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Abstract

In recent years, methods to estimate sparse signals accurately even in the
presence of severe outliers are gaining increasing attention. Existing outlier-
robust approaches usually suffer from a severe tradeoff between robustness
and global optimality. On the other hand, typical sparse estimation methods
face the risk of missing some important groups of highly correlated features.
This thesis addresses these issues by exploring an effective way of utilizing
the so-called Moreau enhancement technique and by defining a new class of
operators which extends this technique.

Chapter 1 introduces the background and motivation of the study.
Chapter 2 provides mathematical preliminaries which will be used

throughout this thesis.
Chapter 3 presents a robust method for sparse signal estimation based

on the minimax concave (MC) function (the Moreau enhancement of the ℓ1
norm) to resolve the above tradeoff problem. The influence of outliers is
reduced by the saturation property of the MC loss function. Moreover, our
approach enjoys the global optimality by using the weak convexity of the
MC function. Numerical examples show the remarkable robustness of the
proposed method.

Chapter 4 extends the estimation method by distinguishing the statisti-
cal differences between Gaussian noise and outliers by introducing an auxil-
iary vector to model the noise. This improves estimation accuracy even in
highly noisy environments. In addition, in analogy to the popular elastic
net, the Tikhonov regularizer is used together with the MC function, yield-
ing “the grouping effect” and resolving the issue of missing important groups
mentioned above. In contrast to the elastic net, the grouping effect of the
proposed method does not depend on the magnitudes of outliers. Numeri-
cal examples show the efficacy of the proposed method even in highly noisy
environments.

Chapter 5 introduces a new notion of “the external division operator”,
which extends the idea of the Moreau enhancement, and it presents a method
to extract all correlated features accurately. The octagonal shrinkage and
clustering algorithm for regression (OSCAR), which gives a better grouping
effect than the elastic net, is known to underestimate the target signals. The
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idea of the external division operator comes from the fact that the proximity
operator of the MC function can be expressed as “an external division of
two proximity operators of the ℓ1 norm”. The external division operator
for OSCAR turns out to be a generalization of its Moreau enhancement.
Numerical examples demonstrate that the proposed method improves the
performance dramatically by reducing the estimation bias.

Chapter 6 summarizes the results of this thesis and gives an outlook on
the future research.
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Chapter 1

General Introduction

The goal of this dissertation is to propose a mathematically rigorous frame-
work for debiasing estimation methods of signals. To achieve this, we focus
on the so-called Moreau enhancement technique, which has recently been de-
veloped extensively in signal processing (see Section 1.1.2). We will explore
an effective way of utilizing this technique as well as investigating a new
class of operators which extends it. This thesis presents (i) an outlier-robust
approach to recover the jointly sparse signals in the presence of outliers, (ii)
a sparse stable outlier-robust regression method in the presence of Gaus-
sian noise, and (iii) an effective feature grouping method based on a new
mathematical framework of the external division operator. This chapter first
introduces the background briefly and then motivates this study.

1.1 Background

1.1.1 Sparse Signal Estimation

The analysis of high dimensional data has been in great demand in recent
years, and sparseness has been exploited everywhere to deal with the chal-
lenge of the possible lack of data samples [1, 2, 3]. Here, a signal is called
sparse if most of its components are zero. Although many real-world signals
are not truly sparse, they can be well approximated by sparse signals in an
appropriate basis [3, 4]. Such signals are referred to as compressible, approxi-
mately sparse, relatively sparse, or weakly sparse signals [3, 5]. Sparse signal
estimation is formulated as the estimation problem of a sparse coefficient
vector x⋄ ∈ Rn from the observation vector modeled as

y = Ax⋄ + ε⋆ ∈ Rm, (1.1)

where A ∈ Rm×n is the input or measurement matrix and ε⋆ ∈ Rm is the
white additive zero-mean Gaussian noise. Here, the subscripts ⋄ and ⋆ are
used for sparse vectors and Gaussian random vectors, respectively.

1
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The sparse signal estimation problem has been studied in many contexts
including feature selection (also known as variable selection or support recov-
ery in different literature) and compressive sensing. Feature selection [6, 7, 8]
is a problem of selecting an important subset of features from input data to
improve interpretability [7]. Once a small number of important features are
selected, data analysis techniques such as regression or classification methods
can be applied with improved performance and shortened training time [9, 6].
Feature selection plays an important role in dealing with high-dimensional
data which frequently occur in many applications. Many existing feature
selection methods are based on the estimation of sparse coefficient vectors
such as [9, 10, 6, 7, 11]. When m < n as in the case of high dimensional
data, the estimation problem is ill-posed, and some prior knowledge about
the solution such as sparsity is needed. Such an underdetermined case has
been studied extensively in the context of compressive sensing [1, 2, 3]. The
theoretical results of compressive sensing enable the recovery of sparse sig-
nals with less number of samples needed for the Nyquist-Shannon Theorem
[3]. Compressive sensing has made significant impacts on many applications
such as magnetic resonance imaging [12], image super-resolution [13], and
compressive sensor networks [14].

To estimate the sparse vector x⋄, most standard methods are based on
the following problem formulation:

min
x∈Rn

1

2
∥y −Ax∥22 + µR(x), (1.2)

where ∥ · ∥2 denotes the ℓ2 norm (see Section 2.1), R : Rn → R is the
regularizer, and µ > 0 is the regularization parameter. Although the ℓ0
pseudo-norm (which counts the number of nonzero components) is a natural
choice for R, the corresponding problem is known to be NP-hard [15], i.e.,
there is no efficient algorithm to solve it in polynomial time.

There are mainly two types of approaches to approximate this problem:
the greedy and relaxation approaches. The greedy approaches include the
matching pursuit (MP) [16], orthogonal matching pursuit (OMP) [17], iter-
ative hard thresholding (IHT) [18], normalized IHT (NIHT) [19], and com-
pressive sensing matching pursuit (CoSaMP) [20]. In general, although the
greedy approaches are computationally efficient, there is no guarantee to find
the global minimizer. The relaxation approach replaces the ℓ0 pseudo-norm
with another tractable penalty. This thesis mainly focuses on this approach.
As a convex surrogate of the ℓ0 pseudo-norm, ℓ1 norm has been widely em-
ployed as R, in which case the problem in (1.2) has been studied as least
absolute shrinkage and selection operator (lasso) [21]. Owing to its convex-
ity, lasso achieves global optimality, i.e., algorithms to solve the problem
converge to a global minimizer of the cost function.
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Figure 1.1: Penalty functions for sparse signal estimation.

1.1.2 Bias Reduction in Sparse Signal Estimation

Although the ℓ1 norm induces the sparsity most effectively in the class of
convex regularizers [22], it is known to lead to the estimation bias, i.e., the
expectation of the estimates does not meet the true signal [23]. See Section
2.2.1 for details.

To address this issue, numerous nonconvex penalties have been proposed,
including the minimax concave (MC) penalty [24, 25], smoothly clipped ab-
solute deviation (SCAD) [26], the ℓq quasi-norm for q ∈ (0, 1) [27, 28, 29],
continuous exact ℓ0 (CEL0) [30], the capped ℓ1 penalty [31], the logarithmic
penalty [32], and Laplace exponential penalty [33] (see Section 2.2 for defini-
tions). Some representative penalty functions for sparse signal estimation are
illustrated in Figure 1.1. The outstanding properties of these penalties stem
from the fact that they are better approximations of the ℓ0 pseudo-norm than
the ℓ1 norm. Among those penalties, the MC, SCAD, CEL0, logarithmic,
and Laplace exponential penalties are known to be weakly convex functions,
i.e., they become convex by adding the squared ℓ2 norm multiplied by a con-
stant (see also Sections 2.1.2 and 2.2). Owing to this property, the overall
convexity of the cost function given in (1.2) can be preserved for the overde-
termined case (m ≥ n). Particularly, this thesis focuses on the following
MC-based formulation [24]:

min
x∈Rn

1

2
∥y −Ax∥22 + µMCΦ

MC
γ (x), (1.3)

where µMC > 0, and ΦMC
γ : Rm → [0,+∞) is the MC function of index γ > 0

(see Section 2.2.2 for definition).
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The MC penalty can be expressed as the ℓ1 norm subtracted by its
Moreau envelope (see Section 2.1.4 for definition). A generalization of this
concept to any convex seed function instead of the ℓ1 norm has been ex-
tensively developed in recent years as the (generalized) Moreau enhancement
[25, 34, 35]. The Moreau enhancement has two major useful properties.
Firstly, for some examples, the Moreau enhancement bridges the gap between
the direct discrete measures and its convex envelope [34]. For example, the
MC function parametrically bridges the gap between the ℓ0 pseudo-norm and
the ℓ1 norm. Secondly, the Moreau enhancement is weakly convex. Owing to
this property, the overall convexity of the cost function given in (1.2) can be
preserved, and hence the global optimality is guaranteed. See Section 2.2.2
for details. It is worth mentioning here that numerous studies have been
conducted on the so-called convex-nonconvex strategy which exploits non-
convex penalties while maintaining the overall convexity of the cost function
[36, 25, 37]. In this thesis, we will explore the effective use of the Moreau
enhancement and its development.

1.1.3 Jointly Sparse Signal Recovery

In many applications, signals have pre-defined specific group structures of
sparsity, and exploiting this information is important to obtain a desirable
solution [38, 39]. A natural extension of the estimation problem given in
(1.1) to address this case has been studied as the jointly sparse signal re-
covery problem, also known as the multiple measurement vectors (MMV)
problem. This problem is formulated as the estimation of jointly sparse co-
efficient vectors {x⋄,i}ri=1 ⊂ Rn, i.e., having nonzero components at common
locations, from the observation vectors modeled as

yi = Ax⋄,i + ε⋆ ∈ Rm, ∀i = 1, 2, . . . , r, (1.4)

i.e.,
Y = AX⋄ +E⋆ ∈ Rm×r, (1.5)

where Y := [y1y2 . . .yr] ∈ Rm×r, X⋄ := [x⋄,1x⋄,2 . . .x⋄,r] ∈ Rn×r, and
E⋆ := [ε⋆,1ε⋆,2 . . . ε⋆,r] ∈ Rm×r. Note that X⋄ is row sparse1, i.e., the vec-
tor [∥[X⋄](1,:)∥2, ∥[X⋄](2,:)∥2, . . . , ∥[X⋄](n,:)∥2]T is sparse. The MMV problem
has been extensively studied with a variety of applications such as array
processing [40], spectrum analysis of time series [41], DNA microarrays [42],
equalization of sparse communication channels, linear inverse problems [43],
magnetoencephalography [44], and source localization in sensor networks [45].
In the particular case of r = 1, the MMV problem reduces to the setting of
the single measurement vector (SMV) problem, which is an ordinary problem

1Row sparsity is a special case of group sparsity, which considers an arbitrary group of
sparse patterns of a vector of a matrix.
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in compressive sensing. While the recovery results of MMV have no advan-
tage to SMV in the worst-case scenario such as the case when the rank of
X⋄ is one, MMV performs much better than recovering each channel indi-
vidually in an average-case analysis, which assumes that X⋄ is generated at
random from an appropriate distribution [46, 47, 48]. For the noiseless case,
i.e., E⋆ = 0m×n, a sufficient condition to uniquely determine X⋄ from Y
and A is shown as [49]

∥X⋄∥2,0 <
sparkA− 1 + rankY

2
. (1.6)

Here, ∥ · ∥2,0 : Rn×r → R : X 7→ card({i ∈ {1, 2, . . . , n} | X(i,:) ̸= 0}) denotes
the ℓ2,0 pseudo-norm, card(·) denotes the cardinality of a set, and the spark
of A is defined as the smallest number of columns of A that are linearly
dependent. Since rankY = 1 for the SMV problem, it can be seen that the
condition for the recovery of X⋄ is relaxed in the MMV problem in general.

To estimate X⋄, most standard methods are based on the following for-
mulation:

min
X∈Rn×r

1

2
∥Y −AX∥2F + µRMMV(X), (1.7)

where RMMV : Rn×r → R is a regularizer. Although a natural choice for
RMMV is the ℓ2,0 pseudo-norm, this problem is known to be NP-hard as
well as the ℓ0 pseudo-norm. Greedy methods for this problem include simul-
taneous orthogonal matching pursuit (SOMP) [50] (an extension of OMP
[17]), simultaneous normalized hard thresholding (SNIHT) [51] (an exten-
sion of NIHT [19]), simultaneous compressive sampling matching pursuit
(SCoSaMP) [51] (an extension of CoSaMP [20]), rank aware order recursive
matching pursuit (RA-ORMP) [48], which extracts the rank information
of X⋄. Moreover, combinations of conventional multiple signal classifica-
tion (MUSIC) algorithm [52] and some recent compressive sensing methods,
subspace augmented MUSIC (SA-MUSIC) [53], compressive MUSIC (CS-
MUSIC) [54], and semi-supervised MUSIC have been proposed.

When the ℓ2,1 norm (see Section 2), which is the convex surrogate of the
ℓ2,0 norm, is employed as RMMV, the problem has been studied as group
lasso [55, 56]2. Although group lasso has been applied successfully to several
applications [57, 58, 9, 10, 59], it faces the same issues as lasso, raised in
Section 1.1.1. To reduce the estimation bias of ℓ2,1 norm, nonconvex regu-
larizers to promote group sparsity have been studied such as group SCAD
[60], the group MC penalty [61, 62], and ℓp,q norm penalty for p, q ∈ (0, 1)
(see Section 2). In [63], a generalized Moreau enhancement of the ℓ2,1 norm
is studied with the overall convexity.

2Note that group lasso covers the case when m ≥ n, unlike the MMV problem.



6 CHAPTER 1. GENERAL INTRODUCTION

−2 −1 0 1 2

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

`2 norm

`1 norm

Huber

Tukey’s Bisquare

MC

Figure 1.2: Comparison of the squared ℓ2 norm and robust loss functions.

1.1.4 Outlier-Robust Regression

Outlier is ubiquitous, and robust methods in the presence of outliers have
been studied widely [64, 65, 66]. While the formulation based on the
quadratic loss function is known to be optimal for Gaussian noise, it is far
from optimal when the residual contains non-Gaussian components such as
outliers. Here, we assume that the outliers are sparse, and their nonzero
values are significantly larger than the signals. Instead of the quadratic loss
function, various robust loss functions have been studied in the context of
robust statistics. Prominent examples of robust loss functions include Hu-
ber’s, the least absolute deviation (LAD), and Tukey’s bisquare (also called
biweight) loss functions [64, 65, 66] (see Figure 1.2). See Section 2.3 for
definitions. Here, the LAD is based on the ℓ1 norm loss function, which is
known to be more insensitive to large values than the squared ℓ2 norm loss
function. On the other hand, as explained in Section 2.2, the quadratic loss
with the MC penalty can improve the performance of lasso by reducing the
estimation bias. A naive question here is the following: Can the robustness
be improved by replacing the LAD with the MC loss function?

1.1.4.1 Robust Jointly Sparse Signal Recovery

In some applications for jointly sparse signal recovery such as multi-lead
electrocardiogram (MECG) [67], gene expression analysis [9], and computer
vision [68, 69], the measurements may possibly be contaminated by jointly
sparse outliers as

Y = AX⋄ +E⋆ +O⋄ ∈ Rm×r (1.8)
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where Y , X⋄, and E⋆ are defined in the same way as in Section 1.1.3, and
O⋄ := [o⋄,1o⋄,2 . . .o⋄,r] ∈ Rm×r is an outlier matrix. Here, X⋄ and O⋄ are
assumed to be row sparse; this assumption is also used in [9, 10, 70]. The
problem of robust jointly sparse signal recovery is stated as follows: recover
X⋄ in (1.8) from the known/measurable matrices A and Y (with E⋆ and
O⋄ unknown). Due to the presence of outliers, the classical regularized least
square regression approach defined in (1.7) is known to fail.

To attain robustness against outliers, the robust feature selection (RFS)
[9] has been proposed in the context of feature selection [9]:

(P0) min
X∈Rn×r

∥Y −AX∥2,1 + µ∥X∥2,1.

This formulation can be seen as an extension of the LAD to the MMV prob-
lem in (1.9). The ℓ2,1 norm loss leads to outlier robustness compared to the
classical approach. Despite its fast convergence, the computational cost for
each iteration is high due to the presence of matrix inversion. Therefore, the
scalability of the RFS to high dimensional data is rather limited. This gives
rise to the first research question in this thesis:
(Q1) Can we construct an efficient method with remarkable robustness and
global optimality for jointly sparse signal recovery based on the Moreau en-
hancement?

1.1.4.2 Issues Regarding Existing Robust Loss Functions

Although various robust loss functions have been studied, there are two major
issues.
Issue (i): Existence of an inevitable tradeoff between robustness
and global optimality

While Huber’s and the LAD loss functions are convex and tractable, their
robustness to large outliers is limited. In contrast, Tukey’s loss suffers from
the issue of local minima due to nonconvexity while it is highly robust to
outliers since its gradient vanishes for large values due to the so-called strong
redescending property. Table 1.1 summarizes the comparisons of robust loss
functions.

Let us consider which class of loss functions can break this tradeoff. First,
it is known that no convex loss functions can be useful for this purpose. To
obtain high robustness for huge outliers, vanishment of the derivative of
the loss function above some threshold is important [64, 65]. However, the
derivative of a convex function does not vanish because it is monotonically
non-increasing. This encourages us to explore a nonconvex loss function.
Specifically, the use of the MC function as a loss function is suitable since
its derivative vanishes above a certain threshold, and it is mathematically
tractable due to its weak convexity.
Issue (ii): Sensitivity against small perturbations
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Table 1.1: Comparisons of robust loss functions

Convexity Robustness Mathematical
Tractability

LAD convex limited Yes
Huber’s loss convex limited Yes

Tukey’s loss nonconvex Yes hard to ensure
global optimality

MC loss weekly
convex Yes Yes

Let us consider the behavior of the loss functions in the vicinity of the
origin. Figure 1.3 shows the derivative of representative robust loss functions.
It can be seen that, for Huber’s and Tukey’s loss functions, the derivative
vanishes at the origin. This property is important for the estimates to be in-
sensitive to small perturbations, which implies that the statistical differences
between outliers and noise are distinguished appropriately. On the other
hand, unfortunately, the derivative for sparsity-inducing loss functions such
as the LAD and the MC loss do not vanish as they approach the origin. More-
over, the residual, which is nonsparse due to the presence of Gaussian noise,
is promoted to be sparse. Hence, the Gaussianity of noise is not reflected
appropriately for these losses.

For the case when the coefficient vector to be estimated is assumed to
obey i.i.d. zero-mean Gaussian distributions, these two issues have been re-
solved by the stable outlier-robust regression (SORR) [35], which is based on
the MC loss function. The statistical difference between noise and outliers
is explicitly distinguished by introducing the auxiliary vector to model the
Gaussian noise. See Appendix F.1 for details.

1.1.4.3 Sparse Outlier-Robust Regression

Robustness in sparse signal estimation has been one of the most important
aspects to be addressed in signal processing and machine learning over the
years [71, 72, 73, 74]. Outliers can cause severe performance degradation
in many applications including electrocardiography (ECG), which is always
corrupted by electromyographic noise [71], image inpainting corrupted by
salt-and-pepper noise [75], wireless sensor network [76], speech denoising [77],
and direction of arrival estimation [78]. To obtain a reasonable solution in
such a case, a use of an outlier-robust loss function, say F : Rm → R, in
place of the quadratic loss in (1.2), has been studied actively:

min
x∈Rn

F (y −Ax) + µR(x). (1.9)

Table 1.2 summarizes some existing sparse outlier-robust methods. Issue
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Figure 1.3: Derivative of robust loss functions.

Table 1.2: Comparisons of sparse outlier-robust methods.

Overall
Convexity Robustness Mathematical

Tractability
Stability under
Gaussian noise

YALL1 convex limited Yes No

RPGG nonconvex Yes hard to ensure
global optimality No

Huber
FISTA convex limited Yes Yes

extended
lasso convex limited Yes Yes

(i) is problematic in this case as well. For instance, setting F = R := ∥ ·∥1 in
(1.9) produces the formulation of least absolute deviation-lasso (LAD-lasso)
[79], which is also studied as Your Algorithm for L1 (YALL1) [80]. Huber
fast iterative shrinkage algorithm (FISTA) [81] corresponds to the case when
F is Huber’s function and R is the ℓ1 norm. While YALL1 and Huber FISTA
are mathematically tractable, robustness is limited. Letting F := ΦMC

γ1 and
R := ΦMC

γ2 for γ1, γ2 > 0 produces the formulation of the robust projected
generalized gradient (RPGG) method [72]. The MC function is far more
insensitive to large values than the ℓ1 norm because it is not affected by
huge outliers, as mentioned above. Unfortunately, however, RPGG requires
many iterations with a small step size to achieve a small reconstruction error.
Moreover, it requires pseudoinverse computation in the initialization step,
which may become a computational bottleneck on top of the issue of local
minima [72].

As consistent with the previous section, existing approaches for sparse
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outlier-robust regression also suffer from issue (ii) in general. For example,
YALL1 and RPGG are sensitive to small perturbations. Extended lasso [82]
distinguishes the statistical differences between noise and outliers by intro-
ducing auxiliary variables to model the outliers into the lasso formulation.
Unfortunately, its robustness is limited when the magnitude of outliers is
unacceptably large (see Section 4.5). The primitive question here is the fol-
lowing:
(Q2) Can we extend SORR to develop a sparse signal estimation method with
stability in highly noisy environments?

1.1.5 Feature Grouping

In many applications of sparse signal estimation, there are groups of highly
correlated features, which are relevant to observations. In that case, it is
known that lasso tends to select only one feature from each group [83]. This
is problematic especially when one would like to select important groups of
features relevant to observations, as illustrated in Figure 1.4. Such a situation
happens in various fields such as gene expression analysis [84], brain imaging
[85], and analysis of protein-protein interaction networks [86].

Many feature grouping methods3 have been proposed to yield the group-
ing effect, i.e., select groups of highly correlated features, such as the elastic
net [83], the fused lasso [87], the clustered lasso [88], and octagonal shrink-
age and clustering algorithm for regression (OSCAR) [89, 90] (see Section
2.4 for the formulations). Unfortunately, the elastic net does not promote

3We note that the goal of feature grouping is different from the jointly sparse signal
recovery problem. The former considers the case when there are groups of highly corre-
lated features, while the latter does not assume the correlations of features in general. In
addition, for the feature grouping, the group structure of the coefficient vector is not given
in advance.
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squares solution (blue) and the constraint region of the OSCAR regularizer
(red) in the two-dimensional case. (a) The case when two features are un-
correlated, and (b) when two features are highly correlated.

the equality of coefficients for the highly correlated features in general, which
may lead to difficulty in the interpretation of the group structure [89, 90].
Besides, the fused lasso promotes the equality of coefficients only for the
successive coefficients, and the clustered lasso does not group the negatively
correlated features [90, 91].

In contrast to those methods, OSCAR is free from these limitations. Fig-
ure 1.5 shows the contours of the OSCAR regularizer in the two-dimensional
case. Here, we assume that y is centered and A is standardized so that∑m

i=1 yi = 0,
∑m

i=1Ai,j = 0, and ∥aj∥22 = 1 for j = 1, 2, . . . , n. In this
case, the axes of the ellipses of the least squares are tilted 45 degrees from
the coordinate axis (see Appendix A for its derivation). When two features
are uncorrelated, as depicted in Figure 1.5(a), the contours of the quadratic
loss function tend to intersect the constraint region on the vertical axis,
yielding a sparse solution. On the other hand, when the two features are
highly correlated, as depicted in Figure 1.5(b), the contours tend to inter-
sect the constraint region at the point where x1 = x2 > 0, grouping the
corresponding coefficient pairs. The properties of OSCAR have been exten-
sively investigated with its generalization called the weighted ℓ1 norm [92, 93]
a.k.a. sorted ℓ1 penalized estimation (SLOPE) in statistics [94] (see also [95]).
OSCAR simultaneously encourages sparsity and equality of coefficients for
highly correlated features.

Unfortunately, it is known that OSCAR may overpenalize the large pair-
wise coefficient differences [90, 86], which may cause underestimation. A
possible approach would be to consider the Moreau enhancement of the OS-
CAR regularizer. However, unlike the ℓ1 norm, no direct discrete measure
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Figure 1.6: The overview of this dissertation.

corresponding to the OSCAR regularizer is known to the best of our knowl-
edge. This implies that its bias reduction effect is unclear. This encourages
us to consider the following question:
(Q3) Does the Moreau enhancement of the OSCAR regularizer bridges the
OSCAR regularizer and a certain ideal nonconvex function? Moreover, is
there any other approach to go beyond the Moreau enhancement?

1.2 This Study

This dissertation addresses the above three questions (Q1), (Q2), and (Q3).
A key to answering the above questions must be an idea of the Moreau
enhancement, which can reduce estimation bias while global optimality is
guaranteed. This thesis explores how to effectively utilize the Moreau en-
hancement and defines a new class of operators which develops the idea of it.
Figure 1.6 shows the overview of this dissertation. The main body is divided
into three parts, each of which is devoted to each of the above questions,
respectively.

Chapter 2 provides mathematical preliminaries which will be used
throughout this thesis.

In Chapter 3, to answer (Q1), we propose a robust method of jointly-
sparse signal estimation based on the MC functions (the Moreau enhance-
ment of the ℓ1 norm). The proposed formulation involves the MC loss, MC
penalty, and Tikhonov penalty terms. Since the MC loss function is con-
stant for large absolute errors, it can significantly reduce the influence of
outliers. The key difference between the present study from those previ-
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ous works presented in Section 1.1.2 is the use of the debiasing function
to create a highly-outlier-insensitive loss function. Moreover, our approach
enjoys global optimality by using the weak convexity of the MC function.
This is the main difference from RPGG, which is based on the MC loss, and
does not guarantee the global optimality. Numerical examples including the
application of multi-lead electrocardiogram with real data demonstrate the
remarkable robustness of the proposed method.

In Chapter 4, to answer (Q2), we integrate the sparse signal estimation
method based on the MC-based sparse signal estimation method given in
(1.3) and SORR. The statistical differences between Gaussian noise and out-
liers are appropriately distinguished by introducing an auxiliary vector to
model the noise. This leads to accurate estimation even in highly noisy en-
vironments. In addition, in analogy to the popular elastic net, the Tikhonov
regularizer is used together with the MC function, yielding the grouping ef-
fect. In contrast to the elastic net, the grouping effect of the proposed method
does not depend on the magnitudes of outliers. Numerical examples show
the efficacy of the proposed method even in highly noisy environments.

In Chapter 5, to answer (Q3), we introduce a new notion of “the external
division operator”, which extends the idea of the Moreau enhancement, and
we present a method to extract all correlated features accurately. The idea
of the external division operator comes from the fact that the proximity
operator of the MC function can be expressed as “an external division of
two proximity operators of the ℓ1 norm”. The external division operator
for OSCAR turns out to be a generalization of its Moreau enhancement.
Numerical examples demonstrate that the proposed method improves the
performance dramatically by reducing the estimation bias.

Chapter 6 summarizes the results of this thesis and gives an outlook on
future research.





Chapter 2

Preliminaries

2.1 Notation and Definitions

For any z ∈ Rn and p ∈ (0,+∞), we define

∥z∥p :=

(
n∑
i=1

|zi|p
)1/p

, (2.1)

which is referred to as the ℓp norm for p ≥ 1 and the ℓp quasi-norm for
0 < p < 1. The ℓ∞ norm of any z ∈ Rn is defined by

∥z∥∞ := max{|z1|, |z2|, . . . , |zn|}. (2.2)

The ℓ2,1, ℓ2,∞, Frobenius, and nuclear norms of any A ∈ Rm×n are defined
by

∥A∥2,1 :=
m∑
i=1

∥A(i,:)∥2, (2.3)

∥A∥2,∞ := max
{
∥A(1,:)∥2, . . . , ∥A(m,:)∥2

}
, (2.4)

∥A∥F :=

 m∑
i=1

n∑
j=1

A2
i,j

1/2

, (2.5)

∥A∥nuc :=
rankA∑
i=1

si(A), (2.6)

respectively. Here, si(A) denotes the ith largest singular values of A for
i = 1, 2, . . . , rankA. The Frobenius inner product of any A,B ∈ Rm×n is
defined by

⟨A,B⟩F := Tr(ATB). (2.7)

For any symmetric matrix A ∈ Rm×m, the spectral norm of A is defined by

∥A∥2 := max
∥ξ∥2=1

∥Aξ∥2. (2.8)

15
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2.1.1 Bounded Linear Operators

Let (H, ⟨·, ·⟩) be a finite-dimensional real Hilbert space. In this thesis, we
consider only Euclidean spaces and spaces of real matrices as examples of
finite-dimensional real Hilbert spaces. If a bounded linear operator L ∈
B(H,H) satisfies ⟨Lx, x⟩H ≥ 0 (⟨Lx, x⟩H > 0) for any x ∈ H, then L is
positive semidefinite (positive definite), denoted by L ⪰ O (L ≻ O). For any
linear operator L ∈ B(H,H), the adjoint operator L∗ ∈ B(H,H) is defined
by the operator satisfying

⟨Lξ, x⟩H = ⟨ξ, L∗x⟩H, ∀x, ξ ∈ H. (2.9)

If L∗ = L, it is called a self-adjoint operator. A square root of a positive
semidefinite self-adjoint operator L is denoted by L1/2 and is defined by a
self-adjoint operator Λ satisfying Λ2 = L. The inner product ⟨·, ·⟩L is defined
by ⟨x, ξ⟩L := ⟨Lx, ξ⟩H for any x, ξ ∈ H.

2.1.2 Selected Elements of Convex Analysis

Definition 2.1 (Proper function). A function f : H → (−∞,+∞] := R ∪
{+∞} is proper if

dom f := {x ∈ H | f(x) < +∞} ̸= ∅. (2.10)

Definition 2.2 (Lower-semicontinuous function). A function f : H →
(−∞,+∞] is lower-semicontinuous on H if the level set

lev≤a f := {x ∈ H | f(x) ≤ a} (2.11)

is closed for any a ∈ R.

Definition 2.3 (Convex function). A function f : H → (−∞,+∞] is convex
if

f(ax+ (1− a)ξ) ≤ af(x) + (1− a)f(ξ), ∀x, ξ ∈ H, ∀a ∈ (0, 1). (2.12)

Definition 2.4 (Strongly and weakly Convex functions). For any ρ > 0,
f : H → (−∞,+∞] is ρ-strongly convex if f − ρ∥ · ∥2H/2 is convex, and it is
ρ-weakly convex if f + ρ∥ · ∥2H/2 is convex.

Definition 2.5 (Conjugate function). Given a proper function f : H →
(−∞,+∞], the conjugate (or Fenchel conjugate, Legendre Transform, or
Legendre-Fenchel Transform) of f is defined by

f∗ : H → R ∪ {+∞,−∞} : ξ 7→ sup
x∈H

(⟨x, ξ⟩H − f(x)) . (2.13)

The following fact holds for a conjugate function.



2.1. NOTATION AND DEFINITIONS 17

Fact 2.1 ([96, Proposition 13.23(iv)]). Let f : H → (−∞,+∞] and L ∈
B(H,H) be bijective. Then, (f ◦ L)∗ = f∗ ◦ (L−1)∗.

Definition 2.6 (Metric projection). For any nonempty closed convex set
C ⊂ H and any point x ∈ H, there exists a unique point PC(x) ∈ C satisfying

dC(x) := min
ξ∈C

∥x− ξ∥H = ∥x− PC(x)∥H. (2.14)

The mapping PC : x 7→ PC(x) ∈ C is called the metric projection onto C.

Definition 2.7 (Support and indicator functions). For any nonempty closed
convex set C ⊂ H, the support function of C is defined by

Γ0(H) ∋ σC : x 7→ sup
ξ∈C

⟨x, ξ⟩H, (2.15)

and the indicator function is defined by

Γ0(H) ∋ ιC : x 7→

{
0, if x ∈ C,

+∞, if x /∈ C.
(2.16)

The conjugate of the support function is the indicator function, i.e., σ∗C =
ιC [96, Example 13.3]. Given any norm ∥ · ∥, the dual norm of ∥ · ∥ is defined
by ∥ · ∥∗ := σC with C := {x ∈ H | ∥x∥ ≤ 1} [97, 98].

Definition 2.8 (Coercive function). A function f : H → (−∞,+∞] is
coercive if

lim
∥x∥H→+∞

f(x) = +∞. (2.17)

2.1.3 Nonexpansive and Firmly Nonexpansive Operators

Definition 2.9 (Lipschitz continuous operator). An operator T : H → H is
β-Lipschitz continuous with constant β > 0 if

∥Tx− Tξ∥H ≤ β∥x− ξ∥H, ∀(x, ξ) ∈ H ×H. (2.18)

For β = 1, T is called a nonexpansive operator.

Definition 2.10 (Firmly nonexpansive operator). An operator T : H → H
is firmly nonexpansive if there exists a nonexpansive operator N : H → H
such that

T =
1

2
Id+

1

2
N. (2.19)

For any f ∈ Γ0(H), Proxf is firmly nonexpansive [96, Proposition 12.28].
Although nonexpansive operators are not necessarily firmly nonexpansive,
this is true for the gradient of a convex function, as shown in the following
fact.
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Fact 2.2 (Baillon-Haddard Theorem [99], [96, Corollary 18.17]). Let f :
H → R be a Fréchet differentiable convex function and let β > 0. Then, ∇f
is β-Lipschitz continuous if and only if ∇f is β−1-cocoercive. In particular,
∇f is nonexpansive if and only if ∇f is firmly nonexpansive.

Definition 2.11 (Cocoercive operator). An operator T : H → H is β-
cocoercive for β > 0 if βT is firmly nonexpansive.

2.1.4 Proximity Operator and Moreau Envelope

Definition 2.12 (Proximity operator). Given any function f : H →
(−∞,+∞], the proximity operator of f of index γ > 0 (in an extended
sense) is defined by

Proxγf : H → H : x 7→ argmin
ξ∈H

(
f(ξ) +

1

2γ
∥x− ξ∥2H

)
, (2.20)

which is also denoted as s-Prox, if a unique minimizer exists [100]1. A
function f is called proximable (or prox-friendly) if Proxf is easy to compute.

For any nonempty closed convex set C ⊂ H, the proximity operator of
ιC corresponds to the projection operator PC [96, Example 12.25].

Definition 2.13 (Moreau envelope). Given a function f ∈ Γ0(H), the
Moreau envelope of f of index γ > 0 is defined by [96]

γf : H → R : x 7→ = min
ξ∈H

(
f(ξ) +

1

2γ
∥x− ξ∥2H

)
= f(Proxγf (x)) +

1

2γ
∥x− Proxγf (x)∥2H. (2.21)

The following facts are used in this thesis.

Fact 2.3 (Proximity operator [96, Propositions 12.28 and 24.8]). Let f ∈
Γ0(H). Then, the following hold.

(a) For any x, ξ ∈ H, it holds that

Proxf(·−ξ)(x) = ξ + Proxf (x− ξ). (2.22)

(b) The proximity operator Proxf is firmly nonexpansive.
1If f is nonconvex, the proximity operator is often defined as a set-valued operator.

This paper focuses on the case when the proximity operator is a single-valued operator,
and the notation s-Prox is also used to emphasize that.
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Fact 2.4 (Moreau envelope [96] and [101, Fact 17.17]). Let f ∈ Γ0(H) and
γ > 0. Then, the following hold.

(a) (Convexity) The function γf is convex.

(b) (Lipschitz continuity) The Moreau envelope is differentiable with the
gradient

∇(γf) = γ−1(Id−Proxγf ), (2.23)

which is γ−1-Lipschitz continuous.

(c) (Moreau’s decomposition) It holds that

Proxγf +γ Proxγ−1f∗ ◦(γ−1 Id) = Id, (2.24)

and
1

2γ
∥ · ∥2H = γf + γ−1

(f∗) ◦ (γ−1 Id). (2.25)

(d) (Lower bound)

f(x) ≥ γf(x), ∀γ ∈ (0,+∞), ∀x ∈ H. (2.26)

(e) (Convergence) (i) The function γf converges pointwise to f on dom f
as γ → 0, i.e.,

lim
γ→+0

γf(x) = f(x), ∀x ∈ H. (2.27)

Moreover, if f is uniformly continuous on a bounded set S ⊂ dom f , γf
converges uniformly to f on S, i.e., limγ→+0 supx∈S | γf(x)−f(x)| = 0.
In particular, if f is continuous on a compact set S ⊂ dom f , the
Heine’s theorem [102, Theorem 4.47] guarantees the uniform conver-
gence of γf on S.

(ii) It holds for any x ∈ H that

lim
γ→+∞

γf(x) = inf
ξ∈H

f(ξ). (2.28)

2.1.5 Monotone Operator

Definition 2.14 (Graph, domain, and range). For any set-valued operator
B : H → 2H, the graph of B is denoted by

graB := {(x, ξ) ∈ H ×H | ξ ∈ Bx}, (2.29)

the domain of B is denoted by

domB := {x ∈ H | Bx ̸= ∅}, (2.30)
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and the range of B is denoted by

rangeB := {ξ ∈ H | ∃x ∈ H, s.t. ξ ∈ Bx}. (2.31)

Definition 2.15 (Monotone operator). A set-valued operator B : H → 2H

is monotone if

⟨x− ξ, u− v⟩H ≥ 0, ∀(x, u) ∈ graB, ∀(ξ, v) ∈ graB. (2.32)

The β-cocoercive operator T for β > 0 satisfies the following inequality:

⟨Tx− Tξ, x− ξ⟩H ≥ β

2
∥Tx− Tξ∥2H, (2.33)

and hence T is monotone.

