
A Thesis for the Degree of Ph.D. in Engineering

Applicability of Quantum-Enhanced Machine Learning

February 2024

Graduate School of Science and Technology, Keio University

Yudai Suzuki

Abstract

Quantum computers are next-generation computing devices that have the potential to en-
hance the performance of machine learning. An approach to achieving quantum enhancement
is to utilize the Hilbert space, whose dimension scales exponentially in the number of qubits, as
a feature space for machine learning. The use of such quantum-enhanced feature space could
enable us to find data patterns more easily than conventional methods. Thus far, it has been
theoretically shown that quantum-enhanced machine learning models can solve specific classi-
fication tasks that classical methods cannot efficiently solve. This motivates many researchers
to pursue practical advantages of the methods. Toward practical applications, it is critical to
establish guidelines for designs of quantum-enhanced machine learning models.

This thesis aims to analyze the performance of quantum-enhanced machine learning models
and give insights into design principles of the models for practical applications. More specifically,
we focus on two methods, quantum kernel methods and quantum reservoir computing, and then
provide guidelines for building their models in practical situations.

We focus on two challenges in quantum kernel methods for real-world applications. The first
is that constructing quantum feature maps is nontrivial when applied to actual machine learning
problems. This thesis proposes a method for analyzing quantum feature maps, which can help
screen a suitable quantum feature map among many candidates. In addition, we examine the
effectiveness of a synthesis method to construct a powerful quantum kernel. Another issue is
that implementation feasibility and trainability deteriorate as the number of qubits increases.
We thus propose a new quantum kernel called the quantum Fisher kernel and demonstrate from
analytical and numerical perspectives that our proposal can avoid the aforementioned problem
when shallow alternating layered ansatzes are used.

In quantum reservoir computing, there is room for investigation in designing quantum reser-
voir systems that are amenable to implementation and can perform well. In this thesis, we pro-
pose a quantum reservoir computing framework that positively makes use of unavoidable quan-
tum noise in actual quantum hardware. Our experimental demonstrations on superconducting
quantum devices show that quantum noise can enhance temporal information processing. Also,
numerical analysis using a tool called temporal information processing capacity elucidates that
dissipation noise such as amplitude damping can induce sequential data processing capabilities.

i

Acknowledgement

First of all, I would like to sincerely thank all the people who have given me tremendous support
and encouragement during my doctoral program. Especially I appreciate Prof. Kenji Yasuoka for
his continuous support and valuable advice on my study. Not only did he provide an environment
where I could immerse myself in my research, but also helped me to grow my logical thinking
and problem-solving abilities. I am also grateful that he encouraged me to pursue research
topics I have been curious about. Furthermore, I would like to thank Prof. Naoki Yamamoto for
his technical advice and patient support. He is always kind and helpful in guiding me through
research discussions and writing papers. I cannot thank him enough for his tremendous help.
I also appreciate him for organizing the Keio Quantum Computing Center. The discussions at
the Keio Quantum Computing Center have motivated and inspired me a lot. I would also like
to thank Prof. Naoki Yamamoto, Prof. Masahiro Takeoka, and Prof. Linyu Peng for taking the
time to serve on my thesis committee. Their helpful comments highly improved the quality of
my thesis.

In addition, I would also like to express my gratitude to professors, researchers, and stu-
dents at the Keio Quantum Computing Center for their insightful discussions: Eriko Kaminishi,
Hideaki Kawaguchi, Hideo Watanabe, Hiroshi Watanabe, Hiroshi Yano, Hiroyuki Tezuka, Junpei
Kato, Kenji Sugisaki, Kohei Oshio, Michihiko Sugawara, Qi Gao, Rei Sakuma, Rudy Raymond,
Ruho Kondo, Shu Kanno, Shumpei Uno, Takahiko Satoh, Tomoki Tanaka, Yutaka Shikano,
Yuya Ohnishi, Yohichi Suzuki. In particular, weekly discussions on quantum machine learning
including my research topics have broadened my knowledge and stimulated interesting ideas.
The research achievements during my doctoral program are thanks to the Keio Quantum Com-
puting Center, and hence, sincere thanks also go to Shinichi Niimi, Shiho Aizawa, and Naoko
Oue, who manage and support the organization. In addition, I appreciate Hiroshi Yano for his
friendship, patient discussion, and sharing his knowledge.

Moreover, I would like to thank collaborators for their valuable discussions. Prof. Kohei
Nakajima, Tomoyuki Kubota, Quoc Hoan Tran, and Shumpei Kobayashi gave me meaningful
insight into our work on quantum reservoir computing and progressed the research further. I
am also grateful to Prof. Mayu Muramatsu for providing me with opportunities for research
collaboration. She helped me to grow and impressed me with her way of thinking. Internships at
IBM (Tokyo and Yorktown Heights) also stimulated my Ph.D. study and have given me deeper
knowledge and understanding of quantum machine learning. I explicitly thank Tamiya Onodera,
Atsushi Matsuo, Ikko Hamamura, Muyuan Li, and Kunal Sharma for their support and helpful
discussions.

Furthermore, I was lucky to join the wonderful laboratory. People in Yasuoka laboratory are
kind, supportive, and enthusiastic about research. Dr. Paul Brumby, Project Associate Pro-
fessor, kindly helped me with preparing presentation materials and gave me advice on writing.
Dr. Yoshinori Hirano, Project Associate Professor, willingly shared his knowledge about bioin-
formatics with us. Also, Dr. Stephen Fitz, Project Associate Professor, gave some insight into
deep learning from the mathematical perspective. I am grateful to all past and current members

ii

for their help and for sharing their knowledge: Daisuke Yuhara, Katsufumi Tomobe, Takuma
Nozawa, Kantaro Inoue, Shinjiro Nakamura, Sho Ayuba, Tomohiro Hasegawa, Katsuhiro Endo,
Kenta Ogino, Kiyoshiro Okada, Yuui Ono, Arafal Rafi, Jean-Francois Cailleau, Masashi Sawa,
Akie Kowaguchi, Arisa Yamada, Kan Satake, Kazuya Hiraide, Masanari Ishiyama, Yo Taniguchi,
Yoshinao Itakura, Daiki Sato, Genki Miwa, Ikki Yasuda, Koki Abe, Ryo Kawada, Akinori Sa-
take, Kenta Shobu, Naonobu Kuribayashi, Satoki Ishiai, Hirotaka Kishimoto, Rio Taniguchi,
Ryota Ishioka, Yonggi Park, Honomi Kashihara, Kentaro Ashitate, Kento Mima, Koki Yano,
Kota Sakaki, Ren Kobayashi, Takumi Kojima. I am also thankful to my colleagues for their
friendship and help: Go Kudo, Kai Pua, Kanako Matsui, Kazuaki Hirakawa, Kenta Hirayama,
Shuzo Kato, Toshitsugu Miura, Yuto Yamada.

Finally, I would like to thank my family and friends for their support during my long time
in graduate school.

February 2024

iii

Contents

1 Introduction 1

2 Quantum Computing 4
2.1 Basics of Quantum Computation . 4

2.1.1 Dirac Notation for Quantum States . 4
2.1.2 Quantum Bits (Qubits) . 5
2.1.3 Quantum Gates . 7
2.1.4 Measurement . 9
2.1.5 Quantum Circuit Models . 10

2.2 Density Matrices . 11
2.3 Quantum Operations and Quantum Noise . 12

2.3.1 Quantum Operator Formalism . 12
2.3.2 Quantum Noise . 13

2.4 Near-Term and Long-Term Quantum Computers 14
2.5 Application: Machine Learning . 14

3 Quantum-Enhanced Machine Learning 18
3.1 Quantum-Enhanced Feature Space for Machine Learning 18

3.1.1 Quantum-Enhanced Feature Space . 18
3.1.2 Quantum Feature Maps . 19
3.1.3 Models . 21

3.2 Quantum Kernel Methods . 22
3.2.1 Kernel Methods . 22
3.2.2 Basics of Quantum Kernel Methods . 25
3.2.3 Support Vector Machines . 27

3.3 Quantum Reservoir Computing . 29
3.3.1 Framework of Reservoir Computing . 30
3.3.2 Physical Reservoir Computing . 31
3.3.3 Quantum Reservoir Computing Models 31

4 Quantum Kernel-Based Learning Models 33
4.1 Analysis and Synthesis of Quantum Feature Maps 33

4.1.1 Introduction . 34
4.1.2 A Method to Analyze Quantum Feature Maps 35
4.1.3 Synthesized Quantum Feature Maps . 36
4.1.4 Numerical Demonstration . 39
4.1.5 Conclusion & Outlook . 43

4.2 A Remedy to the Vanishing Similarity Issue: Quantum Fisher Kernel 48
4.2.1 Introduction . 48

iv

4.2.2 Preliminary . 49
4.2.3 Vanishing Similarity Issue in Fidelity-Based Quantum Kernel 50
4.2.4 Quantum Fisher Kernel . 54
4.2.5 Vanishing Similarity Issue in Quantum Fisher Kernel 56
4.2.6 Numerical Demonstration . 57
4.2.7 Expressivity and Performance . 61
4.2.8 Conclusion & Outlook . 63

5 Quantum Noise-Induced Reservoir Computing 65
5.1 Proof-of-Principle Demonstration . 65

5.1.1 Introduction . 66
5.1.2 Quantum Noise-Induced Reservoir Systems 66
5.1.3 Experimental Demonstration . 67
5.1.4 Conclusion & Outlook . 79

5.2 Information Processing Capability Induced by Quantum Noise 79
5.2.1 Introduction . 79
5.2.2 Temporal Information Processing Capacity (TIPC) 80
5.2.3 TIPC Profile for QR Systems Simulated by Quantum Noise Models . . . 81
5.2.4 Benchmark Tasks . 84
5.2.5 TIPC Profile for QR Systems on Quantum Devices 86
5.2.6 Conclusion & Outlook . 90

6 Conclusion and Outlook 91
6.1 Conclusion . 91
6.2 Outlook . 92

Bibliography 93

A Analytical Results for Vanishing Similarity Issue in Quantum Kernels 109
A.1 Proof of Proposition 1 . 109

A.1.1 Case (1): Globally-Random Quantum Circuits 109
A.1.2 Case (2): Alternating Layered Ansatzes 110

A.2 Proof of Theorem 1 . 113
A.2.1 Case (1): Globally-Random Quantum Circuits 113
A.2.2 Case (2): Alternating Layered Ansatzes 117

A.3 Further Analytical Results . 123

v

Chapter 1

Introduction

Machine learning is a subfield of artificial intelligence (AI) technology where machines make
inferences and predictions based on rules they learn from data [1,2]. In today’s era of big data,
it is essential to extract and utilize valuable information from an enormous amount of data that
humans cannot handle. Machine learning can facilitate such data analysis and hence its impacts
on our lives have grown tremendously. To date, a wide range of applications have been reported,
including image processing [3–5], natural language processing [6, 7], object detection [8], bioin-
formatics [9], and finance [10,11]. In addition, emerging generative AI models such as ChatGPT
and related technologies have demonstrated the potential to revolutionize society by assisting
widespread human activities, such as writing, debugging codes, and reducing the burdens of
office work [12]. Thus, it is expected that demands for such machine learning technologies will
keep increasing in the future.

Advances in machine learning technology are supported by the computational power of infor-
mation processing devices. This indicates performance improvement in computers themselves is
critical for the further development of machine learning. One of the next-generation computers
that can boost information processing is a quantum computer, which makes use of quantum me-
chanical properties such as entanglement and interference for computing. Potentially, quantum
computers can perform computations that are not efficiently executable by classical computers.
The idea of quantum computing was first proposed by Richard Feynman, based on his view that
quantum computers are more powerful tools to simulate quantum systems than conventional
classical computers [13]. After this proposal, David Deutsch developed the theoretical formula-
tion of quantum computers [14]. Subsequently, several quantum algorithms have been proposed
that can outperform classical counterparts from the computational complexity perspective: for
example, factoring a prime number [15], unstructured search [16], phase estimation [17], and
solving linear systems of equations [18]. These quantum algorithms with theoretical guarantees
have driven researchers to seek advantages in various fields, including machine learning [19],
quantum chemistry [20–22], and finance [23].

Moreover, the development of quantum hardware has been remarkable these days. For
instance, major companies such as IBM and Google have been developing superconducting
quantum computers. Start-up companies also launched projects to build quantum computing
devices. Currently available quantum information processors consist of a limited number of
qubits (50 to hundreds of qubits) and cannot avoid the effects of noise; quantum computers at
present are thus called NISQ (Noisy Intermediates-Scale Quantum) devices [24]. This means the
quantum algorithms mentioned above are challenging to implement on these devices. In contrast,
a recent study unveiled the potential of NISQ devices for advantages in sampling tasks [25].
Therefore, a number of researchers are pursuing the advantages of quantum computing not only
in the long term but also in the NISQ era.

1

The interdisciplinary research area of quantum computing and machine learning is called
quantum machine learning [19]. The main objectives of quantum machine learning can be
broadly divided into two categories. One is to improve the computational speed of existing
methods by leveraging the above-mentioned quantum algorithms. Thus far, the HHL algo-
rithm [18], a quantum solver of linear systems of equations, has been utilized for regression
models [26–28] and classifiers [29, 30]. Other primitive quantum algorithms have also been ex-
ploited to improve the computational speed. The other is to improve the performance of pattern
recognition, where quantum computers are used to discover the underlying regularities in the
data. The motivation behind this idea is to utilize the Hilbert space, whose dimension scales
exponentially in the number of qubits, as a feature space for machine learning. In other words,
the quality of the data is improved by mapping it onto the so-called quantum-enhanced feature
space where data structure can be easily found. This field is called quantum-enhanced machine
learning. Actually, it has been theoretically proven that some synthetic classification tasks
cannot be solved efficiently by classical methods but by fine-tuned quantum-enhanced machine
learning models [31–33]. In addition, 100 qubits available even in the NISQ devices result in a
feature space of approximately 1030-dimension, which might be hard for classical computers to
access effectively. Therefore, quantum-enhanced machine learning has also been explored for its
practical advantages even in the NISQ era.

This thesis discusses the design principles of quantum-enhanced machine learning models for
practical applications. Although it has been suggested that quantum-enhanced feature space can
improve performance for specific tasks, this field is at an early stage, and further investigations
on how to construct powerful models are needed for real-world applications. Thus, the goals of
this thesis are to analyze the performance of quantum-enhanced machine learning and provide
guidelines for designing the models in practical situations. More specifically, we examine two
types of quantum-enhanced machine learning: quantum kernel methods [34, 35] and quantum
reservoir computing [36]. The main contributions of this thesis are summarized in the following.

Quantum kernel methods use a function called the quantum kernel to utilize the quantum-
enhanced feature space for pattern recognition tasks such as classification. Due to the provable
advantages of tailored quantum kernels for specific tasks [31–33], many researchers explore their
utility in practical situations. On the other hand, there are caveats when quantum kernel-based
learning models are used for actual machine learning tasks. For instance, users should choose the
quantum feature map, which heavily depends on the performance. In addition, the commonly-
used fidelity-based quantum kernel suffers from implementation and trainability problems as the
quantum system size increases (the so-called vanishing similarity issue) [37–39]. Here, we address
these two issues. For the first case, we propose a quantity to assess the classification performance
of quantum feature maps, which can help screen suitable quantum feature maps among many
candidates [40]. We also examine the effectiveness of the synthesis approach to construct a
powerful quantum feature map. As for the second issue, we theoretically analyze the issue
for the fidelity-based quantum kernel and then propose a new class of quantum kernels called
quantum Fisher kernels as a circumventing approach to the vanishing similarity issue [38]. We
analytically and numerically demonstrate that our proposal can circumvent the problem when
shallow alternating layered ansatzes are used. We elaborate on these results in Chapter 4.

Another typical quantum-enhanced machine learning model is quantum reservoir computing,
where quantum-enhanced feature space is exploited for temporal information processing tasks.
The core of quantum reservoir computing lies in a quantum reservoir, an input-driven quantum
system, which plays a role in the feature extractions of time-series data. However, there is room
for investigation in designing better-performing and efficiently implementable quantum reser-
voirs. With a focus on the problem, we propose a new quantum reservoir computing framework
that makes use of unavoidable quantum noise to enhance the power of temporal information pro-

2

cessing. We experimentally demonstrate that seemingly harmful quantum noise can be utilized
to enrich the power of sequential data processing [41]. We also analyze the temporal informa-
tion processing capabilities induced by quantum noise via a tool called temporal information
processing [42]. Our analysis clarifies dissipation noise such as the amplitude damping noise can
induce information processing capabilities. We detail these results in Chapter 5.

The rest of this thesis is organized as follows. Chapter 2 provides an introduction to quan-
tum computing and a brief overview of quantum machine learning. Then, in Chapter 3, we
review quantum-enhanced machine learning and explain quantum kernel methods and quantum
reservoir computing in detail. This chapter will facilitate the understanding of the main topics
discussed in the thesis. The main parts of this thesis are in Chapter 4 and Chapter 5. In Chap-
ter 4, we present our results on quantum kernel methods. More precisely, we discuss analysis and
synthesis methods for quantum feature maps in Sec. 4.1, and propose a new quantum kernel to
mitigate the vanishing similarity issue in Sec. 4.2. Next, Chapter 5 develops our new framework
of quantum reservoir computing, where quantum noise intrinsic in actual quantum hardware is
exploited to enhance temporal information processing. We provide a proof-of-principle demon-
stration in Sec. 5.1 and a quantitative analysis of temporal information processing abilities in
Sec. 5.2. Lastly, we conclude this thesis and present outlooks in Chapter 6.

3

Chapter 2

Quantum Computing

In this chapter, we explain the fundamentals of quantum computing. We first review building
blocks of quantum computation, such as quantum bits, quantum gates, measurements, and
quantum circuits. Then, we present the density operator formalism, followed by introducing the
quantum operation formalism, a mathematical framework necessary to describe more general
transformations of quantum systems. Subsequently, we discuss the current situation of quantum
hardware. Finally, we briefly introduce machine learning techniques using quantum computers
known as quantum machine learning to clarify the topics covered in this thesis. We remind
readers of the literate [43] for more details of quantum computing and its background.

2.1 Basics of Quantum Computation

2.1.1 Dirac Notation for Quantum States

In quantum computing, information is processed using quantum bits represented by two-level
quantum systems. Dirac notation is commonly used in quantum mechanics to describe such
quantum systems, and we will adopt it throughout this thesis. Hence, this subsection briefly
introduces the representation of quantum states in Dirac notation.

In quantum mechanics, quantum states are represented by column vectors in a Hilbert space,
a complex vector space equipped with an inner product. For example, a quantum state labeled
ψ in the d-dimensional complex vector space is represented as

|ψ⟩ =

 z1
...
zd

 ∈ Cd (2.1)

with complex numbers {zi ∈ C|i = 1, . . . , d}. The representation of quantum states is called
Dirac notation. In this notation, |·⟩ is called a ket vector that denotes a state of a certain
quantum system, and the self-adjoint of the ket vector is called a bra vector represented as ⟨·|.
We note that A† = (A∗)T is the conjugate transpose of A, where A∗ and AT denote the complex
conjugate and transpose of A, respectively. Using this notation, the inner product between two
quantum states |v⟩ and |w⟩ in d-dimensional complex vector space is expressed as follows;

⟨v|w⟩ =
(
v∗1 . . . v∗d

) w1
...
wd

 =
∑
i

v∗iwi ∈ C. (2.2)

4

Similarly, the outer product is expressed as

|w⟩ ⟨v| =

 w1
...
wd

(v∗1 . . . v∗d
)

=

w1v

∗
1 w1v

∗
2 . . . w1v

∗
d

w2v
∗
1 w2v

∗
2 . . . w2v

∗
d

...
...

. . .
...

wdv
∗
1 wdv

∗
2 . . . wdv

∗
d

 . (2.3)

2.1.2 Quantum Bits (Qubits)

Bits play an essential role in information processing in classical computers. A bit, short for
binary digit, is the smallest unit of information and can have either one of two states, 0 or 1.
Quantum computation has a similar concept corresponding to the bit. It is called a quantum bit
or a qubit. Like classical bits, a qubit can represent two quantum states, |0⟩ and |1⟩; quantum
states |0⟩ and |1⟩ reside in the Hilbert space H = C2 and corresponds to 0 and 1 for the classical
bit, respectively. These are also called computational basis states. Then, each state is expressed
as follows:

|0⟩ ≡
(

1
0

)
, |1⟩ ≡

(
0
1

)
. (2.4)

Unlike classical bits, which can only have 0 or 1 states simultaneously, a single qubit can express
a superposition of |0⟩ and |1⟩. That is, any single-qubit state |ψ⟩ can be represented as

|ψ⟩ = α |0⟩ + β |1⟩ =

(
α
β

)
, (2.5)

where α, β ∈ C satisfies the normalization condition, i.e.,

|α|2 + |β|2 = 1. (2.6)

Eq. (2.5) can also be expressed as

|ψ⟩ = eiγ

(
cos

θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩

)
(2.7)

with θ ∈ [0, π], ϕ ∈ [0, 2π), and γ ∈ R. We remark that eiγ is called the global phase that is
meaningless from the viewpoint of measurement. Therefore, we can ignore the term and rewrite
a single-qubit state as

|ψ⟩ = cos
θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩ . (2.8)

From Eq. (2.8), it turns out that a single-qubit state can be visualized on the surface of the unit
three-dimensional sphere as shown in Fig. 2.1. This sphere is called the Bloch sphere, and the
three-dimensional vector r that determines the quantum state on this sphere is called the Bloch
vector. This Bloch vector r = (rx, ry, rz)T can be represented by expectation values of Pauli
operators;

r =

 rx
ry
rz

 =

 ⟨ψ|σx|ψ⟩
⟨ψ|σy|ψ⟩
⟨ψ|σz|ψ⟩

 =

 sin θ cosϕ
sin θ sinϕ

cos θ

 , (2.9)

where Pauli operators are defined as

σx ≡
(

0 1
1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0
0 −1

)
. (2.10)

5

Figure 2.1: Bloch sphere representation of a single-qubit state. A pure quantum state can be
plotted on the surface of the sphere. Here, the north and south poles correspond to |0⟩ and
|1⟩, respectively. As shown in Eq. (2.8), an arbitrary single-qubit state can be expressed by
determining the parameters θ and ϕ.

We remind the readers that expectation values of quantum states are explained in detail in
Sec. 2.1.4.

As with classical computers that use bit-strings to perform calculations, multiple qubits are
used in quantum computation. The states of multiple qubits are mathematically expressed using
tensor products of qubits. Let us consider an n-qubit system. Then, a computational basis state
of the n-qubit system can be expressed as

|b1⟩ ⊗ |b2⟩ ⊗ . . .⊗ |bn⟩ (2.11)

where |bi⟩ ∈ {|0⟩ , |1⟩} represents the computational basis of the i-th qubit and ⊗ denotes the
tensor product operation. In general, a pure state composed of n qubits exists in the 2n-
dimensional Hilbert space and can be expressed as∑

x∈{0,1}n
αx |x⟩ . (2.12)

Here, x ∈ {0, 1}n denotes a bit sequence of length n and the complex-valued coefficients satisfy∑
x∈{0,1}n |αx|2 = 1.
We lastly state an essential property of quantum mechanics, entanglement. Suppose we have

a composite system |ψAB⟩. If the system can be written as a tensor product of arbitrary pure
states, i.e., |ψAB⟩ = |ϕA⟩ |ϕB⟩, it is called a product state. On the other hand, if the state cannot
be written in this way, it is called an entangled state. Entanglement is a property unique to
quantum mechanics and plays a vital role in fields such as quantum computation and quantum
teleportation.

6

2.1.3 Quantum Gates

In quantum computing, operations are performed by applying unitary operators called quantum
gates to the qubits defined in the previous section. These quantum gates are conceptually
equivalent to the logic gates in classical computation. In other words, as classical computers
use logic gates such as NOT, AND, and XOR to perform logic operations, quantum computers
use quantum gates for information processing. Mathematically, a quantum gate is defined as an
operator U : H → H that acts on the Hilbert space H. We notice that quantum gates must be
unitary operators, which possess the following property;

U †U = UU † = I. (2.13)

This means that the norm of quantum states is preserved under the operations. It also indicates
that quantum gate operations are reversible.

In what follows, we first describe basic single-qubit gates commonly used in quantum com-
putation. As mentioned above, due to the unitarity of the operations, a quantum gate can be
regarded as an operation that transforms a unit vector to another unit vector in the Hilbert
space. For ease of understanding, let us consider the Bloch sphere shown in Fig. 2.1. Then,
we can think of a quantum gate operation as a rotation of a unit vector. Typical examples of
single-qubit gates are the Pauli gates.

X ≡
(

0 1
1 0

)
, Y ≡

(
0 −i
i 0

)
, Z ≡

(
1 0
0 −1

)
, (2.14)

where X, Y , and Z correspond to the axes of rotation on the Bloch sphere. These Pauli gates
transform the state α |0⟩ + β |1⟩ as follows;

X : α |0⟩ + β |1⟩ → α |1⟩ + β |0⟩ ,
Y : α |0⟩ + β |1⟩ → iα |1⟩ − iβ |0⟩ ,
Z : α |0⟩ + β |1⟩ → α |0⟩ − β |1⟩ .

Besides, typical examples are the Hadamard gate H, the phase gate S, and the T gate. Each of
these gates is expressed as follows.

H =
1√
2

(
1 1
1 −1

)
, (2.15)

S =

(
1 0
0 i

)
, (2.16)

T =

(
1 0
0 exp(iπ/4)

)
= exp(iπ/8)

(
exp(−iπ/8) 0

0 exp(iπ/8)

)
. (2.17)

Moreover, there are gates that rotate quantum states around each axis of the Bloch sphere by
arbitrary rotation angles. The gates can be defined by setting θ to an arbitrary rotation angle
on each Pauli axis: that is,

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
, (2.18)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, (2.19)

7

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

(
e−iθ/2 0

0 eiθ/2

)
. (2.20)

Importantly, with these rotation gates, an arbitrary unitary operation on a single qubit can be
expressed as

U = eiαRz(β)Ry(γ)Rz(δ) (2.21)

with α, β, γ, δ ∈ R.

Next, we introduce multiple-qubit gates, focusing on controlled gates. A controlled gate
performs operations to target qubits conditionally on the state of control qubits. Such controlled
operations are critical in logic operations. A typical example of controlled operations is a
controlled-NOT gate (CNOT). This two-qubit gate acts on a control qubit and a target qubit.
If the control qubit is |1⟩, X gate is applied to the target qubit, while nothing is done if the
control qubit is |0⟩. More specifically, suppose we have a two-qubit state, and the first and second
qubits are regarded as the control and target ones, respectively. Then, the gate operation is
summarized as follows;

|00⟩ → |00⟩ ; |01⟩ → |01⟩ ; |10⟩ → |11⟩ ; |11⟩ → |10⟩ . (2.22)

Also, a matrix representation of this CNOT gate is given by

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.23)

Another common two-qubit gate is the controlled-Z gate (CZ). This gate performs Z operation
on the target qubit when the control qubit is |1⟩, whereas it does nothing when the control qubit
is |0⟩. This operation is represented as

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.24)

in matrix representation. Besides, the swap gate is also an important operation. A swap gate
swaps the state of two qubits and is expressed in the following.

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.25)

Lastly, we introduce a three-qubit gate called the Toffoli gate. The Toffoli gate only performs
the X gate on the target qubit when two control qubits are |11⟩. The logic operation of the
Toffoli gate is expressed as |bc1⟩ |bc2⟩ |bt⟩ → |bc1⟩ |bc2⟩ |bt ⊕ bc1bc2⟩, where first two states represent
the control qubits (denoted as bc1 and bc2, respectively) and the rest is the target qubit. Here,

8

•
•

Figure 2.2: Lst of commonly-used single- and multiple-qubit gates.

⊕ denotes modulo two addition. Also, its matrix representation is

Toffoli =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

. (2.26)

Examples of these single and multiple qubit gates are shown in Fig. 2.2.

2.1.4 Measurement

We need to perform measurements to retrieve classical information from quantum states. In
quantum mechanics, the probability of obtaining a certain measurement outcome is determined

9

probabilistically. Let us consider a quantum state |ψ⟩ =
∑

i αi |i⟩. We note that |i⟩ is a compu-
tational basis and αi ∈ C. In this case, the probability of observing a certain basis |j⟩ is given
by

p(j) = | ⟨j|ψ⟩ |2 = |αj |2. (2.27)

In general, let {Mm} : Cd → Cd be a set of measurement operators, and suppose we measure
a quantum state |ψ⟩ ∈ Cd. Here, m denotes the measurement outcome corresponding to the
operator Mm. In this case, the probability p(m) of obtaining m for the quantum state |ψ⟩ is
defined as

p(m) = ⟨ψ|M †
mMm|ψ⟩ . (2.28)

Also, the quantum state after measurement is represented as

Mm |ψ⟩√
⟨ψ|M †

mMm|ψ⟩
. (2.29)

We remark that measurement operators satisfy the following equality:∑
m

M †
mMm = I. (2.30)

This is because the sum of the probabilities of obtaining measurement outcomes is 1.
We can also measure physical quantities called observables to understand physical properties

of quantum systems. The observable is mathematically represented by a Hermitian matrix A,
which satisfies A = A† and has real eigenvalues. A typical example of observables is a Pauli
operator. Also, an arbitrary observable A for an n-qubit system can be rewritten via spectral
decomposition; with Pauli strings Pi ∈ {I,X, Y, Z}⊗n, we can express the observable as

A =
∑
i

aiPi. (2.31)

Then, the expectation value of the observable on a quantum state |ψ⟩ is written as follows;

⟨ψ|A |ψ⟩ = ⟨ψ|

(∑
i

aiPi

)
|ψ⟩ =

∑
i

ai ⟨ψ|Pi |ψ⟩ . (2.32)

In actual experiments, expectation values are computed by repeating the process of gener-
ating quantum states and measurements. More concretely, we execute a number of independent
measurements followed by classical post-processing to obtain expectation values. This is be-
cause quantum states are collapsed to a certain state after measurement, as shown in Eq. (2.29).
Conventionally, one round of measurement is called a shot. Of course, as the number of shots
Ns increases, the estimation error of expectation values decreases in the scaling of O(1/

√
Ns).

Still, it is impossible to avoid statistical errors due to finite resources.

2.1.5 Quantum Circuit Models

Quantum computation involves the process of performing unitary operations on a prepared
initial state and measurements. Quantum circuits are models used to represent these operations
graphically. In the quantum circuit representation, there are wires corresponding to qubits.
Then, quantum operations, i.e., quantum gates, are described on these wires, meaning that
unitary gates act on the qubits chronologically from left to right. Finally, the measurement is
denoted by a meter symbol. Fig. 2.2 shows the representation of gates used in quantum circuits.

10

(a)

(b)

Figure 2.3: Examples of quantum circuits. Panel (a) shows a toy quantum circuit to explain the
operational meaning of symbols and Panel (b) illustrates a quantum circuit that is equivalent
to performing the swap operation.

In addition, Fig. 2.3 shows two concrete examples of quantum circuits. Fig. 2.3 (a) represents
the following operations: (1) the Hadamard gate and Rz gates are applied to all four qubits,
(2) the CZ gates are applied to the first and second, second and third, and third and fourth,
in that order. Finally, all qubits were measured. Fig. 2.3 (b) shows a circuit equivalent to the
SWAP gate using CNOT gates.

2.2 Density Matrices

Up to now, a state vector |ψ⟩ has been used to represent quantum states. However, the den-
sity operator representation is more convenient than the state vector, not only because it can
represent states that are mathematically equivalent to the state vectors but also because it can
represent more general quantum systems. Specifically, suppose a quantum state |ψi⟩ is sampled
with probability pi ∈ [0, 1]. In the density matrix formula, such a classical mixture of quantum
states, {pi, |ψi⟩}, is expressed as follows;

ρ =
∑
i

pi |ψi⟩ ⟨ψi| =
∑
i

piρi. (2.33)

This state is called a mixed state. In contrast, a state represented by a state vector is called a
pure state. By definition, we can immediately confirm that the density matrix can also represent
pure states; that is, ρ = |ψ⟩ ⟨ψ|.

The density operator is a non-negative operator, i.e., ρ ≥ 0, and has the property that
Tr[ρ] = 1, where Tr[·] denotes a trace operation. This can be easily shown by definition. Also,
to determine whether a given quantum state is pure or mixed, we can use the purity defined by
Tr[ρ2]. Namely, Tr[ρ2] = 1 for a pure state, and Tr[ρ2] < 1 for a mixed state. A d-dimensional
quantum state has the minimum purity of 1/d when I/d. This quantum state is called the
maximally mixed state.

11

Density operators are also helpful in describing subsystems of quantum states. A composite
system of quantum states is represented as a tensor product state, as in the case of state
vectors. More concretely, a composite system consisting of n quantum systems is represented
as ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn with the i-th quantum system ρi. On the other hand, an arbitrary pure
state cannot always be described in such a manner because of entanglement. Consider a bipartite
system ρS1S2 consisting of two subsystems S1 and S2. In this case, the subsystem S1 is expressed
as

ρS1 = TrS2 [ρS1S2] (2.34)

where TrS2 [·] denotes a partial trace operation with respect to the subsystem S2.
Finally, we summarize the mathematical representation of unitary operations and measure-

ments using density operators. Unitary operations on a density operator ρ are expressed as

ρ→ UρU †. (2.35)

Also, when the quantum state ρ is measured by a set of measurement operators
{
Mm

}
, the

probability of obtaining the measurement outcome m is given by

p(m) = tr(M †
mMmρ). (2.36)

The quantum state after the measurement reads

MmρM
†
m

tr(M †
mMmρ)

. (2.37)

2.3 Quantum Operations and Quantum Noise

Thus far, only unitary transformations and measurements have been explained as operations on
quantum states. However, the unitary operator cannot describe the transformation of quantum
states caused by quantum noise, for example. Therefore, we introduce a framework for describing
more general quantum operations. Afterward, we show some concrete examples of quantum
noise.

2.3.1 Quantum Operator Formalism

It is necessary that one can describe not only closed systems but also open systems to understand
the transitions of quantum states mathematically. Quantum operator formalism is very helpful
in describing various types of quantum state transitions. In the quantum operator formalism,
the transformation of quantum states is expressed using density operators as follows.

ρ′ = E(ρ), (2.38)

where ρ′ represents the quantum state after the transition and E(·) denotes quantum operations
that act on a quantum state ρ.

Simple examples of quantum operations have already been shown: unitary time evolution
and measurement. These are expressed as E(ρ) = UρU † and E(ρ) = MiρM

†
i , respectively. There

are three properties that should be satisfied for such quantum operations [43]:

12

• For any density operator ρ, the quantum operation E(·) satisfies 0 ≤ Tr[E(ρ)] ≤ 1.

• The quantum operation E(·) is a convex linear map of density operators, i.e.,

E
(∑

i

piρi

)
=
∑
i

piE(ρi).

• The quantum operation E(·) is completely positive. Namely, E(A) and (I ⊗ E)(A) are
positive for any positive operator A.

In particular, quantum operations that satisfy Tr[E(ρ)] = 1 for the first property are called com-
pletely positive trace-preserving (CPTP) maps. It is known that quantum operations describing
quantum noise are always CPTP maps. The necessary and sufficient conditions to satisfy the
above properties are as follows:

E(ρ) =
∑
i

EiρE
†
i , (2.39)

where {Ei} satisfies
∑

iEiE
†
i ≤ I and the equality holds when E(·) is a CTPT map. This

operator is also called the Klaus operator.

2.3.2 Quantum Noise

In the following, we show two examples of quantum noise that can actually occur in actual
quantum hardware: the depolarizing noise and the amplitude damping noise.

First, the depolarizing noise is a quantum operation that keeps the quantum state ρ un-
changed with probability 1 − p but replaces it with the completely mixed state I/d with prob-
ability p. We note that d denotes the dimension of the quantum state ρ. This is represented
as

EDEP (ρ) = p
I

d
+ (1 − p)ρ. (2.40)

In the Kraus operator representation, the depolarizing noise channel can also be written as
EDEP (ρ) =

∑
i p(Ei)EiρE

†
i , with the Pauli strings Ei ∈ {I,X, Y, Z}⊗n and its probability p(Ei).

Next, the (generalized) amplitude damping is the one that dissipates the energy in the
quantum system to the external environment. Here, we consider a one-qubit system. In this
case, the generalized amplitude damping can be expressed as

EGAD(ρ) = E1ρE
†
1 + E2ρE

†
2 + E3ρE

†
3 + E4ρE

†
4, (2.41)

where

E1 =
√
pf

(
1 0
0

√
1 − pe

)
, E2 =

√
pf

(
0

√
pe

0 0

)
,

E3 =
√

1 − pf

(√
1 − pe 0

0 1

)
, E4 =

√
1 − pf

(
0 0√
pe 0

)
.

Here, pf and pe denote a probability for phase flip to occur and a probability of energy dissipa-
tion, respectively.

These noises are often used to analyze noisy quantum computation from a theoretical point
of view. However, in real quantum devices, more complicated noise that the Markov model
cannot describe can be present. In addition to the aforementioned noise, errors can occur in
initial state preparation and measurement. There is also a noise called crosstalk, an unwanted
coupling between qubits that could be difficult to model mathematically [44].

13

2.4 Near-Term and Long-Term Quantum Computers

Some quantum algorithms have been theoretically shown to outperform the corresponding con-
ventional methods. These algorithms assume the use of large-scale quantum computers that are
capable of error correction in the process of noisy quantum computation. Such quantum com-
puters are called the Fault tolerant quantum computers (FTQCs). These days, major companies
such as IBM and Google have been developing quantum hardware to realize such quantum
computers. For example, IBM made its first 5-qubit device available via the cloud platform in
2016 and released a 433-qubit device in 2022. Moreover, various companies and research insti-
tutes are developing quantum devices using techniques such as superconducting qubits [45–48],
photons [49, 50], ion traps [51, 52], silicon [53], and NMR [54]. While the advance of quantum
hardware is rapid, it may be necessary to have millions of qubits to realize practical fault tolerant
quantum computing. Thus, it would require time to get access to practical FTQCs.

Currently, small- to medium-scale devices of 50 to hundreds of qubits are available, where
noise is unavoidable in quantum computation and qubit-connectivity is limited. Such quantum
devices are called noisy intermediate-scale quantum (NISQ) computers [24]. While it is difficult
for these NISQ devices to execute the quantum algorithms with the advantages, it is believed
that NISQ computers still have the potential to show advantages for certain tasks. The most
eye-catching example is the sampling task using a quantum computer, demonstrated by Google
in 2019 [25]. Quantum supremacy has also been shown to exist even for quantum computation
using noisy, shallow quantum circuits [55]. Therefore, the usefulness of NISQ devices has been
investigated, with the aim of developing algorithms that can maximize the computational per-
formance of current devices and techniques that can be adapted to large-scale FTQC algorithms.
Furthermore, exploring advantages of NISQ have been facilitated by the error mitigation [56], a
technique that reduces the noise level of output values obtained from quantum devices [57–62].

2.5 Application: Machine Learning

Examples of fields where quantum computers can enhance the performance of conventional
methods include quantum chemistry and finance. Also, machine learning is another area where
quantum advantage could be demonstrated; the emerging field is called quantum machine learn-
ing (QML). QML is an interdisciplinary field of quantum computing and machine learning, and
thus, the term is used in broad and diverse contexts. Hence, in this section, we provide a brief
introduction to QML algorithms to specify the scope of this thesis. Specifically, we explain QML
methods in terms of settings, categories of methods, and types of quantum devices used.

First, approaches of QML can be divided into four types, depending on the type of data
source and the type of algorithms. Fig. 2.4 illustrates the four types of settings [63]. Each of
them is briefly described below.

• CC setting: This is the setting where classical datasets are processed using classical
algorithms. This is exactly how traditional classical machine learning models work. Per-
forming tasks on classical data with the so-called dequantitized algorithms [64–66] also falls
within this framework.

• QC setting: This setting aims to perform tasks with quantum data using classical algo-
rithms. One example is to generate quantum states via neural networks to understand the
properties of quantum many-body systems; for instance, neural networks are utilized for
quantum state tomography [67, 68]. In addition, deep learning and neural networks are

14

CC

QC QQ

CQ

Type of processing devices

Classical Quantum

C
la

s
s
ic

a
l

Q
u
a
n
tu

m

T
y
p
e
 o

f
d
a
ta

 s
o
u
rc

e

Figure 2.4: Four types of setting for QML. The settings can be categorized by types of data
source (classical data or quantum data) and types of information processing devices (classical
computers or quantum computers). For example, such categorization of QML can be found in
Ref. [63]. CQ setting (colored in blue) is the main scope of this thesis.

15

used to detect the phase of matter of a given ground state [69, 70] or multipartite entan-
glement [71,72]. From this perspective, the improved classical machine learning algorithm
based on classical shadows [73,74] can also be classified into this category.

