
A Dissertation for the Degree of Ph.D. in Engineering

Fast Index-based Random Walks
on Dynamic Graphs

for Personalized Analysis

February 2025

Graduate School of Science and Technology,
Keio University

Tsuyoshi Yamashita

Abstract

With the exponential growth of a wide variety of digital data in recent years,

random walks on graphs have attracted attention as a personalized analysis

that flexibly reflects user interests and preferences.

Chapter 1 describes a personalized analysis method using random

walks. Random walk is a graph computation whose input is a source node

that represents the user’s interest and a termination probability that controls

the exploration range. Both parameters need to be set effectively. In addi-

tion, it is important to utilize an index that maintains a set of pre-performed

random walk paths for fast computation.

Chapter 2 organizes the preliminaries of this dissertation. In par-

ticular, it introduces Personalized PageRank (PPR), a personalized analy-

sis method based on random walks, and presents the FORA framework, a

state-of-the-art PPR computation method. Then, it explains FORA+, an

index-based acceleration method.

Chapter 3 describes the three challenges addressed by this disserta-

tion. Chapter 4, Chapter 5, and Chapter 6 present the dissertation’s contri-

bution to each of these challenges.

Chapter 4 establishes parameter-setting guidelines for PPR. Although

many methods for setting the source node have been discussed, the termi-

nation probability has been blindly set to a fixed value. This chapter in-

vestigates how to monotonically balance the influence of global importance

and source proximity on PPR results with termination probability, which

controls the average path length of the random walk. A case study using a

movie rating dataset shows that setting termination probability to shorten

random walk monotonically increases the rating of nodes that are directly

related to the source node. Statistical evaluation also revealed that varying

the average path length of the random walk from 1.05 to 100 resulted in

a monotonic change in the cosine similarity between PPR and the global

importance vector from 0.003 to 0.76 at the maximum.

ii

Chapter 5 proposes a fast random walk path generation method for

arbitrary parameters. For fast computation, it is important to reference

an index, but the accepted termination probability is limited to the value

at the time of index generation. As a result, to generate paths for arbi-

trary termination probabilities, it was necessary to perform random walks

without the index. This dissertation proposes an algorithm, αFlexWalk, to

quickly generate random walk paths for arbitrary termination probabilities

by manipulating the paths in the index. In particular, αFlexWalk focuses

on the fact that the random walk path length varies stochastically as the

termination probability changes. The algorithm generates mathematically

guaranteed paths by connecting and cutting the indexed paths. Evaluations

showed that αFlexWalk was up to 11.2 times faster than existing index-free

methods.

Chapter 6 proposes a fast and lightweight index management method

for high-accuracy computation on dynamic graphs. When a graph is updated

after index generation, it is necessary to re-generate some indexes to guar-

antee accuracy, but the time and space computation cost is significant. This

dissertation proposes an index management method that eliminates index

re-generation for graph updates, focusing on the fact that index references in

PPR computation concentrate on nodes whose index does not change much

after re-generation. The evaluation revealed that even if the number of edges

is doubled or halved from the time of index generation, the loss of accuracy

is less than 0.3%.

Finally, Chapter 7 concludes this dissertation.

Acknowledgments

First of all, I would like to express my sincere gratitude to Assoc. Prof.

Kunitake Kaneko. He has carefully guided me as my advisor for six years

and is the chair of this dissertation committee. I would like to express my

gratitude to the vice chairs of this dissertation committee: Assoc. Prof.

Yoshiaki Oda, Dr. Yuuki Takai, and Prof. Hiroki Matsutani. I would also

like to thank Dr. Naoki Matsumoto for collaborating with me on many

projects. I would also like to thank Prof. Fumio Teraoka for his helpful

advice on my research. Although it is difficult to mention them all by name,

I would also like to thank the members of my laboratory. Finally, I would

like to express my sincere gratitude to my family.

iii

Contents

Abstract i

Acknowledgments iii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Background . 1

1.2 Random-Walk-Based Personalized Analysis on Dynamic Graphs 3

1.3 Contributions of this Dissertation 6

1.4 Structure of this Dissertation 7

2 Preliminaries 8

2.1 Graph . 8

2.2 Random Walk . 10

2.3 Personalized PageRank (PPR) 11

2.4 State-of-the-art PPR computation

method: FORA . 12

2.5 Index-based FORA: FORA+ 14

2.6 Evaluation Environment . 15

3 Overview 17

4 Balancing Global Importance and Source Proximity 21

4.1 Overview . 21

iv

Contents v

4.2 Related Work . 24

4.3 Approach . 27

4.4 Case Study . 28

4.5 Statistical Evaluation . 30

4.5.1 α vs. the influences of global importance on PPR vectors 32

4.5.2 α vs. the distribution of PPR values of high-ranking

nodes . 34

4.6 Conclusion of This Chapter 35

5 Index-based Random Walks for Arbitrary α 38

5.1 Overview . 38

5.2 Related Work . 41

5.3 Approach . 43

5.4 Proposed Method: αFlexWalk 44

5.4.1 When α < αindex . 44

5.4.2 When α > αindex . 49

5.4.3 How to Deal with the Index Shortage 53

5.4.4 Accuracy Guarantee 55

5.5 Evaluation . 58

5.5.1 Index Size . 58

5.5.2 Processing Time of Random Walk Query 59

5.5.3 Processing Time of PPR Query 61

5.5.4 The Frequency of the Index Shortages 62

5.6 Conclusion of This Chapter 65

6 Reducing Re-Indexing on Dynamic Graphs 75

6.1 Overview . 75

6.2 Related Work . 79

6.3 Analyzing FORA+’s Index References on Dynamic Graphs . . 84

6.4 Proposed Method . 87

6.4.1 Index Generation . 88

6.4.2 Index Correction for an Edge Insertion 89

6.4.3 Index Correction for an Edge Deletion 90

6.4.4 PPR Computation . 92

6.5 Evaluation . 94

Contents vi

6.5.1 Settings . 94

6.5.2 The Index Size . 94

6.5.3 The Index Correction Time 95

6.5.4 Updated Ratio of Edges vs. Accuracy 98

6.5.5 Effect of the Timestamp 101

6.5.6 Effect of the Index Reference Order 102

6.5.7 Processing Time of The Proposed Method vs.

Index-Free Method . 103

6.6 Conclusion of This Chapter 105

7 Conclusion 112

References 115

List of Figures

1.1 An example of personalized movie recommendations based on

a wide variety of data. 2

1.2 A graph created by the diverse digital data. 3

2.1 A sample unweighted graph (n = 6,m = 9). 10

3.1 The relationships between the three problems addressed in this

dissertation. 20

4.1 α vs. the similarity between PageRank and PPR vectors. . . . 36

4.2 α vs. scaling exponent in the distribution of PPR values. . . . 37

5.1 Index size coefficient vs. Index size. 66

5.2 Index size (αindex = 0.2, c = 1). 67

5.3 α vs. average processing time of random walks for each αindex

(small datasets). 68

5.4 α vs. average processing time of random walks for each αindex

(medium datasets). 69

5.5 α vs. average processing time of random walks for each αindex

(large datasets). 70

5.6 α vs. average processing time of PPR for each αindex (small

datasets). 71

5.7 α vs. average processing time of PPR for each αindex (medium

datasets). 72

5.8 α vs. average processing time of PPR for each αindex (large

datasets). 73

vii

List of Figures viii

5.9 Index size coefficient vs. Average number of the index short-

ages in a path generation when αindex = 0.3 and α = 0.0125

(datasets are other than Web-BerkStan). 74

5.10 Index size coefficient vs. Average number of the index short-

ages in a path generation when αindex = 0.3 (dataset is Web-

BerkStan). 74

6.1 The cumulative ratio of index references for each node group

of stability. 87

6.2 The sample graph that edge (a, d) is inserted. 90

6.3 The sample graph that edge (a, c) is deleted. 92

6.4 The index size of the proposed method and the existing methods. 96

6.5 The distribution of index correction time. 107

6.6 The updated ratio of edges vs. NDCG. 108

6.7 The relationships between degree and stability in YouTube. . 109

6.8 The updated ratio of edges vs. NDCG when the graph is

updated in the timestamped and randomized order. 110

6.9 The average difference between NDCGs when the index is ref-

erenced in the order of the latest to the earliest and the earliest

to the latest. 111

6.10 PPR processing time of index-free method divided by that of

the proposed method. 111

List of Tables

2.1 Notations. 9

2.2 Datasets (M=106, B=109). 15

4.1 Top 20 PPR nodes when “Avengers: Infinity War Part I” is

the source node. 31

5.1 Sample Indexed Paths (Excerpt). 48

6.1 The characteristics of existing index-based methods and the

proposed method. 83

6.2 Sample Indexed Paths for node a before and after an edge

insertion in the graph shown in Figure 6.2 (α = 0.5). 91

6.3 Sample Indexed Paths for node a before and after an edge

deletion in the graph shown in Figure 6.3 (α = 0.5). 93

ix

Chapter 1

Introduction

1.1 Background

As diverse digital data has grown exponentially, personalized analysis that

flexibly reflects users’ interests and preferences has become increasingly im-

portant. According to a white paper published by the International Data

Corporation, the total amount of digital data created, captured, or repli-

cated in the world in 2019 is estimated to be 45ZB (1ZB=1021 bytes), and

that in 2025 is predicted to be 175ZB [1]. In addition, it is important to com-

prehensively handle the data for effective utilization of digital data since its

format is diverse [1]. Furthermore, personalized analysis for each user is also

critical [2–8]. In particular, it is necessary to comprehensively analyze diverse

data based on the interests and feelings of each user, which are estimated

from their history or input, to determine important digital data personal-

ized for each user. Figure 1.1 shows an example of personalized analysis in

1

Chapter 1. Introduction 2

Movie File

Web Article

Recommendation
from Friends
User’s Watching
History
Friend’s Watching
History

Analysis engine based on a
wide variety of data.

Current interests and feelings

Recommended movies
determined by comprehensive

analysis of data clusters

User

Figure 1.1: An example of personalized movie recommendations based on a
wide variety of data.

movie recommendations. In Figure 1.1, the user inputs current interests and

feelings into the analysis engine. The analysis engine then comprehensively

analyzes the movie content, web articles, recommendations from friends, and

the user’s or friend’s watching history to determine the recommended movie.

In this situation, adopting a general-purpose representation of dy-

namic and diverse digital data and scalable personalized analysis is impor-

tant [2–12]. To handle diverse digital data, it is necessary to represent digital

data of arbitrary formats and the relationships between them in a general-

purpose way [2–6]. Designing an analysis method for each data to be pro-

cessed is challenging, and applying a single analysis method to arbitrary

data types is desirable. In addition, assuming a dynamic situation where

data will be added or deleted is required [11–20]. Moreover, for scalable per-

sonalized analysis, local exploration starting from the user’s interest data is

important [9, 10, 21]. The reason is that it is not practical to analyze all the

enormous data, and the computational cost is reduced by limiting the scope

Chapter 1. Introduction 3

a

b d

c e

f

Figure 1.2: A graph created by the diverse digital data.

of analysis while considering the focused data and query.

This dissertation then focuses on graph-based personalized analysis.

Because graphs can abstractly represent any digital data as nodes and the re-

lationships between digital data as edges, they help represent data in general-

purpose ways. Figure 1.2 shows an example of creating a graph from various

digital data. Each node represents digital data, and users or digital data own-

ers create edges by defining the relationship between data. In such a graph,

personalized analysis is realized by determining the source node based on the

user’s interests and current feelings and then analyzing the topology of the

source node’s neighborhood.

1.2 Random-Walk-Based Personalized Anal-
ysis on Dynamic Graphs

As a general-purpose personalized analysis method for graphs, this disser-

tation focuses on random walks. In this dissertation, a random walk is a

Chapter 1. Introduction 4

graph computation that takes a source node s and a termination probability

α as inputs and outputs a path. Starting from s, it repeatedly transitions

to random adjacent nodes and terminates at each visited node with proba-

bility α. In personalized analysis, s corresponds to the starting point of the

exploration, and α corresponds to the scope of the exploration [2–6]. There-

fore, it is important to set these two parameters effectively. Since random

walks explore the graph by traversing adjacent nodes, they are suitable for

local exploration around the user’s interest nodes without considering the

whole graph. In addition, since they do not use information other than the

graph topology, they are also suitable for general-purpose computations. An

example of graph analysis using random walks includes the metric of node

importance called Personalized PageRank (PPR), which quantifies the im-

portance of each node by focusing on the distribution of the nodes visited in

many random walks performed from the source node [9].

Furthermore, an “index” is effective for fast random walks [10–12,21].

The index stores the pre-performed random walk paths starting from each

node. When performing graph computations using random walks, it is pos-

sible to speed up them by referencing the index and omitting some random

walks.

However, there are three main problems with personalized analysis

using random walks on dynamic graphs [2–6]. Firstly, there is no established

guideline for setting the termination probability α in personalized graph anal-

ysis queries. In personalized analysis using random walks, although the effec-

Chapter 1. Introduction 5

tive setting of α is required, it has been set to a fixed value blindly. Therefore,

it is necessary to establish guidelines for setting α according to user require-

ments by clarifying how the results of personalized analysis change depending

on α.

Secondly, in personalized analysis, although it is necessary to perform

a random walk for arbitrary termination probability α, the problem with

the index-based speeding-up method is that it only accepts fixed α [10, 21].

Therefore, using the index is impossible when performing a random walk for

arbitrary α. Consequently, achieving flexible and fast analysis is essential for

personalized analysis, which this dissertation assumes.

Thirdly, re-indexing, which re-generates some indexed random walk

paths, is necessary to guarantee accuracy when the graph is updated after the

index generation. However, there are problems with scalability because of

the significant time and space costs involved in identifying the parts that re-

quire re-indexing and re-generating themselves [11–20]. Therefore, assuming

a dynamic graph, re-indexing for each graph update becomes a bottleneck.

In addition, since the analysis queries also have to wait until the re-indexing

is completed, the scalability of personalized analysis is also limited. Con-

sequently, a fast, lightweight, and accurate index management method is

required.

Chapter 1. Introduction 6

1.3 Contributions of this Dissertation

This dissertation solves the problems described in Section 1.2. The main

contributions of this dissertation are summarized as follows.

• Chapter 4 establishes the guidelines for setting termination probabil-

ity α by experimentally clarifying that α monotonically balances the

influences of global importance and source proximity on PPR results.

• Evaluations confirmed that the cosine similarity between PPR and

PageRank vectors, which represents global importance, changes mono-

tonically from 0.003 to 0.76 at the maximum by changing α from 0.95

to 0.01.

• Chapter 5 proposes an index-based method, αFlexWalk, to generate

random walk paths for arbitrary termination probabilities by stochas-

tically connecting or cutting the indexed random walk paths.

• Evaluations showed that αFlexWalk improves the processing time by

at most 11.2 times compared with the index-free method.

• Chapter 6 proposes a method that significantly reduces heavy re-index-

ing while achieving comparable accuracy to the guaranteed methods. It

depends on the observation that the index references are concentrated

on the nodes whose index is stable.

• Evaluations also show that the proposed method’s accuracy reduction

Chapter 1. Introduction 7

is less than 0.3% compared with the guaranteed methods until 20% of

the edges are updated.

1.4 Structure of this Dissertation

The remainder of this dissertation is structured as follows. Chapter 2 presents

the preliminaries of this dissertation. Chapter 3 describes the problems this

dissertation handles. Chapter 4 discusses the method for parameter set-

tings of personalized graph analysis. Chapter 5 provides the index-based

algorithm to improve the processing speed of personalized graph analysis.

Chapter 6 presents the index management scheme considering the dynamic

graph. Chapter 7 concludes this dissertation.

Chapter 2

Preliminaries

This chapter introduces the preliminaries of this dissertation. Table 2.1 lists

the frequently used notations.

2.1 Graph

G = (V,E,W) is a weighted directed graph with n nodes and m edges. An

undirected graph is represented by putting bi-directional directed edges on

all edges. W is an n×n matrix that represents weights of each edge. Wv,w is

the weight of edge if (v, w) ∈ E. If (v, w) ̸∈ E, Wv,w = 0. If G is undirected,

Wv,w = Ww,v is ensured. In the unweighted graph, weights of all edges ∈ E

are 1. If nodes v, w ∈ V and (v, w) ∈ E, then w is an adjacent node of v,

and Nout(v) denotes the set of adjacent nodes of v. The degree of v, denoted

as deg(v), is the sum of the weights of the edges from v, i.e., Σw∈Nout(v)Wv,w.

Note that in unweighted graph, deg(v) = |Nout(v)|. In the following part, W

8

Chapter 2. Preliminaries 9

Table 2.1: Notations.

Notation Description
G(V,E,W) A weighted directed graph with node set V ,

edge set E, and weight matrix W
n,m The number of nodes and edges, respectively
Nout(v) A set of adjacent nodes of v
deg(v) A degree of v
Gt = (V t, Et,W t) A dynamic graph at the timestamp t
π(s, v) PPR value of node v with respect to source node s
πs PPR vector storing all PPR values for all nodes
π PageRank vector storing all PageRank values

for all nodes
α A termination probability of a random walk
ω The number of random walks used to compute PPR
Idxt The index at the timestamp t

will be omitted when it is clear whether G is weighted or not is irrelevant to

the discussion. Figure 2.1 is a sample unweighted graph frequently used to

explain the algorithms in the later part.

This dissertation handles dynamic graphs. Let Gt = (V t, Et,W t) be

a dynamic, weighted, and directed graph at timestamp t. It is enough to

consider only insertions and deletions of edges as graph updates. Note that

a sequence of edge updates represents node insertions and deletions. This

dissertation assumes that only one edge update occurs from Gt−1 to Gt.

Given that G0 is an initial graph, Gt is a graph where t edges are updated.

In the following part, the subscripts indicating timestamps will be omitted

for simplicity if there is no danger of confusion.

Chapter 2. Preliminaries 10

a

b d

c e

f

Figure 2.1: A sample unweighted graph (n = 6,m = 9).

2.2 Random Walk

A random walk is a graph computation that takes a source node s and a

termination probability α as inputs. It starts from s and repeatedly moves

to a random adjacent node of the current node until termination. On each

current node, it terminates with a probability α and moves to the random

adjacent node with a probability 1−α. Algorithm 1 shows the typical random

walk algorithm called Monte Carlo.