Definition 2.16 (Subdifferential). Given a proper function f : H →
(−∞,+∞], the subdifferential of f is denoted by

∂f : H → 2H

: x 7→ {z ∈ H | ⟨ξ − x, z⟩H + f(z) ≤ f(ξ), ∀ξ ∈ H}, (2.34)

and, for any x ∈ H, an element of ∂f(x) is a subgradient of f at x.

For any f ∈ Γ0(H), it is well known that the proximity operator is ex-
pressed as

Proxf = (Id+∂f)−1, (2.35)

which is the resolvent2 of ∂f [96, Proposition 16.44].

2.2 Bias Reduction Methods

2.2.1 Estimation Bias of Lasso

Unbiasedness for a large true coefficient is one of the principles proposed in
[26] to select a good penalty function. Here, an estimator is biased if its
expectation does not meet the true coefficient, i.e., E[x̂] ̸= x⋄; otherwise it
is called unbiased [23]. Assume that A in (1.1) is orthonormal. In this case,
Problem in (1.2) is equivalent to

min
x∈Rn

1

2
∥ATy − x∥22 + µR(x). (2.36)

The solution to (2.36) for R := ∥ · ∥1 is given by

x̂ = Proxµ∥·∥1(A
Ty)

= Softµ(A
Ty). (2.37)

2The resolvent of a set-valued operator B : H → 2H is defined by (Id+B)−1.
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Here, for any γ > 0, the soft-shrinkage operator [103] is defined by

Softγ := Proxγ∥·∥1 : Rn → Rn : x := [x1, x2, . . . , xn]
T

7→ [softγ(x1), softγ(x2), . . . , softγ(xn)]
T

(2.38)

with
softγ : R → R : x 7→ sign (x)max {|x| − γ, 0} , (2.39)

where

sign : R → {−1, 1} : a 7→

{
1, if a ≥ 0,

−1, if a < 0.
(2.40)

Since softµ(a
T
i y) = aT

i y − µ if aT
i y > µ, the lasso solution is biased, i.e.,

E[x̂i] = x⋄,i − µ ̸= x⋄,i, (2.41)

In general, when R is separable, i.e., R(x) =
∑n

i=1 ρi(xi) for any x ∈ Rn, x̂i
satisfies the first order optimality conditions

x̂i − aT
i y + µρ′i(x̂i) = 0, ∀i = 1, 2, . . . , n, (2.42)

which are obtained by taking the first derivative of the cost function (2.36)
with respect to xi. Hence, if ρ′i vanishes for large absolute values, it holds
that

E[x̂i] = aT
i y = x⋄,i (2.43)

when |aT
i y| is sufficiently large. This implies that the condition ρ′i(xi) = 0

for large |xi| is a sufficient condition for unbiasedness [26].

2.2.2 MC Function and Moreau Enhancement

Definition 2.17 (Minimax concave function). The MC function [24] with
index γ > 0 is defined by

ΦMC
γ : Rn → [0,+∞) : x 7→

n∑
i=1

ϕMC
γ (xi) , (2.44)

where

ϕMC
γ : R → [0,+∞) : x 7→

|x| − x2

2γ
, if |x| ≤ γ,

γ

2
, if |x| > γ.

(2.45)

This function has been used as a penalty of least square problems for
promoting sparsity without causing severe extra biases. It is actually a γ−1-
weakly convex function, and enjoys a better sparsity-seeking property than
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Figure 2.1: Contours of the ℓ2 norm, the ℓ1 norm, and the MC function.

the ℓ1 norm (see Figure 2.1). Furthermore, it is less sensitive to large compo-
nents than the ℓ1 norm because the range of the function is bounded above
by a certain level (see Figure 1.1).

The MC function can be expressed as the difference between the ℓ1 norm
and its Moreau envelope [25]:

ΦMC
γ = ∥ · ∥1 − γ∥ · ∥1. (2.46)

A generalization of the MC function to a nonseparable function is proposed
as the generalized MC (GMC) function [25]. For any B ∈ Rm×n, the GMC
function is defined by

ΦGMC
B : Rn → [0,+∞)

: x 7→ ∥x∥1 − min
z∈Rn

(
∥x∥1 +

1

2
∥B(x− z)∥22

)
. (2.47)

When the MC function is employed as R in (1.2), the convexity of the whole
cost function cannot be preserved for the underdetermined case in general.
In fact, it is known that a nonconvex penalty R needs to be nonseparable
in general to preserve the convexity of the overall convexity [25]. Hence,
the GMC function extends the applicability of the MC function owing to its
nonseparability.

To extend the GMC function to a general convex function, the
generalized-Moreau-enhanced (GME) penalty function has been proposed
in [34]3.

3In [34], a more general penalty function than GME is proposed, which is applicable to
broader scenarios.
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Definition 2.18 (Generalized Moreau enhancement). Let (H, ⟨·, ·⟩) and
(K, ⟨·, ·⟩) be the finite-dimensional real Hilbert spaces. For any Ψ ∈ Γ0(H)
coercive with domΨ = H, and an arbitrary bounded linear operator B :
H → K, the GME penalty function is defined by

ΨB : x 7→ Ψ(x)−min
z∈H

(
Ψ(z) +

1

2
∥B(x− z)∥2K

)
. (2.48)

Letting H := Rn, Ψ := ∥ · ∥1, and B := γ−1/2In in (2.48) reduces to the
MC function (2.45).

The Moreau enhancement has two major useful properties. Firstly, for
some examples, the Moreau enhancement bridges the gap between the direct
discrete measures and its convex envelope [34] as shown in the following fact.

Fact 2.5 ([34, Example 2]). 1. It holds for any x ∈ Rn and γ > 0 that

lim
γ→+0

2

γ
(∥ · ∥1)γ−1/2 Id(x) = ∥x∥0. (2.49)

2. It holds for any X ∈ Rm×n and γ > 0 that

lim
γ→+0

2

γ
(∥ · ∥nuc)γ−1/2 Id(X) = rankX. (2.50)

Secondly, the Moreau enhancement is weakly convex. More generally,
the following fact shows the overall convexity conditions of the cost function
based on the quadratic loss with the generalized Moreau enhancement.

Fact 2.6 ([34, Proposition 1]). Let X , Y, Z and B ∈ B(Z,Z) be the finite-
dimensional real Hilbert spaces. Let ΨB ∈ Γ0(Z) be the GME function
defined in Definition 2.18. For L ∈ B(X ,Z), (A,L) ∈ B(X ,Y) × B(X ,Z),
and µ > 0, let

JΨB◦L : X → R : x 7→ 1

2
∥y −Ax∥2Y + µΨB ◦ L(x). (2.51)

Then, for the three conditions

(C1) A∗A− µL∗B∗BL ⪰ 0,

(C2) JΨB◦L ∈ Γ0(X ) for any y ∈ Y ,

(C3) J (0)
ΨB◦L := 1

2∥A · ∥2Y + µΨB ◦ L ∈ Γ0(X ),

the relation (C1) ⇒ (C2) ⇔ (C3) holds.
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2.2.3 Other Nonconvex Sparsity-Inducing Penalties for Bias
Reduction Methods

We list below some representative penalties for bias reduction introduced in
Section 1.1.2. See also [104].

• SCAD [26]:

ϕSCAD
µ,γ : R → [0,+∞) : x 7→


µ|x|, if |x| < µ,

−x
2 − 2γµ|x|+ µ2

2(γ − 1)
, if |x| ∈ [µ, γµ),

(γ + 1)µ2

2
, if |x| ≥ γµ,

(2.52)
where µ > 0 and γ > 2. This penalty is (γ−1)-weakly convex function
[105].

• ℓq quasi-norm for q ∈ (0, 1) [27, 28, 29]:

ϕℓq : R → [0,+∞) : x 7→ (1/q)|x|q. (2.53)

This penalty is not weakly convex (see Appendix B).

• CEL0 [30]:

ϕCEL0
γ,µ : R → [0,+∞) : x 7→


µ− γ2

2

(
|x| −

√
2µ

γ

)2

, if |x| ≤
√
2µ

γ
,

µ, if |x| >
√
2µ

γ
,

(2.54)
where γ, µ > 0. This penalty is γ2-weakly convex (see Appendix B).

• Capped ℓ1 [31]:

ϕcapγ : R → [0,+∞) : x 7→ min{γ, |x|}, (2.55)

where γ > 0. This penalty is not weakly convex (see Appendix B).

• Logarithm penalty [32]:

ϕlogγ : R → [0,+∞) : x 7→ log (1 + γ|x|) , (2.56)

where γ > 0. This penalty is (γ/2)-weakly convex [106].

• Laplace exponential penalty [33]:

ϕexpγ : R → [0,+∞) : x 7→ (1− exp−γ|x|), (2.57)

where γ > 0. This penalty is (γ/2)-weakly convex [106].
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2.3 Outlier-Robust Regeression

We list below representative robust loss functions including those introduced
in Section 1.1.4.

• Huber’s function [64, 65, 66]:

ϕHuber
γ : R → [0,+∞) : x 7→


x2

2
, if |x| ≤ γ,

−γ
2

2
+ γ|x|, if |x| > γ,

(2.58)

where γ > 0.

• LAD [64, 65, 66]:

ϕLAD : R → [0,+∞) : x 7→ |x|. (2.59)

• Tukey’s bisquare (also known as Tukey’s biweight) [64, 65, 66]:

ϕTukeyγ : R → [0,+∞) : x 7→


1

6

(
1−

(
1− |x|2

γ2

)3
)
, if |x| ≤ γ,

1

6
, if |x| > γ,

(2.60)

where γ > 0.

• Hampel’s function [107]:

ϕHampel
γ1,γ2 : R → [0,+∞) : x 7→

x2

2
, if |x| ≤ γ1,

−γ1|x| −
γ21
2
, if |x| ∈ (γ1, γ2],

γ1γ2 −
γ21
2

+ (γ3 − γ2)
γ1
2

(
1−

(
γ3 − |x|
γ3 − γ2

)2
)
, if |x| ∈ (γ2, γ3],

γ1γ2 −
γ21
2

+ (γ3 − γ2), if |x| > γ3,

(2.61)

where γ > 0.

• Lorentzian norm4 [71]:

ϕLoretzianγ : R → [0,+∞) : x 7→ log

(
1 +

x2

γ

)
, (2.62)

where γ > 0.
4The Lorentzian norm is not a norm since it does not satisfy the positive homogeneity

and triangle inequality.



26 CHAPTER 2. PRELIMINARIES

2.4 Feature Grouping Methods

We list below the formulations of representative feature grouping methods
introduced in Section 1.1.5.

• Elastic net [83]:

min
x∈Rn

1

2
∥y −Ax∥22 + µ1∥x∥1 +

µ2
2
∥x∥22, (2.63)

where µ1, µ2 > 0.

• Fused lasso [87]:

min
x∈Rn

1

2
∥y −Ax∥22 + µ1∥x∥1 + µ2

n∑
i=2

|xi − xi−1|, (2.64)

where µ1, µ2 > 0.

• Clustered lasso [88]:

min
x∈Rn

1

2
∥y −Ax∥22 + µ1∥x∥1 + µ2

∑
i<j

|xi − xj |, (2.65)

where µ1, µ2 > 0.

• OSCAR [89, 90]:

min
x∈Rn

1

2
∥y −Ax∥22 +ΩOSCAR

λ1,λ2 (x), (2.66)

where λ1, λ2 > 0, and

ΩOSCAR
λ1,λ2 : Rn → [0,+∞) : x 7→ λ1∥x∥1 + λ2

∑
i<j

max{|xi|, |xj |}.

(2.67)

The function ΩOSCAR
λ1,λ2

can also be expressed as

ΩOSCAR
λ1,λ2 : Rn → [0,+∞) : x 7→

n∑
i=1

(λ1 + (n− i)λ2)|x|[i], (2.68)

where |x|[i] is the ith largest component of [|x1|, |x2|, . . . , |xn|]T so that
|x|[1] ≥ |x|[2] ≥ . . . ≥ |x|[n] is satisfied. Let w := [w1, w2, . . . , wn]

T such
that

wi = λ1 + λ2(n− i), ∀i = 1, 2, . . . , n. (2.69)
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Then, OSCAR is expressed as the ordered weighted ℓ1 norm [92], i.e.,

ΩOSCAR
λ1,λ2 (x) = ⟨w, |x|↓⟩2, (2.70)

where
|x|↓ := P (|x|)|x| ∈ Rn, (2.71)

and P (|x|) ∈ Rn×n denotes a permutation matrix which sorts the
components of |x| := [|x1|, |x2|, . . . , |xn|]T ∈ Rn in non-increasing order
[92]. The proximity operator of OSCAR for γ > 0 is given by [92]:

ProxγΩOSCAR
λ1,λ2

: x 7→ Sign(x)⊙ P (|x|)TPKn
≥0

(|x|↓ − γw) , (2.72)

where

Sign : Rn → Rn : x 7→ [sign(x1), sign(x2), . . . , sign(xn)]
T, (2.73)

and
Kn

≥0 := {x ∈ Rn | x1 ≥ x2 ≥ . . . ≥ xn ≥ 0} (2.74)

is the monotone nonnegative cone [98].

The projection of any x ∈ Rn onto Kn
≥0 can be effectively computed

by pool adjacent violators algorithm (PAVA) [108, 109, 110].

2.5 Firm-Shrinkage Operator

For any γ, τ satisfying γ > τ > 0, the firm-shrinkage operator [111] is defined
by

Firmτ,γ : Rn → Rn : x := [x1, x2, . . . , xn]
T

7→ [firmτ,γ(x1), firmτ,γ(x2), . . . , firmτ,γ(xn)]
T (2.75)

with

firmτ,γ : R → R

: x 7→


0, if |x| < τ,

γ sign(x)

γ − τ
(|x| − τ), if |x| ∈ [τ, γ),

x, if |x| ≥ γ.

(2.76)

The firm-shrinkage operator is known as the proximity operator of the MC
function as Firmτ,γ = ProxτΦMC

γ
[112]. The relation between the firm-

shrinkage and soft-shrinkage operators will be investigated in Chapter 5.





Chapter 3

Robust Recovery of
Jointly-Sparse Signals Based
on Minimax Concave Functions

3.1 Introduction

In this chapter, to answer (Q1) raised in Chapter 1.2, we cast the task of
robust recovery of jointly sparse signals as a minimization problem of a sum
of a weakly convex loss function and a strongly convex regularizer (which
ensures the convexity of the whole cost). The use of nonconvex loss function
actually makes the optimization problem difficult to solve directly by the
convex optimization methods such as the alternating direction method of
multipliers (ADMM) [113] and the primal-dual splitting methods [114, 115,
116], even with the well-established firm-shrinkage operator [112] (see Section
3.2.2). To circumvent this difficulty, we reformulate the problem with the
Moreau decomposition so that the problem can be solved by the primal-dual
splitting method [116]. We derive the parameter designs/ranges to ensure
convergence. Numerical examples show that the proposed approach is far
more robust against strong outliers compared to the existing ℓ2,1-based RFS
approach. It is also shown that the proposed approach is effective in an
application to the recovery of MECG signals, which is known to be typically
corrupted by impulsive electromyographic noise [71].

3.2 Proposed Approach

We first show the proposed problem formulation for robust recovery of jointly-
sparse signals, which can be solved by the primal-dual splitting method under
an appropriate reformulation, and then present closed-form expressions of the
operators used in the algorithm. We finally present the convergence analysis

29
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and discuss the computational complexity.

3.2.1 Problem Formulation

We formulate the robust jointly-sparse signal recovery problem as follows:

(P1) min
X∈Rn×r

J(X) :=
(
ΦMC
2,1,L(Y −AX) + µ1Φ

MC
2,1,M (X) +

µ2
2
∥X∥2F

)
,

where µ1 ≥ 0, µ2 ≥ 0, and ΦMC
2,1,L : Rm×r → [0,+∞) and ΦMC

2,1,M :

Rn×r → [0,+∞) are the Moreau enhancement (see (2.48)) of the ℓ2,1
norms for the diagonal operators L := diag(l1, l2, . . . , lm) ∈ Rm×m and
M := diag(m1,m2, . . . ,mn) ∈ Rn×n for l1, l2, . . . , lm,m1,m2, . . . ,mn > 0,
respectively, defined as follows1:

ΦMC
2,1,L(Z) := (∥ · ∥2,1)L(Z) =

m∑
i=1

ΦMC
l−1
i

(Z(i,:)), ∀Z ∈ Rm×r, (3.1)

ΦMC
2,1,M (Ξ) := (∥ · ∥2,1)M (Ξ) =

n∑
i=1

ΦMC
m−1

i
(Ξ(i,:)), ∀Ξ ∈ Rn×r. (3.2)

For µ2 = 0, (P1) with l1, l2, . . . , lm,m1,m2, . . . ,mn → +0 reduces to
(P0). Since the MC functions used in both loss and penalty terms in (P1)
are nonconvex, the third term is necessary to obtain the convexity of the
whole cost function (see Proposition 3.1 below and its following discussions).
Indeed, the use of ΦMC

2,1,L(Y −AX) makes the outliers less important than
using the ℓ2,1 norm as shown in Figure 1.1.

Some readers may consider that the third term would annihilate the ben-
efits of the MC terms. Fortunately, however, such annihilation does not hap-
pen to the first term ΦMC

2,1,L(Y −AX) when µ2 is set to an appropriate value
according to Proposition 3.1 presented below. This is because the minimiza-
tion of ΦMC

2,1,L(Y −AX)+µ1Φ
MC
2,1,M (X)+µ2∥X∥2F/2 is closely related to the

minimization of ΦMC
2,1,L(B) + µ1Φ

MC
2,1,M (A†Y −A†B) + µ2∥A†Y −A†B∥2F/2

by relating X and Y by B = Y −AX if A†A = In. Here, the latter prob-
lem for µ1 = 0 is the ordinary least square cost penalized by the MC penalty,
and this suggests that the former problem benefits from the MC function
as well as the latter one. The other MC term ΦMC

2,1,M (X) together with the
quadratic term can be considered to be a nonconvex (and block-structured)
analog of the popular elastic net regularizer [83], which will be studied fur-
ther in Chapter 4. We show in Section 3.2.3 that (P1) is solved by using the
primal-dual splitting method [117, 118].

1Although L and M are set to scaled versions of the identity matrix in all the examples,
the present definition as a diagonal operator is advantageous when some prior knowledge
is available about which columns are more likely to contain outliers.
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3.2.2 Motivation of Reformulation

We discuss the possibility of applying the primal-dual splitting method or
ADMM directly to Problem (P1). We first mention that, in order to consider
the first and third terms as a single function of AX, one needs the additional
condition rankA = n, which strictly limits the applicability. A possible ap-
proach would therefore be to consider the second and third terms as a single
function of X and then use the firm-shrinkage operators studied in [112].
Let us first consider the primal-dual splitting methods [114, 115, 116]. These
methods require the convexity of each term of the cost function as well as
that of the entire cost. Moreover, these primal-dual methods use the proxim-
ity operator of the conjugate function of the first term ΦMC

2,1,L(Y − ·) of (P1).
Due to the fact that the Fenchel conjugate of a given function coincides with
that of its lower-semicontinuous convex envelope [96, Proposition 13.16], one
can verify that Prox(ΦMC

2,1,L)∗ = 0 since the lower-semicontinuous convex en-

velope of ΦMC
2,1,L is a constant function, and hence Prox(ΦMC

2,1,L)∗∗ = Id. As
a result, Prox[ΦMC

2,1,L◦(Y −·)]∗ = 0 due to the basic properties of conjugate
function and proximity operator [96]. This means that the first term gives
no impact on the algorithm output, and thus there is no hope to obtain
a solution of (P1). In contrast, the proximity operator of the conjugate
function of ΦMC

2,1,L does not appear explicitly in the ADMM iterate. How-
ever, the convergence analysis is nontrivial in this case. For instance, the
widely known approach of Eckstein and Bertsekas [119] applies the Douglas-
Rachford splitting method to the dual problem. The conjugate function
appearing in the dual problem is replaced by the original function due essen-
tially to the Moreau decomposition, which cannot be applied to the current
nonconvex case. Another equivalent form of ADMM iterate (which will be
referred to as ADMM′) is given in [120], bypassing the dual formulation.
To apply this algorithm formally to Problem (P1), consider using ADMM′ to
solve the following problem. minimize f(X)+g(Z) subject to AX+Z = Y ,
where f : Rn×r → (−∞,+∞] is a ρ-weakly convex function for ρ > 0, and
g ∈ Γ0(Rm×r). To ensure the convergence, firm nonexpansivity of Proxγp1 is
used in [120], where p1(U) := minX∈Rn×r{f(X) | AX = U +Y }. However,
Proxγp1 can be shown to be α-cocoercive for α := 1 − γρ∥A†∥22 for γ > 0
such that α ∈ (0, 1). Since α < 1, Proxγp1 is not even nonexpansive.

3.2.3 Reformulation of (P1)

The following lemma is used for the reformulation of Problem (P1).

Lemma 3.1. For any X ∈ Rn×d,

ΦMC
2,1,M (X) = ∥X∥2,1 −

1

2
∥X∥2M + 1(ıC ◦M1/2)(M1/2X), (3.3)
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and

ΦMC
2,1,L(Y −AX) = ∥Y −AX∥2,1 −

1

2
∥Y −AX∥2L

+ 1(ıC ◦L1/2)(L1/2(Y −AX)), (3.4)

where
C := lev≤1 ∥ · ∥2,∞ := {X ∈ Rn×r | ∥X∥2,∞ ≤ 1}. (3.5)

Proof. It is known that the conjugate function of any norm is defined as the
indicator function of the unit ball of its dual norm [98, Example 3.26]. Since
the dual norm of the ℓ2,1 norm is the ℓ2,∞ norm [121, Section 3.3], we obtain
(∥ · ∥2,1)∗ = ıC . It therefore follows, for any X ∈ Rn×r, that

ΦMC
2,1,M (X) = ∥X∥2,1 − 1(∥ · ∥2,1 ◦M−1/2)(M1/2X)

= ∥X∥2,1 −
(
1

2
∥ · ∥2F − 1(ıC ◦ (M1/2)T)

)
(M1/2X)

= ∥X∥2,1 −
1

2
∥X∥2M + 1(ıC ◦M1/2)(M1/2X). (3.6)

Here, the first equality is due to [36, Lemma 1], and the second equality is
due to Facts 2.1 and 2.4(c). The latter case is proven in the same way.

By Lemma 3.1, Problem (P1) is reformulated as follows.

min
X∈Rn×r

(
ΦMC
2,1,L(Y −AX) + µ1Φ

MC
2,1,M (X) +

µ2
2
∥X∥2F

)
⇔ min

X∈Rn×r

(µ2
2
∥X∥2F − 1

2
∥AX∥2L − µ1

2
∥X∥2M + ⟨AX,Y ⟩L

+ 1(ıC ◦L1/2)(L1/2(Y −AX)) + µ1
1(ıC ◦M1/2)(M1/2X)

+ µ1∥X∥2,1 + ∥Y −AX∥2,1
)

⇔ (P′
1) min

X∈Rn×r
(F (X) +G(ΘX)), (3.7)

where

Θ :=

[
A
µ1In

]
∈ R(m+n)×n (3.8)

Here, the functions F and G are defined as follows:

F : Rn×r → R : X 7→ µ2
2
∥X∥2F − 1

2
∥AX∥2L − µ1

2
∥X∥2M + ⟨AX,Y ⟩L

+ 1(ıC ◦L1/2)(L1/2(Y −AX)) + µ1
1(ıC ◦M1/2)(M1/2X), (3.9)

G : R(n+m)×r → R : Z 7→
∥∥∥∥Z −

[
Y

0n×r

]∥∥∥∥
2,1

. (3.10)
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The function G is clearly convex and nonsmooth. On the other hand, the
function F is smooth, i.e., F is differentiable and its gradient ∇F is Lipschitz
continuous with constant (see Appendix I.1 for its derivation)

β := λmax(µ2In −ATdiag(l1, l2, . . . , lm)A− µ1diag(m1,m2, . . . ,mn))

+ λmax(A
Tdiag(l1, l2, . . . , lm)A) + µ1max{m1,m2, . . . ,mn}. (3.11)

The function F is also strictly convex under a certain condition as shown by
Proposition 3.1 below.

Proposition 3.1. The function F is convex if

µ2 ≥ λmax{ATdiag(l1, l2, . . . , lm)A+ µ1diag(m1,m2, . . . ,mn)}. (3.12)

The condition (3.12) is also necessary when

K :=
{
X ∈ Rn×r | 1(ıC ◦L1/2)(L1/2(Y −AX)) = 0

}
∩
{
X ∈ Rn×r | 1(ıC ◦M1/2)(M1/2X) = 0

}
(3.13)

has a nonempty interior. In particular, F is strongly convex if (3.12) holds
with strict inequality.

Proof. See Appendix I.2.

Strict convexity of the entire function in (P′
1) is verified by Proposition

3.1 with the convexity of G. The coercivity of the entire function in (P′
1) is

verified with the following proposition.

Proposition 3.2. The cost function J in (3.2.1) is coercive.

Proof. It holds from (3.2) that, for any B ∈ Rm×r,

ΦMC
2,1,L(B) := ∥B∥2,1 − min

Z∈Rm×r

(
∥Z∥2,1 +

1

2
∥B −Z∥2L

)
≥ ∥B∥2,1 −

[
∥Z∥2,1 +

1

2
∥B −Z∥2L

]
Z=B

= 0. (3.14)

In the same way, we obtain ΦMC
2,1,M (X) ≥ 0 for any X ∈ Rn×r. Therefore,

J is coercive since the sum of a coercive function and a function bounded
below is coercive [96, Corollary 11.16].

By Propositions 3.1 and 3.2, the cost function of (P′
1) is

strictly convex and coercive if µ2 > λmax{ATdiag(l1, l2, . . . , lm)A +
µ1diag(m1,m2, . . . ,mn)}, and hence the uniqueness and existence of the so-
lution are guaranteed in this case [96, Corollary 11.16].

Applying the forward-backward-based primal-dual algorithm [117, 118]
(see Appendix C) to solve (P′

1) produces Algorithm 3.1.
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Algorithm 3.1 : Forward-backward primal-dual splitting method for solving
(P′

1)

Set X0 ∈ Rn×r, V0 ∈ R(n+m)×r, and τ, ς > 0.
For k = 0, 1, 2, · · ·
Xk+ 1

2
:= Xk − τ∇F (Xk),

Vk+1 := (Id−Prox(τ/ς)G)

{[
AXk+ 1

2

µ1Xk+ 1
2

]
+

(
In+m − ς

[
AAT µ1A
µ1A

T µ21In

])
Vk

}
Xk+1 := Xk+ 1

2
− ς

[
AT µ1In

]
Vk+1

3.2.4 Closed-Form Expressions for the Operators

We present below closed-form expressions of the operators used in Algorithm
3.1 below.

Proposition 3.3. Closed-form expressions for ∇F and Prox(τ/ς)G are given
as follows:

1. ∇F : X 7→ µ2X − µ1

n∑
i=1

min

{
1

∥X(i,:)∥2
,mi

}
en,iX

T
(i,:)

+AT
m∑
i=1

min

{
1

∥[Y −AX](i,:)∥2
, li

}
em,i[Y −AX]T(i,:),

2. Prox(τ/ς)G : Z 7→
[

Y
0n×r

]
+

m∑
i=1

max

{
1− τ/ς

∥[Z − Y ](i,:)∥2
, 0

}
em+n,i[Z − Y ]T(i,:)

+
n∑
i=1

max

{
1− τ/ς

∥Z(m+i,:)∥2
, 0

}
em+n,m+iZ

T
(m+i,:),

Proof. See Appendix I.3.

3.2.5 Convergence Conditions and Complexity

The following proposition gives a guarantee of convergence of Algorithm 3.1
to solve (P′

1).

Proposition 3.4. Assume that convexity condition (3.12) is satisfied. Let
(Xk)k∈N and (Vk)k∈N be the sequences generated by Algorithm 3.1, respec-
tively. Suppose that

0 < τ <
2

β
, 0 < ς ≤ 1

λmax(ATA) + µ21
. (3.15)
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Then, the sequence (Xk)k∈N converges to a solution of (P′
1), and

((τ/ς)Vk)k∈N converges to a solution of the associated dual problem

min
ζ∈Rm+n

F ∗(−ΘTζ) +G∗(ζ). (3.16)

Proof. The proof is due to Fact C.1 in light of Proposition 4.1.

We now analyze the computational complexities of our approach and the
RFS. The complexity of our approach can be divided into two parts: the
number of multiplications to compute τ and ς (step 1) and the one for the
iterations (step 2).

In step 1, we consider the number of multiplications to attain β and
λmax(Θ

TΘ), from which the proximal parameters τ and ς can be obtained
due to (3.15). Using the power method, the computational complexity for β
by (3.11) is given by O(min{n2,m2}max{n,m, pβ}) where pβ is the number
of power iterations. See appendix D for the definition of the big Oh notation
@O. The above arguments are based on the following equations:

λmax(µ2In −ATdiag(l1, l2, . . . , lm)A− µ1diag(m1,m2, . . . ,mn))

= λmax(µ2Im − diag(l
1/2
1 , l

1/2
2 , . . . , l1/2m )AATdiag(l

1/2
1 , l

1/2
2 , . . . , l1/2m )

− µ1diag(m1,m2, . . . ,mn)), (3.17)

λmax(A
Tdiag(l1, l2, . . . , lm)A)

= λmax(diag(l
1/2
1 , l

1/2
2 , . . . , l1/2m )AATdiag(l

1/2
1 , l

1/2
2 , . . . , l1/2m )). (3.18)

The complexity of λmax(Θ
TΘ) scales in O(pς min{mnr, n2(m+ r)}), where

pς is the number of power iterations to obtain ς. This is verified as follows:
it holds for any X ∈ Rn×r that

ΘTΘX = ATAX + µ21X (3.19)

and the complexity of ATAX is O(min{mnr, n2(m +
r)}). The overall complexity of τ and ς amounts to
O(max{min{n2,m2}max{n,m, pβ}, pς min{mnr, n2(m+ r)}}).

In step 2, the complexity for updating Xk+ 1
2
and Vk+1 of Algorithm 3.1

are O(nmr) and O(nmr), respectively. Hence, the overall complexity per it-
eration scales inO(nmr). The complexity of the RFS isO(m(m+n)max(m+
n, r)), which is larger than that of the proposed approach for a sufficiently
large m (see Table 3.1) Figure 3.1 compares the CPU time for the conver-
gence of the proposed method and the RFS. This experiment is performed
in Python 3.8.13 on a 64-bit PC with 12th gen Intel(R) Core(TM) i9-12900
CPU (5.1 GHz). The experimental setting is the same as Experiment 3-A in
Section 3.3 below for SNR 30 dB except that n := 128.

We finally mention that the RFS problem (P0) can be solved by the well-
established convex optimization techniques such as the primal-dual splitting
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Table 3.1: Computational complexity (q: the number of iterations).

Algorithm Time complexity

Proposed O(max{qnmr,max{min{n2,m2}max{n,m, pβ},
pς min{mnr, n2(m+ r)}}})

RFS O(qm(m+ n)max{m+ n, r})
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Figure 3.1: Computational complexities of the proposed approach and the
RFS.

methods [114, 116, 115] and ADMM [113], all of which are more efficient
than the method in [9].

3.2.6 Remarks

Remark 3.1. One may consider solving Problem (P′
1) by other algorithms

such as the primal-dual splitting method of Chambolle and Pock and ADMM.
It is difficult to compute the proximity operator of F in this case; see [122,
59] for some cases in which the sum of functions is jointly proximable. A
possible way to circumvent this difficulty is to apply Chambolle and Pock’s
algorithm through the Pierra-type product-space reformulation [123, 124] as
follows. We first decompose F into a sum of multiple proximable functions∑p

i=1 fi for p > 2 and fi ∈ Γ0(Rn×r) (i = 1, 2, . . . , p), and then let the
arguments of the functions be X1,X2, . . . ,Xp, respectively. We finally add
the indicator function to enforce the linear constraint X1 = · · · = Xp. This
strategy results in an undesirable increase in the number of variables, causing
significant increases in the computational costs and memory requirements.
An application of ADMM to (P′

1), on the other hand, essentially requires
the proximity operator of F . This implies the necessity of the inner loop to
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find the proximity operator numerically by some iterative methods. To avoid
such increases in complexity and memory requirements and the inner loop,
we leverage the primal-dual splitting method of Condat [116] to solve (P′

1)
in the present study.

Remark 3.2. Problem (P ′
1) is equivalent to the following problem:

min
X∈Rn×r

(F (X) + G̃(X) + H̃(ΘX)), (3.20)

where

Γ0(Rn×r) ∋ G̃ : X 7→ µ1∥X∥2,1, (3.21)

Γ0(Rm×r) ∋ H̃ : Z 7→ ∥Y −Z∥2,1. (3.22)

The problem in (3.20) can be solved by the primal-dual splitting method of
Condat [116]. However, the conditions on the step sizes for this algorithm
are more restrictive than Algorithm 3.1. We note that there may be better
optimization algorithms to solve (P′

1), and the best selection of the algorithm
is an open issue.

Remark 3.3. Some readers may consider that the use of the GMC functions
for the loss and penalty terms in (P1) instead of the MC functions would be
more advantageous. Although the GMC penalty with appropriate param-
eters allows the global optimality for the problem involving the quadratic
loss (see (1.1)) even in the underdetermined case, it is not necessary in the
present study. The quadratic loss cannot be strongly convex over the whole
space in the underdetermined case, and hence it does not annihilate the weak
convexity of the MC penalty. However, in the present study, the quadratic
term in (P1) does not involve any linear operator, and hence it is strongly
convex even in the underdetermined case. Hence, the convexity of (P1) can
be guaranteed without employing the GMC functions.

3.3 Numerical Examples

We first show the robustness of the proposed approach and its performance
in the support recovery task. We then evaluate the efficacy of the proposed
approach in an application to the recovery of MECG signals.

3.3.1 Experiment 3-A: Toy Data

3.3.1.1 Robustness

Matrices X⋄ ∈ Rn×r and A ∈ Rm×n are generated from the i.i.d. normal
distribution N (0, 1). Here, we consider dense X⋄ to show the pure effects
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Figure 3.2: Learning curves under n = 512, m = 1024, n = 32, outlier rate
30% and signal-to-noise ratio (SNR) 30 dB.

of the robustification (excluding the sparsification effect). The matrix E⋆ is
generated from the i.i.d. normal distribution with SNR, where

SNR :=
E[∥AX⋄∥2F]
E[∥E⋆∥2F]

. (3.23)

The outlier matrix O⋄ is column sparse, and its non-zero elements are drawn
from N (0, 1) and are then multiplied by the factor 100. To measure the ac-
curacy of the recovered signals, the normalized mean squared errors (NMSE)
given by

NMSE :=
∥X⋄ − X̂∥2F

∥X⋄∥2F
(3.24)

are used. The RFS [9] is considered for comparison. In [9], it is mentioned
that one can easily extend the RFS to those problems with different penalties,
such as

(P2) min
X∈Rn×r

∥Y −AX∥2,1 +
µ2
2
∥X∥2F, (3.25)

which is a special case of (P1) for L = 0m×m and µ1 = 0.
Since X⋄ is dense, we let µ1 = 0 and M = 0n×n. On the basis of

Proposition 3.1, µ2 is set to µ2 := λmax{ATdiag(l1, l2, . . . , lm)A} which gave
the best performance. We let l1 = · · · = lm = αl > 0, and αl and λ in (P0)
are optimized via grid search using the clean data which are free from noise
and outliers.

Figure 3.2 depicts the learning curves for n = 512, m = 1024,
r = 32, and the SNR is set to 30 dB. Although the proposed ap-
proach for Problem (P1) requires a larger number of iterations than the
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RFS for Problem (P0), the proposed approach is indeed more benefi-
cial than the RFS in terms of the computational time. To be spe-
cific, O(max{qnmr,max{min{n2,m2}max{n,m, pβ}, pς min{mnr, n2(m +
r)}}}) ≈ 2.8×108 for the proposed approach, and qm(m+n)max(m+n, r) ≈
1.1× 109 for the RFS, where q = 131, pβ = 1167, and pς = 219 for the pro-
posed approach, and q = 27 for the RFS.

Figure 3.3 depicts the performance for n = 160, m = 256, and r = 32
under 300 trials when the outlier rate (the ratio between m and the number
of nonzero columns of the outlier matrix O⋄) changes between 10% and 40%.
The SNR is set to 10, 20, 30, and +∞ dB (i.e., the noiseless case). It is
seen that the proposed approach is more effective for a denser outlier matrix.
We mention that, once recovering the support, one can remove those data
corresponding to the off-support components and solve another (smaller size)
regression problem that involves a smaller number of variables than that of
the original problem. In that respect, the present setting of n < m is a
reasonable choice. Note that the performance of the RFS (P2) and Proposed
(P2) are particularly different in Fig. 3.3(d) possibly because the matrix
inversion produces numerical errors for the RFS (P2).