• CQ setting: This case refers to a setting where quantum algorithms solve tasks on clas-
sical datasets. Quantum computers are used to solve tasks such as classification and
regression using data generated from classical resources. Examples of the data are im-
age data, text, and time-series data. Quantum computers are primarily used to analyze
patterns in classical data and to speed up subroutines of conventional algorithms.

• QQ setting: In this case, both the data source and algorithms are quantum. For example,
the so-called quantum data that is considered challenging to generate by classical means,
such as ground states of quantum systems, can be used as inputs to quantum computers
to solve tasks by quantum algorithms [75]. This setup is considered natural because
quantum data is processed by quantum-based computers. Thus, this is the most promising
candidate where quantum advantages can be found. Examples of tasks include quantum
phase estimation and error correction.

Next, we explain the learning methods in QML. In classical machine learning, there are three
categories of learning methods: supervised learning, unsupervised learning, and reinforcement
learning. QML can also be categorized from the perspective of these learning paradigms. A
brief characterization of these methods is given below. For more details, please refer to Ref. [2].

• Supervised learning: In the learning paradigm, a model is trained to reproduce a map of
given input data and the corresponding desired output data. For example, given handwrit-
ten digit images and their labels (the actual digits) as training data, a model is trained to
output the numbers corresponding to the images. The task is called a classification when
output values are discrete or categorical variables. On the other hand, a task is called a
regression problem when the outputs are continuous values.

• Unsupervised learning: The goal of unsupervised learning is to extract properties or
features from given input data. Unlike supervised learning, desired outputs are not pro-
vided but only input values for unsupervised learning. A concrete example is clustering.
In this method, groups of data are assigned based on the similarity between given data
points. Another example is estimating the underlying probability distribution of given
data.

• Reinforcement learning: This paradigm aims at learning appropriate actions of a
model, called an agent, by maximizing rewards through trial and error. In contrast to
supervised learning, the agent does not receive a desired output value corresponding to a
reward. Instead, the agent undergoes a process where it is rewarded for good scores and
penalized for bad scores according to its actions; as a result, optimal actions are acquired.
The most famous example is learning the game Go [76].

Finally, we differentiate QML algorithms in terms of quantum devices used. As noted in the
previous section, long-term quantum computers can demonstrate provable quantum supremacy,
whereas their implementation is challenging at present. On the other hand, NISQ computers
are currently available, and one can actually investigate the potential of NISQ algorithms now;
however, noise cannot be avoided. In the following, we briefly summarize the features and
examples of QML algorithms for each device.

16

• QML algorithms with FTQC: These algorithms mainly replace subroutines in existing
classical methods with algorithms guaranteed to show quantum advantages. The primi-
tive quantum algorithms used for the purpose include the HHL algorithm (a method for
solving linear systems of equations) [18], the Grover algorithm [16], the quantum phase
estimation algorithm [17], and the quantum amplitude estimation algorithm [77]. We note
that the unified framework of these quantum algorithms is addressed in Ref. [78, 79]. For
instance, quantum phase estimation and the HHL algorithm are used to speed up support
vector machines based on kernel methods for classification tasks [29,30]. Also, algorithms
based on the HHL have been proposed for regression tasks [26–28]. For clustering, an
unsupervised learning model, algorithms such as the Grover algorithm, the HHL, and
quantum amplitude estimation have been proposed [80–82]. A quantum version of the
principal component analysis (PCA) [83], a method used for dimensionality reduction,
has also been presented using density matrix exponentiation and quantum phase estima-
tion. A technique based on Grover’s algorithm has also been proposed for reinforcement
learning [84,85].

• QML algorithms with NISQ devices: These algorithms mainly perform machine
learning tasks using shallow quantum circuits. The core idea is to take advantage of shallow
quantum circuits, which have the potential to be more expressive than the corresponding
classical machine learning models. A concrete example is the variational quantum algo-
rithms (VQAs) [86]. VQAs learn tunable parameters in parameterized quantum circuits
(PQCs) so that the output values obtained by measuring the PQCs are suitable for tasks
such as classification and regression. The algorithms have also been utilized for regression
tasks [87,88], quantum classifiers [75,89,90], quantum generative models [91–93]. Another
example is quantum kernel methods [34, 94]. As will be explained later, quantum kernel
methods are supervised machine learning methods used primarily for classification tasks
and have the potential of quantum advantages; it has been theoretically demonstrated that
there exist datasets that are not efficiently learnable by classical models but by quantum
kernels [31–33]. We note that what quantum kernel methods mainly do is to estimate a
function called the quantum kernel, which can be done with the NISQ devices as well as
the FTQC. Therefore, the practical advantages of the methods have been investigated.
Quantum kernels can also be used for the kernel PCA, an unsupervised learning model.

In this thesis, we handle supervised QML models, quantum kernel methods and quantum
reservoir computing, under CQ settings. We note that these QML algorithms are implementable
on both long-term and NISQ devices. However, this thesis focuses on NISQ applications of the
QML methods. We will detail these algorithms in the next section.

17

Chapter 3

Quantum-Enhanced Machine
Learning

As mentioned in the previous chapter, there is hope that machine learning can be improved
with the help of quantum computers. Specifically, the main focuses of interest are (1) to speed
up the execution time of machine learning algorithms and (2) to improve the “quality of data”
for pattern recognition tasks. For the first case, primitive quantum algorithms such as the HHL
algorithm [18] are applied to conventional methods to achieve theoretically guaranteed speed-
up. For the latter, the Hilbert space, which grows exponentially in dimension with the increase
of the number of qubits, is utilized as a feature space in machine learning tasks to improve
the pattern analysis [34, 87]. That is, it is believed that quantum computers are exploited to
find features of data that conventional methods cannot discover, and hence, performance can
be improved. We call this subfield quantum-enhanced machine learning. This thesis deals with
two examples of quantum-enhanced machine learning: quantum kernel methods and quantum
reservoir computing. Thus, in this chapter, we first explain the general concept of quantum-
enhanced machine learning. In particular, we briefly review key ideas and settings of quantum-
enhanced machine learning models. Then, we introduce details of quantum kernel methods and
quantum reservoir computing.

3.1 Quantum-Enhanced Feature Space for Machine Learning

3.1.1 Quantum-Enhanced Feature Space

For ease of understanding, we here focus on classification tasks to explain the feature space.
Given input data x such as images and its corresponding label y, this task aims to train the
model to output a label corresponding to the input data. Namely, the model seeks to find
features inherent in the dataset through training to obtain the correct labels. However, it is
generally challenging to discover intrinsic features in the original input space. We note that
a space where d-dimensional input data points reside is called the input space. An approach
to address the problem is to prepare a set of functions {ϕk(x)}, and then construct a vector
x → Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕM (x))T where M > d. Then, one would expect that suitable
features can be found in such a nonlinearly-transformed high-dimensional space. The space
spanned by the feature vectors is called a feature space. In addition, Φ(·) is called a feature
map. By constructing a good feature map, high performance is realizable in classification tasks.

Similarly, the quantum-enhanced feature space refers to a quantum space induced by quan-
tum feature maps [34,94]. We remind readers that the quantum space corresponds to the Hilbert

18

space. As stated, the Hilbert space increases exponentially in dimension as the number of qubits
grows. This means that, even for 20 qubits, the space of size 220 ≈ 106 can be utilized. Such a
huge space is considered hard for classical means to access efficiently but could be accessible by
quantum computers. Hence, using the Hilbert space for machine learning tasks could improve
the performance of pattern recognition. Also, currently available quantum devices can utilize 50
to hundreds of qubits. Thus, this field has been actively investigated to find practical advantages
in the NISQ era [24].

3.1.2 Quantum Feature Maps

It is necessary to define a suitable quantum feature map to fully utilize the quantum feature
space. When dealing with classical data, the quantum feature mapping is performed by embed-
ding the data into quantum states via quantum operations. To be more specific, a feature vector
|Φ(x)⟩ in the quantum space is commonly constructed by applying the data-dependent unitary
operator UΦ(x) to an initial state |0⟩, i.e., |Φ(x)⟩ = UΦ(x) |0⟩. This unitary operator UΦ(x)
is called a quantum feature map. Tailoring the quantum feature map well is critical because
it determines the data structure in the quantum-enhanced feature space. We note that, when
quantum data is handled in QML tasks, quantum states are used as input states in most cases;
see e.g. Ref. [75,95,96]. In this case, quantum operations that transfer input quantum states to
certain quantum states are regarded as quantum feature maps. However, since this thesis deals
with only classical data, we will not dig into the details.

For a better understanding, we show some basic examples of quantum feature maps below.
Note that we refer to Ref. [63].

• Basis encoding: This approach encodes the input x as a binary bit-string. For example,
x = 01011 (x = 11) is represented as |01011⟩ using 5 qubits. Thus, for the input bit-string
of length n, the quantum feature map UΦ(x) transforms the initial state as follows;

UΦ(x) : x ∈ {0, 1}n → |i⟩ , i = {0, 1}n (3.1)

• Amplitude encoding: TheN(= 2n)-dimensional normalized input vector x = (x0, . . . , xN−1) ∈
RN is associated with the amplitude of an n-qubit state |Φ(x)⟩. That is,

UΦ(x) : x ∈ RN → |Φ(x)⟩ =
N−1∑
i=0

xi |i⟩ . (3.2)

• Copies of a quantum state: This approach constructs a state |ψx⟩ obtained by ampli-
tude encoding with d replicas.

UΦ(x) : x ∈ RN → |Φ(x)⟩ ⊗ . . .⊗ |Φ(x)⟩ . (3.3)

• Product encoding: This approach encodes a input vector x = (x0, . . . , xN−1) ∈ RN into
separate qubits using tensor products. As an example, the unitary operator corresponding
to |Φ(xi)⟩ = cosxi |0⟩ + sinxi |1⟩ for i = 1, . . . , N is represented as

UΦ(x) : x ∈ RN →
(

cosx1
sinx1

)
⊗ . . .⊗

(
cosxN
sinxN

)
∈ R2N . (3.4)

In practical situations, a quantum feature map is generated by constructing a data-dependent
quantum circuit. Specifically, data is usually encoded into rotation angles of unitary gates in
quantum circuits. Below are three typical examples of feature map circuits used for QML tasks.

19

• Tensor product quantum circuits: This quantum circuit is represented by the tensor
product of single-qubit gates.

UΦ(x) =

n⊗
k=1

Vk(x) (3.5)

with the number of qubits n. Concrete examples of Vk are Rx gate (Vk(x) = e−ixkXk/2)
and RyRz gate (Vk(x) = e−ixkZk/2e−ixkYk/2), where the k-th element of the data xk is
injected into the rotation angle. We note that

σk = I ⊗ . . .⊗ σ︸︷︷︸
k-th qubit

⊗ . . .⊗ I, σ ∈ {X,Y, Z}. (3.6)

• IQP-based quantum circuits: This quantum circuit is defined as follows;

UΦ(x) = VΦ(x)H⊗nVΦ(x)H⊗n (3.7)

with H⊗n the Hadamard gates acting on all qubits in parallel. Here, VΦ(x) is represented
as

VΦ(x) = exp

(
i
∑
S⊆[n]

ϕS(x)
∏
i∈S

Zi

)
, (3.8)

where ϕ(x) ∈ R is an arbitrary function using data x and |S| ≤ 2. Here, ZZ gates are
applied to only adjacent qubits. The IQP-based quantum circuit is proposed in Ref. [34]
and has been suggested to have the potential to exhibit quantum supremacy. Originally,
IQP (Instantaneous Quantum Polynomial) is a model proposed in Ref. [97], where it has
been shown that the Polynomial Hierarchy collapses to its third level if its probability
distribution can be efficiently sampled by a classical computer [97, 98]. Namely, it is con-
jectured that a classical computer cannot efficiently simulate the model. As this quantum
circuit is based on the IQP circuit, the circuits’ output is also considered intractable.

• Hamiltonian evolution quantum circuits: This quantum circuit is introduced in
Ref. [99, 100] to study quantum many-body dynamics and enjoys practical usability. The
quantum circuit plays a role in evolving the initial state in a data-dependent manner
through the Hamiltonian H(x). An example is a one-dimensional Heisenberg model. The
quantum circuit is expressed as

UΦ(x) =
n∏

j=1

exp

(
−i t
T
ϕ(x) (XjXj+1 + YjYj+1 + ZjZj+1)

)T

, (3.9)

where ϕ(x) ∈ R is an arbitrary function, T is the Trotter step, and t is arbitrary real
number. As for the initial state, the tensor product of Haar-random states can be em-
ployed [37].

Moreover, quantum feature maps can comprise a quantum circuit with tunable parameters
and a data-embedding circuit. More precisely, we can utilize quantum circuits in the form of

UΦ(x,θ) = W (θ)V (x). (3.10)

Here, the unitary operator W (θ) with parameters θ is called a parametrized quantum circuit
(PQC). A data-dependent unitary V (x) is called an embedding quantum circuit. Parameters

20

are introduced to increase the model’s flexibility and make it easier to find a quantum feature
space suitable for specific tasks. Quantum feature maps can also be constructed by repeating
an embedding layer and a PQC layer;

L∏
d=1

Wd(θ)Vd(x) = WL(θL)VL(x) . . .W2(θL)V2(x)W1(θL)V1(x). (3.11)

This type of quantum circuit is called a data re-uploading quantum circuit [101]. It is known
that this technique can improve the expressivity of quantum circuit models. Lastly, we re-
mark that the quantum feature mapping uses various types of quantum circuits for W and V .
Examples are hardware efficient ansatzes and the so-called alternating layered ansatzes [102],
which are practically convenient to implement. In the context of QML, a quantum feature map,
which can efficiently encode discrete variables into quantum states via a technique known for
quantum information called quantum random access codes (QRAC) [103–105], has also been
developed [106]. In the field of quantum chemistry, quantum circuits that take into account the
properties of the physical system under investigation have also been proposed [107–109].

3.1.3 Models

Quantum-enhanced machine learning models can be broadly divided into explicit models and
implicit models. Such categorization can be seen e.g., in Ref. [106,110–112]. The main difference
lies in how the features in the quantum-enhanced feature space are extracted to construct models.
Specific features of each model are described below.

• Explicit models: The model takes expectation values of parametrized observables with
respect to the data-embedded quantum state as the outputs. Mathematically, the output
of the model is described by

fθ(x) = Tr
[
MU(x,θ)ρ0U

†(x,θ)
]

= Tr
[
M̃θρx

]
, (3.12)

where U(x,θ) = W (θ)V (x), ρx = V (x)ρ0V
†(x) and M̃θ = W †(θ)MW (θ). These

models optimize the parameter θ to find features in the quantum-enhanced space suit-
able for machine learning tasks. The model is often called a quantum neural network
(QNN). The models also include the case when the data re-uploading quantum circuits
are used for the quantum feature map, i.e., U(x,θ) =

∏L
d=1Wd(θ)Vd(x). In this case,

the output is represented as fθ(x) = TrM̃θρx,θ, where ρx = Ṽ (x,θ)ρ0Ṽ
†(x,θ) with

Ṽ (x,θ) = VL(x)(
∏L

d=1Wd(θ)Vd(x)) and M̃θ = W †
L(θ)MWL(θ).

• Implicit models: The model uses the inner product of features in the quantum-enhanced
feature space to represent the output value. The inner product in the quantum feature
space is represented by k(x,x′) = ⟨Φ(x),Φ(x′)⟩ with the corresponding quantum feature
vector Φ(·). This function is called the quantum kernel [34, 94]. As will be explained in
detail later, an example of quantum kernels is the fidelity-based quantum kernel repre-
sented by k(x,x′) = Tr[ρxρx′] where ρx = V (x)ρ0V

†(x). With the kernel, the output is
expressed as

fα(x) =
∑
i

αik(x,xi) (3.13)

These models optimize the parameter α through training. This approach is called the
kernel methods ; we describe the details of the methods in the next section. Quantum

21

kernels can also be computed using quantum feature maps containing PQC layers U(x,θ),
such as data-reuploading quantum circuits. In this case, parameters in the quantum-
enhanced feature space θ are also optimized to find optimal quantum features suitable for
the tasks. This learning strategy is called quantum metric learning [113].

As described above, quantum-enhanced machine learning models can be broadly classified
into two categories in terms of how the models are constructed. However, these two models
have the same aspect: the quantum-enhanced feature space is utilized to improve data quality.
Furthermore, many supervised quantum machine learning models such as QNNs can be recast
as kernel-based learning models, i.e., the implicit models. For the details of the proof for the
mathematical equivalence, see Ref. [114]. This indicates the importance of the implicit models
in the QML community.

3.2 Quantum Kernel Methods

Quantum kernel methods are popular QML techniques that leverage the quantum-enhanced
feature space. The method is a quantum extension of kernel methods in classical machine
learning. In kernel methods, functions called the kernels extract features inherent in input
data by nonlinearly transforming the data onto a feature space. Then, the output values of
kernels are used for machine learning tasks such as classification and regression. Especially,
this is often used for classification tasks in combination with classifiers such as support vector
machines (SVMs). In quantum kernel methods, similar to the classical case, quantum kernels
are used for feature extraction. The point is that quantum computers are used to calculate
quantum kernels, which are considered challenging for classical means to estimate efficiently.
With quantum kernels, classical classifiers such as SVM are used for classification. As quantum
kernels can be intractable for classical computers in specific situations, quantum kernel methods
have the potential to outperform the classical counterparts [31–33]. We notice that quantum
SVM implemented on the FTQCs [30] can also be used for the tasks, but this thesis focuses on
classical classifiers with quantum kernels.

In this section, we provide the details of classical kernel methods and then introduce quantum
kernel methods. We also briefly review SVMs used as classification algorithms.

3.2.1 Kernel Methods

Kernel methods are machine learning techniques used in pattern recognition, where the goal is
to find structures and regularities in data. The core idea of the methods is to nonlinearly map
the data points in the high-dimensional space so that the pattern can be easily recognized in
that space called feature space. Kernel functions or kernels implicitly perform such nonlinear
mapping and outputs the similarity of data in the feature space. The kernel is a real-valued
function that takes two data points x and x′ as inputs; given a pair of data x and x′, the
kernel k(x,x′) outputs a scalar value which tells how close the data pair is. The necessary and
sufficient conditions for valid kernels are as follows;

1. The function is symmetric.
k(x,x′) = k(x′,x). (3.14)

22

2. A matrix G whose (i, j) element is the kernel given a pair of data xi and xj , i.e., Gij =
k(xi,xj) is called the Gram matrix or the kernel matrix. Then, the Gram matrix should
be positive semidefinite. That is,

N∑
i,j

cicjGij ≥ 0 (3.15)

with N data points {xi}Ni=1 and ci ∈ R for i = 1, . . . , N .

Some examples of the commonly used kernel functions are the Gaussian kernel

k(x,x′) = exp(−∥x− x′∥2/2σ2), (3.16)

the sigmoid kernel
k(x,x′) = tanh(γx · x′ + r), (3.17)

and the polynomial kernel
k(x,x′) = (γx · x′ + r)M , (3.18)

with σ, γ, r,M ∈ R.
A kernel can be expressed as the inner product of a feature map Φ(x), i.e., k(x,x′) =

ΦT (x)Φ(x′). We take the polynomial kernel with degree M = 2 and γ = 1 as an example. In
this case, the kernel can be rewritten as

(1 + x · x′)2 = (1 + x1x
′
1 + x2x

′
2)

2

= 1 + 2x1x
′
1 + 2x2x

′
2 + (x1x

′
1)

2 + (x2x
′
2)

2 + 2x1x
′
1x2x

′
2

= ΦT (x)Φ(x′).

(3.19)

Here we denote Φ(x) and Φ(x′) as

Φ(x) =
(

1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2

)T
(3.20)

and

Φ(x′) =
(

1,
√

2x′1,
√

2x′2, x
′
1
2
, x′2

2
,
√

2x′1x
′
2

)T
, (3.21)

respectively. We note that the Gaussian kernel can be expressed as the inner product of infinite-
dimensional feature vectors. Like this, all valid kernel functions can be expressed as the inner
product of feature vectors. We provide a mathematical explanation for it in the following.

In kernel theory, the Hilbert space Hk associated to the kernel k(·, ·) on dataset X is called the
reproducing kernel Hilbert space (RKHS). More concretely, given the data points x,x′ sampled
from X and the kernel k(x,x′) on the dataset X , the space Hk is called the RKHS associated
to the kernel if the space possesses the reproducing property;

f(x) = ⟨f,Φx⟩ (3.22)

for an arbitrary function f ∈ Hk. Here, we denote the kernel as Φx ≡ k(·,x) to indicate that
the kernel is a function of a variable given the data point x. Also, the kernel Φx is called
the reproducing kernel. We recall that the Hilbert space is a vector space equipped with the
inner product structure; the inner product is defined as ⟨f, g⟩Hk

for f, g ∈ Hk, and the space is
complete. Then, from Eq. (3.22), the kernel can be expressed in terms of reproducing kernels
Φx and Φx′ :

k(x,x′) = ⟨Φx,Φx′⟩ . (3.23)

23

Namely, the kernel is the inner product of the feature vectors Φx and Φx′ in the RKHS. This
means constructing the kernel can determine the inner product in the RKHS without explicitly
considering the feature vectors. We note that the RKHS can be infinite-dimensional; the infinite-
dimensional feature vectors can be exploited via specific kernels such as the Gaussian kernel.
Also, the Moore-Aronszajn theorem shows that the RKHS associated with a kernel is uniquely
defined [115].

Furthermore, kernel theory provides statements on the trainability of kernel-based learning
models. More specifically, the representer theorem [116–118] shows that solutions of optimization
tasks can be expressed in terms of kernels. Let Ds = {(x1, y1), (x2, y2), . . . , (xN , yN)} be a set
of N data pairs sampled from X × Y for the input and output space, X and Y, respectively.
Also, let Hk be the RKHS associated to the kernel k(x,x′). Then, for an arbitrary loss L and a
strictly monotonic increasing function Ψ, a minimizer of the regularized optimization problem

min
f∈Hk

L((x1, y1, f(x1)), (x2, y2, f(x2)), . . . , (xN , yN , f(xN))) + Ψ(∥f∥2Hk
) (3.24)

can be expressed as

fopt(x) =

N∑
i=1

αik(xi,x) (3.25)

with αi ∈ R. This means that optimal solutions in the RKHS determined by the kernel can be
represented as a weighted sum of kernel functions. This can be applied even if the RKHS is
infinite-dimensional; this is important because it implies that optimization problems in infinite-
dimensional space can be replaced by finite-dimensional optimization problems, that is, compu-
tationally feasible problems. Moreover, since kernels naturally appear in the dual representation
of the linear model, the theorem can apply to many algorithms, such as ridge regression models,
SVMs, and the kernel PCA. Thus, the theorem has a critical implication in machine learning.

Lastly, we state the importance to design kernels for specific tasks. Designing performant
kernels is critical to show better performance, because the feature space is determined via the
kernel. Thus, some previous works proposed kernels tailored to specific tasks. For example, some
kernels are designed focusing on tasks with probabilistic generative models [2,117]. A motivation
for proposing kernels derived from probabilistic models is to construct discriminative models that
take advantage of generative models. Basically, the discriminative approach directly models the
target value for given data, while the generative approach aims to construct models that can
output given data. The generative models are not performant compared to the discriminative
models, but can naturally handle missing information and rare data points. Therefore, some
kernels have been proposed to combine the advantages of both approaches. A typical example
is the probability product kernel [119]

k(p, p′) =

∫
X
p(x)cp′(x)cdx = ⟨pc, p′c⟩L2

(3.26)

with the probability models p and p′, and c ∈ R+. Specifically, when c = 1/2, the kernel is
called the Bhattacharyya kernel [120] defined as

k(p, p′) =

∫
X

√
p(x)

√
p′(x)dx. (3.27)

This kernel is named after the coefficients appearing in the Bhattacharyya distance [121]. Also,
Ref. [122] proposed the Fisher kernel, which is derived from probabilistic models using informa-
tion geometric quantities. The Fisher kernel is defined as

k(x,x′) = g(x,θ)T I−1g(x′,θ), (3.28)

24

where g(x,θ) = ∇θ log p(x|θ) is the logarithmic derivative of the probabilistic model p(x) called
the Fisher score [123] and I is the Fisher information matrix expressed as

I = Ex

[
g(x,θ)g(x,θ)T

]
. (3.29)

Thanks to its expressivity realized by incorporating the data information, the Fisher kernel has
been applied in several areas such as computer vision [124–128].

As shown above, it is important to construct kernels so that the information of the dataset
can be incorporated into models. Besides, it is also possible to construct powerful kernels using
different kernels. Below are some examples;

knew(x,x′) = cka(x,x′), (3.30)

knew(x,x′) = exp
(
ka(x,x′)

)
, (3.31)

knew(x,x′) = ka(x,x′) + kb(x,x
′), (3.32)

knew(x,x′) = ka(x,x′)kb(x,x
′), (3.33)

where ka(x,x′) and kb(x,x
′) are valid kernels and c > 0. These formula enables one to seek out

new kernels that can show better performance.

3.2.2 Basics of Quantum Kernel Methods

Quantum kernel methods [34, 94] share the same concept with classical kernel methods. The
difference comes down to the feature space utilized via kernels. In quantum kernel methods,
quantum kernels are used to measure the similarity between data points in the quantum space,
i.e., the Hilbert space. As the Hilbert space exponentially grows in dimension with the increase of
the number of qubits, quantum kernels are considered challenging for classical means to estimate
efficiently. Thus, the quantum kernels can potentially perform better than the conventional
classical methods.

Originally, Ref. [34] proposed a quantum kernel defined as

kQ(x,x′) = Tr [ρxρx′] , (3.34)

where ρx = UΦ(x)ρ0U
†
Φ(x) is the density matrix representation of data-dependent quantum

state, which is generated by data-dependent unitary U(x) to an arbitrary pure initial state ρ0.
The quantum kernel can be understood as the inner product of quantum states; more precisely,
the quantum kernel can be rewritten as

kQ(x,x′) = | ⟨Φ(x)|Φ(x′)⟩ |2 = | ⟨0|U †
Φ(x)UΦ(x′) |0⟩ |2 (3.35)

with ρ0 = |0⟩ ⟨0|. In quantum information theory, the measure is called the fidelity for pure
states, which tells the overlap between two quantum states, i.e., the closeness of quantum
states [43]. Thus, we call the quantum kernel the fidelity-based quantum kernel.

There are two main approaches to computing the fidelity-based quantum kernels: the swap
test [129] and the inversion test [34]. In the swap test, an ancilla qubit is prepared in addition
to quantum states |Φ(x)⟩ and |Φ(x′)⟩, then Hadamard gates and a controlled-swap gate are
applied. Lastly, measurements are performed on the ancilla qubit. As one can easily show, the
fidelity corresponds to the expectation value of the Pauli Z operator on the ancilla qubit. Thus,
we repeat the procedure a sufficient amount of times to get an approximate value of the fidelity.
Fig. 3.1 (a) shows the quantum circuit representation of the swap test. As for the inversion test,

25

(a)

(b)

Figure 3.1: Two approaches to computing the fidelity-based quantum kernel. Quantum circuits
shown in (a) and (b) depict the swap test and the inversion test, respectively.

the quantum kernel in Eq. (3.35) is straightforwardly computed; (1) prepare an initial state |0⟩
(without loss of generality, the all-zero state), (2) apply UΦ(x′) and U †

Φ(x) in that order, and
(3) measure the probability of obtaining the initial state |0⟩, i.e., the probability of the all-zero
bit-string. Fig. 3.1 (b) depicts the quantum circuit of the operation. These approaches have the
pros and cons. The inversion test requires n qubits for n-qubit quantum states, while the swap
test needs 2n+ 1 qubits. On the other hand, the quantum circuit for the inversion test could be
longer than that of the swap test, which can result in more noisy outcomes; instead the swap
test requires many controlled-swap gates.

Thus far, it has been theoretically proven that there exist datasets that cannot be efficiently
learned by classical models but by the quantum kernel [31–33]. Some previous works have shown
that quantum kernels with tailored quantum circuits can outperform existing classical algorithms
for specific problems. We provide binary classification tasks with theoretical guarantees on
quantum advantages and elaborate on quantum circuits used to realize supremacy.

• Discrete logarithmic problem-based dataset [31]: For input data xi ∈ Z∗
p, the mul-

tiplicative group of integer modulo p, its label yi is assigned according to

yi =

{
+1 if logg xi ∈

[
s, s+ p−3

2

]
−1 else.

(3.36)

Here, p is a large prime number, g is a generator of Z∗
p = {1, 2, . . . , p − 1} and s can

be arbitrarily chosen from Z∗
p. The task cannot be efficiently performed by any classical

algorithms, i.e., in polynomial time in n = ⌈log2 p⌉, because of the conjecture on the
classical hardness of discrete logarithmic problems [130]. On the other hand, when we can

26

have the following quantum feature map UΦ(x),

UΦ(x) : x→ |Φ(x)⟩ =
1√
2k

2k−1∑
i=0

|x · gi⟩ , (3.37)

the SVM with the quantum kernel in Eq. (3.34) can perform well, because there exists a
hyperplane Ows = |ws⟩ ⟨ws| that can produce Tr[Ows |Φ(x)⟩ ⟨Φ(x)|] ∈ 1/poly(n) for data
points with label +1 and Tr[Ows |Φ(x)⟩ ⟨Φ(x)|] = 0 for data labeled −1 [31]. The quantum
feature map can be efficiently prepared on FTQCs using a subroutine algorithm in Shor’s
algorithm [15, 131]; the quantum circuit is implementable in Bounded-Error Quantum
Polynomial-Time (BQP).

• k-Forrelation-based dataset [32]: Originally, the k-Forrelation is a promise problem
introduced by Ref. [132]. Consider k Boolean functions f1, f2, . . . , fk : {0, 1}n → {−1,+1},
and the quantity

Ψf1,...fk =
1

2k+1n/2

∑
x1,x2,...,xk∈{0,1}n

f1(x1)(−1)x1·x2f2(x2)(−1)x2·x3 . . . (−1)xk−1·xkfk(xk)

(3.38)
with x·y =

∑
i xiyi. Then, the problem is to decide |Ψf1,...,fk | ≤ 1/100 or Ψf1,...,fk ≥ 3/5 for

all f1, f2, . . . , fk. The problem is known as PromiseBQP-complete, which includes BQP.
The authors in Ref. [32] utilize the k-Forrelation problem to derive a binary classification
problem, which also falls into PromiseBQP-complete. Here, given an input bit-string of
length kn, where each Boolean function fi is encoded into n-bits in specific manners,
Π+ is assigned to the input if Ψf1,...,fk ≥ 3/5 and Π− is assigned if Ψf1,...,fk | ≤ 1/100.
Note that the inputs are promised to belong to Π+ or Π−. Based on results in Ref. [132]
where the authors demonstrated a quantum algorithm that can solve the k-Forrelation
problem efficiently, the following quantum feature map can capture the regularity of the
k-Forrelation-based dataset;

UΦ(x) = H⊗nVfk . . .H
⊗nVf2H

⊗nVf1H
⊗n (3.39)

where H is the Hadamard gate and the Boolean function dependent unitary Vfi satisfies
Vfi |x⟩ = fi(x) |x⟩ for any x ∈ {0, 1}n. More concretely, the probability of obtaining the
all-zero bit-string by measuring the quantum state |Φ(x)⟩ = UΦ(x) |0⟩⊗n is the same as
the quantity in Eq. (3.38). Thus, the SVM with the quantum kernel obtained using the
quantum feature map can solve the problem. However, it is conjectured that existing
classical algorithms cannot solve the problem efficiently [132].

In addition, a procedure to screen the intrinsic quantum advantages of the quantum kernel
methods [37] has been recently proposed, resulting in explorations of real-world datasets [133,
134].

3.2.3 Support Vector Machines

Support vector machines (SVMs) are supervised machine learning models used for classification
and regression tasks. Due to its high performance in pattern recognition tasks, SVMs in combi-
nation with kernel methods are often used in practical situations. In what follows, we explain
the mathematical models of SVMs and then show the connection to kernel methods.

For ease of understanding, we consider binary classification tasks where the goal is to predict
the class C = {+1,−1} of new unseen data xnew, given a training dataset composed of N pairs

27

of d-dimensional input data xi ∈ Rd and its label yi ∈ C. The concept of SVMs is to acquire
a linear model that can maximize the so-called margin. Suppose we have a liner classifier
represented as

ỹ(x) = wTϕ(x) + b (3.40)

where ϕ(x) = (ϕ1(x), . . . ϕM (x))T is a M -dimensional vector containing basis functions and
(w, b) are parameters to be trained. Then, the SVM aims to obtain the parameters (w, b) so
that the margin, the minimum distance between the decision hyperplane and any data points,
is maximized.

In case all training data points are linearly separable, the distance between the hyperplane
and a data point xi is given by

yiỹ(xi)

∥w∥
=
yi(w

Tϕ(xi) + b)

∥w∥
. (3.41)

As the objective of SVMs is to maximize the margin, the problem can be reduced to maximizing
1/∥w∥ under a constraint yi(w

Tϕ(xi) + b) ≥ 1 for all i ∈ {1, . . . , N}. Equivalently, the problem
is to obtain the minimum value of ∥w∥2. Thus, the optimal solution to maximize the margin
can be written as

argmin
w,b

1

2
∥w∥2. (3.42)

Also, the problem of minimizing a quadratic function under the constraint can be rewritten as
a dual problem by introducing Lagrange multipliers α = (α1, . . . , αN)T and the Karush-Kuhn-
Tucker conditions (KKT conditions). More concretely the problem is to minimize the following
cost function;

L(α) = −
N∑
i=1

αi +
1

2

N∑
i=1

N∑
j=1

αiαjyiyjϕ
T (xi)ϕ(xj) (3.43)

under constraints
αi ≥ 0, (3.44)∑

i

αiyi = 0. (3.45)

The solution to the problem is then represented as

ỹ(xnew) =
N∑
i=1

αiyiϕ
T (xi)ϕ(xnew) + b. (3.46)

We note that the KKT conditions,
αi ≥ 0, (3.47)

yiỹ(xi) − 1 ≥ 0, (3.48)

αi{yiỹ(xi) − 1} ≥ 0 (3.49)

show that all data points satisfy either αi = 0 or yiỹ(xi). This indicates that the data points
that satisfy αi = 0 do not contribute to the prediction of the unknown data; we only have to
keep the data points for which αi ̸= 0. The data points that satisfy αi ̸= 0 are called the support
vectors. The property is crucial from the practical perspective because only support vectors are
used and some data information can be discarded.

28

We can also mitigate the assumption that all training data is separable by introducing the
slack variables {ξi}i=1,...,N . In case misclassification is allowed, the constraint yi(w

Tϕ(xi)+b) ≥ 1
can be replaced with

yi(w
Tϕ(xi) + b) ≥ (1 − ξi), ∀i = 1, . . . , N. (3.50)

The relaxation technique is called the soft margin method in contrast to the original one (the
hard margin method). In this case, the optimization problem that corresponds to Eq. (3.42) for
the hard margin SVM can be written as

1

2
∥w∥2 + Ch

∑
i

ξi (3.51)

with a parameter Ch > 0 that controls the trade-off between the model complexity and training
errors. As for the dual problem, one minimizes Eq. (3.43) under

0 ≤ αi ≤ Ch, (3.52)∑
i

αiyi = 0. (3.53)

Lastly, we provide the connection of SVMs and kernel methods. In the dual problem represen-
tation, the cost function in Eq. (3.43) includes the inner product of feature vectors ϕT (x)ϕ(x′).
Actually, it is possible to regard the inner product as a kernel, i.e., k(x,x′) = ϕT (x)ϕ(x′). Thus,
the cost function can be recast in terms of kernels as

L(α) = −
N∑
i=1

αi +
1

2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi,xj). (3.54)

Also, the prediction can be rewritten as

ỹ(xnew) =

N∑
i=1

αiyik(xi,xnew) + b. (3.55)

This means that SVM algorithms can handle even infinite-dimensional feature vectors by intro-
ducing kernels; optimal hyperplanes in the large feature space can be obtained without explicitly
computing the feature vectors. Replacing the inner product with the kernel is called the kernel
trick. As the technique allows flexibility in solving practical tasks, the SVMs combined with the
kernel methods can perform machine learning tasks such as classification with high accuracy.

3.3 Quantum Reservoir Computing

Quantum reservoir computing is a QML approach that utilizes the complex dynamics of quantum
many-body systems for time-series data processing [36, 135]. By time-series data processing,
we mean information processing of time-series data, such as speech recognition, stock price
prediction, and robotic control. These days, such temporal information processing tasks have
been performed using machine learning models such as neural networks [136, 137]. Reservoir
computing is a kind of these neural network models and has been actively studied due to its
advantage of fast and stable learning [138–141]. Quantum reservoir computing is based on such
a reservoir computing framework. In contrast to the conventional methods, quantum reservoir
computing utilizes the quantum-enhanced feature space to extract features of time-series data.

29

This field has also attracted increasing attention because this approach can be implemented
on today’s noisy quantum computers and could have the potential to outperform conventional
methods.

This section first describes the basics of reservoir computing. Then, we introduce physical
reservoir computing derived from reservoir computing, where physical systems with complex
dynamics are utilized as the reservoir, i.e., a black box that plays a role in extracting features of
time-series data. We also review physical reservoir computing as quantum reservoir computing
can be included in the learning paradigm. Finally, we present the details of quantum reservoir
computing.

3.3.1 Framework of Reservoir Computing

Reservoir computing is a machine learning approach used for time-series data processing [138–
140]. Originally, reservoir computing was derived from recurrent neural networks (RNNs) [137]
and includes a class of machine learning algorithms such as echo state network (ESN) [142]
and liquid state machine (LSM) [143]. The advantages of the reservoir computing framework
over conventional RNNs are stable and fast learning [141]. Typically, RNNs use a learning
method called backpropagation through time (BPTT), in which the error propagates backward
in time [144, 145]. This technique is widely used to adjust the weight parameters in the neural
network based on the gradient of the error. However, as the size of the neural network increases,
this method has a problem of extremely long learning time. In addition, the vanishing gradient
issue occurs; as a result, the convergence of the learning algorithm is poor. By contrast, reservoir
computing fixes the randomly connected internal neural network during the training process,
and only the output part is learned by a simple learning method. The fixed randomly connected
network in the middle layer is called a reservoir. Since only the output weights are trained,
reservoir computing can realize stable and fast learning compared to RNNs.

Reservoir computing models consist of three main parts: the input layer, the reservoir, and
the readout layer. First, input data transformed through the input layer is mapped nonlinearly
to a higher-dimensional feature space by the reservoir. Then, the readout layer outputs the
weighted sum of signals obtained from the reservoir. We note that only the weights in the
readout layer are adjusted in the learning process using a simple learning algorithm, such as
linear regression, so that the output can approximate the target value. The core of the method
is the reservoir that nonlinearly transforms input data to a higher dimensional feature space;
the reservoir plays a role in extracting the features of temporal data. Thus, the performance of
the task crucially depends on the reservoir. In this sense, the concept of reservoir computing is
similar to kernel methods.

In what follows, we show the mathematical model of reservoir computing. In reservoir
computing, the time evolution of the reservoir network state is given by

xt = f(W inut + Wxt−1), (3.56)

where t represents the timestep and xt ∈ Rnres is a nres-dimensional vector representing the
reservoir state at timestep t. Also, ut ∈ Rnin is a nin-dimensional input vector at timestep
t. W in ∈ Rnres×nin and W ∈ Rnres×nres are fixed random weights for the input-reservoir
connection and recurrent connection in the reservoir layer, respectively. The function f(·) repre-
sents an element-wise activation function. Examples of this function f(·) are sigmoid functions
f(x) = 1/(1 + expx) and hyperbolic tangents f(x) = tanh x. Then, the output of reservoir
computing models is expressed as

ȳt = W outxt, (3.57)

30

where yt ∈ Rnout is a nout-dimensional output vector of the reservoir model and W out ∈
Rnout×nres is the tunable weight in the readout layer. As for learning, the weight in the read-
out layer, W out, is adjusted so that the mean square error between the output vector ȳt and
the target vector yt is minimized for all t. The optimal weights can be computed using the
Moore-Penrose pseudo inverse X+ ≡ (XTX)−1XT ;

W opt
out = X+Y. (3.58)

Here, X ≡ [x1,x2, . . . ,xL]T and Y ≡ [y1,y2, . . . ,yL]T for total timestep L.