Selecting the next node depends on whether the graph is weighted. If

the graph is unweighted, the random walk randomly and equally selects the

next node from all adjacent nodes. Otherwise, it randomly selects the next

node with a probability proportional to the weight of the corresponding edge.

Although several methods exist for randomly selecting from non-uniform dis-

tributions, this dissertation adopts the Alias method [22], which determines

the next node with O(1) time complexity by indexing.

α controls the length of the random walk, and changing α affects the

distributions of the visited nodes [23,24]．Therefore, α should be determined

Chapter 2. Preliminaries 11

Algorithm 1 Monte Carlo

Input: Source node s, termination probability α
Output: A random walk path path
1: path← [s];
2: current node← s;
3: while random() > α do
4: current node← random adjacent node of current node;
5: path.append(current node);
6: end while

depending on the graph features and applications. The length of the random

walk lα is the number of nodes the random walk visits until termination.

The expected length of the random walk E[lα] is 1/α. The reason

is that the probability that the length of the random walk is k(k ≥ 1) is

expressed by Equation (2.1), and E[lα] is derived as shown in Equation (2.2).

In addition, the time complexity of the random walk is O(1/α), considering

that the time complexity of determining the next node is O(1).

P (lα = k) = α(1− α)k−1 (2.1)

E[lα] = Σ∞
k=1k · P (lα = k) =

1

α
(2.2)

2.3 Personalized PageRank (PPR)

Given a graphG, a source node s ∈ V , a target node v ∈ V , and a termination

probability α, PPR of node v with respect to s, denoted as π(s, v), is the

probability that a random walk starting from s terminates at v [9]. When

Top-k PPR is queried, the k nodes with the highest PPR values are output.

Chapter 2. Preliminaries 12

An n-dimensional vector that stores PPR values of all nodes with respect to

s is called the PPR vector and is denoted as πs.

PPR is computed by independently performing ω random walks from

s and determining the ratio of random walks visiting each node [25–27].

Therefore, if the number of visits to node v in ω random walks is Nv and

the sum of the length of ω random walks is Nω, π(s, v) is approximated by

Nv/Nω. Since the expected length of a random walk is 1/α, the expected Nω

is ω/α. Other PPR computation methods include Power Iteration [28–30],

Forward Push [31–33], and Reverse Push [34–36].

In contrast, PageRank is a metric that quantifies the global impor-

tance of each node by the probability that a random walk equally starting

from all nodes visits each node [9]. An n-dimensional vector that stores

PageRank values of all nodes is called the PageRank vector and is denoted

as π.

2.4 State-of-the-art PPR computation
method: FORA

FORA is a state-of-the-art method for computing PPR vector πs with respect

to the input source node s [10,21]. When queried, FORA performs Forward

Push [37] and Monte Carlo algorithms in two phases.

Algorithm 2 shows the details of FORA. FORA manages two variables

for each node v: estimate π̂(s, v) and residue r(s, v). π̂(s, v) represents the

Chapter 2. Preliminaries 13

number of random walks from s visiting v, and r(s, v) represents the number

of random walks from s remaining at v without termination. In the initial

state, π̂(s, s) and r(s, s) are ω, and π̂(s, v) and r(s, v) where v ̸= s are zero

because all random walks remain at s without terminating. In addition,

total step for normalization is initialized as ω (lines 1–3).

In the Forward Push phase, a push operation is performed on v as

long as a node v whose residue is more than |Nout(v)|
α exists (lines 5–12). The

push operation on node v moves 1 − α · r(s, v) random walks to adjacent

nodes proportionally to the weight of the adjacent edge and terminates the

remaining α · r(s, v) random walks (lines 6–11).

In the Monte Carlo phase, all remaining random walks maintained

by residue terminate by performing ⌈r(s, v)⌉ random walks from each node

v (lines 14–22). Here, monte calro(v,α) returns a random walk path by

Algorithm 1. Note that when counting the visited times, normalization is

required because the performed number of random walks is ⌈r(s, v)⌉, not

r(s, v) (line 18).

The performance guarantee and algorithm correctness of FORA come

from the fact that the PPR value is decomposed by Equation (2.3) [37].

π(s, v) = π̂(s, v) +
∑

w∈V

r(s, w) · π(w, v) (2.3)

Equation (2.3) means that π(s, v) is computed by the Forward Push and

Monte Carlo results. π̂(s, v) and r(s, w) come from estimate and residue,

respectively, and π(w, v) comes from performed random walks in Monte Carlo

Chapter 2. Preliminaries 14

phase. The approximation error of FORA is caused in the Monte Carlo phase

because the distribution of the visiting nodes cannot be computed exactly.

Setting a larger ω will make the result more accurate [25].

2.5 Index-based FORA: FORA+

FORA+ accelerates FORA by referencing an index during the Monte Carlo

phase [10, 21]. The index is generated before PPR queries occur and main-

tains the list of pre-performed random walk paths with each source node as

a key.

In the index generation, ⌈|Nout(v)|/α⌉ random walks are performed

from each node v. The pre-performed random walk paths are stored as

Idx[v]. The space complexity is Θ(n+m/α) because the number of keys of

the index is n, and the number of random walks performed from node v is

Θ(|Nout(v)|/α).

In FORA, performing random walks from nodes with residue is re-

quired in the Monte Carlo phase. FORA+ omits on-the-fly random walks by

referencing Idx. The push condition in the Forward Push phase guarantees

that residue of each node v is less than |Nout(v)|/α. Therefore, the required

number of random walks from node v in the Monte Carlo phase is also guar-

anteed to be less than ⌈|Nout(v)|/α⌉. Consequently, FORA+ can completely

omit performing on-the-fly random walks in the Monte Carlo phase.

Chapter 2. Preliminaries 15

Table 2.2: Datasets (M=106, B=109).

Name Directed Weighted n m Dynamic
DBLP [38] No No 0.3M 1.1M No

Web-BerkStan [38] Yes No 0.7M 7.6M No
YouTube [39] No No 3.2M 9.4M Yes
Flickr [40] Yes No 2.3M 33M Yes

MovieLens [41] No Yes 418K 34M Yes
LiveJournal [38] No No 4.0M 35M No

Orkut [38] No No 3.1M 117M No
Twitter [42] Yes No 41.7M 1.5B No

Friendster [38] No No 65.6M 1.8B No

2.6 Evaluation Environment

This section explains the evaluation environment used in the following part of

this dissertation. All implementation is written in C++, and all evaluations

are performed on a machine with Ubuntu 20.04.4 / Xeon Gold 6334 CPU

@3.60GHz / 1TB DDR4-3200 memory. Table 2.2 lists the real-world graph

datasets.

Chapter 2. Preliminaries 16

Algorithm 2 FORA

Input: A source node s, a termination probability α, the number of random
walks ω

Output: πs

1: π̂(s, s)← ω; r(s, s)← ω;
2: π̂(s, v)← 0; r(s, v)← 0; for all v ∈ V \ {s};
3: total step← ω;
4:

5: while ∃v ∈ V such that r(s, v) > |Nout(v)|
α do

6: for w ∈ Nout(v) do
7: walks to move← (1− α) · r(s, v) · Wv,w∑

u∈Nout(v)
Wv,u

8: r(s, w)← r(s, w) + walks to move;
9: total step← total step+ walks to move;

10: end for
11: π̂(s, v)← π̂(s, v) + α · r(s, v); r(s, v)← 0;
12: end while
13:

14: for v ∈ V where r(s, v) > 0 do
15: ωv ← ⌈r(s, v)⌉;
16: for i = 1 to ωv do
17: path← monte carlo(v,α);
18: π̂(s, w)← π̂(s, w) + r(s,v)

ωv
;

19: total step← total step+ r(s,v)
ωv

;
20: end for
21: r(s, v)← 0;
22: end for
23:

24: π(s, v)← π̂(s,v)
total step ; for all v ∈ V ;

Chapter 3

Overview

As described in Section 1.2, the remainder of this dissertation will address the

following problems: the guidelines for setting the termination probability α

in personalized analysis using random walks, the generation of random walk

paths for arbitrary α using the index, and the index management on dynamic

graphs. This chapter provides an overview of each work and the relationships

among these three works.

Firstly, regarding the guidelines for setting the termination probability

α, it is important to set the source node s effectively and the termination

probability α in the personalized analysis using random walks. While many

methods for selecting s based on the user’s activity history and input have

been discussed, α has been set to a fixed value blindly. This dissertation

focuses on the fact that the average path length of the random walk changes

depending on α and quantitatively clarifies the influence of α on Personalized

PageRank (PPR) result. In particular, while nodes with high PPR values

17

Chapter 3. Overview 18

contain a mixture of nodes with high global importance and source proximity,

this dissertation shows that α is a parameter that monotonically balances

the influence that both of these factors have on the results of PPR. A case

study using a movie rating dataset found that the shorter the average path

length of the random walk, the higher the PPR value of the nodes directly

related to the source node. In addition, it was revealed that by changing the

average path length of random walks from 1.05 to 100, the cosine similarity

between the PPR vector and the PageRank vector, which represents the

global importance, monotonically changes from 0.001 to 0.78.

Secondly, regarding the index-based random walk path generation for

arbitrary α, the index is a set of random walk paths, and α of the path

obtained by simply referencing the index is restricted to a specific value,

αindex. However, in personalized analysis, it is crucial to generate paths for

arbitrary α, and the fast computation using the index inhibits analysis that is

flexible with respect to α. Therefore, this dissertation proposes a method for

generating random walk paths for arbitrary α using an index by manipulating

indexed random walk paths. In particular, the proposed method focuses on

the fact that the path length of a random walk changes stochastically when

the termination probability changes from αindex, and a proposed method

connects or cuts the indexed random walk paths. The evaluation compared

the processing time of the proposed index-based methods with the existing

index-free methods known to apply to arbitrary α. The results showed that

the proposed methods are 11.2 times faster than the existing methods.

Chapter 3. Overview 19

Thirdly, regarding the index management for dynamic graphs, it is

necessary to re-generate some indexed paths to guarantee accuracy for each

graph update after the index generation. However, existing methods are

not scalable, as the time and space costs for identifying the paths that need

to be re-generated and re-generating cost itself are significant. This disser-

tation proposes a method for eliminating index re-generation during graph

updates while clarifying that index references in PPR computations are con-

centrated on nodes whose indexed paths require little re-generation during

graph updates. Although eliminating index re-generation does not guaran-

tee accuracy, evaluations have revealed that the accuracy of the proposed

method is comparable to that of the guaranteed methods.

Figure 3.1 shows the relationships between the three problems ad-

dressed in this dissertation. In Figure 3.1, User A determines the value of α

while referencing the guidelines for setting it (1, 2 in the figure). Chapter 4

establishes these guidelines. The PPR query, including the determined α, is

then submitted to the existing FORA+ algorithm (3 in the figure). FORA+

generates random walk queries starting from each node in the Monte Carlo

phase and submits them to αFlexWalk (4 in the figure). αFlexWalk gener-

ates random walk paths with a termination probability α while referencing

the index (5, 6 in the figure). Chapter 5 proposes the path generation algo-

rithm. FORA+ then completes PPR computation with the generated paths

and returns the results to User A (7, 8, 9 in the figure). User B also submits

an update query to the graph (a. in the figure). The graph notifies the index

Chapter 3. Overview 20

Index

Graph

FORA+
(Existing)

𝛼FlexWalkGuidelines for
deciding 𝛼

① Reference ② Decide

③ PPR Query

④ Random Walk Query

⑤ Reference

⑥ Random Walk Path

⑦ Generated Random Walk Path
⑧ PPR Vector

a. Update

b. Index Correction Query

Chapter 4 Chapter 5

Chapter 6

A

B

Figure 3.1: The relationships between the three problems addressed in this
dissertation.

of the updated edge, and the index corrects the stored paths accordingly (b.

in the figure). Chapter 6 proposes the lightweight correction method.

Chapter 4

Balancing Global Importance
and Source Proximity in
Personalized Graph Analysis

4.1 Overview

As discussed in Chapter 3, existing recommendations based on Personalized

PageRank (PPR) blindly set the termination probability α of random walks

to a fixed value. It is necessary to establish guidelines for setting α according

to user requirements by clarifying how the results of personalized analysis

change depending on α.

It is known that PPR determines nodes with high global importance

and source proximity, and it is necessary to monotonically balance both influ-

ences on the PPR vector according to the user’s requirements in PPR-based

recommendations. When the influence of global importance is dominant,

21

Chapter 4. Balancing Global Importance and Source Proximity 22

nodes that are important from the perspective of the whole graph tend to

have high PPR values, regardless of the source node. While it determines

nodes considered important for many users, the drawback is that the source

node has little impact on the PPR vector, and the results tend to be com-

monplace. In contrast, when the influence of source proximity is dominant,

important nodes with respect to the source node tend to have high PPR

values even if their global importance is not necessarily high. While it de-

termines nodes strongly affected by the source node, the drawback is that it

is possible to make the PPR vector minor from a global perspective. There-

fore, a trade-off between global importance and source proximity exists. In

real-world applications, users need to adjust the balance between them de-

pending on the source node or their preferences. Users are also required to

observe PPR vectors while gradually changing the parameters. In such a

case, it is important to balance their influences monotonically according to

the parameters.

However, existing work on PPR-based recommendations has discussed

the way of setting the source node [43,44], and has not sufficiently discussed

the characterization of PPR vectors for a fixed source node. Although some

methods utilize external information such as node labels to improve the rec-

ommendation quality [43,45,46], these methods are not general-purpose be-

cause they require determining the necessary external information and col-

lecting it for each graph. In addition, various recommendation criteria includ-

ing diversity [7,45–47], novelty [43,47], serendipity [44,47], and fairness [7,8]

Chapter 4. Balancing Global Importance and Source Proximity 23

have been proposed. To the best of the author’s knowledge, no work focuses

on balancing the influences between global importance and source proximity.

This chapter discusses how to monotonically balance the influences of

global importance and source proximity on the PPR vector. In particular,

the termination probability α, a parameter of PPR that controls the random

walk length, changes the nodes that random walks are likely to visit. As the

random walks get longer, they will likely visit nodes with high PageRank

values, where PageRank indicates global importance. On the other hand, as

the random walks get shorter, they will likely visit nodes close to the source

node, regardless of their global importance.

This chapter observes the PPR vector while changing α using the

real-world datasets in Table 2.2. A case study using a movie rating dataset

confirmed that movies considered directly relevant to the source node got

a higher PPR value by shortening the random walks. Furthermore, statis-

tical evaluation confirmed that the similarity between PPR and PageRank

vectors weakens by shortening the random walks. In particular, changing

the expected random walk length from 1.05 to 100 resulted in a monotonic

change in the cosine similarity of PPR and PageRank vectors from 0.003 to

0.76 at the maximum.

The main contributions of this chapter are summarized as follows.

• This chapter proposes a method to monotonically balance the influ-

ences of global importance and source proximity on the PPR vector by

Chapter 4. Balancing Global Importance and Source Proximity 24

the termination probability α that controls the expected random walk

length.

• A case study using a movie rating dataset confirmed that α monoton-

ically changes the ranking of movies considered to be directly related

to the source movie.

• Evaluations using real-world datasets found that the similarity between

the PPR vector and the PageRank vector, which represents global im-

portance, changes monotonically with α.

The remainder of this chapter is structured as follows. Section 4.2

discusses related work. Section 4.3 presents the approach. Section 4.4 pro-

vides the case study using the movie rating dataset. Section 4.5 shows the

statistical evaluations. Section 4.6 concludes this chapter.

4.2 Related Work

Personalized recommendations with respect to the source node are realized by

quantifying how much each node is worthy of recommendation. This section

discusses the existing quantification methods and the proposed method from

three perspectives: the recommendation criteria, the information used for

recommendations, and the controllability of the recommendation results.

Firstly, regarding the recommendation criteria, while typical recom-

mendations focus only on source proximity to the source node [48], various

Chapter 4. Balancing Global Importance and Source Proximity 25

criteria, including diversity [7, 45–47], novelty [43, 47], serendipity [44, 47],

and fairness [7,8], have been focused. Each recommendation criteria focuses

on different aspects besides a certain level of source proximity. In particular,

diversity emphasizes that the similarity between nodes in the recommenda-

tion list is slight. Novelty emphasizes that the user has not checked the

recommended nodes before. Serendipity emphasizes that the recommended

nodes belong to a field the user has not checked before. Fairness emphasizes

that every node will have the opportunity to be recommended. On the other

hand, this dissertation focuses on the balance between global importance and

source proximity.

Secondly, regarding the information used for recommendations, per-

sonalized recommendation methods are categorized into two types: those

using external information such as node labels [43, 45, 46] and those using

only graph topology [44, 48, 49]. For example, movie recommendations us-

ing external information recommend movies with the same director, cast,

or genre as the user’s favorite [43, 45, 46]. However, these methods are not

general-purpose because they rely on external information. As a result, they

must decide the necessary external information and collect it for each graph.

On the other hand, the methods using only graph topology utilize only the

adjacent information between nodes. For example, these methods exploit

the PPR vector with respect to the interest node [44, 48] and the similar-

ity between the embedding vectors [49]. These methods are general-purpose

because the same analysis method can be applied to any graph.

Chapter 4. Balancing Global Importance and Source Proximity 26

Furthermore, comparing the methods focusing on the PPR vector and

embedding vectors, the former requires computation only on the source node.

In contrast, the latter requires computation on all nodes for the similarity

computation, resulting in a lack of scalability. From the above, this disser-

tation focuses on the general-purpose and lightweight method of exploiting

the PPR vectors.

Thirdly, regarding the controllability of the recommendation results,

the existing methods are categorized into two types: those that can control

how much the recommendation criteria are incorporated into the results by

parameters [43, 45, 46] and those that cannot [44]. Furthermore, the con-

trollable methods are divided into two types: those that can control mono-

tonically [45] and those that cannot [43, 46]. Controllability is an important

element for flexible recommendation according to the users’ preferences and

interest nodes. Moreover, the monotonic control is also an important element

in finding the desired parameter settings with a small amount of computation,

e.g., by binary search. Therefore, this dissertation aims to monotonically con-

trol the influence of global importance on the recommendation results by the

length of the random walks performed in PPR computations. Here, a random

walk has two parameters: the source node s and the termination probability

α that controls the random walk length. However, existing work has mainly

discussed the effect of s on the recommendation results [43,44]. An existing

PPR-based work, where novelty is the recommendation criteria and external

information is used, reports that α affects the novelty of the recommenda-

Chapter 4. Balancing Global Importance and Source Proximity 27

tion results [43]. However, the influence is non-monotonic, highly dependent

on the dataset, and small range. Therefore, the influence of α needs more

discussion.