40 CHAPTER 3. ROBUST JOINTLY-SPARSE SIGNAL RECOVERY

10 20 30 40

Outlier [%]

−8

−6

−4

N
M

S
E

[d
B

]

RFS (P2)

RFS (P0)

Proposed (P2)

Proposed (P1)

(a) SNR 10 dB

10 20 30 40

Outlier [%]

−10

−8

−6

−4

N
M

S
E

[d
B

]

RFS (P2)

RFS (P0)

Proposed (P2)

Proposed (P1)

(b) SNR 20 dB

10 20 30 40

Outlier [%]

−12

−10

−8

−6

−4

N
M

S
E

[d
B

]

RFS (P2)

RFS (P0)

Proposed (P2)

Proposed (P1)

(c) SNR 30 dB

10 20 30 40

Outlier [%]

−300

−200

−100

0

N
M

S
E

[d
B

]

RFS (P2)

RFS (P0)

Proposed (P2)

Proposed (P1)

(d) noiseless

Figure 3.3: NMSE across outlier rate under n = 160, m = 256, and r = 32.
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3.3.1.2 Support Recovery

We demonstrate the remarkable robustness of the proposed approach for
support recovery. We compare the proposed approach to the RFS and the
state-of-the-art MMV algorithms: SNIHT [51], SOMP [50], SCoSaMP [51],
SA-MUSIC [53], and RA-ORMP [48].

First, we investigate the robustness of the proposed approach for sparse
signals under SNR 10 dB for n = 256, m = 128, and r = 32. We generate
matrices X⋄ ∈ Rn×r and A ∈ Rm×n, both of which obey the i.i.d. normal
distribution N (0, 1), and set n− k column vectors of X⋄ to the zero vectors,
where k is called block sparsity. We define the signal-to-outlier ratio (SOR)
as

SOR :=
E[∥AX⋄∥2F]/m
E[∥O⋄∥2F]/κo

, (3.26)

where κo denotes the number of non-zero column vectors in O⋄. We let
SOR −30 and −3000 dB. We let µ2 := λmax{ATdiag(l1, l2, . . . , lm)A +
µ1diag(m1,m2, . . . ,mn)}, l1 = · · · = lm = αl > 0, m1 = · · · = mn = αm > 0,
and αl, αm, µ1, and λ in (P0) are optimized via grid search.

Figure 3.4 shows the support recovery probability under 300 trials for
different rates of outliers. It is seen that the proposed approach recovers
the support successfully under higher outlier-rate situations than the RFS.
We stress here that the proposed approach succeeds even under SOR −3000
dB up to the outlier rate 55%, while the RFS fails for the outlier rate less
than 1%. Figure 3.5 plots the recovery probability as a function of k/n
and r under SNR 10 dB, outlier 30%, SOR −30 dB, and 300 trials. The
proposed approach achieves significantly higher recovery probabilities than
the RFS due to its remarkable robustness coming from the use of the MC
loss function.
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Figure 3.4: Recovery probability across outlier rate for n = 256, r = 32,
m = 128, k = 16, and SNR 10 dB.
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3.3.2 Experiment 3-B: Application to MECG Signal Recov-
ery Problem

We consider the MECG signal recovery problem using the publicly available
database PTB [125] [126]. The MMV approach has been considered for
MECG signals because the signals of each channel tend to have common
sparse patterns in a wavelet domain [127] as shown in Figure 3.6. While
the dataset contains 12 channels, we process r := 4 independent channels
(Lead 1, Lead 2, V1, V2). From each channel, we extract signals of length
m := 512 and construct the data matrix ZMECG ∈ Rm×r. The data matrix
is sparsified by Daubechies-4 (db4) wavelet basis2 as

ZMECG := WX⋄, (3.27)

where W ∈ Rm×m is an orthonormal wavelet basis, and X⋄ ∈ Rm×r is
the matrix composed of the wavelet coefficient vectors. The decomposition
level of the wavelets is set to 7 based on the relation between the sampling
frequency and the decomposition level [129]. The measurement matrix Y ∈
Rm×r is corrupted by noise and outliers as follows:

Y = WX⋄ +E⋆ +O⋄. (3.28)

Each component of the noise matrix E⋆ follows i.i.d. N (0, σ2ε⋆). The SNR
is set to 15 dB. The outlier matrix O⋄ is jointly sparse, and the number
of non-zero column vectors is κo. The nonzero components of O⋄ follow
i.i.d. N (0, σ2o⋄) with a given SOR.

We let µ2 := λmax{W Tdiag(l1, l2, . . . , lm)W + µ1diag(m1,m2, . . . ,mn)},
l1 = l2 = · · · = lm = αl > 0, m1 = m2 = · · · = mn = αm > 0, and αl,
αm, and µ1 in (P0) are optimized via grid search. The evaluation metric is
NMSE defined as

NMSE :=
∥ZMECG −WX̂∥2F

∥ZMECG∥2F
(3.29)

Figures 3.7(a) and 3.7(b) depict NMSE averaged over 300 trials across
different outlier rates and SOR, respectively. The proposed approach out-
performs the RFS in the presence of noise and outliers over a wide range of
outlier rates and SOR. Figures 3.8-3.11 show the original MECG signals and
recovered signals by the proposed approach and the RFS in the presence of
severe outliers. Specifically, Figure 3.8 shows that some part of the signal is
underestimated by the RFS since its robustness is limited. In contrast, the
proposed method recovers the MECG signal with high precision.

2It is known that Daubechies and Symlet families yield more sparse representation for
ECG data than other representative types of wavelet such as Meyer, biorthogonal, and
reverse biorthogonal wavelets [128].
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Figure 3.6: a) Clean MECG signals. (b) Amplitudes of wavelet coefficients
of the MECG signals in each of the four channels.
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Figure 3.8: Measurements, original ECG signal, and recovered ECG signals
from (a) the proposed method and (b) the RFS under outlier rate 80% and
SOR −40 dB for Lead 1.
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Figure 3.9: Measurements, original ECG signal, and recovered ECG signals
from (a) the proposed method and (b) the RFS under outlier rate 80% and
SOR −40 dB for Lead 2.
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Figure 3.10: Measurements, original ECG signal, and recovered ECG signals
from (a) the proposed method and (b) the RFS under outlier rate 80% and
SOR −40 dB for V1.
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Figure 3.11: Measurements, original ECG signal, and recovered ECG signals
from (a) the proposed method and (b) the RFS under outlier rate 80% and
SOR −40 dB for V2.
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3.4 Conclusion

We proposed a robust approach to recovering jointly-sparse signals in the
presence of outliers to fundamentally solve the tradeoff between robustness
and global optimality. This addresses (Q1), which was raised in Chapter 1.2.
The main result was that the MC loss function led to the remarkable robust-
ness to outliers. The overall convexity of the cost function was guaranteed by
exploiting the weak convexity of the MC functions. The problem was solved,
via reformulation based on the Moreau decomposition, by the primal-dual
splitting method, for which the convergence condition for the current spe-
cific case was derived with a Lipschitz constant of the gradient used in the
method. The numerical results showed that the proposed approach outper-
formed the RFS in terms of robustness against outliers. We finally remark
that, although this chapter concerns the jointly-sparse signals for generality,
the applicability of the proposed approach is never limited to such signals
and it will be useful in a wide range of applications including robust regres-
sion (such as the single measurement vector case in which the system may
or may not be sparse and in which the outliers need to be managed).





Chapter 4

Sparse Stable Outlier-Robust
Regression

4.1 Introduction

This chapter presents a robust method to estimate sparse signals which ap-
propriately distinguishes the statistical differences between Gaussian noise
and outliers to answer (Q2) raised in Chapter 1.2. The major contributions
of this chapter are summarized below.

1. We propose a sparse outlier-robust signal regression method which inte-
grates the formulations for nearly unbiased sparse estimation based on
the MC penalty in (1.3) and SORR which will be presented in (F.1.3)
(see Appendix F.1) in the framework of convex optimization. The
proposed method enjoys remarkable advantages including (i) notable
outlier robustness, (ii) stability under heavy Gaussian noise, (iii) high
accuracy for both overdetermined and underdetermined cases, and (iv)
theoretical convergence guarantees to a global minimizer by employing
the operator splitting method. To the best of our knowledge, none
of the existing methods achieves those desirable properties simultane-
ously.

2. We formulate the linearly-involved Moreau-enhanced-over-subspace
(LiMES) model [35] in a certain product space to allow the use of
multiple (generalized) MC functions (see Section 4.4). This allows us
to derive a sufficient condition for convexity of the cost function in-
volving two MC functions and to identify when it is also a necessary
condition (Proposition 4.1).

3. We use the MC and the squared ℓ2 penalties simultaneously, inspired by
the elastic net penalty [83]. This formulation leads to a certain remark-
able grouping effect under an appropriate parameter choice. Specifi-

53
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cally, we show that, in contrast to the elastic net, when a pair of features
are highly correlated, the upper bound of the discrepancy between the
corresponding coefficients is independent of the norm of the observation
vector which could be large owing to huge outliers.

4. Numerical examples show that the proposed approach is more robust
against strong outliers than the existing sparse outlier-robust signal re-
gression methods. The efficacy of the proposed method is also shown
in application to speech denoising even when the speech signal is cor-
rupted by huge outliers.

The remainder of the chapter is organized as follows. Section 4.2 states
the problem addressed, and introduces selected elements of convex analysis.
Section 4.3 presents the proposed approach with convergence analysis. Sec-
tion 4.4 presents the convexity condition by introducing the LiMES-based
general model mentioned above. Section 4.5 demonstrates the simulation
results, followed by the conclusion in Section 4.6.

4.2 Problem Statement

Let y ∈ Rm be the measurement vector contaminated by noise and outliers:

y = Ax⋄ + ε⋆ + o⋄. (4.1)

Here, o⋄ ∈ Rm is the sparse outlier vector. We assume that ε⋆ follows a
multivariate Gaussian distribution N (0, σ2ε⋆Im). The present study concerns
the task of recovering x⋄ from given y and A. Most of the loss functions
proposed in the literature do not distinguish the statistical difference between
noise and outliers appropriately, as mentioned in Section 1.1.4.2. Specifically,
sparsity-inducing loss functions such as the MC loss are sensitive to small
perturbations since the derivative does not vanish as it approaches the origin.
To overcome this issue, we propose the formulation integrating the MC-
based sparse signal recovery and SORR to reflect the sparsity of outliers
with stability in highly noisy situations.

4.3 Proposed Method

To attain both benefits of (1.3) and (F.1.3), we blend those two formulations
as follows:

min
x∈Rn, ε∈Rm

JS-SORR(x, ε) :=

α

(
µSORRΦ

MC
γ1 (y − (Ax+ ε)) +

1

2
∥x∥22 +

ρSORR

2
∥ε∥22

)
+ (1− α)

(
1

2
∥y −Ax∥22 + µMCΦγ2(x)

)
, (4.2)
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where α ∈ (0, 1] controls the balance between sparseness and robustness, and
γ1, γ2 > 0. For convenience, let µ1 := αµSORR > 0, µ2 := (1 − α)µMC ≥ 0,
and ρ := αρSORR > 0, respectively. Then, (4.2) can be rewritten as follows:

min
x∈Rn, ε∈Rm

1

2

(
α∥x∥22 + (1− α)∥y −Ax∥22

)
+ µ1Φ

MC
γ1 (y − (Ax+ ε))

+ µ2Φ
MC
γ2 (x) +

ρ

2
∥ε∥22. (4.3)

This formulation is referred to as sparse stable outlier-robust regression (S-
SORR). Here, we regard µ1, µ2, and ρ1 as parameters to be tuned indepen-
dently from α.

One may consider that the quadratic terms in (4.3) would annihilate the
benefits of the MC terms. However, it is well known that the quadratic loss
in the problem

min
x∈Rn

1

2
∥y −Ax∥22 + µMCΦγ2(x) (4.4)

does not annihilate the benefit of the MC penalty [24, 25]. In a similar
argument to Section 3.2.1, it can be seen that the quadratic penalties in the
problem

min
x∈Rn, ε∈Rm

µSORRΦ
MC
γ1 (y − (Ax+ ε)) +

1

2
∥x∥22 +

ρSORR

2
∥ε∥22 (4.5)

would not annihilate the benefit of the MC loss. Hence, such annihilation
would not occur in (4.3) as well.

In the particular case of α = 1, the proposed formulation (4.3) reduces
to the formulation in [130], providing remarkably robust estimates. In this
case, however, µ1 and µ2 need to be sufficiently small for the overall cost to
be convex. This means that ∥x∥22/2 is relatively large compared to the other
terms, and it may thus cause a large estimation bias which might cancel the
nearly-unbiased-estimation property of µ2ΦMC

γ2 (x). Therefore, for a smaller
α, one may choose µ1 and µ2 in such a way that the cost function of

µ1Φ
MC
γ1 (y − (Ax+ ε)) +

α

2
∥x∥22 +

ρ

2
∥ε∥22 (4.6)

and
µ2Φ

MC
γ2 (x) +

1− α

2
∥y −Ax∥22 (4.7)

are convex, respectively. By doing so, a sparse and less biased estimate
could be attained while keeping the remarkable outlier-robustness (see Sec-
tion 4.5.2.2). One can also see that (4.3) involves the two penalty terms
µ2Φ

MC
γ2 (x) and α∥x∥22/2, and this actually induces a notable grouping ef-

fect which essentially differs from that of the popular elastic net, as will be
discussed in Section 4.3.4.
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4.3.1 Reformulation of the Problem

Problem (4.3) can be rewritten in a simpler form with ξ := [xT εT]T ∈ Rn+m
as follows:

min
ξ∈Rn+m

1

2

∥∥∥∥∥
[

Θ
1/2
3

(1− α)1/2AΘ2

]
ξ −

[
0n+m

(1− α)1/2y

]∥∥∥∥∥
2

2

+ µ1Φ
MC
γ1 (Θ1ξ − y)

+ µ2Φ
MC
γ2 (Θ2ξ) , (4.8)

where1

Θ1 :=
[
A Im

]
∈ Rm×(n+m), (4.9)

Θ2 := [ In 0n×m ] ∈ Rn×(n+m), (4.10)

Θ3 :=

[
αIn 0n×m
0m×n ρIm

]
∈ R(n+m)×(n+m). (4.11)

Since the MC function satisfies (2.46), the cost function in Problem (4.8) can
be split into smooth and nonsmooth proximable terms as follows:

1

2

∥∥∥∥∥
[

Θ
1/2
3

(1− α)1/2AΘ2

]
ξ −

[
0n+m

(1− α)1/2y

]∥∥∥∥∥
2

2

+ µ1 (∥Θ1ξ − y∥1 − γ1∥ · ∥1(Θ1ξ − y)) + µ2 (∥Θ2ξ∥1 − γ2∥ · ∥1(Θ2ξ))

= F (ξ) +G(Θξ), (4.12)

where Θ :=

[
µ1Θ1

µ2Θ2

]
∈ R(n+m)×(n+m) and

F : R(n+m)×(n+m) : ξ 7→ 1

2

∥∥∥∥∥
[

Θ
1/2
3

(1− α)1/2AΘ2

]
ξ −

[
0n+m

(1− α)1/2y

]∥∥∥∥∥
2

2

− µ1
γ1∥ · ∥1(Θ1ξ − y)− µ2

γ2∥ · ∥1(Θ2ξ), (4.13)

G : R(n+m)×(n+m) : ξ 7→
∥∥∥∥ξ −

[
µ1y
0n

]∥∥∥∥
1

. (4.14)

The function G is clearly convex and nonsmooth, and its proximity operator
can be expressed in a closed form. On the other hand, F is smooth, i.e., F
is differentiable and its gradient ∇F is Lipschitz continuous with constant
(see Appendix J.1 for its derivation)

β := max{α, ρ}+ (1− α+ µ1γ
−1
1 )λmax(A

TA) + µ1γ
−1
1 + µ2γ

−1
2 . (4.15)

1Note that Θ3 corresponds to Σξ in [35], which is the covariance matrix of ξ, following
a Gaussian distribution. The notation has been changed, because ξ is non-Gaussian in this
study due to the sparseness assumption of x, and because Θ3 is no longer the covariance
matrix of ξ.
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The convexity conditions of the smooth part F in (4.13) are shown below so
that the forward-backward-based primal-dual algorithm [118] (see Appendix
C) can be applied to solve Problem (4.3), which produces Algorithm 4.1.

4.3.2 Convexity Conditions

The convexity conditions of F are given as follows.

Proposition 4.1. The function F in (4.13) is convex if

0 ≤ µ2≤γ2

[
α−

(
µ1ρ

ργ1 − µ1
−1+α

)
λmax(A

TA)

]
(4.16)

This condition is necessary when

K := {[xT εT]T ∈ Rn+m | ∥y −Ax− ε∥∞ ≤ γ1, ∥x∥∞ ≤ γ2} ̸= ∅ (4.17)

has a nonempty interior.

Proof. The proof is given in Appendix J.2 based on the general results to be
presented in Section 4.4. An alternative proof of this proposition is given in
Appendix J.3.

In practice, an equivalent convexity condition stated in the following
lemma is useful to set the hyperparameters µ1 and µ2:

Corollary 4.1. The convexity condition in (4.16) holds if and only if the
following two conditions are jointly satisfied:

(K-I) µ1 ≤
γ1ρ(α+ (1− α)λmax(A

TA))

α+ (ρ+ 1− α)λmax(ATA)
,

(K-II) µ2 ≤ γ2

[
α−

(
µ1ρ

ργ1 − µ1
− 1 + α

)
λmax(A

TA)

]
.

We mention that, when F is convex, the whole cost function is also convex
since G is convex. Suppose that (K-I) and (K-II) are jointly satisfied with
strict inequalities. In this case, F , and hence the whole cost function, are
strictly convex, and thus the existence and uniqueness of a solution of the
whole cost function is guaranteed by [96, Corollary 11.16].2 Note here that
the existence follows from the fact that (i) the first term in (4.8) is coercive,
i.e.,

lim
∥ξ∥2→+∞

1

2

∥∥∥∥∥
[

Θ
1/2
3

(1− α)1/2AΘ2

]
ξ −

[
0n+m

(1− α)1/2y

]∥∥∥∥∥
2

2

= +∞, (4.18)

2Let f, g : H → (−∞,+∞] be defined over a given Hilbert space H. To show the
existence of a minimizer of f + g ∈ Γ0(H) for f, g ∈ Γ0(H), it suffices that f is coercive
and g is bounded below [96, Corollary 11.16].
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Algorithm 4.1 : Sparse Stable Outlier-Robust Regression (S-SORR)
Set x0,w0 ∈ Rn, ε0,v0 ∈ Rm, and τ, ς > 0.
For k = 0, 1, 2, · · ·[
xk+ 1

2

εk+ 1
2

]
:=

[
xk
εk

]
− τ∇F

([
xk
εk

])
,[

vk+1

wk+1

]
:= (Id−Prox(τ/ς)G)

{[
µ1

(
Axk+ 1

2
+ εk+ 1

2

)
µ2xk+ 1

2

]

+

(
In+m − ς

[
µ21(AAT + Im) µ1µ2A

µ1µ2A
T µ22In

])[
vk
wk

]}
,[

xk+1

εk+1

]
:=

[
xk+ 1

2

εk+ 1
2

]
− ς

[
µ1A

Tvk+1 + µ2wk+1

µ1vk+1

]
.

and (ii) the remaining MC functions in (4.8) are bounded below.
With the parameters µ1 and µ2 satisfying (K-I) and (K-II), Problem (4.3)

can be solved by the following forward-backward-based primal-dual algorithm
[117, 118, 131].

By Fact 2.4(b), it holds, for any ξ ∈ Rn+m, that

∇F (ξ) = (Θ
1/2
3 )TΘ

1/2
3 ξ + (1− α)(AΘ2)

T(AΘ2ξ − y)

− µ1γ
−1
1 ΘT

1 (Id− Softγ1)(Θ1ξ − y)− µ2γ
−1
2 ΘT

2 (Id− Softγ2)(Θ2ξ)

=

[
∇xF (ξ)
∇εF (ξ)

]
, (4.19)

where

∇xF : Rn+m → Rn : ξ 7→ αx+ (1− α)AT(Ax− y)

− µ1γ
−1
1 AT(Id− Softγ1)(Ax+ ε− y)

− µ2γ
−1
2 (Id− Softγ2)(x), (4.20)

∇εF : Rn+m → Rm : ξ 7→ ρε− µ1γ
−1
1 (Id− Softγ1)(Ax+ ε− y). (4.21)

By Fact 2.3(a), the proximity operator appearing in Algorithm 4.1 can be
expressed, for any ζ ∈ Rm+n, by

Prox(τ/ς)G : Rn+m → Rn+m : ζ 7→
[
µ1y
0n

]
+ Softτ/ς

(
ζ −

[
µ1y
0n

])
. (4.22)

4.3.3 Convergence Conditions and Complexity

The following proposition gives a guarantee of convergence of Algorithm 1
to a solution of (4.3).
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Proposition 4.2. Assume that convexity conditions (K-I) and (K-II) are
satisfied. Let (xk, εk)k∈N and (vk,wk)k∈N be the sequences generated by
Algorithm 4.1, respectively. Suppose that

0 < τ <
2

β
, 0 < ς ≤ 1

λmax(ΘTΘ)
. (4.23)

Then, the sequence (xk, εk)k∈N converges to a solution of the problem in
(4.3), and ((τ/ς)vk, (τ/ς)wk)k∈N converges to a solution of the associated
dual problem

min
ζ∈Rm+n

F ∗(−ΘTζ) +G∗(ζ). (4.24)

Proof. The proof is due to Fact C.1 in light of Proposition 4.1.

We remark that the computational complexity to obtain λmax(Θ
TΘ) is

O(nmp) with the number p of power iterations. This is verified as follows:
for any x ∈ Rn and ε ∈ Rm, it holds that

ΘTΘ

[
x
ε

]
=

[
(µ21A

TA+ µ22In)x+ µ21A
Tε

µ21Ax+ µ21ε

]
, (4.25)

and the complexity of ATAx and ATϵ are O(nm). Since the normalization
scales in O(n + m), the complexity for λmax(Θ

TΘ) amounts to O(nmp).
The total complexity of Algorithm 4.1 is, on the other hand, O(nmq) with
the number q of algorithm iterations since each iteration of Algorithm 4.1
requires O(nm) complexity. The computational complexities of the other
sparse outlier-robust recovery methods are summarized in Table 4.1. We
consider the computational complexities when YALL1 and extended lasso are
solved by the ADMM [132] and the primal-dual splitting method. RPGG [72]
requires O(m2(m + n)) complexity to obtain the pseudoinverse of

[
A Im

]
in the initialization step and O(m(n+m)) complexity per iteration. Hence,
the total complexity for RPGG is O(m(m+ q)(n+m)), which is larger than
that of S-SORR for a sufficiently large m. The complexity of S-SORR is
comparable to the other methods based on convex optimization (extended
lasso, Huber FISTA, and YALL1).

4.3.4 Grouping Effect

It is well known that, when some groups of features are highly correlated,
lasso tends to choose only one feature in the group (see issue (iv) in Section
1.1.1), and the elastic net penalty [83] overcomes this issue by adding a
quadratic function to the lasso formulation (see Section 1.1.5). We show
below that the MC penalty by itself shares the same issue as lasso, and the
grouping effect can be attained by adding an extra penalty of the quadratic
function in analogy to the elastic net penalty. While we assume that two
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Table 4.1: Total computational complexity (p: number of power iterations,
q: number of algorithm iterations).

computational complexity
extended lasso O(nm(p+ q))

Huber FISTA O(nm(p+ q))

YALL1 O(nmq)

RPGG O(m(m+ q)(n+m))

S-SORR O(nm(p+ q))

features are highly correlated in the following discussions, the case when more
than two vectors are highly correlated can also be treated straightforwardly
by applying the results to each pair of such features.

Let x̂ ∈ Rn be a minimizer of the convex cost function

J(x) := H(Ax) +R(x), x ∈ Rn, (4.26)

where H : Rm → (−∞,+∞] is a (possibly nonconvex) loss function and
R : Rn → (−∞,+∞] is a (possibly nonconvex) regularizer, respectively.

Proposition 4.3. Assume that J(x) has a minimizer x̂, there exist some
indices i, j ∈ {1, 2, . . . , n} such that ai = aj , |x̂i|, |x̂j | > γ, and x̂ix̂j > 0 for
a given γ > 0. Then, the following statements hold.

(a) Let R(x) := µΦMC
γ (x). Then, x̂∗ is another minimizer of J(x) in (4.26)

other than x̂, where

x̂∗k :=


x̂k, k ̸= i and k ̸= j,
(x̂i + x̂j)α, k = i,
(x̂i + x̂j)(1− α), k = j,

(4.27)

for any

α ∈
[

γ

|x̂i|+ |x̂j |
,
1

2

]
. (4.28)

(b) Let R(x) := µΦMC
γ (x) + ∥x∥22/2. Then, x̂i = x̂j for any µ > 0.

Proof. See Appendix J.4.

Proposition 4.3(a) states that, while two column vectors ai and aj are
identical, the corresponding components of a minimizer of (4.26) are differ-
ent excluding the case of α = 1/2. Since the normalized MC penalty gives a
parametric bridge between ∥ · ∥0 (defined as the number of nonzero compo-
nents of a vector) and ∥ · ∥1 [34], γ is desired to be small to attain a sparse
estimate with small bias. However, a small γ allows α to be nearly zero,
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making x̂∗i = (x̂i+ x̂j)α nearly zero as well. This is undesirable in such a sit-
uation when the two variables need to be identified as important components
[83]. In contrast, Proposition 4.3(b) states that the MC penalty regularized
by the quadratic function yields the same coefficients for the two features,
i.e., it exhibits the grouping effect. In the specific case of the MC loss, the
result of Proposition 4.3(b) can be generalized to the case when two features
are highly correlated as below.

Proposition 4.4. Suppose that each column ofA is normalized as ∥ai∥2 = 1
for i = 1, 2, . . . , n. Let

H := µ1Φ
MC
γ1 (· − y − ε) +

1− α

2
∥ · −y∥22 (4.29)

for given γ1, µ1 > 0 and for given y, ε ∈ Rm, and let

R := µ2Φ
MC
γ2 +

α

2
∥ · ∥22 (4.30)

for given γ2 > 0, µ2 ≥ 0, and α ∈ (0, 1]. Assume that the following conditions
hold:

(a) τ1 + λmin(τ2A
TA) ≥ 0 (⇐ (K-II)), where τ1 := µ−1

1 γ1(α − µ2γ
−1
2 ) and

τ2 := (1− α)µ−1
1 γ1 − 1.

(b) x̂ix̂j > 0.

Then, it holds that

|x̂i − x̂j | ≤ α−1

[√
2(1− aT

i aj)(µ
2
1m+ (1− α)µ1γ1 + (1− α)2∥y∥22)

+ µ2|(ϕMC
γ2 )′(x̂i)− (ϕMC

γ2 )′(x̂j)|
]
, (4.31)

where (ϕMC
γ2 )′ : R \ {0} → R is the derivative of the MC function defined in

(2.45). Note that aT
i aj ∈ [−1, 1] is the sample correlation.

Proof. The proof is given in Appendix J.5.

Proposition 4.4 states that the difference between the corresponding co-
efficients x̂i and x̂j becomes smaller when the correlation between ai and aj
becomes larger. The upper bound in (4.31) provides a quantitative measure
of the grouping effect. Specifically, the following corollary provides a con-
trasting result to the naïve elastic net by considering the case when α = 1
and γ2 → +∞.

Corollary 4.2. Suppose that each column of A is normalized as ∥ai∥2 = 1
for i = 1, 2, . . . , n. Let

H := µ1Φ
MC
γ1 (· − y − ε) (4.32)
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for given γ1, µ1 > 0 and for given y, ε ∈ Rm, and let

R := µ2∥ · ∥1 +
1

2
∥ · ∥22 (4.33)

for given µ2 ≥ 0. Assume that the following conditions hold:

(a) µ1λmax(A
TA) ≤ γ1 (⇐ (K-II)).

(b) x̂ix̂j > 0.

Then, it holds that

|x̂i − x̂j | ≤ µ1

√
2m(1− aT

i aj). (4.34)

According to [83, Theorem 1], for the naïve elastic net, which corresponds
to H(z) := µ1

2 ∥z − y∥22 and R(x) := µ2∥x∥1 + 1
2∥x∥

2
2, it holds that

|x̂i − x̂j | ≤ µ1∥y∥2
√

2(1− aT
i aj), (4.35)

provided that x̂ix̂j > 0. Comparing (4.34) and (4.35), the upper bound in
(4.34) depends solely on the number m of measurements, while that in (4.35)
depends on ∥y∥2. Therefore, for a given m, even when the magnitude of the
measurements becomes severely large due to the influence of outliers, the
upper bound remains constant in the case of the MC loss function. We note
that, while a small α yields a larger bound in (4.31), the grouping effect
and recovery performance are not proportional in general, and hence the
hyperparameters should be set in consideration of these factors at the same
time. Proposition 4.4 can directly be applied to the proposed formulation
(4.3) because (4.31) holds for an arbitrary ε ∈ Rm.

Finally, the following proposition holds independently of Proposition 4.4.

Proposition 4.5. Suppose that each column ofA is normalized as ∥ai∥2 = 1
for i = 1, 2, . . . , n. Set H as in (4.32) for given γ1, µ1 > 0 and for given
y, ε ∈ Rm, and let

R := µ2Φ
MC
γ2 +

1

2
∥ · ∥22 (4.36)

for given γ2 > 0, respectively. Assume that the following conditions hold:

(a) µ1λmax(A
TA) ≤ γ1 (⇐ (K-II)).

(b) There exist i, j ∈ {1, 2, . . . , n} such that |x̂i|, |x̂j | ≥ γ2.

Then, for any µ2 ≥ 0, it holds that

|x̂i − x̂j | ≤ µ1

√
2m(1− aT

i aj). (4.37)

Note that aT
i aj ∈ [−1, 1] is the sample correlation.
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Proof. The proof is given in Appendix J.6.

Insights from Propositions 4.3, 4.4, and 4.5 can be summarized as below:

• For an arbitrary loss function satisfying the assumption that J(x) has a
minimizer, Proposition 4.3 states the following for the extreme situation
when two features are identical.

(a) µ2ΦMC
γ (x) (with no quadratic function) may select one of the

correlated features, and J(x) has infinitely many solutions.
(b) µ2ΦMC

γ (x) + 1
2∥x∥

2
2 successfully selects both correlated features.

• Proposition 4.4 concerns the particular case of the double use of the
MC and quadratic functions for both loss and penalty. Specifically, for
the case of the MC loss with the elastic net penalty (Corollary 4.2),
the difference between the corresponding coefficients to the correlated
features decreases when the correlation becomes higher. Remarkably,
the bound in (4.34) is independent of the output vector norm ∥y∥2,
which can be severely large due to the outliers. This is in sharp contrast
to the naïve elastic net.

• Proposition 4.5 gives the same bound as Corollary 4.2 with different
assumptions. While assumption (b) is stricter than that of Corollary
4.2, assumption (a) is weaker and the MC penalty is considered in the
function R, which is more general than the ℓ1 norm. This proposition
can be helpful, especially in applications in which the grouping effect
is crucial (see Remark 4.1 in Section 4.5.2).

4.4 Convexity Conditions for a General Model

This section shows the convexity conditions for a general model including
the formulation of S-SORR as a special case within the framework of LiMES
model (see Appendix F.2). Let (X , ⟨·, ·⟩X ) and (Zi, ⟨·, ·⟩Zi), i = 1, 2, . . . , Q+
1, be finite-dimensional real Hilbert spaces. Let Ψi ∈ Γ0 (Zi) , i = 2, . . . , Q+
1, be functions defined over Zi, and Di : Zi → Zi be diagonal positive-
definite operators. For i = 1, 2, . . . , Q + 1, let Ai : X → Zi : x 7→ Mix + ci
be an affine operator with a bounded linear operator (0 ̸=)Mi : X → Zi and
a vector ci ∈ Zi. Here, Z1 corresponds to Y appearing in Appendix F.2.

Let us now consider the following problem:

min
x∈X

[
1

2
∥A1x∥2Z1

+

Q+1∑
i=2

νi (Ψi)Di
(Aix)

]
, (4.38)

where νi > 0. The problem (4.38) reduces to the S-SORR formulation in
(4.8) when µ2 > 0 by letting Q := 2, X := Z2 := Z3 := Rn+m, Z1 := Rn+2m,



64 CHAPTER 4. SPARSE STABLE OUTLIER-ROBUST REGRESSION

x := ξ, ν2 := µ1, ν3 := µ2, A1 : x 7→

[
Θ

1/2
3

(1− α)1/2Θ1

]
x −

[
0n+m

(1− α)1/2y

]
,

A2 : x 7→ Θ1x − y, A3 := Θ2, D2 := γ
−1/2
1 Im, D3 := γ

−1/2
2 In+m, and

Ψ2 := Ψ3 := ∥ · ∥1. The formulation (4.38) with ν2 := µ1 and Q := 1
(equivalent to the LiMES model in (F.2.1)) reduces to the SORR formulation
(which corresponds to the case of µ2 = 0 in (4.8)).

Another possible application of the problem (4.38) is the robust sparse
classification. Let X := Z1 := Z3 := Rn, Z2 := Rm, ν2 := µ1,
ν3 := µ2, A1 := A3 := In, A2 : x 7→ M2x − 1m, where M2 :=[
y1a1 y2a2 · · · ymam

]⊤ ∈ Rm×n, Ψ2 : Rm → R : z := [z1, z2, · · · , zm]T 7→
σ[−1,0]m(z) :=

∑m
i=1 supv∈[−1,0] vzi =

∑m
i=1max{0,−zi}, Ψ3 := ∥ · ∥1,

D2 := γ
−1/2
1 Im, D3 := γ

−1/2
2 In, and Q = 2. Then, the problem (4.38)

reduces to

min
x∈Rn

µ1(σ[−1,0]m︸ ︷︷ ︸
=:Ψ2

)
γ
−1/2
1 Im

([y1a1 · · · ymam]⊤ x− 1m︸ ︷︷ ︸
=:A2x

) + µ2Φ
MC
γ2 (x) +

1

2
∥x∥22,

(4.39)

which is equivalent to

min
x∈Rn

µ1

m∑
i=1

(
σ[−1,0] ◦ (yia⊤

i · −1)︸ ︷︷ ︸
= hinge loss

)
γ
−1/2
1 In

(x) + µ2Φ
MC
γ2 (x) +

1

2
∥x∥22. (4.40)

Here, σ[−1,0] ◦
(
yia

⊤
i · −1

)
is the popular hinge loss, and thus each summand

is Moreau enhanced hinge loss [35]. The formulation (4.40) can be seen as
an extension of the work in [133], where the (Huberized) hinge loss, ℓ1 norm,
and squared ℓ2 norm are used simultaneously.

The model given in (4.38) can be expressed as a special case of the LiMES
model [35] shown below. Define the Hilbert space Z := Z2 × · · · × ZQ+1 =
{(z2, . . . , zQ+1) | zi ∈ Zi, i = 2, . . . , Q + 1} equipped with the addition Z ×
Z → Z : (z, w) 7→ (z2 + w2, . . . , zQ+1 + wQ+1), the scalar multiplication
R × Z → Z : (a, z) 7→ (az2, . . . , azQ+1), and the inner product ⟨·, ·⟩Z :

Z ×Z → R : (z, w) 7→
∑Q+1

i=2 ⟨zi, wi⟩Zi . Define the function and the operator

Γ0(Z) ∋ Ψ :=

Q+1⊕
i=2

νiΨi : z 7→
Q+1∑
i=2

νiΨi(zi), (4.41)

D : Z → Z : z 7→ (ν
1/2
2 D2z2, . . . , ν

1/2
Q+1DQ+1zQ+1). (4.42)
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Then, it follows from (4.41) and (4.42) that, for any z ∈ Z,

min
w∈Z

(
Ψ(w) +

1

2
∥D(z − w)∥2Z

)
= min

w∈Z

Q+1∑
i=2

(
νiΨi(wi)+

1

2
∥ν1/2i Di(zi − wi)∥2Zi

)

=

Q+1∑
i=2

νi min
wi∈Zi

(
Ψi(wi) +

1

2
∥Di(zi − wi)∥2Zi

)
,

(4.43)

from which it holds that

ΨD(z) := Ψ(z)−min
w∈Z

(
Ψ(w) +

1

2
∥D(z − w)∥2Z

)
=

Q+1∑
i=2

νi

[
Ψi(zi)− min

wi∈Zi

(
Ψi(wi) +

1

2
∥Di(zi − wi))∥2Zi

)]

=

Q+1∑
i=2

νi(Ψi)Di(zi). (4.44)

We define the operators

A : X → Z : x 7→ (A2x, . . . ,AQ+1x), (4.45)
M : X → Z : x 7→ (M2x, . . . ,MQ+1x). (4.46)

Then, by (4.44), the cost function in Problem (4.38) can be regarded as the
LiMES model (F.2.1) in Appendix F.2 by letting A2 := A and L := Id as
follows:

JA1
ΨD◦A : X → (−∞,+∞] : x 7→ 1

2
∥A1x∥2Z1

+ΨD(A x). (4.47)

On the other hand, since it holds that

min
w∈Z

(
Ψ(w) +

1

2
∥D(z − w)∥2Z

)
= min

w̃∈Z

(
Ψ(D−1w̃) +

1

2
∥Dz − w̃∥2Z

)
= 1(Ψ ◦D−1)(Dz), (4.48)

(4.47) can be represented as a sum of the smooth terms and a nonsmooth
convex term as follows:

JA1
ΨD◦A =

1

2
∥A1 · ∥2Z1

− 1(Ψ ◦D−1) ◦DA︸ ︷︷ ︸
=:F (smooth)

+ Ψ ◦ A .︸ ︷︷ ︸
(nonsmooth)

(4.49)

Our results on the convexity of the smooth part F are given below.

