medial 
portion appeared at 40 ms after the peak of C4VR. The 
amplitude of the central portion activity was larger than 
that of the medial portion in each preparation. The finding 
that the inspiratory-related depolarizing region consisted 
of the spatially distinct two subpopulations was confirmed 
in other preparations in recording with 20 ms sampling 
rate (n = 4).

We examined the effects of hypercapnia on the inspira‑
tory depolarizing activity in the central and medial regions 
on the cut surface at C4/5 level, corresponding to phrenic 
and scalene motor nuclei, respectively (the correspond‑
ence is explained later). Peak amplitude and area under 
the depolarizing wave curve were not appreciably differ‑
ent in either region and between the two regions in either 
hypocapnic or hypercapnic condition, as representative 
optical images of the respiratory-related neuronal activi‑
ties (Fig. 2) and the group data show (n = 13) (Fig. 3).

Spatiotemporal pattern of respiratory‑related 
neuronal activities on the ventral surface 
of the cervical spinal cord

Figure 4 shows representative optical images of the respir‑
atory-related depolarizing activities on the ventral surface 
of the cervical spinal cord superfused with normocapnic 
CSF. Akin to the cut surface C4/5, we found that respiratory 
activities consisted of longitudinally distributed two sub‑
populations, i.e., inspiratory neuronal activities appeared as 
segmental clusters on the ventral surface in the central and 
medial portions, at C3–C5 levels. It must be noted that we 
did not conduct recording outside the region C3–C5. The 
activity first appeared in the medial portion of the ventral 
horn in C3 level 80 msec before the peak of C4VR activity, 
then extended rostro-caudally from C3 to C5. Another activ‑
ity appeared in the central portion 60 ms before the peak of 
C4VR activity. The activity peaks in the medial and central 
portions at C3 level appeared 40–80 ms after the peak of 
C4VR activity, respectively. This spatiotemporal pattern of 
respiratory-related neuronal activities on the C3–C5 ventral 
surface was confirmed in all preparations (n = 8). Akin to 
the transverse cut plane, CSF change from hypocapnia to 
hypercapnia affected neither the amplitude nor the area of 
inspiratory depolarization in both central and medial motor 
regions (n = 6) (Fig. 5).

Fig. 2   Representative depolar‑
izing inspiratory optical signals 
obtained in the experimental 
hypocapnic (2% CO2) and 
hypercapnic (8% CO2) condi‑
tions. Changes in CO2 did not 
affect depolarizing inspiratory 
optical signals in either central 
or medial motor region. a, b 
Depolarizing optical signals on 
the transverse cut plane at C4/
C5 level. Central and medial 
regions are indicated with red 
and blue circles, respectively. 
c, d Integrated C4 activity. e, 
f Depolarizing optical signals 
in the central region. g, h 
Depolarizing optical signals in 
the medial region, a, c, e, g cor‑
respond to hypocapnia, b, d, f, 
h correspond to hypercapnia
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Retrograde tracing of phrenic and scalene 
motoneurons

After DiI application to the phrenic nerve, DiI-labeled neu‑
rons were observed in the central motor column region of the 
ventral horn in C3–C5 segments (Fig. 6). After DiI injection 

into the scalene muscle, DiI-labeled neurons were observed 
in the medial motor column region of the ventral horn in 
C3–C8 segments (Fig. 7). Anatomical distributions of DiI-
labeled phrenic and scalene motoneurons coincided with 
those of optically detected regions in the central and medial 
portions of the ventral horn, respectively.

Fig. 3   Comparison of depolarizing inspiratory optical signals 
obtained in hypocapnic (2% CO2) and hypercapnic (8% CO2) condi‑
tions (n = 13). Changes in CO2 did not appreciably affect the peak 

amplitude or area under the depolarizing wave curve between 0.84 
and 2.5 s after the onset of the recording in either central or medial 
motor region. Each ordinate, arbitrary unit (au)

Fig. 4   Inspiratory-related optical signals recorded from the ventral 
surface of the C3–C5 spinal cord superfused with normocapnic CSF, 
with C4 integrated activity and its time course from − 40 to 320 ms, 

where the peak of C4 inspiratory activity was defined as 0 ms. Two 
longitudinal columnar depolarizing regions, corresponding to central 
and medial regions, were observed
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Histological examination of cell marker 
distributions