4.3 Approach

This section describes an approach for balancing the influences of global im-

portance and source proximity on the PPR vector. First, it describes how the

visited nodes of the random walks change by α. Second, it presents the hy-

pothesis that this can be used to balance the influences of global importance

and source proximity on the PPR vector. Note that the expected random

walk length is 1/α, as described in Section 2.2.

If α changes, the visited nodes of the random walks are expected to

change in terms of how close they are to the source node or how high their

PageRank values are. In particular, it is expected that a smaller α and

longer random walks decrease the influence of the source node on the visited

nodes. As a result, nodes with high global importance, i.e., nodes with high

PageRank values, are more likely to be visited even if they are distant from

the source node. In other words, as α approaches 0, the visited nodes are

no longer affected by the source node, and the PPR vector approaches the

PageRank vector, which is independent of the source node. For example,

when the graph is undirected and connected, limα→0 πs is known to converge

to a vector proportional to the stationary distribution [50]. Here, some work

Chapter 4. Balancing Global Importance and Source Proximity 28

reports that the PageRank value of each node strongly correlates with its

degree [50,51].

On the other hand, when the random walks are shortened by increas-

ing α, the source node has a more significant influence on the visited node.

As a result, it is expected that nodes with high source proximity are more

likely to be visited regardless of their global importance. This expectation

means that as α approaches 1, the visited nodes of the random walks are no

longer affected by PageRank value, and the PPR vector will approach the

one-hot vector where only the element corresponding to the source node is

1.

Although the behavior of the PPR vector when α is close to 0 and 1 is

obvious, the behavior when α is between 0 and 1 is unpredictable. Therefore,

it is necessary to observe the monotonicity or speed of changes experimen-

tally. The following sections of this chapter will present the case study and

statistical evaluation using real-world datasets.

4.4 Case Study

This section uses the MovieLens dataset [41] and observes the top 20 nodes

of PPR while changing the termination probability α. MovieLens dataset

contains a total of 34 million ratings from 330,000 users for about 87,000

movies. At each rating, a user u gives a score s of [1.0, 5.0] to a movie m.

These ratings construct a graph whose nodes are users and movies by putting

Chapter 4. Balancing Global Importance and Source Proximity 29

an undirected edge between u and m weighted by s [43–45]. The personalized

recommendation is realized by computing the PPR vector whose source node

is the user’s interest movie. Although the MovieLens dataset includes meta-

data such as the genre of each movie, information other than graph topology

is not used because this dissertation focuses on general-purpose personalized

recommendation without depending on external information.

Table 4.1 shows the top 20 PPR movies for α = 0.2, 0.4, 0.6, 0.8, and

“Avengers: Infinity War Part I” is set to the source node. Note that the

movies shown in bold font are produced by Marvel Studios. Table 4.1a –

4.1d confirms that Marvel movies, which are directly related to the source

node, monotonically rise to the upper rankings as α increases. In particular,

when α = 0.6, 0.8, seven Marvel movies are ranked in the top 20, indicating

that source proximity had a significant influence on the results. Specifically,

the Marvel movies ranked in the top 20 are nodes with PageRank values

between 91st and 706th place. This result indicates that as α increases,

nodes that do not necessarily have high global importance but have high

source proximity are more likely to be visited by random walks.

On the other hand, when α = 0.2, only three Marvel movies, including

the source node, are ranked in the top 20, and non-Marvel movies are nodes

with high PageRank values. In particular, all non-Marvel movies ranked in

the top 20 are nodes with PageRank values in the top 46. This result shows

that when α is small, nodes with higher global importance are more likely to

be visited by random walks.

Chapter 4. Balancing Global Importance and Source Proximity 30

A similar behavior was also observed when taking other movies as the

source node. For example, when “Monsters, Inc.” was taken as the source

node, I found that Disney and Pixar movies monotonically rose to the higher

ranks as α increased. In another case, when “Shoplifters” was taken as the

source node, I confirmed that “Parasite” related in terms of Asian movies

that won the Palme d’Or at the Cannes Film Festival rose to the top of the

list by increasing α.

4.5 Statistical Evaluation

This section quantitatively evaluates the relationships between α and the

characteristics of PPR vectors using nine real-world datasets listed in Ta-

ble 2.2. Section 4.5.1 measures the relationships between α and the influence

of the PageRank vector on the PPR vector, where PageRank represents the

global importance. The results show that an increase in α causes a monotonic

decrease in the influence of the PageRank vector on the PPR vectors, indi-

cating that α can monotonically balance the influences of global importance

and source proximity. In addition, Section 4.5.2 analyzes how PPR values of

the high-ranking nodes change depending on α. As a result, the decrease in

α causes the PPR values of the top-ranking nodes to be concentrated at large

and close values, indicating that random walks tend to visit many nodes in

a relatively uniform distribution.

Chapter 4. Balancing Global Importance and Source Proximity 31

Table 4.1: Top 20 PPR nodes when “Avengers: Infinity War Part I” is the
source node.

(a) α = 0.2

Rank Title
1 Avengers: Infinity War I
2 The Shawshank Redemption
3 The Matrix
4 The Dark Knight
5 Inception
6 Star Wars: Episode IV
7 The Lord of the Rings III
8 The Lord of the Rings I
9 The Lord of the Rings II
10 Star Wars: Episode V
11 Fight Club
12 Forrest Gump
13 Raiders of the Lost Ark
14 Thor: Ragnarok
15 Star Wars: Episode VI
16 Pulp Fiction
17 Interstellar
18 Avengers: Infinity War II
19 Silence of the Lambs
20 Schindler’s List

(b) α = 0.4

Rank Title
1 Avengers: Infinity War I
2 The Matrix
3 The Shawshank Redemption
4 The Dark Knight
5 Inception
6 Star Wars: Episode IV
7 The Lord of the Rings III
8 Thor: Ragnarok
9 Star Wars: Episode V
10 The Lord of the Rings II
11 The Lord of the Rings I
12 Avengers: Infinity War II
13 Fight Club
14 Raiders of the Lost Ark
15 Interstellar
16 Star Wars: Episode VI
17 Guardians of the Galaxy
18 Forrest Gump
19 Iron Man
20 Logan

(c) α = 0.6

Rank Title
1 Avengers: Infinity War I
2 The Matrix
3 The Shawshank Redemption
4 The Dark Knight
5 Inception
6 Thor: Ragnarok
7 Star Wars: Episode IV
8 The Lord of the Rings III
9 Star Wars: Episode V
10 Avengers: Infinity War II
11 The Lord of the Rings II
12 The Lord of the Rings I
13 Fight Club
14 Interstellar
15 Guardians of the Galaxy
16 Raiders of the Lost Ark
17 Star Wars: Episode VI
18 Iron Man
19 Logan
20 Deadpool 2

(d) α = 0.8

Rank Title
1 Avengers: Infinity War I
2 The Matrix
3 The Shawshank Redemption
4 The Dark Knight
5 Thor: Ragnarok
6 Inception
7 Star Wars: Episode IV
8 The Lord of the Rings III
9 Avengers: Infinity War II
10 Star Wars: Episode V
11 The Lord of the Rings II
12 The Lord of the Rings I
13 Guardians of the Galaxy
14 Interstellar
15 Raiders of the Lost Ark
16 Fight Club
17 Star Wars: Episode VI
18 Iron Man
19 Logan
20 Deadpool 2

Chapter 4. Balancing Global Importance and Source Proximity 32

4.5.1 α vs. the influences of global importance on PPR
vectors

This section evaluates the influence of global importance on the PPR vector

by measuring the similarity between the PPR and PageRank vector while

changing α. In particular, PPR vectors for randomly selected 100 nodes are

computed while changing α in 20 ways: [0.01, 0.05, 0.1, 0.15, 0.2, ..., 0.85,

0.9, 0.95]. Then, the similarity between the computed PPR vectors and

the PageRank vector is measured. Here, α used to compute the PageRank

vector is fixed at 0.2. The reason is that when comparing PPR vectors for

different α with PageRank vector as a baseline, the baseline vector needs to

be fixed. The setting of α = 0.2 in PageRank computation follows many

existing works [2–4,9, 52].

The similarity is quantified by Normalized Discounted Cumulative

Gain (NDCG) focusing on the high-ranking nodes [53] and cosine similarity

focusing on the whole vectors. NDCG quantifies the similarity of the top-k

nodes of both vectors as a [0, 1] value, where k = 128 in this chapter; the

more nodes with high PageRank values are included in the top nodes of the

PPR vector, the more significant NDCG value is. Equation (4.1) shows the

definition of NDCG, where ti and t′i are the nodes with the i th highest

PageRank and PPR values, respectively.

ndcg(πs,π, k) =

∑k
i=1

2π(t′i)−1
log2(i+1)

∑k
i=1

2π(ti)−1
log2(i+1)

(4.1)

Cosine similarity quantifies the correlation of the values in both vectors as

Chapter 4. Balancing Global Importance and Source Proximity 33

a [0, 1] value; the more nodes with high PageRank values have high PPR

values, the larger the cosine similarity is.

Figure 4.1 shows the similarity between PageRank and PPR vectors

for each α. Figure 4.1a and Figure 4.1b are the results with the similarity

metrics as NDCG and cosine similarity, respectively. Note that in both

figures, the y-axis represents the average of the 100 similarity values, and the

scale of the y-axis is linear in Figure 4.1a and logarithmic in Figure 4.1b.

Figure 4.1a indicates that in NDCG, a similarity metric focusing only

on the top nodes, an increase in α leads to a monotonic decrease in the sim-

ilarity between PageRank and PPR vectors, increasing the source proximity

in PPR vectors. In particular, by setting α = 0.01, NDCG increases to [0.1,

0.94] for each dataset. Here, when NDCG is 0.94, the top nodes of PPR and

PageRank vectors are almost identical, differing only in that their rankings

are swapped. On the other hand, by setting α = 0.95, NDCG is decreased

to [0.06, 0.42] for each dataset. Here, when NDCG is 0.06, the top nodes in

PPR and PageRank vectors hardly overlap. Moreover, some datasets, such

as Web-BerkStan and Friendster, show a monotonous decrease in NDCG over

α, but the decrease ranges are [0.20, 0.28] and [0.06, 0.1], and the decrease

rates are about 29 and 40%, respectively. Note that, as described later, sig-

nificant decrease rates are observed in Web-BerkStan and Friendster when

the similarity metric is the cosine similarity.

Figure 4.1b also confirms a similar trend when the similarity metric is

the cosine similarity. In particular, by setting α = 0.01, the cosine similarity

Chapter 4. Balancing Global Importance and Source Proximity 34

increases to [0.03, 0.76] for each dataset, and by setting α = 0.95, it decreases

to [0.0001, 0.003]. In Web-BerkStan and Friendster, where the decrease rates

are small in the case of NDCG, the decrease ranges of the cosine similarity are

[0.003, 0.23], [0.0001, 0.03], and the decrease rates are both 99%. Moreover,

the cosine similarity is strongly affected by the dimension of the vectors (in

this case, the number of nodes). Thus, results across datasets should be

compared carefully. For example, Figure 4.1b shows that datasets with a

more significant number of nodes tend to have lower cosine similarity. On

the other hand, it is worth noting that the shape of the decrease among

datasets is similar.

4.5.2 α vs. the distribution of PPR values of high-
ranking nodes

This section evaluates the distribution of PPR values of top-ranking nodes

while changing α. In particular, PPR vectors for 100 randomly selected

source nodes are computed while changing α to [0.01, 0.05, 0.1, 0.15, 0.2, ...,

0.85, 0.9, 0.95] and measure the average PPR value for each ranking from

1st to 128th. Here, based on the report that the average PPR value at each

ranking is distributed to the power [54], the average PPR value y for the

ranking x is fitted to the distribution of y = axb, and the scaling exponent

b (b < 0) is observed. The reason for focusing on the scaling exponent b

is that b quantifies the degree of concentration of PPR values in the high-

ranking nodes. The larger b means that PPR values are concentrated in

Chapter 4. Balancing Global Importance and Source Proximity 35

close values, whereas the more minor b means that PPR values broadly differ

among rankings.

Figure 4.2 shows the relationships between α and the scaling expo-

nents. Figure 4.2 indicates that the scaling exponent decreases monotonically

against α. Therefore, by decreasing α, PPR values of top nodes are likely

to be concentrated, indicating that random walks visit a large number of

nodes in a relatively uniform distribution. The ratio of scaling exponents

for α = 0.01, 0.95 was [1.2, 2.6] for each dataset. Note that the coefficient

of determination when calculating the scaling exponent was always greater

than 0.9.

4.6 Conclusion of This Chapter

It is important to monotonically balance the influences of global importance

and source proximity on PPR-based recommendations. This chapter pro-

poses a method to balance them by the termination probability α, which is

a parameter to control the random walk length. In particular, a case study

using the MovieLens dataset showed that when α is increased, nodes with

high source proximity rose to higher rankings. Moreover, statistical evalua-

tion on nine real-world datasets listed in Table 2.2 revealed that changing α

from 0.01 to 0.95 resulted in a monotonic decrease in the cosine similarity

between PPR and PageRank vectors from 0.76 to 0.003 at the maximum.

Chapter 4. Balancing Global Importance and Source Proximity 36

(a) Similarity metric: NDCG.

(b) Similarity metric: Cosine similarity.

Figure 4.1: α vs. the similarity between PageRank and PPR vectors.

Chapter 4. Balancing Global Importance and Source Proximity 37

Figure 4.2: α vs. scaling exponent in the distribution of PPR values.

Chapter 5

Index-based Random Walks for
Arbitrary Termination
Probabilities

5.1 Overview

Index-based random walk path generation needs to be flexible for an arbitrary

termination probability α. Here, the flexible path generation requires that α

is easily changed with light overhead while using the index. The capability of

fast and flexible random walk path generation allows a wide variety of graph

analyses. Chapter 4 claims that α should be changed from 0.01 to 0.95

depending on the user’s preferences. Additionally, α is set to 0.15 or 0.2 in

Personalized PageRank (PPR) [9], 0.1 – 0.5 in graph neural network [55–60],

and 0.02 – 0.7 in embedding [49, 61–63]. To be more specific, the Flickr

dataset shows the best performance with α = 0.3 for embedding [62], whereas

α is set to 0.15 in PPR-based recommendations [30]. Moreover, existing work

38

Chapter 5. Index-based Random Walks for Arbitrary α 39

has clarified the meaning of modifying α in an application [23,24,64,65]. In

particular, it is suggested to modify α based on the query source nodes [24,64]

and the querying user [23]. Comparing random walk paths for different α

realizes spam detection [65]. From the above, quickly generating random

walk paths for the arbitrary α is essential for the flexible graph analysis.

Theoretically, there are two independent types of techniques for speed-

ing up flexible random walk path generation: computational and algorithmic

techniques. Note that the computational and algorithmic techniques can be

coupled because they are for different processing layers. As computational

techniques, many methods to generate random walk paths for any α [66–70]

have been proposed. Each method removes the bottleneck of the specific envi-

ronments, such as in-memory [69,70], disk-based [67,68], and distributed [66]

settings. However, these methods perform random walks on the fly, and they

do not contribute to decreasing computational complexity. In contrast, the

existing algorithmic techniques [10–12, 21, 71] are not flexible because these

methods only accept restricted α due to the application constraint. The ex-

isting algorithmic techniques exploit an index to omit the on-the-fly random

walks. However, the acceptable α is constrained by αindex in these methods,

where αindex is the termination probability used for the index generation.

This dissertation aims to develop an algorithmic technique for gener-

ating random walk paths for arbitrary α. This chapter proposes an index-

based method called αFlexWalk to achieve the goal. Its index is the array

of random walk paths for the termination probability αindex starting from

Chapter 5. Index-based Random Walks for Arbitrary α 40

each node. In particular, αFlexWalk probabilistically manipulates the in-

dexed paths based on the magnitude relationship between α and αindex. It

connects and cuts the indexed paths when α < αindex and α > αindex, re-

spectively. As the manipulation is based on mathematical considerations,

αFlexWalk generates guaranteed paths.

Evaluation measures the processing time of αFlexWalk while incor-

porating it into the Monte Carlo phase of FORA+ using nine real-world

datasets. As existing methods cannot use the index for accepting arbitrary

α, FORA+ using αFlexWalk is compared with index-free FORA. The results

show that αFlexWalk improves the processing time of the index-free random

walk method by up to 11.2 times.

The main contributions of this chapter are summarized as follows.

• This chapter developed an index-based algorithm αFlexWalk to gener-

ate random walk paths for arbitrary termination probabilities.

• As αFlexWalk is performed based on mathematical considerations, gen-

erated paths are guaranteed.

• Evaluations using nine real-world datasets showed that αFlexWalk im-

proves the processing time of the index-free Monte Carlo by at most

11.2 times.

Finally, the remainder of this chapter is structured as follows. Sec-

tion 5.2 discusses related works. Section 5.3 presents the approach. Sec-

Chapter 5. Index-based Random Walks for Arbitrary α 41

tion 5.4 proposes a method called αFlexWalk. Section 5.5 shows the experi-

mental results. Section 5.6 concludes this chapter.

5.2 Related Work

This section describes the existing methods to speed up random walk path

generation and compares them with the proposed method. The existing

methods are categorized into computational [66–70] and algorithmic meth-

ods [10–12, 21, 71]. The computational ones are useful for flexible path gen-

eration. However, they do not contribute to reducing time complexity. On

the other hand, algorithmic ones speed up the random walk path generation.

However, they cannot generate paths for arbitrary α due to the application

constraint. I also show the characteristics of the proposed flexible algorithmic

method compared with these methods.

The computational methods [66–70] speed up the typical random walk

method Monte Carlo described in Section 2.2. Each method assumes a differ-

ent execution environment and resolves bottlenecks specific to each environ-

ment. For example, in the in-memory settings, memory-access-latency-aware

techniques have been proposed [69, 70]. In particular, ThunderRW [69] pro-

poses a step interleaving using the software prefetch to hide memory access

latency. Flashmob [70] proposes the cache-efficient graph management strat-

egy by focusing on the fact that random walks concentrate on high-degree

nodes. For the distributed settings, KnightKing [66] proposes the synchro-

Chapter 5. Index-based Random Walks for Arbitrary α 42

nization technique to reduce server communication. For cases where I/O pro-

cessing between the disk and the memory is the bottleneck, GraphWalker [67]

and NosWalker [68] propose block-centric and scheduling techniques, respec-

tively. As these methods generate random walk paths on the fly, they do not

decrease the time complexity compared with Monte Carlo. Developing the

algorithmic technique is necessary for improving more.