Proposition 4.6. The following statements hold.
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(a) F = 1
2∥A1 · ∥2Z1

−
Q+1∑
i=2

1(νiΨi ◦ (ν−1/2
i D−1

i )) ◦ (ν1/2i Di Ai) ∈ Γ0(X ) if

(♣) M∗
1M1 −

Q+1∑
i=2

νiM
∗
i D

2
iMi ⪰ 0.

(b) Suppose that Ψi := ∥ · ∥Zi is a norm defined on Zi, and Ki := {x ∈
X | ∥D2

iAix∥Zi,∗ ≤ 1} ̸= ∅ for i = 2, . . . , Q + 1, where ∥ · ∥Zi,∗ is
the dual norm of ∥ · ∥Zi . Assume that int

(∩Q+1
i=2 Ki

)
̸= ∅. Then,

F ∈ Γ0(X ) if and only if (♣) is satisfied.

Proof. See Appendix J.7.

We remark that the convexity of the smooth part F immediately implies
the overall convexity of the entire cost function since the nonsmooth term
ΨD ◦A is always convex. Proposition 4.6 reproduces the results of Proposi-
tion 3.1 by letting Q := 2, X ∈ X := Z1 := Z3 := Rn×d, Z2 := Y := Rn×m,
µ2 := λ−1

2 , µ3 := λ1λ
−1
2 , A1 := A3 := Id, A2 : X 7→ B − XA with

given matrices A ∈ Rd×m and B ∈ Y , D1 := L, D2 := M , and Ψ2,
Ψ3 be the ℓ2,1 norms. Note that K in Proposition 3.1 is equivalent to
{X ∈ X | ∥L(Y −XA)∥2,∞ ≤ 1, ∥MX∥2,∞ ≤ 1}.

4.5 Numerical Examples

First, the performance of the proposed method in the robust signal recovery
task is evaluated using toy data and compared with the methods based on
different cost functions in Experiment 4-A. Then, we show the impact of hy-
perparameters on the performance of S-SORR in Experiment 4-B. Finally,
we show the performance of the proposed method in application to speech
denoising in Experiment 4-C. The hyperparameter α is set to 1 in Exper-
iments 4-A and 4-C to focus on robustness, and the case of α ∈ (0, 1) is
discussed in Experiment 4-B.

The measurement vector y is constructed as the model in (4.1). Here,
A ∈ Rm×n is the i.i.d. standard Gaussian input matrix, x⋄ ∈ Rn is a sparse
vector with κx nonzero components generated from i.i.d. N (0, 1) for κx ∈ N∗,
and each component of ε⋆ ∈ Rm is generated from i.i.d. N (0, σ2ε⋆) for a given
SNR. The outlier o⋄ ∈ Rm is a sparse vector with κo nonzero components for
κo ∈ N∗, and we consider the following four models for nonzero components:

model O1: −Mo or Mo with the same probability for a given Mo > 0,

model O2: Mo follows a uniform distribution U(0.5M̄o, 1.5M̄o) in model O1

for a given M̄o > 0,
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Table 4.2: Formulations for sparse signal recovery.

method problem formulation

lasso [21] min
x∈Rn

1

2
∥y −Ax∥22 + µ∥x∥1

GMC [25] min
x∈Rn

1

2
∥y −Ax∥22 + µΦGMC√

γ/µA
(x)

Table 4.3: Formulations for sparse outlier-robust signal regression.

method problem formulation
YALL1 [80] min

x∈Rn
∥y −Ax∥1 + µ∥x∥1

extended
lasso [82]

min
x∈Rn, o∈Rm

1

2m
∥y −Ax−

√
no∥22 + µm,x∥x∥1 + µm,o∥o∥1

Huber
FISTA [81] min

x∈Rn

m∑
i=1

ΦHuber
γ (yi − (Ax)i) + µ∥x∥1

RPGG [72] min
x∈Rn, o∈Rm

ΦMC
γ1 (o) + µΦMC

γ2 (x) s.t. o = y −Ax

S-SORR See (4.3)

model O3: M̄o follows N (µM̄o
, σ2

M̄o
) with σ2

M̄o
:= (M̄o/4)

2 in model O2 for a
given µM̄o

> 0,

model O4: i.i.d. N (0, σ2o⋄) for a given σ2o⋄ > 0.

Experiment 4-A uses O1-O4, Experiment 4-B uses models O1-O3, and Exper-
iment 4-C uses model O4, respectively. The indices of nonzero components
in x⋄ and o⋄ are chosen randomly3 [72, 82].

4.5.1 Experiment 4-A: Toy data

The performance of the proposed method is compared with the existing
sparse outlier-robust recovery methods: YALL1 [80], Huber FISTA [81],
extended lasso [82], and RPGG [72]. We also test sparse signal recovery
methods: lasso [21] and GMC [25] for reference. The formulations for these
methods are listed in Tables 4.2 and 4.3. The regularization parameter µ
of each method, γ of GMC and Huber FISTA, µm,x and µm,o of extended
lasso, and γ1, γ2 of RPGG are tuned to attain the best performance. For

3Other popular models for outliers include contaminated Gaussian distribution and
heavy-tailed distributions. In contaminated Gaussian distribution, the residuals obeys (1−
ϵ)D1 + ϵD2, where ϵ is the occurrence probability of outliers, D1 := N (0, σ2), and D2

may be an arbitrary distribution [65]. In heavy-tailed distributions, the density tail of the
residuals tends to zero more slowly than the Gaussian distribution, such as the symmetric
alpha-stable (SαS) distribution [65, 73]. It is beyond the scope of the present study to
consider those models.
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S-SORR, ρ, γ1, γ2, and µ1 are tuned to attain the best performance under
convexity condition (K-I). The parameter µ2 of S-SORR is set to the the-
oretical bound to satisfy convexity condition (K-II), and τ and λ are set to
slightly smaller values than the theoretical upper bound for the convergence
condition. The step size of RPGG is tuned so that the convergence speed is
comparable to the other methods. RPGG is the only nonconvex formulation,
and the initial point of its algorithm is set to the zero vector (in analogy to
the original chapter). The results are averaged over 300 independent trials,
and the evaluation metric is the system mismatch defined as

system mismatch :=
∥x̂− x⋄∥22
∥x⋄∥22

, (4.50)

where x̂ is an estimate of x⋄.

4.5.1.1 Performance with Different Outlier Magnitudes

First, we consider the outliers of model O1. Figure 4.1 shows the system
mismatch across the outlier magnitude Mo for the overdetermined and un-
derdetermined cases. In both cases, S-SORR achieves remarkably robust
performance especially when Mo is fairly high. It should be remarked that
S-SORR has a unique feature that the system mismatch decreases as Mo

increases, unlike other methods. In general, a small γ1 leads to a small µ1
due to convexity condition (K-I), and this can cause excessive regulariza-
tion. However, when Mo is large, γ1 can be large as well, allowing µ1 to be
large enough. While extended lasso behaves similarly to Huber FISTA when
Mo is small, the system mismatch of extended lasso increases sharply as Mo

increases. This is because the term µm,o∥o∥1 (see Table 4.3) introduces ad-
ditional bias due probably to the limited robustness, and it seriously affects
the quadratic loss (1/(2m))∥y − Ax −

√
no∥22. While RPGG outperforms

YALL1 and Huber FISTA when Mo < 20 in Figure 4.1(a) and Mo < 50
in Figure 4.1(b), its performance deteriorates as Mo becomes larger. We
remark that the critical differences between RPGG and S-SORR are (i) sta-
bility against noise and (ii) convexity. Specifically, due to its nonconvexity,
RPGG involves a tradeoff between computational complexity and recovery
performance. According to [72, Theorem 3], under an appropriate condition
for A and with the number of iterations of at most O(r/κ), RPGG estimates
the solution with reconstruction errors bounded by O(κ) +O(∥ε⋆∥2), where
r :=

√
∥x̂0 − x⋄∥22 + ∥ô0 − o⋄∥22 with the initial point (x̂0, ô0) and κ is the

step size. Since we tune the step size in the range where the convergence
speed is comparable to the other methods (see Figure 4.2), the step size
tends to be larger as Mo becomes larger, resulting in lower reconstruction
errors. In contrast, S-SORR can be optimized by the efficient algorithm in
the framework of convex analysis without such a tradeoff. Figure 4.2 shows
the learning curve of each method. It can be seen that the convergence speed
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Figure 4.1: System mismatch across Mo for κx = ⌊0.05n⌋ and κo = ⌊0.3m⌋.
(a) Overdetermined case (m = 128, n = 64) under SNR 5 dB. (b) Underde-
termined case (m = 64, n = 128) under SNR 15 dB.

of S-SORR is faster than the other methods. Figure 4.3 shows the system
mismatch across M̄o for outliers of model O2 and µM̄o

for model O3. In both
cases, S-SORR outperforms the other methods as consistent with the case of
model O1.
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Figure 4.2: Learning curves for m = 256, n = 512, κx = ⌊0.05n⌋, κo =
⌊0.3m⌋, and Mo = 100 under SNR 15 dB.

4.5.1.2 Performance with Different Outlier Sparsity, m/n, and
SNR

Figure 4.4 shows the system mismatch across outlier sparsity for both overde-
termined and underdetermined cases for outliers of model O1. In both cases,
S-SORR exhibits highly accurate and stable performance, and it outperforms
the other methods significantly. Lasso and GMC are highly sensitive to out-
liers due to the use of the quadratic loss function. The performance of RPGG
and extended lasso are worse than YALL1, Huber FISTA, and S-SORR over
a wide range of outlier sparsity due to the large values of Mo. S-SORR
outperforms YALL1 and Huber FISTA, and their differences increase as the
outliers become denser. This is because the ℓ1 and Huber’s losses have limited
robustness since these losses increase linearly as the residual increases. In
contrast, the MC loss is highly robust since it stays constant for large values.
Figures 4.5 and 4.6 show the system mismatch across m/n and SNR, respec-
tively, for outliers of model O1. As consistent with the results in Fig. 4.4,
S-SORR significantly outperforms the other methods.
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Figure 4.3: System mismatch across (a) M̄o for outliers of model O2 and (b)
µM̄o

for model O3, respectively, for κx = ⌊0.05n⌋, κo = ⌊0.3m⌋, m = 128,
and n = 64 under SNR 15 dB.
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Figure 4.4: System mismatch across outlier sparsity for κx = ⌊0.05n⌋ and
Mo = 100. (a) Overdetermined case (m = 128, n = 64) under SNR 5 dB.
(b) Underdetermined case (m = 64, n = 128) under SNR 15 dB.
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Figure 4.5: System mismatch across m/n for n = 128, κx = ⌊0.05n⌋, κo =
⌊0.3m⌋, and Mo = 100 under SNR 15 dB.
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Figure 4.6: System mismatch across SNR form = 64, n = 128, κx = ⌊0.05n⌋,
κo = ⌊0.3m⌋, and Mo = 100.
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Figure 4.7: CPU time across m for n = 512, κx = ⌊0.05n⌋, κo = ⌊0.3m⌋, and
Mo = 100 under SNR 15 dB for outliers of model O1.

4.5.1.3 Comparison of Execution Time

Figure 4.7 shows the execution time required for sparse outlier-robust re-
covery methods to converge. It can be seen that the CPU time of S-SORR
is comparable to the other methods based on convex optimization (YALL1,
Huber FISTA, and extended lasso), and outperforms RPGG significantly.
This is because RPGG requires the computation of the pseudoinverse ma-
trix at the initialization step, while S-SORR needs to compute only simple
operators.

4.5.1.4 Grouping Effect in the Absence of Outliers

We generate the vector z1 ∈ Rm randomly from the i.i.d. uniform distribution
U(0, 20) and its correlated vector z2 ∈ Rm randomly so as to satisfy

|z̄T
1 z̄2|

∥z̄1∥2∥z̄2∥2
= 0.7, (4.51)

where z̄1 and z̄2 are centered vectors by subtracting the mean from z1 and
z2, respectively. Here, the procedure for generating z2 is as follows:

(i) generate ζ ∈ Rn from the i.i.d. uniform distribution U(0, 20),

(ii) yield ζ̄ by centering ζ,

(iii) set

ζ̄⊥ := ζ̄ − ζ̄Tz̄1
∥z̄1∥22

z̄1, (4.52)
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and

(iv) set

z2 := ζ̄⊥ +
∥ζ̄⊥∥2

tan(arccos(0.7))

z̄1
∥z̄1∥2

. (4.53)

See Appendix J.8 for proof of (4.51).
The observation vector is generated by y = z1+0.5z2+ε⋆, where ε⋆ is a

zero-mean Gaussian noise vector with SNR set to 15 dB. The input matrix
A := [a1a2 . . .a9] ∈ Rm×n (m = 100, n = 9) is generated by normalizing the
following vectors:

ã1 = z1 + ϵ1, ã2 = −z1 + ϵ2, ã3 = z1 + ϵ3,

ã4 = z2 + ϵ4, ã5 = −z2 + ϵ5, ã6 = z2 + ϵ6,

ã7 = q3 + ϵ7, ã8 = q4 + ϵ8, ã9 = q5 + ϵ9. (4.54)

Here, ϵi (i = 1, 2, . . . , 9) are generated from i.i.d. standard normal distribu-
tion, and q3, q4, q5 ∈ span⊥{z1, z2} are taken from the orthogonal matrix
Q := [q1q2 . . . q5] which is generated by orthonormalizing the columns of the
matrix [z1 z2 w1 w2 w3] by the QR decomposition, where w1,w2,w3 ∈ Rm
are generated from the i.i.d. standard normal distribution. The set of vectors
{a1,a2,a3} are grouped, which is referred to as group A, because all of them
are correlated with z1. Similarly, {a4,a5,a6} are referred to as group B. The
correlations within each group and between the groups are approximately 1
and 0.7, respectively. Since the observation vector y is generated with z1
and z2, the vectors belonging to group A or group B are relevant to y, while
the other vectors a7, a8, and a9 are irrelevant. Hence, the group-A variables
x1, x2, and x3 (and the group-B variables x4, x5, and x6) are desired to have
nearly the same amplitudes, while x7, x8, and x9 are desired to be zero.

The parameters in each method and ρ, γ1, γ2, and µ1 of S-SORR are
tuned to minimize the residual errors ∥(z1+0.5z2)−Ax̂⋆∥22, where x̂⋆ is the
estimate of the coefficient vector x⋄. The parameter µ2 of S-SORR is set to
the theoretical bound to satisfy the convexity condition (see the appendix),
τ and λ are set to a slightly smaller value than the theoretical upper bound
for the convergence condition. The step size of the RPGG is tuned so that
the convergence speed is comparable to the other methods. The initial point
of RPGG is set to the zero vector.

Figure 4.8 shows the solution paths for each algorithm. To remove the
influence of normalization, the ith component of x̂⋆ is divided by ∥ãi∥2 for
i = 1, 2, . . . , n. The S-SORR estimator, as well as the elastic net estimator,
succeeds in capturing the group structures; i.e., its yields the group variables,
the group-A variables {x1, x2, x3} and the group-B variables {x4, x5, x6},
sharing nearly the same magnitude. More precisely, for S-SORR, the three
variables in each group switch from inactive to active, as µ2 decreases, si-
multaneously and quickly. None of the other methods succeeds. Specifically,
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a3 in group A is missing in the results of MC, YALL1, Huber FISTA, and
extended lasso, while the magnitude of x3 is smaller than the other group-
A variables x1 and x2. RPGG fails to capture the three variables in each
group simultaneously. We mention that the solution path of RPGG does
not converge to the zero vector as µ increases due to the linear constraint
o = y −Ax.
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Figure 4.8: Solution paths for (a) lasso, (b) elastic net, (c) MC, (d) YALL1, (e) Huber FISTA, (f) extended
lasso, (g) RPGG, and (h) S-SORR.
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4.5.1.5 Grouping Effect in the Presence of Outliers

We consider the situation when the data are contaminated by outliers as
well as Gaussian noise. Specifically, the observation vector is generated by
y = z1+0.5z2+ε⋆+o⋄, for outliers of model O4. The vectors z1 and z2 and
the matrix A are generated in the same way as Section 4.5.1.4. The outlier
sparsity supp(o⋄)/m is set to 0.05, where

supp : Rm → [0,+∞) : x 7→ card({i ∈ {1, 2, · · · ,m} | xi ̸= 0}). (4.55)

The SOR is defined as

SOR :=
E[∥z1 + 0.5z2∥22]/m
E[∥o⋄∥22]/supp (o⋄)

, (4.56)

and is set to −30 dB. The parameters for each method are chosen in the
same way as in Experiment 4-A.

Figure 4.9 shows the magnitude of coefficients for different values of the
regularization parameter. S-SORR estimates the coefficients correctly, and
it also maintains the grouping effect properly. This is consistent with the
theoretical results of Proposition 4.5, which indicates that the upper bound
of the discrepancy of the coefficients is independent of ∥y∥2. All the methods
excluding S-SORR fail in this outlier case. In particular, the elastic net un-
fortunately fails due to the presence of outliers. The outlier-robust methods
(While YALL1, Huber FISTA, extended lasso, and RPGG) fail to capture
the group structure as in Experiment 4-A.

We finally mention that, while the naïve elastic net needs rescaling to
remove the extra bias caused by the double shrinkage associated respectively
with ℓ1 and ℓ2 norms, S-SORR requires no such a rescaling procedure. This
is because the MC function equally penalizes those coefficients larger than
the threshold γ and therefore it produces no extra bias. This is an additional
practical advantage for S-SORR because it is free from the hyperparameter
tuning for rescaling.
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Figure 4.9: Solution paths for (a) lasso, (b) elastic net, (c) MC, (d) YALL1, (e) Huber FISTA, (f) extended
lasso, (g) RPGG, and (h) S-SORR.
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4.5.2 Experiment 4-B: Fluctuations of Hyperparameters

4.5.2.1 Hyperparameters ρ, µ1, γ1, and γ2

We study how the performance of S-SORR changes due to fluctuations of
the hyperparameters ρ, µ1, γ1, and γ2. Figure 4.10 shows the system mis-
match across each hyperparameter. All the other hyperparameters than the
targeted one are tuned to attain the best performance. Figure 4.10(a) shows
the system mismatch across ρ. It can be seen that the fluctuation of the
performance is smaller when ρ increases from the optimal value than when
it decreases, and the performance is reasonably insensitive to the fluctuation
of the ρ value. Figure 4.10(b) shows the system mismatch across µ1. The
blue line shows the value of γ1(λmax(A

TA) + ρ−1)−1, which is the upper
bound of µ1 to guarantee the convexity of the cost function. While the per-
formance degrades as µ1 approaches the bound, it is insensitive for a wide
range (1.2 < µ1 < 9 in this case). Figure 4.10(c) shows the system mis-
match across γ1. It can be seen that the best performance is achieved when
γ1 =Mo. When γ1 is smaller, it leads to a smaller µ1 due to convexity condi-
tion (K-I), and this may cause excessive regularization. When γ1 > Mo, the
derivative of the MC loss at the outlier value does not vanish, and this may
cause extra bias (see Figure 4.11). Therefore, the optimal value of γ1 depends
on the balance between regularization and robustness. Figure 4.10(d) shows
the system mismatch across γ2. The best performance is achieved when
γ2 ≥ ∥x⋄∥∞ since the quadratic penalty can cause a shrinking bias when
γ2 < ∥x⋄∥∞. Therefore, the number of hyperparameters can be reduced in
the case of α = 1 by setting γ2 = +∞. We note that the hyperparameters
ρ, µ1, and γ2 can easily be set to obtain reasonable performance, while γ1
should be tuned carefully. Figure 4.12 shows the values of the tuned hyper-
parameters across M̄o for outliers of model O2 and across µM̄o

for model O3,
respectively. It can be seen that the performance is almost insensitive to µ1,
µ2, γ2, and ρ under different outlier magnitudes. Moreover, γ1/M̄o ≤ 1 is
satisfied for a large M̄o (γ1/µM̄o

≤ 1 for a large µM̄o
) to achieve remarkable

robustness, and γ1/M̄o ≥ 1 is satisfied for a small M̄o (γ1/µM̄o
≥ 1 for a

small µM̄o
) to avoid excessive regularization.

Remark 4.1. The best performance of S-SORR can be achieved when
γ2 ≥ ∥x⋄∥∞ according to Figure 4.10(d), which violates assumption (b)
of Proposition 4.5. However, the performance deteriorates only gradually
when γ2 becomes slightly smaller than ∥x⋄∥∞. Moreover, assumption (a)
of Proposition 4.5 is weaker than that of Corollary 4.2 (which considers the
case γ2 → +∞). Therefore, Proposition 4.5 can be useful in applications in
which the grouping effect is crucial.
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Figure 4.10: System mismatch across hyperparameters of S-SORR for m = 64, n = 128, κx = ⌊0.05n⌋,
κo = ⌊0.3m⌋, and M̄o = 100 under SNR 15 dB.
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Figure 4.11: Case with (a) γ1 =Mo and (b) γ1 > Mo.

4.5.2.2 Hyperparameter α

In this subsection, we compare the performance of S-SORR (α < 1) with the
methods used in Experiment 4-A and the following formulation:

min
x∈Rn, ε∈Rm

µ1∥y − (Ax+ ε)∥1 + µ2∥x∥1 +
1

2
∥ε∥22, (4.57)

which is denoted as stable YALL1. Figure 4.13 plots system mismatch and
sparseness measure of each method acrossMo for outliers of model O1. Here,
the sparseness measure is defined as card({i | |xi| ≥ 10−3}), which returns
the number of dominant components; the sparseness of x⋄ is 19. The hyper-
parameters of each method are tuned to attain the best system mismatch as
well as Experiment A. It can be seen that, while S-SORR (α = 1) outperforms
the other methods due to high robustness, its sparseness is limited. While
Stable YALL1 and Huber FISTA estimate sparser solutions than S-SORR,
their robustness is limited. In contrast, S-SORR (α = 0.75) yields sparser
estimates than S-SORR (α = 1) while maintaining the same level of system
mismatch when the outlier magnitude Mo increases. S-SORR (α = 0.75)
outperforms the other methods except for S-SORR (α = 1) when Mo ≥ 100.
This indicates that, even when the quadratic functions are introduced for
convexity, the remarkable robustness and sparseness of the estimates can be
balanced appropriately without introducing extra bias. We note that the
sparseness of RPGG estimate is relatively high because the hyperparameters
are tuned to attain the best system mismatch at a comparable convergence
speed to the other methods.
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Figure 4.12: The values of tuned hyperparameters across (a) M̄o for outliers of model O2 and (b) µM̄o
for

model O3, respectively, for m = 64, n = 128, κx = ⌊0.05n⌋, κo = ⌊0.3m⌋, and M̄o = 100 under SNR 15 dB.
The values of µ2, M̄o, and µM̄o

are plotted for reference.
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Figure 4.13: (a) System mismatch and (b) sparseness measure across Mo for
m = 64, n = 128, κx = ⌊0.15m⌋, and κo = ⌊0.1m⌋ under SNR 15 dB.

4.5.3 Experiment 4-C: Real Data (Application to Speech De-
noising)

We consider a speech denoising task using the publicly available dataset from
Interspeech 2020 Deep Noise Suppression Challenge [134]. The measured



4.5. NUMERICAL EXAMPLES 85

signal y ∈ Rm is corrupted by noise and outliers as follows:

y = zs + ε⋆ + o⋄, (4.58)

where zs ∈ Rm, ε⋆ ∈ Rm, and o⋄ ∈ Rm are the clean speech signal, noise,
and outliers, respectively, of size m := 32768. Each component of the noise
vector ε⋆ follows i.i.d. N (0, σ2ε⋆), and o⋄ is sparse with nonzero components
following i.i.d.N (0, σ2o⋄) with a given SOR defined as (∥zs∥22 /m)/(∥o⋄∥22 /κo).
The Haar wavelet decomposition is indicated by matrix W ∈ Rm×m with
the decomposition level 5. The model in (4.58) can then be rewritten with
the sparse wavelet coefficients x⋄ := Wzs ∈ Rm as

y = W Tx⋄ + ε⋆ + o⋄, (4.59)

which corresponds to (4.1) for A := W T (n = m = 32768). We consider the
problem of recovering the clean signal zs from given y andW . The parameter
settings are the same as in Section 4.5.1. Figure 4.14 depicts the system
mismatch across (a) outlier sparsity, (b) SOR, and (c) SNR, respectively. In
all cases, the proposed method outperforms the other methods significantly
over a wide range of scenarios.
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Figure 4.14: Application to speech denoising. (a) SNR 15 dB and SOR
−30 dB, (b) SNR 15 dB and κo = ⌊0.05m⌋, and (c) SOR −40 dB and
κo = ⌊0.05m⌋.
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4.6 Conclusion

In this chapter, the S-SORR formulation was proposed as an integration of
the MC-based sparse signal recovery and SORR for the sparse outlier-robust
recovery problem. This addresses (Q2) which was raised in Chapter 1.2.
While the proposed approach enjoyed remarkable robustness, the sparseness
of the estimates was controlled by taking into consideration a tradeoff be-
tween sparseness and robustness. The ℓ2 penalty of the auxiliary noise vector
yielded stability under heavy Gaussian noise. The necessary and sufficient
conditions for convexity of the smooth part of the cost were derived under
the nonempty-interior assumption via the product space formulation within
the LiMES framework. It was shown that, under an appropriate parameter
choice, the simultaneous use of the MC and ℓ2 penalties of the coefficient
vector led to the grouping effect, and remarkably, the upper bound is inde-
pendent of the observation vector, unlike the original result for the elastic net.
The numerical examples showed the efficacy of S-SORR in its application to
speech denoising as well as toy problems.





Chapter 5

External Division of Two
Proximity Operators: An
Application to Feature
Grouping

5.1 Introduction

The goal of this chapter is to present a mathematical framework to derive
methods for sparse regression with low estimation bias by exploiting a new
class of operators called the external division operator. We start by presenting
the background of operator splitting algorithms briefly.

5.1.1 Operator Splitting Algorithms

A popular approach to solve (1.2) is to utilize the proximity operators in
the operator splitting algorithms. For instance, lasso can be solved by iter-
ative shrinkage-thresholding algorithm (ISTA) [135] based on the standard
soft-shrinkage operator, which is the proximity operator of the ℓ1 norm. The
convergence analysis of ISTA has been generalized in [112] to the case with
the proximity operator of a weakly convex penalty. The proximity opera-
tor of the MC penalty is known to be the firm-shrinkage operator, which
is intensively used in various algorithms to obtain less biased estimates of
sparse signals than the soft-shrinkage operator [112, 25, 136, 137, 37, 138].
In general, the proximity operators of a weakly convex function (such as the
firm-shrinkage operator) can be expressed as the gradient of a certain smooth
convex function. This class of operators is called monotone Lipschitz gradient
(MoL-Grad) denoiser (see Appendix G), and this property plays a crucial
role in the convergence analysis of the operator splitting algorithms [139].
Actually, MoL-Grad denoiser can be expressed as the proximity operator of

89
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a weakly convex function under certain conditions [139] (a related result can
also be found in [140])1.

5.1.2 Contributions

In this chapter, by answering (Q3), which is raised in Section 1.2, we aim to
develop a method achieving the selection of groups of features and the bias
reduction effect simultaneously with a convergence guarantee. Although one
may consider the use of the Moreau enhancement of the OSCAR regularizer
(see Section 1.1.5 and (2.67)) would be suitable, no direct discrete measure
corresponding to OSCAR is known, unlike the ℓ1 norm. This implies that its
bias reduction effect is unclear. We first show that the Moreau enhancement
of the OSCAR regularizer bridges the OSCAR regularizer and a certain ideal
discrete measure (see Proposition 5.1).

Following this, we consider a novel debiasing approach which goes beyond
the Moreau enhancement. We start by reconsidering the firm-shrinkage oper-
ator (the proximity operator of the MC penalty) from a different perspective.
It is shown that the firm-shrinkage operator can be expressed as an external
division of two soft-shrinkage operators with different thresholds (see Proposi-
tion 5.2 below). By analogy with this, we propose a new operator, TDOSCAR

λ1,λ2,ω,η
,

by considering an external division of two proximity operators of the scaled
OSCAR regularizer, and refer it to as debiased OSCAR (DOSCAR) (see Sec-
tion 5.2.3). A geometric interpretation of DOSCAR is provided to explain its
debiasing effect. The motivation of this study is summarized in Figure 5.1.
Primitive questions here are (i) Can DOSCAR be expressed as a proximity
operator of a certain function?, and (ii) how does the OSCAR regularizer
relate to that function? We repeat that the property of being expressed as
the proximity operator of a certain weakly convex function plays a crucial
role in the convergence analysis of the operator splitting algorithms.

To answer the above questions, we study a general class of nonlinear
operators given in the following form:

∆ω := ωProxg1 −(ω − 1)Proxg2 , (5.1)

which we refer to as the external division operator. Here, ω > 1, and
Proxg1 ,Proxg2 : Rn → Rn are the proximity operators of proper, lower-
semicontinuous, and convex functions g1, g2 : Rn → (−∞,+∞], respectively
(see Section 2.1.2). DOSCAR is a specific example of (5.1) by setting g1 and
g2 to the scaled OSCAR regularizers. See Section 5.1.3 for the relation of ∆ω

to previous works related to the operators composed of multiple proximity
operators.

1Note that the proximity operator is defined as the set-valued operator in [140], while
it is defined as the single-valued operator (see (2.20)) in [139].
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Figure 5.1: Motivation of this study.

We show that the external division operator is Lipschitz continuous and
can be expressed as the gradient of the external division (with the same ratio
as in (5.1)) of the Moreau envelopes of the conjugate functions g∗1 and g∗2, say
ψω. If ψω is convex, the external division operator is a MoL-Grad denoiser,
and thus it is the proximity operator of a certain weakly convex function,
say φω (see Proposition 5.6). In this case, thanks to the results of [139], it is
ensured that the gradient algorithm involving ∆ω converges to a global min-
imizer of the cost function involving φω and a given strongly convex fidelity
function f : Rn → R. Moreover, we generalize this algorithm to guaran-
tee convergence even when the strong convexity of f is restricted to some
subspace (see Proposition 5.7). Specifically, this generalized algorithm is ap-
plicable to solve (1.2) for the underdetermined case. The above algorithm can
be applied for any g1, g2 if the corresponding ψω is convex. We investigate the
sufficient conditions for ψω to be convex for given g1, g2, and it turns out that
the decomposition of proximity operator, i.e., Proxg2 = Proxg2−g1 ◦Proxg1
is a nontrivially crucial assumption (see Proposition 5.8). This assumption
holds for some widely-used sparsity-promoting convex functions such as the
ℓ1 norm, (a generalization of) OSCAR, and the total variation norm (see
Example 5.1).
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In fact, owing to the above decomposition, a closed-form expression of
φω is provided when g1 and g2 are the support functions (see Proposition
5.9). This closed-form expression allows us to show that φω can be viewed
as a generalization of the Moreau enhancement when g1 and g2 are scaled
OSCAR (see Proposition 5.10). In numerical examples, DOSCAR is applied
to the sparse signal regression with highly correlated features in both overde-
termined and underdetermined cases. We show that DOSCAR achieves less
biased estimation of sparse signals than the other methods, and yields sig-
nificant improvements from OSCAR.

5.1.3 Relation to Previous Works

There are some previous works related to the operators composed of mul-
tiple proximity operators. Let gk : Rn → (−∞,+∞] be proper, lower-
semicontinuous, and convex functions, and ωk ≥ 0 such as

∑p
k=1 ωk = 1

for k = 1, 2, . . . , p for p ∈ N∗. The function g : Rn → (−∞,+∞] which
satisfies

Proxg =

p∑
k=1

ωk Proxgk (5.2)

is known as the proximal average [141, 142]. A generalization of (5.2) involv-
ing linear operators has been studied as the proximal mixture [142] (see also
[143]). The case when p = 2 and ω1 = ω2 = 1 is studied as the proximal sum
[143, 144]. However, these operators cover only a convex or conical combi-
nation of multiple proximity operators. To the best of our knowledge, the
properties of the external division, defined as the affine combination with a
negative weight of two proximity operators, remain unexplored.

5.2 Approaches to Bias Reduction of OSCAR

First, we show that the Moreau enhancement of the OSCAR regularizer
bridges the OSCAR regularizer and a certain ideal nonconvex function.
Then, we explore the way of developing a new approach which goes beyond
the Moreau enhancement. We observe that the firm-shrinkage operator can
be viewed as an external division of two soft-shrinkage operators. By analogy
with that, we propose a new operator for bias reduction of OSCAR.

5.2.1 Moreau Enhancement of the OSCAR Regularizer

To reduce the estimation bias of OSCAR, a possible approach would be the
use of the Moreau enhancement of the OSCAR regularizer. However, unlike
the ℓ1 norm, no direct discrete measure corresponding to OSCAR is known
to the best of our knowledge. This implies that the bias reduction effect of
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the Moreau enhancement of OSCAR is unclear. We show below that the
Moreau enhancement of the OSCAR regularizer

(ΩOSCAR
λ1,λ2 )γ−1/2In

:= ΩOSCAR
λ1,λ2 − γΩλ1,λ2 (5.3)

bridges the ΩOSCAR
λ1,λ2

and a certain ideal discrete measure. Note that it holds
by Fact 2.4(e) that

lim
γ→+∞

(ΩOSCAR
λ1,λ2 )γ−1/2In

(x) = ΩOSCAR
λ1,λ2 (x), ∀x ∈ Rn. (5.4)

The following proposition shows the convergence of the rescaled Moreau en-
hancement of the OSCAR regularizer. Due to symmetry, it is enough to
show the case when x ∈ Kn

≥0 since

(Ωλ1,λ2)γ−1/2In
(x) = (Ωλ1,λ2)γ−1/2In

(|x|↓). (5.5)

Proposition 5.1. Let n be an arbitrary integer greater than 1. Then, it
holds for any x ∈ Kn

≥0 that

lim
γ→+0

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x)

=



∥w∥22, if x ∈ Rn++ ∩ Kn
>,

(case 1)

∥w∥22 −
q∑
l=1

∑
j∈Sl

(
wj −

∑
k∈Sl

wk

card(Sl)

)2

, if x ∈ Rn++ ∩ (Kn
>)

c,

(case 2)

∥w∥22 − w2
n, if x ∈ (Rn++)

c ∩ Kn
>,

(case 3a)

∥w∥22 −
q∑
l=1

∑
j∈Sl

(
wj −

∑
k∈Sl

wk

card(Sl)
χR++(xj)

)2

−w2
nχR++(xn−1), if x ∈ Kn

≥0 \ (Rn++

∪Kn
> ∪ {0}),

(case 3b)

0, if x = 0,

(case 4)
(5.6)

where

Kn
> := {x ∈ Rn | x1 > x2 > . . . > xn}, (5.7)

χR++ : R++ → {0, 1} : x 7→

{
1, if x ∈ R++,

0, if x /∈ R++,
(5.8)
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Figure 5.2: (a) Inclusion relation among the five cases of (5.6). (b) Visual-
ization of the five cases in the three-dimensional case.

w ∈ Rn is defined by (2.69), Sc denotes the compliment set of any set
S ⊂ Rn, and Sl with card(Sl) ≥ 2 is the lth group of consecutive indices for
l = 1, 2, . . . , q, q ∈ N, such that

xj = xk, ∀j, k ∈ Sl, and, (5.9)
xj ̸= xk, ∀j ∈ Sl, ∀k ∈ {1, 2, . . . , n} \ Sl. (5.10)

For example, it holds that S1 = {3, 4, 5}, S2 = {7, 8}, S3 = {8, 9} for

x1 > x2 > x3 = x4 = x5︸ ︷︷ ︸
first group

> x6 > x7 = x8︸ ︷︷ ︸
second group

> x9 = x10︸ ︷︷ ︸
third group

> x11. (5.11)

Proof. The proof is given in Appendix K.1.

The inclusion relation of the cases of (5.6) and visualization of the cases
in the three-dimensional case are depicted in Figures 5.2(a) and 5.2(b), re-
spectively.
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case 1
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Figure 5.3: The function value of (5.12).

Corollary 5.1. Let n := 2. Then, for any x ∈ K2
≥0, it holds that

lim
γ→+0

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x)

=


(λ1 + λ2)

2 + λ21, if x1 > x2 > 0,

2λ1(λ1 + λ2), if x1 = x2 > 0,

(λ1 + λ2)
2, if x1 > x2 = 0,

0, if x1 = x2 = 0.