3.3.2 Physical Reservoir Computing

As explained in the previous subsection, the reservoir, a randomly connected internal network,
plays a vital role in reservoir computing. This is because the reservoir extracts patterns inherent
in time-series data through a nonlinear mapping of input data to a high-dimensional feature
space. On the other hand, the reservoir does not necessarily be a neural network since it is
not adjusted through training. In other words, a system with a high degree of freedom can
fulfill the role of the reservoir. Based on this idea, it is possible to use complex and nonlinear
physical systems as reservoirs for temporal data processing. The reservoir computing paradigm
is called physical reservoir computing [146,147]. Compared to conventional reservoir computing,
physical reservoir computing has advantages such as faster information processing and lower
power consumption. Thus far, physical reservoir computing has been implemented using physical
systems such as soft robotics [148–150]，photonic systems, optoelectronic systems [151–153], and
analog circuits [154]. More details are provided in Ref. [146].

3.3.3 Quantum Reservoir Computing Models

Quantum reservoir computing is a type of physical reservoir computing scheme that utilizes the
dynamics of complex quantum many-body systems as reservoirs for time series data process-
ing [36]. Below, we present the details of quantum reservoir computing models.

For simplicity, we assume that the input and target time-series data are one-dimensional.
That is, the input and the corresponding output of length L are represented as u = [u1, u2, . . . uL]T

and ȳ = [ȳ1, ȳ2, . . . ȳL]T , respectively. Here, we also assume that ul ∈ [0, 1], l = 1, . . . , L. In this
case, the time evolution of the quantum reservoir system is described as

ρt = Tut(ρt−1) (3.59)

where t represents timestep, ρt is the density operator representation of quantum reservoir state
at timestep t and Tut(·) is a map depending on ut. As shown in Eq. (3.59), the transition of the
quantum reservoir system is mathematically described by the input-dependent map Tut(·). In
Ref. [36], the paper that first proposed the quantum reservoir computing paradigm, the following
map is used;

Tut(ρt−1) = e−iHτ (ρut ⊗ Tr1[ρt−1]) e
−iHτ (3.60)

where τ is a hyperparameter, Tr1[·] denotes a partial trace operation on a qubit system where
the input is injected, and H is the user-defined and fixed Hamiltonian. A concrete example
of the Hamiltonian is the transverse-field Ising model, i.e., H =

∑
i,j JijXiXj + hZi with the

parameters Ji,j and h. Also, ρut = |ψt⟩ ⟨ψt| with |ψt⟩ =
√
ut |0⟩ +

√
1 − ut |1⟩ represents an

31

input-dependent quantum state. Then, the output of the quantum reservoir computing model
ȳt is given by

ȳt = W outh(ρt) (3.61)

with the tunable weight W out. Here, h(ρt) represents a set of expectation values {⟨Oj⟩} for
certain observables {Oj}. We note that ⟨Oj⟩t = Tr[Ojρt]. Commonly, Pauli Z basis for each
qubit is used for the observable, i.e., {Oj}j=1,...,n = {Zj}j=1,...,n. In the learning process, the
weights W out are adjusted so that the mean squared error between the output ȳt and the target
yt is minimized for all t. Sec. 3.3.1 shows how to obtain the optimal weights.

To date, quantum reservoirs have been experimentally implemented using quantum systems
such as superconducting quantum computers [41, 155], NMR [156], and atoms [157]. Also,
theoretical and numerical studies have been conducted to investigate what kind of systems
can achieve high performance [158–164]. In addition, quantum extreme learning, inspired by
quantum reservoirs (and quantum kernel methods), is also being studied [165–167]. For a more
detailed review of quantum reservoir computing, see Ref. [135].

32

Chapter 4

Quantum Kernel-Based Learning
Models

In this chapter, we discuss the practicality of quantum kernel-based learning models. As we
explained in Sec. 3.2, the quantum kernel method has the potential to outperform conventional
methods due to its provable quantum advantages for certain learning tasks. However, caution
needs to be taken when quantum kernels are used in practical situations.

First, it is non-trivial to construct a quantum feature map suitable for specific machine
learning tasks. The performance of quantum kernel methods heavily depends on the choice of
feature maps. In quantum kernel methods, however, one should specify the quantum feature
map, i.e., a quantum circuit, to compute quantum kernels. Actually, tailoring feature maps
would be critical to show practical advantages, as fine-tuned quantum kernels can realize the
provable advantages. Therefore, it is imperative to give an insight into how to design quantum
feature maps.

Second, the commonly-used fidelity-based quantum kernels suffer from the so-called vanishing
similarity issue. As stated in detail later, vanishing similarity is a phenomenon where the
expectation value and the variance of the fidelity-based quantum kernels vanish exponentially
as the number of qubits increases. This hinders the efficient estimation of the quantum kernel
on quantum hardware. In addition, learning machines based on the quantum kernel result in
overfitting and thus show poor performance to new unseen data. This suggests the need to
remedy the problem.

In the following, we address these two issues. As for the first case, we provide an approach
to screen suitable quantum feature maps among many candidates. Also, we demonstrate that
synthesizing quantum feature maps can lead to better performance. We give the details in
Sec. 4.1. For the second case, we propose a new class of quantum kernels called the quantum
Fisher kernel to mitigate the vanishing similarity issue. We then analytically and numerically
demonstrate that our proposal can avoid the issue when the so-called alternating layered ansatzes
are shallow. We elaborate on our proposal and the obtained results in Sec.4.2.

4.1 Analysis and Synthesis of Quantum Feature Maps1

This section discusses how to analyze and utilize the quantum feature maps for specific classi-
fication tasks. We first develop a method to analyze the feature map for kernel-based quantum
classifiers. More specifically, we introduce a quantity we call the minimum accuracy, which tells

1Results shown in this section are based on the author’s work [40].

33

the linear separability of data points in the quantum feature space induced by the quantum ker-
nel. A proof-of-concept numerical study for four benchmark classification tasks demonstrates
the method’s validity. Also, we examine the efficacy of a synthesis method where different quan-
tum kernels are combined to construct a powerful quantum kernel.

4.1.1 Introduction

Quantum feature maps play a critical role in quantum kernel methods. As shown in Sec 3.2, the
quantum kernel measures the similarity between a pair of data points in the Hilbert space defined
via the quantum feature map. Thus, the performance of quantum kernel-based classifiers heavily
relies on the choice of quantum feature maps. In fact, SVMs with quantum kernel methods can
solve binary classification tasks that are not efficiently solvable by classical models when the
quantum feature maps are properly tailored to specific tasks. Therefore, choosing appropriate
quantum feature maps play a significant role in quantum kernel methods.

In classical kernel methods, choosing feature maps is equivalent to trying different types
of kernels or the same kernel with different hyperparameters. This is because each kernel is
associated with the corresponding feature space, as shown in Sec. 3.2. On the other hand, one
should explicitly determine the quantum feature map, i.e., a data-dependent unitary operator
(quantum circuit), in quantum kernel methods. An approach to preparing a suitable quantum
feature map is to find the best feature map among many candidates by comparing their per-
formance on training datasets. However, this is non-trivial and computationally demanding.
Thus, developing a method that can efficiently screen better-performing quantum feature maps
is imperative.

This section provides one such method based on a quantity called the minimum accuracy,
which roughly estimates the linear separability of training data points in the quantum-enhanced
feature space induced by the quantum feature map. The key idea of the quantity is the projection
of quantum feature vectors onto one-dimensional space to facilitate calculation of the attainable
accuracy for training datasets. Since the minimum accuracy is a possible solution for the opti-
mization problem in the RKHS, it can serve as a lower bound of the training accuracy. Also,
a quantity can be determined by the chosen feature map and the training dataset. Thus, the
minimum accuracy can be used for screening quantum feature maps suitable for specific tasks.
To verify our proposal, we work on four binary classification benchmark tasks using SVMs with
two-qubit quantum kernels. More concretely, we demonstrate our idea using IQP-based quan-
tum feature maps with five different encoding functions. Moreover, we study the effectiveness
of another approach to seeking a suitable feature map: a synthesis method. This technique
combines different quantum kernels to get a performant quantum kernel. We numerically check
the validity of the method for the above-mentioned binary classification tasks using SVMs with
several quantum kernels.

We note that we here consider SVMs with quantum kernels as the quantum kernel-based
classifiers. However, these methods are applicable to any linear classical classifiers. Also, it
would be possible to apply these techniques to regression tasks.

The rest of this section is organized as follows. Firstly, we detail the minimum accuracy
in Sec. 4.1.2. Then, we explain the concept of the synthesis method in Sec. 4.1.3. Next, we
present a proof-of-concept demonstration of these methods for several classification tasks using
two-qubit fidelity-based quantum kernels in Sec. 4.1.4. Lastly, we give a conclusion and outlooks
in Sec. 4.1.5.

34

4.1.2 A Method to Analyze Quantum Feature Maps

In what follows, we provide the details of the minimum accuracy.
First, we give the concept of the quantity. The minimum accuracy is a maximum classifica-

tion accuracy attainable when candidates of separating hyperplanes in the quantum-enhanced
feature space are restricted to the set of Pauli operators. As shown in Sec. 3.2, SVMs in com-
bination with kernel methods aim to find an optimal hyperplane in the feature space induced
by the kernel; similarly, quantum kernel-based SVMs try to obtain the best hyperplane in the
quantum-enhanced feature space. Notably, the hyperplane in the quantum-enhanced feature
space defined by the fidelity-based quantum kernel in Eq. (3.34) can be regarded as an observ-
able. This can be easily shown by rewriting the optimal solution of kernel machines guaranteed
by the representer theorem [116–118] as follows;

fopt(x) =
N∑
i=1

αopt
i kQ(xi,x)

=
N∑
i=1

αopt
i Tr [ρxiρx]

= Tr

[(
N∑
i=1

αopt
i ρxi

)
ρx

]
= Tr

[
Ooptρx

]
.

(4.1)

In other words, finding the optimal parameters {αopt
i } is equivalent to finding the optimal ob-

servable, which can be represented as a linear combination of data-dependent quantum states,
i.e., Oopt =

∑N
i=1 α

opt
i ρxi . We note that such an argument is presented in Ref. [114] to show

the equivalence between implicit models (i.e., quantum neural networks) and explicit models
(i.e., quantum kernel-based models). Based on this idea, we introduce the minimum accuracy
to roughly estimate the accuracy for the training dataset.

As mentioned, the key idea is to consider only the set of Pauli operators σi ∈ {I,X, Y, Z}⊗n

as observables for n-qubit quantum systems; then we obtain the maximum accuracy among the
candidates. We note that the accuracy is defined as the ratio of the number of correct answers
Ntrue and the total number of data points N , i.e., Ntrue/N . According to the representer
theorem and Eq. (4.1), these observables are possible solutions in the RKHS associated with
the fidelity-based quantum kernel. Thus, the accuracy obtained for the optimized classifiers on
training datasets is guaranteed equal to or greater than the minimum accuracy. This means the
optimized quantum kernel-based classifiers with the quantum feature map can perform well on
the training dataset if the minimum accuracy is large. Also, due to the restriction on observables
under investigation, we can calculate the quantity without actually performing optimization of
classifiers.

The minimum accuracy can also be regarded as the accuracy attainable when the quantum
feature vectors are projected onto an optimal Pauli basis. An arbitrary n-qubit density operator
can be expanded by the set of Pauli operators as

ρx =
∑

σi∈{I,X,Y,Z}⊗n

aσi(x)σi. (4.2)

Then, by substituting Eq. (4.2) into Eq. (3.34), we can obtain

kQ(x,x′) = 2n
∑

σi∈{I,X,Y,Z}⊗n

aσi(x)aσi(x
′). (4.3)

35

Here, we utilize the trace relation of Pauli matrices, i.e., tr (σiσj) = 2nδij with the Kronecker
delta δij . This means that the 4n-dimensional vector a(x) = [aI...I(x), . . . , aZ...Z(x)]T serves as a
real-valued representation of the quantum feature map because the quantum kernel is expressed
as the inner product of them. Namely, the input data x is encoded into the 4n-dimensional
real-valued feature space via the quantum feature map. Hence, the minimum accuracy can be
interpreted as the best accuracy obtained for one-dimensional space to which the real-valued
quantum feature space a(x) is projected. We notice that each element of the real-valued vector
a(x) can be obtained by measuring the expectation value of the corresponding Pauli operator
and post-processing, i.e., 2naσi = Tr[σiρx].

We show the procedure to compute the minimum accuracy below [40]. Let {(xk, yk)}k=1,...N

be the training dataset composed of N pairs of input data xk and its label yk ∈ C = {+1,−1}.
Also, we denote N+ (N−) as the number of data points labeled with +1 (−1). That is, N =
N+ + N− is satisfied. Moreover, we consider the n-qubit fidelity-based quantum kernel in
Eq. (3.34) and a(x) represents the real-valued representation of the quantum feature map UΦ(x).

1. For a fixed Pauli operator σi ∈ {I,X, Y, Z}⊗n, compute the corresponding component
of the real-valued quantum feature vectors, i.e., {aσi(xk)}k=1,...,N . The process can be
regarded as the projection of the quantum feature vectors onto one-dimensional space
defined by the Pauli operator, as depicted in Fig. 4.1 (b).

2. Sort {aσi(xk)}k=1,...,N in ascending order and then choose the j-th hyperplane orthogonal
to the axis of the Pauli σi; the hyperplane is located between the j-th and (j + 1)-th data
points for j ∈ {1, . . . , N − 1} as indicated by an arrow in Fig. 4.1 (b) and (c).

3. Calculate the accuracy for the j-th hyperplane

Rj
σi

= max{N+ −N j
+ +N j

−, N− −N j
− +N j

+}/N, (4.4)

where N j
+ (N j

−) denotes the number of data points labeled with +1 (−1) in the sorted
vector up to the j-th element. Recall that this quantity in Eq. (4.4) corresponds to the
accuracy of the data for the j-th hyperplane when the quantum feature vector is projected
onto the Pauli basis.

4. Calculate the accuracy for all j-th hyperplane with j ∈ {1, . . . , N − 1}, and then take the
maximum: Rσi = maxj R

j
σi .

5. The minimum accuracy is computed as R = maxσi∈{I,X,Y,Z}⊗n Rσi .

We lastly mention a downside of the quantity. As shown in the fifth process, we have to
compute Rσi for all the Pauli operators. This would be computationally infeasible with the
increase in the number of qubits since the number of Pauli operators scales exponentially in
n. However, we can circumvent the issue by considering the subset of the Pauli operators, i.e.,
σi ∈ P ⊂ {I,X, Y, Z}⊗n. The remedy of the issue will be further discussed later in Sec. 4.1.5.

4.1.3 Synthesized Quantum Feature Maps

Next, we discuss a synthesis method to construct performant quantum kernels. In classical ker-
nel methods, some strategies exist to design effective kernels from valid kernels, as explained in
Sec. 3.2.1. A straightforward approach is to combine different kernels. The scheme can compen-
sate for the weakness of each kernel and the resultant kernel might have suitable characteristics
for specific tasks.

36

Figure 4.1: An example of calculating the minimum accuracy for ten pairs of data points
{(xk, yk)}k=1,...,10. The data points labeled with +1 and −1 are indicated in blue and or-
ange, respectively. (a) The data is first encoded into the quantum-enhanced feature space via a
quantum feature map UΦ(x). Then, as shown in (b), the quantum feature vectors are projected
onto the Pauli basis σi, where data points are classified by a chosen hyperplane. The panel
(c) further illustrates a concrete example for computing Rj

σi in Eq. (4.4). For the case j = 5,
N5

+ = 3 and N5
− = 2 (the number of blue and orange points on the left-hand side of the thick

arrow). Thus, Rj
σi = 0.6. Also, by computing the quantity for all the hyperplanes, we get

Rσi = maxjR
j
σi = 0.7.

37

input data
synthesized

quantum kernel

Figure 4.2: Schematic illustration of the synthesis method for quantum kernels. A concept
behind this approach is to produce a performant quantum kernel from many (poor) quantum
kernels.

We study the effectiveness of this idea in the quantum regime. In the NISQ era, estimating
powerful quantum kernels on quantum hardware could be challenging due to the noise in devices,
the limited number of qubits, and connectivity. As a result, only weak quantum kernel-based
classifiers might be available. Also, due to the lack of design principles for quantum feature
maps, it is non-trivial to construct a single quantum kernel that performs well. Moreover,
the performance of the fidelity-based quantum kernel can be poor as the number of qubits
increases [38, 39], which we discuss in detail in the next section. Thus, checking if the strategy
works in the case of quantum kernels is critical. We note that the idea behind our motivation is
similar to the so-called ensemble learning, where some weak classifiers are effectively combined
to yield a powerful classifier [168]. Actually, some previous works have deeply investigated the
scheme in the context of QML [35,169].

Here, we focus on a typical method to synthesize kernels: a weighted sum of quantum kernels
expressed as

k(xi,xj) =

m∑
l=1

λlkΦl
(xi,xj), (4.5)

where {λl} are the weight parameters that satisfy
∑m

l=1 λl = m and kΦl
(xi,xj) represents a

quantum kernel obtained using the quantum feature map UΦl
(x). Fig. 4.2 depicts the syn-

thesizing scheme of quantum feature maps. We note that the idea was briefly introduced in
Ref. [170] before the publication of our work [40], but a concrete demonstration still needs to be
presented. To demonstrate the approach’s efficacy, we consider the following simple situation:
equally weighted sum of two quantum kernels, i.e., m = 2 and λ1 = λ2 = 1. In this case, we can
readily show that the resultant kernel can deal with a higher-dimensional feature space than the
original ones:

knew(xi,xj) = kΦ1(xi,xj) + kΦ1(xi,xj)

= ⟨Φ1(xi),Φ1(xj)⟩HkΦ1

+ ⟨Φ2(xi),Φ2(xj)⟩HkΦ2

= ⟨Φ1(xi) ⊕ Φ2(xi),Φ1(xj) ⊕ Φ2(xj)⟩Hknew

(4.6)

where Hk denotes the RKHS associated with the kernel k. This means that the data is encoded
into the direct sum of two RKHS, and hence, the RKHS associated with the combined quantum
kernel can be enlarged. Of course, we have many options to combine the kernels; see Ref. [2,171]

38

Figure 4.3: Datasets used in the numerical experiments: (a) Circle, (b) Exp, (c) Moon and (a)
Xor. Reprinted figure from Ref. [40]. Copyright 2020 by Y. Suzuki, H. Yano, Q. Gao, S. Uno,
T. Tanaka, M. Akiyama, and N. Yamamoto. [DOI:10.1007/s42484-020-00020-y].

for more details.

4.1.4 Numerical Demonstration

We perform numerical simulations to verify the effectiveness of the analysis and synthesis meth-
ods.

In the numerical experiments, we handle benchmark binary classification tasks with two-
dimensional datasets shown in Fig. 4.3: Circle, Exp, Moon and Xor. Every dataset is composed
of N = 100 pairs of input data and its label {(xk, yk)}k=1,...,100, where yk ∈ {−1,+1} and each
element of the data points lies in the range between −1 and 1, i.e., xk ∈ [−1, 1]2. Also, these
datasets are balanced; that is, data points labeled with +1 and −1 are evenly distributed.

As for quantum classifiers, we focus on the framework used in Ref. [34]: (classical) SVMs
with the two-qubit quantum kernel in Eq. (3.34). We note that we deal with the two-qubit
quantum classifiers to set the number of qubits equal to the dimension of data points. Here, the
IQP-based quantum circuits described in Sec. 4.1 are used as the quantum feature map UΦ(x).
For the two-qubit case, UΦ(x) is expressed as

UΦ(x) = VΦ(x)H⊗2VΦ(x)H⊗2, (4.7)

39

Figure 4.4: Quantum circuit representation of VΦ(x) with the set of encoding functions Φ(x) =
{ϕ1(x), ϕ2(x), ϕ1,2(x)}. Here U1(ϕ) = diag{1, e−iϕ}.

where H is the Hadamard gate and

VΦ(x) = exp (iϕ1(x)ZI + iϕ2(x)IZ + iϕ1,2(x)ZZ) . (4.8)

We call Φ(x) = {ϕ1(x), ϕ2(x), ϕ1,2(x)} the set of encoding functions. The quantum circuit
representation of the unitary gate VΦ(x) is illustrated in Fig. 4.4. These encoding functions
determine how the input data is embedded into the quantum state |Φx⟩ = UΦ(x) |0⟩⊗2 and
hence play a critical role in the feature mapping. However, users should choose the functions by
themselves so that SVMs with the quantum kernel can perform well for the classification tasks.
In this thesis, we prepare the following five sets of encoding functions [40];

ϕ 1(x) = x1, ϕ 2(x) = x2, ϕ 1,2(x) = πx1x2, (4.9)

ϕ 1(x) = x1, ϕ 2(x) = x2, ϕ 1,2(x) =
π

2
(1 − x1)(1 − x2), (4.10)

ϕ 1(x) = x1, ϕ 2(x) = x2, ϕ 1,2(x) = exp

(
|x1 − x2|2

8/ ln(π)

)
, (4.11)

ϕ 1(x) = x1, ϕ 2(x) = x2, ϕ 1,2(x) =
π

3 cos(x1) cos(x2)
, (4.12)

ϕ 1(x) = x1, ϕ 2(x) = x2, ϕ 1,2(x) = π cos(x1) cos(x2). (4.13)

Among these sets, we fix ϕ1(x) = x1 and ϕ2(x) = x2 to focus on the effect of ϕ1,2(x) on the
classification performance. This is because the function ϕ1,2(x) controls the entanglement of the
two qubits, a unique property of quantum mechanics. The function ϕ1,2(x) is chosen from a set
of various nonlinear functions that satisfy max(ϕ1,2(x))−min(ϕ1,2(x)) ≤ 2π for x1, x2 ∈ [−1, 1].
In particular, the functions in Eqs. (4.12) and (4.13) are empirically determined so that the
resulting quantum classifiers can achieve high accuracy on the prepared datasets.

We perform five-fold cross validation to assess these quantum classifiers’ performance. In this
technique, one dataset is divided into five groups with the same number of examples, and then
four groups are used for training and the rest for testing; this is repeated five times so that every
group is assigned as the test dataset exactly once. The numerical simulations are performed
using Qiskit [172] to estimate quantum kernels with 10, 000 measurement shots. As for the SVM
optimization, we use SVC provided in scikit-learn [173], a Python library for machine learning.
Moreover, the hyperparameter in the SVM Ch is set to 1010 to realize the scenario where the
minimum accuracy is computed, i.e., the hard-margin SVM.

Numerical Study on the Analysis Method

Here, we examine whether the minimum accuracy can help seek a set of suitable encoding
functions among the candidates in Eqs. (4.9) to (4.13). As described above, the minimum
accuracy is based on the real-valued quantum feature vectors a(x) = [aI...I(x), . . . , aZ,...,Z(x)]T .

40

Table 4.1: List of elements in the real-valued quantum feature vectors a(x) =
[aII(x), . . . , aZZ(x)]T for the quantum feature map in Eq. (4.7) [40]. The encoding function
ϕk(x) is denoted as ϕk for simplicity.

Index σi elements of the quantum feature vector aσi

II 1/4
XI {sinϕ1(sinϕ2 sinϕ1,2

2 + sinϕ1 cosϕ1,2
2 + cosϕ2 cosϕ1 sinϕ1,2)}/4

Y I {− sinϕ2 cosϕ1 sinϕ1,2
2 − sinϕ1 cosϕ1 cosϕ1,2

2 + cosϕ2 sinϕ1
2 sinϕ1,2}/4

ZI cosϕ1 cosϕ1,2/4
IX {sinϕ2(sinϕ1 sinϕ1,2

2 + sinϕ2 cosϕ1,2
2 + cosϕ1 cosϕ2 sinϕ1,2)}/4

XX {sinϕ1
2 sinϕ2

2 + sinϕ1,2 cosϕ1 cosϕ2(sinϕ1 + sinϕ2)}/4
Y X {− sinϕ2

2 sinϕ1 cosϕ1 + sinϕ1,2 cosϕ2(sinϕ1 sinϕ2 − cosϕ1
2)}/4

ZX {cosϕ1,2(− sinϕ1 cosϕ2 sinϕ1,2 + cosϕ1 sinϕ2
2 + sinϕ2 cosϕ2 sinϕ1,2)}/4

IY {− sinϕ1 cosϕ2 sinϕ1,2
2 − sinϕ2 cosϕ2 cosϕ1,2

2 + cosϕ1 sinϕ2
2 sinϕ1,2}/4

XY {− sinϕ1
2 sinϕ2 cosϕ2 + sinϕ1,2 cosϕ1(sinϕ1 sinϕ2 − cosϕ2

2)}/4
Y Y {sinϕ1 cosϕ1 sinϕ2 cosϕ2 − sinϕ1,2(cosϕ2

2 sinϕ1 + sinϕ2 cosϕ1
2)}/4

ZY {sinϕ2(− sinϕ1 sinϕ1,2 cosϕ1,2 − cosϕ2 cosϕ1 cosϕ1,2 + sinϕ2 cosϕ1,2 sinϕ1,2)}/4
IZ cosϕ2 cosϕ1,2/4
XZ {cosϕ1,2(− sinϕ2 cosϕ1 sinϕ1,2 + cosϕ2 sinϕ1

2 + sinϕ1 cosϕ1 sinϕ1,2)}/4
Y Z {sinϕ1(− sinϕ2 sinϕ1,2 cosϕ1,2 − cosϕ1 cosϕ2 cosϕ1,2 + sinϕ1 cosϕ1,2 sinϕ1,2)}/4
ZZ cosϕ1 cosϕ2/4

In this setting where the quantum feature map in Eq. (4.7) is used, the 42-dimensional vector
a(x) can be explicitly calculated, as shown in Table 4.1. We remind the readers that quantum
feature vectors can also be obtained by estimating expectation values of the Pauli operators
with respect to the quantum states generated from the quantum feature maps.

First, we show the classification accuracy achieved by these classifiers for the four datasets
mentioned earlier. The accuracy of quantum classifiers with the encoding functions in Eqs. (4.9)
to (4.13) is summarized in Table 4.2. Overall, the quantum classifier with the set of functions
in Eq. (4.12) shows good performance; the accuracy is larger than 0.95 for training and 0.88 for
testing. On the other hand, the encoding functions in Eq. (4.9) do not always result in high
performance. The accuracy of the functions for training data of Circle and Xor is 1.00, while
the one for Moon is 0.85. This indicates that the choice of the encoding functions affects the
quantum feature maps and thus the classification performance of the quantum kernel.

Next, we check what kind of regularities can be found in each element of the real-valued quan-
tum feature vectors and compare them with the actual classification performance. In Figs. 4.6
to 4.10, we show the color map of each element aσi(x) on the two-dimensional input space
x ∈ [−1, 1]2 for the encoding functions in Eqs. (4.9) to (4.13). Although the color maps are not
generated based on specific datasets, some patterns can be seen in the two-dimensional space,
affecting the classifiers’ performance. For instance, every ZZ element aZZ(x) in Figs. 4.6 to 4.10
witness the circle-like pattern, implying Circle dataset can be classified in the one-dimensional
space projected on aZZ(x). The observation is consistent with the fact that the Circle dataset
is separable with high accuracy by these classifiers, as shown in Table 4.2. Similarly, Fig. 4.6
shows that the Y X element of the vector aY X(x) for the encoding function in Eq. (4.9) can find
a pattern like Xor dataset. As a result, the classifier constructed with Eq. (4.9) achieves the
best training accuracy of 1.00 for the Xor dataset. Also, the encoding function in Eq. (4.12)
leads to a high accuracy of 0.98 for Exp dataset, as the similar configuration can be found in
the Y I element in Fig. 4.9. These results indicate that the projected one-dimensional space can

41

Table 4.2: Classification accuracy of SVMs with fidelity-based quantum kernels using different
encoding functions.

(a) Training accuracy

encoding functions Circle Exp Moon Xor

Eq. (4.9) 1.00 0.91 0.85 1.00
Eq. (4.10) 1.00 0.93 0.96 0.97
Eq. (4.11) 1.00 0.97 0.91 0.93
Eq. (4.12) 1.00 0.98 1.00 0.95
Eq. (4.13) 1.00 0.94 0.98 0.93

(b) Test accuracy

encoding functions Circle Exp Moon Xor

Eq. (4.9) 0.97 0.83 0.85 0.99
Eq. (4.10) 0.96 0.89 0.87 0.96
Eq. (4.11) 1.00 0.92 0.86 0.91
Eq. (4.12) 1.00 0.88 0.92 0.89
Eq. (4.13) 1.00 0.92 0.87 0.88

Table 4.3: Minimum accuracy obtained for each set of encoding functions.

encoding functions Circle Exp Moon Xor

Eq. (4.9) 0.99 0.77 0.83 0.99
Eq. (4.10) 0.99 0.76 0.80 0.91
Eq. (4.11) 0.99 0.86 0.89 0.85
Eq. (4.12) 0.99 0.88 0.89 0.84
Eq. (4.13) 0.99 0.81 0.85 0.78

be utilized in some cases to see if the data regularity can be found in the quantum-enhanced
feature space.

We are in a good position to compare the classification accuracy with our proposal, the
minimum accuracy. Table 4.3 demonstrates the minimum accuracy for the encoding functions
in Eqs. (4.9) to (4.13). As shown in Sec. 4.1.2, the minimum accuracy is attainable for any
optimized (linear) classifiers and thus serves as a lower bound. The comparison demonstrates
that the minimum accuracy actually gives a worst-case accuracy, indicating the potential of the
quantity as a guide to choosing a suitable quantum feature map. Moreover, we compare the
tendency of the minimum accuracy and the exact training accuracy. Fig. 4.5 summarizes the
comparison where the blue and red bars denote the accuracy for training and the minimum
accuracy, respectively. Interestingly, encoding functions chosen based on the minimum accuracy
can produce the best accuracy. Because of its definition, the highest value for the minimum
accuracy does not necessarily mean the best classifier among the candidates. Nevertheless, we
can see a broad tendency that high minimum accuracy leads to high classification performance
for training. This result positively implies that the minimum accuracy can potentially be used
to select a better-performing feature map.

42

(a) (b)

(c) (d)

Figure 4.5: Comparison between the accuracy for training and the minimum accuracy.

Numerical Study on the Synthesis Method

We here study how combined kernels can improve the classification performance. More specifi-
cally, we focus on Moon dataset and Exp dataset. According to Table 4.2, the quantum classifier
with the encoding function in Eq. (4.9) showed the worst accuracy of 0.85 on the Moon dataset.
However, combining such a weak kernel with another quantum kernel using encoding functions
in Eqs. (4.10) to (4.10) based on Eq. (4.5) can improve the classification performance. Table 4.4
(a) shows that every combined quantum kernel leads to higher accuracy than the original single
quantum kernels. Notably, even when the weakest quantum kernels constructed using Eq. (4.9)
and Eq. (4.11) are combined, the resultant kernel achieves the accuracy of 0.94 (the training
accuracy is 0.85 and 0.91 for each quantum kernel, respectively). This indicates that even weak
quantum classifiers can be combined to enhance the performance. Similarly, as shown in Ta-
ble 4.4 (b), we can find that the quantum kernel composed of the kernel of Eq. (4.9) and the
other shows better classification performance.

4.1.5 Conclusion & Outlook

This section discusses how to analyze and synthesize quantum feature maps to obtain powerful
quantum classifiers. As for the analysis method, we propose a quantity we call the minimum
accuracy, which can serve as a lower bound of the actual accuracy for training datasets. Numer-

43

Table 4.4: Accuracy of classifiers with combined quantum kernels.

(a) Classification accuracy on Moon dataset

combination of encoding (4.9) + (4.10) (4.9) + (4.11) (4.9) + (4.12) (4.9) + (4.13)

Training 1.00 0.94 1.00 1.00
Testing 0.95 0.90 0.98 0.96

(b) Classification accuracy on Exp dataset

combination of encoding (4.9) + (4.10) (4.9) + (4.11) (4.9) + (4.12) (4.9) + (4.13)

Training 0.96 0.93 0.95 0.95
Testing 0.92 0.90 0.88 0.92

ical experiments using some benchmarking binary classification tasks demonstrate the potential
of the minimum accuracy as a quantity to effectively screen a suitable quantum feature map.
We also examine the effectiveness of the synthesis method where (weak) kernels are combined
to construct a performant kernel in the quantum regime. We numerically check that the syn-
thesized quantum kernels can result in better classification performance. These results would
pave the way to design a better-performing quantum feature map.

Although the minimum accuracy can give some insights into the design of quantum feature
maps, its computational cost increases exponentially as the number of qubits increases. This
is because we consider the whole Pauli operators as candidates of the separating hyperplane
in the quantum-enhanced feature space. A possible remedy to this problem is to consider the
subset of the Pauli operators; R̃ = maxσi∈P Rσi with P ⊂ {I,X, Y, Z}⊗n is computed instead of
R = maxσi∈{I,X,Y,Z}⊗n Rσi in the fifth procedure shown in Sec. 4.1.2. The subset can be chosen
arbitrarily. One approach is randomly sampling a linear number of the Pauli operators. Another
is to restrict the locality of the Pauli operators; we only consider the Pauli operators containing
at most k non-identity operators (i.e., {X,Y, Z}) for k < n. While R̃ could be smaller than
R in some cases, it can still serve as a quantity to assess the worst-case accuracy for training
because of the equivalence between quantum kernel-based learning models and quantum neural
networks shown in Eq. (4.1). We also note that the concept of the minimum accuracy is similar
to the projected quantum kernel [37], which aims to avoid a detrimental issue in quantum kernel
methods. As discussed in detail in the next section, the fidelity-based quantum kernel suffers
from implementation infeasibility and the trainability problem with the increase in the number
of qubits. Projected quantum kernels are proposed to mitigate the issue by projecting quantum
feature vectors onto a classically tractable space. As projected quantum kernels can still perform
well, our minimum accuracy is also helpful in understanding the power of quantum feature maps
in specific machine learning tasks.

An open question on the synthesis method is how one combines quantum kernels. This thesis
focuses on the weighted sum of the quantum kernels in Eq. (4.5). While we set the parameters
to λ1 = λ2 = 1, one can try different hyperparameters to attain better performance. Actually,
Table 4.4 (b) shows that the classification performance is not so improved by combining two
quantum kernels compared to the single kernel. Thus, it would be interesting to investigate a
general and systematic approach to synthesizing quantum feature maps. Moreover, there are
many methods to synthesize kernels; some examples are shown in Sec. 3.2.1. Exploring the effect
of these synthesizing tools also helps to design good quantum kernels.

44

Figure 4.6: Color map representation of the real-valued quantum feature map with the encoding
function in Eq. (4.9) on the two-dimensional input space. Each color map represents a ele-
ment of the vector aσi(x) in σi ∈ {I,X, Y, Z}⊗2. Reprinted figure from Ref. [40]. Copyright
2020 by Y. Suzuki, H. Yano, Q. Gao, S. Uno, T. Tanaka, M. Akiyama, and N. Yamamoto.
[DOI:10.1007/s42484-020-00020-y].

Figure 4.7: Color map representation of the real-valued quantum feature map with the encod-
ing function in Eq. (4.10) on the two-dimensional input space. Each color map represents a
element of the vector aσi(x) in σi ∈ {I,X, Y, Z}⊗2. Reprinted figure from Ref. [40]. Copyright
2020 by Y. Suzuki, H. Yano, Q. Gao, S. Uno, T. Tanaka, M. Akiyama, and N. Yamamoto.
[DOI:10.1007/s42484-020-00020-y].

45

Figure 4.8: Color map representation of the real-valued quantum feature map with the encod-
ing function in Eq. (4.11) on the two-dimensional input space. Each color map represents a
element of the vector aσi(x) in σi ∈ {I,X, Y, Z}⊗2. Reprinted figure from Ref. [40]. Copyright
2020 by Y. Suzuki, H. Yano, Q. Gao, S. Uno, T. Tanaka, M. Akiyama, and N. Yamamoto.
[DOI:10.1007/s42484-020-00020-y].

Figure 4.9: Color map representation of the real-valued quantum feature map with the encod-
ing function in Eq. (4.12) on the two-dimensional input space. Each color map represents a
element of the vector aσi(x) in σi ∈ {I,X, Y, Z}⊗2. Reprinted figure from Ref. [40]. Copyright
2020 by Y. Suzuki, H. Yano, Q. Gao, S. Uno, T. Tanaka, M. Akiyama, and N. Yamamoto.
[DOI:10.1007/s42484-020-00020-y].

46

Figure 4.10: Color map representation of the real-valued quantum feature map with the encod-
ing function in Eq. (4.13) on the two-dimensional input space. Each color map represents a
element of the vector aσi(x) in σi ∈ {I,X, Y, Z}⊗2. Reprinted figure from Ref. [40]. Copyright
2020 by Y. Suzuki, H. Yano, Q. Gao, S. Uno, T. Tanaka, M. Akiyama, and N. Yamamoto.
[DOI:10.1007/s42484-020-00020-y].

47

4.2 A Remedy to the Vanishing Similarity Issue: Quantum
Fisher Kernel2

This section addresses another practical issue in quantum kernel methods: the so-called vanishing
similarity issue. Quantum kernel methods hold a crucial position in QML due to the provable
quantum advantages. On the other hand, the commonly-used fidelity-based quantum kernel
suffers from the vanishing similarity issue (or exponential concentration problem) [38,39], where
the exponential decay of the expectation value and the variance of the quantum kernel result in
infeasible implementation and poor trainability. We make two contributions to the issue. First,
we show from both analytical and numerical perspectives that the fidelity-based quantum kernel
cannot avoid the vanishing similarity issue regardless of types of quantum circuits. The second
and most significant result is to propose a new type of quantum kernel termed the quantum
Fisher kernel (QFK). We analytically and numerically demonstrate that QFKs can circumvent
the issue when shallow alternating layered ansatzes [102] are used. We further perform numerical
simulations to see the expressivity and the performance of QFK.

4.2.1 Introduction

Previous works have theoretically shown datasets that are not efficiently learnable by classi-
cal models but by the fidelity-based quantum kernels [31–33]. This motivates a number of
researchers to pursue practical advantages of the methods. In general, it is conjectured that
quantum advantages are realized when a large number of qubits are used. However, the fidelity-
based quantum kernel suffers from practical issues with the increase in the qubit numbers; for
instance, a significantly large number of measurement shots are needed to precisely estimate
the quantum kernel on quantum devices, and the performance to an unseen new date (i.e., the
generalization performance) is poor. These issues arise because expectation value and variance
of the quantum kernel decay exponentially in the number of qubits. The problem is called the
vanishing similarity issue, which we elaborate on later in Sec. 4.2.3. Resolving the issue is im-
perative for the practical use of quantum kernel methods to acquire advantages in real-world
applications.

This section discusses vanishing similarity in the fidelity-based quantum kernel and a new
type of quantum kernel that we propose as a circumventing approach to the issue, the quantum
Fisher kernel (QFK). In our analysis, we consider two types of quantum feature maps (i.e.,
quantum circuits): (1) globally-random quantum circuits and (2) alternating layered ansatzes
(ALAs). Then, we assume that the quantum circuits are independent and form 2-designs [97,
98, 174–176]. With the assumption, we analytically show that the vanishing similarity issue is
not avoidable for the fidelity-based quantum kernel regardless of the types of quantum circuits.
On the other hand, we demonstrate that QFKs can mitigate the issue when shallow ALAs are
used. Numerical simulation also supports these analytical results.

Moreover, Fourier analysis is numerically performed to show that QFKs and the fidelity-based
quantum kernel have comparable expressivity. We then demonstrate an example of classification
tasks where the proposed QFK performs well, whereas the performance of the fidelity-based
quantum kernel deteriorates due to the vanishing similarity issue. These results indicate the
effectiveness of our QFK for machine learning tasks when large quantum systems are involved.

Lastly, we mention some related work on the vanishing similarity issue. A concept identical to
the vanishing similarity issue was first addressed in Ref. [37]. Following this work, some attempts
have been made to analytically elucidate the issue [39, 177–179]. Especially, Ref [39] clarifies

2Results shown in this section are based on the author’s work [38].

48

four sources of the issue: expressivity, global measurement, the entanglement of quantum states,
and quantum noise. Yet, the analysis in this work does not take into account types of quantum
circuits as our work [38]. Also, another type of quantum kernel, the projected quantum kernel,
has been investigated from the vanishing similarity perspectives [39, 179].

The structure of this section is given as follows. In Sec. 4.2.2, we provide techniques used in
our analysis: integration formulas of Haar random unitary. Then, after presenting the definition
of the vanishing similarity issue and settings, we detail analytical results on vanishing similarity
in the fidelity-based quantum kernel in Sec. 4.2.3. Next, Sec. 4.2.4 explains our proposed QFK,
followed by an analytical investigation in Sec. 4.2.5. Subsequently, we show numerical experi-
ments to support our analytical results in Sec. 4.2.6 and the performance of QFK in comparison
with the fidelity-based quantum kernel in Sec. 4.2.7. Lastly, we conclude our work in Sec. 4.2.8.

4.2.2 Preliminary

Our analysis utilizes integration formulas of Haar random unitary to derive expectation values
and variance of quantum kernels analytically. We thus provide the techniques before going into
the details of our analytical results.