Although the existing algorithmic methods [10–12,21,71] quickly gen-

erate random walk paths while referencing the index, these methods only

accept the restricted α. The acceleration method is described in Section 2.5.

These methods use the indexed paths as they are. Therefore, the acceptable

α is limited to αindex, where αindex is the termination probability used for the

index generation.

The proposed method αFlexWalk is categorized as an algorithmic

method. By manipulating the indexed paths, it generates guaranteed random

walk paths for arbitrary α. As a result, αFlexWalk quickly generates a

random walk path using the index and reduces the time complexity at the

same time.

Finally, note that αFlexWalk is also effective on dynamic graphs. Sev-

eral methods [11,12,71] propose efficient index management strategies while

considering the graph updates. The strategies work for αFlexWalk, so it is

robust to dynamic situations. The detailed discussion will be presented in

Chapter 6.

Chapter 5. Index-based Random Walks for Arbitrary α 43

5.3 Approach

This section explains the approach to generate the guaranteed random walk

paths for the termination probability α using the indexed paths for the ter-

mination probability αindex. The following part will consider the generation

of a random walk path starting at node s, denoted as path, from an indexed

random walk path starting at node v (v ∈ V), denoted as pathv. Here, the

termination probabilities of path and pathv are α and αindex, respectively.

The visiting nodes of pathv are represented as [v, v1, v2, ..., vl].

First, when generating pathv, a termination judgment is performed

at each visiting node by repeatedly generating a uniform random number

within [0, 1]. If a random number does not exceed αindex, the random walk

terminates. Otherwise, the random walk moves to the next node. In the case

of pathv, random numbers generated at v, v1, v2, ..., vl−1 do not exceed αindex,

and a random number generated at vl exceeds αindex. In the following, the

random numbers generated at v, v1, v2, ..., vl are denoted as [rv, rv1 , rv2 , ..., rvl],

respectively.

To generate path whose termination probability is α, αFlexWalk need

to determine the magnitude relationships between α and each random num-

ber r ∈ [rv, rv1 , rv2 , ..., rvl]. If r ≤ α, path terminates at the corresponding

node. In this case, αFlexWalk cuts pathv to generate path. If all random

numbers in [rv, rv1 , rv2 , ..., rvl] exceed α, path needs to continue a random

walk after vl. In this case, to generate path, αFlexWalk connects another

Chapter 5. Index-based Random Walks for Arbitrary α 44

indexed path from vl to pathv.

5.4 Proposed Method: αFlexWalk

This section proposes an index-based method, αFlexWalk, to generate ran-

dom walk paths for an arbitrary α by efficiently utilizing the random numbers

generated during indexing. The following part will explain the details of the

αFlexWalk algorithm by dividing the cases based on the magnitude rela-

tionship between α and αindex. Note that when α = αindex, αFlexWalk just

outputs the indexed paths as they are, and hence, it is sufficient to describe

the case of α ̸= αindex. Moreover, αFlexWalk may run out of indexed paths

in some cases. Therefore, how to deal with the index shortage will be de-

scribed. The detailed algorithm of αFlexWalk for the case of α < αindex and

α > αindex are shown in Algorithms 3 and 4, respectively. In Algorithms

3 and 4, Idx.get(v) returns the random walk path longer than one starting

from node v while referencing the index. The processing of Idx.get(v) is

related to the problem of the index shortage. The details will be discussed

in detail in Section 5.4.3.

5.4.1 When α < αindex

When α < αindex, a random walk path path for the termination probability

α does not terminate at the intermediate nodes of pathv, and αFlexWalk

only considers connecting the indexed paths. The reason is that when gen-

Chapter 5. Index-based Random Walks for Arbitrary α 45

erating pathv, all random numbers used for the termination judgment at

v, v1, v2, ..., vl−1, denoted as rv, rv1 , rv2 , ..., rvl−1
exceed αindex. In this case,

it is ensured that α < αindex. Therefore, it is clear that [rv, rv1 , rv2 , ..., rvl−1
]

exceed α, too. From the above, it is guaranteed that path does not terminate

at node v to vl−1.

On the other hand, path probabilistically terminates at the tail node

of pathv, denoted as vl. When pathv is generated, it is ensured that rvl ≤

αindex. However, it is not ensured that rvl ≤ α, because α < αindex. Here,

the key point is that rvl can be treated as the uniform random number

within [0,αindex], and the probability that the uniform random number within

[0,αindex] does not exceed α is α/αindex. Therefore, αFlexWalk terminates

path at vl with the probability α/αindex and does not terminate and continue

to move with the probability 1−α/αindex. If path terminates at vl, αFlexWalk

outputs pathv as it is. Otherwise, αFlexWalk connects one of the indexed

paths starting from vl, denoted as pathvl , to pathv. After connecting pathv,

it is also ensured that path does not terminate at intermediate nodes of

pathvl . As with the same case of pathv, αFlexWalk determines whether path

terminates at the tail nodes of pathvl with the probability α/αindex. By

repeating this process until path terminates with the probability α/αindex,

αFlexWalk completes to generate the guaranteed path for the termination

probability α.

The length of path needs to increase after pathvl is connected. How-

ever, if the length of pathvl is one, path will not get longer after the connec-

Chapter 5. Index-based Random Walks for Arbitrary α 46

tion. To solve this problem, αFlexWalk restricts the length of the indexed

paths to greater than one.

In this restriction, the length of the generated paths is always greater

than one. Therefore, to ensure that the paths generated by αFlexWalk in-

clude paths of length one, this chapter proposes a method to generate paths

of length one and others separately. If αFlexWalk can determine the guar-

anteed number of paths of length one and more respectively, the accuracy of

αFlexWalk will be ensured.

When generating ω paths for the termination probability α, αFlex-

Walk determines the number of paths of length one with the binomial dis-

tribution. The binomial distribution is the probability distribution that the

number of successes follows when a Bernoulli trial with a success probability

p is repeated k times. The probability that a random walk length is one is

α, and each path generation is considered a Bernoulli trial. Consequently,

the number of length one paths also follows the binomial distribution. Note

that the random numbers following the binomial distribution are generated

in O(1) time complexity by the inverse transform method [72]. By perform-

ing this processing, αFlexWalk generates paths of length one and others

separately.

An example of αFlexWalk when α < αindex on the sample graph

shown in Figure 2.1 is presented below. In this example, s = a, α = 0.1,

αindex = 0.2, ω = 3, and assume that the indexed paths at nodes a, b, c are

as shown in Table 5.1. Note that all indexed paths are longer than one, as

Chapter 5. Index-based Random Walks for Arbitrary α 47

Algorithm 3 αFlexWalk (when α < αindex)

Input: Source node s, termination probability α (< αindex), the number of
random walks ω, index Idx

Output: List of the random walk paths paths
1: paths← empty list;
2: αindex ← Idx.α;
3: length one path count← bin dist(α,ω);
4: for i = 1 to length one path count do
5: paths.append([s]);
6: end for
7:

8: for i = 1 to ω − length one path count do
9: path← Idx.get(s);

10: terminate prob← α
αindex

;
11: while random() > terminate prob do
12: current node← path.back();
13: path.pop();
14: path.connect(Idx.get(current node));
15: end while
16: paths.append(path);
17: end for

shown in Table 5.1.

First, αFlexWalk determines the number of length-one paths out of

three paths. By generating a random number following the binomial distri-

bution with p = α = 0.1 and k = ω = 3, αFlexWalk gets the guaranteed

number, assuming the random number is one in this case. Therefore, the

first path is [a].

Second, αFlexWalk generates the remaining two random walk paths

longer than one. As the second path generation, αFlexWalk references the

index of node a and gets the indexed path [a, b, d]. αFlexWalk then de-

Chapter 5. Index-based Random Walks for Arbitrary α 48

Table 5.1: Sample Indexed Paths (Excerpt).

Source node Indexed paths
a [a, b, d], [a, b, c]
b [b, d, f], [b, c, a, b], [b, c, e]
c [c, d], [c, e], [c, e, f, e], [c, a]

termines whether path terminates at the tail node d with the probability

α/αindex = 0.5. For the judgment, αFlexWalk generates a uniform random

number within [0, 1] and checks whether it exceeds 0.5. Assuming that the

uniform random number is 0.4, which does not exceed 0.5, path terminates

at node d. Consequently, the second path is [a, b, d].

As the third path generation, αFlexWalk references the index of node

a and gets the indexed path [a, b, c]. Note that it cannot reference [a, b, d] be-

cause every random walk must be performed independently, and an indexed

path must not be referenced multiple times during the query. αFlexWalk then

determines whether path terminates at the tail node c with the probability

of 0.5. Assuming that the uniform random number for the judgment is 0.8,

which exceeds 0.5, path continues to move from node c. Then, αFlexWalk

references the index of node c and gets the indexed path [c, d]. Afterward, it

connects [c, d] to [a, b, c], resulting in [a, b, c, d]. Similarly, αFlexWalk deter-

mines whether path terminates at the tail node d with the probability 0.5.

Assuming that the uniform random number is 0.2, which does not exceed 0.5,

path terminates at node d. Consequently, the third path is [a, b, c, d]. From

the above, αFlexWalk generates three guaranteed paths [a], [a, b, d], [a, b, c, d].

Chapter 5. Index-based Random Walks for Arbitrary α 49

At last, the time complexity of αFlexWalk when α < αindex is O(ω ·

αindex/α). The reason is that the process of αFlexWalk is constructed with

the generating length-one paths and other paths. Clearly, the time com-

plexity of the former process is O(ω · α). For the latter one, the expected

number of generated paths is ω · (1− α), and the expected number of index

references is αindex/α. Therefore, the time complexity of the latter process is

O(ω ·(1−α) ·αindex/α). To conclude, the total time complexity of αFlexWalk

becomes O(ω · αindex/α).

5.4.2 When α > αindex

When α > αindex, a random walk path path for the termination probability α

always terminates until the tail node vl. The reason is that when generating

pathv, it is ensured that rvl ≤ αindex. Considering α > αindex, it is clear

that rvl < α. Therefore, path always terminates until vl. Consequently,

αFlexWalk only needs to consider cutting pathv.

On the other hand, path probabilistically terminates at each inter-

mediate node of pathv. When generating pathv, all random numbers r ∈

[rv, rv1 , rv2 , ..., rvl−1
] exceeds αindex. The key point is that r can be treated

as the uniform random number within (αindex, 1]. The probability that

the uniform random number within (αindex, 1] does not exceed α is (α −

αindex)/(1 − αindex). Therefore, αFlexWalk generates path by judging the

magnitude relationships between a uniform random number within [0, 1], de-

noted as r, and (α− αindex)/(1− αindex) at each next node of pathv. It cuts

Chapter 5. Index-based Random Walks for Arbitrary α 50

pathv when r < (α − αindex)/(1 − αindex). If no random number less than

(α−αindex)/(1−αindex) is generated until node vl−1, αFlexWalk output pathv

as it is because path is ensured to terminate until node vl.

The problem here is that if αFlexWalk judges whether path terminates

at each node in pathv, it performs |pathv|−2 judgments at most, resulting in

the same time complexity of the index-free method. To solve this problem,

αFlexWalk determines the timing such that the random number does not

exceed (α − αindex)/(1 − αindex) in a single random number generation by

leveraging the geometric distributions. The geometric distribution is the

probability distribution followed by the number of repeated Bernoulli trials

with a success probability p until the first successful trial. As the generation

of the uniform random numbers is the Bernoulli trial, the timing such that

the random number does not exceed the threshold also follows the geometric

distribution. Note that the inverse transform method [72] generates the

random number following the geometric distribution in O(1) time complexity.

αFlexWalk generates length-one paths and others separately when

α < αindex, and this technique can be applied when α > αindex. In this

case, αFlexWalk generates length-one paths by the binomial distribution

and other paths by cutting the indexed paths. Therefore, the judgment of

the magnitude relationships between a uniform random number and (α −

αindex)/(1 − αindex) are performed from node v1, the second node of pathv.

By doing this, αFlexWalk generates length-one paths and others separately.

An example of αFlexWalk when α > αindex on the sample graph

Chapter 5. Index-based Random Walks for Arbitrary α 51

Algorithm 4 αFlexWalk (when α > αindex)

Input: Source node s, termination probability α (> αindex), the number of
random walks ω, index Idx

Output: List of the random walk paths paths
1: paths← empty list;
2: αindex ← Idx.α;
3: length one path count← bin dist(α,ω);
4: for i = 1 to length one path count do
5: paths.append([s]);
6: end for
7:

8: for i = 1 to ω − length one path count do
9: path← Idx.get(s);

10: terminate prob← α−αindex
1−αindex

;
11: trial count← geo dist(terminate prob);
12: if trial count+ 1 < path.size() then
13: path← path.resize(trial count+ 1);
14: end if
15: paths.append(path);
16: end for

shown in Figure 2.1 is presented below. In this example, s = a, α = 0.6,

αindex = 0.2, ω = 3, and assume that the indexed paths are the same as in

the previous example, as shown in Table 5.1. First, αFlexWalk determines

the number of length-one paths out of three paths, as is the same case with

α < αindex. Assuming that the number of length-one paths is one in this

case, the first path is [a].

Second, αFlexWalk generates the remaining two random walk paths

longer than one. As the second path generation, αFlexWalk references the

index of node a and gets the indexed path [a, b, d]. αFlexWalk then de-

termines when a uniform random number within [0, 1] does not exceed

Chapter 5. Index-based Random Walks for Arbitrary α 52

(α − αindex)/(1 − αindex) = 0.5 with the geometric distribution. Assum-

ing that the random number gained from the geometric distribution is one,

indicating that a uniform random number within [0, 1] does not exceed α at

the second node. Consequently, the second path is [a, b].

As the third path generation, αFlexWalk references the index of node

a and gets the indexed path [a, b, c]. In this case, assuming that the ran-

dom number gained from the geometric distribution is 5, indicating that a

uniform random number within [0, 1] consistently exceeds α until the tail

node. Consequently, αFlexWalk does not cut the path and determines that

the second path is the same as the indexed path [a, b, c]. From the above,

αFlexWalk generates three guaranteed paths [a], [a, b], [a, b, c].

At last, the time complexity of αFlexWalk when α > αindex is O(ω).

The reason is that the process of αFlexWalk is constructed with the gen-

erating length-one paths and other paths. Clearly, the time complexity of

the former process is O(ω · α). For the latter one, the expected number of

generated paths is ω ·(1−α). The time complexity of generating each path is

O(1) because the number of index references is always one, and the cutting

point is determined with O(1) time complexity. To conclude, the total time

complexity of αFlexWalk becomes O(ω).

Chapter 5. Index-based Random Walks for Arbitrary α 53

5.4.3 How to Deal with the Index Shortage

An indexed path must not be referenced multiple times during a query be-

cause all random walks must be performed independently. However, it is

difficult to expect the number of index references for each node before the

query. For example, αFlexWalk may reference the index of a specific node

v many times when α < αindex. The reason is that the number of index

references while connecting the indexed paths has no upper limit, and the

index references may concentrate on v. Therefore, αFlexWalk may use up

the indexed paths during a query. It is necessary to consider what to do in

the case of index shortages.

When index shortages occur during a query, αFlexWalk performs a

part of the random walks on the fly. If there are no indexed paths that are

unused in the query, αFlexWalk performs a random walk until it reaches

a node with unused indexed paths. As soon as αFlexWalk obtains unused

indexed paths, it does not perform the subsequent random walks and refer-

ences them instead. For example, when the index shortage occurs at node

s, αFlexWalk moves the random walk to the s’s randomly selected adjacent

node v. Afterward, αFlexWalk performs the termination judgment with the

probability αindex. If it does not terminate, αFlexWalk checks whether v has

the unused indexed paths. When v has the ones, generating the path for the

termination probability αindex is completed by referencing the indexed path

starting from v and connecting it to the path [s, v]. On the other hand, when

v does not have, αFlexWalk moves the random walk to the random adjacent

Chapter 5. Index-based Random Walks for Arbitrary α 54

node of v and continues to perform the same process. This process minimizes

the number of on-the-fly random walk transitions.

Algorithm 5 shows the detail of the Idx.get() function. It returns the

random walk path longer than length-one, starting from s, for the termina-

tion probability αindex, using Idx while considering the index shortage. In

Algorithm 5, ref count map is a map that manages the number of index

references for each node v during the query with the node v as the key. It

prevents a specific indexed path from being referenced multiple times in a

query. It initializes current node with s and path with [s] (lines 1–2). Af-

terward, it continues the random walk for the termination probability αindex

until it reaches the node that has the unused path (lines 11–12), connects

that unused path to path (lines 6–8), and completes the generation of path

(line 9).

Moreover, in FORA+, the default number of indexed paths starting

from node v is ⌈|Nout(v)|/αindex⌉. By changing this size, αFlexWalk can

balance the frequency of index shortages and the space overhead of the index.

The coefficient c is introduced to decide the balance; the number of indexed

paths starting from node v is set as ⌈c · |Nout(v)|/αindex⌉. Increasing c results

in decreasing the likelihood of index shortages, and vice versa. Note that if

c ≥ 1, the index shortage occurs only when α < αindex. The reason is that

when α > αindex, the index re-references to connect paths never occur, and

it is ensured that the number of index references for each node v is less than

or equal to ⌈c · |Nout(v)|/αindex⌉. At last, although increasing c reduces the

Chapter 5. Index-based Random Walks for Arbitrary α 55

Algorithm 5 Idx.get()

Input: Index Idx, source node s, map that manages the number of the index
references for each node ref count map

Output: A random walk path path
1: current node← s;
2: path← [s];
3: repeat
4: ref count← ref count map[current node];
5: if ref count < Idx[current node].size() then
6: path.pop();
7: path.connect(Idx[current node][ref count]);
8: ref count map[current node]++;
9: break;

10: else
11: current node← random adjacent node of current node;
12: path.append(current node);
13: end if
14: until random() < αindex;

likelihood of index shortages, index shortages cannot be eliminated because

of the unpredictability of the index referencing pattern. Section 5.5.4 will

show the experimental results of the trade-off.