(5.12)

We first explain the case n := 2. Equation (5.12) indicates that the
rescaled Moreau enhancement converges to a certain discrete function shown
in Figure 5.3. Unlike (5.6), (5.12) is divided into four cases (case 3b does
not exist for the two-dimensional case). The function returns lower values
on the sets {x ∈ K2

≥0 | x1 = x2 ≥ 0} and {x ∈ K2
≥0 | x1 ≥ x2 = 0} than the

other regions. Hence, when (5.12) is used as a penalty, the solutions x̂ tend
to satisfy

x̂1 = x̂2 ≥ 0 or x̂1 ≥ x̂2 = 0. (5.13)

Figure 5.4 shows the contours of the Moreau enhancement of the OSCAR
regularizer (5.12) for the two-dimensional case. It can be seen that the con-
tours of the Moreau enhancement sharpen those of the OSCAR regularizer.
Hence, the solutions are more likely to satisfy (5.13).

Moreover, Proposition 5.1 indicates that the limitation of the rescaled
Moreau enhancement of the OSCAR regularizer is bounded above by a con-
stant ∥w∥22, and is lower than this bound on the set (Kn

> ∩ Rn++)
c. Hence,

when (5.6) is used as a penalty, the solutions tend to lie on this set.
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Figure 5.4: The contours of the Moreau enhancement of OSCAR (red) for
λ1 = λ2 := 0.5 and γ := 2 and OSCAR (black) for the two-dimensional case.

line segment

Figure 5.5: A relation between the firm-shrinkage and two soft-shrinkage
operators.

5.2.2 Firm-Shrinkage Operator as External Division

Figure 5.5 shows the relation between the firm-shrinkage operator and two
associated soft-shrinkage operators. It can be seen that, for any x ∈ R,
firmτ,γ(x) externally divides the line segment {softγ(x)+t softτ (x) | t ∈ [0, 1]}
between the points softγ(x) and softτ (x) in the ratio of γ/τ . This is verified
in the following proposition by expressing the firm-shrinkage operator as an
external division of two soft-shrinkage operators.

Proposition 5.2. For any γ, τ satisfying γ > τ > 0, it holds that

Firmτ,γ =
γ

γ − τ
Softτ −

τ

γ − τ
Softγ . (5.14)
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Proof. By (2.76), it holds for any x ∈ R that

firmτ,γ(x) =

x, if |x| ≥ γ,
γ

γ − τ
softτ (x), if |x| < γ.

(5.15)

For the case when |x| ≥ γ, it holds that

x =
γ

γ − τ
(x− τ sign(x))− τ

γ − τ
(x− γ sign(x))

=
γ

γ − τ
softτ (x)−

τ

γ − τ
softγ(x). (5.16)

On the other hand, for the case when |x| < γ, softγ(x) = 0 yields that

γ

γ − τ
softτ (x) =

γ

γ − τ
softτ (x)−

τ

γ − τ
softγ(x). (5.17)

Hence, (5.14) follows from (5.15), (5.16), and (5.17).

Note that Proposition 5.2 also gives the relation regarding an inner divi-
sion as follows:

softτ =
γ − τ

γ
firmτ,γ +

τ

γ
softγ . (5.18)

It is known that the firm-shrinkage operator is the proximity operator of
the MC penalty which is the Moreau enhancement of the ℓ1 norm [25, 34].
Proposition 5.2 provides an alternative view of the firm-shrinkage operator as
an external division of Softτ and Softγ . The operator Firmτ,γ is reproduced
by ∆ω defined in (5.1) for g1 := τ∥ · ∥1, g2 := γ∥ · ∥1, and ω := γ/(γ − τ).

5.2.3 Proposed Bias Reduction Approach for OSCAR: De-
biased OSCAR

By analogy with the firm-shrinkage operator, we propose the following ex-
ternal division operator and refer to it as DOSCAR:

TDOSCAR
λ1,λ2,ω,η

:= ωProxΩOSCAR
λ1,λ2

−(ω − 1)ProxηΩOSCAR
λ1,λ2

(5.19)

= ProxΩOSCAR
λ1,λ2

+(ω − 1)
(
ProxΩOSCAR

λ1,λ2

−ProxηΩOSCAR
λ1,λ2

)
. (5.20)

Figure 5.6 depicts a geometric interpretation of TDOSCAR
λ1,λ2,ω,η

(x) for x ∈ R2. We
only consider the case when x1 ≥ x2 ≥ 0 due to symmetry, and set λ1 and λ2
to not too large values and ω = η = 2 for simplicity. Figure 5.6(a) illustrates
the case when x is close to the hyperplane

H1 := {x ∈ R2 | x1 = x2}, (5.21)

i.e., x1 and x2 are in the same group. In this case, ProxΩOSCAR
λ1,λ2

yields a point
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Figure 5.6: A geometric interpretation of TDOSCAR
λ1,λ2,ω,η

(x) for the two-
dimensional case. (a) x1 and x2 are in the same group, (b) x2 is close to
0, and (c) x1 and x2 are in the different groups. The gray regions show
R2
++ ∩ K2

≥0.
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where two components become identical, i.e., ProxΩOSCAR
λ1,λ2

(x) ∈ H1. How-
ever, this shrinkage causes estimation bias by shrinking the large component
with a large weight and shrinking the small component with a small weight.
In contrast, for DOSCAR, the second term of (5.20) pushes ProxΩOSCAR

λ1,λ2

(x)

back to the current estimate x along the hyperplane H1. As a result,
TDOSCAR
λ1,λ2,ω,η

(x) coincides with the projection of x onto H1, so that the esti-
mation bias is reduced. Figure 5.6(b) illustrates the case when x2 is close to
0. In a similar way, the second term of (5.20) pushes the first component of
ProxΩOSCAR

λ1,λ2

(x) back to x1 while letting the second component stay 0. As a

result, the estimation bias is reduced since TDOSCAR
λ1,λ2,ω,η

(x) coincides with the
projection of x onto

H2 := {x ∈ R2 | x2 = 0}. (5.22)

Figure 5.6(c) illustrates the case when x is distant from H1 and H2, i.e.,
x1 and x2 correspond to different groups of important features. In this
case, ProxΩOSCAR

λ1,λ2

shrinks x diagonally. This is undesirable since the two
coefficients become more similar although they correspond to the different
groups. In contrast, TDOSCAR

λ1,λ2,ω,η
keeps x at the same position. On the basis of

these arguments, TDOSCAR
λ1,λ2,ω,η

is expected to reduce the estimation bias while
preserving the advantages of OSCAR.

5.3 Proposed Method: External Division Operator

First, we establish some basic properties for the external division of general
nonexpansive operators. Following this, we show that the external division
operator is expressed as the proximity operator of the weakly convex function
φω (defined in (5.31) below) if the function ψω (defined in (5.29) below)
is convex. Then, the convergence of the gradient algorithm based on the
external division operator to a minimizer of the cost function involving φω as
a penalty is guaranteed. Subsequently, we present the convexity conditions of
ψω and a closed-form expression of φω. Finally, the relation between φω and
the Moreau enhancement is investigated. Although we focus on the finite-
dimensional case for simplicity in this chapter, most results can be extended
for an infinite-dimensional Hilbert space case. For convenience, the relations
of the theoretical results to be presented in this chapter are summarized in
Figure 5.7.
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Figure 5.7: An overview of relations of the theoretical results in this chapter.
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5.3.1 External Division of Two Nonexpansive Operators

First, we show some basic properties of the external division of two general
nonexpansive operators. The following two propositions indicate that the
external division of firmly nonexpansive operators is Lipschitz continuous.

Proposition 5.3. Let Ta, Tb : Rn → Rn be nonexpansive operators such that
Ta − Tb is nonexpansive. Then, ωTa − (ω − 1)Tb is ω-Lipschitz continuous
for given ω > 1.

Proof. Since it holds that

ωTa − (ω − 1)Tb = Ta + (ω − 1)(Ta − Tb), (5.23)

it holds for any x, ξ ∈ Rn that

∥(ωTa − (ω − 1)Tb)(x)− (ωTa − (ω − 1)Tb)(ξ)∥2
≤ ∥Tax− Taξ∥2 + (ω − 1)∥(Ta − Tb)(x)− (Ta − Tb)(ξ)∥2
≤ ∥x− ξ∥2 + (ω − 1)∥x− ξ∥2
= ω∥x− ξ∥2, (5.24)

where the second inequality is due to the nonexpansiveness of Ta and Ta−Tb.
This implies that ωTa − (ω − 1)Tb is ω-Lipschitz continuous.

Proposition 5.4. Let Ta, Tb : Rn → Rn be firmly nonexpansive operators.
Then, Ta − Tb is nonexpansive.

Proof. Since Ta, Tb are firmly nonexpansive operators, there exist nonex-
pansive operators N1 and N2 satisfying Ta = (1/2) Id+(1/2)N1 and Tb =
(1/2) Id+(1/2)N2. Hence, it holds, for any x, ξ ∈ Rn, that

∥(Ta − Tb)(x)− (Ta − Tb)(ξ)∥2 = ∥(1/2)(N1x−N1ξ)− (1/2)(N2x−N2ξ)∥2
≤ (1/2)∥N1x−N1ξ∥2 + (1/2)∥N2x−N2ξ∥2
≤ ∥x− ξ∥2, (5.25)

which implies that Ta − Tb is nonexpansive.

The following proposition shows the relation between the set of common
fixed points of given two nonexpansive operators and that of the external
division of the two operators.

Proposition 5.5. Let Ta, Tb : Rn → Rn be nonexpansive operators. Assume
that Fix(Ta),Fix(Tb) ̸= ∅. Then,

Fix(ωTa − (ω − 1)Tb) ⊃ Fix(Ta) ∩ Fix(Tb), (5.26)

for a given ω > 1.
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Proof. Let x ∈ Fix(Ta) ∩ Fix(Tb). Then,

(ωTa − (ω − 1)Tb)(x) = ωTax− (ω − 1)Tbx

= ωx− (ω − 1)x

= x, (5.27)

which yields x ∈ Fix(ωTa − (ω − 1)Tb). Hence, (5.26) holds.

This proposition states that the common fixed points of given two non-
expansive operators are also fixed points of the external division. However,
the opposite does not hold in general as shown in the following remark.

Remark 5.1. The opposite inclusion of (5.26) does not hold in general.
For instance, let Ta = Id− soft2 and Tb = Id− soft1. Then, Ta and Tb are
nonexpansive, and Fix(Ta) = [−2, 2] and Fix(Tb) = [−1, 1]. On the other
hand, (2Ta − Tb)(3) = (Id−2 softb+softa)(3) = 3 − 2 + 2 = 3, and hence
3 ∈ Fix(2Ta − Tb).

5.3.2 External Division Operator of Two Proximity Opera-
tors

We present a sufficient condition for the external division operator to be
expressed as the proximity operator of a certain weakly convex function.
This property is a key ingredient in convergence analysis to be presented in
Section 5.3.3. A key idea is to use the framework of MoL-Grad denoisers
[139] (see Appendix G).

Proposition 5.6. Let g1, g2 ∈ Γ0(Rn) and ω > 1. Set ∆ω := ωProxg1 −(ω−
1)Proxg2 as in (5.1). Then, ∆ω is ω-Lipschitz continuous, and it holds that

∆ω = ∇ψω, (5.28)

where
ψω := ω 1(g∗1)− (ω − 1) 1(g∗2) (5.29)

(see Figure 5.8). If ψω is convex, it holds that

∆ω = s-Proxφω (5.30)

in the sense of (2.20) with the (1− ω−1)-weakly convex function

φω := ψ∗
ω − ∥ · ∥22/2. (5.31)
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1(g∗1) 1(g∗2)ψω

ω

ω − 1

Figure 5.8: The relation among ψω given in (5.29) and the Moreau envelopes
1(g∗1) and 1(g∗2) of the conjugate functions g∗1 and g∗2.

Proof. Since Proxg1 and Proxg2 are firmly nonexpansive, Proxg1 −Proxg2 is
nonexpansive by Proposition 5.4. Hence, ∆ω is ω-Lipschitz continuous by
Propositions 5.3. It holds by Fact 2.4(b) that

∆ω = ωProxg1 −(ω − 1)Proxg2

= ω(Id−Proxg∗1 )− (ω − 1)(Id−Proxg∗2 )

= ω∇ 1(g∗1)− (ω − 1)∇ 1(g∗2)

= ∇
(
ω( 1(g∗1))− (ω − 1)( 1(g∗2))︸ ︷︷ ︸

=ψω

)
. (5.32)

If ψω is convex, (5.30) holds by Fact G.1.

The expression of φω given in (5.31) involves the conjugate of ψω, which
is not computable in general. An alternative expression of φω will be given
in Proposition 5.9 below. In the following subsection, we will provide the
convergence analysis of the gradient algorithm based on the external division
operator under the assumption of convexity of ψω. The convexity conditions
of ψω will be discussed in Section 5.3.5.

5.3.3 Gradient Algorithm With External Division Operator:
Case of Strongly Convex Fidelity Term

Let f : Rn → R be the fidelity function which is ρ-strongly convex with κ-
Lipschitz continuous gradient for ρ, κ > 0. A popular approach to suppress
the fidelity f while accommodating the prior information into a regularizer
R ∈ Γ0(Rn) is to use the proximal gradient algorithm, i.e., the recursion

xk+1 := ProxµR(xk − µ∇f(xk)). (5.33)

By analogy, we consider replacing the proximity operator of the proximal
gradient algorithm by ∆ω, obtaining the recursion

xk+1 := ∆ω(xk − µ∇f(xk)), (5.34)
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Algorithm 5.1 : Gradient algorithm with the external division operator.
Set x0 ∈ Rn, ω, ρ, µ > 0.
For k = 0, 1, 2, . . .
xk+1 := ∆ω(xk − µ(∇f(xk) + ρPM⊥xk)).

where µ > 0. Thanks to Proposition 5.6, under the convexity of ψω, the
convergence of the algorithm given in (5.34) to a minimizer (if exists) of
µf+φω is guaranteed by Fact G.2 under the conditions ω ∈ (1, (κ+ρ)/(κ−ρ))
and µ ∈ [(1− ω−1)/ρ, (1 + ω−1)/κ).

5.3.4 Gradient Algorithm With External Division Operator:
Case When Strong Convexity is Restricted to Subspace

We consider a more general case when the strong convexity of f is restricted
to some subspace M ⊂ Rn with the case of underdetermined linear system
envisioned (a more specific discussion is given below). In this case, the cost
function µf +φω is nonconvex since µf is not strongly convex on M⊥ while
φω is weakly convex on M⊥. To guarantee the global optimality, we modify
the penalty term as φ̃ω which will be defined in (5.35). Along with this
modification, we modify the recursion in (5.34) and consider Algorithm 5.1.
The convergence of Algorithm 5.1 is guaranteed as shown in the following
proposition.

Proposition 5.7. Let M ⊂ Rn be a subspace. Let f : Rn → R be a
differentiable function such that

(i) f − ρ∥PM · ∥22/2 is convex,

(ii) ∇f(x) ∈ M for all x ∈ Rn,

(iii) ∇f + ρ∥PM⊥ · ∥22/2 is κ-Lipschitz continuous for κ ≥ ρ > 0.

Let g1, g2 ∈ Γ0(Rn) be convex such that ψω(:= ω( 1(g∗1)) − (ω − 1)( 1(g∗2)))
defined in (5.29) is convex. Let µ ∈ (0, 2/(κ+ρ)) be the step size parameter,
and set ω := (1− µρ)−1 > 1. Suppose that ∆ω given in (5.1) is employed in
Algorithm 5.1. Let

φ̃ω := φω +
µρ

2
∥PM⊥ · ∥22 (5.35)

for φω defined in (5.31). Then, given an arbitrary x0 ∈ Rn, the sequence
(xk)k∈N produced by the algorithm converges to a minimizer, if exists, of

µf + φ̃ω. (5.36)

Here, µf and φ̃ω are ρ-strongly convex and ρ-weakly convex on M, respec-
tively. Moreover, µf and φ̃ω are both convex on M⊥, respectively.
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Proof. Proof is given in Appendix K.2.

Let us consider the specific case of squared errors f : Rn → R : x 7→
∥y −Ax∥22/2, where y ∈ Rm and A ∈ Rm×n are the observation vector and
the input matrix, respectively. In this case, f is not strongly convex if the
linear system is underdetermined (m < n). Assumptions (i), (ii), and (iii)
in Proposition 5.7 are automatically satisfied for M := rangeAT even in the
underdetermined case since (i) ∥y−A ·∥22/2−ρ∥PM ·∥22/2 is convex if ρ is not
greater than λ++

min(A
TA), (ii) ∇(∥y−A · ∥22/2)(x) = AT(Ax−y) ∈ M, and

(iii) ∇(∥y−A·∥22/2+ρ∥PM⊥ ·∥22/2)(x) = AT(Ax−y)+ρPM⊥ is κ-Lipschitz
continuous, where κ := λmax(A

TA). Hence, convergence is guaranteed by
Proposition 5.7 under µ ∈ (0, 2/(κ+ ρ)). This is an essential difference from
[112, Proposition 6] which requires the ρ-strong convexity of f .

The idea of Proposition 5.7 is to abandon the weak convexity of the
regularizer over M⊥ to guarantee the convexity of the whole cost function.
In the case of M := Rn, we have M⊥ := {0}, so that µρ∥PM⊥ · ∥22/2, as
well as ρPM⊥xk in the algorithm, vanishes. Hence, in this specific case,
Algorithm 5.1 reduces to the algorithm given in (5.34), and the sequence
(xk)k∈N converges to a minimizer of µf+φω, as already mentioned in Section
5.3.3.

5.3.5 Convexity Condition of ψω Given in (5.29)

For given g1, g2 ∈ Γ0(Rn), the convexity of ψω is a key property to ensure the
cocoercivity of ∆ω and hence the convergence of Algorithm 5.1. However, it
is not straightforward to establish the convexity conditions of ψω in general.
By comparing (5.1) and (5.14), it is verified that the firm-shrinkage operator
is the external division operator for g1 = τ∥·∥1 and g2 = γ∥·∥1 for γ > τ > 0.
One would by analogy expect that ψω is convex if g2 := ηg1 ∈ Γ0(Rn) for
η > 1. However, this condition is not sufficient in general (see Remark 5.2).
The following proposition gives sufficient conditions for ψω to be convex.

Proposition 5.8. Let g1, g2 ∈ Γ0(Rn), and ω > 1. Assume that the follow-
ing hold jointly:

(C-1) g2 − g1 ∈ Γ0(Rn).

(C-2) Proxg2 = Proxg2−g1 ◦Proxg1 .

(C-3) Prox(g2−g1)∗ ◦Proxg1 is monotone.

Then, the following statements hold.
(a) The function ψω given in (5.29) is convex if (C-1), (C-2), and (C-3) are
jointly satisfied.
(b) (C-3) is satisfied if one of the following conditions is satisfied:

(i) Prox(g2−g1)∗ ◦Proxg1 = Prox(g2−g1)∗+g1 .
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(ii) g1 and g2 are separable, i.e., there exist g̃1, g̃2 ∈ Γ0(R) such that

g1(x) =

n∑
i=1

g̃1(xi), g2(x) =

n∑
i=1

g̃2(xi), (5.37)

for any x ∈ Rn.

Proof. The proof is given in Appendix K.3.

Some sufficient conditions for the decomposition of the proximity oper-
ator (assumptions (C-2) and (i)) are investigated in [145, 122, 96, 144] (see
Appendix H). The following example gives several examples of g1 and g2
which satisfy assumptions (C-1)–(C-3).

Example 5.1. Assumptions (C-1)–(C-3) of Propositions 5.8 are satisfied if
g1, g2 : Rn → R are set as follows:

(a) (Generalization of OSCAR) g1 : x 7→
∑

i,j∈I wi,j max{|xi|, |xj |},
where2 wi,j ≥ 0 for i, j ∈ I := {1, 2, . . . , n}, and g2 is any permu-
tation invariant function which satisfies (i) g2(x) = g2(|x|) for any
x ∈ Rn and (ii) g2− g1 ∈ Γ0(Rn). Here, for any g : Rn → R, g is called
permutation invariant if g(x) = g(Qx) for any permutation Q (under
some fixed basis) for any x ∈ Rn.
The specific choice of

wi,j :=


λ1, if i = j,

λ2, if i < j,

0, otherwise,
(5.38)

for λ1, λ2 > 0, for g1 reproduces the OSCAR regularizer ΩOSCAR
λ1,λ2

de-
fined in (2.67). Since the OSCAR regularizer is permutation invariant
and satisfies ΩOSCAR

λ1,λ2
(x) = ΩOSCAR

λ1,λ2
(|x|) for any x ∈ Rn, a specific

choice of g2 is g2 := ηg1, where η > 1.

(b) (Total variation norm or the clustered lasso) g1 : x 7→
∑

i,j∈I wi,j |xi −
xj | for any wi,j ≥ 0 for i, j ∈ I := {1, 2, . . . , n}, and g2 is a function
such that g2 − g1 ∈ Γ0(Rn) is permutation invariant.

(c) (Hinge loss function) g1 := Φhinge :=
∑n

i=1 ϕ
hinge, and g2 := ηg1, where

Γ0(R) ∋ ϕhinge : x 7→ max{0, 1− x} and η > 1.

Proof. (a) Since g2 − g1 ∈ Γ0(Rn), assumption (C-1) of Proposition 5.8
is satisfied. Assumption (C-2) of Proposition 5.8 is satisfied by [145,
Corollary 5]. Now we show that assumption (C-3) of Proposition 5.8

2When wi,j = 0 for all i, j ∈ I, the function g1 is not a norm. Otherwise, g1 is a norm.
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is satisfied. By [145, Proposition 4], g is permutation invariant if and
only if Proxg(Qx) = QProxg(x) for any x ∈ Rn, which implies that

Proxg∗(Qx) = Qx− Proxg(Qx)

= Qx−QProxg(x)

= QProxg∗(x), (5.39)

where the first and third equalities are due to Fact 2.4(c). Then, by
using [145, Proposition 4] again, we obtain that g∗ is permutation in-
variant. Hence, assumption (C-3) is satisfied by permutation invariance
of g1 and [145, Corollary 5].

(b) The proof is given in the same way as in (a).

(c) For any x ∈ Rn, the hinge loss function is expressed, as a translation
of the support function, as

Φhinge(x) =
n∑
i=1

max{0, 1− xi}

= max
v∈[−1,0]n

n∑
i=1

vi(xi − 1)

= σ[−1,0]n(x− 1n). (5.40)

Now let us show that the assumption (C-2) of Proposition 5.8 is satis-
fied. Since Φhinge is separable, it holds from [96, Proposition 24.11] for
any γ > 0 that

ProxγΦhinge(x) = (Proxγϕhinge(xi))
n
i=1. (5.41)

The proximity operator of the hinge loss function is known [96, Example
24.36] as, for any ξ ∈ R,

Proxγϕhinge(ξ) =


ξ + γ, if ξ < 1− γ,

1, if ξ ∈ [1− γ, 1],

ξ, if ξ > 1.

(5.42)
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Hence, it holds that

Prox(η−1)ϕhinge ◦Proxϕhinge(ξ)

=


Proxϕhinge(ξ) + η − 1, if Proxϕhinge(ξ) < 2− η,

1, if Proxϕhinge(ξ) ∈ [2− η, 1],

Proxϕhinge(ξ), if Proxϕhinge(ξ) > 1,

=


ξ + η, if ξ < 1− η,

1, if ξ ∈ [1− η, 1],

ξ, if ξ > 1,

= Proxηϕhinge(ξ). (5.43)

Hence, assumption (C-2) of Proposition 5.8 is satisfied by (5.41) and
(5.43). Finally, assumption (C-3) of Proposition 5.8 is satisfied since
assumption (ii) is satisfied.

The following remark gives an example of the case when ψω is nonconvex
for g1, g2 which satisfy assumption (C-1) of Proposition 5.8 but do not satisfy
(C-2).

Remark 5.2. Let g1 : R → R : x 7→

{
− ln(x), if x > 0,

+∞, otherwise,
and g2 = 2g1.

In this case, assumption (C-1) is satisfied because g2− g1 = g1 ∈ Γ0(R). The
proximity operator of ηg1 for η > 0 is known to be expressed as follows [146]:

Proxηg1(x) =
x+

√
x2 + 4η

2
, (5.44)

which implies that

Proxg2(x) =
x+

√
x2 + 8

2

̸=
x+

√
x2+4
2 +

√
(x+

√
x2+4
2 )2 + 4

2
= Proxg1(Proxg2(x)). (5.45)

In this case, for every ω > 2
√
5/(3 −

√
5), ψω given in (5.29) is nonconvex.

To see this, we observe by (5.32) that, for any x ∈ R,

d2

dx2
ψ(x) =

d

dx
(ωProxg1 −(ω − 1)Prox2g1)(x)

=
d

dx

1

2

(
x+ ω

√
x2 + 4− (ω − 1)

√
x2 + 8

)
=

1

2

(
1 + ω

x√
x2 + 4

− (ω − 1)
x√

x2 + 8

)
, (5.46)
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from which it follows that

d2

dx2
ψ(−1) =

1

2

(
1− ω

1√
5
+ (ω − 1)

1

3

)
= − 1

3
√
5
((3−

√
5)ω − 2

√
5)

< 0. (5.47)

The following remark shows that the set of assumptions (C-1)–(C-3) of
Proposition 5.8 is only sufficient, and it is not necessary.

Remark 5.3. Let g1 : Rn → R : x 7→ 1
2∥x∥

2
2, and g2 := 3g1. Then, it holds

for any x ∈ Rn and η ∈ R that

1(ηg1)(x) = ηg1(Proxηg1(x)) +
1

2
∥x− Proxηg1(x)∥22

= ηg1((1 + η)−1x) +
1

2
∥x− (1 + η)−1x∥22

= η(1 + η)−2∥x∥22 + η2(1 + η)−2∥x∥22
= η(1 + η)−1∥x∥22, (5.48)

where it follows from (2.35) that

Proxη∥·∥22/2(x) = (Id+η∂(∥ · ∥22/2))−1(x)

= (1 + η)−1x. (5.49)

Then, it holds for any x ∈ Rn that

ψω(x) = ω 1(g∗1)(x)− (ω − 1) 1((3g1)
∗)(x)

= ω 1(g1)(x)− (ω − 1) 1

(
3g1(

1

3
·)
)
(x)

= ω 1(g1)(x)− (ω − 1) 1

(
1

3
g1

)
(x)

=
ω

2
∥x∥22 −

ω − 1

4
∥x∥22

=
1 + ω

4
∥x∥22, (5.50)

from which it follows that ψω is convex. However, we have

Proxg2(x) =
1

4
x

̸= 1

6
x

= Prox∥·∥22

(
1

2
x

)
= Proxg2−g1(Proxg1(x)), (5.51)
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and hence assumption (C-2) of Proposition 5.8 is violated. Therefore, as-
sumptions (C-1)–(C-3) are not a necessary condition for convexity of ψω.

5.3.6 A Closed-Form Expression of φω Defined in (5.31)

Proposition 5.7 states that Algorithm 5.1 converges to a minimizer (if exists)
of the cost function which includes φω as a regularization term. However,
φω given in (5.31) is not computable in general due to the conjugate of
ψω. The following proposition gives an alternative expression of φω which is
computable if g2 − g1 is proximable.

Proposition 5.9. For given ω > 1, nonempty convex subsets C1, C2 ⊂ Rn
such that g1 := σC1 and g2 := σC2 satisfying assumptions (C-1)–(C-3) in
Proposition 5.8. Assume that range(∆ω) = Rn for the external division
operator ∆ω defined in (5.1). Set φω as in (5.31). Then, it holds for any
x ∈ Rn that

φω(x) = σC1(x+ (ω − 1)Proxω(σC2
−σC1

)(x))

− (ω − 1)σC1(Proxω(σC2
−σC1

)(x))− (1− ω−1) 1(ω(σC2 − σC1))(x).

(5.52)

Proof. Proof is given in Appendix K.4.

Figure 5.9 shows φω given in (5.52) for g1 := | · |, g2 := η| · |, and ω := 2
with η := 2.0, 1.5, 3.0. The case (a) satisfies η := ω(ω − 1)−1, and hence
φω coincides with the MC function defined in (2.45) (which will be verified
by Proposition 5.10 by setting λ2 := 0). It can be seen that η controls
the derivative of φω at the large inputs. For the Moreau enhancement, the
derivative of φω at the large inputs is 0, and hence the estimation bias for
the large coefficients can be reduced. We note that Proposition 5.9 can be
applied to the cases in Examples 5.1(a) and (b) since the norms are the
support functions for some nonempty convex set.
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Figure 5.9: The function φω in Proposition 5.9 for g1 := | · |, g2 := η| · |, and ω := 2 with (a) η := 2.0, (b)
η := 1.5, and (c) η := 3.0.
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5.3.7 Relation of φω and the Moreau Enhancement (the Case
of g2 = ηg1 for η > 1)

For general g1, g2 ∈ Γ0(Rn), the following remark provides a connection
between φω given in (5.31) and the Moreau enhancement [35, 34]. We use
the following lemma.

Lemma 5.1. For any function g ∈ Γ0(Rn) and for any γ > 0, it holds that

1(γg) = γ γg. (5.53)

Proof. For any x ∈ Rn, it holds that

1(γg) = min
z∈Rn

(
γg(z) +

1

2
∥x− z∥22

)
= γ min

z∈Rn

(
g(z) +

1

2γ
∥x− z∥22

)
= γ γg. (5.54)

Remark 5.4. If the functions g1, g2 in Proposition 5.9 are support functions,
it holds that

φω ≤ g1 − (1− ω−1) 1(ω(g2 − g1)) (5.55)

due to (5.52) and the triangle inequality. When g2 := ηg1 with

η =
ω

ω − 1
, (5.56)

the majorant (5.55) of φω reduces to the Moreau enhancement of g1, i.e.,

φω ≤ g1 − ω(ω−1)−1
g1, (5.57)

where

(1− ω−1) 1(ω(η − 1)g1) = (1− ω−1) 1(ηg1)

= (1− ω−1)η η(g1)

= ηg1

= ω(ω−1)−1
g1. (5.58)

Here, the last equality is due to Lemma 5.1.

Moreover, we show in the following proposition that (5.57) holds with
equality when g1 and g2 are scaled OSCAR.
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Proposition 5.10. Let g1 := ΩOSCAR
λ1,λ2

and g2 := ηΩOSCAR
λ1,λ2

for λ1, λ2 ≥ 0

and for η > 1. Set φω : Rn → R : x 7→ ψ∗
ω(x)−∥x∥22/2 as in (5.31) for ω > 1.

Then, it holds that

φω = ΩOSCAR
λ1,λ2 − ab b(ΩOSCAR

λ1,λ2 ), (5.59)

where a := (1 − ω−1) ∈ (0, 1), and b := ω(η − 1) > 0. Moreover, if ab = 1,
i.e., η = ω(ω − 1)−1, it holds that

φω = ΩOSCAR
λ1,λ2 − bΩOSCAR

λ1,λ2 . (5.60)

Proof. Proof is given in Appendix K.5.

This proposition indicates that the corresponding weakly convex function
to DOSCAR (see (5.59)) is more general3 than the Moreau enhancement.
This general class of weakly convex functions includes those achieving better
performance than the Moreau enhancement in general, as demonstrated in
Section 5.4.2. Figure 5.10 shows the function φω given in (5.59) with λ1 =
λ2 := 0.5 and ω := 2.0 (a := 0.5) for η := 2.0, 1.5, 3.0 (b = 2.0, 1.0, 4.0,
respectively). Since it holds from Fact 2.4(c) that

b b(ΩOSCAR
λ1,λ2 ) = b(b−1∥ · ∥22/2− b−1

((ΩOSCAR
λ1,λ2 )∗) ◦ (b−1 Id))

= ∥ · ∥22/2− b b−1
((ΩOSCAR

λ1,λ2 )∗) ◦ (b−1 Id), (5.61)

the function φω is a-weakly convex. Hence, the parameter η (or equivalently,
b) changes the shapes of φω without changing its concavity for a fixed ω.

3The external division yields a different way of generalization of Moreau enhancement
than the generalized Moreau enhancement defined in Definition 2.18.
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Figure 5.10: The function φω given in (5.59) with λ1 = λ2 := 0.5 and ω := 2.0 for (a), η := 2.0 (the case
when φω coincides with the Moreau enhancement of the OSCAR regularizer), (b) η := 1.5, and (c) η := 3.0.
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5.4 Numerical Examples

We demonstrate the performance of a specific example of the external division
operator, DOSCAR, in the application of sparse modeling, particularly when
there are groups of highly correlated features. The convergence of Algorithm
5.1 with TDOSCAR

λ1,λ2,ω,η
is guaranteed for any ω, η > 1 by Propositions 5.6 and 5.8

on the basis of Example 5.1(a). First, the efficacy of the proposed method is
evaluated using toy data in Experiment 5-A. Then, we show the influence of
hyperparameter η on the performance of the proposed method in Experiment
5-B.

5.4.1 Experiment 5-A: Toy Data

The standard linear model y = Ax⋄ + ε⋆ ∈ Rm is used. The noise vector
ε⋆ ∈ Rm is generated i.i.d. from the zero-mean Gaussian distribution with a
given SNR. We consider the following two toy datasets:

A. The column vectors of A ∈ Rm×n for m := 200 and n := 80 are
generated as:

ai :=


ã1 + ϵ⋆,i, i = 1, 2, . . . , 5,

ã2 + ϵ⋆,i, i = 6, 7, . . . , 10,

ã3 + ϵ⋆,i, i = 11, 12, . . . , 15,

ã4, i = 16, 17, . . . , 80,

(5.62)

where the components of ãj (j = 1, 2, 3, 4) are generated i.i.d. from
standard Gaussian distribution, and those of ϵ⋆,i ∈ Rm (i =
1, 2, . . . , 15) are generated i.i.d. from N(0, σ2ϵ ) with σϵ > 0. The co-
efficient vector is set to

x⋄ := [3 . . . 3︸ ︷︷ ︸
5

, 2 . . . 2︸ ︷︷ ︸
5

, 1.5 . . . 1.5︸ ︷︷ ︸
5

, 0 . . . 0︸ ︷︷ ︸
65

]T ∈ Rn. (5.63)

B. (Toeplitz covariance) Each column vector of A ∈ Rm×n for n := 80 is
generated from the zero-mean multivariate Gaussian distribution with
covariance given by cov(ai,aj) = r|i−j| for r ∈ [0, 1]. The coefficient
vector is set as

x⋄ := [1 . . . 1︸ ︷︷ ︸
10

, 0 . . . 0︸ ︷︷ ︸
10

, 1 . . . 1︸ ︷︷ ︸
10

, 0 . . . 0︸ ︷︷ ︸
50

]T ∈ Rn. (5.64)

The SNR is set to 20 dB.

We compare DOSCAR with the methods to solve the least squares prob-
lem with the ℓ1 norm (lasso), the MC penalty, and the OSCAR regularizer.
Since the overall convexity of the cost function with the MC penalty is not
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guaranteed for the underdetermined case, the GMC penalty [25, 36] µΦGMC√
γ/µA

for µ > 0 and γ ∈ [0, 1) (see (2.47) for definition) is compared in this case.
The hyperparameters of the MC and GMC penalties are set so that the whole
cost functions are convex. For DOSCAR, the hyperparameters κ and ρ are
set to λmax(A

TA) and λ++
min(A

TA), respectively. The hyperparameter ω is
set as ω := (1 − µρ)−1, where µ is set to a slightly small value of 2/(κ + ρ)
to guarantee the convergence. All the other hyperparameters are tuned to
attain the best performance. The results are averaged over 300 trials, and
the evaluation metric is the system mismatch defined in (4.50).

Figure 5.11 shows the system mismatch across σϵ for dataset A for differ-
ent SNRs. The parameter σϵ controls the correlation of the column vectors
of A: large σϵ corresponds to small correlations, and small σϵ corresponds
to high correlations. It can be seen that the proposed method outperforms
the other methods in a wide range. For both settings of SNR 20 and 15
dB, the proposed method behaves similarly to the MC when the correlation
is low (σϵ ≥ 1.38), and similarly to OSCAR when the correlation is high
(σϵ ≤ 0.51). When the correlation is low, the proposed method and the MC
outperform the others due to the debiasing effect. As the correlation becomes
higher, the performance of the proposed method and OSCAR improve due
to the grouping effect.

Figure 5.12 shows the system mismatch across r for dataset B. The pa-
rameter r controls the correlation of the column vectors of A: large r cor-
responds to high correlations, and small r corresponds to small correlations.
For both overdetermined and underdetermined cases, the proposed method
outperforms the other methods especially when the correlation level is mid-
dle. While the proposed method performs well when the correlation is very
high for dataset A, such a situation rather causes performance degradation
for dataset B. This is because large r implies that even unimportant columns
of A have high correlations with important columns.