For ease of analysis, we assume that quantum circuits form t-designs. The t-design is an
ensemble of unitary operators whose statistical property agrees with that of the unitary sampled
from the unitary group with respect to the Haar measure up to the t-th moment [97, 98, 174].
An important property of Haar random unitary is left- and right-invariance; for any function
g(V) and arbitrary unitary operator U , the Haar random unitary V satisfies∫

dµHaar(V)g(V) =

∫
dµHaar(V)g(UV) =

∫
dµHaar(V)g(V U), (4.14)

where dµHaar(V) represents the Haar measure. If an ensemble of unitary {pi, Vi} (i.e., Vi is
sampled with probability pi) is a t-design, the same result can be obtained up to a polynomial
function of at most degree t.

In addition, when a quantum circuit V forms a 1-design, we can have the following expression;∫
dµ(V)Vi,jV

∗
l,k =

δi,lδj,k
d

, (4.15)

where d is the dimension of the unitary V and δi,j represents the Kronecker delta. Also, we can
derive the following equality for the 2-design case;∫

dµ(V)Vi1,j1V
∗
l1,k1Vi2,j2V

∗
l2,k2 =

δi1,l1δi2,l2δj1,k1δj2,k2 + δi1,l2δi2,l1δj1,k2δj2,k1
d2 − 1

−
δi1,l1δi2,l2δj1,k2δj2,k1 + δi1,l2δi2,l1δj1,k1δj2,k2

d (d2 − 1)
.

(4.16)

Moreover, we work on the integration of some functions over the local unitary operators.
Thus, we also provide five Lemmas that are helpful in our calculation and were derived in
Supplementary Information of Ref. [102];

Lemma 1. Let a unitary operator V acting on the d-dimensional Hilbert space Hv be a t-design
with t ≥ 1. Then, for arbitrary operators A,B : Hv → Hv, we have∫

dµ(V)Tr
[
V AV †B

]
=

Tr [A] Tr [B]

d
. (4.17)

49

Lemma 2. Let a unitary operator V acting on the d-dimensional Hilbert space Hv be a t-design
with t ≥ 2. Then, for arbitrary operators A,B,C,D : Hv → Hv, we have

∫
dµ(V)Tr

[
V AV †BV CV †D

]
=

1

d2 − 1
(Tr [A] Tr [C] Tr [BD] + Tr [AC] Tr [B] Tr [D])

− 1

d (d2 − 1)
(Tr [A] Tr [B] Tr [C] Tr [D] + Tr [AC] Tr [BD]) .

(4.18)

Lemma 3. Let a unitary operator V on the d-dimensional Hilbert space Hv be a t-design with
t ≥ 2. Then, for arbitrary operators A,B,C,D : Hv → Hv, we have∫
dµ(V)Tr

[
V AV †B

]
Tr
[
V CV †D

]
=

1

d2 − 1
(Tr [A] Tr [B] Tr [C] Tr [D] + Tr [AC] Tr [BD])

− 1

d (d2 − 1)
(Tr [A] Tr [C] Tr [BD] + Tr [AC] Tr [B] Tr [D]) .

(4.19)

Lemma 4. Let a unitary operator V acting on the dv-dimensional Hilbert space Hv be a t-
design with t ≥ 2. In addition, suppose H = Hv̄ ⊗Hv be dvdv̄-dimensional. Then, for arbitrary
operators A,B : H → H, we have∫

dµ(V)(IV̄ ⊗ V)A(IV̄ ⊗ V †)B =
Trv [A] ⊗ Iv

dv
B, (4.20)

and ∫
dµ(V)Tr

[
(Iv̄ ⊗ V)A(Iv̄ ⊗ V †)B

]
=

1

dv
Tr [Trv [A] Trv [B]] . (4.21)

Here, Iv(Iv̄) represents the identity matrix acting on the Hilbert space Hv(Hv̄) and the partial
trace over Hv(Hv̄) is denoted as Trv(Trv̄). Also, Ā denotes the complement of A.

Lemma 5. Let V be a unitary operator acting on the dv-dimensional Hilbert space Hv. In
addition, suppose H = Hv̄ ⊗Hv be dvdv̄-dimensional with dv = 2m and dv̄ = 2n−m. Then, for
arbitrary operators A,B : H → H, we have

Tr
[
(Iv̄ ⊗ V)A(Iv̄ ⊗ V †)B

]
=
∑
p,q

Tr
[
V Aqp, V

†Bpq

]
, (4.22)

where
Aqp = Trw̄ [(|p⟩ ⟨q| ⊗ Iw)A] , Bpq = Trw̄ [(|q⟩ ⟨p| ⊗ Iw)B] . (4.23)

Here q and p represent bit-strings of length n−m.

We note that these Lemmas are applicable in case V is replaced with UlV Ur where Ul and
Ur are arbitrary unitary operators and V is the Haar random unitary; this can be easily checked
by using left- and right- invariant property.

4.2.3 Vanishing Similarity Issue in Fidelity-Based Quantum Kernel

Next, we show the vanishing similarity issue in the fidelity-based quantum kernel. This work
focuses on the parameterized fidelity-based quantum kernel instead of Eq. (3.34):

kQ(x,x′) = Tr
[
ρx,θρx′,θ

]
, (4.24)

50

where ρx,θ = U(x,θ)ρU †(x,θ) is the data-dependent quantum state generated by applying
U(x,θ) to initial state ρ0. We consider the data- and parameter-dependent quantum circuits
U(x,θ) because tunable parameters θ are introduced in practical situations so that powerful
quantum feature maps are engineered. We remark that U(x,θ) can be regarded as the general
expression of U(x); thus, our analytical results provided later can be applied to the case in
Eq. (3.34).

In the following, we first present the details of the vanishing similarity issue. Then, we
analytically address the issue in the fidelity-based quantum kernel after providing the setting in
our analysis.

Vanishing Similarity Issue

We explain the vanishing similarity issue in detail. The provable advantages of quantum kernel
methods lie in cases where a large number of qubits are used. However, the fidelity-based
quantum kernel outputs significantly small values that concentrate exponentially onto a fixed
value as the size of qubit systems increases. We recall that a kernel function estimates the
similarity between a pair of data points in the feature space. Hence, this indicates that the
similarity vanishes exponentially in the quantum-enhanced feature space with the increase of
the number of qubits; also, differentiating features of data via the quantum kernels becomes
challenging.

More concretely, the vanishing similarity issue is defined as

Var{(x,x′)}
[
kQ(x,x′)

]
= b, b ∈ O(1/cn) (4.25)

with the number of qubits n and c > 1. Eq (4.25) states that the variance of the quantum
kernel in Eq. (4.24) taken over a pair of data points (x,x′) drawn from certain distribution is
upper bounded by an exponentially small value. The variance can also be taken over a pair of
data-dependent unitary operators (U(x,θ), U(x′,θ)), because quantum kernels are dependent
on data x only via the quantum feature map by definition. That is, Eq. (4.25) can be restated
as

Var{(U(x,θ),U(x′,θ))}
[
kQ(x,x′)

]
= b, b ∈ O(1/cn). (4.26)

Note that we consider a pair of unitary operators to compute expectation values and variance
throughout this thesis and hence will not explicitly express {(U(x,θ), U(x′,θ))}.

The issue is detrimental for two reasons. Firstly, measurement must be repeated a significant
amount of times to obtain the precise value of the fidelity-based quantum kernel. In realistic
situations, the fidelity-based quantum kernels are estimated on quantum hardware by the swap
test or the inversion test, as shown in Sec. 3.2. This means the precision of the estimated quantum
kernel is determined by the number of measurement shots Ns. However, vanishing similarity in
Eq. (4.25) states that the difference between two quantum kernels is crucially small, and thus,
an exponential number of measurements is required. Secondly, learning models based on the
quantum kernel fail to predict the target value of a given unseen data point. This is because
the Gram matrix, a matrix whose (i, j) entry is given by

Gij = kQ(xi,xj), (4.27)

gets close to the identity matrix and thus the models easily cause overfitting. Suppose the
SVM algorithm with kernel methods, for instance. If the identity matrix is used as the Gram
matrix, the convex optimization problem shown in Eq. (3.54) becomes trivial; as a result, the
generalization performance of the optimized model is poor.

51

The vanishing similarity issue is analogous to the barren plateau problem in variational
quantum algorithms. A barren plateau addressed in Ref. [180] represents a status of the cost
function landscape of variational quantum algorithms, where the magnitude of gradients vanishes
exponentially as the number of qubits increases. This is problematic as the phenomenon makes
the algorithms untrainable. Thus far, some works theoretically analyzed the barren plateaus to
understand trainable situations and how to avoid the issue [102,180–185]. For example, Ref. [102]
demonstrates that using local cost functions and ALAs can alleviate the vanishing gradients
problem. Actually, this work motivates us to work on ALAs for analyzing vanishing similarity
in quantum kernel methods. We lastly note that the implicit models in quantum-enhanced
machine learning (see Sec. 3.1.3) can be categorized into variational quantum algorithms. Thus,
these issues can be interpreted in a unified framework; implicit and explicit models suffer from
the vanishing similarity issue and the barren plateau problems, respectively.

Setting of the Analysis

We analytically demonstrate the issue in the fidelity-based quantum kernel in Eq. (4.24). Here,
we detail the setup of our analysis.

We consider two types of quantum circuits: globally-random quantum circuits and ALAs
composed of m-qubit local unitary blocks, depicted in Fig. 4.11 (a) and (b), respectively. The
globally-random quantum circuits are denoted as U(x,θ). Also, we express the ALA as

U(x,θ) =
L∏

d=1

Vd(x,θ)

=

L∏
d=1

(
κ∏

k=1

Wk,d(x,θk,d)

)
,

(4.28)

where L denotes the total number of layers and κ represents the number of local unitary blocks
in a layer satisfying n = mκ with the total number of qubits. Here, both a unitary block in
one layer and the one in the adjacent layer act on at most m/2 qubits in common; for instance,
S(k,1) and S(k,2) have m/2-qubit subspace in common, where S(k,d) is the subspace of qubits
which the unitary block Wk,d(x,θk,d) acts on. The detail is illustrated in Fig. 4.11 (c). Note
that local unitary blocks can be arbitrary; that is, data-dependent gates, parameter-dependent
gates, and data- and parameter-independent gates can constitute local unitary blocks. However,
we assume that the parameterized gates are expressed in terms of single-qubit rotation gates,
i.e., Rσ(θ) = exp(−iθσ/2) with a Pauli operator σ ∈ {X,Y, Z}.

Then, we assume that the globally-random quantum circuits and local unitary blocks in the
ALAs are independent and form 2-designs. As shown in Sec. 4.2.2, the 2-design is an ensemble
of unitary operators with the same statistical property as the Haar random unitary up to the
second moment. Roughly speaking, the assumption indicates that the quantum circuits are so
expressive that the ensemble of Haar random states can be explored. Previous works assume
the 2-design to analyze barren plateaus [102, 180, 186–188] and vanishing similarity [39, 177].
However, we note that the assumption might not hold in practice.

Analytical Results

With the setting mentioned above, we analytically compute the expectation value and the vari-
ance of the fidelity-based quantum kernel in Eq. (4.24). See Appendix A.1 for the proof.

52

(c)

(a) (b)

(d) (e)

Figure 4.11: Quantum circuits used in our analysis. The globally-random quantum circuit
and the ALA are shown in (a) and (b), respectively. Panel (c) illustrates the detail of the
ALA with a focus on k and k + 1 unitary blocks in the first three layers. For simplicity, we
denote Wk,d(x,θk,d) ≡Wk,d. Panels (d) and (e) represent B̃x,θi = U †

1:i(x,θ)BθiU1:i(x,θ) for the
globally-random quantum circuit and the ALA, respectively. In panel (e), the thick gray unitary
block adjacent to Bθi is represented by W̃k,d(x, θi) and the shaded region represent Vr(x,θ).

53

Proposition 1. Let the expectation value and the variance of the n-qubit fidelity-based quantum
kernel defined in Eq. (4.24) be ⟨kQ⟩ and Var [kQ], respectively. Also, let the initial state ρ0 be an
arbitrary pure state.

(1) When globally-random quantum circuits U(x,θ) and U(x′,θ) are independent, and at least
either U(x,θ) or U(x′,θ) is a t-design with t ≥ 2, the expectation value and the variance
are given by

⟨kQ⟩ =
1

2n
, (4.29)

Var [kQ] =
2n − 1

22n (2n + 1)
≈ 1

22n
. (4.30)

(2) Let U(x,θ) and U(x′,θ) be the ALAs in Eq. (4.28), and let m-qubit local unitary blocks in
either U(x,θ) or U(x′,θ) be independent and t-designs with t ≥ 2. Then, the expectation
value and the upper bound of the variance are given by

⟨kQ⟩ =
1

2n
, (4.31)

Var [kQ] ≤ 2κ

(22m − 1)κ
− 1

22n
≈ 1

2n(2− 1
m)
. (4.32)

The implication of Proposition 1 is that vanishing similarity is not avoidable for the fidelity-
based quantum kernel regardless of the circuit type. This is because (the upper bound of)
the variance decays exponentially in the number of qubits n. In other words, devising circuit
structures cannot mitigate the problem if the (global) fidelity is used as the metric. This also
means that the tensor-product quantum circuit, which is tractable by classical computers, also
leads to vanishing similarity. We note that a similar result is demonstrated in Ref. [39] for case
(1). Also, the result for case (2) could be related to Eq. (170) in Ref. [102]. Nevertheless,
our work [38] is the first to elucidate the presence of vanishing similarity in the fidelity-based
quantum kernel for ALAs.

Let us remark that we can obtain the same results in some cases, even when U(x,θ) and
U(x′,θ) are correlated. This can be checked by utilizing the left- and right-invariant property
of the Haar random measure in Eq. (4.14).

4.2.4 Quantum Fisher Kernel

As discussed, the fidelity-based quantum kernels would suffer from the vanishing similarity
issue, which suggests the need to design quantum kernels instead of fidelity-based ones. In this
thesis, we propose a new quantum kernel called the quantum Fisher kernel (QFK) that can
mitigate the issue. The idea behind our proposal is to incorporate data structures into learning
models. Recent works have demonstrated the importance of building models that encompass
the information on datasets [31,189]. In addition, a remedy of barren plateaus, an analogy of the
vanishing similarity issue for explicit models, is to take into account the structure of quantum
feature map U(x,θ) [102]: the structure of parameterized quantum circuits and cost function
designs. Notably, the classical Fisher kernel is constructed using the information geometric
quantity (i.e., the logarithmic derivatives of generative models), with the motivation of taking
advantage of data sources for kernel designs. Actually, the classical Fisher kernel has been
applied in some fields such as computer vision, due to its expresivity [124–126,128]. Thus, based
on the design principle of the classical Fisher kernel, we propose QFKs.

54

QFKs are defined as follows;

kγQF (x,x′) ≡
〈
Lγ

x,θ,L
γ
x′,θ

〉
F−1

γ

=
∑
i,j

F−1
γ,i,j

(
Lγ
x,θi

, Lγ
x′,θj

)
ρ

(4.33)

where (A,A′)ρ = 1
2Tr[ρ(A′A† + A†A′)] with certain quantum state ρ is the pre-inner prod-

uct for operators [190] and Fγ is the quantum Fisher information matrix. Here, Lγ
x,θ =

[Lγ
x,θ1

, Lγ
x,θ2

, . . .]T is the vector containing the quantum version of logarithmic derivatives (i.e.,
the Fisher score). While there are multiple definitions of the “quantum” Fisher score [191],
we here focus on the symmetric logarithmic derivative (SLD) [192,193] and the anti-symmetric
logarithmic derivative (ALD) [190]. The SLD LS

x,θl
and the ALD LA

x,θl
regarding the l-th param-

eter θl for the quantum state ρx,θ = U(x,θ)ρ0U
†(x,θ) are defined as solutions of the following

equations, respectively;

∂θlρx,θ = 1
2

(
ρx,θL

S
x,θl

+ LS
x,θl

ρx,θ

)
, (4.34)

∂θlρx,θ = 1
2

(
ρx,θL

A
x,θl

− LA
x,θl

ρx,θ

)
. (4.35)

Here we denote ∂θl ≡ ∂/∂θl for simplicity. When the initial state ρ0 is pure, a solution of the
SLD equation can be expressed as

LS
x,θl

= 2∂θlρx,θ. (4.36)

Also, the ALD equation can be solved as follows;

LA
x,θl

= i (Bx,θl − Tr [ρx,θBx,θl]) , (4.37)

with Bx,θl = 2i(∂θlU(x,θ))U †(x,θ). We note that these equations are not uniquely determined.
Also, we introduce γ to differentiate the ALD and SLD, i.e., γ ∈ {A,S}. By introducing
Eq. (4.36) or Eq. (4.37) into Eq. (4.33), we can rewrite the QFK as

kQF (x,x′) =
1

2

∑
i

F−1
i,j Tr

[
ρ0

{
B̃x,θi − Tr

[
ρ0B̃x,θi

]
, B̃x′,θj − Tr

[
ρ0B̃x′,θj

]}]
(4.38)

with the anti-commutator {·, ·} and B̃x,θi = U †
1:i(x,θ)BθiU1:i(x,θ) using Ui:j(x,θ). Here,

Ui:j(x,θ) denotes a sequence of unitary gates from Ui(x, θi) to Uj(x, θj), for the unitary opera-
tor U(x,θ) = UD(x, θD) · · ·U2(x, θ2)U1(x, θ1). We omit the index γ because the QFK for both
cases results in Eq. (4.38).

Throughout this thesis, we set the quantum Fisher information matrix in the QFK of
Eq. (4.38) to the identity matrix, i.e., F = I, as in the classical case. Ref. [122] demonstrates
that the Fisher information in classical Fisher kernel is less significant in performance; previous
works have also practically used the Fisher kernel with identity matrix [2, 122, 126, 127, 194] or
the diagonal matrix [128,195] due to the computational efficiency. Similarly, the quantum Fisher
score could be less important, and thus we rather focus on the quantum Fisher score. Also, we
do not take into account the terms Tr[ρ0B̃x,θi] and Tr[ρ0B̃x′,θj] in Eq. (4.38) to simplify the
discussion on the vanishing similarity issue; the remaining terms are dominant in the variance
scaling and the same variance scaling can be obtained even when the terms are included as
shown in Appendix A.2.

55

4.2.5 Vanishing Similarity Issue in Quantum Fisher Kernel

We then analytically demonstrate the vanishing similarity issue in the QFK. We consider the
i-th term of the QFK in Eq. (4.38), i.e.,

k
(i)
QF ≡ Tr[ρ0{B̃x,θi , B̃x′,θi}]/2. (4.39)

The variance of Eq. (4.38) differs from that of the i-th term. Yet, we focus on its variance
to understand how deep quantum circuits can be exploited. We note that the implication of
Theorem 1 shown below is consistent for the case of Eq. (4.38) as well.

Setting of the Analysis

As in the case for the fidelity-based quantum kernel shown in Sec. 4.2.3, we consider (1) globally-
random quantum circuits and (2) ALAs with m-qubit local unitary blocks. Due to the form
of QFK, we assume that U1:i(x,θ) in the globally-random circuit is a 2-design for arbitrary i.
Also, suppose the k-th unitary block in the d-th layer, Wk,d(x,θk,d), contains the i-th parameter.
In addition, U1:i(x,θ) can be decomposed as W̃k,d(x, θi)Vr(x,θ), where W̃k,d(x, θi) denotes
a sequence of gates that includes the first gate in Wk,d(x,θk,d) through the gate with i-th
parameter, and Vr(x,θ) represents unitary blocks in the light-cone of Wk,d(x,θk,d). Then, we
assume W̃k,d(x, θi) and all unitary blocks in the ALAs are 2-designs for any k and d. For ease
of understanding, we show the quantum circuit representation of B̃x,θi in Fig. 4.11 (d) and (e).

Analytical Results

We derive the expectation value and the variance of the i-th term of QFK in Eq. (4.38) for the
above setting.

Theorem 1. Let the expectation value and the variance of i-th term for the n-qubit QFK in

Eq. (4.39) be ⟨k(i)QF ⟩ and Var[k
(i)
QF], respectively. Also, let the initial state ρ0 be pure.

(1) When globally-random quantum circuits U(x,θ) and U(x′,θ) are independent, and both
U1:i(x,θ) and U1:i(x

′,θ) are t-designs with t ≥ 2, then we have

⟨k(i)QF ⟩ = 0, (4.40)

Var
[
k
(i)
QF

]
=

2n

2 (22n − 1)

(
1 +

2n − 2

2n (2n + 1)

)
≈ 1

2n+1
. (4.41)

(2) Let U(x,θ) and U(x′,θ) be the ALAs. Also, W̃k,d(x, θi), W̃k,d(x′, θi) and unitary blocks
in Vr(x,θ) and Vr(x

′,θ) are independent and t-designs with t ≥ 2. Then, the expectation
value is given by

⟨k(i)QF ⟩ = 0. (4.42)

Additionally, we assume the initial state ρ0 is represented as the tensor product of arbitrary
single-qubit pure states {ρ0,i}ni=1, i.e., ρ0 = ρ0,1 ⊗ ρ0,2 ⊗ . . .⊗ ρ0,n. Then, the lower bound
of the variance is given by

Var
[
k
(i)
QF

]
≥

22md
(
2md − 1

)
2 (22m − 1)2 (2m + 1)4(d−1)

. (4.43)

56

We remark that the assumption on the initial state being a tensor product state for the
variance calculation in case (2) is moderate from the practical perspective. This is because the
tensor product state is a common choice for the initial state preparation. We can also derive
the lower bound for a larger class of initial states, shown in Appendix A.2.

Theorem 1 implies that the QFK can preserve the variance compared to fidelity-based quan-
tum kernels. In case (1), the variance scaling for the QFK is quadratically better than the
fidelity-based ones, while QFK’s variance also exponentially decreases in the number of qubits.
Remarkably, in case (2), the lower bound of the variance for ALAs depends on the size of local
unitary blocks m, circuit depth d of the local unitary block Wk,d(x,θk,d). Namely, the i-th
term of the QFK in a shallow region of ALAs can avoid the vanishing similarity issue. This
indicates that the QFK has the potential to utilize quantum circuits whose depth is possibly
O(poly log (n)). We note that this comes from results in Ref, [102], stating the transition point
between exponential and polynomial decay would lie in the region of depth d ∈ O(poly log (n)).
We remind that the implication could be consistent with the case for the QFK in Eq. (4.38);
see Appendix A.3 for the details.

We lastly mention that QFK in the form of Eq. (4.38) might not exploit quantum circuits
whose depth lies in the region d ∈ O(poly log (n)), because the ones in O(log (n)) will contribute
to the QFK significantly. However, we can alleviate the problem by considering the following
weighted-sum representation of the QFK;

kwQF (x,x′) =
1

2

∑
i

wiTr[ρ0{B̃x,θi , B̃x′,θi}] (4.44)

with properly chosen weights {wi}.

4.2.6 Numerical Demonstration

We perform numerical simulations to support our analytical results in Sec. 4.2.3 and 4.2.5. We
here numerically compute the variance of the fidelity-based quantum kernel and the QFK for
three types of quantum circuits: tensor product quantum circuits, ALAs with two-qubit local
unitary blocks, and hardware efficient ansatzes (HEAs), as shown in Fig. 4.12 (a), (b) and (c),
respectively. More concretely, we employ the data re-uploading technique [101] to construct
these quantum circuits, i.e., U(x,θ) =

∏L
d=1 V (θd)V (x) where each parameterized quantum

circuit layer V (θd) is one of these quantum circuits and the input-embedding circuit V (x) is
the tensor product quantum circuit for all cases. As for the input, we randomly generate five
sets of 100 data points {xi}100i=1, where we set the dimension of data points equal to the number
of qubits and each element ranges from −π to π. In input-embedding circuits, each element
of data points is injected into a corresponding qubit, i.e., αi = αn+i = xi in Fig. 4.12 (a).
Also, five sets of parameters θ are randomly generated from the same range; we note θ = α in
Fig. 4.12. We then calculate the variance of quantum kernels for different pairs of data points
for all combinations of input datasets and sets of parameters. We consider the setup to realize
the 2-design assumption, while these quantum circuits might not hold the property. We also
focus on the normalized QFK,

k̃QF (x,x′) =
1

2p

∑
i

Tr
[
ρ0

{
B̃x,θi , B̃x′,θj

}]
, (4.45)

with the number of parameters p, to set the trace of the Gram matrix equal to the number of
data points. All the simulation in this section is performed by Cirq [196].

57

(a)

(b)

(c)

Odd Even

Figure 4.12: Quantum circuits used in numerical simulations in Sec. 4.2. (a) Tensor product
quantum circuit, (b) ALA with two-qubit local unitary blocks, and (c) HEA. As for the ALA,
alternating layers are realized by preparing different entanglers for even and odd layers. We also
use randomly chosen Pauli operators σi ∈ {Xi, Yi, Zi} for the HEA in (c).

58

2 4 6 8 10 12 14
The number of qubits

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Va
ria

nc
e

Fide ity-based QK/Tensor/DEPTH3
Fidelity-based QK/ALA2/DEPTH3
Fidelity-based QK/HEA/DEPTH3
QFK/Tensor/DEPTH3
QFK/ALA2/DEPTH3
QFK/HEA/DEPTH3

Figure 4.13: Variance of fidelity-based quantum kernels and QFKs against the number of qubits,
n ∈ {2, 4, 6, 8, 10, 12, 14}. We use three types of quantum circuits: tensor product quantum
circuits, ALAs with two-qubit local unitary blocks, and HEAs.

Fig. 4.13 shows a semi-log plot of the variance of these quantum kernels for three types of
quantum circuits. We find that the fidelity-based quantum kernel witnesses exponential decay
of its variance regardless of types of quantum circuits, as demonstrated in Proposition 1. On the
other hand, the variance of the QFK does not vanish exponentially for all cases. The gradual
decay of the variance for QFK with HEAs seems to contradict Theorem 1 (1). However, the
assumption that quantum circuits form 2-designs is not satisfied. In addition, the i-th term in
shallow regions would contribute to the non-vanishing variance. We also note that the variance
of QFK for ALAs decreases as the number of qubits increases because a normalization factor p
scales linearly in the number of parameters, which scales linearly in the number of qubits.

Furthermore, we numerically check the variance of the i-th term of QFK in different layers.
Fig. 4.14 shows the variance in different layers against the number of qubits for the three quantum

circuits mentioned above. We focus on the term k
(i)
QF whose parameter θi is the angle of the

rotation Z gate that acts on the ⌈n/2⌉-th qubit (in the middle of the width) in each layer.
As for the tensor product quantum circuits and ALAs, the variance remains unchanged in the
number of qubits. The variance for deeper ALAs decreases in the region of the small qubit
numbers but then levels off. This is mainly because the number of the unitary blocks in the
light-cone is saturated for the case of a large number of qubits; violating the 2-design assumption
is also attributed to the tendency of the variance. On the other hand, the variance for HEAs
declines more quickly than that of other cases. Such depth dependence would be because the
HEAs become more expressive to satisfy the property of the 2-design as the depth increases.
Again, the violation of the 2-design assumption on W̃k,d(x, θi) contributes to the tendency of the
variance. We note that the variance of the terms increases more slowly than the fidelity-based
quantum kernels.

59

(a)

(b)

(c)

Figure 4.14: Variance of the i-th term of the QFK, k
(i)
QF , in different layers d ∈ {1, 2, 3, 4, 5}

against the number of qubits n ∈ {2, 4, 6, 8, 10, 12, 14}. We use (a) tensor product quantum
circuits, (b) ALAs, and (c) HEAs. Note that the parameter θi is the angle of the rotation Z
gate that acts on the ⌈n/2⌉-th qubit in each layer.

60

4.2.7 Expressivity and Performance

QFKs possess an important property of avoiding the vanishing similarity issue. This is a nec-
essary condition for the practicality of quantum kernel-based learning models. However, the
property is insufficient to state that QFKs are powerful enough to perform machine learning
tasks well. Hence, we further examine the expressivity of QFKs and then investigate the per-
formance in specific classification tasks. Precisely, we exploit Fourier analysis to elucidate how
expressive QFKs are. Also, we demonstrate a binary classification task where QFK can show
high performance whereas fidelity-based quantum kernels perform poorly.

Expressivity via Fourier Analysis

The expressivity of both explicit and implicit models can be quantitatively examined via Fourier
analysis [114, 197]. Ref. [114] demonstrates that quantum kernels can be expressed as an inner
product of two Fourier series:

kQ(x,x′) =
∑

ω,ω′∈Ω
eiωxeiω

′xcω,ω′ (4.46)

with the Fourier coefficient cω,ω′ satisfying c∗ω,ω′ = c−ω,−ω′ and Ω ∈ Rd. Here, d represents
the dimension of data points. Therefore, we measure the expressivity of quantum kernels by
numerically computing the magnitude of coefficients {cω,ω′} over the effective frequency set.
That is, the more non-zero Fourier coefficients the model has, the higher its expressivity is.
However, computational costs to perform Fourier decomposition increases exponentially as the
data dimension grows. We hence focus on one-dimensional data points, d = 1, and the truncated
frequency set Ω̃ = {−12,−11, . . . , 10, 11, 12}. We use “curve fit” provided by Scipy [198] to
numerically compute Fourier coefficients; coefficients are obtained so that the quantum kernel
fits to its Fourier representation.

Fig. 4.15 (a) shows the amplitudes of all Fourier coefficients {cω,ω′} for fidelity-based quantum
kernels and the normalized QFK for ALAs with the number of qubits n = {1, 2, 3} and circuit
depth L = {2, 3, 4}. We note that the index of Fourier coefficients (i.e., x-axis) in Fig. 4.15
(a) is aligned in the order shown in Fig. 4.15 (b). We find that QFKs have almost the same
Fourier coefficients as the fidelity-based quantum kernel, indicating that QFKs are comparable
to fidelity-based quantum kernels from the perspective of expressivity.

Performance Comparison

We further demonstrate a binary classification task where the performance of fidelity-based
quantum kernels and QFKs differ due to the presence of vanishing similarity. We here consider
one-dimensional synthetic datasets {(xi, yi)} consisting of a one-dimentional input xi ∈ [−π, π)
and its label yi ∈ {+1,−1}, which is determined according to

yi = sign (sin (wxi + b)) (4.47)

with the dataset hyperparapeters w, b ∈ R. Intuitively, w and b determine the frequency and
phase of the dataset, respectively; when w is large, high-order frequency components in terms of
Fourier analysis are required to solve the task. Fig. 4.16 (a) shows examples of the dataset for
(w, b) = (2, 0.3), (4, 0.3) where binary labels are represented in blue and orange. We here focus on
the dataset for (w, b) = (2, 0.3) to examine the performance of SVMs with these quantum kernels
for the different numbers of qubits. We use four-layer data re-uploading quantum feature maps

61

Ex)

(b)

(a)
A

m
p
lit

u
d
e

1 qubits depth 2

1 q

1 q

2 q

2 q

2 q

3 q

3 q

3 q

Figure 4.15: Amplitudes of Fourier coefficients of fidelity-based quantum kernels and QFKs.
Panel (a) shows amplitudes of all Fourier coefficients (i.e., 625 coefficients in total) for fidelity-
based quantum kernels (blue) and QFKs (red). Here, we used ALAs with the different number
of qubits and circuit depth. Panel (b) illustrates how coefficients on the x-axis in (a) are aligned
by taking the case for Ω̃ = {−2,−1, 0, 1, 2}.

62

where ALAs and tensor product quantum circuits are used as parameterized quantum circuit
layers and input-embedding layers, respectively. Here, we rescale the data depending on the
position of the qubit the single-qubit gate acts on; αk = αn+k = kxi for the tensor product
quantum circuit in Fig. 4.12. We note that employing the rescaling technique can enhance the
expressivity of quantum circuits and thus is a natural choice in case we have no idea about the
difficulty of tasks we deal with.

Fig. 4.16 (b) shows the accuracy of fidelity-based quantum kernels and QFKs on the synthetic
dataset against the number of qubits. QFKs perform consistently well regardless of the used
qubit numbers; this is convincing because the classification task is trivial. On the other hand,
the performance of fidelity-based quantum kernels deteriorates as the number of qubits increases
because of the vanishing similarity issue. As shown in Fig. 4.16 (c), the Gram matrix of the
fidelity-based quantum kernels for a large number of qubits is close to the identity matrix
and thus the generalization performance worsens. However, off-diagonal elements of the Gram
matrices for QFKs are not vanishing. These results imply the potential of QFKs to show better
performance than fidelity-based quantum kernels for large quantum systems.

4.2.8 Conclusion & Outlook

This section addresses a serious issue called the vanishing similarity issue in the commonly-used
fidelity-based quantum kernels and proposes QFKs as a quantum extension of the classical Fisher
kernel. From analytical and numerical perspectives, we elucidate that QFKs can be free from
vanishing similarity, whereas fidelity-based ones cannot. Fourier analysis is also numerically
performed to clarify that the expressivity of QFKs is comparable to fidelity-based quantum
kernels that can provably outperform classical counterparts for specific machine learning tasks.
Moreover, we demonstrate a situation where QFK can perform better than the fidelity-based
quantum kernel because of the absence of vanishing similarity. These results indicate that QFKs
are promising candidates to show quantum advantages for practical use.

An open question is whether the setup in our analysis is realistic; that is, the 2-design as-
sumptions might be challenging to realize in actual experimental settings. Indeed, some works
empirically demonstrate that limiting the rotation angles for input-embedding layers can allevi-
ate the issue at the expense of the model’s expressivity [177, 178, 199]. The implication of our
analytical results is critical to give insight into the design principles of quantum kernel-based
learning models in general. However, it is also essential to check if the issue is unavoidable in
more realistic situations. An exciting path is to investigate quantum kernel methods from the
perspective of geometric quantum machine learning [200–204]; inductive bias such as symmetry
and permutation invariance is reflected on building QML models.

Moreover, further investigation is needed to demonstrate a practical advantage of QFKs.
While we show the expressivity of QFKs via Fourier analysis, it is not thoroughly examined
because of the computational difficulty in Fourier decomposition. Thus, it would be critical
to see the performance of QFKs for actual machine learning tasks. Also, due to the unique
structure in QFKs, i.e., UBU †, it would be interesting to explore the performance in tasks
involving quantum dynamics; the structure can be seen in measures to investigate quantum
chaos and quantum information scrambling, such as the Loschmidt echo [205, 206] and out-of-
time-ordered correlator functions [207,208].

63

(b)

(a)

(c)

Figure 4.16: Classification performance of Fidelity-based quantum kernels and QFKs on syn-
thetic datasets. (a) Examples of synthetic datasets for (w, b) = (2, 0.3) and (2, 0.3). (b) Ac-
curacy of fidelity-based quantum kernels (blue) and QFKs (red) against the number of qubits
n ∈ {2, 4, 6, 8, 10, 12, 14}. (c) Gram matrices obtained for the classification tasks: top figures for
fidelity-based quantum kernels and bottom ones for QFKs.

64

Chapter 5

Quantum Noise-Induced Reservoir
Computing

This chapter examines quantum reservoir computing (QRC) from a practical perspective. As
shown in Sec. 3.3, QRC exploits complex quantum dynamical systems to enhance the perfor-
mance of temporal information processing tasks. The key of this QRC framework is the quantum
reservoir (QR), which is the input-driven quantum system playing a role in extracting features
of time-series data; to do so, QRs nonlinearly map input sequences to a high-dimensional space,
i.e., the quantum-enhanced feature space. To date, several platforms, such as disordered quan-
tum spins [36,158], fermionic or bosonic networks [160,209], and harmonic oscillators [210,211],
have been proposed as candidates for QRs. On the other hand, further investigation is needed
to design performant and efficiently implementable QR systems for practical use.

In this thesis, we propose a new QRC framework that utilizes quantum noise as a computa-
tional resource for temporal information processing. In the NISQ era, significant effort has been
made to reduce the noise to fully exploit the power of quantum computing. In contrast to the
common thought that quantum noise is detrimental, our strategy is to make use of such unavoid-
able quantum noise to enrich the complexity of quantum dynamical systems for temporal tasks.
We elaborate on our scheme and its experimental demonstration on gate-based superconducting
quantum processors in Sec. 5.1. Moreover, we quantitatively characterize the information pro-
cessing capability induced by quantum noise via a tool called temporal information processing
capacity [212]. Numerical simulations identify the type of noise that can induce the capability.
Also, we use the tool to analyze the information processing capacity of QR systems on quantum
hardware. We summarize the quantitative analysis of quantum noise-induced reservoir systems
in Sec. 5.2.

5.1 Proof-of-Principle Demonstration1

This section proposes a new paradigm of QRC that utilizes quantum noise on actual super-
conducting quantum processors to harness the performance of temporal information processing
tasks. We examine the performance of our scheme on a benchmark time-series regression task
and a practical classification task to identify the object from its sequential sensor data, showing
our proposal outperforms classical linear models. These results suggest the potential of quantum
noise as a computational resource to perform temporal information processing.

1Results shown in this section are based on the author’s work [41].

65

5.1.1 Introduction

An open question of QRC is how to design QR systems that can be implemented efficiently
and perform well for specific sequential data processing. In conventional reservoir computing,
guidelines for constructing reservoirs have been explored. An example is to set the spectral
radius of weights in reservoir layers to less than one because the condition ensures the echo state
property (ESP), a prerequisite of the reservoirs to forget its initial state asymptotically [141,
213, 214]. However, physical reservoir computing, which encompasses the concept of QRC,
has difficulty in constructing performant physical reservoir systems that satisfy the ESP. This
suggests the need to investigate design principles of physical reservoirs thoroughly. Thus, QRC
has been theoretically and numerically studied to elucidate what types of systems are amenable
to implementation [36,155–157] and how well the QRs can perform [158–164].

This section proposes a new framework of QRC that exploits the quantum noise ubiquitous
in quantum hardware to enhance the power of temporal information processing. One would
like to reduce quantum noise as much as possible because it hampers the power of quantum
computing. On the other hand, some literatures have demonstrated the potential of quantum
noise to work positively in some specific situations. For instance, several types of quantum noise
are used to induce universal quantum computation [215], to enhance the robustness of quantum
classifiers [216], and to prepare high-fidelity thermal states [217]. This motivates us to propose a
new framework; hardware-specific quantum noise is utilized to enrich the complexity of quantum
dynamical systems for temporal processing.

We implement our scheme on IBM superconducting quantum processors to show its perfor-
mance experimentally. Specifically, we work on two temporal tasks: emulation of the Nonlinear
Auto-Regressive Moving Average dynamics (NARMA task) and classification of different ob-
jects using sensor signals gained by grabbing them (object classification task). Then, the QR
systems realized on “ibmq 16 melbourne” and “ibmq toronto” perform better than classical lin-
ear models for the NARMA and object classification tasks, respectively. These results indicate
the potential of quantum noise-induced systems as candidates for implementation-friendly QR
systems.

The rest of this section is given as follows. First, we provide a quantum noise-induced reser-
voir computing framework in Sec. 5.1.2. Then, we experimentally demonstrate the performance
of our scheme on real quantum processors in Sec. 5.1.3. Lastly, Sec. 5.1.4 concludes this section.

5.1.2 Quantum Noise-Induced Reservoir Systems

In the following, we present our QRC scheme that exploits unavoidable quantum noise on actual
quantum hardware.

As shown in Sec. 3.3, the time evolution of the QR system is described by an input-dependent
CPTP map, i.e., Tut(·) in Eq. (3.59). The CPTP map plays a crucial role in the feature extrac-
tion of time-series data and should be designed to achieve high performance. For example, a
map employed in Ref. [36] simultaneously drives the reservoir system and an input-dependent
qubit system by an input-independent unitary operator, as shown in Eq. (3.60). Ref. [155] also
implemented the same map with an additional mechanism to forget its initial state. In contrast
to these maps, we propose a CPTP map that explicitly exploits the dissipative nature of quan-
tum systems realized on quantum hardware. More concretely, the dynamics of our QR system
is represented as follows;

ρt = Tut(ρt−1)

= Eqn
(
U(ut)ρt−1U

†(ut)
)
,

(5.1)

66

where U(ut) is a unitary operator dependent on input ut and Eqn(·) denotes an un-modeled
CPTP map corresponding to quantum noise (i.e., the dynamical behavior) in quantum hardware.
Eq. (5.1) means that our scheme drives the QR system by quantum noise intrinsic in quantum
hardware as well as an input-dependent unitary operator. This formulation allows us to naturally
exploit the unwanted quantum noise as a computational resource for QRC.