5.4.4 Accuracy Guarantee

This section proves that Algorithms 3, 4, and 5 generate the guaranteed

random walk paths for the termination probability α. In particular, this

section shows that the Idx.get() function presented in Algorithm 5 returns a

path for the termination probability αindex and its length greater than one.

Afterward, it will be proved that Algorithms 3 and 4 generate guaranteed

paths for the termination probability α.

Chapter 5. Index-based Random Walks for Arbitrary α 56

Algorithm 5 splits at lines 5–9 and 11–12 depending on whether the

index of current node has been used up. In both cases, it is clear that the

output is longer than one at this time. Moreover, lines 6–7 can be replaced

with Monte Carlo because the indexed path is connected here. In this case, it

is evident that the random walk terminates with probability αindex at every

second or later node, without depending on whether the index for each node

is exhausted. From the above, Algorithm 5 returns the random walk path

for the termination probability αindex and its length greater than one.

Next, considering the correctness of Algorithms 5, Algorithms 3 and

4 return the guaranteed paths for the termination probability α. Obviously,

the distribution of the number of length-one paths and others is ensured by

the binomial distribution. Therefore, it is enough to show that each random

walk with a length of at least two terminates with probability α at every

second or later node.

When α < αindex, Algorithm 3 is considered to perform a two-phase

termination judgment at every second or later next node. In particular, in

each visiting node, Algorithm 3 performs the termination judgments for the

termination probability αindex and α/αindex twice. When both judgments are

satisfied, the random walk terminates. As these two judgments are performed

independently, the probability such that the random walk terminates at each

visiting node is αindex · α/αindex = α. Consequently, each longer than one

random walk path terminates with probability α at every second or later

next node.

Chapter 5. Index-based Random Walks for Arbitrary α 57

When α > αindex, the path generated by Algorithm 4 terminates at

the lth visiting node with the probability (1 − α)l−2α (l ≥ 2). Here, the

case that a path terminates at the lth visiting node is divided into the two

following cases.

1. The length of the indexed path is greater than or equal to l, and the

output of the geo dist() function in line 11 is l − 1.

2. The length of the indexed path is l, and the output of the geo dist()

function in line 11 is at least l.

Firstly, Equation (5.1) represents the probability such that the length of the

indexed path becomes x(≥ 2), denoted as P1(x).

P1(x) = (1− αindex)
x−2 · αindex (5.1)

Secondly, Equation (5.2) represents the probability such that the output of

the geo dist() function becomes y(≥ 1), denoted as P2(y).

P2(y) =

(
1− α− αindex

1− αindex

)y−1

· α− αindex

1− αindex
(5.2)

Therefore, the occurrence probability of case 1 described above, denoted as

P3, is represented by Equation (5.3).

P3 = Σ∞
x=lP1(x)P2(l − 1)

= (1− α)l−2 · α− αindex

1− αindex
(5.3)

Chapter 5. Index-based Random Walks for Arbitrary α 58

On the other hand, Equation (5.4) represents the occurrence probability of

case 2, denoted as P4.

P4 = Σ∞
y=lP1(l)P2(y)

=
αindex(1− α)l−1

1− αindex
(5.4)

Consequently, when α > αindex, the probability P that the path generated

by Algorithm 4 terminates at the lth visiting node is represented by Equa-

tion (5.5), indicating the correctness of Algorithm 4.

P = P3 + P4 = (1− α)l−2α (5.5)

Finally, when α = αindex, αFlexWalk obviously returns the path for

the termination probability α because it returns the indexed path as it is.

5.5 Evaluation

5.5.1 Index Size

αFlexWalk uses the parameter index size coefficient c to control the index

size. This evaluation shows the relationships between c and the total index

size when αindex = 0.2. Note that the number of indexed paths starting from

each node v is ⌈c · |Nout(v)|/αindex⌉, and when c = 1, the index size is the

same as default FORA+.

Figure 5.1 shows the relationships between the index size coefficient c

and the index size. For the sake of clarity, the nine datasets are divided into

Chapter 5. Index-based Random Walks for Arbitrary α 59

three groups according to their size, and the results for each group are shown

in Figure 5.1a, Figure 5.1b, and Figure 5.1c, respectively. As expected in

Section 5.4.3, the index size is proportional to c.

To compare the index size among nine datasets, Figure 5.2 shows

the bar graph indicating the index size when αindex = 0.2 and c = 1. As

shown in Figure 5.2, it is clear that even for the most extensive dataset, the

total index size is less than 1000 GB. From the above, the scalability of the

indexing scheme is confirmed.

5.5.2 Processing Time of Random Walk Query

This evaluation compares αFlexWalk with Monte Carlo, which is the typical

index-free method, in terms of the processing time to show the algorithmic

contribution. I measure the processing time of αFlexWalk and the index-free

Monte Carlo.

Regarding the parameters of random walk queries, the source nodes

are randomly selected 100 nodes, ω = 103, and α ∈ [0.0125, 0.025, ..., 0.9375,

0.95]. Regarding the parameters of αFlexWalk, c = 1, and αindex ∈ [0.1, 0.15,

0.2, 0.25, 0.3]. However, for Twitter and Friendster, only a part of αindex is

evaluated due to the memory budgets. αindex ∈ [0.2, 0.25, 0.3] for Twitter,

and αindex = 0.3 for Friendster.

Figure 5.3–Figure 5.5 show the processing time of αFlexWalk and

Monte Carlo. The x-axis represents the queried α, and the y-axis represents

Chapter 5. Index-based Random Walks for Arbitrary α 60

the average processing time for the 100 source nodes. The series indicated by

the solid line and circle plots show the results of αFlexWalk, and the color of

each plot represents αindex. The series indicated by dashed lines and square

plots show the results of Monte Carlo.

According to Figure 5.3–Figure 5.5, the processing time decreases

as αindex decreases and α increases. In particular, the processing time of

αFlexWalk improves by up to [2.3, 11.2] times compared with that of Monte

Carlo for each dataset. To be more specific, the processing time of αFlexWalk

behaves differently when α < αindex and α ≥ αindex. When α < αindex, the

decrease speed in processing time against α is fast in the case of α > αindex.

The reason is that the number of index references decreases at different speeds

against α when α < αindex and α ≥ αindex.

When α < αindex, the expected number of index references to generate

a path is αindex/α. On the other hand, when α > αindex, the expected number

of index references to generate a path is always one in the case of generating

a path longer than one. Although the number of paths longer than one

decreases against α, the decreasing speed in processing time against α is less

than that in the case of α < αindex. As the number of index references does

not differ by αindex, the processing time is also the same among different

αindex when α > αindex.

Moreover, as shown in Figure 5.3, the processing times of the index-

based αFlexWalk and the index-free Monte Carlo are almost the same for

minor α in DBLP and Web-BerkStan. The reason is that their graph size is

Chapter 5. Index-based Random Walks for Arbitrary α 61

trivial, and most of the graph data can be handled in the cache memory. As

a result, the merit of using the index in these small datasets is not significant.

5.5.3 Processing Time of PPR Query

This evaluation compares the processing time of the Monte Carlo phase in the

FORA framework to show the practical contribution. I incorporate αFlex-

Walk into FORA+ and measure the processing time of the Monte Carlo

phase during PPR computation. I also measure the processing time of the

Monte Carlo phase in FORA, not using an index, to clarify the difference in

processing time between both methods.

Regarding the parameters of PPR queries, the source nodes are ran-

domly selected 100 nodes, ω is α · 106, and α is changed to [0.0125, 0.025, ...,

0.9375, 0.95]. Here, I determine ω based on α because it has been reported

that the computational accuracy in PPR depends on the total path length

of the random walks, and by setting ω = α · 106, the total path length is

fixed at 106. The parameters of αFlexWalk are the same as the evaluation in

Section 5.5.2. Note that there is no randomness in the Forward Push phase

of the FORA framework, so if the parameters of the PPR query are the same,

the random walk queries generated in the Monte Carlo phase will also be the

same.

Figure 5.6–Figure 5.8 show the results. The representation of the

figures is the same as in Figure 5.3–Figure 5.5. The whole trend is similar to

Chapter 5. Index-based Random Walks for Arbitrary α 62

the evaluation in Section 5.5.2: αFlexWalk is faster than index-free Monte

Carlo in most cases, and the processing time decreases as αindex decreases

and α increases. The processing time of FORA+ with αFlexWalk improves

by up to [1.3, 14.4] times compared with that of FORA with Monte Carlo

for each dataset.

Furthermore, although this evaluation fixes total random walk length

among α, the results show that the processing time decreases against α. The

reason is that the number of paths that terminate in the Forward Push phase

of the FORA framework decreases against α.

Moreover, in directed datasets such as Web-BerkStan, Flickr, and

Twitter, the processing time rapidly decreases when α approaches zero. The

reason is that a long random walk reaches dangling nodes, whose degree

is zero, before it terminates with the probability α. When it reaches the

dangling node, it automatically terminates. As a result, the processing time

behaves differently compared with the results of undirected graphs.

5.5.4 The Frequency of the Index Shortages

αFlexWalk performs a random walk without using the index until it reaches

a node where an unused indexed path exists when the index shortages occur.

In addition, the frequency of index shortages is controlled by a parameter

called the index size coefficient c. Therefore, I measure the frequency of

index shortages and the number of random walks performed in the Monte

Chapter 5. Index-based Random Walks for Arbitrary α 63

Carlo phase of FORA+ while changing c. I then obtain the frequency of

index shortages in a single random walk. Regarding the parameters of PPR

queries, the source node is randomly selected 100 nodes, and I set α to 0.0125

and ω to α · 106. Regarding the parameters of αFlexWalk, I set αindex to 0.3

and change c to [0.2, 0.4, ..., 1.8, 2]. In order to make it most likely that index

shortages will occur, I fix both α and αindex to the minimum and maximum

values in the evaluation in Section 5.5.3, respectively. The reason why index

shortages are more likely to occur is that the smaller α leads to the longer

the path, and the larger αindex is, the more often the index is referenced.

With such parameter settings, I can evaluate the worst case for the overhead

of the αFlexWalk.

Figure 5.9 shows the relationship between the index size coefficient

c and the average frequency of index shortages in a single random walk for

datasets other than Web-BerkStan. Web-BerkStan showed a significantly

different trend from the other datasets, so I will discuss it separately later.

Figure 5.9 shows that the number of index shortages is four or less for each

random walk in the datasets other than DBLP. Even in DBLP, where the

number of index shortages is the highest in the figure, the number is at most

around 10. Considering that the average path length is 80 when α is 0.0125,

the number of index shortages accounts for less than 1/8 of the number of

random walk transitions, indicating that most random walk transitions are

achieved by the index. As mentioned above, in this evaluation, the parame-

ters are set so that index shortages are most likely to occur; therefore, it is

Chapter 5. Index-based Random Walks for Arbitrary α 64

expected that index shortages will be less likely to occur in other parameter

settings.

In addition, for datasets other than DBLP, the decrease in the number

of index shortages when the index size coefficient is changed from 0.2 to 2 is

two or less. From these results, it is apparent that when the memory budget

is limited, reducing the index size coefficient to reduce the index space cost

has a limited impact on the computation time. This is because, in FORA+,

the index size is determined based on the maximum number of paths that

can be required in the Monte Carlo phase when α = αindex and c = 1, and

the number of paths required during actual operation is sufficiently smaller

than the worst-case scenario FORA+ assumes. On the other hand, in DBLP,

by changing the index size coefficient from 0.2 to 2, the frequency of index

shortages is reduced by almost half. The reason for this is supposed to be

that in DBLP, index references tend to concentrate on specific nodes.

Furthermore, Figure 5.10 shows the results for Web-BerkStan. For

detailed analysis, I change α to [0.0125, 0.1, 0.2, 0.4, 0.6]. In the case where

α = 0.0125 and c = 0.2, the number of index shortages exceeds 40, and

about half of the transitions are performed without an index. The reason

for this is thought to be that Web-BerkStan is a directed graph that is not

strongly connected. In other words, it is thought that frequent index short-

ages are caused by the fact that index accesses are concentrated on nodes in

a particular subgraph when a long random walk is performed. Note that, in

Web-BerkStan, the change in the number of index shortages for c is relatively

Chapter 5. Index-based Random Walks for Arbitrary α 65

large. Therefore, it is recommended that the index size should be increased

in environments where high-speed computation is required.

5.6 Conclusion of This Chapter

Existing index-based random walk path generation methods accept the spe-

cific termination probability α, resulting in the inflexible graph analysis. This

chapter focused on the fact that modifying α causes the probabilistic change

in the length of random walks. It proposed αFlexWalk that connects and

cuts the indexed paths to generate guaranteed paths for any α. Evaluations

with nine real-world datasets found that αFlexWalk achieved at most 11.2

times speedup compared to the index-free random walk method.

Chapter 5. Index-based Random Walks for Arbitrary α 66

(a) Small datasets.

(b) Medium datasets.

(c) Large datasets.

Figure 5.1: Index size coefficient vs. Index size.

Chapter 5. Index-based Random Walks for Arbitrary α 67

Figure 5.2: Index size (αindex = 0.2, c = 1).

Chapter 5. Index-based Random Walks for Arbitrary α 68

(a) DBLP

(b) Web-BerkStan

(c) YouTube

Figure 5.3: α vs. average processing time of random walks for each αindex

(small datasets).

Chapter 5. Index-based Random Walks for Arbitrary α 69

(a) Flickr

(b) MovieLens

(c) Live Journal

Figure 5.4: α vs. average processing time of random walks for each αindex

(medium datasets).

Chapter 5. Index-based Random Walks for Arbitrary α 70

(a) Orkut

(b) Twitter

(c) Friendster

Figure 5.5: α vs. average processing time of random walks for each αindex

(large datasets).

Chapter 5. Index-based Random Walks for Arbitrary α 71

(a) DBLP

(b) Web-BerkStan

(c) YouTube

Figure 5.6: α vs. average processing time of PPR for each αindex (small
datasets).

Chapter 5. Index-based Random Walks for Arbitrary α 72

(a) Flickr

(b) MovieLens

(c) Live Journal

Figure 5.7: α vs. average processing time of PPR for each αindex (medium
datasets).

Chapter 5. Index-based Random Walks for Arbitrary α 73

(a) Orkut

(b) Twitter

(c) Friendster

Figure 5.8: α vs. average processing time of PPR for each αindex (large
datasets).

Chapter 5. Index-based Random Walks for Arbitrary α 74

Figure 5.9: Index size coefficient vs. Average number of the index shortages
in a path generation when αindex = 0.3 and α = 0.0125 (datasets are other
than Web-BerkStan).

Figure 5.10: Index size coefficient vs. Average number of the index shortages
in a path generation when αindex = 0.3 (dataset is Web-BerkStan).

Chapter 6

Reducing Re-Indexing on
Dynamic Graphs

6.1 Overview

Although an index-based FORA+ is effective for fast Personalized PageRank

(PPR) computations, as discussed in Chapter 3, computational overhead

exists when applying FORA+ to dynamic graphs. In existing methods, an

index correction, consisting of index resizing and subsequent re-indexing,

is necessary to guarantee accuracy because the index becomes stale as the

graph is updated [11–20]. The staleness is caused by the difference between

the distribution of the indexed random walks in the before-update and that

of the on-the-fly random walks in the after-update graph. In general, PPR

accuracy is not guaranteed if the stale index is referenced. Thus, to guarantee

accuracy, index resizing and subsequent re-indexing must be performed at the

nodes whose index becomes stale whenever an edge update occurs. Index

75

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 76

resizing is an operation that deals with changes in the degree of the updated

node. Re-indexing is an operation that re-performs random walks at the

nodes whose index is stale.

Index resizing, the first process of the index correction, is a light

O(1/α) operation. However, re-indexing, the second process, involves either

heavy computation [11, 13, 14] or significant memory overhead [12, 14–20].

The state-of-the-art method that suffers from heavy computation is Agenda-

[11, 13]. It quantifies the staleness of the index by performing the reverse

push algorithm [73] for each edge update. The time complexity of the reverse

push is O(n), where n is the number of edges in the graph. Experimentally,

Agenda’s index correction time is up to about 1000 seconds, even for a sin-

gle edge update, with the settings described in Section 6.5.3. On the other

hand, the state-of-the-art method that incurs significant memory overhead is

Firm [12]. It maintains indexes other than random walk paths to complete

re-indexing with O(1/α). The evaluation shows that the Firm’s index size is

up to 5 TB, which is prohibitively large for practical use (see Section 6.5.2).

This chapter shows that it is possible to achieve comparable accu-

racy to the guaranteed methods such as Agenda and Firm, both with light

computation and low memory overhead in dynamic graphs. To realize com-

parable accuracy while avoiding heavy re-indexing, an approach that ignores

edge updates, causing a negligible impact on accuracy, is adopted. Firstly,

Section 6.3 analyzes FORA+ to quantify the impact of edge updates on ac-

curacy and the amount of index references for each node. Secondly, based on

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 77

the analysis, Section 6.4 proposes an efficient method to realize comparable

accuracy while significantly reducing re-indexing and achieving low mem-

ory overhead. Finally, Section 6.5 clarifies the effectiveness of the proposed

method in evaluations.

The analysis of FORA+ indicates that the index references concen-

trate on the nodes whose index is robust to edge updates. As a result,

reducing re-indexing for such nodes does not necessarily lead to a loss of

accuracy. In particular, I analyze relationships between the number of index

references in FORA+ and the likelihood of the index becoming stale at each

node. The likelihood of the index becoming stale is quantified by the change

in Top-k PPR before and after edge updates. As a result, the more frequently

a node’s index is referenced, the less likely it is to become stale.

Based on the analysis, this chapter proposes a method that avoids the

heavy re-indexing computation until the graph changes to a specific size while

achieving comparable accuracy and low memory overhead. When an edge

update occurs, the proposed method only performs O(1/α) index resizing

and does not perform re-indexing. Consequently, the proposed method can

achieve O(1/α) index correction. In addition, the proposed method does not

require an index other than the random walk paths. Therefore, the memory

overhead of the proposed method is the smallest among existing methods.

The space complexity is O(n +m/α). Note that this chapter assumes that

αindex = α, so αindex will be represented as α for the simplicity. During PPR

computations, the proposed method preferentially refers to the newer index

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 78

to minimize the loss of accuracy.