5.4.2 Experiment 5-B: Influence of Hyperparameter η

We study the influence of the fluctuations of hyperparameter η on the per-
formance of the proposed method. Figure 5.13 shows the system mismatch
of the proposed method across η with tuned λ1 and λ2 for datasets A and B.
The blue lines indicate η := ω(ω−1)−1, with which the proposed method re-
duces to the Moreau enhancement of OSCAR (see Proposition 5.10). Better
performance is attained for smaller values of η except for the case of Figure
5.13(c). It can be seen that the behavior of the performance against the fluc-
tuation of η is problem-dependent. In general, the more accurate estimation
can be achieved by the proposed method with appropriate tuning of η than
by the Moreau enhancement.
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Figure 5.11: System mismatch across σϵ for dataset A with (a) SNR 20 dB
and (b) SNR 15 dB.
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Figure 5.12: System mismatch across r for dataset B with (a) m := 400 and
(b) m := 40.
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Figure 5.13: System mismatch across hyperparameter η. (a) dataset A with SNR 20 dB and κ := 0.1, (b)
the same as (a) except for SNR 15 dB, (c) dataset B with m := 400 and r := 0.8, and (d) the same as (c)
except for m := 40. The blue lines indicate the value η = ω(ω − 1)−1.
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5.5 Conclusion

The properties of the external division operator were studied on the basis
of the observation that the firm-shrinkage operator can be expressed as an
external division of two soft-shrinkage operators. DOSCAR was proposed
in the class of the external division operators for an effective feature group-
ing. This addresses (Q3), which was raised in Chapter 1.2. It was shown
that, when ψω defined in (5.29) is convex for given g1, g2 ∈ Γ0(Rn), the ex-
ternal division operator is expressed as the gradient of some smooth convex
function, and it can be expressed as ∆ω = ∇ψω = s-Proxφω for φω defined
in (5.31). The gradient algorithm associated with a given fidelity function
and the external division operator was proposed, and the convergence to a
minimizer of the cost function regularized with φω was proven. This conver-
gence analysis covered the case when the strong convexity of the fidelity is
restricted on some subspace. Some sufficient conditions for ψω to be convex
were presented, which allowed us to provide a closed-form expression of φω
for some cases. Numerical examples demonstrated the efficacy of the pro-
posed operator in recovering signals having structured sparsity, and it was
shown that the performance was significantly improved when g1 and g2 were
defined with scaled OSCAR.



Chapter 6

General Conclusion

This thesis was devoted to robust debiasing methods for sparse modeling.
The proposed methods addressed the following two issues which generally
occur in outlier-robust estimation and sparse signal estimation, respectively:
(i) a severe tradeoff between robustness and global optimality, and (ii) the
risk of missing some important groups of highly correlated features. The key
idea was to explore an effective way of utilizing the Moreau enhancement
technique and to define a new class of operators which extends this technique.

First, to fundamentally solve the above tradeoff problem, we proposed a
robust method for jointly sparse signal estimation based on the MC func-
tions. The key idea was using the combination of three terms: the MC loss
function, the MC penalty, and the Tikhonov penalty terms. The influence
of outliers was significantly reduced by the MC loss function. Moreover, the
convexity of the cost function was guaranteed by exploiting the combina-
tion of the weak convexity of the MC functions and the strong convexity
of the Tikhonov regularizer. Numerical examples including the application
of multi-lead electrocardiogram with real data demonstrated the remarkable
robustness of the proposed method.

Second, aiming to achieve high performance even in highly noisy envi-
ronments, we integrated the sparse signal estimation method based on the
MC penalty given in (1.3) and SORR given in (F.1.3). This appropriately
distinguished the statistical difference between Gaussian noise and outliers
by introducing an auxiliary vector to model the noise. In addition, the joint
use of the MC and Tikhonov regularizers provided the grouping effect. In
contrast to the popular elastic net, it was shown that the upper bound of
the discrepancy between the corresponding coefficients is independent of the
norm of the observation vector, which could be large owing to huge out-
liers. The necessary and sufficient conditions for convexity of the smooth
part of the cost were derived under a certain nonempty-interior assumption
via the product space formulation using the LiMES framework. Numerical
examples including the application to speech denoising with real data showed

121
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that the proposed method achieves robust sparse signal estimation even in
highly noisy environments.

Third, we introduced a new notion of “the external division operator”,
and we presented a method to extract all correlated features accurately.
The external division operator was motivated by the observation that the
firm-shrinkage operator can be expressed as an external division of two soft-
shrinkage operators. The external division operator for OSCAR turned out
to be a generalization of its Moreau enhancement. We consider the gradient
algorithm associated with a given fidelity function based on the external divi-
sion operator, and the convergence to a minimizer of the corresponding cost
function was proven. This convergence analysis covered the case that strong
convexity of the fidelity is restricted to some subspace. It was shown that the
external division operator of the OSCAR regularizer is a generalization of the
Moreau enhancement of that regularizer. Numerical examples demonstrated
that it improves performance dramatically by reducing the estimation bias.
Future Work: There are many ways to continue the study of this thesis.
The following are our future work:

• In this thesis, the noise was assumed to obey i.i.d. zero-mean Gaussian
distribution. However, it is possible that the proposed methods suffer
from errors with other statistical properties, such as the ones obeying
heavy-tailed distributions including the Cauchy distribution and sym-
metric alpha-stable distribution. Further experiments using such errors
would be of interest.

• Model selection is a key ingredient in data analysis. In this thesis,
most of the hyperparameters of the proposed methods were tuned by
a simple grid search based on the information of the ground truth. To
apply the proposed methods to various kinds of real data, we would like
to explore effective approaches to model selection such as information
criterion for the proposed methods. Another possible approach would
be an integration of the proposed methods and deep unfolding methods
[147].

• Many problems in signal processing can be cast as the online estima-
tion of sparse signals. For instance, a sparsity-aware adaptive filtering
method based on the MC penalty has been proposed in [136]. Al-
though this thesis focused on batch methods, extensions to such online
methods will expand the range of applications.

• In this thesis, the efficacy of the proposed methods was demonstrated
only through numerical examples. We would like to derive an upper
bound for the system mismatch, as in [72]. Furthermore, we would like
to figure out sufficient conditions for the proposed approaches to cor-
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rectly solve the corresponding problems (similar conditions have been
derived in other robust signal recovery approaches [148]).

• This thesis focused on the feature grouping for an application of the
external division operators. We will further explore the possibility of
improvements from existing methods by using the external division
operators in other applications. A bottleneck of this is the limitation
of the convexity condition of ψω given in Proposition 5.8. Hence, an
extension of that proposition would be required.

• This thesis only considered the proximal gradient algorithm (and its
generalization) to exploit the external division operator. However, the
external division operator may be useful in other popular algorithms
such as Douglas-Rachford, Chambolle-Pock, and the primal-dual split-
ting algorithms. An application of the external division operator to
deep neural networks and deep unrolling [149] would also be of inter-
est.





Appendix A

Contours of the Quadratic Loss
Function

In this section, we show that the contours of the quadratic loss are ellipses
centered at the least square solution, and the axes of the ellipses are tilted
45 degrees from the coordinate axis in the two-dimensional case when each
column of A is standardized. Fix x ∈ {ξ ∈ R2 | ∥y − Aξ∥22 = c} for some
constant c > 0. Assume that ATA is invertible. Then, it holds that

∥y −Ax∥22 = yTy − 2yTAx+ xTATAx

=

(
x−

(
ATA

)−1
ATy

)T

ATA

(
x−

(
ATA

)−1
ATy

)
+ yT

(
In −A

(
ATA

)−1
AT

)
y︸ ︷︷ ︸

independent of x

. (A.1)

Let c̃ := c−yT
(
In −A

(
ATA

)−1
AT
)
y. Since c̃ is independent of x, (A.1)

is equivalent to(
x−

(
ATA

)−1
ATy

)T

ATA

(
x−

(
ATA

)−1
ATy

)
= c̃, (A.2)

which is the equation of an ellipse, of which the center is the least square
solution

(
ATA

)−1
ATy. Since each column of A is standardized, it holds

that

ATA =

[
1 aT

1a2

aT
1a2 1

]
=

[
1√
2

1√
2

1√
2
− 1√

2

] [
1 + |aT

1a2| 0
0 1− |aT

1a2|

] [ 1√
2

1√
2

1√
2
− 1√

2

]
(A.3)
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Hence, the major and minor axes of the ellipse are along
[

1√
2
,− 1√

2

]T
and[

1√
2
, 1√

2

]T
, respectively.



Appendix B

Weak Convexities of Some
Nonconvex Penalties

We show below that (i) the ℓq quasi-norm (0 < q < 1) defined in (2.53) and
(ii) the capped ℓ1 norm defined in (2.55) are not weakly convex, and (iii) the
CEL0 penalty defined in (2.54) is γ2-weakly convex.

(i) The ℓq quasi-norm ϕℓq : R → R : x 7→ (1/q)|x|q is differentiable at
x ∈ R \ {0}. The second derivative at x > 0 is given by

(ϕℓq)′′(x) = (q − 1)|x|q−2

< 0. (B.1)

Since
lim
x→+0

(q − 1)|x|q−2 = −∞, (B.2)

there does not exist any constant ρ > 0 such that

(q − 1)|x|q−2 + ρ > 0, ∀x > 0. (B.3)

Since there exists x > 0 at which the Hessian of ϕℓq + (ρ/2)x2 is nega-
tive, ϕℓq +(ρ/2)x2 is nonconvex for any ρ > 0. Thus, the ℓq quasi-norm
is not weakly convex.

(ii) Let h : R → R : x 7→ ϕcapγ (x) + (ρ/2)x2 for some ρ > 0. For any
x, ξ ∈ R, it holds that

ρ

2

(
1

2
x2 +

1

2
ξ2 −

(
x+ ξ

2

)2
)

=
ρ

2

(
1

2
x2 +

1

2
ξ2 − xξ

)
=
ρ

4
(x− ξ)2. (B.4)
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Hence, it holds for any x ∈ (0, γ) and ξ > γ that

1

2
h(x) +

1

2
h(ξ)− h

(
x+ ξ

2

)
=

1

2
x+ (ρ/2)x2 +

1

2
γ + (ρ/2)ξ2 −min

{
x+ ξ

2
, γ

}
− (ρ/2)

(
x+ ξ

2

)2

=
1

2
x+

1

2
γ −min

{
x+ ξ

2
, γ

}
+
ρ

4
(x− ξ)2. (B.5)

Substituting x := γ − ϵ and ξ := γ + ϵ for sufficiently small ϵ > 0 to
(B.5) yields

1

2
h(x) +

1

2
h(ξ)− h

(
x+ ξ

2

)
=

1

2
(γ − ϵ)− 1

2
γ + ρϵ2

= ρϵ2 − 1

2
ϵ, (B.6)

which is negative for ϵ ∈ (0, 1/(2ρ)). This implies that there exist
x, ξ ∈ R for any ρ > 0 such that (B.6) is negative, and hence h is
nonconvex for any ρ > 0. Thus, ϕcap is not weakly convex.

(iii) By definition in (2.54), it holds for any x ≤
√
2µ/γ that

ϕCEL0
γ,µ (x) = µ− γ2

2
x2 +

γ2

2

2
√
2µ

γ
|x| − γ2

2

2µ

γ2

= −γ
2

2
x2 + γ

√
2µ|x|

= γ
√
2µ

(
|x| − γ

2
√
2µ
x2
)
. (B.7)

On the other hand, it holds for any x >
√
2µ/γ that

ϕCEL0
γ,µ (x) = µ = γ

√
2µ

√
2µ

2γ
. (B.8)

Hence, (B.7) and (B.8) together with (2.45) yield that

ϕCEL0
γ,µ (x) = γ

√
2µϕMC√

2µ/γ . (B.9)

Since ϕMC√
2µ/γ

is (γ/
√
2µ)-weakly convex, ϕCEL0

γ,µ is γ2-weakly convex.



Appendix C

Forward-Backward-Based
Primal-Dual Splitting Method

We consider the following optimization problem:

min
x∈Rn

F (x) +G(Bx), (C.1)

where F ∈ Γ0(Rn) is differentiable on Rn with its gradient Lipschitz contin-
uous with constant β > 0, G ∈ Γ0(Rm), and B ∈ B(Rn,Rm). The set of
minimizers of (C.1) is assumed nonempty. There are several algorithms to
solve (C.1) based on the forward-backward approach: they combine a gradi-
ent decent step (forward step) with a computation step involving a proximity
operator (backward step) [118, 150, 116, 151] (see [131] for a survey paper).
This thesis utilizes the forward-backward based primal-dual splitting method
proposed in [118], which is shown in Algorithm C.1. It is known that the
conditions on the step sizes for the algorithm of [118] are less restrictive than
that of [150]. The convergence conditions of Algorithm C.1 are given in the
following fact.

Fact C.1 ([118, Theorem 3.5] and [131]). Let (xk)k∈N and (vk)k∈N be the
sequences generated by Algorithm C.1, respectively. Suppose that

0 < τ <
2

β
, 0 < ς ≤ 1

λmax(BTB)
. (C.2)

Then, the sequence (xk)k∈N converges to a solution of (C.1), and
((τ/ς)vk)k∈N converges to a solution of the associated dual problem

min
y∈Rm

F ∗(BTy) +G∗(y). (C.3)
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Algorithm C.1 : Forward-backward-based primal-dual splitting algorithm
[118]

Set (x0,v0) ∈ Rn × Rm, and τ, ς > 0
For k = 0, 1, 2, . . .
xk+ 1

2
:= xk − τ∇F (xk)

vk+1 := (Id−Prox(τ/ς)G)(Bxk+ 1
2
+ ςBBT)vk

xk+1 := xk+ 1
2
− ςBTvk+1



Appendix D

Big Oh Notation

We define the big Oh notation (a.k.a. Landau’s symbol) to express the com-
putational cost for algorithms.

Definition 19 (Eventually positive fuction). A function1 f : Nn → R is
eventually positive if there is a constant N ∈ N such that f(l1, l2, . . . , ln) is
positive for all l1, l2, . . . , ln ≥ N .

Definition 20 (Big Oh notation [152]). Let g : Nn → R be eventually
positive. Then, the set O(g) is the set of all eventually positive functions
f : N → R for which there exist N,m ∈ N such that

f(l1, l2, . . . , ln) ≤ mg(l1, l2, . . . , ln) (D.1)

for all l1, l2, . . . , ln ≥ N .

In the literature, the big Oh notation is slightly abused as f = O(g)
to express f ∈ O(g). Moreover, the notion n3 ∈ O(n3) or n3 = O(n3) is
also used to express f ∈ O(g) for f, g : N → N : n 7→ n3. For example, if
f : N → N : n 7→ 3n2 + 4n + 1, then f(n) ∈ O(n2) since it holds for any
n ≥ 3 that

4n2 − (3n2 + 4n+ 1) = n2 − 4n− 1

= (n− 2)2 − 5

≥ 0. (D.2)

Note that f(n) ∈ O(n3) and f(n) /∈ O(n) for this case. In general, f ∈ O(g)
does not imply that g(n) is as accurate to f(n) as possible. For any f, g :
Nn → R, the following hold:

1. cO(f) = O(f) for any c > 0,

2. O(f + g) = O(max{f, g}), where max is the pointwise maximum.

1Eventually positive function can be defined for partial functions, i.e., f : C → R for
some C ⊂ Nn.
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Appendix E

Matrix Computation Methods

E.1 Power Methods

Assume that there exist V ∈ Rn×n and λ1 > λ2 ≥ . . . ≥ λn for a given
matrix A ∈ Rn×n such that

V −1AV = diag(λ1, λ2, . . . , λn). (E.1.1)

The power method [153] shown in Algorithm E.1.1 is used to estimate the
largest eigenvalue of A and a corresponding eigenvector. The following fact
shows the convergence properties of the power method for the case when A
is symmetric1.

Fact E.1.1 ([153, Theorem 8.2.1]). Suppose that A ∈ Rn×n is symmetric
and that

V TAV = diag (λ1, . . . , λn) , (E.1.2)

where V ∈ Rn×n is orthogonal and λ1 > λ2 ≥ . . . ≥ λn. Let the vectors
(q(k))∞k=1 be the sequence produced by Algorithm E.1.1, and define θk ∈
[0, π/2] by

cos (θk) =
∣∣vT1 qk∣∣ , k = 0, 1, 2, . . . . (E.1.3)

If cos (θ0) ̸= 0, then for k = 0, 1, . . ., we have

|sin (θk)| ≤ tan (θ0)

∣∣∣∣λ2λ1
∣∣∣∣k , (E.1.4)

and

|lk − λ1| ≤ max
2≤i≤n

|λ1 − λi| tan2 (θ0)
∣∣∣∣λ2λ1
∣∣∣∣2k . (E.1.5)

1Unsymmetric case is also studied [153].
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Algorithm E.1.1 : Power method
Set q0 ∈ Rn such that ∥q0∥2 = 1
For k = 0, 1, 2, . . .
zk := Aqk−1

qk := zk/∥zk∥2
lk := qTkAqk

E.2 QR Decomposition

The QR decomposition (or QR factorization) [153] of any matrix A ∈ Rm×n

is defined by
A = QR, (E.2.1)

where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangle. There are
several methods to obtain Q and R such as Householder, block Householder,
and Givens transformations [153]. The existence of this factorization is shown
by the following theorem.

Fact E.2.1 ([153, Theorem 5.2.1]). If A ∈ Rm×n, there exists an orthogonal
Q ∈ Rm×m and an upper triangular R ∈ Rm×n so that A = QR.



Appendix F

LiMES Model

F.1 Stable Outlier-Robust Regression

Let us consider when the observation vector is contaminated by sparse out-
liers as follows:

y := Ax⋆ + ε⋆ + o⋄, (F.1.1)

where x⋆ and ε are the coefficient and noise vectors, which follows i.i.d. zero-
mean Gaussian distributions with variances σ2x⋆ and σ

2
ε⋆ . As stated in Section

1.1.4, existing outlier-robust regression methods have two major issues: (i)
existence of the tradeoff problem between robustness and global optimality,
and (ii) no distinction of the statistical differences between noise and outliers.

The above two issues have been resolved by SORR [35]. The formulation
of SORR is based on the MC loss function1:

min
x∈Rn, ε∈Rm

µSORRΦ
MC
γ (y − (Ax+ ε)) +

1

2
∥x∥22 +

ρSORR

2
∥ε∥22, (F.1.3)

where γ, µSORR, ρSORR > 0. The MC loss induces the sparsity of the residual
y− (Ax+ε), which can be regarded as an estimate of the pure outliers with
the Gaussian noise eliminated. In addition, the influence of huge outliers
is completely annihilated since the derivative of the MC function vanishes
at a certain level. By introducing the auxiliary vector ε, which models the
Gaussian noise, the statistical difference between noise and outliers is ex-
plicitly distinguished. When the noise power σ2ε⋆ is large, ∥ε⋆∥22 becomes
large as well. In this case, the inverse σ−2

ε⋆ of the noise-power estimate would

1The original formulation of SORR in [35] is

min
x∈Rn, ε∈Rm

µΦMC
γ (y − (Ax+ ε)) +

σ−2
x⋆

2
∥x∥22 +

σ−2
ε⋆

2
∥ε∥22, (F.1.2)

where σ2
x⋆

> 0 and σ2
ε⋆ > 0 are estimates of the variances of x and ε, respectively.

Multiplying the cost function of (F.1.2) by σ2
x⋆

and letting µSORR := σ2
x⋆
µ and ρSORR :=

σ2
x⋆
/σ2

ε⋆ yield the cost function of (F.1.3).
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136 APPENDIX F. LIMES MODEL

be small, and it allows ∥ε∥22 to be large so that ε mimics ε⋆ well, yielding
efficient mitigation of the MC loss ΦMC

γ (y − (Ax + ε)). This leads to the
“stability”, which means that the residuals are bounded to be proportional to
the magnitude of noise [154]. Therefore, SORR achieves remarkable robust-
ness against outliers and stability even in severely noisy environments while
the overall convexity of the whole cost function is guaranteed for appropriate
choices of µSORR and γ.

The following fact shows the convexity conditions of (F.1.3).

Fact F.1.1 ([35, Proposition 3]). The smooth part

σ−2
x⋆

2
∥x∥22 +

σ−2
ε⋆

2
∥ε∥22 − µ γ∥ · ∥1(y − (Ax+ ε)) (F.1.4)

is convex in (x, ε) ∈ Rn × Rm if and only if

µ(σ2ε⋆ + σ2x⋆λmax(A
TA)) ≤ γ. (F.1.5)

The formulation for SORR in (F.1.3) is a special case of the LiMES model
to be presented in the following section.

F.2 LiMES Model: Convexity Conditions

Let X , Y, and Z be finite-dimensional Hilbert spaces. Let A1 : X → Y : x 7→
M1x + c1 and µ > 0, where (0 ̸=)M1 : X → Y is a bounded linear operator
and c1 ∈ Y . Let (0 ̸=)L : Z → Z be a bounded linear operator, D ≻ 0 : Z →
Z be a diagonal positive-definite operator, and A2 : X → Z : x 7→M2x+ c2,
where (0 ̸=)M2 : X → Z is a bounded linear operator and c2 ∈ Z. Let
Ψ ∈ Γ0(Z), which is referred to as a seed function. The LiMES model [35]
is defined as the minimization of the following function:

JA1

ΨL
D ◦A2

: X → (−∞,+∞] : x 7→ 1

2
∥A1x∥2Y + µΨL

D (A2x) , (F.2.1)

where ΨL
D ◦ A2 : X → (−∞,+∞] is the LiMES function with

ΨL
D : Z → (−∞,+∞]

: z 7→ Ψ(z)−min
v∈Z

(
Ψ(v) +

1

2
∥D(L z − v)∥2Z

)
. (F.2.2)

Due to Moreau’s decomposition

γf + γ−1
(f∗) ◦ γ−1 Id =

1

2γ
∥ · ∥2Z , (F.2.3)
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for any f ∈ Γ0(Z) and γ > 0 [96], the following smooth-nonsmooth separa-
tion can be verified under the nonsingularity of D:

JA1

ΨL
D ◦A2

=
1

2
∥A1 · ∥2Y − µ 1

(
Ψ ◦D−1

)
◦DL A2 + µΨ ◦ A2

=
1

2
∥A1 · ∥2Y − µ

2
∥DL A2 · ∥2Z + µ 1 (Ψ∗ ◦D) ◦DL A2︸ ︷︷ ︸

=:F (smooth)

+ µΨ ◦ A2︸ ︷︷ ︸
(nonsmooth)

.

(F.2.4)

Since the third term of F is convex by the convexity of the Moreau envelope
[96], F is convex if the sum of the first two terms is convex. A result regarding
the convexity condition of the smooth part F is given as follows.

Fact F.2.1 (Convexity condition for the smooth part [35, Proposition 5]).

(a) F ∈ Γ0(X ) if

(♠) M∗
1M1 − µM∗

2L ∗D2LM2 ⪰ 0.

(b) Let Ψ := σC with a nonempty closed convex set C ⊂ Z. Then, the
following statements hold.

(i) Given any x ∈ X , the following equivalence holds:

F (x) =
1

2
∥A1x∥2Y − µ

2
∥DL A2x∥2Z

⇔ 1
(
σC ◦D−1

)
(DL A2x) =

1

2
∥DL A2x∥2Z

⇔ 1 (σ∗C ◦D) (DL A2x) = 0

⇔ x ∈ KC :=
{
x ∈ X | D2L A2x ∈ C

}
. (F.2.5)

(ii) Assume that intKC ̸= ∅. Then, F ∈ Γ0(X ) if and only if (♠) is
satisfied.





Appendix G

Monotone Lipschitz-Gradient
Denoiser

Let us consider the following iterate:

xk+1 := T (xk − µ∇f(xk)), k ∈ N, (G.1)

where T is a nonlinear mapping (denoiser) from a real Hilbert space H to
H, f : H → R is a smooth convex function, and µ > 0 is the step size. If in
particular T is Moreau’s proximity operator of a proper lower semicontinuous
convex function g, (G.1) is the classical forward-backward splitting algorithm
to minimize µf + g. In [139], weak convergence of (G.1) is studied when T
is Monotone Lipschitz-gradient (MoL-Grad) denoiser, which is defined as
follows:
Condition ♢ (MoL-Grad Denoiser) Denoiser T : H → H is a β−1-
Lipschitz continuous operator for β ∈ (0, 1) such that T = ∇ψ for a Fréchet
differentiable convex function ψ. In other words, T can be expressed as the
gradient of a β−1-smooth convex function.

Necessary and sufficient conditions for T to be a MoL-Grad denoiser is
shown in the following fact.

Fact G.1 ([139, Theorem 1]). Let T : H → H with domT = H. Then, for
β ∈ (0, 1), the following statements are equivalent.

(C1) T = s-Proxφ for some φ : H → (−∞,+∞] such that φ+ ((1− β)/2)∥ ·
∥22 ∈ Γ0(H).

(C2) T satisfies condition ♢, i.e., the following hold jointly:

1) T = ∇ψ for some Fréchet differentiable convex function ψ ∈
Γ0(H).

2) T is β-cocoercive, or equivalently β−1-Lipschitz continuous by the
Baillon-Haddad theorem (see Fact 2.2).
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In particular, the following statements hold.

(a) Assume that (C1) is satisfied. Define φ̌ := φ+((1−β)/2)∥·∥2 ∈ Γ0(H).
Then, it holds that

T = s-Proxφ = ∇
(
φ+

1

2
∥ · ∥2

)∗

︸ ︷︷ ︸
=ψ

= ∇β (φ̌∗) , (G.2)

which is β-cocoercive (thus β−1-Lipschitz continuous and maximally
monotone).

(b) Assume that (C2) is satisfied. Then, it holds that where

φ = ψ∗ − 1

2
∥ · ∥2 (G.3)

is (1− β)-weakly convex.

The following fact shows the conditions for the iterate (G.1) with a MoL-
Grad denoiser T to converge weakly to a solution of µf + g.

Fact G.2 ([139, Theorem 2]). Let f ∈ Γ0(H) be a κ-smooth ρ-strongly-
convex function with κ > ρ > 0. Assume that T : H → H satisfies condition
♢ for β ∈ ((κ − ρ)/(κ + ρ), 1) ⊊ (0, 1) so that the Lipschitz constant is
bounded by β−1 < (κ + ρ)/(κ − ρ). Set µ ∈ [(1 − β)/ρ, (1 + β)/κ). Then,
the following hold.

1) Let f̂ := f− [(1−β)/(2µ)]∥·∥2 ∈ Γ0(H) and φ̌ := φ+[(1−β)/2]∥·∥2 ∈
Γ0(H) so that µf̂ + φ̌ = µf + φ. Then, it holds that

T ◦ (Id−µ∇f) = s-Prox β−1φ̌ ◦
(
Id−β−1µ∇f̂

)
(G.4)

with β−1 ∈
(
1, 2/Lµ∇f̂

)
, where Lµ∇f̂ := µκ − (1 − β) > 0 is the

Lipschitz constant of µ∇f̂ .

2) Suppose that µf+φ has a minimizer in H. Then, for an arbitrary x0 ∈
H, the sequence (xk)k∈N ⊂ H generated by (G.1) converges weakly to
a minimizer x̂ of µf + φ. (In this case, φ is the implicit regularizer.)



Appendix H

Decomposition of Proximity
Operator

In this section, we review some useful sufficient conditions for the following
equality to hold:

Proxh1 ◦Proxh2 = Proxh1+h2 , (H.1)

where h1, h2 ∈ Γ0(Rn) such that h1 + h2 is proper. The assumption based
on (H.1) for certain functions is essential in the main results of this study.

Proposition H.1. [144, Proposition 3.13] Let h1, h2 ∈ Γ0(Rn) such that
domh1 ∩ domh2 ̸= ∅. Suppose that one of the following holds:

(i). (∀x ∈ dom ∂h2) ∂h2(x) ⊂ ∂h2(Proxh1 x)

(ii). (∀(x,u) ∈ gra ∂h1) ∂h2(x+ u) ⊂ ∂h2(x).

(iii). 0 ∈ int(domh1−domh2) and (∀(x,u) ∈ gra ∂h1) ∂h2(x) ⊂ ∂h2(x+u).

Then, (H.1) holds.

The condition 0 ∈ int(domh1 − domh2) in (iii) can be generalized to
0 ∈ sri(domh1 − domh2), where sriC denotes the strong relative interior of
a subset C ⊂ Rn.

Proposition H.2. [144, Proposition 3.13] Let h1, h2 ∈ Γ0(R) such that
domh1 ∩ domh2 ̸= ∅. Then, Proxh1 ◦Proxh2 is the proximity operator of
some function in Γ0(R).

Proposition H.3. [122, Proposition II.2] Let h1, h2 ∈ Γ0(Rn). Assume the
following:

1. h1 is separable, i.e., for any x ∈ Rn, h1(x) =
∑n

i=1 h0(xi) for some
function h0 ∈ Γ0(R).
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2. For any x ∈ Rn,

h2(x) =
n∑
i=1

n∑
j=1

σ[ai,j ,bi,j ](xi − xj) (H.2)

for some ai,j ∈ R∪ {−∞} and bi,j ∈ R∪ {+∞} with ai,j ≤ bi,j for any
i, j = 1, 2, . . . , n.

Then, (H.1) holds.

The following decomposition is studied in the context of proximal thresh-
olders, which is defined as T : Rn → Rn on a nonempty closed convex subset
Ω ⊂ Rn if there exists a function f ∈ Γ0(Rn) such that T = Proxf and
{z ∈ Rn | Tz = 0} = Ω.

Proposition H.4 ([96, Proposition 24.54]). Let Ω be a nonempty closed
interval in R, let h1 ∈ Γ0(R) be differentiable at 0 and such that h′1(0) = 0,
and set h2 := σΩ. Then, (H.1) holds.



Appendix I

Proof for Chapter 3

I.1 Proof of (3.11)

The following lemma is used in the proof of (3.11).

Lemma I.1.1. Let (H, ⟨·, ·⟩H) and ((Ki, ⟨·, ·⟩Ki))i∈I be finite-dimensional
real Hilbert spaces for I := {1, 2, . . . , d} with some d ∈ N \ {0}. For every
i ∈ I, suppose that Li ∈ B(H,Ki) \ {0}, Bi ∈ Ki, and let β > 0 and
Ti : Ki → Ki be βi-cocoercive. Set

T :=
∑
i∈I

L∗
i ◦ Ti ◦ (Bi + Li(·)) and β :=

∑
i∈I

∥Li∥2Ki

βi
. (I.1.1)

Then, T is β−1-cocoercive.

Proof of Lemma I.1.1. For any Ξ1,Ξ2 ∈ H,

⟨Ξ1 − Ξ2, TΞ1 − TΞ2⟩H
=
∑
i∈I

⟨Ξ1 − Ξ2, L
∗
i ◦ Ti(Bi + LiΞ1)− L∗

i ◦ Ti(Bi + LiΞ2)⟩H

=
∑
i∈I

⟨Bi + LiΞ1 − (Bi + LiΞ2), Ti(Bi + LiΞ1)− Ti(Bi + LiΞ2)⟩Ki

≥
∑
i∈I

βi∥Ti(Bi + LiΞ1)− Ti(Bi + LiΞ2)∥2Ki

≥ β−1∥TΞ1 − TΞ2∥2H, (I.1.2)

where the last inequality is proven in the same way as the proof of [96,
Proposition 4.12].

Proof of (3.11). For notational simplicity, we let PL := Prox∥·∥2,1◦L−1/2 and
PM := Prox∥·∥2,1◦M−1/2 . From the second equality of (I.3.5) and Facts 2.1
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and 2.4(c), we obtain

∇F (X) = λ2X − λ1MX +ATL(Y −AX)−ATL1/2PL(L
1/2(Y −AX))

+ λ1M
1/2PM (M1/2X)

= [(λ2In − λ1M −ATLA) +ATL1/2PLL
1/2A

+ λ1M
1/2PMM1/2]X +ATLY −ATL1/2PLL

1/2Y . (I.1.3)

Hence, by Fact 2.3(a) and Lemma I.1.1, we obtain ∇F is β−1-cocoercive
(i.e., β−1∇F is firmly nonexpansive) for

β := ∥[λ2In − λ1M −ATLA]1/2∥22 + ∥L1/2A∥22 + λ1∥M1/2∥22
= λmax(λ2In −ATdiag(l1, . . . , lm)A− λ1diag(m1, . . . ,mn))

+ λmax(A
Tdiag(l1, . . . , lm)A) + λ1max{m1, . . . ,mn}, (I.1.4)

where the square root [λ2In− λ1M −ATLA]1/2 exists since λ2In− λ1M −
ATLA ⪰ 0n×n due to Proposition 3.1 [97]. Since firm nonexpansivity implies
nonexpansivity, ∇F is β-Lipschitz continuous.

I.2 Proof of Proposition 3.1

Define

f : Rn×r → R : X 7→ λ2
2
∥X∥2F − 1

2
∥AX∥2L − λ1

2
∥X∥2M . (I.2.1)

The following lemma is used in the proof of Proposition 3.1.

Lemma I.2.1. The function f is convex if and only if f(X) ≥ 0 for any
X ∈ Rn×r.

Proof. The function f is convex if and only if, for any X ∈ Rn×r, Ξ ∈ Rn×r,
and any α ∈ (0, 1),

αλ2
2

∥X∥2F − α

2
∥AX∥2L − αλ1

2
∥X∥2M +

(1− α)λ2
2

∥Ξ∥2F

− (1− α)

2
∥AΞ∥2L − (1− α)λ1

2
∥Ξ∥2M − λ2

2
∥αX + (1− α)Ξ∥2F

+
1

2
∥A(αX + (1− α)Ξ)∥2L +

λ1
2
∥αX + (1− α)Ξ∥2M ≥ 0

⇔ α(1− α)λ2
2

∥X −Ξ∥2F − α(1− α)

2
∥A(X −Ξ)∥2L

− α(1− α)λ1
2

∥X −Ξ∥2M ≥ 0

⇔ λ2
2
∥X −Ξ∥2F − 1

2
∥A(X −Ξ)∥2L − λ1

2
∥X −Ξ∥2M ≥ 0, (I.2.2)

which verifies the claim.
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Proof of Proposition 3.1. In the light of Lemma I.2.1, the following equiva-
lence can readily be verified:

f is convex

⇔ f(X) ≥ 0, ∀X ∈ Rn×r

⇔ Tr
[
XT

(
λ2I −ATdiag(l1, . . . , lm)A− λ1diag(m1, . . . ,mn)

)
X
]
≥ 0

⇔ λ2I −ATdiag(l1, . . . , lm)A− λ1diag(m1, . . . ,mn) ⪰ 0

⇔ λ2 ≥ λmax{ATdiag(l1, . . . , lm)A+ λ1diag(m1, . . . ,mn)}. (I.2.3)

The sufficiency has been proven since 1(ıC ◦ M1/2)(M1/2·) and 1(ıC ◦
L1/2)(L1/2(Y −·A)) are convex by Fact 2.4(a). The strict convexity part can
be proven in an analogous way. In the rest of the proof, we prove the neces-
sity for the convexity part. Assume that (3.12) does not hold. In this case,
by (I.2.3), f is nonconvex. Since the second-order derivative of a quadratic
function is constant, f has a negative curvature in some direction every-
where. At any interior point X of K, ∇ 1(ıC ◦ M1/2)(M1/2X) = 0 since
1(ıC ◦M1/2)(M1/2·) is constant in the neighborhood of the point X. Hence,
the second-order derivative of 1(ıC ◦M1/2)(M1/2X) is also zero at any in-
terior point X of K. In the same way, one can show that the second-order
derivative of 1(ıC ◦L1/2)(L1/2(Y −XA)) is zero. This implies that the last
two terms in F make no impact on the curvature in the interior of K, and
hence F is nonconvex.

I.3 Proof of Proposition 3.3

The following fact and lemma are used in the proof of Proposition 3.3.

Fact I.3.1 ([155, Proposition 2]). It holds for any X ∈ Rn×r and D :=
diag(d1, d2, . . . , dn) ∈ Rn×n that

Prox∥·∥2,1◦D(X) =
n∑
i=1

max

{
1− di

∥X(i,:)∥2
, 0

}
en,iX

T
(i,:). (I.3.1)

Lemma I.3.1. It holds for any X ∈ Rn×r and D := diag(d1, d2, . . . , dn) ∈
Rn×n that

D1/2 ProxıC◦D1/2(D1/2X) = D1/2(Id−Prox∥·∥2,1◦D−1/2)(D1/2X)

=
n∑
i=1

min

{
1

∥X(i,:)∥2
, di

}
en,iX

T
(i,:). (I.3.2)
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Proof. The first equality is due to Facts 2.1 and 2.4(c). The second equality
is proven as follows:

D1/2(Id−Prox∥·∥2,1◦D−1/2)(D1/2X)

= DX −D1/2 Prox∥·∥2,1◦D−1/2(D1/2X)

= DX −D1/2
n∑
i=1

max

{
1−

d
−1/2
i

∥[D1/2X](i,:)∥2
, 0

}
en,i[D

1/2X]T(i,:)

= DX −
n∑
i=1

max

{
di −

1

∥X(i,:)∥2
, 0

}
en,iX

T
(i,:)

=
n∑
i=1

min

{
1

∥X(i,:)∥2
, di

}
en,iX

T
(i,:), (I.3.3)

where the second equality is due to Fact I.3.1.