Figure 8 shows the photomicrographs of the transverse plane 
of the spinal cord at the C4 level with Nissl-staining, and 
immunostainings of ChAT, NeuN, GFAP, and S100. Nissl-
staining showed diffuse distribution of cell bodies in the gray 
matter, with particularly high density in the ventral horn 
(laminae IX) (Fig. 8a). ChAT-ir neurons in the C4 cervical 
spinal cord were located in the most ventral layer of the ven‑
tral horn (Fig. 8b). A subpopulation of ChAT-ir neurons in 
the ventromedial portion of the ventral horn, which consti‑
tutes the medial motor column, were fusiform in shape and 
located along the ventral funiculus. In the ventrolateral por‑
tion of the ventral horn, a number of large-sized, polygonal-
shaped ChAT-ir neurons were located, corresponding to the 
lateral motor column. A population of multipolar ChAT-ir 
neurons was confined to the mid-ventral portion of the ven‑
tral horn, which corresponds to the central motor column. 
On the horizontal plane of the ventral horn, three longitu‑
dinal clusters of ChAT-ir neurons were found. The neurons 
in the ventromedial and ventrolateral portions of the ventral 
horn were distributed through the entire rostro-caudal levels 
of the cervical spinal cord, while those in the mid-ventral 
portion were seen only between C3 and C5 levels (Fig. 8c).

Distribution of immunoreactivity for NeuN was akin 
to that of Nissl-positive cells, but the laminar structure of 
the gray matter, especially in the dorsal horn, was more 
clearly demonstrated by NeuN immunocytochemistry than 
by Nissl-staining (Fig. 8d, g). GFAP-ir was strong in the 
white matter, especially in the marginal layer, and GFAP-ir 
cells with fibrillary processes, apparently fibrous astro‑
cytes, were distributed in the whole gray matter (Fig. 8e, 
h). Regarding another astrocytic marker, S100-ir cells 
were distributed roughly equally in the gray and white 
matter, except for the marginal layer, where S100-ir was 
particularly strong (Fig. 8f, i).

In the quadruple staining of various cell markers 
(ChAT, NeuN, GFAP, S100 and DAPI) in the ventral 
horn, we were able to distinguish ChAT-ir motoneurons, 
ChAT-negative NeuN-ir-positive neurons, astrocytes with 
GFAP- and S100-ir, and other cells stained solely with the 
nuclear DAPI marker (Fig. 9). In the medial column of 
the ventromedial portion, the central column of the mid-
ventral portion, and the lateral column of the ventrolateral 
portion of the ventral horn, we found that GFAP-ir and/or 
S100-ir cells were intermingled with ChAT-ir neurons, and 
GFAP-ir fibrillary processes extending from S100-ir cells 
were associated with ChAT-ir motoneurons. Furthermore, 
ChAT-ir neurons constituting the medial and central motor 

Fig. 5   Representative optical 
images of inspiratory-related 
activity on the ventral surface 
of the cervical spinal cord in 
hypocapnic (2% CO2) and 
hypercapnic (8% CO2) condi‑
tions. In either central or medial 
motor region, changes in CO2 
did not appreciably affect 
depolarizing inspiratory signals. 
a, b Images showing depolar‑
izing optical signals on the 
ventral surface of the cervical 
spinal cord at C3–C5 level. Two 
longitudinal columnar depolar‑
izing regions, corresponding to 
central and medial regions, were 
observed. Representative areas 
of central and medial regions 
for calculation of optical signal 
wave forms in e–h are indicated 
with red and blue circles, 
respectively. c, d Integrated C4 
activity. e, f Depolarizing opti‑
cal signals in the central region. 
g, h Depolarizing optical sig‑
nals in the medial region. Each 
ordinate, arbitrary unit, a, c, e, g 
correspond to hypocapnia, b, d, 
f, h correspond to hypercapnia
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columns were surrounded by a large number of ChAT-
negative NeuN-ir positive cells.

Discussion

The present study demonstrates that the respiratory neuronal 
population at the level of the phrenic nucleus in the cervical 
spinal cord consists of functionally and anatomically dis‑
tinct two subgroups. The inspiratory activity appeared in the 
central portion of the ventral horn, almost simultaneously 
the other activity emerged in the medial portion, and both 
activities extended rostro-caudally within the imaged C3 and 
C5 regions. The two portions, central and medial, coincided 
with the anatomically identified phrenic and scalene moto‑
neuron groups, respectively. The central and medial sub‑
populations, should be differently involved in respiratory 
output formation. Phrenic and scalene motoneurons have 
closely related, but distinct spatial activities. Changes of 
superfusate CO2 content did not affect the spatiotemporal 
inspiratory activity patterns either in the phrenic or scalene 
motor region.