Notably, some types of quantum noise that can occur in actual quantum devices possess
the echo state property (ESP), an indispensable property for reservoirs. The ESP is defined as
follows; given a sequence of input ul = [u1, u2, . . . ul]

T , reservoir output vectors ĥ(ρ0,ul) and
ĥ(ρ′0,ul) whose initial states are arbitrary quantum states, ρ0 and ρ′0, respectively, hold

lim
l→∞

∥ĥ(ρ0,ul) − ĥ(ρ′0,ul)∥2 = 0. (5.2)

The property is essential for reservoir systems to ensure the reproducibility of reservoir comput-
ing models. As an extension of Eq. (5.2) for density operators [161, 162], we can also formulate
the ESP as

lim
l→∞

∥ρl − ρ′l∥2 = 0. (5.3)

Note that Eq (5.3) would be a sufficient condition of Eq (5.2). Then, Eq (5.3) holds for some
types of quantum noise. An example is the depolarizing noise errors defined as

EDEP (ρ) = p
I

d
+ (1 − p)ρ (5.4)

where ρ is the density operator representation of a d-dimensional quantum state and p is the
probability of swapping the original system with the completely mixed state. We can easily show
that the QR systems where the depolarizing error successively occurs after time evolution, i.e.,
Eqn(·) = Edep(·) in Eq. (5.1), can satisfy the ESP; any QR systems under the noise asymptotically
converge to the completely mixed state. Also, the amplitude damping noise EAD for a single-
qubit can satisfy the ESP. Recall that the amplitude damping is expressed as

EAD(ρ) = E1ρE
†
1 + E2ρE

†
2, (5.5)

where

E1 =

(
1 0
0

√
1 − γ

)
, E2 =

(
0

√
γ

0 0

)
.

Here, γ denotes a probability of energy dissipation. In this case, we can show that ∥ρl − ρ′l∥2 ≤
(1 − γ)l/2∥ρ0 − ρ′0∥2; namely, the norm asymptotically get close to zero. Note that the ESP
does not hold for errors represented by the unitary operation, such as over-rotation of single-
qubits and unexpected entangling gate operations, because the norm is invariant under unitary
transformation.

Moreover, Ref. [218] reported the actual quantum processors provided by IBM can produce
complex noise, such as non-Markovian noise; this indicates that non-trivial natural noise could
be exploited for the QRC framework, by actually implementing the scheme on real quantum
devices.

5.1.3 Experimental Demonstration

We present our scheme using IBM superconducting quantum processors. In the following, after
we detail the setup of our QR system, we show its performance on two time-series data tasks:
the NARMA task and the object classification task.

67

Figure 5.1: Quantum circuit representation of the local two-qubit unitary operator in Eq. (5.7).

Setup

In our proof-of-principle study, we consider n-qubit QR systems consisting of m two-qubit sub-
systems, i.e., n = 2m. Specifically, we consider the following input-dependent unitary operators
in Eq. (5.1);

U(ut) = V0,1(ut) ⊗ V2,3(ut) ⊗ · · · ⊗ Vn−2,n−1(ut), (5.6)

where V2i,2i+1(ut) is the unitary operator acting on i-th subsystem for i ∈ {0, . . . ,m− 1}. Here,
we assume the unitary operators {V2i,2i+1(ut)} are identical for any i and expressed as

V2i,2i+1(ut) = CNOT2i,2i+1Rz2i+1(sut)CNOT2i,2i+1Rx2i+1(sut)Rx2i(sut), (5.7)

where Sut = aut is the input scaled by the factor a. The quantum circuit representation of
the unitary operator is illustrated in Fig. 5.1. We chose this type of hardware-efficient ansatz
as the two-qubit unitary operator to check if the quantum noise could enrich the complexity
of the dynamical system. We consider such limited types of gates to focus on the performance
improvement by the intrinsic quantum noise. Actually, the two-qubit unitary operator in the
noiseless situation cannot carry the information of input sequences when the initial state is
ρ0 = |+⊗n⟩ ⟨+⊗n| with |+⟩ = (|0⟩ + |1⟩)/

√
2 and the observables are a set of single-qubit

Pauli Z, i.e., Ok = Zk. In other words, the QR output vector results in the zero vector,
h(ρt) = [Tr[Z0ρt], . . . ,Tr[Zn−1ρt]]

T = 0 for any t. Moreover, as we assume the tensor product
of the local unitary blocks for the input-dependent unitary operator, the whole QR system is
also trivial. However, quantum noise on quantum hardware could cause significant effects such
as interaction with the neighboring subsystems and environment (e.g., crosstalk [44, 219]).

Lastly, throughout this section, the initial state is ρ0 = |+⊗n⟩ ⟨+⊗n| and the measurement
observables are single-qubit Pauli Z operators, i.e., the QR output vector is represented as

h(ρt) = [Tr[Z0ρt], . . . ,Tr[Zn−1ρt]]
T . (5.8)

To obtain the expectation values at each timestep, we successively apply the input-dependent
unitary operator from the beginning,

ρt = Tut ◦ Tut−1 ◦ · · · ◦ Tu1(ρ0) (5.9)

and then measure the resultant quantum states on the computational basis Ns = 8, 192 times.
The procedure is described in Fig. 5.2. Also, we use “ibmq 16 melbourne” (Melbourne device)
and “ibmq toronto” (Toronto device) to perform temporal information processing tasks; the con-
figuration of these devices is shown in Fig. 5.3, respectively. We chose these quantum processors
with different configurations because the noise effect would differ due to the qubit-connectivity.
Moreover, the optimization option of the transpiler for reducing noise in Qiskit [172] is set to
zero to see the effect of quantum noise.

68

Figure 5.2: Circuit diagram of experimental demonstration of our scheme. Here, |0⟩ stands for
the initial state and Tul

is the CPTP map in Eq. (5.1). We repeatedly apply the CPTP map
from the beginning to obtain the components of the QR output vector at each timestep.

NARMA Task

We first work on the NARMA task, a benchmark task used to evaluate the capability of dy-
namical models from perspectives of the nonlinearity and dependence on past output [220,221].
The task aims to emulate the dynamics generating the NARMA output sequence {yt}Lt=1. An
example studied in [36,222] is described as

yt+1 = 0.4yt + 0.4ytyt−1 + 0.6u3t + 0.1, (5.10)

with the input sequence ut. Another NARMA dynamics studied in [36,162,222] is expressed as

yt+1 = αyt + βyt

nd−1∑
j=0

yt−j

+ γut−nd+1ut + δ, (5.11)

where (α, β, γ, δ) = (0.3, 0.05, 1.5, 0.1) and nd is the order that determines the degree of the
nonlinearity. In our experiments, we work on the following three NARMA dynamics; NARMA
in Eq. (5.10) (we call it NARMA2), and NARMAs in Eq. (5.11) with nd = 5 and nd = 10
(NARMA5 and NARMA10, respectively). We notice that the number in the task name (e.g., 2
in “NARMA2”) indicates the order of nonlinearity.

The input sequence we handle for all the NARMA tasks is represented as follows;

ut = 0.1

(
sin

(
2πᾱt

T

)
sin

(
2πβ̄t

T

)
sin

(
2πγ̄t

T

)
+ 1

)
, (5.12)

where (ᾱ, β̄, γ̄, T) = (2.11, 3.73, 4.11, 100). Note that the setting is used in, e.g., Ref. [36]. Here,
the length of the input sequence is L = 100, where the first 10 timesteps are used for washout,
the following 70 timesteps are used for training, and the remaining 20 timesteps are used for
testing. The washout phase is necessary for the QR system to forget its initial state ρ0. Fig. 5.4
shows the inputs and the target output sequences for each NARMA task.

In the experiments, we used the Melbourne and Toronto devices to check the difference in the
performance due to the hardware-specific noise. We implement the QR system in Eq. (5.6) with

69

9 20

(a)

(b)

6

13 24

4 107 2312 15

17

21

3 5 8 1411 2616 19 22 25

0

2

1 18

43 5 60

1

1

2

2

6

6

5

5

3

3

4

4

1 2

12 1011 9 814 13 7

Figure 5.3: Configuration of quantum hardware used in the experiments: (a) Melbourne device
and (b) Toronto device. Nodes and edges are used to indicate qubits and physical connectivity,
respectively. The number shown in each node (black) denotes the label of the corresponding
qubit. Dashed boxes show the subsystems constituting the whole QR system (each subsystem
is labeled by the number in red).

70

Timestep

In
p
u
t

T
a
rg
e
t

T
a
rg
e
t

T
a
rg
e
t

(a)

(c)

(b)

(d)

Figure 5.4: Time-series data used for the NARMA tasks. (a) Input sequence, (b) NARMA2,
(c) NARMA5, and (d) NARMA10.

71

Table 5.1: List of NMSEs for (a) NARMA2, (b) NARMA5, and (c) NARMA10. For comparison,
NMSEs of the classical linear regression model (denoted as LR) are shown. Here, bold scripts
indicate the best NMSEs for NARMA tasks.

(a) NARMA2

QR systems Classical model
Melbourne device Toronto device

LR
m = 4 m = 5 m = 6 m = 4 m = 5 m = 6

Mean 1.3 × 10−5 1.3 × 10−5 8.9× 10−6 2.9 × 10−5 2.5 × 10−5 2.2 × 10−5 1.8 × 10−5

Std 6.3 × 10−5 2.8 × 10−6 2.8 × 10−6 6.7 × 10−6 1.3 × 10−5 4.1 × 10−6 —

(b) NARMA5

QR systems Classical model
Melbourne device Toronto device

LR
m = 4 m = 5 m = 6 m = 4 m = 5 m = 6

Mean 1.3× 10−3 1.3× 10−3 1.3× 10−3 2.7 × 10−3 2.2 × 10−3 1.9 × 10−3 2.6 × 10−3

Std 6.7 × 10−4 4.0 × 10−4 5.3 × 10−4 9.6 × 10−4 2.1 × 10−4 3.7 × 10−4 —

(c) NARMA10

QR systems Classical model
Melbourne device Toronto device

LR
m = 4 m = 5 m = 6 m = 4 m = 5 m = 6

Mean 1.9 × 10−3 2.1 × 10−3 2.0 × 10−3 3.6 × 10−3 3.1 × 10−3 2.3 × 10−3 9.7× 10−4

Std 4.8 × 10−4 6.0 × 10−4 3.5 × 10−4 8.5 × 10−4 1.2 × 10−3 5.3 × 10−4 —

the scaling factor in local unitary in Eq. (5.7) as a = 2. As for the physical configuration, we
assign the subsystems as shown in Fig. 5.3, where each subsystem is indicated by a dashed black
box with its label (the number colored in red). Then, we examine the performance of the QR
systems with n = 8, 10, 12 (correspondingly, m = 4, 5, 6 subsystems). Note that the subsystems
labeled 1 through m are used to implement the QR system of size 2m-qubit throughout this
section. Also, the experiments had been performed during the period between Aug. 16th and
Nov. 2nd in 2020.

Table. 5.1 summarizes the performance of our QR systems, where the results for QRs are
the averaged performance over ten trials. Here, we use the metric, the normalized mean squared
errors (NMSE) between the output in Eq. (5.8) and the target, defined as

NMSE =

∑te
t=tl

(ȳt − yt)
2∑te

t=tl
y2t

. (5.13)

Here, tl and te represent the start and the end of the timestep for the test phase, i.e., tl = 81
and te = 100 in this case, respectively. Figs. 5.5 to 5.7 also show the result of the QRs for each
NARMA task.

In the following, we show the performance of our QR systems from the following perspectives:
(1) the dependence on quantum devices, (2) the dependence on the system size, and (3) the
comparison with classical models.

(1) Dependence on quantum devices: First, Table. 5.1 shows that the performance
heavily relies on the quantum hardware. The Melbourne device outperforms the Toronto device

72

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.5: Visualization of the obtained results for NARMA2 using different QR systems.
Panels (a), (c), and (e) show the results for 4, 5, and 6 subsystems on the Melbourne device,
respectively. Similarly, panels (b), (c), and (f) are results for m = 4, 5, and 6 using the Toronto
device. Here, the blue line represents the target, and green circles and red crosses are the
predictions in the training and testing phase, respectively. The orange regions indicate 2σ
intervals. Figures reproduced from Ref. [41] by Y. Suzuki, Q. Gao, K. C. Pradel, K. Yasuoka, and
N. Yamamoto. Creative Commons Attribution 4.0 International license [DOI:10.1038/s41598-
022-05061-w].

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.6: Visualization of the obtained results for NARMA5 using different QR systems.
Panels (a), (c), and (e) show the results for 4, 5, and 6 subsystems on the Melbourne device,
respectively. Similarly, panels (b), (c), and (f) are results for m = 4, 5, and 6 using the Toronto
device. Here, the blue line represents the target, and green circles and red crosses are the
predictions in the training and testing phase, respectively. The orange regions indicate 2σ
intervals. Figures reproduced from Ref. [41] by Y. Suzuki, Q. Gao, K. C. Pradel, K. Yasuoka, and
N. Yamamoto. Creative Commons Attribution 4.0 International license [DOI:10.1038/s41598-
022-05061-w].

73

(a)

(c)

(e)

(b)

(d)

(f)

Figure 5.7: Visualization of the obtained results for NARMA10 using different QR systems.
Panels (a), (c), and (e) show the results for 4, 5, and 6 subsystems on the Melbourne device,
respectively. Similarly, panels (b), (c), and (f) are results for m = 4, 5, and 6 using the Toronto
device. Here, the blue line represents the target, and green circles and red crosses are the
predictions in the training and testing phase, respectively. The orange regions indicate 2σ
intervals. Figures reproduced from Ref. [41] by Y. Suzuki, Q. Gao, K. C. Pradel, K. Yasuoka, and
N. Yamamoto. Creative Commons Attribution 4.0 International license [DOI:10.1038/s41598-
022-05061-w].

for all tasks even though mathematically identical operations are performed for both devices.
We can clearly witness the tendency in Figs. 5.5 to 5.7; the Melbourne device can reproduce the
trajectory better than the Toronto. This would be attributed to the noise level induced by the
topology of quantum hardware; the noise in a device with the dense square lattice structure like
the Melbourne device is more severe than the one with the sparse hexagonal structure like the
Toronto due to the errors, such as the frequency-collision [223].

(2) Dependence on the system size: Next, we check the dependence of the performance
on the system size. Ref. [36] numerically shows that increasing the system size of the QR can
enhance performance. This motivates us to examine if the performance of our scheme can be
improved as the system size is enlarged. As for the Toronto device, we can observe that the larger
QR systems perform better for all NARMA tasks. The performance of the Melbourne device is
also improved for the NARMA2 task, whereas the tendency is obscure for the NARMA5 and
NARMA10. This result implies that the device architecture also affects how well the performance
is improved with the increase in the number of subsystems.

(3) Performance comparison with classical models: Lastly, we compare the per-
formance of our QR systems with classical learning models: a simple linear regression (LR)
model and the standard ESN. We begin with the LR model that predicts the target by the
output ȳt+1 = wut + b0 with optimized parameters w and b0. The NMSEs of the LR model
for NARMA tasks are listed in Table 5.1. We can see that the QR systems on the Melbourne
device outperform the LR model for NARMA2 and NARMA5, while the performance of the
LR model is better for NARMA10. This indicates that the noise in the Melbourne device can
enhance the performance, especially for these tasks. On the other hand, the Toronto device
cannot outperform the LR model except for the 6 subsystems on the NARMA5 task, suggesting
the types of hardware-specific quantum noise significantly affect the performance. Moreover, we
employ the standard ESN model represented as

ȳt = W T
outg(W Txt−1 +W T

inut), (5.14)

74

Table 5.2: List of the global average of NMSEs and the global minimum of NMSEs of the ESNs
for NARMA tasks. The number of internal nodes of ESN are NESN = 2, 5, 10, 20, 50, which are
denoted in the parenthesis. As for the global minimum of NMSE, the optimal spectral radius of
W denoted as ρ(W) is also shown.

Task Model
the global average of NMSE the global minimum of NMSE

Mean Std Mean Std ρ(W)

NARMA2 ESN (2) 1.3 × 10−5 1.3 × 10−5 8.9 × 10−6 1.1 × 10−5 0.01
ESN (5) 3.5 × 10−6 7.6 × 10−6 1.4 × 10−6 4.5 × 10−6 0.01
ESN (10) 7.6 × 10−7 2.0 × 10−6 1.5 × 10−7 7.6 × 10−8 0.01
ESN (20) 1.7 × 10−7 6.0 × 10−7 2.4 × 10−8 1.8 × 10−8 0.14
ESN (50) 1.9 × 10−7 1.0 × 10−6 2.1 × 10−9 1.9 × 10−9 0.47

NARMA5 ESN (2) 1.8 × 10−3 8.5 × 10−4 1.5 × 10−3 2.5 × 10−4 0.01
ESN (5) 4.9 × 10−4 1.1 × 10−3 2.1 × 10−4 4.3 × 10−4 0.23
ESN (10) 1.1 × 10−4 2.9 × 10−4 2.7 × 10−5 1.7 × 10−5 0.18
ESN (20) 1.9 × 10−5 9.7 × 10−5 4.3 × 10−6 1.4 × 10−6 0.13
ESN (50) 1.2 × 10−5 2.5 × 10−5 2.4 × 10−6 2.3 × 10−6 0.05

NARMA10 ESN (2) 1.3 × 10−3 7.2 × 10−4 1.2 × 10−3 6.4 × 10−4 0.01
ESN (5) 7.7 × 10−4 5.9 × 10−4 5.7 × 10−4 3.4 × 10−4 0.23
ESN (10) 4.2 × 10−4 4.1 × 10−4 2.6 × 10−4 2.2 × 10−4 0.50
ESN (20) 2.6 × 10−4 2.5 × 10−4 1.8 × 10−4 9.0 × 10−5 0.64
ESN (50) 1.0 × 10−4 2.0 × 10−4 4.9 × 10−5 3.8 × 10−5 0.68

where Wout is the optimized weight and g(·) is the element-wise hyperbolic tangent function.
Also, W and Win are randomly initialized weight matrices. The performance of the ESN models
depends on the internal nodes NESN (i.e., the state vector xt ∈ RNESN), and the spectral
radius of W . Thus, we investigate the performance for NESN = 2, 5, 10, 20, 50 and the spectral
radius ranging from 0.01 to 1 in increments of 0.01 over 100 trials with different Win and W . The
performance is shown in Table. 5.2, where we calculate the global average of NMSE and the global
minimum of NMSE introduced in Ref. [150]. Roughly speaking, the former means the expected
performance, and the latter represents the optimal performance. Then, Table. 5.1 together with
Table. 5.2 demonstrates that the Melbourne device is comparable to the ESN with several nodes,
and the Toronto device is worse than the ESN with only a few nodes. However, this result is not
so surprising because our QR system is over-simplified in this study to see the contribution of
quantum hardware noise. For example, we could improve the performance by changing the set
of gates, the data-encoding scheme, and the types of quantum hardware architecture. In this
sense, our QR system could perform well by fully tuning these hyperparameters.

Object Classification Task

Next, we work on a practical time-series information processing task: the object classification
task. The goal of this task is to identify the objects from the sequence of sensor data obtained
by grabbing them with a robotic hand.

In the experiments, we deal with three objects shown in Fig. 5.8 (a): a cube made of ABS
LEGO blocks (object A), a polylactic acid (PLA) cube, and a sphere created using a 3D printer
(objects B and C, respectively). We collect the sensor data of these objects by grabbing them
using the triboelectric nanogenerator (TENG) sensor in Fig. 5.8 (b) and the grabbing robot in
Fig. 5.8 (c). The TENG sensor detects pressure using an electronegative silicone bubble-shaped

75

dome and an electropositive nylon layer as the active materials. The robot grasped these objects
25 times, and the pressure on the TENG sensor was recorded, as illustrated in Fig. 5.8 (d). In
the classification task, we used 20 cycles of sensor data of 90 timesteps and pre-processed as
follows; ut = u′t+1 − u′t,, where ut and u′t denote the pre-processed and the raw data at time t,
respectively. We notice that the computational cost for the pre-processing is negligibly small.

As for the reservoir-based classifiers, we adopt the learning method employed in Ref. [153,
224]. Here, the output of the reservoir model predicts the one-hot vector representation of
the label that corresponds to the input sequence at every timestep. More precisely, the linear
regression technique is employed to train the readout weight Wout ∈ RN+1 × RK , where N is
the number of observed signals from the reservoir state and K is the number of classes. Recall
that we also take into account the bias term for Wout; namely, the QR output vector includes

a bias term, i.e., h̃(ρt) =
(
hT (ρt), 1

)T
. The optimal weights can be obtained by simply solving

the following equation;

[Y1, . . . ,YNtrain] = W T
out

[
X̃1, . . . , X̃Ntrain

]
, (5.15)

where X̃i =
[
h̃(ρits), . . . , h̃(ρite)

]
and Yi = [yi, . . . , yi]. Here, ρit is the reservoir state at timestep

t given input sequence ui, and Ntrain is the total number of the training data. In addition, yi is
the one-hot vector representation of the target output for the i-th training data: for instance,
the target values can take [0, 1]T or [1, 0]T for binary classification tasks. Then, the optimized
parameter W opt

out is used to predict the label of the unseen testing data unew as follows;

tnew = argmax
(

meant

(
W opt

out
T
X̃new

))
, (5.16)

with X̃new =
[
h̃(ρnewts), . . . , h̃(ρnewte)

]
.

In the experiments, we focus on the following situations: three binary classification tasks
(i.e., A vs. B, A vs. C, and B vs. C) and a three-class classification task (i.e., A vs. B vs. C).
We performed ten-fold cross validation for all tasks to assess the performance via the averaged
accuracy. We here consider the QR system composed of 4 subsystems (labeled one to four) on
the Toronto device in Fig. 5.3, where we set a = π for the unitary operators in Eq. 5.7. In
addition, we discard the first 40 timesteps for washout, and the remaining 49 timesteps are used
for the learning, i.e., ts = 41, te = 89. We conducted the experiments from Feb. 22nd to Feb.
23rd in 2021.

Table 5.3 summarizes the classification accuracy of the QR systems and a simple linear
classification model. The linear classical classifier predicts the class by the output ȳt = W T

outut+b
for timestep t. We find that our scheme performs better than the classical linear model for the
classification of A and C, and the three-class classification, whereas the linear model is superior
for the task with objects A and B. Remarkably, the accuracy of the QR system for the three-class
identification is better than the linear model by 0.3, indicating the QR system’s potential to
accurately classify different objects from the sensor data. Fig. 5.9 shows the confusion matrices,
which summarize the correct and incorrect classification results for the three-class classification:
i.e., the diagonal elements correspond to the accurate prediction, and off-diagonal elements
indicate misclassification. The matrix clarifies that the linear models cannot recognize object C
when trained with objects A and B, while our QR system can. These experiments demonstrate
our scheme’s potential to perform temporal data classification tasks well.

76

(a)

(b)

(c)

(d)
Object A

Object B

Object C

Figure 5.8: Sensor data obtained from objects and an instrument used to collect time-series
data. (a) Objects used for the classification tasks, (b) the TENG sensor, (c) the grabbing robot,
and (d) sequences obtained by grasping these objects. Figures reproduced from Ref. [41] by Y.
Suzuki, Q. Gao, K. C. Pradel, K. Yasuoka, and N. Yamamoto. Creative Commons Attribution
4.0 International license [DOI:10.1038/s41598-022-05061-w].

77

Table 5.3: Classification accuracy of QR systems and a simple linear regression classifier for
object classification tasks.

(a) Our QR systems

A vs. B A vs. C B vs. C A vs. B vs. C

Mean 0.90 1.00 1.00 0.95
Std 0.20 0.00 0.00 0.11

(b) Linear classifiers

A vs. B A vs. C B vs. C A vs. B vs. C

Mean 1.00 0.90 1.00 0.67
Std 0.00 0.20 0.00 0.00

(a)

(c)

(b)

(d)

Figure 5.9: Confusion matrices of QR systems and classical linear classifiers. The results of our
QR systems for training and testing are shown in panels (a) and (b), respectively. Similarly,
the matrices in (c) and (d) respectively show the results of the linear classifiers for training and
testing. Figures reproduced from Ref. [41] by Y. Suzuki, Q. Gao, K. C. Pradel, K. Yasuoka, and
N. Yamamoto. Creative Commons Attribution 4.0 International license [DOI:10.1038/s41598-
022-05061-w].

78

5.1.4 Conclusion & Outlook

This section proposes a new paradigm of QRC that positively utilizes unavoidable quantum
noise on quantum hardware. Our scheme realized on IBM superconducting quantum processors
demonstrates that hardware-specific quantum noise can enhance the complexity of the dynamical
system; as a result, the quantum noise-induced reservoir systems can outperform the linear
classical models for the NARMA tasks and the object classification tasks. This experimental
study suggests that quantum noise is potentially useful for temporal processing tasks. We note
that this scheme is applicable even in the NISQ era.

This scheme requires further investigation for practical use. First, elucidating the underlying
mechanism of quantum noise on quantum hardware is critical for designing performant QR
systems. More specifically, our primary objective will be to quantitatively analyze what kind of
quantum noise can enhance the performance. Quantum process tomography [225–227] can be a
valuable tool to explore the effect of quantum noise from the perspective of quantum operations.
Recent work also proposed methods to probe complex noise such as crosstalk [44, 219]. These
approaches will help to identify a suitable configuration of quantum reservoir systems and an
appropriate set of unitary gates that constitute input-dependent unitary operators. In the next
section, we elaborate on the link between the performance and types of quantum noise from the
information processing capacity perspective.

Moreover, improving the processing speed is imperative. In our scheme, we have to execute
quantum circuits iteratively to obtain the expectation values at each timestep, as shown in
Fig. 5.2. The process requires NsL quantum circuits for the time-series data of length L and
the number of measurement shots to obtain expectation values Ns, which is time-consuming
and would prevent our scheme from practical applications. We had no choice but to employ
this procedure because of the limited operations on the quantum devices at that time. However,
thanks to the advances in quantum hardware, a mid-circuit measurement is now available. The
technique allows us to keep running circuits even if the measurements are performed in the
middle; we have only to execute quantum circuits Ns times to acquire the same outputs from
the QR systems. An exciting direction would be to explore the number of measurement shots
to achieve performance comparable to the case for a sufficient amount of shots.

5.2 Information Processing Capability Induced by Quantum Noise2

We build on the work in the previous section [41] and quantitatively analyze the information
processing capabilities induced by quantum noise via a tool called temporal information process-
ing capacity. We demonstrate that QR systems driven by specific quantum noise models can
induce information processing ability. We also verify our views by examining the QR systems
on actual quantum hardware and obtain similar characteristics. These results also support our
idea that quantum noise can positively enhance the power of temporal information processing.

5.2.1 Introduction

The previous section 5.1 provides a QRC framework that positively utilizes quantum noise to
enrich the power of time-series data processing. Despite the exciting experimental demonstration

2Results shown in this section are based on the author’s work [42]. Note that the first authorship is shared
with Dr. Tomoyuki Kubota and the author. The author and T.K. mainly contribute to the implementation of
our framework on actual quantum devices and the numerical analysis of its capability via temporal information
processing capacity, respectively.

79

of the scheme on actual superconducting quantum processors, the underlying mechanism to
induce the capability is still unclear. For practical applications, precise knowledge about what
kind of quantum noise can cause such positive effects is essential to design performant QR
systems.

This section explores the research question by using a powerful tool called temporal informa-
tion processing capacity (TIPC) [212]. The TIPC assesses the ability of dynamical systems to
reproduce polynomial functions of the input sequence and the internal state history. Thus, the
TIPC profile can quantitatively clarify the memory effects and information processing mecha-
nism induced by quantum noise. We construct several quantum noise models and numerically
investigate the effect of quantum noise through the lens of the TIPC. Numerical simulations
then show that amplitude damping can induce temporal processing capabilities. We also apply
the technique to analyze the profile of QR systems on real quantum devices. While quantum
noise on quantum hardware is non-trivial and hence could differ from the simulated models, we
observe similar characteristics of memory profiles. Notably, we also find the correlation between
the capacity and error rates of CNOT gates, implying that quantum processors with higher
noise levels could better carry temporal information.

The structure of this section is organized as follows. We first detail the TIPC in Sec. 5.2.2,
and demonstrate the TIPC profiles for the QR systems driven by simulated quantum noise
models in Sec. 5.2.3. We then perform benchmark tasks to verify the profiles obtained for the
numerical quantum noise models in Sec. 5.2.4. Subsequently, we examine the QR systems on
IBM quantum hardware via the TIPC in Sec. 5.2.5. Lastly, we conclude this section in Sec. 5.2.6.

5.2.2 Temporal Information Processing Capacity (TIPC)

We provide the details of the TIPC, which is the main tool for analyzing the capability of QR
systems in this section. The TIPC evaluates the capability of dynamical systems to reconstruct
polynomial functions of input history and previous internal states. We here elaborate on its
definition.

In general, the dr-dimensional reservoir state xt at timestep t can be represented as a func-
tion of input history {ut−l}tl=1 and the reservoir states at previous timesteps {xt−l}tl=1. Note
that the reservoir state corresponds to the QR output vector h(ρt) in our scheme. With the
orthonormal basis function dependent on input history and time, zk,t ≡ zk(t, ut, ut−1, . . .), the
linearly-independent normalized reservoir state x̃t can be expanded as

x̃t =
∑
k

γkzk,t. (5.17)

Here, the normalized reservoir state x̃t can be obtained by performing singular value decompo-
sition of X ≡ [x0, . . . ,xL−1]

T ∈ RL×dr for total timestep length L; the left singular vector of
X = PlΣP

T
r corresponds to the normalized state vector, i.e., Pl = [x̃0, . . . , x̃L−1]

T (Pl ∈ RL×r,
Pr ∈ Rr×dr and Σ ∈ Rr×r with the rank of matrix 1 ≤ r ≤ min{N, dr}). Then, the k-th term of
TIPC Ck is defined as the squared norm of the coefficient vector γk [212]:

Ck = ∥γk∥2. (5.18)

The orthonormal basis function can be represented as

zk,t = u
n
(k)
1

t−1 u
n
(k)
2

t−2 · · · x̂
m

(k)
1,1

1,t−1x̂
m

(k)
1,2

1,t−2 · · · x̂
m

(k)
N,1

N,t−1x̂
m

(k)
N,2

N,t−2 · · · , (5.19)

where we define the orders of inputs and the orders of reservoir states as Nj =
∑

t n
(j)
t and

Mj =
∑r

k=1

∑
tm

(j)
k,t , respectively. From Eq. (5.19), the non-zero value of Ck suggests that the

80

reservoir state possesses the k-th basis function composed of the corresponding input and internal
state. Thus, one can use this value to investigate dynamical systems’ information processing
ability. Also, the total capacity Ctot =

∑
k Ck is equal to r by definition, indicating this quantity

can comprehensively describe temporal information processing.
We further define d-th-order TIPC decomposition for time-invariant terms CTIV

tot,d and time-

variant terms CTV
tot,d as

CTIV
tot,d =

∑
{j|Nj=d,Mj=0}

Cj , (5.20)

CTV
tot,d =

∑
{j|Nj=d,Mj>0}

Cj , (5.21)

respectively. The target output can be represented by a function of finite input history, and
thus, only CTIV

tot,d can be used for temporal information processing tasks. Namely, CTV
tot,d measures

information processing ability that is not reproducible, and may not be used for temporal tasks.
However, we also introduce the metric to understand how the temporal information is processed
in the QR systems. We note that the TIPC is a general tool for evaluating information processing
capabilities and is thus applicable to dynamical systems.

From the perspective of numerical computation of TIPC, we perform Gram-Schmidt orthog-
onalization to obtain the orthonormalized bases ζ(k) = [ζk,1, . . . , ζk,L]T with ∥ζ(k)∥ = 1, which
corresponds to z(k) ≡ [zk,1, . . . , zk,L]. In this study, we employ the Volterra-Wiener-Korenberg
series [228] and as the orthonormal polynomial expansion. Then, the k-th term of TIPC can be
computed as follows:

Ck = C(X, ζ(k)) = 1 −
minw

∑T
t=1(ζ

(k) −w⊤xt)
2∑T

t=1 ζ
(k)2

. (5.22)

Also, in case the length of time-series data is finite, the numerical error of TIPC follows χ2

distribution with r degrees of freedom [229]. Thus, in the following numerical calculation, we
set the statistically significant level p% and then determine the threshold as Cth = σCT with a
scaling factor σ and the top p value CT . We set p = 10−4 and σ = 2, 3 for the simulated QRs
in Sec. 5.2.3 and p = 5 × 10−2 and σ = 1 for the QRs implemented on real quantum machines
in Sec. 5.2.5. With this threshold Cth, we truncated the capacity C : if the obtained value is
smaller than the Cth, we ignore the capacity, i.e., C = 0.

5.2.3 TIPC Profile for QR Systems Simulated by Quantum Noise Models

We numerically investigate the TIPC profiles of QR systems under some quantum noise. Here,
we consider the same QR systems in Sec. 5.1; the dynamics of the QR system is given by
Eq. (5.1), where the input-dependent unitary operator is provided in Eq. (5.6) with local unitary
blocks of Eq. (5.7). We also chose the observables {Oi} = {Zi}n−1

i=0 , and the initial state ρ0 =
|+⊗n⟩ ⟨+⊗n| = H⊗n |0⟩ ⟨0|H⊗n with the Hadamard gate H and |0⟩ = |0⟩⊗n. Recall that the
QR system cannot carry the information under the noiseless situation because the QR output
vector is the zero vector for any timestep t, i.e., h(ρt) = [Tr[Z0ρt], . . . ,Tr[Zn−1ρt]]

T = 0.
In Sec. 5.1, we utilize a device-dependent CPTP map Eqn(·) to drive the QR systems in an

input-dependent manner, that is,

ρt = Eqn
(
U(ut)ρt−1U

†(ut)
)
. (5.23)

81

However, building exact noise models corresponding to quantum hardware is challenging due to
the limited access to quantum processors, which prevents us from performing thorough analysis.
Therefore, we replace the device-dependent map Eqn(·) with the well-known noise models. More
precisely, by introducing non-unitary noise channel Ed(·) and unitary noise N (·), we express the
dynamics as follows;

ρt = Ed

(
N (U(ut)) ρt−1N (U(ut))

†
)
. (5.24)

Below is a list of quantum noise we consider:

Non-unitary noise Ed(·)

• Bit-flip error: This noise causes a single-qubit state to flip from |0⟩ to |1⟩ or vice
versa. That is equivalent to Pauli X error occurs with probability p. The Kraus operator
representation is Ed(ρ) = K1ρK

†
1 +K2ρK

†
2 with

K1 =
√

1 − pI, K2 =
√
pX.

• Phase-flip error: The noise flips the phase of a single-qubit state, which corresponds
to Pauli Z error with probability p. The Kraus representation is as follows: Ed(ρ) =

K1ρK
†
1 +K2ρK

†
2 with

K1 =
√

1 − pI, K2 =
√
pZ.

• Depolarization: This noise causes all types of Pauli errors with equal probability
p. For a single-qubit case, the noise in the Kraus representation is as follows: Ed(ρ) =

K1ρK
†
1 +K2ρK

†
2 +K3ρK

†
3 +K4ρK

†
4 with

K1 =
√

1 − pI, K2 =

√
p

3
X, K3 =

√
p

3
Y, K4 =

√
p

3
Z.

• Amplitude damping: The noise corresponds to the energy dissipation to the environ-
ment. For a single-qubit case, its Kraus operators are as follows:

K1 =

(
1 0
0

√
1 − γ

)
, K2 =

(
0

√
γ

0 0

)
,

with the damping rate γ.

• Phase damping: The noise corresponds to the loss of the quantum phase. With the
damping rate γ, its Kraus operators for a single qubit are as follows:

K1 =

(
1 0
0

√
1 − γ

)
, K2 =

(
0 0
0

√
γ

)
.

Unitary noise N (·)

• Single-qubit overrotation: The noise causes the overrotation of single-qubit gates.
Namely, this noise transforms the single rotation gate Rσ(θ) with σ ∈ {X,Y, Z} to

N (Rσ(θ)) = Rσ(θ(1 + ϵ))

where ϵ ∼ Uniform(0, c) with a constant c.

82

Figure 5.10: TIPC Profiles of 4-qubit QR models driven by unitary operators in Eq. (5.6) with
(a) noiseless quantum circuits, (b) amplitude damping given the varying damping rate γ [left:
ut ∈ [0, 1], right: ut ∈ [−1, 1]], (c) unitary noises determined by the varying perturbation rate
ϵ [left: CNOT bias for overrotation, right: unintentional entangling between nearby qubits],
and (d) combination of amplitude damping and another type of noise [Pauli X (x), Pauli Z
(z), CNOT bias (c), one-hop (u1), two-hop (u2), bit-flip (b), phase-flip (pf), phase damping
(pd), or depolarization (d) noise with ϵ = γ = 0.1]. Dotted blue lines denote the ranks of
QR output states. The hatched areas and non-hatched parts represent the time-variant and
time-invariant components in TIPC, respectively. In panels (a), (c), and (d), the input ut is
uniformly distributed in [0, 1]. Reprinted figure from Fig.3 of Ref. [42] by T. Kubota, Y. Suzuki,
S. Kobayashi, Q.H. Tran, N. Yamamoto, and K. Nakajima. Creative Commons Attribution 4.0
International license [DOI:https://doi.org/10.1103/PhysRevResearch.5.023057].

• CNOT bias: The noise causes overrotation for the conditional X gate. That is,

N (CNOT) = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗Rx(π(1 + ϵ))

• Unintentional entangler (one-hop, two-hop): The noise unintentionally apply con-
ditional X gate with the scaling factor ϵ. That is, the following entangler gate is applied
for the noise:

|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗Rx(πϵ)

This error occurs for the nearest and the second-nearest neighboring qubits, which we call
one-hop and two-hop, respectively.

Then, we build four-qubit QR systems (m = 2 subsystems) driven by these noise models
and input-dependent unitary operators in Eq. (5.6) with Eq. (5.7).

Fig. 5.10 illustrates the TIPC decomposition of simulated 4-qubit QR systems. Here, we
demonstrate the following cases: (a) the noiseless QR system, (b) the amplitude damping noise,
(c) the unitary noise (CNOT bias and unintended entangler), and (d) the combination of am-
plitude damping and another type of noise. In the noiseless situation, the QR system does not

83

possess time-invariant TIPC. This is consistent with our statement on how to build QR systems;
the setup is considered so that the QR systems’ output is trivial. Also, Fig. 5.10 (c) shows that
the TIPC of QR systems under unitary noise is time-variant, which reflects the fact that the ESP
does not hold for unitary noise, as stated in Sec. 5.1.2. We note that Ctot = r = 0 for single-qubit
unitary, phase-flip, bit-flip, phase damping, or depolarization noise. In contrast, the amplitude
damping noise can induce the time-invariant TIPC, as in Fig. 5.10 (b). Interestingly, the higher
the damping rate is, the more dominant the time-invariant TIPC is. Moreover, other types
of quantum noise in combination with amplitude damping can also possess the time-invariant
TIPC. This indicates that amplitude damping is critical in inducing temporal information pro-
cessing capabilities and can show better performance as the error rate γ increases. We note that
some total capacities do not saturate the rank r because the discarded components Ck do not
exceed the threshold.

Moreover, we compare the TIPC profile of simulated QRs and classical ESNs. Here, we
construct 4-qubit QR systems with the input scaling a = π in Eq. (5.7) and employ the spatial
multiplexing technique [158] that combines various reservoir states to learn target sequences.
More specifically, we build 210 = 1, 024 QR systems using all possible combinations of 10 types
of quantum noise mentioned above; then, we consider two models, the spatial multiplexing of
130 QRs and 25 QRs. As for the ESN, we consider the following as the reservoir state xi,t+1:

xi,t+1 = tanh

 N∑
j=1

ρwijxj,t + νwin,iut+1

 , (5.25)

where win,i represents the input weight and wij is the internal weight. Also, ν(= 0.1) and
ρ(= 0.6) control the spectral radius of win,i and wij , respectively. Here, these weights are
generated from the uniform distribution in the range of [0, 1]. As for wij , the spectral radius
is set to one dividing the weight by its largest absolute value. We note that the connection
probabilities of the internal and input weights are set as 0.5 and 0.1, respectively. The internal
node is set as N = 50.

Fig. 5.11 illustrates the time-invariant TIPC for the ESN and the QR systems employing
the spatial multiplexing of 130 and 25. We here consider the time-invariant TIPC, where the
input is uniformly at random in [0, 1] and Legendre polynomials are used as orthogonal bases.
In addition, the shuffle surrogate technique introduced in Ref. [212] is used to reduce numerical
errors. In Fig. 5.11, we use the notation {{ns, s}} to indicate that the Legendre polynomial
that corresponds to the time-invariant TIPC term is

∏
s Pns(un−s) where ns is the degree of

polynomial and s is the delayed timestep of the input. We can clearly find that the TIPC
profile differs for these dynamical systems. Importantly, the time-invariant TIPC component for
{P1(ut−1)P2(ut)} (labeled {{1, 1}, {2, 0}}) does not appear in the ESN, but in the QR systems;
this would indicate there might exist a temporal task that is not learnable by the ESN, but by
the QR systems.