Proof of Proposition 3.3.1. It holds for any X ∈ Rn×r that

F (X) =
λ2
2
∥X∥2F − 1

2
∥AX∥2L − λ1

2
∥X∥2M + ⟨AX,Y ⟩L

+ 1(ıC ◦L1/2)(L1/2(Y −AX))

+ λ1
1(ıC ◦M1/2)(M1/2X)

=
λ2
2
⟨X,X⟩F − 1

2
⟨X,ATLAX⟩F − λ1

2
⟨MX,X⟩F

+ ⟨X,ATLY ⟩F + 1(ıC ◦L1/2)(L1/2(Y −AX))

+ λ1
1(ıC ◦M1/2)(M1/2X), (I.3.4)

from which it follows that

∇F (X) = λ2X −ATLAX − λ1MX +ATLY

+ (−L1/2A)T(Id−ProxıC◦L1/2)(L1/2(Y −AX))

+ λ1(M
1/2)T(Id−ProxıC◦M1/2)(M1/2X)

= λ2X − λ1MX +ATL(Y −AX)

−ATL1/2(Id−ProxıC◦L1/2)(L1/2(Y −AX))

+ λ1M
1/2(Id−ProxıC◦M1/2)(M1/2X)

= λ2X +ATL1/2 ProxıC◦L1/2(L1/2(Y −AX))

− λ1M
1/2 ProxıC◦M1/2(M1/2X)

= λ2X +AT
m∑
i=1

min

{
1

∥[Y −AX](i,:)∥2
, li

}
em,i[Y −AX]T(i,:)

− λ1

n∑
i=1

min

{
1

∥X(i,:)∥2
,mi

}
en,iX

T
(i,:). (I.3.5)
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Here, the first and fourth equalities are verified by Fact 2.4(b) and Lemma
I.3.1, respectively.

Proof of Proposition 3.3.2. Let Ỹ :=

[
Y

0n×r

]
. Using Facts 2.3(a) and 2.4(c),

it holds for any matrix Z ∈ R(m+n)×r that

Prox(τ/ς)G(Z) = Prox(τ/ς)∥·−Ỹ ∥
2,1

(Z)

= Ỹ + Prox(τ/ς)∥·∥2,1

(
Z − Ỹ

)
= Ỹ +

m∑
i=1

max

{
1− τ/ς

∥[Z − Y ](i,:)∥2
, 0

}
em+n,i[Z − Y ]T(i,:)

+

n∑
i=1

max

{
1− τ/ς

∥Z(m+i,:)∥2
, 0

}
em+n,m+iZ

T
(m+i,:), (I.3.6)

where the last equality is due to Fact I.3.1.





Appendix J

Proof for Chapter 4

J.1 Proof of (4.15)

For any ξ1, ξ2 ∈ Rn+m, it holds from (4.19) that

∥∇F (ξ1)−∇F (ξ2)∥2
= ∥(Θ1/2

3 )TΘ
1/2
3 (ξ1 − ξ2) + (1− α)(AΘ2)

T(AΘ2)(ξ1 − ξ2)

− µ1γ
−1
1 ΘT

1 [(Id−Proxγ1∥·∥1)(Θ1ξ1 − y)− (Id−Proxγ1∥·∥1)(Θ1ξ2 − y)]

− µ2γ
−1
2 ΘT

2 [(Id−Proxγ2∥·∥1)(Θ2ξ1)− (Id−Proxγ2∥·∥1)(Θ2ξ2)]∥2
≤ ∥(Θ1/2

3 )TΘ
1/2
3 ∥2∥ξ1 − ξ2∥2 + (1− α)∥ATA∥2∥ξ1 − ξ2∥2

+ µ1γ
−1
1 ∥ΘT

1 ∥2∥(Θ1ξ1 − y)−(Θ1ξ2 − y)∥2 + µ2γ
−1
2 ∥ΘT

2 ∥2∥Θ2(ξ1 − ξ2)∥2,
(J.1.1)

where the first inequality is due to Fact 2.4(b). The right-most side of (J.1.1)
is bounded above by

(λmax(Θ3) + (1− α)λmax(A
TA) + µ1γ

−1
1 λmax(Θ

T
1Θ1)

+ µ2γ
−1
2 λmax(Θ

T
2Θ2))∥ξ1 − ξ2∥2

= [max{α, ρ}+ (1− α+ µ1γ
−1
1 )λmax(A

TA) + µ1γ
−1
1 + µ2γ

−1
2 ]∥ξ1 − ξ2∥2,

where the equality is verified as follows:

λmax(Θ
T
1Θ1) = λmax(Θ1Θ

T
1 ) = λmax(AAT + Im)

= λmax(AAT) + 1 = λmax(A
TA) + 1.

149
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J.2 Proof of Proposition 4.1

By applying Proposition 4.6(a) to F in (4.13), a sufficient condition for con-
vexity is given by

(Θ
1/2
3 )TΘ

1/2
3 + (1− α)(AΘ2)

T(AΘ2)− (µ1γ
−1
1 ΘT

1Θ1 + µ2γ
−1
2 ΘT

2Θ2)

⪰ 0(n+m)×(n+m), (J.2.1)

which can be expressed equivalently as follows:[
τ1In + τ2A

TA −AT

−A (µ−1
1 γ1ρ− 1)Im

]
⪰ 0(n+m)×(n+m), (J.2.2)

where
τ1 := µ−1

1 γ1(α− µ2γ
−1
2 ) (J.2.3)

and
τ2 := (1− α)µ−1

1 γ1 − 1. (J.2.4)

By [97, Theorem 7.7.9], (J.2.2) holds if and only if the following three con-
ditions are satisfied:

(i) τ1In + τ2A
TA ⪰ 0n×n;

(ii) (µ−1
1 γ1ρ− 1)Im ⪰ 0m×m (⇔ µ−1

1 γ1ρ− 1 ≥ 0);

(iii) −AT = (τ1In + τ2A
TA)1/2Υ((µ−1

1 γ1ρ − 1)Im)
1/2 for some Υ ∈ Rn×m

with its largest singular value at most one.

If A = 0m×n, condition (iii) holds trivially with Υ := 0n×m, and conditions
(i) and (ii) coincide under λmax(A

TA) = λmin(A
TA) = 0 with conditions (K-

II) and (K-I), respectively. Assume that A ̸= 0m×n in the following. Suppose
that conditions (i)–(iii) are satisfied. Since A = 0m×n if τ1In + τ2A

TA =
0n×n or µ−1

1 γ1ρ− 1 = 0 due to condition (iii), it holds by A ̸= 0m×n that

τ1In + τ2A
TA ≻ 0n×n ⇔ τ1 + λmin(τ2A

TA) > 0 (J.2.5)

and

µ−1
1 γ1ρ− 1 > 0. (J.2.6)

Let τ3 := (µ−1
1 γ1ρ− 1)−1/2 ̸= 0. Then, the equality in condition (iii) can be

rewritten as
τ3A

T = (τ1In + τ2A
TA)1/2Υ̃, (J.2.7)

where Υ̃ := −Υ. Let A = V ΣUT be a singular value decomposition of A,
where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices, and the diagonal
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entries of Σ ∈ Rm×n satisfy ς1 := λ
1/2
max(ATA) ≥ ς2 ≥ · · · ≥ ςmin(n,m) ≥ 0.

Then, (J.2.7) can be rewritten as

U
(
τ3Σ

⊤
)
V ⊤ = U

(
τ1In + τ2Σ

⊤Σ
)1/2

U⊤Υ̃

⇔ τ3Σ
⊤ =

(
τ1In + τ2Σ

⊤Σ
)1/2

U⊤Υ̃V . (J.2.8)

Let Υ̃ = UΞV ⊤ for some matrix Ξ ∈ Rn×m. Then, (J.2.8) reads

τ3Σ
⊤ =

(
τ1In + τ2Σ

⊤Σ
)1/2

Ξ. (J.2.9)

By ς1 > 0, one can verify from (J.2.9) that Ξ must be written in the following
form:

Ξ =

[
ς1,Υ 0⊤m−1

0n−1 Ξ2,2

]
∈ Rn×m, (J.2.10)

where ς1,Υ > 0 and Ξ2,2 ∈ R(n−1)×(m−1). Then, by the same arguments as
in the proof of [35, Proposition 3], ς1,Υ can be shown to be a singular value
of Υ, and by (J.2.9) and (J.2.10), condition (iii) implies that

ς21,Υ =
τ23 ς

2
1

τ1 + τ2ς21
≤ 1. (J.2.11)

Since it holds from (J.2.5) that

τ1 + τ2ς
2
1 ≥ τ1 + τ2λmin(A

TA) > 0, (J.2.12)

it holds from (J.2.11) that

(τ23 − τ2)ς
2
1 ≤ τ1

⇔
(

1

µ−1
1 γ1ρ− 1

− τ2

)
λmax(A

TA) ≤ µ−1
1 γ1(α− µ2γ

−1
2 )

⇔ α− µ2γ
−1
2 ≥

(
µ1γ

−1
1

µ−1
1 γ1ρ− 1

− (1− α) + µ1γ
−1
1

)
λmax(A

TA)

⇔ µ2 ≤ γ2

[
α−

(
µ1γ

−1
1 ρ

ρ− µ1γ
−1
1

− (1− α)

)
λmax(A

TA)

]
. (J.2.13)

It also holds from (J.2.12) that

µ−1
1 γ1(α− µ2γ

−1
2 ) + [(1− α)µ−1

1 γ1 − 1]λmax(A
T[A]) > 0

⇔ µ2γ
−1
2 ≤ α+ (1− α− µ1γ

−1
1 )λmin(A

TA). (J.2.14)

On the other hand, it holds by (J.2.6) that

µ1γ
−1
1 ρ

ρ− µ1γ
−1
1

≥ µ1γ
−1
1 , (J.2.15)
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from which it follows that

µ1γ
−1
1 ρ

ρ− µ1γ
−1
1

− (1− α) ≥ µ1γ
−1
1 − (1− α). (J.2.16)

Hence, (J.2.13) and (J.2.14) under (J.2.16) yields (K-II).
Conversely, suppose that condition in (4.16) holds. Then, condition (ii)

holds and

α+ (ρ+ 1− α)λmax(A
TA)− (α+ (1− α)λmax(A

TA)) = ρλmax(A
TA)

≥ 0. (J.2.17)

On the other hand, it holds from (4.16) and (J.2.16) that

µ2γ
−1
2 ≤ α− (µ1γ

−1
1 − 1 + α)λmin(A

TA)

⇔ µ−1
1 γ1(α− µ2γ

−1
2 ) ≥ −((1− α)µ−1

1 γ1 − 1)λmax(A
TA)

⇔ τ1 + τ2λmax(A
TA) ≥ 0, (J.2.18)

which is equivalent to assumption (i). Let

ςi,Υ :=
τ3ςi(

τ1 + τ2ς2i
)1/2 ∈ (0, 1], ∀ςi > 0, (J.2.19)

and ςi,Υ := 0 for all ςi = 0 if any. Define Υ := UΣΥV
T for the diagonal

matrix ΣΥ ∈ Rn×m with diagonal entries ςi,Υ ∈ [0, 1]. One can then verify
that this particular Υ satisfies (J.2.8) and thus condition (iii). It is now
verified that the condition in (4.16) is equivalent to (J.2.1), and hence it is a
sufficient condition for convexity of F in (18).

The necessity is shown in the following. By Proposition 4.6(b), (J.2.1) is
necessary and sufficient for convexity when

int (K2 ∩K3) = int({[xT εT]T ∈ Rn+m | ∥y −Ax− ε∥∞ ≤ γ1}∩
{[xT εT]T ∈ Rn+m | ∥x∥∞ ≤ γ2})

= intK ̸= ∅. (J.2.20)

Note here that the dual norm of the ℓ1 norm is the ℓ∞ norm [97].
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J.3 An Alternative Proof of Proposition 4.1 (the
Case of α = 1)

Due to Moreau’s decomposition (F.2.3), F in (4.13) can be rewritten as

F (x, ε) =
1

2
∥x∥22 +

ρ

2
∥ε∥22 − µ1

γ1∥ · ∥1(Ax+ ε− y)− µ2
γ2∥ · ∥1(x)

=
1

2
∥x∥22 +

ρ

2
∥ε∥22 −

µ1
2γ1

∥Ax+ ε− y∥22

+ µ1
γ−1
1 (∥ · ∥∞)(γ−1

1 (Ax+ ε− y))− µ2
2γ2

∥x∥22

+ µ2
γ−1
2 (∥ · ∥∞)(γ−1

2 x). (J.3.1)

First, we consider the scalar case. Let A = a ∈ R. Assume that [x, ε]T ∈
intK( ̸= ∅). Then, by inspecting (J.7.11) in the case of F in (4.13), it follows
from (J.3.1) that

2F (x, ε) = −µ1γ−1
1 (ax+ ε)2 + ρε2 + x2 − µ2γ

−1
2 x2

= (1− µ1γ
−1
1 a2 − µ2γ

−1
2 )x2 − 2µ1γ

−1
1 axε+ (ρ− µ1γ

−1
1 )ε2.

(J.3.2)

The right-hand side of (J.3.2) is convex if and only if the following set of
conditions are satisfied:

ρ− µ1γ
−1
1 ≥ 0,

1− µ1γ
−1
1 a2 − µ2γ

−1
2 ≥ 0,(

1− µ1γ
−1
1 a2 − µ2γ

−1
2

) (
ρ− µ1γ

−1
1

)
− µ21γ

−2
1 a2 ≥ 0.

(J.3.3)

(J.3.4)

(J.3.5)

This set of conditions is clearly sufficient for F to be convex also outside
of intK since the only difference between the right-hand side of (J.3.2) and
2F (x, ε) are some negative quadratic terms, as can be verified by (J.3.1).

For the general case, let A = V ΣUT be a singular value decomposition of
A, where V ∈ Rm×m and U ∈ Rn×n are orthogonal matrices, and the diago-
nal entries of Σ ∈ Rm×n satisfy ς1 := λ

1/2
max(ATA) ≥ ς2 ≥ · · · ≥ ςmin{n,m} ≥ 0.

Assume that [xT, εT]T ∈ intK. Then, by inspecting (J.7.11) in the case of
F in (4.13), it follows from (J.3.1) that

2F (x, ε) = −µ1γ−1
1 ∥Ax+ ε∥22 + ρ∥ε∥22 + ∥x∥22 − µ2γ

−1
2 ∥x∥22. (J.3.6)

Set x̃ := Ux and ε̃ := V ε. Since ∥x̃∥2 = ∥x∥2 and ∥ε̃∥2 = ∥ε∥2, the
right-hand side of (J.3.6) can be expressed equivalently as

− µ1γ
−1
1 ∥Σx̃+ ε̃∥22 + ρ∥ε̃∥22 + ∥x̃∥22 − µ2γ

−1
2 ∥x̃∥22

=

min{m,n}∑
j=1

[
(1− µ1γ

−1
1 ς2j − µ2γ

−1
2 )x̃2j − 2µ1γ

−1
1 ςj x̃j ε̃j + (ρ− µ1γ

−1
1 )ε̃2j

]
.

(J.3.7)
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This sum is convex if and only if each summand is convex. This happens
if and only if (J.3.3), (J.3.4), and (J.3.5) are satisfied for each a = ςj for
j = 1, 2, . . . ,min{m,n} since ςj in (J.3.7) plays the same role as a in (J.3.2).
Since the left-hand sides of (J.3.4) and (J.3.5) are monotonically decreasing
for a and ς1 ≥ ς2 ≥ . . . ≥ ςmin{m,n}, it is sufficient to verify that if (J.3.3),
(J.3.4), and (J.3.5) hold with a = ς1. Since ς21 = λmax(A

TA), the conditions
for convexity of F are given by

ρ− µ1γ
−1
1 ≥ 0,

1− µ1γ
−1
1 λmax(A

TA)− µ2γ
−1
2 ≥ 0,

µ21γ
−2
1 λmax(A

TA)

≤
(
1− µ1γ

−1
1 λmax(A

TA)− µ2γ
−1
2

) (
ρ− µ1γ

−1
1

)
.

(J.3.8)

(J.3.9)

(J.3.10)

The rest of the proof will be devoted to the equivalence
“(J.3.8), (J.3.9), and (J.3.10)” ⇔ (4.3.2).

• Case of λmax(A
TA) = 0:

It clearly holds that

(J.3.8) ⇔ (K-I), (J.3.11)
(J.3.9) ⇔ (K-II). (J.3.12)

Since (J.3.8) and (J.3.9) imply (J.3.10), it holds that

“(J.3.8), (J.3.9), and (J.3.10)” ⇔ “(J.3.8) and (J.3.9)” . (J.3.13)

Hence, (J.3.12), (J.3.11), and (J.3.13) verify the equivalence

“(J.3.8), (J.3.9), and (J.3.10)” ⇔ (4.3.2). (J.3.14)

• Case of λmax(A
TA) > 0:

Assume that (J.3.8), (J.3.9), and (J.3.10) are satisfied. Then, since

0 < µ21γ
−2
1 λmax(A

TA)

≤
(
1− µ1γ

−1
1 λmax(A

TA)− µ2γ
−1
2

) (
ρ− µ1γ

−1
1

)
, (J.3.15)

(J.3.8) and (J.3.9) hold with strict inequality, i.e.,

1− µ1γ
−1
1 λmax(A

TA)− µ2γ
−1
2 > 0, (J.3.16)

ρ− µ1γ
−1
1 > 0. (J.3.17)

Since

(J.3.10) ⇔ − µ21γ
−2
1 λmax(A

TA) ≤ (ρ− µ1γ
−1
1 )µ1γ

−1
1 λmax(A

TA)

+ (1− µ2γ
−1
2 )(ρ− µ1γ

−1
1 )

⇔ ρµ1γ
−1
1 λmax(A

TA) ≤ (1− µ2γ
−1
2 )(ρ− µ1γ

−1
1 ), (J.3.18)
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from which together with (J.3.17) it follows that

1− µ2γ
−1
2 ≥ ρµ1γ

−1
1 λmax(A

TA)

ρ− µ1γ
−1
1

⇔ µ2 ≤ γ2

[
1− µ1ρλmax(A

TA)

γ1ρ− µ1

]
.

(J.3.19)

Since µ2 ≥ 0 and γ2 > 0, it follows from (J.3.17) and (J.3.19) that

1− µ1ρλmax(A
TA)

γ1ρ− µ1
≥ 0 ⇔ γ1ρ− µ1 ≥ µ1ρλmax(A

TA)

⇔ µ1 ≤ γ1ρ(1 + ρλmax(A
TA))−1

⇔ µ2 ≥ 0. (J.3.20)

Therefore, it holds from (J.3.19) and (J.3.20) that

“(J.3.8), (J.3.9), and (J.3.10)” ⇒ (4.3.2). (J.3.21)

Conversely, suppose that (4.3.2) is satisfied. Then, it holds from
λmax(A

TA) > 0 that
µ1 < γ1ρ, (J.3.22)

which is equivalent to (J.3.17), and hence (J.3.8) holds. It also holds
from −1/(γ1ρ− µ1) > −1/(γ1ρ) that

µ2 ≤ γ2

[
1− µ1ρλmax(A

TA)

γ1ρ− µ1

]
< γ2

(
1− µ1γ

−1
1 λmax(A

TA)
)
, (J.3.23)

which is equivalent to (J.3.16), and hence (J.3.9) holds. Finally, com-
bining (J.3.18) and (J.3.19) in light of (J.3.22) verifies

(4.3.2) ⇒ (J.3.10). (J.3.24)

Therefore, we obtain

(4.3.2) ⇒ “(J.3.8), (J.3.9), and (J.3.10)” . (J.3.25)

The proof is completed by (J.3.21) and (J.3.25).

Remark 5. In this alternative proof, the discussion of the positive semidef-
initeness of F is simplified by rewriting the quadratic parts of F as the sep-
arable sum of functions across each variable as in (J.3.7) through a singular
value decomposition of A. This is the essential difference from the original
proof in Appendix J.2.
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J.4 Proof of Proposition 4.3

Proof of Proposition 4.3(a). Let ai = aj =: a. Since |x̂i| > γ and |x̂j | > γ,
we have |x̂i| + |x̂j | > 2γ, which yields γ/(|x̂i| + |x̂j |) < 1/2. By (4.27), it
holds that

x̂∗iai + x̂∗jaj = (x̂∗i + x̂∗j )a

= ((x̂i + x̂j)α+ (x̂i + x̂j)(1− α))a

= (x̂i + x̂j)a = x̂iai + x̂jaj , (J.4.1)

from which it follows that Ax̂ = Ax̂∗, and hence

H(Ax̂) = H(Ax̂∗). (J.4.2)

Since α ∈
[

γ
|x̂i|+|x̂j | ,

1
2

]
, we have

|x̂i + x̂j |(1− α) ≥ |x̂i + x̂j |α

≥ |x̂i + x̂j |
γ

|x̂i|+ |x̂j |
= γ, (J.4.3)

where the equality is due to |x̂i + x̂j | = |x̂i| + |x̂j | since x̂ix̂j > 0. Since
ϕMC
γ (x) = γ/2 for any x satisfying |x| ≥ γ by (2.45), we obtain

ϕMC
γ (x̂∗i ) + ϕMC

γ (x̂∗j ) = ϕMC
γ ((x̂i + x̂j)α) + ϕMC

γ ((x̂i + x̂j)(1− α))

= γ/2 + γ/2 = ϕMC
γ (x̂i) + ϕMC

γ (x̂j), (J.4.4)

which yields
ΦMC
γ (x̂) = ΦMC

γ (x̂∗). (J.4.5)

By (J.4.2) and (J.4.5), we obtain J(x̂∗) = J(x̂).

Proof of Proposition 4.3(b). We will derive contradiction by assuming that
x̂i ̸= x̂j . Define x̂∗ as (4.27) for α = 1

2 so that x̂∗i = x̂∗j =
x̂i+x̂j

2 . Then, we
have H(Ax̂) = H(Ax̂∗) and ΦMC

γ (x̂) = ΦMC
γ (x̂∗) in the same way as the

proof of Proposition 4.3(a). However, the strict convexity of the quadratic
function under x̂i ̸= x̂j implies that

1

2
∥x̂∗i ∥22 +

1

2
∥x̂∗j∥22 = 2 · 1

2

∥∥∥∥ x̂i + x̂j
2

∥∥∥∥2
2

<
1

2
∥x̂i∥22 +

1

2
∥x̂j∥22, (J.4.6)

from which it follows that 1
2∥x̂

∗∥22 < 1
2∥x̂∥

2
2. Hence, we have J(x̂∗) < J(x̂),

which contradicts the assumption that x̂ is a minimizer.
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J.5 Proof of Proposition 4.4

The following lemma is used in the proof.

Lemma J.5.1 ([156, Propositions 4.2.4 and 4.2.5]). Let ϕ1 : Rn → R and
ϕ2 : Rm → R be convex functions, and A ∈ Rm×n. Then, ∂(ϕ1 + ϕ2 ◦A) =
∂ϕ1 +AT ◦ (∂ϕ2) ◦A.

By (J.2.18), (K-II) implies assumption (a). Let ỹ := y + ε. Since x̂ ∈
argminx∈Rn J(x), it holds that

0 ∈ ∂J(x̂) = ∂
(
µ1Φ

MC
γ1 (A · −ỹ) +

1− α

2
∥A · −y∥22 + µ2Φ

MC
γ2 +

α

2
∥ · ∥22

)
(x̂).

(J.5.1)

By (2.46) and (F.2.3), it holds for any x ∈ Rn that

ΦMC
γ1 (x) = ∥x∥1 + γ−1

1 (∥ · ∥∗1)(γ−1
1 x)− 1

2γ1
∥x∥22, (J.5.2)

from which it follows that the right side in (J.5.1) becomes

∂

(
µ1∥A · −ỹ∥1 + µ1

γ−1
1 (∥ · ∥∗1)(γ−1

1 (A · −ỹ))

− µ1γ
−1
1

2
∥A · −y∥22 +

1− α

2
∥A · −ỹ∥22 +

α

2
∥ · ∥22 + µ2∥ · ∥1

+ µ2
γ−1
2 (∥ · ∥∗1)(γ−1

2 ·)− µ2γ
−1
2

2
∥ · ∥22

)
(x̂)

= ∂

(
µ1∥A · −ỹ∥1 + µ1

γ−1
1 (∥ · ∥∗1)(γ−1

1 (A · −ỹ)) + µ2∥ · ∥1

+ µ2
γ−1
2 (∥ · ∥∗1)(γ−1

2 ·)
)
(x̂) + αx̂− µ1γ

−1
1 AT(Ax̂− ỹ)

+ (1− α)AT(Ax̂− y)− µ2γ
−1
2 x̂

= µ1∂(∥A · −ỹ∥1)(x̂) + µ1∂(
γ−1
1 (∥ · ∥∗1)(γ−1

1 (A · −ỹ)))(x̂)

+ µ2∂(∥ · ∥1)(x̂) + µ2∂(
γ−1
2 (∥ · ∥∗1)(γ−1

2 ·))(x̂) + αx̂− µ1γ
−1
1 AT(Ax̂− ỹ)

+ (1− α)AT(Ax̂− y)− µ2γ
−1
2 x̂. (J.5.3)

Here, the first equality is verified by Lemma J.5.1 and assumption (a), which
is sufficient to guarantee the convexity of −µ1γ−1

1 ∥A · −ỹ∥22/2 + (1− α)∥A ·
−y∥22/2 + α∥ · ∥22/2− µ2γ

−1
2 ∥ · ∥22/2 by the equivalence

(a) ⇔ (µ−1
1 γ1(1− α)− 1)ATA+ µ−1

1 γ1(α− µ2γ
−1
2 )In ⪰ 0n×n. (J.5.4)

The second equality of (J.5.3) is verified by Lemma J.5.1. By virtue
of identity Id = Proxγf +γ Proxf∗/γ ◦γ−1 Id [96] together with ∇(γf) =
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γ−1(Id−Proxγf ) and Lemma J.5.1, the first and second terms of the right-
most side of (J.5.3) reduce to

µ1A
T∂∥ · ∥1(Ax̂− ỹ) + µ1A

T(Id−Proxγ−1
1 ∥·∥∗1

)(γ−1
1 (Ax̂− ỹ))

= µ1A
T∂∥ · ∥1(Ax̂− ỹ) + µ1γ

−1
1 AT Proxγ1∥·∥1(Ax̂− ỹ)

= µ1A
T∂∥ · ∥1(Ax̂− ỹ) + µ1γ

−1
1 AT Softγ1(Ax̂− ỹ). (J.5.5)

In a similar way, the third and fourth terms reduce to

∂

(
µ2∥ · ∥1 + µ2

γ−1
2 (∥ · ∥∗1)(γ−1

2 ·)
)
(x̂) = µ2∂∥ · ∥1(x̂) + µ2γ

−1
2 Softγ2(x̂).

(J.5.6)

Combining (J.5.1), (J.5.3), (J.5.5), and (J.5.6) yields

0 ∈ µ1A
T∂∥ · ∥1(Ax̂− ỹ) + µ1γ

−1
1 AT Softγ1(Ax̂− ỹ)

+ µ2∂∥ · ∥1(x̂) + µ2γ
−1
2 Softγ2(x̂)

+ αx̂− µ1γ
−1
1 AT(Ax̂− ỹ) + (1− α)AT(Ax̂− y)− µ2γ

−1
2 x̂. (J.5.7)

Considering the ith and jth components of both sides of (J.5.7), there exist
some s := [s1, s2, . . . , sm]

T ∈ ∂∥ · ∥1(Ax̂ − ỹ) and t := [t1, t2, . . . , tn]
T ∈

∂∥ · ∥1(x̂) such that

0 = µ1a
T
i (γ

−1
1 (Softγ1 − Id)(Ax̂− ỹ) + s) + αx̂i

+ µ2(γ
−1
2 (softγ2 −1)(x̂i) + ti) + (1− α)aT

i (Ax̂− y), (J.5.8)

0 = µ1a
T
j (γ

−1
1 (Softγ1 − Id)(Ax̂− ỹ) + s) + αx̂j

+ µ2(γ
−1
2 (softγ2 −1)(x̂j) + tj) + (1− α)aT

j (Ax̂− y). (J.5.9)

From (J.5.8) and (J.5.9), we obtain

x̂i − x̂j = α−1
[
µ1(a

T
i − aT

j )(γ
−1
1 (Id− Softγ1)(Ax̂− ỹ)− s)

+ µ2(γ
−1
2 (1− softγ2)(x̂i)− ti)− µ2(γ

−1
2 (1− softγ2)(x̂j)− tj)

]
− α−1(1− α)(aT

i − aT
j )(Ax̂− y). (J.5.10)

To evaluate γ−1
1 (Id− Softγ1)(Ax̂− ỹ)−s, let us first consider the case when

aT
i x̂−ỹi ̸= 0 for i = 1, 2, . . . ,m. In this case, it holds that si = sign(aT

i x̂−ỹi),
and the ith component of γ−1

1 (Id− Softγ1)(A
Tx̂− ỹ) is given by

γ−1
1 (1− softγ1)(a

T
i x̂− ỹi) =

{
γ−1
1 (aT

i x̂− ỹi), if |aT
i x̂− ỹi| ≤ γ1,

sign(aT
i x̂− ỹi), if |aT

i x̂− ỹi| > γ1.

(J.5.11)
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Hence, it holds that

γ−1
1 (1− softγ1)(a

T
i x̂− ỹi)− si

=


γ−1
1 (aT

i x̂− ỹi)− 1, if γ−1
1 (aT

i x̂− ỹi) ∈ (0, 1],

γ−1
1 (aT

i x̂− ỹi) + 1, ifγ−1
1 (aT

i x̂− ỹi) ∈ [−1, 0),

0, if γ−1
1 |aT

i x̂− ỹi| > 1,

(J.5.12)

from which it follows that

γ−1
1 (1− softγ1)(a

T
i x̂− ỹi)− si ∈ (−1, 1). (J.5.13)

Let us now consider the case when aT
i x̂− ỹi = 0. Then, it holds by (J.5.11)

that

γ−1
1 (1− softγ1)(a

T
i x̂− ỹi)− si = −si ∈ [−1, 1]. (J.5.14)

By (J.5.13) and (J.5.14), it follows that |γ−1
1 (1− softγ1)(a

T
i x̂− ỹi)− si| ≤ 1,

and hence

∥γ−1
1 (Id− Softγ1)(Ax̂− ỹ)− s∥2 ≤

√
m. (J.5.15)

In a similar way, it holds under assumption (b) that

γ−1
2 (1− softγ2)(x̂i)− ti =


γ−1
2 x̂i − 1, if γ−1

2 x̂i ∈ (0, 1],

γ−1
2 x̂i + 1, ifγ−1

2 x̂i ∈ [−1, 0),

0, if γ−1
2 |x̂i| > 1

= −(ϕMC
γ2 )′(x̂i). (J.5.16)

where the derivative exists everywhere but the origin. Since J(0) ≥ J(x̂)
(see (4.26)), it holds that

1− α

2
∥Ax̂− y∥22 ≤ µ1Φ

MC
γ1 (Ax̂− ỹ)+

1− α

2
∥Ax̂− y∥22+µ2ΦMC

γ2 (x̂)+
α

2
∥x̂∥22

≤ µ1Φ
MC
γ1 (ỹ) +

1− α

2
∥y∥22

≤ µ1γ1
2

+
1− α

2
∥y∥22, (J.5.17)

from which it follows that

(1− α)∥Ax̂− ỹ∥2 ≤
√

(1− α)µ1γ1 + (1− α)2∥y∥22, (J.5.18)
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Equations (J.5.10), (J.5.15), (J.5.16), and (J.5.18) yield

|x̂i − x̂j | ≤ α−1
[
µ1|(aT

i − aT
j )(γ

−1
1 (Id− Softγ1)(Ax̂− ỹ)− s)|

+ µ2|(γ−1
2 (1− softγ2)(x̂i)− ti)

− (γ−1
2 (1− softγ2)(x̂j)− tj)|

]
+ α−1(1− α)|(aT

i − aT
j )(Ax̂− y)|

≤ α−1
[
µ1∥ai − aj∥2∥γ−1

1 (Id− Softγ1)(Ax̂− ỹ)− s∥2

+ µ2|(ϕMC
γ2 )′(x̂i)− (ϕMC

γ2 )′(x̂j)|
]

+ α−1(1− α)∥aT
i − aT

j ∥2∥Ax̂− y∥2

≤ α−1

[√
2(1− aT

i aj)(µ
2
1m+ (1− α)µ1γ1 + (1− α)2∥y∥22)

+ µ2|(ϕMC
γ2 )′(x̂i)− (ϕMC

γ2 )′(x̂j)|
]
, (J.5.19)

where the second inequality is due to the Cauchy-Schwarz inequality, and
the last equality holds since ∥ai−aj∥22 = 2(1−aT

i aj) by ∥ai∥2 = ∥aj∥2 = 1.

J.6 Proof of Proposition 4.5

We begin with some preliminaries and lemmas used in the proof. For any
locally Lipschitz function ϕ : Rn → R, its generalized differential at x ∈ Rn
is defined by [157]:

∂ϕ(x) =
{
ϕ′(x) :

⟨
ϕ′(x),d

⟩
≤ Dϕ(x;d), ∀d ∈ Rn

}
, (J.6.1)

where
Dϕ(x;d) := lim sup

y→x, θ↓0

ϕ(y + θd)− ϕ(y)

θ
(J.6.2)

is the generalized directional derivative. When ϕ is convex, ∂ϕ(x) is the
subdifferential of ϕ at x. A function ϕ is regular at x if the directional
derivative Dϕ(x; ζ) exists for all ζ ∈ Rn. If this holds for all x ∈ Rn, ϕ is a
regular function. For a regular function ϕ, x̂ is a stationary point if and only
if the directional derivative is nonnegative in all directions i.e., 0 ∈ ∂ϕ(x̂).
For example, convex functions are regular. The following lemma is used in
the proof.

Lemma J.6.1 ([157]). For any locally Lipschitz function ϕ1, ϕ2 : Rn → R,
it holds that ∂(ϕ1 + ϕ2)(x) ⊂ ∂ϕ1(x) + ∂ϕ2(x) for all x ∈ Rn.

We remark that the reverse inclusion ∂ϕ1(x) + ∂ϕ2(x) ⊂ ∂(ϕ1 + ϕ2)(x)
always holds for any convex function ϕ1, ϕ2 : Rn → R.
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Proof of Proposition 5. Let ỹ := y+ε. Then, by Lemma J.6.1, it holds that

0 ∈ ∂J(x̂)

= ∂

(
µ1Φ

MC
γ1 (A · −ỹ) + µ2Φ

MC
γ2 +

1

2
∥ · ∥22

)
(x̂)

⊂ ∂

(
µ1Φ

MC
γ1 (A · −ỹ) +

1

2
∥ · ∥22

)
(x̂) + ∂(µ2Φ

MC
γ2 )(x̂). (J.6.3)

By (J.5.2), the first term of the right side in (J.6.3) becomes

∂

(
µ1∥A · −ỹ∥1 + µ1

γ−1
1 (∥ · ∥∗1)(γ−1

1 (A · −ỹ))− µ1
2γ1

∥A · −ỹ∥22 +
1

2
∥ · ∥22

)
(x̂)

= µ1∂(∥A · −ỹ∥1)(x̂) + µ1∂(
γ−1
1 (∥ · ∥∗1)(γ−1

1 (A · −ỹ)))(x̂) + x̂

− µ1γ
−1
1 AT(Ax̂− ỹ). (J.6.4)

Here, the equality is verified by Lemma J.5.1 together with assumption (a)
and the convexity of the Moreau envelope [96]. Combining (J.6.3), (J.6.4),
and (J.5.5) yields

0 ∈ µ1A
T∂∥ · ∥1(Ax̂− ỹ) + µ1γ

−1
1 AT Softγ1(Ax̂− ỹ)

+ x̂− µ1γ
−1
1 AT(Ax̂− ỹ) + ∂(µ2Φ

MC
γ2 )(x̂). (J.6.5)

Noting that ϕMC
γ2 is constant over [γ2,+∞), assumption (b) implies that

DϕMC
γ2

(x̂i; d) = DϕMC
γ2

(x̂j ; d) = 0 for any d ∈ R, and hence

∂ϕMC
γ2 (x̂i) = ∂ϕMC

γ2 (x̂j) = {0}, (J.6.6)

from which it follows that

∂(µ2ϕ
MC
γ2 )(x̂i) = ∂(µ2ϕ

MC
γ2 )(x̂j) = {0}. (J.6.7)

Considering the ith and jth components of both sides of (J.6.5) under (J.6.7),
there exists some s := [s1, s2, . . . , sm]

T ∈ ∂∥ · ∥1(Ax̂− ỹ) such that

0 = µ1a
T
i (γ

−1
1 (Softγ1 − Id)(Ax̂− ỹ) + s) + x̂i, (J.6.8)

0 = µ1a
T
j (γ

−1
1 (Softγ1 − Id)(Ax̂− ỹ) + s) + x̂j , (J.6.9)

from which we obtain

x̂i − x̂j = µ1(a
T
i − aT

j )(γ
−1
1 (Id− Softγ1)(Ax̂− ỹ)− s). (J.6.10)

Equations (J.6.10) and (J.5.15) yield

|x̂i − x̂j | = µ1|(aT
i − aT

j )(γ
−1
1 (Id− Softγ1)(Ax̂− ỹ)− s)|

≤ µ1∥ai − aj∥2∥γ−1
1 (Id− Softγ1)(Ax̂− ỹ)− s∥2

≤ µ1

√
2m(1− aT

i aj), (J.6.11)

where the first inequality is due to the Cauchy-Schwarz inequality, and the
last inequality holds since ∥ai−aj∥22 = 2(1−aT

i aj) by ∥ai∥2 = ∥aj∥2 = 1.