The evaluations clarify the effectiveness of the proposed method and

the condition that the proposed method can achieve comparable accuracy

using nine real-world datasets. Its index correction time and index size are

minimal compared to the state-of-the-art index-based methods. In particu-

lar, the index correction time of the proposed method is up to six orders of

magnitude faster than that of Agenda, which suffers from heavy re-indexing

computation. The index size of the proposed method is also more than 3.3

times smaller than that of the Firm, which incurs significant memory over-

head. In addition, the proposed method achieves accuracy comparable to

the guaranteed methods. I evaluate accuracy using Normalized Discounted

Cumulative Gain (NDCG) [53], which quantifies PPR accuracy with a value

in the range [0, 1]. As a result, even when edge insertions/deletions occur

until the number of edges in the graph increases/decreases by 20% from the

index generation, NDCG is more significant than 0.999, comparable to the

state-of-the-art methods.

The main contributions of this chapter are summarized as follows.

• The analysis of FORA+ observes that index references concentrate on

the nodes whose index is unlikely to become stale.

• Based on the observation, the proposed method ignores edge updates

and significantly reduces heavy re-indexing while achieving accuracy

comparable to the guaranteed methods.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 79

• Moreover, the only index of the proposed method is the random walk

paths, which is the minimum memory overhead among existing meth-

ods.

• Evaluations show that the proposed method achieves fast index correc-

tion and low memory overhead at the same time.

• Evaluations also show that the proposed method achieves 0.999 NDCG

on average until 20% of the edges are updated on all datasets, indicating

that the heavy re-indexing of the guaranteed methods contributes only

a slight improvement in accuracy.

The remainder of this chapter is structured as follows. Section 6.2

presents related work. Section 6.3 analyzes the characteristics of FORA+’s

index references on dynamic graphs. Section 6.4 describes the proposed

method. Section 6.5 shows the experimental results. Section 6.6 concludes

this chapter.

6.2 Related Work

This section describes the characteristics of the existing index-based methods

to compute PPR on dynamic graphs [11–20] and the differences between

these methods and the proposed method. The existing methods and the

proposed method are categorized into five types: Agenda [11,13], Firm [12],

local push [15–20], Bahmani [14], and the proposed method. These five types

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 80

are discussed from three perspectives: computation accuracy, the index that

each method maintains, and the time complexity of re-indexing, as shown in

Table 6.1.

All existing methods [11–20] aim to guarantee accuracy. As a result,

these methods must correct the stale index after every edge update. Index

corrections involve either significant memory overhead or heavy re-indexing

computation. In contrast, the proposed method aims to achieve accuracy

comparable to the guaranteed methods while significantly reducing the re-

indexing and memory overhead of the index.

In terms of the index memory overhead, the total space complexity

of Agenda [11, 13], Firm [12], and the proposed method are Θ(n + m/α).

Although the space complexities are the same among the three methods, the

details of the index are different, and the proposed method is the smallest. All

three methods maintain the random walk paths, the same index as FORA+.

While the proposed method only maintains that, the other two methods

maintain other indexes. Note that the space complexity of the random walk

paths is Θ(n+m/α), as described in Section 2.5. Other indexes of the Agenda

and the Firm will be described in detail below.

Agenda maintains one index other than the random walk paths. The

first index is the random walk paths, which is the same index as FORA+.

Therefore, the space complexity of this index is Θ(n + m/α). The second

index is the inverse graph used in the reverse push algorithm described below.

The space complexity of the inverse graph is the same as the space complexity

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 81

of the graphs, i.e., Θ(n+m).

Firm maintains two indexes other than the random walk paths. The

first index is a map identifying random walk paths passing through each

node. The key is a node, and the value is a list of pointers to paths. The

second index is auxiliary data to enable O(1) manipulations to the map’s

value. The space complexities of these indexes are both Θ(n+m/α).

The index’s memory overhead of local push [15–20] and Bahmani [14]

is far more significant than the three methods described above. Local push

manages the results of Forward Push for each node as the index to answer

queries with O(1) time complexity. The results of Forward Push contain

PPR results for all nodes. As a result, the space complexity of local push is

O(n2), which is unacceptable for large graphs. Bahmani maintains similar

indexes to the Firm. However, the number of paths maintained for each node

is Θ(n log n), compared to Θ(|Oout(v)|) in Firm. As a result, the total space

complexity is Θ(n2 log n/α), which is also prohibitive for large graphs.

From the viewpoint of the re-indexing’s time complexity, that of Firm

and local push are light. Firm identifies the stale index after an edge up-

date with O(1) time complexity by referencing the expensive index described

above. The time complexity of re-generating the stale index is O(1/α) by ex-

ploiting probability distributions. As a result, Firm’s total time complexity

of re-indexing for an edge update is O(1/α). Note that Firm is required to

perform the index resizing as the index correction in addition to re-indexing.

As mentioned above, local push maintains the results of Forward Push as

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 82

the index. It does not need to redo the process, which leads to light time

complexity. Consequently, local push also completes re-indexing with O(1)

time complexity.

On the other hand, Agenda and Bahmani suffer from heavy re-index-

ing. Agenda performs the reverse push algorithm [73] for every edge update

as a part of re-indexing. The reverse push is utilized to quantify the staleness

of the index for each node. Its time complexity is O(n), making it difficult for

dynamic graphs to perform the reverse push for every edge update. Agenda

does not complete re-indexing immediately after an edge update. When

queried, Agenda performs re-indexing on the nodes whose index is not suffi-

ciently accurate to guarantee accuracy. In particular, Agenda determines the

nodes to perform re-indexing by the staleness computed by the reverse push

and the number of index references in the Monte Carlo phase of FORA+.

The expected time complexity of re-indexing for each query is O(m2/ωα).

Therefore, Agenda’s total time complexity of re-indexing is O(n +m2/ωα).

Quota [13] is an Agenda-based method. This method optimizes the param-

eter settings of Agenda while assuming an environment where PPR queries

and graph updates are mixed in a dynamic ratio. Since the algorithm for

graph updates is equivalent to Agenda, this method also faces the same re-

indexing problem. Bahmani needs to generate a lot of random walks for

every edge update as re-indexing. The number of paths needed to gener-

ate is Θ(n log n). Consequently, Bahmani’s time complexity of re-indexing is

Θ(n log n/α), which is heavy for real-world large dynamic graphs.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 83

Table 6.1: The characteristics of existing index-based methods and the pro-
posed method.

Type Accuracy
Indexes

Time Complexity
of Re-IndexingDetails

Space
Complexity

Proposed method
Comparable to

guaranteed methods
Random walks paths Θ(n+m/α) 0

Agenda [11,13]

Guaranteed

Random walks paths Θ(n+m/α)
O(n+m2/ωα)

Inverse graph Θ(n+m)

Firm [12]
Random walks paths Θ(n+m/α)

O(1/α)Auxiliary data for re-indexing Θ(n+m/α)
Auxiliary data for re-indexing Θ(n+m/α)

Local Push [15–20] Results of Forward Push O(n2) O(1)

Bahmani [14]
Random walks paths Θ(n2 log n/α)

Θ(n log n/α)Auxiliary data for re-indexing Θ(n2 log n/α)
Auxiliary data for re-indexing Θ(n2 log n/α)

In contrast, the proposed method does not perform re-indexing while

achieving accuracy comparable to the guaranteed methods. When an edge is

updated, it only performs O(1) index resizing as the index correction, which

Agenda and Firm also perform.

Finally, the proposed method’s characteristics are summarized as fol-

lows: it achieves comparable accuracy to the guaranteed methods while

avoiding both heavy re-indexing and significant memory overhead; re-index-

ing is omitted as long as comparable accuracy is achieved; the index is only

random walk paths, which is the smallest among existing methods; the space

complexity of index is Θ(n+m/α).

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 84

6.3 Analyzing FORA+’s Index References on
Dynamic Graphs

This section analyzes the characteristics of FORA+’s index references to

show that comparable accuracy to guaranteed methods is achieved even when

FORA+ uses the stale index as it is. In particular, stability of a node is

defined to quantify the unlikelihood of the index becoming stale and show

that index references concentrate on the nodes with high stability.

The staleness of a node’s index is quantified using Normalized Dis-

counted Cumulative Gain (NDCG) [53]. In general, NDCG is used to quan-

tify the approximation accuracy of Top-k PPR computations with the ground

truth and the approximated PPR as inputs, as described in Section 4.5.

Equation (4.1) defines NDCG. This chapter uses NDCG to quantify the un-

likelihood of the index becoming stale for each node, denoted as stability, in

the following part. In particular, Equation (6.1) defines stability. In Equa-

tion (6.1), π0
v and πt

v are PPR vectors with respect to node v before and

after the edge updates, respectively. Consequently, higher stability means

that the index of the node is unlikely to become stale because Top-k PPR

nodes are unlikely to change due to edge updates. The range of stability is

also [0, 1] since the range of NDCG is [0, 1]. Note that stability is a symmet-

ric measure for π0
v and πt

v. Therefore, even if the graph before and after the

edge updates are treated inversely, stability will have the same value.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 85

stability(v, k) =
1

2
{ndcg(π0

v ,π
t
v, k) + ndcg((πt

v,π
0
v , k)} (6.1)

The analysis method is as follows. First, I set G0 as the graph where

m/2 edges are inserted and generate the index Idx0 on G0. Here, m is

the number of edges contained in each dataset. Second, I obtain Gm/2 by

inserting the remainingm/2 edges. Third, stability of all nodes are calculated

using G0 and Gm/2, and the nodes are classified into groups according to their

stability values. The k in Equation (6.1) is 128. Fourth, I perform FORA+

and record the number of index references for each node and its group. The

source nodes are 100 randomly selected nodes. The order of edge insertions

is randomized if the dataset does not contain timestamps. Otherwise, I

have two insertion methods: timestamped and randomized order to quantify

the effect of the locality of insertions. Although only the edge insertions

are considered as graph updates, it is not necessary to consider the edge

deletions. The reason is that the same results are obtained when G2/m and

G0 are treated inversely due to the symmetry of stability.

Figure 6.1 shows the ratio of index references for each node group as a

cumulative graph. The number of groups is 21, and the stability of nodes in

each group is within [0, 0.8], (0.8, 0.81], (0.81, 0.82], ..., (0.99, 1], respectively.

The ratio of index references is normalized so that the sum for all groups is

100%. A plot (x, y) in the figure indicates that y% of all index references

are performed on the nodes whose stability, which indicates the unlikeliness

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 86

of the index change, is less than x. For the dynamic datasets, the solid

and dashed lines represent the results for the randomized and timestamped

insertions, respectively.

According to Figure 6.1, index references in FORA+ tend to concen-

trate on the nodes with high stability. The ratio of index references to the

nodes with stability ≤ 0.9 is less than 12% on all datasets. In contrast,

the ratio of index references to the nodes with stability > 0.95 is more than

43%. Moreover, more than 76% of index references concentrate on nodes with

stability greater than 0.97 on YouTube (timestamped) and Flickr (times-

tamped). Therefore, it is expected that the accuracy of FORA+ is unlikely

to decrease even if re-indexing is omitted and the stale index is used as it is.

Notably, the plots of YouTube (timestamped) and Flickr (timestamp-

ed) tend to be smaller than those of the other datasets. This indicates that

the index references concentrate at nodes with higher stability. However,

the plots of randomized YouTube and Flickr approach the plots of the other

datasets without timestamps. This suggests that the order of edge updates

in the dynamic datasets contributes to this tendency. Note that this means

that the index references of the timestamped results are more concentrated

on the nodes with higher stability than those of the randomized results. It

also implies that more positive results are expected with the timestamped

data on other datasets.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 87

Figure 6.1: The cumulative ratio of index references for each node group of
stability.

6.4 Proposed Method

This section describes the proposed method in four parts: index generation,

index correction for an edge insertion, index correction for an edge dele-

tion, and Top-k PPR computation. First, index generation performs random

walks from each node and stores paths. Second, only additional random

walks are performed as the index correction when inserting an edge. Third,

the proposed method only shrinks the index when an edge deletion occurs.

Fourth, the index referencing method is the key to achieving high accuracy in

PPR computation. Note that the proposed method references the stale index

as long as comparable accuracy can be achieved. It re-generates the index

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 88

when comparable accuracy cannot be achieved. The experimental results

show the relationship between the number of edge updates and accuracy (see

Section 6.5.4).

6.4.1 Index Generation

The index generation method is almost the same as that described in Chap-

ter 5. A key point is to adopt deque as the data structure of the index for

node v, denoted as Idx[v]. Using the deque, add/remove paths to/from the

head/tail of Idx[v] is realized with O(1) time complexity. The index with

deque also maintains the generation order. These are suitable for the pro-

posed index correction and PPR computation algorithms described below.

The index is re-generated when it no longer achieves comparable ac-

curacy. The timing of re-generation is determined in two ways. The first way

contributes to a coarse computation with a light computational overhead. It

is to re-generate the index based on the number of edge updates that occurred

from index generation. The evaluation indicates the relationship between the

number of edge updates and accuracy. Therefore, by quantitatively defining

comparable accuracy, the results experimentally determine the period over

which comparable accuracy is achieved. The second way contributes to a

more accurate computation at the expense of computational overhead. It is

to re-generate the index based on the periodic comparison of the index-based

PPR results with the index-free results. The index-free method provides the

exact results at the cost of computation time. Therefore, the accuracy of the

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 89

stale-index-based results can be checked by comparing the two results. By

periodically checking accuracy, the proposed method detects when the in-

dex has become too stale. Although the periodic comparison involves some

overhead, it is reduced by checking accuracy for only a few random nodes.

6.4.2 Index Correction for an Edge Insertion

The index correction algorithm for an edge insertion is shown in Algorithm

6. It only performs additional random walks from the inserted node and

pushes random walk paths back to the deque Idx[v] (lines 4–6). Unlike

existing methods, it does not perform any re-indexing. In particular, the

number of additional random walks performed from node v is ⌈c·|Nout(v)|/α⌉

minus the index size of node v before the edge insertion (line 3). Here, the

required number of paths for node v, ⌈c · |Nout(v)|/α⌉, is described in detail

in Section 5.4. Considering the degree of node v before the edge insertion is

|Nout(v)| − 1, the number of additional random walks is about 1/α, which

means the index correction of the proposed method is completed with O(1/α)

time complexity.

An example of the index correction using the sample graph shown in

Figure 2.1 will be presented below. Assume that edge (a, d) is inserted like

in Figure 6.2, and the index of node a before the insertion is the paths shown

in the row with timestamp 0 in Table 6.2. Here, let α and c be 0.5 and 1,

respectively. In this case, the required number of paths maintained in Idx0

is ⌈c · |Nout(a)|/α⌉ = 4. After the edge insertion, the number changes to 6

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 90

Algorithm 6 Index Correction for an Edge Insertion

Input: Graph Gt(V t, Et), inserted edge (v, w), index Idxt−1

Output: Index Idxt

1: Idxt ← Idxt−1;
2: ωv ← ⌈c · |Nout(v)|/α⌉;
3: ω′

v ← ωv − Idxt[v].size();
4: for i = 1 to ω′

v do
5: path← random walk(Gt, v);
6: Idxt[v].push back(path);
7: end for

a

b d

c e

f

Figure 6.2: The sample graph that edge (a, d) is inserted.

because the degree of node a becomes 3. Therefore, the algorithm performs

two additional random walks and adds paths to the tail of Idx1, as shown in

the row with timestamp 1 in Table 6.2.

6.4.3 Index Correction for an Edge Deletion

The index correction algorithm for an edge deletion is shown in Algorithm

7. It only deletes the small number of paths maintained as the deleted

node’s index. As with edge insertion, it does not perform any re-indexing.

In particular, the number of random walk paths that need to be stored at

node v decreases when an edge deletion occurs because the degree of node

v is decremented. Therefore, it deletes paths in the index so that the index

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 91

Table 6.2: Sample Indexed Paths for node a before and after an edge insertion
in the graph shown in Figure 6.2 (α = 0.5).

Timestamp Indexed paths
0 [a, b, d], [a, b, c], [a, c, e], [a, c, d, f]
1 [a, b, d], [a, b, c], [a, c, e], [a, c, d, f], [a, b, c], [a, d, e]

size of node v becomes ⌈c · |Nout(v)|/α⌉ (lines 4–5). As a result, the time

complexity is O(1/α) because the number of paths to be deleted is about

1/α.

The critical point is to delete the index in order from the earliest to the

latest (line 5). The reason is that the paths generated in the past are more

likely to be stale. Note that a newer index may be more stale than an older

one if the newer index frequently passes the updated region of the graph.

However, it is difficult to determine which index is more stale with light

overhead. Therefore, the approach of preferentially deleting the older index,

which is more likely to be stale, is reasonable. The experimental results show

the effect of the index reference order on accuracy in Section 6.5.6.

An example of the index correction using the sample graph shown in

Figure 6.2 will be presented below. Assume that edge (a, c) is deleted like in

Figure 6.3, and the index of node a before the deletion is the paths shown

in the row with timestamp 1 in Table 6.3. In this case, the number of paths

maintained in Idx1 is 6. After the edge insertion, the required number of

paths changes to 4 because the degree of node a becomes 2. Therefore, the

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 92

Algorithm 7 Index Correction for an Edge Deletion

Input: Graph Gt(V t, Et), deleted edge (v, w), index Idxt−1

Output: Index Idxt

1: Idxt ← Idxt−1;
2: ωv ← ⌈c · |Nout(v)|/α⌉;
3: ω′

v ← Idxt[v].size()− ωv;
4: for i = 1 to ω′

v do
5: Idxt[v].pop front();
6: end for

a

b d

c e

f

Figure 6.3: The sample graph that edge (a, c) is deleted.

algorithm deletes two indexed paths from the tail of Idx1, as shown in the

row with timestamp 2 in Table 6.3.

6.4.4 PPR Computation

The PPR computation algorithm is based on FORA+. In the Monte Carlo

phase, it requires the indexed paths. αFlexWalk, presented in Chapter 5, re-

turns the paths. The key point is that αFlexWalk references paths in order of

generation time, from the latest to the earliest, considering that the proposed

method uses the stale index as it is. Here, the proposed method assumes that

the staleness increases monotonically with the number of edge updates. This

means that paths added to the index that have been more recently added are

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 93

Table 6.3: Sample Indexed Paths for node a before and after an edge deletion
in the graph shown in Figure 6.3 (α = 0.5).