5.2.4 Benchmark Tasks

Motivated by the TIPC analysis of the ESN and the QR systems, we further investigate the
relationship between the performance for benchmark tasks and the TIPC profiles. To this end,
we perform two benchmark tasks: the second order NARMA task [222] (NARMA2) and a task
to emulate pneumatic artificial muscle (PAM) length (we call it PAM task). As for the NARMA
task, we consider the following dynamics;

yt+1 = 0.4yt + 0.4ytyt−1 + 0.6(0.3ut)
3 + 0.1, (5.26)

84

(a) Time-invariant TIPC for simulated QRs (b) Time-invariant TIPC for ESN with 50 nodes

Figure 5.11: Time-invariant TIPCs for (a) simulated QR systems employing the spatial multi-
plexing 25 and 130, and (b) ESN with 50 nodes. The labels {{ns, s}} denote the combination
of components for polynomial

∏
s Pns(un−s), where ns is the degree of polynomial and s is the

delayed timestep of the input. Reprinted figure from Fig.8 (c) and (d) of Ref. [42] by T. Kub-
ota, Y. Suzuki, S. Kobayashi, Q.H. Tran, N. Yamamoto, and K. Nakajima. Creative Commons
Attribution 4.0 International license [DOI:10.1103/PhysRevResearch.5.023057].

where the input ut is uniformly at random in the range [0, 1]. For the PAM task, we use the
dataset provided in Ref. [230]. Note that PAM is a soft actuator controlled by air pressure, and
there is difficulty in measuring its length by infrared sensor; then Ref. [231] demonstrated that
ESN can predict the length of PAM as accurately as infrared sensors.

We prepare the input sequence of length 49,998, where the first 9,998 timesteps are discarded
for washout, and we use the following 2 × 104 steps and the remaining for training and perfor-
mance evaluation, respectively. The performance is evaluated using the normalized root mean
square error defined as

NRMSE =
1

σ(y)

√√√√ 1

Neval

Neval∑
t=1

(yt − ȳt)2, (5.27)

with the variance of the target sequence σ2(y). Here, ȳt is the prediction at time step t in Neval

time steps. Our numerical simulations show that the spatial multiplexing of 130 (25) QRs can
accurately emulate the NARMA2 dynamic with high precision (NRMSE = 0.11 (0.21)). Its
NRMSE for the PAM task is also small, NRMSE = 0.21 (0.30). The performances of the spatial
multiplexing of 130 (25) QRs are the same as those of the ESN. As for the PAM task, the system
combining 130 QRs can slightly perform better than the ESN with less than 520 nodes (i.e.,
NRMSE > 0.22).

We can analyze the performance via the TIPC. Fig. 5.12 shows the time-invariant TIPC
components of the NARMA2 and PAM tasks, where Legendre polynomials are used as the
orthonormal polynomial expansion. The profile clarifies the polynomials of input history required
to solve these tasks: the major components are P1(ut), P1(ut−1), and P1(ut−2) for NARMA2,
and the first-order TIPCs for PAM tasks. The TIPC profiles in Fig. 5.12 show that both the ESN
and QR systems possess those components, implying that the systems perform well for these
tasks. We note that the PAM task includes a component {{1, 1}, {2, 0}}, which does not exist
in the ESN, but in the QR systems. This might contribute to the slightly better performance
for the QR systems.

85

(a) Time-invariant TIPC for NARMA2 task (b) Time-invariant TIPC for PAM task

Figure 5.12: Time-invariant TIPCs for (a) NARMA2 task, and (b) PAM task. The labels
{{ns, s}} represent the corresponding components of polynomial

∏
s Pns(un−s) with where

the degree of polynomial ns and the delayed time step of the input s. Reprinted figure
from Fig.8 (a) and (b) of Ref. [42] by T. Kubota, Y. Suzuki, S. Kobayashi, Q.H. Tran,
N. Yamamoto, and K. Nakajima. Creative Commons Attribution 4.0 International license
[DOI:10.1103/PhysRevResearch.5.023057].

Table 5.4: Device error parameters during the experiments and the calculated total time-
invariant capacities CTIV

tot . The medians of error rates are shown, where only the qubits consti-
tuting the QR system are considered.

Input type Characteristics Kawasaki Toronto Montreal Manhattan p1 Manhattan p2

CNOT error 0.0070 0.0083 0.0095 0.0259 0.0161
Symmetric Readout error 0.0095 0.0300 0.0140 0.1499 0.0183

CTIV
tot 0.1112 0.1306 0.1019 0.6248 0.4883

CNOT error 0.0070 0.0083 0.0097 0.0252 0.0163
Asymmetric Readout error 0.0095 0.0300 0.0138 0.1499 0.0183

CTIV
tot 0.0703 0.1480 0.2130 0.6433 0.5352

5.2.5 TIPC Profile for QR Systems on Quantum Devices

We lastly perform the TIPC analysis on quantum hardware-specific QR systems demonstrated
in Sec. 5.1. Recall that the QR system is driven by input-dependent unitary operators and
quantum noise on hardware, as shown in Eqs. (5.1), (5.6) and (5.7) with the scaling factor
a = 2. We consider 12-qubit QRs implemented on two types of IBM superconducting quantum
processors, “Falcon” devices with 27 qubits and “Hummingbird” with 65 qubits. Specifically, we
focus on two configurations of 12-qubit QRs in an ibmq manhattan device (denoted as the Man-
hattan p1 and Manhattan p2) for the Hummingbird type and the ibm kawasaki, ibmq montreal
and ibmq toronto devices (denoted as the Kawasaki, Montreal and Toronto, respectively) for the
Falcon type. Note that ibmq melbourne (“Canary” type) we used in the previous section was
retired in July 2021, and thus we could not perform the analysis on that device. Fig. 5.13 (a)
and (b) illustrate the implementation scheme and arrangement of qubits for these devices, re-
spectively. As for the inputs, we prepare two types of sequences of total length T = 200: uniform
random input in the symmetric range ut ∈ [−1, 1] and the other in the asymmetric one ut ∈ [0, 1].
Note that we use Qiskit [172] to implement the QR systems. The characteristics of quantum
devices used during the experiments are shown in Table 5.4.

Fig. 5.14 (a) illustrates time-invariant capacities for these devices, where we find that the

86

(b)

(a)

Falcon

Hummingbird

Position 1 Position 2

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

H

H

H

H

H

H

H

H

H

H

H

H

0 1 2 3 4 5

6

7891011

0 1 2 3 4

5

678910

11

0 1 2 3 4

5

678910

11

Figure 5.13: Configurations of quantum devices and the implementation scheme on quantum
devices. (a) The qubit-configurations of Falcon- and Hummingbird-type quantum hardware,
where nodes and edge denote qubits and physical connectivities, respectively. Colored qubits
denote the positions of QR systems used for the implementation. (b) Quantum circuit repre-
sentation of our scheme is depicted.

87

(a) (b)

Figure 5.14: Averaged TIPCs of QR systems driven by quantum noise in actual quantum devices
[Kawasaki (k), Manhattan p1 (m1), Manhattan p2 (m2) Montreal (m), and Toronto (t)]. Panels
(a) and (b) show total time-invariant capacities CTIV

tot and total capacities Ctot, respectively.
Reprinted figure from Fig.5 (b) and (c) of Ref. [42] by T. Kubota, Y. Suzuki, S. Kobayashi,
Q.H. Tran, N. Yamamoto, and K. Nakajima. Creative Commons Attribution 4.0 International
license [DOI:10.1103/PhysRevResearch.5.023057].

Hummingbird type has larger capacities than the Falcon devices. We recall that the TIPC
analysis on the simulated QR systems suggests that amplitude damping is essential to induce
the time-invariant terms. Thus, these results imply that the amplitude damping noise occurs
for all quantum systems. Note that we set a strict threshold Cth = 0.14 to obtain the results in
Fig. 5.14 (b) because of the short time length. However, we can observe time-variant as well as
time-invariant terms for Cth = 0.1, indicating the dominant component, i.e., utxt−1, also agrees
with the case for simulated QR systems. In addition, several quantum devices possess the first-
order capacity in the symmetric input case [−1, 1], while the component does not appear in the
simulated QRs under the depolarizing noise. This suggests that quantum hardware possesses
non-trivial noise other than the amplitude damping noise. Moreover, we investigate the short-
term memory effect of the QR system. Fig. 5.15 (a) depicts the first-order capacity as a function
of delayed step s1. It turns out that the QR systems mainly reflect the recent input sequence,
i.e., s1 = 0, 1, 2. Fig. 5.15 (b) also shows the time-invariant second-order capacities, which
indicates the majority term is also the recent history of inputs u2t .

Furthermore, we examine the relationship between CNOT error rates for each quantum
device and the total-invariant capacity. We consider the CNOT error because this is one of
the representative errors to see the performance of quantum hardware. Fig. 5.16 surprisingly
show that the Manhattan device with the worst CNOT errors witnesses the highest capacities
for temporal data processing. Also, there is a positive correlation between them as shown in
Fig. 5.16, implying unavoidable noise in NISQ devices can be a useful resource to enhance the
computational power from the reservoir computing perspective. In the analysis of simulated
QRs, we find higher error rates (the damping rates) lead to better information processing ca-
pabilities. Hence we conjecture that the time-invariant TIPCs on quantum hardware may be
induced by unwanted dissipation.

88

Figure 5.15: First-order and second-order capacities of QR systems on IBM quantum devices
for the input range (a) [0, 1] and (b) [−1, 1]. Note that second-order capacities do not appear for
the asymmetric input case. Reprinted figure from Fig.9 of Ref. [42] by T. Kubota, Y. Suzuki,
S. Kobayashi, Q.H. Tran, N. Yamamoto, and K. Nakajima. Creative Commons Attribution 4.0
International license [DOI:10.1103/PhysRevResearch.5.023057].

89

Figure 5.16: Total time-invariant capacity averaged over 10 trials against the median of CNOT
error rates of corresponding IBM quantum processors. Black dots and red plus symbols represent
the cases for ut ∈ [0, 1] and ut ∈ [−1, 1], respectively. Reprinted figure from Fig.6 of Ref. [42]
by T. Kubota, Y. Suzuki, S. Kobayashi, Q.H. Tran, N. Yamamoto, and K. Nakajima. Creative
Commons Attribution 4.0 International license [DOI:10.1103/PhysRevResearch.5.023057].

5.2.6 Conclusion & Outlook

This section analyzes the temporal information processing capabilities of quantum noise-induced
reservoir systems via TIPC. Numerical simulations of QR systems driven by quantum noise mod-
els elucidate that amplitude damping can induce temporal processing capacities. Moreover, the
TIPC analysis of quantum hardware-specific QR systems also demonstrates the similar charac-
teristics obtained for simulated QRs. Surprisingly, we observe a positive correlation between a
representative error (CNOT error) rate and the total capacity for each device, indicating the
potential of unwanted quantum noise to enhance temporal information processing.

These results suggest other applications of the TIPC. First, the TIPC can be used to con-
struct an optimal QR model. It is critical to select suitable hyperparameters of the models to
achieve high performance; examples are gate sets for unitary operators, input-scaling factors,
and the size of QR systems. The TIPC enables us to characterize the profile of the input-target
mapping and thus can serve as a good quantity for designing performant QR systems. In ad-
dition, the TIPC could help to analyze types of quantum noise on quantum hardware. The
underlying mechanism of dynamical systems can be clarified from the information processing
perspective. Hence, it would be interesting to explore the TIPC approach to detect and mitigate
unwanted errors in quantum computing.

90

Chapter 6

Conclusion and Outlook

6.1 Conclusion

This thesis analyzes two quantum-enhanced machine learning models, quantum kernel meth-
ods and quantum reservoir computing, and then provides possible guidelines to design suitable
models for practical applications. The quantum-enhanced feature space can promisingly improve
data quality and hence harness the performance for machine learning tasks. However, further
investigations are needed to fully exploit the quantum space for real-world applications.

As for quantum kernel methods, we focus on two practical challenges: (1) choosing appropri-
ate quantum feature maps for specific classification tasks is non-trivial, and (2) the exponentially
decaying expectation value and variance cause infeasible implementation and trainability prob-
lem, as the number of qubits increases (i.e., vanishing similarity issue). Chapter 4 addressed
these issues. In Sec. 4.1, focusing on the former challenge, we introduced a quantity called
minimum accuracy to roughly estimate the training accuracy of classifiers based on quantum
feature maps. Then, our numerical simulations demonstrate that the quantity could facilitate
screening a suitable quantum feature map among many candidates. We also numerically studied
the effectiveness of the synthesis approach to design a powerful quantum kernel by combining
many (weak) quantum kernels. For the second challenge, Sec. 4.2 analytically and numerically
demonstrated that our proposed quantum Fisher kernel can mitigate the vanishing similarity
issue when shallow alternating layered ansatzes are used, whereas the commonly-used fidelity-
based quantum kernels cannot, regardless of types of quantum circuits. We further demonstrate
a classification task where quantum Fisher kernels can outperform the fidelity-based quantum
kernel due to the absence of the vanishing similarity issue. These results will pave the way
towards practical applications of quantum kernel methods.

In Chapter 5, we addressed an open question on practical applications of quantum reservoir
computing: what kind of quantum reservoir systems can be performant and efficiently imple-
mentable? We here provided a new quantum reservoir computing framework that positively
utilizes quantum noise to enhance the performance of temporal information processing tasks.
Quantum noise is ubiquitous in NISQ devices and is considered harmful because it hinders the
power of quantum computation. In stark contrast to such common thought, we use quantum
noise to enrich the complexity of quantum dynamics and accordingly harness the time-series data
processing abilities. Sec. 5.1 experimentally demonstrated that our quantum reservoir systems
driven by quantum hardware-specific quantum noise can perform better than linear classical
learning models. With a tool called temporal information processing capacity, numerical sim-
ulations in Sec. 5.2 also unveiled that dissipation noise such as amplitude damping can induce

91

temporal information processing capabilities. These results will provide some insights into the
design principles of quantum reservoir systems that are amenable to implementation and can
perform well.

6.2 Outlook

There are open problems and future works regarding our results demonstrated in Chapter 4
and 5. We summarize them for each section below.

Analysis and synthesis methods for quantum feature maps in Sec. 4.1: A main
concern of the analysis method based on the minimum accuracy is the scalability with respect to
the number of qubits. Considering a subset of Pauli operators can reduce computational costs
and can still serve as a lower bound of training accuracy for linear classifiers. Thus, it would
be interesting to investigate the efficacy of the methods for the cases of large qubit systems.
In addition, there is still room for investigation in the synthesis method to build a powerful
quantum kernel in a more systematic way.

Quantum Fisher kernels in Sec. 4.2: Our analysis is based on the 2-design assumptions,
which might not be satisfied in realistic experimental settings. Thus, it would be interesting
to analytically investigate the phenomenon using techniques that can soften or do not rely on
t-design property. A technique used in a recent work [232] might be helpful. Also, thorough
studies are needed to investigate practical advantages of the quantum Fisher kernel in machine
learning tasks dealing with quantum or classical data.

Proof-of-Principle demonstration of quantum noise-induced reservoir computing
in Sec. 5.1: An advantage of physical reservoir computing is the fast processing. However,
our scheme must execute quantum circuits NsL times for the total length of time-series L and
the number of measurement shots to obtain expectation values at each timestep Ns, which is
time-consuming. Thus, reducing the amount of circuit executions would be imperative. Note
that we can now perform mid-circuit measurements on current IBM quantum processors and
thus the number of quantum circuit executions can be reduced to Ns. In addition, it would be
interesting to develop quantum hardware that is tailored for the use of quantum noise-induced
reservoir computing; for example, types of quantum noise can be tunable.

TIPC analysis of quantum noise-induced reservoir computing in Sec. 5.2: An
open question is whether we can utilize the TIPC profile to build optimal quantum reservoir
systems. The TIPC method can characterize input-target maps of time-series data and thus
help us to choose hyperparameters such as a gate set for input-dependent unitary operators and
types of quantum noise. Furthermore, investigating errors occurring in quantum information
processors via the TIPC profile would also be exciting.

92

Bibliography

[1] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[2] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and Machine Learn-
ing, volume 4. Springer, 2006.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models.
Advances in Neural Information Processing Systems, 33:6840–6851, 2020.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Advances in
Neural Information Processing Systems, 30, 2017.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint
arXiv:1810.04805, 2018.

[8] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. SSD: Single Shot Multibox Detector. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,
2016, Proceedings, Part I 14, pages 21–37. Springer, 2016.

[9] Pierre Baldi, Søren Brunak, and Francis Bach. Bioinformatics: The Machine Learning
Approach. MIT Press, 2001.

[10] Sendhil Mullainathan and Jann Spiess. Machine Learning: An Applied Econometric Ap-
proach. Journal of Economic Perspectives, 31(2):87–106, 2017.

[11] Matthew F Dixon, Igor Halperin, and Paul Bilokon. Machine Learning in Finance: From
Theory to Practice. Springer, 2020.

[12] Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao
He, Antong Li, Mengshen He, Zhengliang Liu, et al. Summary of ChatGPT-Related
research and perspective towards the future of large language models. Meta-Radiology,
1(2):100017, 2023.

93

[13] Richard P Feynman. Simulating physics with computers. International Journal of Theo-
retical Physics, 21(6-7):467–488, 1981.

[14] David Deutsch. Quantum theory, the Church–Turing principle and the universal quantum
computer. Proceedings of the Royal Society of London. A. Mathematical and Physical
Sciences, 400(1818):97–117, 1985.

[15] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134.
IEEE, 1994.

[16] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

[17] Alexi Y Kitaev. Quantum measurements and the Abelian Stabilizer Problem. arXiv
preprint quant-ph/9511026, 1995.

[18] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm for Linear
Systems of Equations. Physical Review Letters, 103(15):150502, 2009.

[19] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and
Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017.

[20] Jarrod R McClean, Ryan Babbush, Peter J Love, and Alán Aspuru-Guzik. Exploiting
Locality in Quantum Computation for Quantum Chemistry. The Journal of Physical
Chemistry Letters, 5(24):4368–4380, 2014.

[21] Ryan Babbush, Dominic W Berry, Ian D Kivlichan, Annie Y Wei, Peter J Love, and Alán
Aspuru-Guzik. Exponentially more precise quantum simulation of fermions in second
quantization. New Journal of Physics, 18(3):033032, 2016.

[22] Ryan Babbush, Dominic W Berry, Jarrod R McClean, and Hartmut Neven. Quantum
simulation of chemistry with sublinear scaling in basis size. npj Quantum Information,
5(1):92, 2019.

[23] Patrick Rebentrost, Brajesh Gupt, and Thomas R Bromley. Quantum computational
finance: Monte Carlo pricing of financial derivatives. Physical Review A, 98(2):022321,
2018.

[24] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, 2018.

[25] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum
supremacy using a programmable superconducting processor. Nature, 574(7779):505–510,
2019.

[26] Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum Algorithm for Data Fitting.
Physical Review Letters, 109(5):050505, 2012.

[27] Zhikuan Zhao, Jack K Fitzsimons, and Joseph F Fitzsimons. Quantum-assisted Gaussian
process regression. Physical Review A, 99(5):052331, 2019.

[28] Sanchayan Dutta, Adrien Suau, Sagnik Dutta, Suvadeep Roy, Bikash K Behera, and
Prasanta K Panigrahi. Quantum circuit design methodology for multiple linear regression.
IET Quantum Communication, 1(2):55–61, 2020.

94

[29] Iordanis Kerenidis and Alessandro Luongo. Classification of the MNIST data set with
quantum slow feature analysis. Physical Review A, 101(6):062327, 2020.

[30] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum Support Vector Machine
for Big Data Classification. Physical Review Letters, 113(13):130503, 2014.

[31] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and robust quan-
tum speed-up in supervised machine learning. Nature Physics, 17:1013–1017, 2021.

[32] Jonas Jäger and Roman V Krems. Universal expressiveness of variational quantum classi-
fiers and quantum kernels for support vector machines. Nature Communications, 14(1):576,
2023.

[33] Till Muser, Elias Zapusek, Vasilis Belis, and Florentin Reiter. Provable advantages of
kernel-based quantum learners and quantum preprocessing based on Grover’s algorithm.
arXiv preprint arXiv:2309.14406, 2023.

[34] Vojtěch Havĺıček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kan-
dala, Jerry M Chow, and Jay M Gambetta. Supervised learning with quantum-enhanced
feature spaces. Nature, 567(7747):209–212, 2019.

[35] Maria Schuld and Francesco Petruccione. Quantum ensembles of quantum classifiers.
Scientific Reports, 8(1):2772, 2018.

[36] Keisuke Fujii and Kohei Nakajima. Harnessing disordered-ensemble quantum dynamics
for machine learning. Physical Review Applied, 8(2):024030, 2017.

[37] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo,
Hartmut Neven, and Jarrod R McClean. Power of data in quantum machine learning.
Nature Communications, 12(1):2631, 2021.

[38] Yudai Suzuki, Hideaki Kawaguchi, and Naoki Yamamoto. Quantum Fisher kernel for
mitigating the vanishing similarity issue. arXiv preprint arXiv:2210.16581, 2022.

[39] Supanut Thanasilp, Samson Wang, M Cerezo, and Zoë Holmes. Exponential concentration
and untrainability in quantum kernel methods. arXiv preprint arXiv:2208.11060, 2022.

[40] Yudai Suzuki, Hiroshi Yano, Qi Gao, Shumpei Uno, Tomoki Tanaka, Manato Akiyama,
and Naoki Yamamoto. Analysis and synthesis of feature map for kernel-based quantum
classifier. Quantum Machine Intelligence, 2:1–9, 2020.

[41] Yudai Suzuki, Qi Gao, Ken C Pradel, Kenji Yasuoka, and Naoki Yamamoto. Natural
quantum reservoir computing for temporal information processing. Scientific Reports,
12(1):1353, 2022.

[42] Tomoyuki Kubota, Yudai Suzuki, Shumpei Kobayashi, Quoc Hoan Tran, Naoki Ya-
mamoto, and Kohei Nakajima. Temporal information processing induced by quantum
noise. Physical Review Research, 5(2):023057, 2023.

[43] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2010.

[44] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and
Robin Blume-Kohout. Detecting crosstalk errors in quantum information processors.
Quantum, 4:321, 2020.

95

[45] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and
William D Oliver. A quantum engineer’s guide to superconducting qubits. Applied Physics
Reviews, 6(2), 2019.

[46] Göran Wendin. Quantum information processing with superconducting circuits: a review.
Reports on Progress in Physics, 80(10):106001, 2017.

[47] Xiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu-xi Liu, and Franco Nori. Microwave
photonics with superconducting quantum circuits. Physics Reports, 718:1–102, 2017.

[48] Jian-Qiang You and Franco Nori. Atomic physics and quantum optics using supercon-
ducting circuits. Nature, 474(7353):589–597, 2011.

[49] Xi-Lin Wang, Yi-Han Luo, He-Liang Huang, Ming-Cheng Chen, Zu-En Su, Chang Liu,
Chao Chen, Wei Li, Yu-Qiang Fang, Xiao Jiang, et al. 18-qubit entanglement with six
photons’ three degrees of freedom. Physical Review Letters, 120(26):260502, 2018.

[50] Hui Wang, Jian Qin, Xing Ding, Ming-Cheng Chen, Si Chen, Xiang You, Yu-Ming He,
Xiao Jiang, L You, Z Wang, et al. Boson sampling with 20 input photons and a 60-mode in-
terferometer in a 1014-dimensional Hilbert space. Physical Review Letters, 123(25):250503,
2019.

[51] Rainer Blatt and Christian F Roos. Quantum simulations with trapped ions. Nature
Physics, 8(4):277–284, 2012.

[52] Dietrich Leibfried, Rainer Blatt, Christopher Monroe, and David Wineland. Quantum
dynamics of single trapped ions. Reviews of Modern Physics, 75(1):281, 2003.

[53] Yu He, SK Gorman, Daniel Keith, Ludwik Kranz, JG Keizer, and MY Simmons. A
two-qubit gate between phosphorus donor electrons in silicon. Nature, 571(7765):371–375,
2019.

[54] Jonathan A Jones. NMR quantum computation. Progress in Nuclear Magnetic Resonance
Spectroscopy, 38(4):325–360, 2001.

[55] Sergey Bravyi, David Gosset, Robert Koenig, and Marco Tomamichel. Quantum advantage
with noisy shallow circuits. Nature Physics, 16(10):1040–1045, 2020.

[56] Youngseok Kim, Andrew Eddins, Sajant Anand, Ken Xuan Wei, Ewout Van Den Berg,
Sami Rosenblatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, et al. Evi-
dence for the utility of quantum computing before fault tolerance. Nature, 618(7965):500–
505, 2023.

[57] Kristan Temme, Sergey Bravyi, and Jay M Gambetta. Error mitigation for short-depth
quantum circuits. Physical Review Letters, 119(18):180509, 2017.

[58] Suguru Endo, Simon C Benjamin, and Ying Li. Practical Quantum Error Mitigation for
Near-Future Applications. Physical Review X, 8(3):031027, 2018.

[59] Suguru Endo, Zhenyu Cai, Simon C Benjamin, and Xiao Yuan. Hybrid quantum-classical
algorithms and quantum error mitigation. Journal of the Physical Society of Japan,
90(3):032001, 2021.

[60] Zhenyu Cai, Ryan Babbush, Simon C Benjamin, Suguru Endo, William J Huggins, Ying
Li, Jarrod R McClean, and Thomas E O’Brien. Quantum Error Mitigation. arXiv preprint
arXiv:2210.00921, 2022.

96

[61] Ewout Van Den Berg, Zlatko K Minev, Abhinav Kandala, and Kristan Temme. Proba-
bilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors.
Nature Physics, 19:1116–1121, 2023.

[62] Youngseok Kim, Christopher J Wood, Theodore J Yoder, Seth T Merkel, Jay M Gam-
betta, Kristan Temme, and Abhinav Kandala. Scalable error mitigation for noisy quantum
circuits produces competitive expectation values. Nature Physics, 19:752–759, 2023.

[63] Maria Schuld and Francesco Petruccione. Supervised Learning with Quantum Computers,
volume 17. Springer, 2018.

[64] Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
217–228, 2019.

[65] András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired algorithm for
linear regression. Quantum, 6:754, 2022.

[66] Ewin Tang. Dequantizing algorithms to understand quantum advantage in machine learn-
ing. Nature Reviews Physics, 4(11):692–693, 2022.

[67] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,
and Giuseppe Carleo. Neural-network quantum state tomography. Nature Physics,
14(5):447–450, 2018.

[68] Dominik Koutnỳ, Libor Motka, Zdeněk Hradil, Jaroslav Řeháček, and Luis L Sánchez-
Soto. Neural-network quantum state tomography. Physical Review A, 106(1):012409,
2022.

[69] Juan Carrasquilla and Roger G Melko. Machine learning phases of matter. Nature Physics,
13(5):431–434, 2017.

[70] Peter Broecker, Juan Carrasquilla, Roger G Melko, and Simon Trebst. Machine learning
quantum phases of matter beyond the fermion sign problem. Scientific Reports, 7(1):8823,
2017.

[71] Sirui Lu, Shilin Huang, Keren Li, Jun Li, Jianxin Chen, Dawei Lu, Zhengfeng Ji, Yi Shen,
Duanlu Zhou, and Bei Zeng. Separability-entanglement classifier via machine learning.
Physical Review A, 98(1):012315, 2018.

[72] Naema Asif, Uman Khalid, Awais Khan, Trung Q Duong, and Hyundong Shin. Entangle-
ment detection with artificial neural networks. Scientific Reports, 13(1):1562, 2023.

[73] Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V Albert, and John
Preskill. Provably efficient machine learning for quantum many-body problems. Science,
377(6613):eabk3333, 2022.

[74] Laura Lewis, Hsin-Yuan Huang, Viet T Tran, Sebastian Lehner, Richard Kueng, and John
Preskill. Improved machine learning algorithm for predicting ground state properties.
arXiv preprint arXiv:2301.13169, 2023.

[75] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks.
Nature Physics, 15(12):1273–1278, 2019.

97

[76] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

[77] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum Amplitude Am-
plification and Estimation. Contemporary Mathematics, 305:53–74, 2002.

[78] John M Martyn, Zane M Rossi, Andrew K Tan, and Isaac L Chuang. Grand Unification
of Quantum Algorithms. PRX Quantum, 2(4):040203, 2021.

[79] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value
transformation and beyond: exponential improvements for quantum matrix arithmetics.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 193–204, 2019.

[80] Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. q-means:
A quantum algorithm for unsupervised machine learning. Advances in Neural Information
Processing Systems, 32, 2019.

[81] Esma Aı̈meur, Gilles Brassard, and Sébastien Gambs. Quantum speed-up for unsupervised
learning. Machine Learning, 90:261–287, 2013.

[82] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised
and unsupervised machine learning. arXiv preprint arXiv:1307.0411, 2013.

[83] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component
analysis. Nature Physics, 10(9):631–633, 2014.

[84] Daoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong Tarn. Quantum Reinforcement
Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
38(5):1207–1220, 2008.

[85] Vedran Dunjko, Jacob M Taylor, and Hans J Briegel. Quantum-Enhanced Machine Learn-
ing. Physical Review Letters, 117(13):130501, 2016.

[86] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Vari-
ational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021.

[87] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit
learning. Physical Review A, 98(3):032309, 2018.

[88] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quan-
tum circuits as machine learning models. Quantum Science and Technology, 4(4):043001,
2019.

[89] Edward Farhi and Hartmut Neven. Classification with Quantum Neural Networks on Near
Term Processors. arXiv preprint arXiv:1802.06002, 2018.

[90] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, and Ste-
fan Woerner. The power of quantum neural networks. Nature Computational Science,
1(6):403–409, 2021.

98

[91] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit Born machines.
Physical Review A, 98(6):062324, 2018.

[92] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum Generative Adversarial
Networks for Learning and Loading Random Distributions. npj Quantum Information,
5(1):103, 2019.

[93] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Variational quantum Boltzmann
machines. Quantum Machine Intelligence, 3:1–15, 2021.

[94] Maria Schuld and Nathan Killoran. Quantum machine learning in feature Hilbert spaces.
Physical Review Letters, 122(4):040504, 2019.

[95] Louis Schatzki, Andrew Arrasmith, Patrick J Coles, and Marco Cerezo. Entangled
Datasets for Quantum Machine Learning. arXiv preprint arXiv:2109.03400, 2021.

[96] Elija Perrier, Akram Youssry, and Chris Ferrie. QDataSet, quantum datasets for machine
learning. Scientific Data, 9(1):582, 2022.

[97] Michael J Bremner, Ashley Montanaro, and Dan J Shepherd. Average-case complexity
versus approximate simulation of commuting quantum computations. Physical Review
Letters, 117(8):080501, 2016.

[98] Leslie Ann Goldberg and Heng Guo. The complexity of approximating complex-valued
Ising and Tutte partition functions. Computational Complexity, 26(4):765–833, 2017.

[99] Dave Wecker, Matthew B Hastings, and Matthias Troyer. Progress towards practical
quantum variational algorithms. Physical Review A, 92(4):042303, 2015.

[100] Roeland Wiersema, Cunlu Zhou, Yvette de Sereville, Juan Felipe Carrasquilla, Yong Baek
Kim, and Henry Yuen. Exploring Entanglement and Optimization within the Hamiltonian
Variational Ansatz. PRX Quantum, 1(2):020319, 2020.

[101] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I Latorre. Data
re-uploading for a universal quantum classifier. Quantum, 4:226, 2020.

[102] Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J Coles. Cost function
dependent barren plateaus in shallow parametrized quantum circuits. Nature Communi-
cations, 12(1):1791, 2021.

[103] Andris Ambainis, Ashwin Nayak, Ammon Ta-Shma, and Umesh Vazirani. Dense quantum
coding and a lower bound for 1-way quantum automata. In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing, pages 376–383, 1999.

[104] Masahito Hayashi, Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and Shigeru
Yamashita. Quantum Network Coding. In Annual Symposium on Theoretical Aspects of
Computer Science, pages 610–621. Springer, 2007.

[105] Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and Shigeru Yamashita.
Unbounded-error one-way classical and quantum communication complexity. In Automata,
Languages and Programming: 34th International Colloquium, ICALP 2007, Wroc law,
Poland, July 9-13, 2007. Proceedings 34, pages 110–121. Springer, 2007.

[106] Hiroshi Yano, Yudai Suzuki, Kohei M Itoh, Rudy Raymond, and Naoki Yamamoto. Effi-
cient Discrete Feature Encoding for Variational Quantum Classifier. IEEE Transactions
on Quantum Engineering, 2:1–14, 2021.

99

[107] Bryan T Gard, Linghua Zhu, George S Barron, Nicholas J Mayhall, Sophia E Economou,
and Edwin Barnes. Efficient symmetry-preserving state preparation circuits for the vari-
ational quantum eigensolver algorithm. npj Quantum Information, 6(1):10, 2020.

[108] Panagiotis Kl Barkoutsos, Jerome F Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis,
Andreas Fuhrer, Marc Ganzhorn, Daniel J Egger, Matthias Troyer, Antonio Mezzacapo,
et al. Quantum algorithms for electronic structure calculations: Particle/hole Hamiltonian
and optimized wave-function expansions. Physical Review A, 98(2):022322, 2018.

[109] Igor O Sokolov, Panagiotis Kl Barkoutsos, Pauline J Ollitrault, Donny Greenberg, Julia
Rice, Marco Pistoia, and Ivano Tavernelli. Quantum orbital-optimized unitary coupled
cluster methods in the strongly correlated regime: Can quantum algorithms outperform
their classical equivalents? The Journal of Chemical Physics, 152(12):124107.

[110] Sofiene Jerbi, Lukas J Fiderer, Hendrik Poulsen Nautrup, Jonas M Kübler, Hans J Briegel,
and Vedran Dunjko. Quantum machine learning beyond kernel methods. Nature Commu-
nications, 14(1):517, 2023.

[111] Nhat A Nghiem, Samuel Yen-Chi Chen, and Tzu-Chieh Wei. Unified framework for quan-
tum classification. Physical Review Research, 3(3):033056, 2021.

[112] Dylan Herman, Rudy Raymond, Muyuan Li, Nicolas Robles, Antonio Mezzacapo, and
Marco Pistoia. Expressivity of Variational Quantum Machine Learning on the Boolean
Cube. IEEE Transactions on Quantum Engineering, 4:1–18, 2023.

[113] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran. Quantum em-
beddings for machine learning. arXiv preprint arXiv:2001.03622, 2020.

[114] Maria Schuld. Supervised quantum machine learning models are kernel methods. arXiv
preprint arXiv:2101.11020, 2021.

[115] Nachman Aronszajn. Theory of Reproducing Kernels. Transactions of the American
Mathematical Society, 68(3):337–404, 1950.

[116] George Kimeldorf and Grace Wahba. Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications, 33(1):82–95, 1971.

[117] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in ma-
chine learning. The Annals of Statistics, 36(3):1171–1220, 2008.

[118] Alex J Smola and Bernhard Schölkopf. Learning with Kernels, volume 4. Berlin, Germany:
GMD-Forschungszentrum Informationstechnik, 1998.

[119] Tony Jebara, Risi Kondor, and Andrew Howard. Probability Product Kernels. The Journal
of Machine Learning Research, 5:819–844, 2004.

[120] Risi Kondor and Tony Jebara. A kernel between sets of vectors. In Proceedings of the 20th
International Conference on Machine Learning (ICML-03), pages 361–368, 2003.

[121] Anil Bhattacharyya. On a measure of divergence between two statistical populations
defined by their probability distribution. Bulletin of the Calcutta Mathematical Society,
35:99–110, 1943.

[122] Tommi Jaakkola and David Haussler. Exploiting generative models in discriminative clas-
sifiers. Advances in Neural Information Processing Systems, 11:487–493, 1998.

100

[123] Shun-Ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation,
10(2):251–276, 1998.

[124] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the Fisher Kernel
for Large-Scale Image Classification. In European Conference on Computer Vision, pages
143–156. Springer, 2010.

[125] Vladyslav Sydorov, Mayu Sakurada, and Christoph H. Lampert. Deep Fisher Kernels -
End to End Learning of the Fisher Kernel GMM Parameters. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1402–1409, 2014.

[126] Denis Gudovskiy, Alec Hodgkinson, Takuya Yamaguchi, and Sotaro Tsukizawa. Deep
Active Learning for Biased Datasets via Fisher Kernel Self-Supervision. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9041–
9049, 2020.

[127] Laurens Van Der Maaten. Learning Discriminative Fisher Kernels. In International Con-
ference on Machine Learning, volume 11, pages 217–224, 2011.

[128] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. Image Classifi-
cation with the Fisher Vector: Theory and Practice. International Journal of Computer
Vision, 105(3):222–245, 2013.

[129] Harry Buhrman, Richard Cleve, John Watrous, and Ronald De Wolf. Quantum finger-
printing. Physical Review Letters, 87(16):167902, 2001.

[130] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo random bits. In Providing Sound Foundations for Cryptography: On the Work of
Shafi Goldwasser and Silvio Micali, pages 227–240. 2019.

[131] Michele Mosca and Christof Zalka. Exact quantum Fourier transforms and discrete loga-
rithm algorithms. International Journal of Quantum Information, 2(01):91–100, 2004.

[132] Scott Aaronson and Andris Ambainis. Forrelation: A Problem that Optimally Separates
Quantum from Classical Computing. In Proceedings of the Forty-Seventh Annual ACM
Symposium on Theory of Computing, pages 307–316, 2015.

[133] Graham R Enos, Matthew J Reagor, Maxwell P Henderson, Christina Young, Kyle Horton,
Mandy Birch, and Chad Rigetti. Synthetic weather radar using hybrid quantum-classical
machine learning. arXiv preprint arXiv:2111.15605, 2021.

[134] Zoran Krunic, Frederik F Flöther, George Seegan, Nathan D Earnest-Noble, and Omar
Shehab. Quantum Kernels for Real-World Predictions Based on Electronic Health Records.
IEEE Transactions on Quantum Engineering, 3:1–11, 2022.

[135] Keisuke Fujii and Kohei Nakajima. Quantum Reservoir Computing: A Reservoir Ap-
proach Toward Quantum Machine Learning on Near-Term Quantum Devices. Reservoir
Computing: Theory, Physical Implementations, and Applications, pages 423–450, 2021.

[136] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, 2015.

[137] Danilo Mandic and Jonathon Chambers. Recurrent Neural Networks for Prediction: Learn-
ing Algorithms, Architectures and Stability. Wiley, 2001.

101

[138] Herbert Jaeger and Harald Haas. Harnessing Nonlinearity: Predicting Chaotic Systems
and Saving Energy in Wireless Communication. Science, 304(5667):78–80, 2004.

[139] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3):127–149, 2009.

[140] David Verstraeten, Benjamin Schrauwen, Michiel d’Haene, and Dirk Stroobandt. An
experimental unification of reservoir computing methods. Neural Networks, 20(3):391–
403, 2007.

[141] Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the “Echo State Network” approach. GMD-Forschungszentrum Information-
stechnik Bonn, 2002.

[142] Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural
networks-with an Erratum note. Bonn, Germany: German National Research Center for
Information Technology GMD Technical Report, 148(34):13, 2001.

[143] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-Time Computing with-
out Stable States: A New Framework for Neural Computation Based on Perturbations.
Neural Computation, 14(11):2531–2560, 2002.

[144] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning Internal
Representations by Error Propagation. MIT Press, 1986.

[145] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

[146] Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki
Kanazawa, Seiji Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent
advances in physical reservoir computing: A review. Neural Networks, 115:100–123, 2019.

[147] Kohei Nakajima. Physical reservoir computing―an introductory perspective. Japanese
Journal of Applied Physics, 59(6):060501, 2020.

[148] Kohei Nakajima, Helmut Hauser, Rongjie Kang, Emanuele Guglielmino, Darwin G Cald-
well, and Rolf Pfeifer. A soft body as a reservoir: case studies in a dynamic model of
octopus-inspired soft robotic arm. Frontiers in Computational Neuroscience, 7:91, 2013.

[149] Kohei Nakajima, Tao Li, Helmut Hauser, and Rolf Pfeifer. Exploiting short-term memory
in soft body dynamics as a computational resource. Journal of The Royal Society Interface,
11(100):20140437, 2014.

[150] Kohei Nakajima, Helmut Hauser, Tao Li, and Rolf Pfeifer. Information processing via
physical soft body. Scientific Reports, 5(1):10487, 2015.

[151] Laurent Larger, Miguel C Soriano, Daniel Brunner, Lennert Appeltant, Jose M Gutiérrez,
Luis Pesquera, Claudio R Mirasso, and Ingo Fischer. Photonic information processing
beyond turing: an optoelectronic implementation of reservoir computing. Optics Express,
20(3):3241–3249, 2012.