Localization and activity patterns of the phrenic 
and scalene motor neuron groups

It is well known that motoneurons in the spinal cord form 
longitudinal columnar clusters in the ventral horn, and they 
are typically classified as the medial, central, and lateral 
groups (Barber et al. 1984; Molander et al. 1989). Elliott 
(1942), and Keswani and Hollinshead (1955) reported that 
phrenic motoneurons are located in the most medial portion 
of the ventral horn in humans. Thereafter, a large number of 
anatomical studies reported the localization of the phrenic 
nucleus on the transverse plane of the cervical spinal cord in 
various animals (Ullah 1978; Warwick and Mitchell 1956; 
Webber et al. 1979).

The longitudinal distribution of the phrenic nucleus was 
reported as the region between C3 and rostral edge of C6 
segments in the macaque by Warwick and Mitchell (1956) 
and between C4 and C6 segments in the rabbit by Ullah 
(1978). Regarding the DiI-labeling technique, it must be 
noted that DiI does not label neurons trans-synaptically 
(Bader et al. 2012). Thus, labeling of sensory afferent fibers 
should be limited within the primary neuron, and second‑
ary relay neurons in the spinal cord should not be labeled. 

Fig. 6   Photomicrographs and confocal images showing the distribu‑
tion of DiI-labeled neurons in the spinal cord after DiI application to 
the phrenic nerve. a Ventral view of the brainstem–spinal cord. Loca‑
tion of DiI-labeled neurons is marked in red in the photomicrograph. 
b–e DiI-labeled neurons in horizontal section of the spinal cord (b–e 
ventral to dorsal). Red broken line in f indicates the midline of the 

spinal cord. g, h DiI-labeled neurons in transverse section of the spi‑
nal cord. The area enclosed with a rectangle in g is shown at higher 
magnification in h. Phrenic motoneurons are located in the central 
motor region between the C3 and C5 levels. Scale bars, a–e 1 mm; f 
100 µm; g 200 µm; h 50 µm
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Indeed, we never found DiI-labeled neuronal somata in the 
dorsal horn. Furthermore, it must be noted that sensory affer‑
ents of the phrenic nerve in the spinal cord are distributed 
mainly not in the ventral, but in the dorsal horn (Goshgarian 
and Roubal 1986). Actually, we did not detect DiI-labeled 
fibers in the dorsal horn, presumably due to weakness of thin 
fiber labeling with DiI. Therefore, our DiI-labeling analysis 
clearly indicates that the phrenic motoneurons are located 
in the central motor region at the C3–C5 segments in the rat 
(Fig. 6). The descending inspiratory optical signals in our 
voltage imaging are compatible with anatomically observed 
dense rostro-caudal longitudinal projections of dendrites 
from phrenic motoneurons (Cameron et al. 1983).

The scalene muscle is an important accessory inspira‑
tory muscle (Campbell 1955; Sant’ambrogio and Campo‑
resi 1973; De Troyer and Estenne 1984; Fournier and Lewis 
1996; Saboisky et al. 2007). However, to the best of our 
knowledge, the anatomy and function of the scalene moto‑
neurons have never been studied, although the anatomy of 
motoneurons innervating other neck muscles has been well 
documented (Brichta et al. 1987). Therefore, the present 

study is the first documentation of the scalene motoneuron 
anatomy. Although there is no report to directly compare 
the muscle spindle densities in the diaphragm and scalene 
muscle, the scalene muscle may contain more muscle spin‑
dles than the diaphragm per unit volume (Critchlow and von 
Euler 1963; Fournier and Lewis 1996). As a result, when DiI 
is injected into the scalene muscle, both alpha and gamma 
motoneurons should be labeled in the scalene motor pool, 
and at least some DiI-labeled neurons observed in our study 
should be gamma motoneurons innervating the scalene mus‑
cle (Fig. 7). It is reported that the scalene muscle is active 
during the inspiratory phase in quiet breathing as well as 
in hypercapnia and in a mechanical stress-loaded condi‑
tion. The functional role of scalene gamma motoneurons 
may be a positive feedback control of inspiratory neural 
output formation (Critchlow and von Euler 1963), which 
needs further investigation. The inspiratory activity pattern 
of the scalene muscle is similar to that of the diaphragm as 
shown with electromyography in the dog (D’Angelo et al. 
1988; D’Angelo and Bellemare 1990). This similarity of 
inspiratory activity of the diaphragm and scalene muscle 