162 APPENDIX J. PROOF FOR CHAPTER 4

J.7 Proof of Proposition 4.6

Proof of Proposition 4.6(a). For any z = (z2, . . . , zQ+1) ∈ Z, it holds that

1(Ψ ◦D−1)(z) = min
w∈Z

[
Ψ ◦D−1(w) +

1

2
∥w − z∥2Z

]
= min

w∈Z

Q+1∑
i=2

[
νiΨi(ν

−1/2
i D−1

i wi) +
1

2
∥wi − zi∥2Zi

]

=

Q+1∑
i=2

1(νiΨi ◦ (ν−1/2
i D−1

i ))(zi). (J.7.1)

It holds from (J.7.1) that

1(Ψ ◦D−1) ◦DA =

Q+1∑
i=2

1(νiΨi ◦ (ν−1/2
i D−1

i )) ◦ (ν1/2i DiAi), (J.7.2)

from which it follows that

F =
1

2
∥A1 · ∥2Zi

−
Q+1∑
i=2

1(νiΨi ◦ (ν−1/2
i D−1

i )) ◦ (ν1/2i DiAi). (J.7.3)

For the linear operators defined in (4.42) and (4.46), it holds that

M∗D2M =

Q+1∑
i=2

νiM
∗
i D

2
iMi. (J.7.4)

Here, the adjoint operator of M is given by M∗ : Z → X : z 7→
∑Q+1

i=2 M∗
i zi

because it holds, for any x ∈ X and z ∈ Z, that

⟨Mx, z⟩Z = ⟨(M2x, . . . ,MQ+1x), (z2, . . . , zQ+1)⟩Z

=

Q+1∑
i=2

⟨x,M∗
i zi⟩X =

⟨
x,

Q+1∑
i=2

M∗
i zi

⟩
X
. (J.7.5)

Substituting M2 := M and L := Id into convexity condition (♠) of LiMES
and using (J.7.4) yield (♣), and hence the sufficiency is verified by Proposi-
tion F.2.1(a).

The following lemma is used in the proof of Proposition 4.6(b).

Lemma J.7.1. For any finite-dimensional real Hilbert space Z, let
BZ(0, r) := {ζ ∈ Z | ∥ζ∥Z,∗ ≤ r} denote a closed ball of radius r > 0
centered at 0 ∈ Z. Then, it holds, for any ν > 0, that

νσBZ(0,1) = σBZ(0,ν). (J.7.6)
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Proof of Lemma J.7.1. By σ∗BZ(0,1) = ιBZ(0,1), it can be verified, for any
z ∈ Z, that

(νσBZ(0,1))
∗(z) = νσ∗BZ(0,1)(ν

−1z) = νιBZ(0,1)(ν
−1z)

=

{
0, if ν−1z ∈ BZ(0, 1) (⇔ ∥z∥Z,∗ ≤ ν),

+∞, otherwise

= ιBZ(0,ν). (J.7.7)

By (J.7.7), it follows that

νσBZ(0,1) = (νσBZ(0,1))
∗∗ = ι∗BZ(0,ν) = σBZ(0,ν). (J.7.8)

Proof of Proposition 4.6(b). For each i = 2, 3, . . . , Q+1, letΨ := σBZi
(0,νi)(=

νi∥ · ∥Zi due to Lemma J.7.1 and ∥ · ∥Zi = σB(0,1)), L := Id, D := ν
1/2
i Di,

and A2 := Ai in Proposition F.2.1(b.i). Then, regarding the second term of
(J.7.3), the following equivalence holds for any x ∈ X :

1(σBZi
(0,νi) ◦ ν

−1/2
i D−1

i )(ν
1/2
i DiAix) =

νi
2
∥DiAix∥2Zi

⇔ 1(σ∗BZi
(0,νi)

◦ ν1/2i Di)(ν
1/2
i DiAix) = 0 (J.7.9)

⇔ x ∈ KBZi
(0,νi) := {x ∈ X | νiD2

iAix ∈ BZi(0, νi)}

= {x ∈ X | D2
iAix ∈ BZi(0, 1)}

= Ki. (J.7.10)

By (J.7.3) and (J.7.10), for any x in the neighborhood of some interior point
x̂ ∈ int

(∩Q+1
i=2 Ki

)
̸= ∅, it holds that

F (x) =
1

2
∥A1x̂∥2Z −

Q+1∑
i=2

νi
2
∥DiAix̂∥2Zi

. (J.7.11)

This implies that the condition (∇∇F (x̂) =)M∗
1M1−

∑Q+1
i=2 νiM

∗
i D

2
iMi ⪰ 0

is necessary for F ∈ Γ0(X ) by [96, Proposition 17.7]. (Sufficiency has been
proven already in (a).)

J.8 Proof of (4.51)

It holds from (4.52) that
⟨ζ̄⊥, z̄1⟩2 = 0. (J.8.1)



164 APPENDIX J. PROOF FOR CHAPTER 4

Since ζ̄⊥ and z̄1 are centered, z2 = z̄2 due to (4.53). Hence, it holds that

∥z̄2∥22 = ∥ζ̄⊥∥22 +
∥ζ̄⊥∥22

tan2(arccos(0.7))

=

(
1 +

1

tan2(arccos(0.7))

)
∥ζ̄⊥∥22

=
1

sin2(arccos(0.7))
∥ζ̄⊥∥22, (J.8.2)

where the first equality is due to (J.8.1). On the other hand, it holds from
(4.52) and (4.53) that

⟨z̄1, z̄2⟩2 = ⟨z̄1, ζ̄⊥⟩2 +
∥ζ̄⊥∥2

tan(arccos(0.7))
∥z̄1∥2

=
∥ζ̄⊥∥2

tan(arccos(0.7))
∥z̄1∥2. (J.8.3)

Hence, it holds from (J.8.2) and (J.8.3) that

|z̄T
1 z̄2|

∥z̄1∥2∥z̄2∥2
=

1

tan(arccos(0.7))
/

1

sin(arccos(0.7))

= cos(arccos(0.7))

= 0.7. (J.8.4)



Appendix K

Proof for Chapter 5

K.1 Proof of Proposition 5.1

The following lemmas are used in the proof.

Lemma K.1.1. For any n ∈ N∗, λ1, λ2 > 0, and x ∈ Rn, it holds that

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x) = ∥w∥22 − ∥w − γ−1(|x|↓ − PKn
≥0
(|x|↓ − γw))∥22.

(K.1.1)

Proof. By definition of the Moreau envelope, it holds that

γΩOSCAR
λ1,λ2 (x) = ΩOSCAR

λ1,λ2 (ProxγΩOSCAR
λ1,λ2

(x)) +
1

2γ
∥x− ProxγΩOSCAR

λ1,λ2

(x)∥22.

(K.1.2)

By (2.70) and (2.72), the first term of the right-hand side of (K.1.2) can be
expressed as

ΩOSCAR
λ1,λ2 (ProxγΩOSCAR

λ1,λ2

(x)) =

⟨
w,
∣∣∣ProxγΩOSCAR

λ1,λ2

∣∣∣
↓

⟩
2

= ⟨w, PKn
≥0

(|x|↓ − γw)⟩2, (K.1.3)

where the second equality is due to∣∣∣Sign(x)⊙ P (|x|)TPKn
≥0

(|x|↓ −w)
∣∣∣
↓
= PKn

≥0
(|x|↓ −w) . (K.1.4)

In a similar way, by (2.72), the second term of the right-hand side of (K.1.2)
can be expressed as

1

2γ
∥x− ProxγΩOSCAR

λ1,λ2

(x)∥22

=
1

2γ

∥∥∥Sign(x)⊙ P (|x|)T
(
|x|↓ − PKn

≥0
(|x|↓ − γw)

)∥∥∥2
2

=
1

2γ
∥|x|↓ − PKn

≥0
(|x|↓ − γw) ∥22. (K.1.5)
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Hence, substituting (K.1.3) and (K.1.5) into (K.1.2) yields that

γΩOSCAR
λ1,λ2 (x) = ⟨w, PKn

≥0
(|x|↓ − γw)⟩2 +

1

2γ
∥|x|↓ − PKn

≥0
(|x|↓ − γw) ∥22.

(K.1.6)

Hence, it holds from (2.70) and (K.1.6) that

(ΩOSCAR
λ1,λ2 )γ−1/2In

(x) = ΩOSCAR
λ1,λ2 (x)− γΩOSCAR

λ1,λ2 (x)

= ⟨w, |x|↓ − PKn
≥0

(|x|↓ − γw)⟩2

− 1

2γ
∥|x|↓ − PKn

≥0
(|x|↓ − γw) ∥22, (K.1.7)

which is equivalent to (K.1.1).

Lemma K.1.2. Let d ∈ Rn such that d1 ≤ d2 ≤ . . . ≤ dn. Then,

n∑
i=1

di −max

 1

n

n∑
j=1

dj , 0


2

≤
n∑
i=1

(di − zi)
2, ∀z ∈ Kn

≥0. (K.1.8)

In other words,

PKn
≥0
(d) =


 1

n

n∑
j=1

dj

1n, if
∑n

j=1 dj ≥ 0,

0n, otherwise.

(K.1.9)

Proof. Let w ∈ Kn
≥0 such that

n∑
i=1

(di − wi)
2 ≤

n∑
i=1

(di − zi)
2, ∀z ∈ Kn

≥0. (K.1.10)

Suppose that there exists i ∈ {1, 2, . . . , n− 1} such that wi > wi+1. Then, it
holds that

(di − wi)
2+(di+1 − wi+1)

2−
(
di −

wi + wi+1

2

)2

−
(
di+1 −

wi + wi+1

2

)2

= −2diwi + w2
i − 2di+1wi+1 + w2

i+1 + di(wi + wi+1)− 2

(
wi + wi+1

2

)2

+ di+1(wi + wi+1)

> (di+1 − di)(wi − wi+1)

≥ 0, (K.1.11)
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where the first inequality is due to the strong convexity of the quadratic
function. Hence, it holds that

n∑
k=1

(dk − wk)
2 =

∑
k ̸=i,i+1

(dk − wk)
2 + (di − wi)

2 + (di+1 − wi)
2

>
∑

k ̸=i,i+1

(dk − wk)
2 +

(
di −

wi + wi+1

2

)2

+

(
di+1 −

wi + wi+1

2

)2

=
n∑
k=1

(dk − w̃k)
2, (K.1.12)

where, for k = 1, 2, . . . , n,

w̃k :=

wk, if k /∈ {i, i+ 1},
wi + wi+1

2
, if k ∈ {i, i+ 1}.

(K.1.13)

This contradicts (K.1.10) due to w̃ ∈ Kn
≥0. Hence, it holds that w1 = w2 =

. . . = wn =: w. It holds for any z ≥ 0 that

n∑
i=1

(di − z)2 = nz2 − 2

n∑
i=1

diz +

n∑
i=1

d2i

= n

(
z − 1

n

n∑
i=1

di

)2

− n

(
1

n

n∑
i=1

di

)2

+
n∑
i=1

d2i , (K.1.14)

which is minimized at

z =


1

n

n∑
i=1

di, if
1

n

n∑
i=1

di ≥ 0,

0, if
1

n

n∑
i=1

di < 0.

(K.1.15)

Hence, it holds that

w = max

{
1

n

n∑
i=1

di, 0

}
. (K.1.16)
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Proof of Proposition 5.1.

(I) Case of x = 0 (case 4).
In this case, it holds from Lemma K.1.1 that

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x) = ∥w∥22 − ∥w∥22 = 0. (K.1.17)

(II) Case of x ∈ Rn++ ∩ Kn
> (case 1).

In this case, there exists a sufficiently small γ > 0 such that

x1 − γw1 > x2 − γw2 > . . . > xn − γwn > 0 ⇔ x− γw ∈ Kn
≥0. (K.1.18)

Hence, it holds that

PKn
≥0
(x− γw) = x− γw, (K.1.19)

from which and Lemma K.1.1 it follows that

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x) = ∥w∥22 − ∥w − γ−1(x− (x− γw))∥22
= ∥w∥22. (K.1.20)

(III) Case of x ∈ (Rn++)
c ∩ Kn

> (case 3a).
In this case, since xn = 0, there exists a sufficiently small γ > 0 such that

x1 − γw1 > x2 − γw2 > . . . > xn−1 − γwn−1 > 0 > xn − γwn. (K.1.21)

Hence, it holds for i = 1, 2, . . . , n that

[PKn
≥0
(x− γw)]i =

{
xi − γwi, if i = 1, 2, . . . , n− 1,

0, if i = n,
(K.1.22)

from which and Lemma K.1.1 it follows that

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x)

= ∥w∥22 −

∥∥∥∥∥∥∥∥∥∥∥
w − γ−1




x1
x2
...

xn−1

0

−


x1 − γw1

x2 − γw2
...

xn−1 − γwn−1

0





∥∥∥∥∥∥∥∥∥∥∥

2

2

= ∥w∥22 − w2
n. (K.1.23)



K.1. PROOF OF PROPOSITION 5.1 169

(IV) Case of x ∈ Kn
≥0 ∩ (Kn

> ∪ {0})c (cases 2 and 3b).
In this case, it holds that q ≥ 1. Let ξ ∈ Rn such that

ξi :=


max

{
xi −

γ
∑

j∈Sl
wj

card(Sl)
, 0

}
, if i ∈ Sl for some l ∈ {1, 2, . . . , q},

0, if i = n and xn = 0,

xi − γwi, otherwise,
(K.1.24)

for i = 1, 2, . . . , n. Since xi = 0 implies that i ∈ Sq or “i = n and xn = 0”, it
holds that xi > 0 for all i in the third case of (K.1.24). Hence, there exists
a sufficiently small γ > 0 such that

ξi ≥ 0, ∀i = 1, 2, . . . , n. (K.1.25)

In what follows, we first show that

ξ ∈ Kn
≥0 (K.1.26)

for cases 2 and 3b. We then show that

PKn
≥0
(x− γw) = ξ (K.1.27)

for each case individually.
Fix i ∈ {1, 2, . . . , n− 1} arbitrarily. By (K.1.25), it suffices to show that

ξi ≥ ξi+1 for verifying (K.1.26). We first consider the case that ξi > 0 and
xi > xi+1. Then, by (K.1.24), it holds that

ξi ≥ min

{
xi −

γ
∑

j∈Sl
wj

card(Sl)
, xi − γwi

}
, and (K.1.28)

ξi+1 ≤ xi+1. (K.1.29)

Hence, it holds that

ξi − ξi+1 ≥ min

{
xi −

γ
∑

j∈Sl
wj

card(Sl)
, xi − γwi

}
− xi+1

= xi − xi+1 − γmax

{∑
j∈Sl

wj

card(Sl)
, wi

}
> 0, for some γ > 0, (K.1.30)

where the last inequality is due to xi − xi+1 > 0.
Assume now that ξi = 0. Then, by (K.1.24), it holds that xi = 0 for

a sufficiently small γ > 0. Hence, ξi = ξi+1 = 0 since xi = xi+1 = 0, i.e.,
xi, xi+1 ∈ Sq. Assume, on the other hand, that xi = xi+1, i.e., xi, xi+1 ∈ Sl.
Then, it holds from (K.1.24) that ξi = ξi+1. Hence, (K.1.26) holds.
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Now we prove (K.1.27). For l = 1, 2, . . . , q, let jmin
Sl

:= minj∈Sl
j and

jmax
Sl

:= maxj∈Sl
j. Then, there exists a sufficiently small γ > 0 such that

xjmin
Sl

− γwi
jmin
Sl

≤ xjmin
Sl

+1 − γwjmin
Sl

+1 ≤ . . . ≤ xjmax
Sl

− γwjmax
Sl

. (K.1.31)

Hence, for any {zj}
jmax
Sl

j=jmin
Sl

⊂ Rcard (Sl) such that zjmin
Sl

≥ zjmin
Sl

+1 ≥ . . . ≥
zjmax

Sl
≥ 0 , it holds due to Lemma K.1.2 that

∑
j∈Sl

((xj − γwj)− zj)
2 ≥

∑
j∈Sl

(
(xj − γwj)−max

{
xj −

γ
∑

k∈Sl
wk

card(Sl)
, 0

})2

.

(K.1.32)

(i) Case of x ∈ Rn++ ∩ (Kn
>)

c (case 2).
In this case, due to x ∈ Rn++, it holds from (K.1.24) that

ξi :=

xi −
γ
∑

j∈Sl
wj

card(Sl)
, if i ∈ Sl for some l ∈ {1, 2, . . . , q},

xi − γwi, otherwise,
(K.1.33)

for i = 1, 2, . . . , n. For i /∈ ∪ql=1Sl, it holds that

xi − γwi − ξi = 0. (K.1.34)

Hence, it holds for any z ∈ Kn
≥0 that

n∑
i=1

((xi − γwi)− zi)
2 ≥

q∑
l=1

∑
j∈Sl

((xj − γwj)− zj)
2

≥
q∑
l=1

∑
j∈Sl

(
(xj − γwj)−max

{
xj −

γ
∑

k∈Sl
wk

card(Sl)
, 0

})2

=

q∑
l=1

∑
j∈Sl

(
(xj − γwj)−

(
xj −

γ
∑

k∈Sl
wk

card(Sl)

))2

=
n∑
i=1

((xi − γwi)− ξi)
2, (K.1.35)

where the second inequality is due to (K.1.32), and the first equality is due
to x ∈ Rn++, and the last equality is due to (K.1.33) and (K.1.34). Hence,
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(K.1.27) holds. Thus, it holds for any x ∈ Kn
≥0 that

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x)

= ∥w∥22 − ∥w − γ−1(x− ξ)∥22

= ∥w∥22 −
n∑
i=1

(wi − γ−1(xi − ξi))
2

= ∥w∥22 −
q∑
l=1

∑
j∈Sl

(
wj − γ−1

(
xj −

(
xj −

γ
∑

k∈Sl
wk

card(Sl)

)))2

= ∥w∥22 −
q∑
l=1

∑
j∈Sl

(
wj −

∑
k∈Sl

wk

card(Sl)

)2

, (K.1.36)

where the first equality is due to Lemma K.1.1 and (K.1.27), and the third
equality is due to (K.1.33) and (K.1.34).

(ii) Case of x ∈ Kn
≥0 ∩ (Rn++ ∪ Kn

> ∪ {0})c (case 3b).

In this case, xn = 0. Assume first that xn−1 > 0. Then, it holds that
n /∈ Sq since xn−1 > xn = 0. Hence, it holds from (K.1.24) that

ξi :=


xi −

γ
∑

j∈Sl
wj

card(Sl)
, if k ∈ Sl for some l ∈ {1, 2, . . . , q},

0, if k = n,

xi − γwi, otherwise,

(K.1.37)

for i = 1, 2, . . . , n. By (K.1.37), it holds that

xn − γwn − ξn = −γwn. (K.1.38)

Hence, it holds for any z ∈ Kn
≥0 that

n∑
i=1

((xi − γwi)− zi)
2

≥
q∑
l=1

∑
j∈Sl

((xj − γwj)− zj)
2 + (γwn + zn)

2

≥
q∑
l=1

∑
j∈Sl

(
(xj − γwj)−max

{
xj −

γ
∑

k∈Sl
wk

card(Sl)
, 0

})2

+ (γwn)
2

=

q∑
l=1

∑
j∈Sl

(
(xj − γwj)−

(
xj −

γ
∑

k∈Sl
wk

card(Sl)

))2

+ (γwn)
2

=
n∑
i=1

((xi − γwi)− ξi)
2, (K.1.39)
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where the first inequality is due to xn = 0, the second inequality is due to
(K.1.32), the first equality is due to xn > 0, and the last equality is due to
(K.1.34), (K.1.37), and (K.1.38). Hence, (K.1.27) holds. Thus, in a similar
way to (K.1.36), it holds for any x ∈ Kn

≥0 that

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x)

= ∥w∥22 − ∥w − γ−1(x− ξ)∥22

= ∥w∥22 −
n∑
i=1

(wi − γ−1(xi − ξi))
2

= ∥w∥22 −
q∑
l=1

∑
j∈Sl

(
wj − γ−1

(
xj −

(
xj −

γ
∑

k∈Sl
wk

card(Sl)

)))2

− w2
n

= ∥w∥22 −
q∑
l=1

∑
j∈Sl

(
wj −

∑
k∈Sl

wk

card(Sl)

)2

− w2
n, (K.1.40)

where the first equality is due to Lemma K.1.1 and (K.1.27), and the third
equality is due to (K.1.34), (K.1.37), and (K.1.38).

Now we assume that xn−1 = 0. Then, it holds from (K.1.24) that

ξi :=


xi −

γ
∑

j∈Sl
wj

card(Sl)
, if k ∈ Sl for some l ∈ {1, 2, . . . , q − 1},

0, if k ∈ Sq,

xi − γwi, otherwise,

(K.1.41)

for i = 1, 2, . . . , n. It holds for any z ∈ Kn
≥0 that

n∑
i=1

((xi − γwi)− zi)
2 ≥

q∑
l=1

∑
j∈Sl

((xj − γwj)− zj)
2

≥
q∑
l=1

∑
j∈Sl

(
(xj − γwj)−max

{
xj −

γ
∑

k∈Sl
wk

card(Sl)
, 0

})2

=

q−1∑
l=1

∑
j∈Sl

(
(xj − γwj)−

(
xj −

γ
∑

k∈Sl
wk

card(Sl)

))2

+
∑
j∈Sq

(xj − γwj)
2

=

n∑
i=1

((xi − γwi)− ξi)
2, (K.1.42)

where the first inequality is due to (K.1.32), the first equality is due to
xi > 0 for i ∈ ∪q−1

l=1Sl, and the last equality is due to (K.1.34), (K.1.37), and



K.2. PROOF OF PROPOSITION 5.7 173

(K.1.41). Hence, (K.1.27) holds. Thus, in a similar way to (K.1.36), it holds
for any x ∈ Kn

≥0 that

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x)

= ∥w∥22 − ∥w − γ−1(x− ξ)∥22

= ∥w∥22 −
n∑
i=1

(wi − γ−1(xi − ξi))
2

= ∥w∥22 −
q−1∑
l=1

∑
j∈Sl

(
wj − γ−1

(
xj −

(
xj −

γ
∑

k∈Sl
wk

card(Sl)

)))2

−
∑
j∈Sq

w2
j

= ∥w∥22 −
q−1∑
l=1

∑
j∈Sl

(
wj −

∑
k∈Sl

wk

card(Sl)

)2

−
∑
j∈Sq

w2
j . (K.1.43)

The expressions (K.1.40) and (K.1.43) can be unified into the following form:

2γ−1(ΩOSCAR
λ1,λ2 )γ−1/2In

(x)

= ∥w∥22 −
q∑
l=1

∑
j∈Sl

(
wj −

∑
k∈Sl

wk

card(Sl)
χR++(xj)

)2

− w2
nχR++(xn−1).

(K.1.44)

K.2 Proof of Proposition 5.7

The following fact will be used in the proof.

Fact K.2.1. [100, Theorem 2] Let f ∈ Γ0(Rn) be smooth and ρ-strongly
convex with κ-Lipschitz continuous gradient operator ∇f for κ, ρ > 0 such
that κ > ρ. Let µ > 0 such that µ < 2/(κ + ρ), which implies µ < 1/ρ.
Assume that (i) T = ∇ψ for some Fréchet differentiable convex function
ψ ∈ Γ0(Rn), and (ii) T is β−1-Lipschitz continuous for β := 1 − µρ ∈ (0, 1),
or equivalently T is β-cocoercive. Suppose that µf + φ has a minimizer in
Rn. Then, for an arbitrary x0 ∈ Rn, the sequence (xk)k∈N ⊂ Rn generated
by

xk+1 := T (xk − µ∇f (xk)) , k ∈ N (K.2.1)

converges weakly to a minimizer x̂ of µf + φ; i.e., limk→∞ ⟨xk − x̂, y⟩ = 0
for every fixed y ∈ Rn.

Proof of Proposition 5.7. By assumption, f + ρ∥PM⊥ · ∥22/2 is smooth and
ρ-strongly convex with κ-Lipschitz continuous gradient. By Proposition 5.6,
∆ω = ∇ψω is ω-Lipschitz continuous. Hence, the convergence is guaranteed
by Fact K.2.1.
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K.3 Proof of Proposition 5.8

(a) By assumption assumption (C-2), it holds that

Proxg1 −Proxg2 = Proxg1 −Proxg2−g1 ◦Proxg1
= (Id−Proxg2−g1) ◦ Proxg1
= Prox(g2−g1)∗ ◦Proxg1 , (K.3.1)

where the third equality is due to Fact 2.4(c) under assumption (C-1). It
holds by definition of ∆ω given in (5.1) that

∆ω = ω(Proxg1 −Proxg2) + Proxg2

= ωProx(g2−g1)∗ ◦Proxg1 +Proxg2 . (K.3.2)

The operator Proxg2 is firmly nonexpansive [96, Proposition 12.28], and hence
it is monotone by (2.33). By definition of monotone operator (2.32), α1B1+
α2B2 is monotone for any α1, α2 ≥ 0 if B1, B2 : Rn → Rn are monotone.
Hence, ∆ω (= ∇ψω by Proposition 5.6) is monotone due to (K.3.2) under
ω > 1 and assumption (C-3), which implies that ψω is convex [96, Proposition
17.7].

(b) (i) ⇒ (C-3): Since (g2 − g1)
∗ + g1 ∈ Γ0(Rn), Prox(g2−g1)∗+g1 is firmly

nonexpansive, and hence it is monotone.

(ii) ⇒ (C-3): Since g1, g2 are separable, the corresponding proximity oper-
ators are also separable [96, Prpposition 24.11], it holds for any x ∈ Rn
that

Proxg1(x) = (Proxg̃1(xi))
n
i=1, (K.3.3)

and

Prox(g2−g1)∗(x) = x− Proxg2−g1(x)

= (xi − Proxg̃2−g̃1(xi))
n
i=1

= (Prox(g̃2−g̃1)∗(xi))
n
i=1. (K.3.4)

Hence, we obtain

Prox(g2−g1)∗ ◦Proxg1(x) = (Prox(g̃2−g̃1)∗(Proxg̃1(xi)))
n
i=1, (K.3.5)

implies which, together with Proposition H.2 in Appendix H, that there
exists Γ0(Rn) ∋ h : x 7→

∑n
i=1 h̃(xi), where h̃ ∈ Γ0(R) such that

Prox(g̃2−g̃1)∗ ◦Proxg̃1 = Proxh̃, namely

Prox(g2−g1)∗ ◦Proxg1(x) = Proxh(x). (K.3.6)

Since Proxh is firmly nonexpansive, it is monotone.
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K.4 Proof of Proposition 5.9

In the following, we shall represent ψω in two different ways (see (K.4.3)
and (K.4.4) below), and we then obtain ψ∗

ω ◦∆ω (see (K.4.7) below) by the
combinations of two expressions of ψω and the Fenchel-Young inequality.

Fix a vector x ∈ Rn arbitrarily. Since the conjugate of the support
function is the indicator function (see Section 2.1.2), it holds that

1(σ∗C1
)(x) = 1(ιC1)(x)

= ιC1(ProxιC1
(x)) +

1

2
∥x− ProxιC1

(x)∥22

= ιC1(PC1(x)) +
1

2
∥ProxσC1

(x)∥22

=
1

2
∥ProxσC1

(x)∥22, (K.4.1)

where the second equality is due to the definition of the Moreau envelope
(2.21), the third equality is due to Fact 2.4(c) and the fact that the proximity
operator of the indicator function corresponds to the projection operator [96,
Example 12.25]. In the same way, we have

1(σ∗C2
)(x) =

1

2
∥ProxσC2

(x)∥22. (K.4.2)

Hence, substituting (K.4.1) and (K.4.2) into (5.29) yields that

ψω(x) =
ω

2
∥ProxσC1

(x)∥22 −
ω − 1

2
∥ProxσC2

(x)∥22. (K.4.3)
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On the other hand, it holds from the definition in (5.29) that

ψω(x) =
1

2
∥x∥22 − ω 1σC1(x) + (ω − 1) 1σC2(x)

=
1

2
∥x∥22 − ω

(
σC1(ProxσC1

(x)) +
1

2
∥x− ProxσC1

(x)∥22
)

+ (ω − 1)

(
σC2(ProxσC2

(x)) +
1

2
∥x− ProxσC2

(x)∥22
)

=
1

2
∥x∥22 − ωσC1(ProxσC1

(x))− ω

2
∥x∥22 −

ω

2
∥ProxσC2

(x)∥22
+ ω⟨x,ProxσC1

(x)⟩2 + (ω − 1)σC2(ProxσC2
(x))

+ (ω − 1)
1

2
∥x∥22 +

ω − 1

2
∥ProxσC2

(x)∥22
− (ω − 1)⟨x,ProxσC2

(x)⟩2
= (ω − 1)σC2(ProxσC2

(x))− ωσC1(ProxσC1
(x))

+ ⟨x, ω ProxσC1
(x)− (ω − 1)ProxσC2

(x)︸ ︷︷ ︸
=∆ω(x)

⟩2

+
ω − 1

2
∥ProxσC2

(x)∥22 −
ω

2
∥ProxσC1

(x)∥22︸ ︷︷ ︸
=−ψω(x)

, (K.4.4)

where the first equality is due to Fact 2.4(c), and the second equality is due
to the definition of the Moreau envelope (2.21). Hence, substituting (K.4.3)
to (K.4.4) yields that

ψω(x) = (ω − 1)σC2(ProxσC2
(x))− ωσC1(ProxσC1

(x))

+ ⟨x,∆ω(x)⟩2 − ψω(x). (K.4.5)

Since ψω is convex by Proposition 5.8, we have ∆ω(x) = ∇ψω(x), hence the
Fenchel-Young inequality holds with equality [96, Proposition 16.10], i.e.,

ψω(x) + ψ∗
ω(∆ω(x)) = ⟨x,∆ω(x)⟩2. (K.4.6)

Hence, substituting (K.4.6) to (K.4.5) yields that

ψ∗
ω(∆ω(x)) = ψω(x)− (ω − 1)σC2(ProxσC2

(x)) + ωσC1(ProxσC1
(x))

= ω

(
σC1(ProxσC1

(x)) +
1

2
∥ProxσC1

(x)∥22
)

− (ω − 1)

(
σC2(ProxσC2

(x)) +
1

2
∥ProxσC2

(x)∥22
)
, (K.4.7)

where the last equality is due to (K.4.3).
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In the following, we shall express ProxσC1
and ProxσC2

using ∆ω (see
(K.4.9) and (K.4.12) below), and we then substitute those expressions to
(K.4.7), to obtain ψ∗

ω (see (K.4.14) below), which will lead to (5.52). It holds
from the definition of ∆ω in (5.1) that

∆ω = ωProxσC1
−(ω − 1)ProxσC2

= ωProxσC1
−(ω − 1)ProxσC2

−σC1
◦ProxσC1

= ProxσC1
+(ω − 1)ProxσC1

−(ω − 1)ProxσC2
−σC1

◦ProxσC1

= [Id+(ω − 1)(Id−ProxσC2
−σC1

)] ◦ ProxσC1

= [Id+(ω − 1)∇( 1(σC2 − σC1))] ◦ ProxσC1
, (K.4.8)

where the second equality is due to assumption (C-2), and the last equality
is due to Fact 2.4(b) under assumption (C-1). Then, it follows from (K.4.8)
and (2.35) that

ProxσC1
= [Id+(ω − 1)∇( 1(σC2 − σC1))]

−1 ◦∆ω

= Prox(ω−1) 1(σC2
−σC1

) ◦∆ω. (K.4.9)

On the other hand, it holds from [96, Proposition 12.22] that ω(σC2−σC1) =
(ω−1)( 1(σC2−σC1)). Taking gradients of both sides and applying Fact 2.4(b)
yields that

ω−1(Id−Proxω(σC2
−σC1

)) = (ω − 1)−1(Id−Prox(ω−1) 1(σC2
−σC1

))

⇔ Prox(ω−1) 1(σC2
−σC1

) = Id−(ω − 1)ω−1(Id−Proxω(σC2
−σC1

)). (K.4.10)

Substituting (K.4.10) to (K.4.9) yields that

ProxσC1
= [Id−(ω − 1)ω−1(Id−Proxω(σC2

−σC1
))] ◦∆ω. (K.4.11)

By substituting (K.4.11) to the definition of ∆ω in (5.1), we obtain

ProxσC2
= ω(ω − 1)−1 ProxσC1

−(ω − 1)−1∆ω

= [ω(ω − 1)−1 Id−(Id−Proxω(σC2
−σC1

))] ◦∆ω − (ω − 1)−1∆ω

= Proxω(σC2
−σC1

) ◦∆ω. (K.4.12)

Hence, substituting (K.4.11) and (K.4.12) to (K.4.7) yields that

ψ∗
ω(∆ω(x)) = ω

(
σC1 +

1

2
∥ · ∥22

)
(Id

− (ω − 1)ω−1(Id−Proxω(σC2
−σC1

)))(∆ω(x))

− (ω − 1)

(
σC2 +

1

2
∥ · ∥22

)
(Proxω(σC2

−σC1
)(∆ω(x))).

(K.4.13)
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By setting z := ∆ω(x), we obtain

ψ∗
ω(z) = ω

(
σC1 +

1

2
∥ · ∥22

)(
z − (1− ω−1)(Id−Proxω(σC2

−σC1
))(z)

)
− (ω − 1)

(
σC2 +

1

2
∥ · ∥22

)
(Proxω(σC2

−σC1
)(z)). (K.4.14)

Since range∆ω = Rn by assumption, (K.4.14) holds for any z ∈ Rn. Here,
by simple manipulations, it can be verified that

ω

2
∥z − (1− ω−1)(Id−Proxω(σC2

−σC1
))(z)∥22

=
ω

2
∥ω−1z + (1− ω−1) Proxω(σC2

−σC1
)(z)∥22

=
ω−1

2
∥z∥22 + (1− ω−1)⟨z,Proxω(σC2

−σC1
)(z)⟩2

+
(ω − 1)(1− ω−1)

2
∥Proxω(σC2

−σC1
)(z)∥22, (K.4.15)

from which it follows that

ω

2
∥z − (1− ω−1)(Id−Proxω(σC2

−σC1
))(z)∥22 −

ω − 1

2
∥Proxω(σC2

−σC1
)(z)∥22

− 1

2
∥z∥22

= −1− ω−1

2
∥z∥22 + (1− ω−1)⟨z,Proxω(σC2

−σC1
)(z)⟩2

− 1− ω−1

2
∥Proxω(σC2

−σC1
)(z)∥22

= −1− ω−1

2
∥z − Proxω(σC2

−σC1
)(z)∥22. (K.4.16)

Since φω := ψ∗
ω − ∥ · ∥22/2 (see (5.31)), substituting (K.4.16) to (K.4.14) and

subtracting ∥z∥22 from both sides of the equation yields that

φω(z) = σC1

(
z + (ω − 1)Proxω(σC2

−σC1
)(z)

)
− (ω − 1)σC2(Proxω(σC2

−σC1
)(z))

− 1− ω−1

2
∥z − Proxω(σC2

−σC1
)(z)∥22, (K.4.17)

where σC1 is positively homogeneous by definition of the support function in
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Section 2.1. Regarding the second and third terms of (K.4.17), it holds that

(ω − 1)σC2(Proxω(σC2
−σC1

)(z)) +
1− ω−1

2
∥z − Proxω(σC2

−σC1
)(z)∥22

= (ω − 1)(σC2 − σC1)(Proxω(σC2
−σC1

)(z))

+
1− ω−1

2
∥z − Proxω(σC2

−σC1
)(z)∥22

+ (ω − 1)σC1(Proxω(σC2
−σC1

)(z))

= (1− ω−1) 1(ω(σC2 − σC1))(z) + (ω − 1)σC1(Proxω(σC2
−σC1

)(z)).

(K.4.18)

Finally, substituting (K.4.18) to (K.4.17) yields (5.52).

K.5 Proof of Proposition 5.10

Since ΩOSCAR
λ1,λ2

(z) = ΩOSCAR
λ1,λ2

(P (|x|) Sign(x)⊙z) for any z ∈ Rn, it holds for
any x ∈ Rn that

ΩOSCAR
λ1,λ2 (x+ (ω − 1)Proxω(η−1)ΩOSCAR

λ1,λ2

(x))

= ΩOSCAR
λ1,λ2 (|x|↓ + (ω − 1)PKn

≥0
(|x|↓ − ω(η − 1)w))

= ⟨w, ||x|↓ + (ω − 1)PKn
≥0

(|x|↓ − ω(η − 1)w) |↓⟩2
= ⟨w, |x|↓ + (ω − 1)PKn

≥0
(|x|↓ − ω(η − 1)w)⟩2

= ⟨w, |x|↓⟩2 + (ω − 1)⟨w, PKn
≥0

(|x|↓ − ω(η − 1)w)⟩2
= ΩOSCAR

λ1,λ2 (x) + (ω − 1)ΩOSCAR
λ1,λ2 (Proxω(η−1)ΩOSCAR

λ1,λ2

(x)), (K.5.1)

where the second and last equalities are due to (2.70). Hence, (K.5.1) and
(5.52) yield (5.59). Moreover, it holds that

(5.59) = ΩOSCAR
λ1,λ2 − abb−1 1(bΩOSCAR

λ1,λ2 )

= ΩOSCAR
λ1,λ2 − ab b(ΩOSCAR

λ1,λ2 ), (K.5.2)

where the last equality is due to Lemma 5.1. Hence, (5.60) holds if ab = 1.
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