[152] Yvan Paquot, Francois Duport, Antoneo Smerieri, Joni Dambre, Benjamin Schrauwen,
Marc Haelterman, and Serge Massar. Optoelectronic Reservoir Computing. Scientific
Reports, 2(1):287, 2012.

102

[153] Laurent Larger, Antonio Baylón-Fuentes, Romain Martinenghi, Vladimir S Udaltsov,
Yanne K Chembo, and Maxime Jacquot. High-Speed Photonic Reservoir Computing Us-
ing a Time-Delay-Based Architecture: Million Words per Second Classification. Physical
Review X, 7(1):011015, 2017.

[154] Miguel C Soriano, Silvia Ort́ın, Lars Keuninckx, Lennert Appeltant, Jan Danckaert, Luis
Pesquera, and Guy Van der Sande. Delay-Based Reservoir Computing: Noise Effects in
a Combined Analog and Digital Implementation. IEEE Transactions on Neural Networks
and Learning Systems, 26(2):388–393, 2014.

[155] Jiayin Chen, Hendra I Nurdin, and Naoki Yamamoto. Temporal Information Processing
on Noisy Quantum Computers. Physical Review Applied, 14(2):024065, 2020.

[156] Makoto Negoro, Kosuke Mitarai, Kohei Nakajima, and Keisuke Fujii. Toward NMR Quan-
tum Reservoir Computing. Reservoir Computing: Theory, Physical Implementations, and
Applications, pages 451–458, 2021.

[157] Rodrigo Araiza Bravo, Khadijeh Najafi, Xun Gao, and Susanne F Yelin. Quantum reservoir
computing using arrays of Rydberg atoms. PRX Quantum, 3(3):030325, 2022.

[158] Kohei Nakajima, Keisuke Fujii, Makoto Negoro, Kosuke Mitarai, and Masahiro Kitagawa.
Boosting Computational Power through Spatial Multiplexing in Quantum Reservoir Com-
puting. Physical Review Applied, 11(3):034021, 2019.

[159] Aki Kutvonen, Keisuke Fujii, and Takahiro Sagawa. Optimizing a quantum reservoir
computer for time series prediction. Scientific Reports, 10(1):14687, 2020.

[160] Sanjib Ghosh, Andrzej Opala, Micha l Matuszewski, Tomasz Paterek, and Timothy CH
Liew. Quantum reservoir processing. npj Quantum Information, 5(1):35, 2019.

[161] Jiayin Chen and Hendra I Nurdin. Learning nonlinear input–output maps with dissipative
quantum systems. Quantum Information Processing, 18:1–36, 2019.

[162] Quoc Hoan Tran and Kohei Nakajima. Higher-Order Quantum Reservoir Computing.
arXiv preprint arXiv:2006.08999, 2020.

[163] Julien Dudas, Baptiste Carles, Erwan Plouet, Frank Alice Mizrahi, Julie Grollier, and
Danijela Marković. Quantum reservoir computing implementation on coherently coupled
quantum oscillators. npj Quantum Information, 9(1):64, 2023.

[164] Pere Mujal, Rodrigo Mart́ınez-Peña, Gian Luca Giorgi, Miguel C Soriano, and Roberta
Zambrini. Time-series quantum reservoir computing with weak and projective measure-
ments. npj Quantum Information, 9(1):16, 2023.

[165] Makoto Negoro, Kosuke Mitarai, Keisuke Fujii, Kohei Nakajima, and Masahiro Kitagawa.
Machine learning with controllable quantum dynamics of a nuclear spin ensemble in a
solid. arXiv preprint arXiv:1806.10910, 2018.

[166] Pere Mujal, Rodrigo Mart́ınez-Peña, Johannes Nokkala, Jorge Garćıa-Beni, Gian Luca
Giorgi, Miguel C Soriano, and Roberta Zambrini. Opportunities in Quantum Reser-
voir Computing and Extreme Learning Machines. Advanced Quantum Technologies,
4(8):2100027, 2021.

103

[167] Zaher Mundher Yaseen, Sadeq Oleiwi Sulaiman, Ravinesh C Deo, and Kwok-Wing Chau.
An enhanced extreme learning machine model for river flow forecasting: State-of-the-art,
practical applications in water resource engineering area and future research direction.
Journal of Hydrology, 569:387–408, 2019.

[168] Thomas G Dietterich. Ensemble Methods in Machine Learning. In International Workshop
on Multiple Classifier Systems, pages 1–15. Springer, 2000.

[169] XiMing Wang, YueChi Ma, Min-Hsiu Hsieh, and Man-Hong Yung. Quantum speedup in
adaptive boosting of binary classification. Science China Physics, Mechanics & Astronomy,
64(2):220311, 2021.

[170] Rupak Chatterjee and Ting Yu. Generalized coherent states, reproducing ker-
nels, and quantum support vector machines. Quantum Information & Computation,
17(15–16):1292–1306, 2017.

[171] Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I
Jordan. Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine
Learning Research, 5:27–72, 2004.

[172] Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.

[173] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler,
et al. API design for machine learning software: experiences from the scikit-learn project.
arXiv preprint arXiv:1309.0238, 2013.

[174] Aram W Harrow and Saeed Mehraban. Approximate Unitary t-Designs by Short Random
Quantum Circuits Using Nearest-Neighbor and Long-Range Gates. Communications in
Mathematical Physics, 401:1531–1626, 2023.

[175] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact and approx-
imate unitary 2-designs and their application to fidelity estimation. Physical Review A,
80(1):012304, 2009.

[176] Joseph M Renes, Robin Blume-Kohout, Andrew J Scott, and Carlton M Caves. Symmet-
ric informationally complete quantum measurements. Journal of Mathematical Physics,
45(6):2171–2180, 2004.

[177] Jonas Kübler, Simon Buchholz, and Bernhard Schölkopf. The Inductive Bias of Quantum
Kernels. Advances in Neural Information Processing Systems, 34:12661–12673, 2021.

[178] Abdulkadir Canatar, Evan Peters, Cengiz Pehlevan, Stefan M Wild, and Ruslan Shay-
dulin. Bandwidth Enables Generalization in Quantum Kernel Models. arXiv preprint
arXiv:2206.06686, 2022.

[179] Yudai Suzuki and Muyuan Li. Effect of alternating layered ansatzes on trainability of
projected quantum kernel. arXiv preprint arXiv:2310.00361, 2023.

[180] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut
Neven. Barren plateaus in quantum neural network training landscapes. Nature Commu-
nications, 9(1):4812, 2018.

104

[181] Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio,
and Patrick J Coles. Noise-induced barren plateaus in variational quantum algorithms.
Nature Communications, 12(1):6961, 2021.

[182] Marco Cerezo and Patrick J Coles. Higher order derivatives of quantum neural networks
with barren plateaus. Quantum Science and Technology, 6(3):035006, 2021.

[183] Andrew Arrasmith, Marco Cerezo, Piotr Czarnik, Lukasz Cincio, and Patrick J Coles.
Effect of barren plateaus on gradient-free optimization. Quantum, 5:558, 2021.

[184] Lorenzo Leone, Salvatore FE Oliviero, Lukasz Cincio, and Marco Cerezo. On the practical
usefulness of the Hardware Efficient Ansatz. arXiv preprint arXiv:2211.01477, 2022.

[185] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan, Patrick J
Coles, and Marco Cerezo. Diagnosing Barren Plateaus with Tools from Quantum Optimal
Control. Quantum, 6:824, 2022.

[186] Zoë Holmes, Andrew Arrasmith, Bin Yan, Patrick J Coles, Andreas Albrecht, and An-
drew T Sornborger. Barren Plateaus Preclude Learning Scramblers. Physical Review
Letters, 126(19):190501, 2021.

[187] Zoë Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles. Connecting Ansatz
Expressibility to Gradient Magnitudes and Barren Plateaus. PRX Quantum, 3(1):010313,
2022.

[188] Andrew Arrasmith, Zoë Holmes, Marco Cerezo, and Patrick J Coles. Equivalence of
quantum barren plateaus to cost concentration and narrow gorges. Quantum Science and
Technology, 7(4):045015, 2022.

[189] Jennifer R Glick, Tanvi P Gujarati, Antonio D Corcoles, Youngseok Kim, Abhinav Kan-
dala, Jay M Gambetta, and Kristan Temme. Covariant quantum kernels for data with
group structure. arXiv preprint arXiv:2105.03406, 2021.

[190] Akio Fujiwara and Hiroshi Nagaoka. Quantum Fisher metric and estimation for pure state
models. Physics Letters A, 201(2-3):119–124, 1995.

[191] Dénes Petz. Monotone metrics on matrix spaces. Linear Algebra and its Applications,
244:81–96, 1996.

[192] Carl W Helstrom. Minimum mean-squared error of estimates in quantum statistics.
Physics Letters A, 25(2):101–102, 1967.

[193] Jing Liu, Haidong Yuan, Xiao-Ming Lu, and Xiaoguang Wang. Quantum Fisher infor-
mation matrix and multiparameter estimation. Journal of Physics A: Mathematical and
Theoretical, 53(2):023001, 2019.

[194] Thomas Hofmann. Learning the Similarity of Documents: An Information-Geometric
Approach to Document Retrieval and Categorization. Advances in Neural Information
Processing Systems, 12, 1999.

[195] Florent Perronnin and Christopher Dance. Fisher Kernels on Visual Vocabularies for Image
Categorization. In 2007 IEEE conference on Computer Vision and Pattern Recognition,
pages 1–8, 2007.

105

[196] Cirq-Developers. Cirq, April 2022. Zenodo. doi:10.5281/zenodo.6599601. See full list of
authors on Github: https://github.com/quantumlib/Cirq/graphs/contributors.

[197] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encoding on the
expressive power of variational quantum-machine-learning models. Physical Review A,
103(3):032430, 2021.

[198] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272,
2020.

[199] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and Entangling
Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical lgorithms.
Advanced Quantum Technologies, 2(12):1900070, 2019.

[200] Mart́ın Larocca, Frédéric Sauvage, Faris M Sbahi, Guillaume Verdon, Patrick J Coles, and
Marco Cerezo. Group-Invariant Quantum Machine Learning. PRX Quantum, 3(3):030341,
2022.

[201] Michael Ragone, Paolo Braccia, Quynh T Nguyen, Louis Schatzki, Patrick J Coles, Fred-
eric Sauvage, Martin Larocca, and M Cerezo. Representation Theory for Geometric Quan-
tum Machine Learning. arXiv preprint arXiv:2210.07980, 2022.

[202] Louis Schatzki, Martin Larocca, Frederic Sauvage, and Marco Cerezo. Theoretical
Guarantees for Permutation-Equivariant Quantum Neural Networks. arXiv preprint
arXiv:2210.09974, 2022.

[203] Quynh T Nguyen, Louis Schatzki, Paolo Braccia, Michael Ragone, Patrick J Coles, Fred-
eric Sauvage, Martin Larocca, and M Cerezo. Theory for Equivariant Quantum Neural
Networks. arXiv preprint arXiv:2210.08566, 2022.

[204] Johannes Jakob Meyer, Marian Mularski, Elies Gil-Fuster, Antonio Anna Mele, Francesco
Arzani, Alissa Wilms, and Jens Eisert. Exploiting Symmetry in Variational Quantum
Machine Learning. PRX Quantum, 4(1):010328, 2023.

[205] Thomas Gorin, Tomaž Prosen, Thomas H Seligman, and Marko Žnidarič. Dynamics of
Loschmidt echoes and fidelity decay. Physics Reports, 435(2-5):33–156, 2006.

[206] Arseni Goussev, Rodolfo A Jalabert, Horacio M Pastawski, and Diego Wisniacki.
Loschmidt Echo. arXiv preprint arXiv:1206.6348, 2012.

[207] Koji Hashimoto, Keiju Murata, and Ryosuke Yoshii. Out-of-time-order correlators in
quantum mechanics. Journal of High Energy Physics, 2017(138):138, 2017.

[208] Brian Swingle. Unscrambling the physics of out-of-time-order correlators. Nature Physics,
14(10):988–990, 2018.

106

[209] Sanjib Ghosh, Andrzej Opala, Micha l Matuszewski, Tomasz Paterek, and Timothy CH
Liew. Reconstructing Quantum States with Quantum Reservoir Networks. IEEE Trans-
actions on Neural Networks and Learning Systems, 32(7):3148–3155, 2020.

[210] Johannes Nokkala, Rodrigo Mart́ınez-Peña, Gian Luca Giorgi, Valentina Parigi, Miguel C
Soriano, and Roberta Zambrini. Gaussian states of continuous-variable quantum systems
provide universal and versatile reservoir computing. Communications Physics, 4(1):53,
2021.

[211] Gerasimos Angelatos, Saeed A Khan, and Hakan E Türeci. Reservoir Computing Approach
to Quantum State Measurement. Physical Review X, 11(4):041062, 2021.

[212] Tomoyuki Kubota, Hirokazu Takahashi, and Kohei Nakajima. Unifying framework for
information processing in stochastically driven dynamical systems. Physical Review Re-
search, 3(4):043135, 2021.

[213] Gandhi Manjunath and Herbert Jaeger. Echo State Property Linked to an Input: Explor-
ing a Fundamental Characteristic of Recurrent Neural Networks. Neural Computation,
25(3):671–696, 2013.

[214] Izzet B Yildiz, Herbert Jaeger, and Stefan J Kiebel. Re-visiting the echo state property.
Neural Networks, 35:1–9, 2012.

[215] Frank Verstraete, Michael M Wolf, and J Ignacio Cirac. Quantum computation and
quantum-state engineering driven by dissipation. Nature Physics, 5(9):633–636, 2009.

[216] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, and Nana Liu. Quantum noise
protects quantum classifiers against adversaries. Physical Review Research, 3(2):023153,
2021.

[217] Jonathan Foldager, Arthur Pesah, and Lars Kai Hansen. Noise-assisted variational quan-
tum thermalization. Scientific Reports, 12(1):3862, 2022.

[218] Joshua Morris, Felix A Pollock, and Kavan Modi. Non-Markovian memory in IBMQX4.
arXiv preprint arXiv:1902.07980, 2019.

[219] Adam Winick, Joel J Wallman, and Joseph Emerson. Simulating and Mitigating Crosstalk.
Physical Review Letters, 126(23):230502, 2021.

[220] Jürgen Schmidhuber, Sepp Hochreiter, et al. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, 1997.

[221] Tomoyuki Kubota, Kohei Nakajima, and Hirokazu Takahashi. Dynamical Anatomy of
NARMA10 Benchmark Task. arXiv preprint arXiv:1906.04608, 2019.

[222] Amir F Atiya and Alexander G Parlos. New results on recurrent network training: unifying
the algorithms and accelerating convergence. IEEE Transactions on Neural Networks,
11(3):697–709, 2000.

[223] Antonio D Córcoles, Easwar Magesan, Srikanth J Srinivasan, Andrew W Cross, Matthias
Steffen, Jay M Gambetta, and Jerry M Chow. Demonstration of a quantum error detec-
tion code using a square lattice of four superconducting qubits. Nature Communications,
6(1):6979, 2015.

107

[224] Flavio Abreu Araujo, Mathieu Riou, Jacob Torrejon, Sumito Tsunegi, Damien Querlioz,
Kay Yakushiji, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Mark D Stiles, et al. Role
of non-linear data processing on speech recognition task in the framework of reservoir
computing. Scientific Reports, 10(1):328, 2020.

[225] Isaac L Chuang and Michael A Nielsen. Prescription for experimental determination of
the dynamics of a quantum black box. Journal of Modern Optics, 44(11-12):2455–2467,
1997.

[226] MPA Branderhorst, J Nunn, IA Walmsley, and RL Kosut. Simplified quantum process
tomography. New Journal of Physics, 11(11):115010, 2009.

[227] A Shabani, RL Kosut, M Mohseni, H Rabitz, MA Broome, MP Almeida, A Fedrizzi,
and AG White. Efficient Measurement of Quantum Dynamics via Compressive Sensing.
Physical Review Letters, 106(10):100401, 2011.

[228] Michael J Korenberg. Identifying nonlinear difference equation and functional expansion
representations: the fast orthogonal algorithm. Annals of Biomedical Engineering, 16:123–
142, 1988.

[229] Joni Dambre, David Verstraeten, Benjamin Schrauwen, and Serge Massar. Information
Processing Capacity of Dynamical Systems. Scientific Reports, 2(1):514, 2012.

[230] Nozomi Akashi, Terufumi Yamaguchi, Sumito Tsunegi, Tomohiro Taniguchi, Mitsuhiro
Nishida, Ryo Sakurai, Yasumichi Wakao, and Kohei Nakajima. Input-driven bifurcations
and information processing capacity in spintronics reservoirs. Physical Review Research,
2(4):043303, 2020.

[231] Ryo Sakurai, Mitsuhiro Nishida, Hideyuki Sakurai, Yasumichi Wakao, Nozomi Akashi,
Yasuo Kuniyoshi, Yuna Minami, and Kohei Nakajima. Emulating a sensor using soft
material dynamics: A reservoir computing approach to pneumatic artificial muscle. In 2020
3rd IEEE International Conference on Soft Robotics (RoboSoft), pages 710–717. IEEE,
2020.

[232] Alistair Letcher, Stefan Woerner, and Christa Zoufal. From Tight Gradient Bounds for
Parameterized Quantum Circuits to the Absence of Barren Plateaus in QGANs. arXiv
preprint arXiv:2309.12681, 2023.

[233] Samuel L. Braunstein and Carlton M. Caves. Statistical distance and the geometry of
quantum states. Physical Review Letters, 72:3439, 1994.

[234] Alexander S. Holevo. Probabilistic and Statistical Aspects of Quantum Theory, volume 1.
Springer Science & Business Media, 2011.

108

Appendix A

Analytical Results for Vanishing
Similarity Issue in Quantum Kernels

A.1 Proof of Proposition 1

In this appendix, we give proof of Proposition 1 in Sec. 4.2. More concretely, we analytically
show the expectation value and variance of the fidelity-based quantum kernel in Eq. (4.24)
for two types of quantum circuits: globally-random quantum circuits and alternating layered
ansatzes (ALAs). Our strategy is to integrate the quantum kernel over quantum circuits that
possess the 2-design property explained in Sec. 4.2.2. For simplicity, we denote the fidelity-based
quantum kernel kQ ≡ kQ(x,x′).

A.1.1 Case (1): Globally-Random Quantum Circuits

Expectation Value

First, we derive the expectation value. Due to the assumption that U(x,θ) or U(x′,θ) is a
t-design with t ≥ 1, we apply Lemma 1 to obtain the expectation value. Here, without loss of
generality, we consider U(x,θ) forms a 1-design. Then, we have

⟨kQ⟩(U(x,θ),U(x′,θ)) =
〈

Tr
[
U(x,θ)ρ0U

†(x,θ)ρx′,θ

]〉
(U(x,θ),U(x′,θ))

=

〈
1

2n
Tr [ρ0] Tr

[
ρx′,θ

]〉
U(x′,θ)

=
1

2n
,

(A.1)

where we use the property of density operators, i.e., Tr[ρ] = 1 in the second equality. We also
utilize the assumption that U(x,θ) and U(x′,θ) are independent.

Variance

Next, we work on the variance. By definition, the variance can be expressed as Var[X] =
⟨X2⟩ − ⟨X⟩2 for any variable X. We hence focus on the term ⟨kQ2⟩. We again integrate the

109

quantity k2Q over the quantum circuit U(x,θ), then we have

⟨k2Q⟩(U(x,θ),U(x′,θ))
=
〈

Tr
[
U(x,θ)ρ0U

†(x,θ)ρx′,θ

]
Tr
[
U(x,θ)ρ0U

†(x,θ)ρx′,θ

]〉
(U(x,θ),U(x′,θ))

=

〈
1

22n − 1

(
Tr [ρ0] Tr

[
ρx′,θ

]
Tr [ρ0] Tr

[
ρx′,θ

]
+ Tr

[
ρ20
]

Tr
[
ρ2x′,θ

])
− 1

2n (22n − 1)

(
Tr [ρ0] Tr [ρ0] Tr

[
ρ2x′,θ

]
+ Tr

[
ρ20
]

Tr
[
ρx′,θ

]
Tr
[
ρx′,θ

])〉
U(x′,θ)

=
2

2n (2n + 1)
.

(A.2)

Here, we exploit Lemma 3 and the property of pure states, Tr[ρ] = Tr[ρ2] = 1. As a result, the
variance can be written as

Var[kQ] = ⟨k2Q⟩(U(x,θ),U(x′,θ))
− ⟨kQ⟩2(U(x,θ),U(x′,θ))

=
2

2n (2n + 1)
− 1

22n

=
2n − 1

22n (2n + 1)
.

(A.3)

We also remark that the obtained value in Eq. (A.3) is the upper bound of the variance for
the case of the mixed initial state.

A.1.2 Case (2): Alternating Layered Ansatzes

Expectation Value

The expectation value over U(x,θ) can be obtained by independently integrating over local
unitary blocks in quantum circuits. We remind the readers that we assume the independence
of all unitary blocks. We here start with the integration over the κ-th unitary blocks in the
last layer, i.e., Wκ,L(x,θκ,L). For simplicity we will denote the local unitary blocks Wκ,L ≡
Wκ,L(x,θκ,L) and W ′

κ,L ≡Wκ,L(x′,θκ,L). Then, we have

⟨kQ⟩Wκ,L
=
〈

Tr
[
Wκ,Lρ

(κ,L)
0 W †

κ,Lρx′,θ

]〉
Wκ,L

=
1

2m
Tr
[(

TrS(κ,L)

[
ρ
(κ,L)
0

]
⊗ IS(κ,L)

)
ρx′,θ

]
,

(A.4)

where ρ
(a,b)
0 = Ua,bρ0U

†
a,b with Ua,b = (

∏a−1
k′=1Wk′,b)(

∏b−1
d=1 Vd(x,θ)). Note that Ua,b means all

gates up to the (a− 1)-th blocks in the b-th layer. Also, TrS(k,d)
and IS(k,d)

are the partial trace
and the identity operator over the subspace S(k,d) of the qubits on which Wk,d acts, respectively.
We also utilize Lemma 4 here. By iteratively integrating the quantity for all unitary blocks in
the ALA, we obtain

⟨kQ⟩U(x,θ)

=
1

(2m)κL
Tr
[(

TrS(κ,L)

[
TrS(κ−1,L)

[
. . .TrS(1,1)

[
ρ
(1,1)
0

]
⊗ IS(1,1)

. . .
]
⊗ IS(κ−1,L)

]
⊗ IS(κ,L)

)
ρx′,θ

]
.

(A.5)

110

Here, ρ
(1,1)
0 = ρ0 by definition. Let ρ0 =

∑
α,α′ cαc

∗
α′ |α⟩ ⟨α′| be an arbitrary initial state where

α and α′ are bit-strings, and cα, cα′ ∈ C satisfying
∑

α,α′ cαc
∗
α = 1. Then the quantity up to the

first layer, i.e., TrS(κ,1)
[· · ·] ⊗ IS(κ,1)

in Eq.(A.5), can be written as

TrS(κ,1)

[
TrS(κ−1,1)

[
. . .TrS(2,1)

[
TrS(1,1)

[ρ0] ⊗ IS(1,1)

]
⊗ IS(2,1)

]
. . .⊗ IS(κ−1,1)

]
⊗ IS(κ,1)

=
∑
α,α′

cαc
∗
α′

(
κ∏

k=1

δ(α,α′)Sk

)
× (IS(1,1)

⊗ IS(2,1)
⊗ . . .⊗ IS(κ,1)

)

= I.

(A.6)

We here utilize the fact that any local unitary blocks in the same layer have no overlap. Con-
sequently, by substituting Eq. (A.6) into Eq. (A.5), we get

⟨kQ⟩(U(x,θ),U(x′,θ)) = ⟨kQ⟩U(x,θ) =
(2m)κ(L−1)

(2m)κL
=

1

2n
. (A.7)

We note that the numerator in the first equality comes from the trace of the identity operators
over the whole system by L− 1 times. Also, n = mκ is used here.

Variance

We here obtain the upper bound of the variance. We here calculate the term ⟨kQ2⟩ because of
the definition of the variance. Also, we again integrate the quantity over all unitary blocks in
U(x,θ). First, the expectation value over Wκ,L is calculated as follows;

⟨k2Q⟩Wκ,L

=
〈

Tr
[
Wκ,Lρ

(κ,L)
0 W †

κ,Lρx′,θ

]
Tr
[
Wκ,Lρ

(κ,L)
0 W †

κ,Lρx′,θ

]〉
Wκ,L

=

〈 ∑
p,q,p′,q′

Tr
[
Wκ,Lρ

(κ,L)
0,qp W

†
κ,Lρx′,θ,pq

]
Tr
[
Wκ,Lρ

(κ,L)
0,q′p′W

†
κ,Lρx′,θ,p′q′

]〉
Wκ,L

=
1

22m − 1

∑
p,q,p′,q′

(
Tr
[
ρ
(κ,L)
0,qp

]
Tr
[
ρ
(κ,L)
0,q′p′

](
Tr
[
ρx′,θ,pq

]
Tr
[
ρx′,θ,p′q′

]
− 1

2m
Tr
[
ρx′,θ,pqρx′,θ,p′q′

])

+ Tr
[
ρ
(κ,L)
0,qp ρ

(κ,L)
0,q′p′

](
Tr
[
ρx′,θ,pqρx′,θ,p′q′

]
− 1

2m
Tr
[
ρx′,θ,pq

]
Tr
[
ρx′,θ,p′q′

]))
,

(A.8)

where ρ
(κ,L)
0,qp = TrS̄(κ,L)

[(
|p⟩ ⟨q| ⊗ IS(κ,L)

)
ρ
(κ,L)
0

]
and ρx′,θ,pq = TrS̄(κ,L)

[(
|q⟩ ⟨p| ⊗ IS(κ,L)

)
ρx′,θ

]
.

Here, we utilize Lemma 5 in the second equality and Lemma 3 in the last equality. We repeat

111

the procedure for the rest of the unitary blocks in the last layer and then we end up with

⟨k2Q⟩VL(x,θ)
=

1

(22m − 1)
κ×∑

p,q,p′,q′

∑
Sk∈P (S(1:κ−1,L))

∏
h∈S̄k∩S(1:κ−1,L)

(
δ(pq)hδ(p′q′)h − 1

2m
δ(pq′)hδ(p′q)h

) ∏
h∈Sk

(
δ(pq′)hδ(p′q)h − 1

2m
δ(pq)hδ(p′q′)h

)

×

(
Tr
[
TrS̄k

[
ρ
(1,L)
0

]
TrS̄k

[
ρ
(1,L)
0

]](
Tr [ρx′,θ,pq] Tr [ρx′,θ,p′q′] − 1

2m
Tr [ρx′,θ,pqρx′,θ,p′q′]

)

+ Tr
[
TrSk∪S(κ,L)

[
ρ
(1,L)
0

]
TrSk∪S(κ,L)

[
ρ
(1,L)
0

]](
Tr [ρx′,θ,pqρx′,θ,p′q′] − 1

2m
Tr [ρx′,θ,pq] Tr [ρx′,θ,p′q′]

))
,

(A.9)

where P (S(1:κ−1,L)) = {∅, {S(1,L)}, {S(2,L)}, . . . , {S(κ−1,L)}, {S(1,L), S(2,L)}, {S(1,L), S(3,L)}, . . .} is

the power set of S(1:κ−1,L) = {S(1,L), S(2,L), . . . , S(κ−1,L)}. We also define
∏

h=∅(· · ·) ≡ 1 and

Tr∅[ρ0] ≡ ρ0. Here Tr[TrS̄k
[ρ

(1,L)
0]TrS̄k

[ρ
(1,L)
0]] and Tr[TrSk∪S(κ,L)

[ρ
(1,L)
0]TrSk∪S(κ,L)

[ρ
(1,L)
0]] are re-

garded as the purity of the quantum state ρ
(1,L)
0 which is partially traced over S̄k and Sk ∪ S(κ,L),

respectively. We remind that ρ
(1,L)
0 is the quantum state obtained by applying the ALA up to

L − 1 layer to the initial state, i.e., ρ
(1,L)
0 = (

∏L−1
d=1 Vd(x,θ))ρ0(

∏L−1
d=1 V

†
d (x,θ)). Hence, due to

the inequality of the purity, i.e., 1/d ≤ Tr
[
ρ2
]
≤ 1 with the d-dimentional quantum state ρ, we

have

⟨k2Q⟩U(x,θ)
≤ 1

(22m − 1)
κ∑

p,q,p′,q′

∑
Sk∈P (S(1:κ−1,L))

∏
h∈S̄k∩S(1:κ−1,L)

(
δ(pq)hδ(p′q′)h − 1

2m
δ(pq′)hδ(p′q)h

) ∏
h∈Sk

(
δ(pq′)hδ(p′q)h − 1

2m
δ(pq)hδ(p′q′)h

)

×

((
Tr [ρx′,θ,pq] Tr [ρx′,θ,p′q′] − 1

2m
Tr [ρx′,θ,pqρx′,θ,p′q′]

)

+

(
Tr [ρx′,θ,pqρx′,θ,p′q′] − 1

2m
Tr [ρx′,θ,pq] Tr [ρx′,θ,p′q′]

))
.

(A.10)

Further, using ρx′,θ,pq = TrS̄(κ,L)

[(
|q⟩ ⟨p| ⊗ IS(κ,L)

)
ρx′,θ

]
and the Kronecker delta regarding

bit-strings p, q, p′, q′, we can get the following equality.∑
p,q,p′,q′

Tr
[
ρx′,θ,pq

]
Tr
[
ρx′,θ,p′q′

]
δ(pq)Sk

δ(p′q′)Sk
δ(pq′)S̄k

δ(p′q)S̄k

=
∑

p,q,p′,q′

Tr
[(

|q⟩ ⟨p| ⊗ IS(κ,L)

)
ρx′,θ

]
Tr
[(

|q′⟩ ⟨p′| ⊗ IS(κ,L)

)
ρx′,θ

]
δ(pq)Sk

δ(p′q′)Sk
δ(pq′)S̄k

δ(p′q)S̄k

= Tr
[
TrSk∪S(κ,L)

[
ρx′,θ

]
TrSk∪S(κ,L)

[
ρx′,θ

]]
,

(A.11)

112

∑
p,q,p′,q′

Tr
[
ρx′,θ,pqρx′,θ,p′q′

]
δ(pq)Sk

δ(p′q′)Sk
δ(pq′)S̄k

δ(p′q)S̄k

=
∑

p,q,p′,q′

Tr
[
TrS̄(κ,L)

[(
|q⟩ ⟨p| ⊗ IS(κ,L)

)
ρx′,θ

]
TrS̄(κ,L)

[(
|q′⟩ ⟨p′| ⊗ IS(κ,L)

)
ρx′,θ

]]
× δ(pq)Sk

δ(p′q′)Sk
δ(pq′)S̄k

δ(p′q)S̄k

= Tr
[
TrSk

[
ρx′,θ

]
TrSk

[
ρx′,θ

]]
.

(A.12)

This means that Eq. (A.10) can also be represented using the purity of quantum states. Therefore
we have

⟨k2Q⟩(U(x,θ),U(x′,θ))
= ⟨k2Q⟩U(x,θ)

≤ 2κ

(22m − 1)κ
, (A.13)

where we use Tr[ρ2] ≤ 1. Also, we assume 2m ≫ 1 here. Thus, the upper bound of the
fidelity-based quantum kernel using the ALA is described as

Var [kQ] ≤ 2κ

(22m − 1)κ
− 1

22n
≈ 1

2n(2− 1
m)
. (A.14)

This result is valid for the case where a mixed state is used as the initial state since the upper
bound is derived using the purity of quantum states.

A.2 Proof of Theorem 1

We provide the proof of Theorem 1. Here, we analytically calculate the expectation value of the
variance for the i-th term of the quantum Fisher kernel (QFK), i.e.,

k
(i)
QF ≡ Tr[ρ0{B̃x,θi , B̃x′,θi}]/2. (A.15)

where B̃x,θi = U †
1:i(x,θ)BθiU1:i(x,θ) with Bx,θl = 2i(∂θlU(x,θ))U †(x,θ).

In addition, we present that the variance scaling of the i-th term is the same even if Tr[ρ0B̃x,θi]
and Tr[ρ0B̃x′,θj] are taken into account, i.e.,

k
(i)
QF ′ ≡ Tr[ρ0{B̃x,θi − Tr[ρ0B̃x,θi], B̃x′,θi − Tr[ρ0B̃x′,θi]}]/2. (A.16)

That is, these terms hold the following equality;

Var
[
k
(i)
QF ′

]
= Var

[
k
(i)
QF

]
+ Var

[
T (i)

]
+ 2Cov

[
k
(i)
QF , T

(i)
]

(A.17)

with T (i) = −Tr[ρ0B̃x,θi]Tr[ρ0B̃x′,θi]. Here, Cov[A,B] = ⟨AB⟩ − ⟨A⟩ ⟨B⟩ denotes the covariance

of A and B. Therefore, we show that terms Var[T (i)] + 2Cov[k
(i)
QF , T

(i)] do not contribute the
scaling of variance so much later.

A.2.1 Case (1): Globally-Random Quantum Circuits

Expectation Value

We compute the expectation value of the i-th term of the QFK, assuming either U1:i(x,θ) or
U1:i(x

′,θ) is a 1-design. Without loss of generality, we assume U1:i(x,θ) is a 1-design due to the

113

symmetry. Also we denote the unitary operators U1:i ≡ U1:i(x,θ) and U ′
1:i ≡ U1:i(x

′,θ). Then,
we obtain

⟨k(i)QF ⟩(U1:i,U ′
1:i)

=
1

2

〈
Tr
[
ρ0U

†
1:iBθiU1:iB̃x′,θi

]〉
(U1:i,U ′

1:i)
+

1

2

〈
Tr
[
ρ0B̃x′,θiU

†
1:iBθiU1:i

]〉
(U1:i,U ′

1:i)

=
1

2

〈
Tr
[
U †
1:iBθiU1:iB̃x′,θiρ0

]〉
(U1:i,U ′

1:i)
+

1

2

〈
Tr
[
U †
1:iBθiU1:iρ0B̃x′,θi

]〉
(U1:i,U ′

1:i)

=
1

2 · 2n
Tr [Bθi]

〈
Tr
[
B̃x′,θiρ0

]〉
U ′
1:i

+
1

2 · 2n

〈
Tr [Bθi] Tr

[
ρ0B̃x′,θi

]〉
U ′
1:i

= 0,

(A.18)

where Lemma 1 and the traceless property of the Pauli operators are utilized. As〈
Tr
[
ρ0U

†
1:iBθiU1:i

]〉
U1:i

= 0 (A.19)

using Lemma 1, we can also show that ⟨k(i)QF ′⟩ = 0.

Variance

We compute the term ⟨k(i)QF

2
⟩, as the variance is equal to this term. Because of the independence

of U1:i and U ′
1:i, we first calculate the expectation value over U1:i. The expectation value consists

of three terms;

Var[k
(i)
QF] = ⟨k(i)QF

2
⟩
U1:i

=
1

4

〈(
Tr
[
ρ0U

†
1:iBθiU1:iB̃x′,θi

]
+ Tr

[
U †
1:iBθiU1:iρ0B̃x′,θi

])2〉
U1:i

=
1

4

〈
Tr
[
ρ0U

†
1:iBθiU1:iB̃x′,θi

]
Tr
[
ρ0U

†
1:iBθiU1:iB̃x′,θi

]〉
U1:i

+
1

2

〈
Tr
[
ρ0U

†
1:iBθiU1:iB̃x′,θi

]
Tr
[
U †
1:iBθiU1:iρ0B̃x′,θi

]〉
U1:i

+
1

4

〈
Tr
[
U †
1:iBθiU1:iρ0B̃x′,θi

]
Tr
[
U †
1:iBθiU1:iρ0B̃x′,θi

]〉
U1:i

= Varr,1 + Varr,2 + Varr,3,

(A.20)

where Varr,i represents the i-th term of the right-hand side of the second equality. Thus, we
independently calculate these terms.

The first term can be obtained as

Varr,1 =
1

4

〈
Tr
[
ρ0U

†
1:iBθiU1:iB̃x′,θi

]
Tr
[
ρ0U

†
1:iBθiU1:iB̃x′,θi

]〉
U1:i

=
1

4 · (22n − 1)

(
Tr [Bθi] Tr

[
B̃x′,θiρ0

]
Tr [Bθi] Tr

[
B̃x′,θiρ0

]
+ Tr

[
B2

θi

]
Tr

[(
B̃x′,θiρ0

)2])
− 1

4 · 2n (22n − 1)

(
Tr [Bθi] Tr [Bθi] Tr

[(
B̃x′,θiρ0

)2]
+ Tr

[
B2

θi

]
Tr
[
B̃x′,θiρ0

]
Tr
[
B̃x′,θiρ0

])
=

2n

4 · (22n − 1)

(
Tr

[(
B̃x′,θiρ0

)2]
− 1

2n

(
Tr
[
B̃x′,θiρ0

])2)
=

2n

4 · (22n − 1)

(
1 − 1

2n

)(
Tr
[
B̃x′,θiρ0

])2
,

(A.21)

114

where we exploit Lemma 3 and the properties of the Pauli operators, Tr[B] = 0 and Tr[B2] = 2n.
In addition, we use the equality Tr[(B̃x′,θiρ0)

2] = (Tr[B̃x′,θiρ0])
2 due to the assumption that the

initial state is pure.
Similarly, the second and the third terms are calculated in the following way.

Varr,2 =
2n

2 · (22n − 1)

(
Tr
[
B̃2

x′,θiρ0

]
− 1

2n

(
Tr
[
B̃x′,θiρ0

])2)
, (A.22)

Varr,3 =
2n

4 · (22n − 1)

(
1 − 1

2n

)(
Tr
[
B̃x′,θiρ0

])2
. (A.23)

Consequently, we obtain

⟨k(i)QF

2
⟩
U1:i

= Varr,1 + Varr,2 + Varr,3

=
2n

22n − 1
· 1

2

((
1 − 1

2n

)(
Tr
[
B̃x′,θiρ0

])2
+

(
Tr
[
B̃2

x′,θiρ0

]
− 1

2n

(
Tr
[
B̃x′,θiρ0

])2))
.

(A.24)

Next, we integrate the quantity over U ′
1:i. As U ′

1:i is involved in Tr[B̃2
x′,θi

ρ0] and (Tr[B̃x′,θiρ0])
2

in Eq. (A.24), we consider these terms. The expectation values of these terms are calculated as〈
Tr
[
B̃2

x′,θiρ0

]〉
U ′
1:i

=
〈

Tr
[
U ′†
1:iB

2
θi
U ′
1:iρ0

]〉
U ′
1:i

=
1

2n
Tr
[
B2

θi

]
Tr [ρ0]

= 1,

(A.25)

〈(
Tr
[
B̃x′,θiρ0

])2〉
U ′
1:i

=
〈

Tr
[
U ′†
1:iBθiU

′
1:iρ0

]
Tr
[
U ′†
1:iBθiU1:iρ0

]〉
U1:i

=
1

22n − 1

(
Tr [Bθi] Tr [ρ0] Tr [Bθi] Tr [ρ0] + Tr

[
B2

θi

]
Tr
[
ρ20
])

− 1

2n (22n − 1)

(
Tr [Bθi] Tr [Bθi] Tr

[
ρ20
]

+ Tr
[
B2

θi

]
Tr [ρ0] Tr [ρ0]

)
=

1

22n − 1
(2n − 1)

=
1

2n + 1
.

(A.26)

Here, we utilize Lemmas 1 and 3 and the property of the Pauli operators and the pure state.
Therefore, substituting the terms into Eq. (A.24), we have

Var[k
(i)
QF] = ⟨k(i)QF

2
⟩
(U1,i,U ′

1,i)
=

2n

2 (22n − 1)

(
1 +

2n − 2

2n (2n + 1)

)
≈ 1

2n+1
. (A.27)

Also, we compute Var[T (i)] and 2Cov[k
(i)
QF , T

(i)] to obtain Var[k
(i)
QF]. We remind the readers

115

that T (i) = −Tr[ρ0B̃x,θi]Tr[ρ0B̃x′,θi]. As ⟨T (i)⟩ = 0 utilizing Eq. (A.2.1), we can obtain

Var
[
T (i)

]
=
〈

Tr
[
ρ0B̃x,θi

]
Tr
[
ρ0B̃x′,θi

]
Tr
[
ρ0B̃x,θi

]
Tr
[
ρ0B̃x′,θi

]〉
(U1:i,U ′

1:i)

=
〈

Tr
[
ρ0B̃x,θi

]
Tr
[
ρ0B̃x,θi

]〉
U1:i

〈
Tr
[
ρ0B̃x′,θi

]
Tr
[
ρ0B̃x′,θi

]〉
U ′
1:i

=

(
2n

22n − 1

(
1 − 1

2n

))2

=
1

(2n + 1)2
.