Fig. 7   Photomicrographs and confocal images showing the distribu‑
tion of DiI-labeled neurons in the spinal cord after DiI injection into 
the scalene muscle. a Ventral view of the brainstem–spinal cord. 
Location of DiI-labeled neurons is marked in red in the photomicro‑
graph. b–e DiI-labeled neurons in horizontal section of the spinal 
cord (b–e ventral to dorsal). Red broken line in f indicates the mid‑

line of the spinal cord. g, h DiI-labeled neurons in transverse section 
of the spinal cord. The area enclosed with rectangles in g is shown 
at higher magnification in h. Distribution of scalene motoneurons is 
longer (between the C3 and C5 levels) and more medial as compared 
to that of phrenic motoneurons as shown in Fig.  8. Scale bars, a–e 
1 mm; f 100 µm; g 200 µm; h 50 µm
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is in accordance with similar temporal activity patterns of 
central and medial regions in the present voltage imaging 
study. We did not observe a difference in inspiratory activi‑
ties in voltage imaging between hypocapnic and hypercapnic 
conditions either in the phrenic or scalene motor region.

Crossing phenomenon

The depolarizing optical signals medial to the phrenic moto‑
neuron pool may be partly arising from the decussation fiber 
activity from the contralateral side (Goshgarian et al. 1991) 
and from the ventromedial dendritic bundle of phrenic moto‑
neurons crossing the midline often seen in neonatal or juve‑
nile, but not in adult rats (Furicchia and Goshgarian 1987; 
Lindsay et al. 1991; Allan and Greer 1997; Prakash et al. 
2000; Song et al. 2000; Huang and Goshgarian 2009). These 
midline crossing dendrites reach the contralateral ventral 
horn, but never extend to the contralateral phrenic motoneu‑
ron pool, suggesting that they are not directly innervated by 
contralateral mutually excited phrenic motoneurons (Lind‑
say et al. 1991; Prakash et al. 2000). Depolarizing optical 
signals observed in the medial motor region in the present 
study are considered generated by scalene motoneurons, but 
also may partly reflect the activity of the crossed phrenic 
phenomenon that is particularly active in neonates (Zimmer 
and Goshgarian 2005; Huang and Goshgarian 2009). At the 

same rostro-caudal level with phrenic motoneurons, brachial 
motoneurons are also located. However, brachial motoneu‑
rons are positioned laterally to phrenic motoneurons (see 
Fig. 6 of Allan and Greer 1997). Therefore, the central and 
medial regions do not correspond to brachial motoneurons.

Interneuron

Bellingham and Lipski (1990) mapped the locations of 
respiratory neurons at C5 level of the cat spinal cord, and 
found a number of inspiratory interneurons around the 
phrenic nucleus. Lane et al. (2008) and Qiu et al. (2010) 
reported the existence of phrenic interneurons. However, 
their localization was, apart from the phrenic nucleus, 
mainly in the ipsilateral region around the central canal. 
As Bellingham and Lipski (1990) reported, it is expected 
that a large number of inspiratory interneurons exist within 
the phrenic nucleus. However, due to technical limitations, 
the presence of interneurons within the phrenic nucleus 
has not been thoroughly studied either physiologically or 
anatomically (Lane 2011). Recently, Streeter et al. (2017) 
combined the techniques of multielectrode array recording 
and histochemistry, and mapped interneuron populations 
in the mid cervical spinal cord in adult rats. They sug‑
gested that a number of interneurons generate synchro‑
nous respiratory discharge with mono- and polysynaptic 

Fig. 8   Photomicrographs taken 
at C4 level of the cervical spinal 
cord. a Nissl-staining. b Cho‑
line acetyltransferase (ChAT)-
immunoreactive neurons. c 
ChAT-immunoreactive neurons 
in the horizontal section of the 
ventral horn of C3–C5 spinal 
cord. Red broken line indicates 
the midline of the spinal cord. 
d–f Immunostaining of neu‑
ronal nuclear antigen (NeuN), 
glial fibrillary acidic protein 
(GFAP) and S-100-protein 
β-subunit (S100), respectively. 
g–i Enlarged images of the 
d–f, respectively. Arrowheads, 
double-arrowheads, and triple-
arrowheads indicate the medial, 
central, and lateral motor col‑
umns, respectively. Scale bars: 
a–f 500 µm; g–i 200 µm
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Fig. 9   Confocal images showing distribution of immunoreactivity of 
various cell markers at C4 level of the cervical spinal cord (a, i). The 
areas enclosed with rectangles in a and i are shown at higher magnifi‑
cations in b and j, respectively. The central, medial, and lateral motor 
columns enclosed with rectangles in b, j are shown at higher magnifi‑
cation in c, d, k, l and e, f, m, n and g, h, o, p, respectively. Immuno‑
reactivities for ChAT, S100, GFAP, and NeuN are indicated in green, 
magenta, white and yellow, respectively, and DAPI-positive cell 