Timestamp Indexed paths
1 [a, b, d], [a, b, c], [a, c, e], [a, c, d, f], [a, b, c], [a, d, e]
2 [a, c, e], [a, c, d, f], [a, b, c], [a, d, e]

supposed to be less stale. For example, assuming the case that the indexed

paths at the queried time are [a, c, e], [a, c, d, f], [a, b, c], [a, d, e] as shown in

the row with timestamp 2 in Table 6.3, and two paths are referenced by

αFlexWalk. In this case, [a, b, c], [a, d, e], which are the latest paths, are

referenced.

From the viewpoint of the algorithm correctness and the performance

guarantee compared to the guaranteed methods based on FORA+, only ref-

erencing the stale index leads to a loss of accuracy. First, the algorithm

termination is obviously guaranteed, as is FORA+. Second, regarding the

performance guarantee, the loss of accuracy is caused by the second term of

Equation (2.3) in Section 2.4, where the index is referenced. In particular,

the expected absolute error of the PPR value of node v with respect to node

s, denoted by err(s, v), is represented by Equation (6.2), where π̃(w, v) is a

PPR value computed by the stale index.

err(s, v) = |
∑

w∈V

r(s, w) · {π(w, v)− π̃(w, v)}| (6.2)

Note that it is difficult to estimate the expected absolute error for the par-

tial re-indexing with light overhead. Estimating the error requires heavy

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 94

processing, such as the reverse push in Agenda [11], which takes O(n) time

complexity for each graph update, as described in Section 6.2.

6.5 Evaluation

6.5.1 Settings

Firm [12] and Agenda [11] are adopted as the state-of-the-art PPR compu-

tation methods for dynamic graphs. Regarding the parameter of Agenda,

rmax
b = 1/n, following the original paper [11]. The parameters of FORA+

are the same among all evaluations: α = αindex = 0.2, ω = 105. Note that

due to the memory budget, αindex is 0.3 for the Friendster dataset.

6.5.2 The Index Size

This evaluation compares the index size among the three methods to show the

light space overhead of the proposed method. Two existing methods maintain

additional indexes other than the random walk paths. Firm maintains a

map to identify paths that pass through each node and auxiliary data for

operations on the value of the map. Agenda maintains an inverse graph for

the reverse push algorithm. I report the total memory size of the indexes for

each method. Note that in large datasets, the index size is more significant

than the memory budget. Therefore, the index size is estimated from the

total number of indexed edges.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 95

Figure 6.4 shows the index size for each method. According to Fig-

ure 6.4, the proposed method maintains the minimum index among the three

methods. For the most significant dataset, Friendster, it is about 1 TB. The

index size of Agenda is about the same as the proposed method, but it is

slightly more significant due to the inverse graph for the reverse push algo-

rithm.

On the other hand, the index size of Firm is from 3.36 to 3.65 times

larger than that of the proposed method. For large datasets such as Twitter

and Friendster, Firm’s index is prohibitively significant. In particular, it

is 2.0 TB and 4.8 TB, compared to 539 GB and 1.3 TB for the proposed

method, respectively. This result shows that Firm has prohibitive memory

overhead to achieve O(1) index corrections.

6.5.3 The Index Correction Time

This evaluation measures the index correction time of the proposed and ex-

isting methods. It assumes the two types of graph updates: edge insertions

and deletions. In particular, the index is generated on the graph G0. The

two types of G0 are considered to evaluate edge insertions and deletions. For

edge insertions, G0 has (m − 1000) edges, where m is the number of edges

a dataset contains. On the other hand, for edge deletions, G0 has m edges.

Afterward, the remaining 1000 edges are inserted or deleted one by one. For

each update, the index correction time of each method is measured. Here,

the index correction time of the existing methods is the sum of the time for

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 96

Figure 6.4: The index size of the proposed method and the existing methods.

index resizing and re-indexing, and that of the proposed method is only the

time for index resizing. In Agenda, re-indexing is performed when updating

an edge and processing the PPR query. However, only the time of the former

will be reported because the computation cost of the re-indexing performed

at the PPR query differs depending on the query. As a result, the actual

index correction time of the Agenda is greater than the reported one.

Figure 6.5 shows the distribution of the index correction time. Fig-

ure 6.5a and Figure 6.5b give the correction time for edge insertions and

deletions, respectively. Note that the Firm’s correction times for Twitter

and Friendster are omitted because their index size is more significant than

the memory budget.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 97

According to Figure 6.5, the index correction time of the proposed

method for datasets other than the MovieLens is almost constant regardless

of the updated edges. In datasets other than the MovieLens, all index correc-

tion times of the proposed method are within [10−6, 10−2] seconds. These fast

index corrections result from the proposed approach of omitting re-indexing.

The reason why results for the MovieLens show a relatively higher

time is that it is a weighted dataset. A weighted graph maintains a data

structure called an alias table to decide the next node of random walks in

O(1) time complexity. When the weighted graph is updated, updating the

alias table is required in addition to updating the adjacent list. As a result,

updating the edge for a weighted graph involves an overhead.

On the other hand, Agenda’s index correction times are within

[10−3, 103] seconds, which means that the index correction times vary widely

depending on a dataset and an updated edge. The median index correction

time is [102, 106] times slower than the proposed method. This indicates

that Agenda’s re-indexing, which performs the reverse push with O(n) time

complexity, is too heavy.

Furthermore, the Firm’s index correction times are within [10−5, 10−1]

seconds and are nearly constant across all datasets and updated edges. How-

ever, the median index correction time is [101.5, 102.4] times slower than the

proposed method. The reason is that the Firm performs re-indexing while

the proposed method does not.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 98

Finally, the median index correction time of the proposed method for

edge deletions is slightly faster than that for edge insertions. The reason is

that the proposed method performs random walks when an edge is inserted,

whereas it simply deletes the elements of the index from the deque when an

edge is deleted.

6.5.4 Updated Ratio of Edges vs. Accuracy

This evaluation measures the accuracy loss against the number of edge up-

dates to indicate that the proposed method achieves comparable accuracy

even without re-indexing. The number of edge updates is quantified by an

inserted/deleted ratio of edges. The inserted/deleted ratio of edges is defined

as the ratio of the number of edges inserted/deleted between the index gen-

eration and the queried time to the number of edges the dataset contains.

Therefore, it is |mq−m0|
m × 100 (%), where m0 and mq are the number of edges

at the index generation and queried times, respectively. Specifically, m0 is

m/2 and m in the evaluation of edge insertions and deletions, respectively.

Then, m/20 edges of the remaining m/2 edges are inserted/deleted at a time.

The total number of updates is m/2, i.e., the inserted/deleted ratio of edges

is changed to 0, 5, 10, ..., 50%. Note that when the inserted/deleted ratio of

edges is 50%, the number of edges at query time is doubled/halved from the

index generation. The order of edge updates is randomized if the dataset

does not contain timestamps. Otherwise, this evaluation follows the times-

tamp. The queries are Top-128 PPR with respect to randomly selected 100

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 99

nodes. NDCG, described in Section 4.5.1, quantifies accuracy.

Figure 6.6 shows the relationships between the inserted/deleted ratio

of edges and NDCG. The x-axis represents the inserted/deleted ratio of edges

at the query time in Figure 6.6a and Figure 6.6b, respectively. The y-axis

represents the average NDCG for 100 source nodes.

According to Figure 6.6, the average NDCG is more than 0.999, while

the inserted and deleted ratio of edges is less than 20% for all datasets.

This result means that to maintain more than 0.999 NDCG, periodic index

re-generation is required by the edge updated ratio reaches 20%. If users

accept a lower accuracy, the index can be used for a longer time. These

results also indicate that the re-indexing of the guaranteed methods, with

significant overhead, contributes only a slight improvement in accuracy.

Figure 6.6a shows that NDCG is more than 0.9985, even when the

inserted ratio of edges is 50%, i.e., the number of edges is doubled from the

index generation. In all datasets, the decrease in NDCG against the inserted

ratio of edges is slight. The relatively notable decrease in NDCG for the

cases of 0% and 50% inserted ratio of edges is 0.005 and 0.004 for MovieLens

and YouTube, respectively. In other datasets, the decreases are also less than

0.003, indicating the effectiveness of the proposed method.

In the case of edge deletions, Figure 6.6b shows almost the same results

as the edge insertions, except for the result on YouTube. For YouTube,

the decrease in NDCG is about 0.0027. The reason for the relatively large

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 100

decrease in NDCG for edge deletions than for edge insertions is that some

indexed random walks are performed on the updated graph in the case of

edge insertions. On the other hand, in the case of edge deletions, all indexed

random walks are performed on the initial graph, which accounts for the

difference in NDCG.

Moreover, considering Figure 6.1 and Figure 6.6, it is suggested that

index references to nodes with particularly low stability, such as those below

0.8, cause a loss of accuracy. According to Figure 6.1, the index references

to the nodes whose stability is less than 0.8 are 2.6% in YouTube. On the

other hand, that for other datasets, including randomized YouTube, is less

than 1%. Therefore, this tendency may result in YouTube’s relatively lower

accuracy compared to other datasets.

For a more detailed analysis, I investigate the performance of You-

Tube. As discussed in Section 6.3, accuracy is expected to be determined by

the stability of the nodes to which the index is referenced. Therefore, I will

clarify the characteristics of the nodes with low stability on YouTube. In

particular, I focus on the relationships between the degree and the stability.

Note that the degree is the feature of a node that is highly relevant to the

other complex features and is easy to obtain. When computing the stability,

I set the graph before and after updates as the one with m/2 and m edges,

respectively. For these graphs, I randomly sample 1000 nodes and measure

stability and degree in the graph with m edges for all sampled nodes.

Figure 6.7 shows the relationships between degree and stability. Ac-

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 101

cording to Figure 6.7, I find that most of the nodes with low stability (less

than 0.8) have a degree of less than 50. Therefore, the relatively low accu-

racy of YouTube is expected to be caused by the index staleness of the nodes

with a low degree. However, it is also observed that nodes with low degrees

do not necessarily exhibit low stability. The same trend is observed in the

other datasets, although the decrease in stability is not as significant as in

YouTube. To estimate the staleness, heavy computation during the index

correction, such as Agenda’s reverse push, is required. From these observa-

tions, it is challenging to realize partial re-indexing focusing on the nodes

expected to be low stability, avoiding heavy computations.

6.5.5 Effect of the Timestamp

To confirm the effect of the timestamp, I compare accuracy when edges are

updated in timestamped order with that in randomized order. The evalu-

ation method other than updating order is the same as the evaluation in

Section 6.5.4. Figure 6.8 shows the results. In Figure 6.8, the solid and

dashed lines represent the results for the randomized and timestamped up-

dates, respectively.

According to Figure 6.8, the edge update order does not make a dif-

ference in Flickr. In contrast, accuracy improves by up to 0.0005 and 0.0025

by randomizing the edge insertions and deletions on YouTube, respectively.

Similarly, in the case of MovieLens, accuracy improves by up to 0.0005 and

0.0008 when the edge updates are insertions and deletions, respectively. From

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 102

these results, the locality of the edge updates may degrade accuracy.

6.5.6 Effect of the Index Reference Order

I check the effect of the index reference order on accuracy. I compare the

two types of referencing orders: from the latest to the earliest and from

the earliest to the latest. The method is the same as the one described

in Section 6.5.4. When computing Top-128 PPR, I calculate NDCG for

each referencing pattern. Note that edge deletions are not considered in this

evaluation. When an edge is deleted, the proposed method does not perform

any random walks. Therefore, all indexed random walks are performed on

the initial graph. As a result, accuracy is not affected by the index reference

order.

Figure 6.9 shows the effect of the index reference order. The x-axis

represents the inserted ratio of edges at query time, and the y-axis represents

the average difference between NDCGs when the index is referenced in the

order of the latest to the earliest and the earliest to the latest. Thus, a more

significant value on the y-axis indicates that the proposed referencing order

improves NDCG.

According to Figure 6.9, NDCG is improved by referencing the index

in the inverse order of generation time on all datasets because all values on

the y-axis are more than 0. In particular, the improvement in NDCG is up to

0.01 on YouTube, and the effect becomes significant as the ratio of inserted

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 103

edges increases. As described in Section 6.5.4, YouTube shows relatively low

accuracy. Therefore, it is suggested that the benefit of the index reference

order becomes significant for the dataset sensitive to the edge updates.

On the other hand, the improvement is negligible in some datasets,

such as Movielens, Twitter, and Friendster. The difference in NDCG is less

than 0.0006 even when the ratio of inserted edges is 50% in these datasets.

In these datasets, the fact that Top-k PPR is unlikely to change on index-

referenced nodes contributes more to improving accuracy than the index ref-

erence order. However, as described in Section 6.4, the proposed way of index

reference does not involve any computational overhead. Therefore, although

the proposed method is generally robust to reference orders, referencing the

index in the inverse order, as proposed, can help achieve further prevention

of loss of accuracy.

6.5.7 Processing Time of The Proposed Method vs.
Index-Free Method

To show the advantage of using the stale index, I compare the processing time

of the proposed method with that of the index-free method, setting ω so that

both methods achieve the same accuracy. Although the proposed method is

fast due to the index, accuracy decreases by the stale index. Considering that

ω is a parameter that balances the processing time and accuracy, a smaller

ω is enough in the index-free method to achieve the same accuracy as the

proposed method.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 104

This evaluation compares the proposed method’s processing time with

that of the index-free method, whose input ω is smaller than the proposed

method. In particular, I confirm ωfora+ and ωfora enough to achieve 0.999

NDCG with the proposed method and the index-free FORA, respectively.

Afterward, the processing time of the proposed method and FORA are mea-

sured while setting ω to ωfora+ and ωfora, respectively. The queried graph is

the one whose inserted ratio of edges is 20%. Note that Section 6.5.4 clari-

fied that 0.999 NDCG could be achieved on the graph whose inserted ratio

of edges is 20%.

Figure 6.10 shows the PPR processing time of the index-free FORA

divided by that of the proposed method for each dataset. A value on the

y-axis larger than 1 indicates that the proposed method is faster than the

index-free method even though the index-free method sets a smaller ω. The

box-and-whisker plot represents the processing time ratio with respect to 100

source nodes on each dataset. As a result, the proposed is faster than the

index-free method for more than about 60% of source nodes in datasets other

than DBLP and Web-BerkStan. Therefore, using the stale index is justified

to speed up the PPR computation for most source nodes.

The reason that the results of DBLP and Web-BerkStan show rela-

tively minor values is that they are small datasets. The major bottleneck of

the random walks is the random access to the memory. However, their graph

size is tens to a hundred MB, and most of the graph data can be handled in

the cache memory. As a result, the merit of using the index in these small

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 105

datasets is not significant.

Moreover, for some source nodes, the index-free method is faster than

the proposed method. A detailed analysis of the characteristics of these nodes

shows that they can be explained by one of the following two reasons: First,

the source node is located in a small disconnected component of the graph

and can achieve sufficient NDCG with a tiny number of random walks. The

second case is when graph updates are concentrated around the source node,

and the NDCG of the proposed method decreases relatively significantly. For

these reasons, it is clear that index-free can be advantageous for a limited

number of nodes.

6.6 Conclusion of This Chapter

Re-indexing for each edge update, performed to guarantee accuracy, is a

bottleneck for Top-k Personalized PageRank (PPR) computations on dy-

namic graphs. This chapter focuses on index references, concentrating on

nodes whose index is unlikely to change due to edge updates. The proposed

method omits re-indexing as long as comparable accuracy to state-of-the-art

methods is achieved. While comparable accuracy is achieved, the proposed

method requires minimum index correction time and memory overhead com-

pared to the existing methods. The evaluations using nine real-world datasets

show the effectiveness of the proposed method and the time period in which

the proposed method achieves comparable accuracy. In particular, by quan-

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 106

tifying accuracy with Normalized Discounted Cumulative Gain (NDCG) of

Top-128 PPR, the proposed method achieves more than 0.999 average NDCG

until 20% of edges are updated.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 107

(a) Edge insertions.

(b) Edge deletions.

Figure 6.5: The distribution of index correction time.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 108

(a) Edge insertions.

(b) Edge deletions.

Figure 6.6: The updated ratio of edges vs. NDCG.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 109

Figure 6.7: The relationships between degree and stability in YouTube.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 110

(a) Edge insertions.

(b) Edge deletions.

Figure 6.8: The updated ratio of edges vs. NDCG when the graph is updated
in the timestamped and randomized order.

Chapter 6. Reducing Re-Indexing on Dynamic Graphs 111

Figure 6.9: The average difference between NDCGs when the index is refer-
enced in the order of the latest to the earliest and the earliest to the latest.

Figure 6.10: PPR processing time of index-free method divided by that of
the proposed method.

Chapter 7

Conclusion

To utilize various types of digital data, personalized graph analysis gathers

attention. In particular, Personalized PageRank (PPR), which uses ran-

dom walks from the user’s interest node, is effective for personalized graph

analysis. However, PPR-based graph analysis has three problems. Firstly,

there are no parameter-setting guidelines for the termination probability α

to control the length of the random walks. This dissertation clarifies the

influence of α on the personalized analysis results. In particular, it confirms

that α monotonically balances the influences of global importance and source

proximity on the PPR vector using real-world datasets. As a result, in the

movie rating dataset, the movies directly related to the source node get a

higher PPR value by shortening random walks. Moreover, evaluations show

that the cosine similarity between PPR and PageRank vectors, which rep-

resents global importance, changes monotonically from 0.003 to 0.76 at the

maximum by changing the expected random walk length from 1.05 to 100.

112

Chapter 7. Conclusion 113

Secondly, although random walks using an index are helpful for fast PPR

computation, existing index-based random walk methods only accept a spe-

cific α. This dissertation proposes an index-based algorithm αFlexWalk to

generate random walk paths for arbitrary α. In particular, it focuses on the

fact that the random walk length differs probabilistically when α changes.

αFlexWalk generates the guaranteed random walk paths by connecting and

cutting the indexed paths. Evaluations show that αFlexWalk improves the

processing time by up to 11.2 times compared with the existing index-free

method. Thirdly, on dynamic graphs, re-indexing for each graph update is

required to guarantee accuracy. However, re-indexing involves either signif-

icant time or memory overhead. This dissertation proposes a method that

omits re-indexing while accuracy comparable to the guaranteed method is

achieved. The proposed method is based on the observation that the index

references concentrate on nodes whose index is stable to graph updates. The

evaluations show that the proposed method’s graph update time and index

size are the best among the existing index-based methods. It also clarifies

that the proposed method achieves 0.999 Normalized Discounted Cumulative

Gain (NDCG) until 20% of edges are updated from the index generation.