(A.28)

As for the covariance term, we only focus on the term ⟨k(i)QF , T
(i)⟩ as the remaining term is zero.

Thus, we can compute

Cov
[
k
(i)
QF , T

(i)
]

= −1

2

〈
Tr
[
ρ0

{
B̃x,θi , B̃x′,θi

}]
Tr
[
ρ0B̃x,θi

]
Tr
[
ρ0B̃x′,θi

]〉
(U1:i,U ′

1:i)

= −1

2

〈
Tr
[
ρ0B̃x,θiB̃x′,θi

]
Tr
[
ρ0B̃x,θi

]
Tr
[
ρ0B̃x′,θi

]〉
(U1:i,U ′

1:i)

− 1

2

〈
Tr
[
ρ0B̃x′,θiB̃x,θi

]
Tr
[
ρ0B̃x,θi

]
Tr
[
ρ0B̃x′,θi

]〉
(U1:i,U ′

1:i)

= −1

2
(Covr,1 + Covr,2) .

(A.29)

These terms respectively read

Covr,1 =
〈

Tr
[
ρ0B̃x,θiB̃x′,θi

]
Tr
[
ρ0B̃x,θi

]
Tr
[
ρ0B̃x′,θi

]〉
(U1:i,U ′

1:i)

=
1

(2n + 1)2
,

(A.30)

Covr,2 =
〈

Tr
[
ρ0B̃x′,θiB̃x,θi

]
Tr
[
ρ0B̃x,θi

]
Tr
[
ρ0B̃x′,θi

]〉
(U1:i,U ′

1:i)

=
1

(2n + 1)2
,

(A.31)

where we utilize Lemma 3 and the property of the pure states, i.e., ρ2 = ρ. Consequently, we
have

Cov
[
k
(i)
QF , T

(i)
]

= −1

2
(Covr,1 + Covr,2)

= − 1

(2n + 1)2
.

(A.32)

Therefore, the variance of k
(i)
QF ′ is

Var[k
(i)
QF ′] = Var

[
k
(i)
QF

]
+ Var

[
T (i)

]
+ 2Cov

[
k
(i)
QF , T

(i)
]

=
2n

2 (22n − 1)

(
1 +

2n − 2

2n (2n + 1)

)
+

1

(2n + 1)2
− 2

(2n + 1)2

=
2n

2 (22n − 1)

(
1 − 1

2n + 1

)
≈ 1

2n+1
,

(A.33)

which indicates the same scaling as Var[k
(i)
QF].

116

A.2.2 Case (2): Alternating Layered Ansatzes

Expectation Value

Assuming W̃k,d(x, θi), W̃k,d(x′, θi) and all unitary blocks in the light-cones are t-designs, we

compute the expectation value of k
(i)
QF . For simplicity, we denote unitary operators W̃k,d ≡

W̃k,d(x, θi), W̃ ′
k,d ≡ W̃k,d(x′, θi), Vr ≡ Vr(x,θ) and V ′

r ≡ Vr(x
′,θ). Then, due to the indepen-

dence of these unitary operators, integrating the term over W̃k,d leads to

⟨k(i)QF ⟩W̃k,d
=

1

2

〈
Tr
[
ρ0V

†
r W̃

†
k,dBθiW̃k,dVrB̃x′,θi

]〉
W̃k,d

+
1

2

〈
Tr
[
ρ0B̃x′,θiV

†
r W̃

†
k,dBθiW̃k,dVr

]〉
W̃k,d

=
1

2

〈
Tr
[
W̃k,dVrB̃x′,θiρ0V

†
r W̃

†
k,dBθi

]〉
W̃k,d

+
1

2

〈
Tr
[
W̃k,dVrρ0B̃x′,θiV

†
r W̃

†
k,dBθi

]〉
W̃k,d

=
1

2 · 2m
Tr
[
TrS(k,d)

[
Vrρ0B̃x′,θiV

†
r

]
TrS(k,d)

[Bθi]
]

+
1

2 · 2m
Tr
[
TrS(k,d)

[
Vrρ0B̃x′,θiV

†
r

]
TrS(k,d)

[Bθi]
]

= 0,

(A.34)

where TrS(k,d)
[·] represents a partial trace over the space S(k,d) on which W̃k,d acts. Also, we

utilize Lemma 4 and the traceless property of the Pauli operators. This means that the expec-

tation value ⟨k(i)QF ⟩ is zero irrespective of the remaining unitary blocks in U1:i, W̃ ′
k,d and U ′

1:i.
Similarly, we can obtain 〈

Tr
[
ρ0U

†
1:iBθiU1:i

]〉
W̃k,d

= 0 (A.35)

using Lemma 1, and thus ⟨k(i)QF ′⟩ = 0.

Variance

The expectation value of k
(i)
QF is zero as shown above, and thus the variance is equivalent to

⟨k(i)QF

2
⟩. As we assume unitary operators are independent, we integrate the term over the unitary

operators in the following order; W̃k,d, Vr, W̃ ′
k,d and V ′

r . We first work on the integration over
W̃k,d. Then, the term can be decomposed into three terms as follows; Then, we have

⟨k(i)QF

2
⟩
W̃k,d

=
1

4

〈(
Tr
[
ρ0V

†
r W̃

†
k,dBθiW̃k,dVrB̃x′,θi

]
+ Tr

[
ρ0B̃x′,θiV

†
r W̃

†
k,dBθiW̃k,dVr

])2〉
W̃k,d

=
1

4

〈
Tr
[
ρ0V

†
r W̃

†
k,dBθiW̃k,dVrB̃x′,θi

]
Tr
[
ρ0V

†
r W̃

†
k,dBθiW̃k,dVrB̃x′,θi

]〉
W̃k,d

+
1

2

〈
Tr
[
ρ0V

†
r W̃

†
k,dBθiW̃k,dVrB̃x′,θi

]
Tr
[
ρ0B̃x′,θiV

†
r W̃

†
k,dBθiW̃k,dVr

]〉
W̃k,d

+
1

4

〈
Tr
[
ρ0B̃x′,θiV

†
r W̃

†
k,dBθiW̃k,dVr

]
Tr
[
ρ0B̃x′,θiV

†
r W̃

†
k,dBθiW̃k,dVr

]〉
W̃k,d

.

= Vara,1 + Vara,2 + Vara,3,

(A.36)

where Vara,i is the i-th term of the right-hand side of the second equality.

117

We first focus on the first term Vara,1. The integration of the term over W̃k,d results in

Vara,1 =
1

4

〈
Tr
[
W̃k,dρ̃

(1)
0,Bl

W̃ †
k,dBθi

]
Tr
[
W̃k,dρ̃

(1)
0,Bl

W̃ †
k,dBθi

]〉
W̃k,d

=
1

4

∑
p,q,p′,q′

〈
Tr
[
W̃k,dρ̃

(1)
0,Bl,qp

W̃ †
k,dBθi,pq

]
Tr
[
W̃k,dρ̃

(1)
0,Bl,q′p′W̃

†
k,dBθi,p′q′

]〉
W̃k,d

=
1

4
· 2m

22m − 1

∑
p,p′

(
Tr
[
ρ̃
(1)
0,Bl,pp

ρ̃
(1)
0,Bl,p′p′

]
− 1

2m
Tr
[
ρ̃
(1)
0,Bl,pp

]
Tr
[
ρ̃
(1)
0,Bl,p′p′

])
,

(A.37)

where we define ρ̃
(1)
0,Bl,qp

= TrS̄(k,d)
[(|p⟩ ⟨q|⊗ IS(k,d)

)ρ̃
(1)
0,Bl

] with ρ̃
(1)
0,Bl

= VrB̃x′,θiρ0V
†
r and Bθi,pq =

TrS̄(k,d)
[(|q⟩ ⟨p| ⊗ IS(k,d)

)Bθi]. Here the following two equalities are utilized;

Tr [Bθi,pq] = Tr
[
TrS̄(k,d)

[(
|q⟩ ⟨p| ⊗ IS(k,d)

)
Bθi

]]
= 0,

Tr
[
Bθi,pqBθi,p′q′

]
= Tr

[
TrS̄(k,d)

[(
|q⟩ ⟨p| ⊗ IS(k,d)

)
Bθi

]
TrS̄(k,d)

[(
|q′⟩ ⟨p′| ⊗ IS(k,d)

)
Bθi

]]
= δ(p,q)δ(p′,q′)Tr

[
B2

θi

]
= δ(p,q)δ(p′,q′)2

m.

(A.38)

The first and second terms in the last equality of Eq. (A.37) can be rewritten as

∑
p,p′

Tr
[
ρ̃
(1)
0,Bl,pp

]
Tr
[
ρ̃
(1)
0,Bl,p′p′

]
= Tr

[
B̃x′,θiρ0

]
Tr
[
B̃x′,θiρ0

]
(A.39)

and ∑
p,p′

Tr[ρ̃
(1)
0,Bl,pp

ρ̃
(1)
0,Bl,p′p′] = Tr

[
TrS̄(k,d)

[VrB̃x′,θiρ0V
†
r]TrS̄(k,d)

[VrB̃x′,θiρ0V
†
r]
]
, (A.40)

respectively. This indicates that Vr can be excluded from the expectation value calculation for
the quantity in Eq. (A.39), but not from the calculation for the other in Eq. (A.40).

Then we integrate the second quantity in Eq. (A.40) over the unitary Vr. We remind that Vr
contains all unitary blocks in the light-cone of Wk,d. Hence, the quantity is iteratively integrated
over every unitary block. To do so, we consider the following situations: a unitary block ws

acting on (1) a subspace of S′, (2) a subspace of S̄′, (3) a subspace of both S′ and S̄′ and (4) S′

and a subspace of S̄′. Then, for arbitrary operator A : S′ ⊗ S̄′ → S′ ⊗ S̄′, the expectation value
of Tr[TrS̄′ [wsAw

†
s]TrS̄′ [wsAw

†
s]] over ws : Ss → Ss can be obtained as follows;

(1) Ss ⊆ S′〈
Tr
[
TrS̄′

[
wsAw

†
s

]
TrS̄′

[
wsAw

†
s

]]〉
ws

=
〈

Tr
[
wsTrS̄′ [A]w†

swsTrS̄′ [A]w†
s

]〉
ws

= Tr [TrS̄′ [A] TrS̄′ [A]]
(A.41)

(2) Ss ⊂ S̄′〈
Tr
[
TrS̄′

[
wsAw

†
s

]
TrS̄′

[
wsAw

†
s

]]〉
ws

=
〈

Tr
[
TrS̄′

[
Aw†

sws

]
TrS̄′

[
Aw†

sws

]]〉
ws

= Tr [TrS̄′ [A] TrS̄′ [A]]
(A.42)

118

(3) Ss = Sh ⊗ Sh̄ with d1/2-dimensional spaces Sh ⊂ S′ and Sh̄ ⊂ S̄′〈
Tr
[
TrS̄′

[
wsAw

†
s

]
TrS̄′

[
wsAw

†
s

]]〉
ws

=
〈

Tr
[(
wsAw

†
s ⊗ wsAw

†
s

)(
SwapS′

1⊗S′
2
⊗ IS̄′

1⊗S̄′
2

)]〉
ws

=
1

d2 − 1

(
Tr
[(
ISs,1⊗Ss,2 ⊗ TrSs,1 [A] ⊗ TrSs,2 [A]

) (
SwapS′

1⊗S′
2
⊗ IS̄′

1⊗S̄′
2

)]
+ Tr

[(
SwapSs,1⊗Ss,2 ⊗ TrSs,1∪Ss,2

[
A⊗A

(
SwapSs,1⊗Ss,2 ⊗ I ¯Ss,1⊗ ¯Ss,2

)])(
SwapS′

1⊗S′
2
⊗ IS̄′

1⊗S̄′
2

)])
− 1

d(d2 − 1)

(
Tr
[(

ISs,1⊗Ss,1 ⊗ TrSs,1∪Ss,2

[
A⊗A

(
SwapSs,1⊗Ss,2 ⊗ I ¯Ss,1⊗ ¯Ss,2

)])(
SwapS′

1⊗S′
2
⊗ IS̄′

1⊗S̄′
2

)]
+ Tr

[(
SwapSs,1⊗Ss,2 ⊗ TrSs,1 [A] ⊗ TrSs,2 [A]

) (
SwapS′

1⊗S′
2
⊗ IS̄′

1⊗S̄′
2

)])
=

d1/2

d+ 1

(
Tr
[
TrS̄′∪Sh

[A] TrS̄′∪Sh
[A]
]

+ Tr
[
TrS̄′\Sh̄

[A] TrS̄′\Sh̄
[A]
])

(A.43)

(4) Ss = S′ ⊗ Sh̄ with d1/2-dimensional spaces S′ and Sh̄ ⊂ S̄′〈
Tr
[
TrS̄′

[
wsAw

†
s

]
TrS̄′

[
wsAw

†
s

]]〉
ws

=
〈

Tr
[(
wsAw

†
s ⊗ wsAw

†
s

)(
SwapS′

1⊗S′
2
⊗ IS̄′

1⊗S̄′
2

)]〉
ws

=
d1/2

d+ 1

(
Tr [A] Tr [A] + Tr

[
TrS̄′\Sh̄

[A] TrS̄′\Sh̄
[A]
])

(A.44)

Here, IS1⊗S2 and SwapS1⊗S2 denote the identity operator and the swap operator acting on the
systems S1, S2, respectively. Also, the subspace labeled with the number in the subscript (for
example, Ss,i with i ∈ {1, 2}) represents one of the duplicated subsystems. Thus, the following
result can be obtained;〈

Tr
[
TrS̄(k,d)

[VrB̃x′,θiρ0V
†
r]TrS̄(k,d)

[Vr(x,θ)B̃x′,θiρ0V
†
r]
]〉

Vr

=
∑

h∈PU (S(ks:kl,1))

thTr
[
Trh̄[B̃x′,θiρ0]Trh̄[B̃x′,θiρ0]

]
,

(A.45)

where th ∈ R+ and PU (S(ks:kl,1)) = {∅, S(ks,1), S(ks+1,1), . . . S(kl,1), S(ks,1) ∪ S(ks+1,1), . . .} is the

set of subspace, each element of which is the union of the spaces in a subset of P (S(ks:kl,1)).
Here, ks(kl) is the smallest (largest) label of the unitary blocks in the first layer of Vr(x,θ).
Note that every th is equal to or greater than (2

m
2 /2m + 1)2(d−1). Then, the expectation value

of the first term over U1:i can be written as

1

4
· 2m

22m − 1

 ∑
h∈PU (S(ks:kl,1))

thTr
[
Trh̄[B̃x′,θiρ0]Trh̄[B̃x′,θiρ0]

]
− 1

2m
Tr
[
B̃x′,θiρ0

]
Tr
[
B̃x′,θiρ0

] .

(A.46)
Next, we compute the expectation value of Eq. (A.46) over U ′

1:i. Here we begin with the
integration for W̃ ′

k,d. The expectation value of Tr[Trh̄[B̃x′,θiρ0]Trh̄[B̃x′,θiρ0]] in the first term of
Eq. (A.46) can be calculated as

119

〈
Tr
[
Trh̄

[
B̃x′,θiρ0

]
Trh̄

[
B̃x′,θiρ0

]]〉
W̃ ′

k,d

=

〈
Tr
[
Trh̄

[
V ′†
r W̃

′†
k,dBθiW̃

′
k,dV

′
rρ0

]
Trh̄

[
V ′†
r W̃

′†
k,dBθiW̃

′
k,dV

′
rρ0

]]〉
W̃ ′

k,d

=
2m

22m − 1

(
Tr
[(
V ′†
r ⊗ V ′†

r

)(
SwapS(k,d),1⊗S(k,d),2

⊗ IS̄(k,d),1⊗S̄(k,d),2

)
×
(
V ′
r ⊗ V ′

r

)
(ρ0 ⊗ ρ0)

(
Swaph1⊗h2 ⊗ Ih̄1⊗h̄2

)])
− 1

2m
Tr [Trh̄ [ρ0] Trh̄ [ρ0]]

)
,

(A.47)

where we utilize the equality,〈
V †w†

sAwsV A
′ ⊗ V †w†

sAwsV A
′
〉
ws

=
1

22m − 1

((
V † ⊗ V †

) (
ISs,1⊗Ss,2 ⊗ TrSs,1 [A] ⊗ TrSs,2 [A]

)
(V ⊗ V)

(
A′ ⊗A′)

+
(
V † ⊗ V †

)(
SwapSs,1⊗Ss,2 ⊗ TrSs,1∪Ss,2

[
A⊗A

(
SwapSs,1,Ss,2 ⊗ IS̄s,1,S̄s,2

)])
(V ⊗ V)

(
A′ ⊗A′))

− 1

2m(22m − 1)

((
V † ⊗ V †

) (
SwapSs,1⊗Ss,2 ⊗ TrSs,1 [A] ⊗ TrSs,2 [A]

)
(V ⊗ V)

(
A′ ⊗A′)

+
(
V † ⊗ V †

)(
ISs,1⊗Ss,2 ⊗ TrSs,1∪Ss,2

[
A⊗A

(
SwapSs,1,Ss,2 ⊗ IS̄s,1,S̄s,2

)])
(V ⊗ V)

(
A′ ⊗A′))
(A.48)

for arbitrary operator A,A′ and the properties of the Pauli operators. Since the first term in
Eq(A.47) still includes V ′

r , we integrate the quantity over all unitary blocks in V ′
r . Then, using

the equality in Eq. (A.48), we have〈(
V ′†
r ⊗ V ′†

r

)(
SwapS(k,d),1⊗S(k,d),2

⊗ IS̄(k,d),1⊗S̄(k,d),2

) (
V ′
r ⊗ V ′

r

)〉
V ′
r

=
∑

h′∈PU (S(ks:kl,1))

th′

(
Swaph′

1⊗h′
2
⊗ Ih̄′

1⊗h̄′
2

)
,

(A.49)

where th′ ∈ R+. Note that a set of the coefficients {th′} is the same as {th}. Thus, substituting
the above equation into the first term in Eq. (A.47), the following result can be obtained.

〈
Tr
[
Trh̄

[
B̃x′,θiρ0

]
Trh̄

[
B̃x′,θiρ0

]]〉
U ′
1:i

=
2m

22m − 1

((∑
h′∈PU (S(ks:kl,1))

th′Tr
[
Tr

(h∪h′)\(h∩h′) [ρ0] Tr
(h∪h′)\(h∩h′) [ρ0]

])
− 1

2m
Tr [Trh̄ [ρ0] Trh̄ [ρ0]]

)
.

(A.50)

As for the second term in Eq. (A.46), the integration for W̃ ′
k,d can be calculated in the

following way;〈
Tr
[
B̃x′,θiρ0

]
Tr
[
B̃x′,θiρ0

]〉
W̃ ′

k,d

=

〈
Tr
[
V ′†
r W̃

′†
k,dBθiW̃k,dVrρ0

]
Tr
[
V ′†
r W̃

′†
k,dBθiW̃

′
k,dV

′
rρ0

]〉
W̃ ′

k,d

=
2m

22m − 1

(
Tr
[
TrS̄(k,d)

[
ρVx′

]
TrS̄(k,d)

[
ρVx′

]]
− 1

2m

)
,

(A.51)

120

where ρVx′ ,pq = TrS̄(k,d)
[(|p⟩ ⟨q| ⊗ IS(k,d)

)ρVx′] with ρVx′ = V ′
rρ0V

′†
r . Here we use Lemmas 4 and

5, Tr [Bθi,pq] = 0 and Tr
[
Bθi,pqBθi,p′q′

]
= δ(p,q)δ(p′,q′)2

m. Then, integrating the quantity over
V ′
r using Eqs. (A.41)- (A.44), we have

〈
Tr
[
B̃x′,θiρ0

]
Tr
[
B̃x′,θiρ0

]〉
U ′
1:i

=
2m

22m − 1

 ∑
h∈PU (S(ks:kl,1))

thTr [Trh̄[ρ0]Trh̄[ρ0]]

− 1

2m

 .

(A.52)

Therefore we obtain

Vara,1 =
1

4

(
2m

22m − 1

)2
(∑

h∈PU (S(ks:kl,1))

∑
h′∈PU (S(ks:kl,1))

thth′Tr
[
Tr

(h∪h′)\(h∩h′) [ρ0] Tr
(h∪h′)\(h∩h′) [ρ0]

]

− 2

2m

(∑
h∈PU (S(ks:kl,1))

thTr [Trh̄[ρ0]Trh̄[ρ0]]

)
+

1

22m

)
.

(A.53)

Similarly, we can get

Vara,2 =
1

2

(
2m

22m − 1

)2
(∑

h∈PU (S(ks:kl,1))

∑
h′∈PU (S(ks:kl,1))

thth′Tr [Ih∩h′] Tr
[
Trh∪h′ [ρ0] Trh∪h′ [ρ0]

]
− 2

2m

(∑
h∈PU (S(ks:kl,1))

thTr [Trh̄[ρ0]Trh̄[ρ0]]

)
+

1

22m

)
,

(A.54)

Vara,3

=
1

4

(
2m

22m − 1

)2
(∑

h∈PU (S(ks:kl,1))

∑
h′∈PU (S(ks:kl,1))

thth′Tr
[
Tr

(h∪h′)\(h∩h′) [ρ0] Tr
(h∪h′)\(h∩h′) [ρ0]

]

− 2

2m

(∑
h∈PU (S(ks:kl,1))

thTr [Trh̄[ρ0]Trh̄[ρ0]]

)
+

1

22m

)
.

(A.55)

Consequently, by summing up Eqs. (A.53), (A.54) and (A.55), the variance is expressed as

Var
[
k
(i)
QF

]
= Vara,1 + Vara,2 + Vara,3

=
1

2

(
2m

22m − 1

)2
(∑

h∈PU (S(ks:kl,1))

∑
h′∈PU (S(ks:kl,1))

thth′

(
Tr
[
Tr

(h∪h′)\(h∩h′) [ρ0] Tr
(h∪h′)\(h∩h′) [ρ0]

]

+ Tr [Ih∩h′] Tr
[
Trh∪h′ [ρ0] Trh∪h′ [ρ0]

])
− 4

2m

(∑
h∈PU (S(ks:kl,1))

thTr [Trh̄[ρ0]Trh̄[ρ0]]

)
+

2

22m

)
.

(A.56)

Furthermore, by assuming the initial states can be represented as the tensor product states
of arbitrary single-qubit pure states {ρ0,i}ni=1, i.e., ρ0 = ρ0,1 ⊗ ρ0,2 ⊗ . . .⊗ ρ0,i ⊗ . . .⊗ ρ0,n, then

121

the lower bound of Eq. (A.56) can be written as

Var
[
k
(i)
QF

]
≥ 1

2

(
2m

22m − 1

)2
(∑

h∈PU (S(ks:kl,1))

∑
h′∈PU (S(ks:kl,1))

thth′ (1 + Tr [Ih∩h′]) − 4

2m

 ∑
h∈PU (S(ks:kl,1))

th

+
2

22m

)

=
1

2

(
2m

22m − 1

)2
(

2

((∑
h∈PU (S(ks:kl,1))

th

)
− 1

2m

)2

+
∑

h∈PU (S(ks:kl,1))

∑
h′∈PU (S(ks:kl,1))

thth′ (Tr [Ih∩h′] − 1)

)

≥ 1

2

(
2m

22m − 1

)2
(∑

h∈PU (S(ks:kl,1))

∑
h′∈PU (S(ks:kl,1))

thth′ (Tr [Ih∩h′] − 1)

)

≥ 1

2

(
2m

22m − 1

)2

t2S(ks:kl,1)

(
Tr
[
IS(ks:kl,1)

]
− 1
)

=
22md

(
2md − 1

)
2 (22m − 1)2 (2m + 1)4(d−1)

.

(A.57)

Moreover, suppose the initial state satisfies the following equalities;

Tr
[
Tr

(h∪h′)\(h∩h′) [ρ0] Tr
(h∪h′)\(h∩h′) [ρ0]

]
≥ Tr [Trh̄ [ρ0] Trh̄ [ρ0]] Tr [Trh̄′ [ρ0] Trh̄′ [ρ0]] ,

Tr
[
Trh∪h′ [ρ0] Trh∪h′ [ρ0]

]
≥ Tr [Trh̄ [ρ0] Trh̄ [ρ0]] Tr [Trh̄′ [ρ0] Trh̄′ [ρ0]] .

(A.58)

Then, the lower bound of the variance can be written as

Var
[
k
(i)
QF

]
≥ 2md − 1

2 (22m − 1)2 (2m + 1)4(d−1)
. (A.59)

Note that the initial states that satisfy the above conditions include the tensor product states
of arbitrary single-qubit pure states {ρ0,i}ni=1, i.e., ρ0 = ρ0,1 ⊗ ρ0,2 ⊗ . . . ⊗ ρ0,i ⊗ . . . ⊗ ρ0,n, and
the completely mixed states, while it is unclear if any quantum states fulfill the properties.

Lastly, we present that the variance scaling of k
(i)
QF ′ is the same as the above results. With

the assumption that the initial state is the tensor product of arbitrary single-qubit states, a
similar calculation process leads to the following results;

Var
[
T (i)

]
=

22m

(22m − 1)2

 ∑
h∈PU (S(ks:kl,1))

th

− 1

2m

2

, (A.60)

Cov
[
k
(i)
QF , T

(i)
]

= − 22m

(22m − 1)2

 ∑
h∈PU (S(ks:kl,1))

th

− 1

2m

2

. (A.61)

Therefore, by substituting Eqs. (A.56), (A.60) and (A.61) into Eq. (A.17), we get

Var
[
k
(i)
QF ′

]
≥

22md
(
2md − 1

)
2 (22m − 1)2 (2m + 1)4(d−1)

. (A.62)

122

A.3 Further Analytical Results

We here address the variance scaling of the QFK in Eq. (4.38). Specifically, we discuss the

variance of the QFK summed over all terms, i.e., Var[
∑

i k
(i)
QF ′], and the effect of the quantum

Fisher information matrix.
First, we show the following inequality;

Var

[∑
i

k
(i)
QF ′

]
≥
∑
i

Var
[
k
(i)
QF ′

]
. (A.63)

Because of the definition of the variance, this is equivalent to demonstrating Cov[k
(i)
QF ′ , k

(j)
QF ′] ≥ 0.

We thus show the covariance term is equal to or greater than zero for globally-random quantum
circuits and ALAs. The covariance term can be decomposed as follows;

Cov
[
k
(i)
QF ′ , k

(j)
QF ′

]
= Cov

[
k
(i)
QF + T (i), k

(j)
QF + T (j)

]
=
〈
k
(i)
QFk

(j)
QF

〉
+
〈
k
(i)
QFT

(j)
〉

+
〈
T (i)k

(j)
QF

〉
+
〈
T (i)T (j)

〉 (A.64)

We note that we here utilize ⟨k(i)QF ⟩ = ⟨T (i)⟩ = 0. Thus, we focus on these four terms in the
following. Also, without loss of generality, we assume i < j.

Globally-Random Quantum Circuits

We consider the following situations: Ui and Uj (i) are in the same layer and (ii) in the different
layers and the unitary operator between them Ui:j ≡ Ui:j(x,θ) can form a 1-design. We here

demonstrate the calculation for ⟨k(i)QFk
(j)
QF ⟩. The expectation value over U1,i is expressed as

〈
k
(i)
QFk

(j)
QF

〉
U1:i

=
〈[

Tr
[
ρ0

{
B̃x,θi , B̃x′,θi

}]
Tr
[
ρ0

{
B̃x,θj , B̃x′,θj

}]]〉
U1:i

=
〈

Tr
[
ρ0U

†
1:iBθiU1:iB̃x′,θi

]
Tr
[
ρ0U

†
1:iB

′
θj ,x

U1:iB̃x′,θj

]〉
U1:i

+
〈

Tr
[
U †
1:iBθiU1:iρ0B̃x′,θi

]
Tr
[
ρ0U

†
1:iB

′
θj ,x

U1:iB̃x′,θj

]〉
U1:i

+
〈

Tr
[
ρ0U

†
1:iBθiU1:iB̃x′,θi

]
Tr
[
U †
1:iB

′
θj ,x

U1:iρ0B̃x′,θj

]〉
U1:i

+
〈

Tr
[
U †
1:iBθiU1:iρ0B̃x′,θi

]
Tr
[
U †
1:iB

′
θj ,x

U1:iρ0B̃x′,θj

]〉
U1:i

= Var′r,1 + Var′r,2 + Var′r,3 + Var′r,4,

(A.65)

with B′
θj ,x

= U †
i:j(x,θ)BθjUi:j(x,θ). Similarly to the expectation value calculation shown in

Appendix A.2, we can obtain

Var′r,1 =
Tr
[
BθiB

′
θj ,x

]
(22n − 1)

(
1 − 1

2n

)(
Tr
[
B̃x′,θiρ0

]
Tr
[
B̃x′,θjρ0

])
, (A.66)

Var′r,2 =
Tr
[
BθiB

′
θj ,x

]
(22n − 1)

(
Tr
[
ρ0B̃x′,θiB̃x′,θj

]
− 1

2n
Tr
[
B̃x′,θiρ0

]
Tr
[
B̃x′,θjρ0

])
, (A.67)

Var′r,3 =
Tr
[
BθiB

′
θj ,x

]
(22n − 1)

(
Tr
[
ρ0B̃x′,θj B̃x′,θi

]
− 1

2n
Tr
[
B̃x′,θiρ0

]
Tr
[
B̃x′,θjρ0

])
, (A.68)

123

Var′r,4 =
Tr
[
BθiB

′
θj ,x

]
(22n − 1)

(
1 − 1

2n

)(
Tr
[
B̃x′,θiρ0

]
Tr
[
B̃x′,θjρ0

])
. (A.69)

Subsequently, by integrating the quantity over U ′
1:i, we get〈

k
(i)
QFk

(j)
QF

〉
(U1:i,U ′

1:i)
= Var′r,1 + Var′r,2 + Var′r,3 + Var′r,4

=
2Tr

[
BθiB

′
θj ,x

]
Tr
[
BθiB

′
θj ,x′

]
22n (22n − 1) (2n + 1)

(2n (2n + 1) + 2n − 2) .

(A.70)

Now, we investigate the expectation value for the two cases mentioned above. In case (i), Ui:j

and U ′
i:j are the identity operators and thus we have

〈
k
(i)
QFk

(j)
QF

〉
(U1:i,U ′

1:i)
=

2
(
Tr
[
BθiBθj

])2
22n (22n − 1) (2n + 1)

(2n (2n + 1) + 2n − 2) ≥ 0. (A.71)

Also, in case (ii), integration of the term over Ui:j(x,θ) end up with

〈
k
(i)
QFk

(j)
QF

〉
(U1:i,U ′

1:i)
=

2
〈

Tr
[
BθiB

′
θj ,x

]
Tr
[
BθiB

′
θj ,x′

]〉
(U1:i,U ′

1:i)

22n (22n − 1) (2n + 1)
(2n (2n + 1) + 2n − 2)

= 0,

(A.72)

where we utilized Lemma 1 and the traceless property of Bθi .
Similarly, the remaining terms in Eq. (A.64) can be calculated as follows;

Case (i)

〈
k
(i)
QFT

(j)
〉

=
〈
T (i)k

(j)
QF

〉
= −

(
Tr
[
BθiBθj

])2
22n (2n + 1)2

, (A.73)

〈
T (i)T (j)

〉
=

(
Tr
[
BθiBθj

])2
22n (2n + 1)2

. (A.74)

Case (ii) 〈
k
(i)
QFT

(j)
〉

=
〈
T (i)k

(j)
QF

〉
= 0, (A.75)〈

T (i)T (j)
〉

= 0. (A.76)

Consequently, by substituting these terms into Eq. (A.64), we can show that Cov[k
(i)
QF ′ , k

(j)
QF ′] ≥ 0.

Alternating Layered Ansatzes

As in the case of the globally-random quantum circuits, we consider the following situations:
the gates containing θi and θj are (i) in the different local unitary blocks, and (ii) in the same
local unitary block and the quantum gate between them is the identity matrix, and (iii) in the
same local unitary block and the quantum gate between them forms 1-design.

124

In what follows, we compute the term ⟨k(i)QFk
(j)
QF ⟩ in Eq. (A.64) for these cases. In case (i),

we integrate the quantity over W̃kj ,dj ≡ W̃kj ,dj (x, θj) and then we get〈[
Tr
[
ρ0

{
B̃x,θi , B̃x′,θi

}]
Tr
[
ρ0

{
B̃x,θj , B̃x′,θj

}]]〉
W̃kj,dj

= Tr
[
ρ0V

†
r W̃

†
kj ,dj

BθiW̃kj ,djVrB̃x′,θi

]〈
Tr
[
ρ0V

†
r W̃

†
kj ,dj

BθjW̃kj ,djVrB̃x′,θj

]〉
W̃kj,dj

+ Tr
[
ρ0B̃x′,θiV

†
r W̃

†
kj ,dj

BθiW̃kj ,djVr

]〈
Tr
[
ρ0V

†
r (x,θ)W̃ †

kj ,dj
BθjW̃kj ,djVrB̃x′,θj

]〉
W̃kj,dj

+ Tr
[
ρ0V

†
r W̃

†
kj ,dj

BθiW̃kj ,djVrB̃x′,θi

]〈
Tr
[
ρ0B̃x′,θjV

†
r W̃

†
kj ,dj

BθjW̃k,dVr

]〉
W̃kj,dj

+ Tr
[
ρ0B̃x′,θiV

†
r W̃

†
kj ,dj

BθiW̃k,dVr

]〈
Tr
[
ρ0B̃x′,θjV

†
r W̃

†
kj ,dj

BθjW̃kj ,djVr

]〉
W̃kj,dj

= 0.

(A.77)

We utilize the fact that W̃kj ,dj is in the different local unitary block in the first equality and

⟨k(j)QF ⟩ = 0 in the second equality. As for case (ii) and (iii), we perform a similar calculation to
derive the variance of the QFK for ALAs (see Appendix A.2) and then we can have

〈
k
(i)
QFk

(j)
QF

〉
(U1:i,U ′

1:i)
≥

22m(d−1)−1
(
2md − 1

)
(22m − 1)2 (2m + 1)4(d−1)

〈
Tr
[
BθiB

′
θj ,x

]
Tr
[
BθiB

′
θj ,x′

]〉
(W̃ki,di

,W̃ ′
ki,di

)

+

〈
Tr
[
BθiB

′
θj ,x

]
Tr
[
BθiB

′
θj ,x′

]〉
(W̃ki,di

,W̃ ′
ki,di

)

(22m − 1)2

 ∑
h∈PU (S(ks:kl,1))

th

− 1

2m

2

.

(A.78)

Then, analogous to the case of globally-random quantum circuits, the expectation values for
these cases are respectively written as〈

k
(i)
QFk

(j)
QF

〉
(U1:i,U ′

1:i)
= 0, (A.79)

〈
k
(i)
QFk

(j)
QF

〉
(U1:i,U ′

1:i)
≥

22m(d−1)−1
(
2md − 1

)
(22m − 1)2 (2m + 1)4(d−1)

(
Tr
[
BθiBθj

])2
+

(
Tr
[
BθiBθj

])2
(22m − 1)2

 ∑
h∈PU (S(ks:kl,1))

th

− 1

2m

2

.

(A.80)

As for the remaining terms, expectation values read as follows;

Case (i) 〈
k
(i)
QFT

(j)
〉

=
〈
T (i)k

(j)
QF

〉
= 0, (A.81)〈

T (i)T (j)
〉

= 0. (A.82)

125

Case (ii) 〈
k
(i)
QFT

(j)
〉

=
〈
T (i)k

(j)
QF

〉
= 0, (A.83)〈

T (i)T (j)
〉

= 0. (A.84)

Case (iii)

〈
k
(i)
QFT

(j)
〉

=
〈
T (i)k

(j)
QF

〉
= −

(
Tr
[
BθiBθj

])2
(22m − 1)2

 ∑
h∈PU (S(ks:kl,1))

th

− 1

2m

2

, (A.85)

〈
T (i)T (j)

〉
=

(
Tr
[
BθiBθj

])2
(22m − 1)2

 ∑
h∈PU (S(ks:kl,1))

th

− 1

2m

2

. (A.86)

Therefore, we can show Cov[k
(i)
QF ′ , k

(j)
QF ′] ≥ 0.

Lastly, we present the effect of the quantum Fisher information matrix on the variance
scaling. By the eigendecomposition of the inverse of the quantum Fisher information matrix,
i.e., F−1

A = V D−1V −1 with D the diagonal matrix containing eigenvalues of QFIM and V the
unitary matrix, the QFK can be expressed as the QFK in Eq. (4.38) can be rewritten as

kQF (x,x′) =
1

2

∑
k

D−1
kk

∑
i,j

vikv
∗
jkTr

[
ρ0

{
B̃x,θi − Tr

[
ρ0B̃x,θi

]
, B̃x′,θj − Tr

[
ρ0B̃x′,θj

]}]
=

1

2

∑
k

D−1
kk

∑
i,j

vikv
∗
jkϕQFK,i(x)TϕQFK,j(x

′)

(A.87)

where vij represents (i, j) element of the unitary V and ϕQFK,i(x) represents the feature fector

corresponding to the i-th term of the QFK, i.e., k
(i)
QF = ϕQFK,i(x)TϕQFK,j(x

′). As V is a unitary

operator, the term
∑

i,j vikv
∗
jkϕQFK,i(x)TϕQFK,j(x

′) can be regarded as the basis transforma-
tion. From the discussion above, the summation would not reduce the variance scaling. Thus,
the diagonal terms of D determine whether the variance decreases exponentially. If Dkk ∈ O(cn)
with a constant c > 1 and the number of qubits n for all k, the variance might vanish. However,
this assumption means that, from the quantum Cramer-Rao inequality [233,234], the estimation
error of all the parameters of the parametrized quantum circuit is lower bounded by exponen-
tially small numbers, which contradicts the result of quantum channel tomography. Thus, even
with the non-identity quantum Fisher information matrix, the statement in Theorem 1 would
remain unchanged for the QFK in Eq. (4.38).

126

	Introduction
	Quantum Computing
	Basics of Quantum Computation
	Dirac Notation for Quantum States
	Quantum Bits (Qubits)
	Quantum Gates
	Measurement
	Quantum Circuit Models

	Density Matrices
	Quantum Operations and Quantum Noise
	Quantum Operator Formalism
	Quantum Noise

	Near-Term and Long-Term Quantum Computers
	Application: Machine Learning

	Quantum-Enhanced Machine Learning
	Quantum-Enhanced Feature Space for Machine Learning
	Quantum-Enhanced Feature Space
	Quantum Feature Maps
	Models

	Quantum Kernel Methods
	Kernel Methods
	Basics of Quantum Kernel Methods
	Support Vector Machines

	Quantum Reservoir Computing
	Framework of Reservoir Computing
	Physical Reservoir Computing
	Quantum Reservoir Computing Models

	Quantum Kernel-Based Learning Models
	Analysis and Synthesis of Quantum Feature MapsResults shown in this section are based on the author's work suzuki2020analysis.
	Introduction
	A Method to Analyze Quantum Feature Maps
	Synthesized Quantum Feature Maps
	Numerical Demonstration
	Conclusion & Outlook

	A Remedy to the Vanishing Similarity Issue: Quantum Fisher KernelResults shown in this section are based on the author's work suzuki2022quantum.
	Introduction
	Preliminary
	Vanishing Similarity Issue in Fidelity-Based Quantum Kernel
	Quantum Fisher Kernel
	Vanishing Similarity Issue in Quantum Fisher Kernel
	Numerical Demonstration
	Expressivity and Performance
	Conclusion & Outlook

	Quantum Noise-Induced Reservoir Computing
	Proof-of-Principle DemonstrationResults shown in this section are based on the author's work suzuki2022natural.
	Introduction
	Quantum Noise-Induced Reservoir Systems
	Experimental Demonstration
	Conclusion & Outlook

	Information Processing Capability Induced by Quantum NoiseResults shown in this section are based on the author's work kubota2023temporal. Note that the first authorship is shared with Dr. Tomoyuki Kubota and the author. The author and T.K. mainly contribute to the implementation of our framework on actual quantum devices and the numerical analysis of its capability via temporal information processing capacity, respectively.
	Introduction
	Temporal Information Processing Capacity (TIPC)
	TIPC Profile for QR Systems Simulated by Quantum Noise Models
	Benchmark Tasks
	TIPC Profile for QR Systems on Quantum Devices
	Conclusion & Outlook

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Analytical Results for Vanishing Similarity Issue in Quantum Kernels
	Proof of Proposition 1
	Case (1): Globally-Random Quantum Circuits
	Case (2): Alternating Layered Ansatzes

	Proof of Theorem 1
	Case (1): Globally-Random Quantum Circuits
	Case (2): Alternating Layered Ansatzes

	Further Analytical Results