nuclei are indicated in cyan. c, e, g, k, m, and o are same area as d, 
f, h, l, n, and p, respectively. Putative phrenic and scalene motoneu‑
rons (ChAT-ir large neurons in the central and medial motor regions, 
respectively) as well as motoneurons in the lateral motor region are 
surrounded by interneurons (ChAT-negative and NeuN-positive cells) 
and astrocytes (GFAP-ir or S100-ir cells). Scale bars: a, i 300 µm; b, 
j 200 µm; c–f, k–n 50 µm; g, h, o, p 100 µm
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connections among neurons. In the present study we have 
histologically demonstrated that putative phrenic and sca‑
lene motoneurons (ChAT-ir large neurons in the central 
and medial motor regions, respectively) are surrounded 
by putative interneurons (ChAT-negative, NeuN-positive 
cells) (Fig. 9). Inspiratory depolarizing signals observed 
by voltage imaging in both central and medial motor 
areas in the present study could be attributed to inspira‑
tory activity of not only motoneurons, but interneurons. 
Our finding is compatible with the notion by Streeter 
et al. (2017), and it is considered that the motoneurons 
and interneurons together form inspiratory neural output 
patterns in the phrenic and scalene microcircuits.

Involvement of glial cells

In the present study, GFAP-ir and S100-ir cells were rela‑
tively sparse in the gray matter, compared to their dense 
distribution in the white matter of the cervical spinal cord 
(Figs. 8, 9). However, in the ventral horn, GFAP-ir and 
S100-ir cells were densely distributed in the two regions 
that correspond to the inspiratory regions detected by volt‑
age imaging (Figs. 1, 8h, 9), although we also observed 
intermingled GFAP-ir and S100-ir cells in the lateral motor 
region that is non-respiratory (Fig. 9). It has been reported 
that astrocytes are actively involved in various aspects of 
respiratory control such as rhythm generation and preven‑
tion of hypoxic ventilatory depression (Okada et al. 2012; 
Fukushi et al. 2016; Sheikhbahaei et al. 2018). It has been 
reported that phrenic motoneurons show a close anatomi‑
cal coupling with astrocytic processes (Goshgarian and 
Rafols 1984). These previous reports, our present findings, 
and our previous observation that activation of not only 
neurons, but astrocytes induce depolarizing optical sig‑
nals in voltage imaging (Aoyama et al. 2011) collectively 
suggest the active involvement of astrocytes in inspira‑
tory pattern formation in the phrenic nucleus. Notably, the 
long-lasting component of inspiration-synchronized depo‑
larizing optical signals, which is longer than the activity 
of C4VR (Fig. 1b–d), might be attributed to neuroplastic 
action of astrocytes that are generally long-acting when 
once activated (Henneberger et al. 2010). Furthermore, 
it has been demonstrated that morphology of astrocytes 
in the phrenic nucleus changes when the spinal cord tis‑
sue rostral to the phrenic nucleus is injured or exposed to 
chronic hypoxia, suggesting the involvement of astrocytes 
in the neural plasticity of the phrenic motoneuron func‑
tion (Goshgarian et al. 1989; Goshgarian and Yu 1990; 
Windelborn and Mitchell 2012). The present anatomical 
observations support the idea that astrocytes in the phrenic 
nucleus are involved in inspiratory pattern formation and 
its neural plasticity.

Future perspective

The present study clarified the distinct spatiotemporal 
dynamics and their cellular composition of the phrenic and 
scalene motor pools in the cervical spinal cord. Further stud‑
ies are necessary to elucidate the detailed functional inter‑
action among motoneurons, interneurons and astrocytes in 
the phrenic and scalene motor neuron pools to understand 
the precise mechanism of respiratory output formation in 
the cervical spinal cord. These issues ought to be explored 
with other study designs, e.g., analysis of individual cell 
activities in the respiratory motor pools by calcium imag‑
ing, selective stimulation/inhibition of certain types of cells 
(neurons/astrocytes) by optogenetics, and genetic manipula‑
tion and pharmacological intervention (Okada et al. 2012; 
Tanaka et al. 2012; Sheikhbahaei et al. 2018). Furthermore, 
the present study would provide essential basic knowledge of 
anatomy and function for the neural stem cell transplantation 
in the future regenerative medicine in patients with cervical 
spinal cord injuries and diseases such as amyotrophic lateral 
sclerosis (Nakamura and Okano 2013; Kondo et al. 2014; 
Matsui et al. 2014).
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