I will present future work for each of Chapter 4 – Chapter 6. First,

Chapter 4 balanced the influence of the global importance vector on the

PPR vector according to the value of α. However, the control range differed

among datasets, and the influence of the global importance vector could not

be predicted until the computation was actually performed. Therefore, it is

Chapter 7. Conclusion 114

considered necessary to control the influence from a theoretical perspective,

as well as the statistical investigation conducted in this dissertation.

Next, Chapter 5 clarifies the algorithmic contribution of the proposed

method. However, as mentioned in Section 5.2, existing random walk accel-

eration methods use computational techniques to remove bottlenecks in each

execution environment. Since these computational techniques can be applied

at the same time as the proposed algorithmic technique, it is considered nec-

essary to clarify the effect of the proposed method in such cases.

Finally, Chapter 6 proposed a method for continuing to use stale in-

dex as long as comparable accuracy is achieved. I have considered the case

where all indexes are regenerated when graph updates accumulate and suf-

ficient accuracy is no longer achieved. However, in real-world situations, it

is possible to partially regenerate indexes at times when the query load is

low. Therefore, there is room to consider partially re-performing random

walks that have passed a certain amount of time since they were generated

to replace indexes.

References

[1] David Reinsel, John Gantz, and John Rydning. The digitization of the

world - From edge to core. Technical report, May 2020.

[2] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang,

and Reza Zadeh. WTF: The Who to Follow Service at Twitter. In

Proceedings of the International Conference on World Wide Web, pages

505–514, Rio de Janeiro, RJ,Brazil, May 2013.

[3] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu,

Rahul Sharma, Charles Sugnet, Mark Ulrich, and Jure Leskovec. Pixie:

A System for Recommending 3+ Billion Items to 200+ Million Users

in Real-Time. In Proceedings of the International Conference on World

Wide Web, pages 1775–1784, Lyon, France, April 2018.

[4] David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk,

Kevin C. Ma, Zhigang Zhong, Jenny Liu, and Yushi Jing. Related pins

at Pinterest: The evolution of a real-world recommender system. In

Proceedings of the International Conference on World Wide Web Com-

panion, pages 583–592, Perth, WA, Australia, April 2017.

115

References 116

[5] Glen Jeh and Jennifer Widom. Scaling personalized web search. In

Proceedings of the International Conference on World Wide Web, pages

271–279, Budapest, Hungary, 2003.

[6] Taher H. Haveliwala. Topic-Sensitive PageRank: A Context-Sensitive

Ranking Algorithm for Web Search. IEEE Transactions on Knowledge

and Data Engineering, 15(4):784–796, July 2003.

[7] Yuying Zhao, YuWang, Yunchao Liu, Xueqi Cheng, Charu C. Aggarwal,

and Tyler Derr. Fairness and Diversity in Recommender Systems: A

Survey. ACM Transactions on Intelligent Systems and Technology, 2024.

[8] Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. A

Survey on the Fairness of Recommender Systems. ACM Transactions

on Information Systems, 41(3):1–43, February 2023.

[9] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The PageRank citation ranking: Bringing order to the web. Technical

report, Stanford InfoLab, 1998.

[10] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang.

FORA: Simple and Effective Approximate Single-Source Personalized

PageRank. In Proceedings of the ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages 505–514, Halifax,

NS, Canada, August 2017.

[11] Dingheng Mo and Siqiang Luo. Agenda: Robust Personalized PageR-

anks in Evolving Graphs. In Proceedings of the ACM International Con-

References 117

ference on Information and Knowledge Management, pages 1315–1324,

Online and Queensland, Australia, October 2021.

[12] Guanhao Hou, Qintian Guo, Fangyuan Zhang, Sibo Wang, and Zhewei

Wei. Personalized PageRank on Evolving Graphs with an Incremental

Index-Update Scheme. Proceedings of the ACM International Confer-

ence on Management of Data, 1(1):1–26, May 2023.

[13] Zulun Zhu, Siqiang Luo, Wenqing Lin, Sibo Wang, Dingheng Mo, and

Chunbo Li. Personalized PageRanks over dynamic graphs - The case for

optimizing quality of service. In Proceedings of the IEEE International

Conference on Data Engineering, pages 409–422, Utrecht, Netherlands,

May 2024.

[14] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incre-

mental and personalized PageRank. VLDB Endowment, 4(3):173–184,

December 2010.

[15] Naoto Ohsaka, Takanori Maehara, and Ken Ichi Kawarabayashi. Effi-

cient PageRank Tracking in Evolving Networks. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 875–884, Sydney, NSW, Australia, August 2015.

[16] Minji Yoon, Woojeong Jin, and U Kang. Fast and Accurate Random

Walk with Restart on Dynamic Graphs with Guarantees. In Proceedings

of the World Wide Web Conference, pages 409–418, Lyon, France, April

2018.

References 118

[17] Zexing Zhan, Ruimin Hu, Xiyue Gao, and Nian Huai. Fast Incremental

PageRank on Dynamic Networks. In Proceedings of the 19th Interna-

tional Conference on Web Engineering, pages 154–168, Daejeon, South

Korea, June 2019.

[18] Tao Guo, Xin Cao, Gao Cong, Jiaheng Lu, and Xuemin Lin. Dis-

tributed Algorithms on Exact Personalized PageRank. In Proceedings

of the ACM International Conference on Management of Data, pages

479–494, Chicago, IL, USA, May 2017.

[19] Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate Per-

sonalized PageRank on Dynamic Graphs. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 1315–1324, San Francisco, CA, USA, August 2016.

[20] Zihao Li, Dongqi Fu, and Jingrui He. Everything Evolves in Personalized

PageRank. In Proceedings of the World Wide Web Conference, pages

3342–3352, Austin, TX, USA, May 2023.

[21] Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei,

Wenqing Lin, Yin Yang, and Nan Tang. Efficient Algorithms for Ap-

proximate Single-Source Personalized PageRank Queries. ACM Trans-

actions on Database Systems, 44(4):1–37, December 2019.

[22] Alastair J. Walker. An Efficient Method for Generating Discrete Ran-

dom Variables with General Distributions. ACM Transactions on Math-

ematical Software, 3(3):253–256, September 1977.

References 119

[23] David F Gleich, Paul G Constantine, and Abraham D Flaxman. Track-

ing the Random Surfer : Empirically Measured Teleportation Param-

eters in PageRank. In Proceedings of the International Conference on

World Wide Web, pages 381–390, Raleigh, NC, USA, April 2010.

[24] Konstantin Avrachenkov, Nelly Litvak, and Kim Son Pham. A Singular

Perturbation Approach for Choosing the PageRank Damping Factor.

Internet Mathematics, 5(1):47–69, 2008.

[25] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. To-

wards Scaling Fully Personalized PageRank: Algorithms, Lower Bounds,

and Experiments. Internet Mathematics, 2(3):333–358, January 2005.

[26] Qin Liu, Zhenguo Li, John C.S. Lui, and Jiefeng Cheng. PowerWalk:

Scalable Personalized PageRank via RandomWalks with Vertex-Centric

Decomposition. In Proceedings of the ACM International Conference on

Information and Knowledge Management, pages 195–204, Indianapolis,

IN, USA, October 2016.

[27] Wenqing Lin. Distributed Algorithms for Fully Personalized PageRank

on Large Graphs. In Proceedings of the World Wide Web Conference,

pages 1084–1094, San Francisco, CA, USA, May 2019.

[28] Jinhong Jung, Lee Sael, Namyong Park, and U. Kang. BePI: Fast and

Memory-Efficient Method for Billion-Scale Random Walk with Restart.

In Proceedings of the ACM International Conference on Management of

Data, pages 789–804, Chicago, IL, USA, May 2017.

References 120

[29] Tao Guo, Xin Cao, Gao Cong, Jiaheng Lu, and Xuemin Lin. Dis-

tributed Algorithms on Exact Personalized PageRank. In Proceedings

of the ACM International Conference on Management of Data, pages

479–494, Chicago, IL, USA, May 2017.

[30] Takanori Maehara, Takuya Akiba, Yoichi Iwata, and Kenichi Kawara-

bayashi. Computing Personalized PageRank Quickly by Exploiting

Graph Structures. VLDB Endowment, 7(12):1023–1034, August 2014.

[31] Siqiang Luo, Xiaokui Xiao, Wenqing Lin, and Ben Kao. BATON: Batch

One-Hop Personalized PageRanks with Efficiency and Accuracy. IEEE

Transactions on Knowledge and Data Engineering, 32(10):1897–1908,

April 2019.

[32] Guanhao Hou, Xingguang Chen, Sibo Wang, and Zhewei Wei. Massively

Parallel Algorithms for Personalized PageRank. VLDB Endowment,

14(9):1668–1680, May 2021.

[33] Hao Wu, Junhao Gan, Zhewei Wei, and Rui Zhang. Unifying the Global

and Local Approaches: An Efficient Power Iteration with Forward Push.

In Proceedings of the ACM International Conference on Management of

Data, pages 1996–2008, Online and Shaanxi, China, June 2021.

[34] Peter A. Lofgren, Siddhartha Banerjee, Ashish Goel, and C. Se-

shadhri. FAST-PPR: Scaling Personalized PageRank Estimation for

Large Graphs. In Proceedings of the ACM SIGKDD International Con-

References 121

ference on Knowledge Discovery and Data Mining, pages 1436–1445,

New York, NY, USA, August 2014.

[35] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. Personalized

PageRank Estimation and Search: A Bidirectional Approach. In Pro-

ceedings of the ACM International Conference on Web Search and Data

Mining, pages 163–172, San Francisco, CA, USA, February 2016.

[36] Sibo Wang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li.

HubPPR: Effective Indexing for Approximate Personalized PageRank.

VLDB Endowment, 10(3):205–216, November 2016.

[37] Reid Andersen, Fan Chung, and Kevin Lang. Local Graph Partitioning

Using PageRank Vectors. In Proceedings of the Annual IEEE Sympo-

sium on Foundations of Computer Science, pages 475–483, Berkeley,

CA, USA, October 2006.

[38] Jure Leskovec and Andrej Krevl. Stanford large network dataset collec-

tion.

[39] Alan Mislove. Online social networks: Measurement, analysis, and ap-

plications to distributed information systems. PhD thesis, Rice Univer-

sity, Department of Computer Science, 2009.

[40] Alan Mislove, Hema Swetha Koppula, Krishna P. Gummadi, Peter Dr-

uschel, and Bobby Bhattacharjee. Growth of the Flickr Social Network.

In Proceedings of the Workshop on Online Social Networks, pages 25–30,

Seattle, WA, USA, August 2008.

References 122

[41] F. Maxwell Harper and Joseph A. Konstan. The MovieLens datasets:

History and context. ACM Transactions on Interactive Intelligent Sys-

tems, 5(4):1–19, December 2015.

[42] Jérôme Kunegis. KONECT: The Koblenz network collection. In Pro-

ceedings of the International Conference on World Wide Web, pages

1343–1350, Rio de Janeiro, Brazil, May 2013.

[43] Makoto Nakatsuji, Yasuhiro Fujiwara, Akimichi Tanaka, Toshio Uchi-

yama, Ko Fujimura, and Toru Ishida. Classical music for rock fans?:

Novel recommendations for expanding user interests. In Proceedings

of the ACM International Conference on Information and Knowledge

Management, pages 949–958, Toronto, ON, Canada, October 2010.

[44] Kensuke Onuma, Hanghang Tong, and Christos Faloutsos. Tangent: A

novel, ”Surprise-me”, recommendation algorithm. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 657–665, Paris, France, June 2009.

[45] André Levi Zanon, Leonardo Chaves Dutra da Rocha, and Marcelo Gar-

cia Manzato. Balancing the trade-off between accuracy and diversity in

recommender systems with personalized explanations based on Linked

Open Data. Knowledge-Based Systems, 252:109333, September 2022.

[46] Zihong Wang, Yingxia Shao, Jiyuan He, Jinbao Liu, Shitao Xiao, Tao

Feng, and Ming Liu. Diversity-aware Deep Ranking Network for Rec-

ommendation. In Proceedings of the ACM International Conference on

References 123

Information and Knowledge Management, pages 2564–2573, Birming-

ham, United Kingdom, October 2023.

[47] Marius Kaminskas and Derek Bridge. Diversity, serendipity, novelty,

and coverage: A survey and empirical analysis of beyond-Accuracy ob-

jectives in recommender systems. ACM Transactions on Interactive In-

telligent Systems, 7(1):1–42, December 2016.

[48] Yifei Zhou and Conor Hayes. Graph-Based Diffusion Method for Top-N

Recommendation. In Artificial Intelligence and Cognitive Science, pages

292–304, Munster, Ireland, December 2023.

[49] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel

Müller. VERSE: Versatile graph embeddings from similarity measures.

In Proceedings of the World Wide Web Conference, pages 539–548, Lyon,

France, April 2018.

[50] Flavio Chierichetti, Anirban Dasgupta, Ravi Kumar, Silvio Lattanzi,

and Tamás Sarlós. On Sampling Nodes in a Network. In Proceedings of

the International Conference on World Wide Web, pages 471–481, 2016.

[51] Kotaro Fujii, Tsuyoshi Yamashita, Andrew Shin, and Kunitake Kaneko.

A Flexible Weighting Framework for Converting Relational Database to

Hypergraphs. In Proceeding of the International Conference on Infor-

mation Networking, Chiang Mai, Thailand, January 2025.

[52] Mingji Yang, Hanzhi Wang, Zhewei Wei, Sibo Wang, and Ji-rong Wen.

Efficient Algorithms for Personalized PageRank Computation: A Sur-

References 124

vey. IEEE Transactions on Knowledge and Data Engineering, pages

1–20, March 2024.

[53] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Greg Hullender. Learning to Rank Using Gradient De-

scent. In Proceedings of the International Conference on Machine Learn-

ing, pages 89–96, Bonn, Germany, August 2005.

[54] N Litvak, W R W Scheinhardt, and Y Volkovich. In-Degree and PageR-

ank: Why Do They Follow Similar Power Laws? Internet Mathematics,

4(2-3):175–198, 2007.

[55] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann.

Predict then propagate: Graph neural networks meet Personalized

PageRank. In Proceedings of the International Conference on Learn-

ing Representations, pages 1–15, New Orleans, LA, USA, May 2019.

[56] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Ka-

poor, Martin Blais, Benedek Rózemberczki, Michal Lukasik, and

Stephan Günnemann. Scaling Graph Neural Networks with Approxi-

mate PageRank. In Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 2464–2473,

Online and CA, USA, August 2020.

[57] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong

Du, and Ji Rong Wen. Scalable graph neural networks via bidirec-

References 125

tional propagation. Advances in neural information processing systems,

33:14556–14566, 2020.

[58] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong

Du, and Ji Rong Wen. Approximate Graph Propagation. In Proceedings

of the ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 1686–1696, Online and Singapore, August 2021.

[59] Xingyi Zhang, Shuliang Xu, Wenqing Lin, and Sibo Wang. Con-

strained Social Community Recommendation. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 5586–5596, Long Beach, CA, USA, August 2023.

[60] Qiuchen Zhang, Jing Ma, Jian Lou, Carl Yang, and Li Xiong. Towards

Training Graph Neural Networks with Node-Level Differential Privacy.

In Proceedings of the World Wide Web Conference, volume 1, Singapore,

Singapore, May 2024.

[61] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: On-

line Learning of Social Representations. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 701–710, New York, NY, USA, August 2014.

[62] Qiuchen Zhang, Jing Ma, Jian Lou, Carl Yang, and Li Xiong. Towards

Training Graph Neural Networks with Node-Level Differential Privacy.

In Proceedings of the ACM Web Conference, volume 1, Singapore, Sin-

gapore, May 2024.

References 126

[63] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S.

Bhowmick. Homogeneous network embedding for massive graphs via

reweighted personalized pagerank. VLDB Endowment, 13(5):670–683,

January 2020.

[64] Konstantin Avrachenkov, Nelly Litvak, and Kim Son Pham. Distribu-

tion of PageRank mass among principle components of the Web. In

Proceedings of the Workshop On Algorithms And Models For The Web-

Graph, pages 16–28, San Diego, CA, USA, 2007.

[65] Hui Zhang, Ashish Goel, Ramesh Govindan, Kahn Mason, and Ben-

jamin Van Roy. Making Eigenvector-Based Reputation Systems Robust

to Collusion. In Proceedings of the International Workshop on Algo-

rithms and Models for the Web-Graph, pages 92–104, Rome, Italy, Oc-

tober 2004.

[66] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and

Yong Jiang. KnightKing: A Fast Distributed Graph RandomWalk En-

gine. In Proceedings of the ACM Symposium on Operating Systems Prin-

ciples, pages 524–537, Huntsville, ON, Canada, October 2019.

[67] Rui Wang, Yongkun Li, John C S Lui, Hong Xie, and Yinlong Xu.

GraphWalker: An I/O-efficient and resource-friendly graph analytic sys-

tem for fast and scalable random walks. In Proceedings of the USENIX

Annual Technical Conference, pages 559–571, Online, July 2020.

References 127

[68] Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma,

Jinlei Jiang, and Yongwei Wu. NosWalker: A Decoupled Architec-

ture for Out-of-Core Random Walk Processing. In Proceedings of the

28th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Volume 3, pages 466–482,

Vancouver, BC, Canada, March 2023.

[69] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen

Li. ThunderRW: An In-Memory Graph Random Walk Engine. VLDB

Endowment, 14(11):1992–2005, July 2021.

[70] Ke Yang, Xiaosong Ma, Saravanan Thirumuruganathan, Kang Chen,

and Yongwei Wu. Random walks on huge graphs at cache efficiency. In

Proceedings of the ACM Symposium on Operating Systems Principles,

pages 311–326, Online, 2021.

[71] Tsuyoshi Yamashita, Naoki Matsumoto, and Kunitake Kaneko. Reduc-

ing re-indexing for top-k Personalized PageRank computation on dy-

namic graphs. IEEE Transactions on Big Data, pages 1–13, 2025. to

appear.

[72] Luc Devroye. Non-uniform random variate generation. Springer Sci-

ence+Business Media, LLC, 1986.

[73] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Va-

hab S. Mirrokni, and Shang Hua Teng. Local computation of PageRank

References 128

contributions. In Proceedings of the International Workshop on Algo-

rithms and Models for the Web-Graph, pages 150–165, San Diego, CA,

USA, December 2007.

