
A Thesis for the Degree of Ph.D. in Engineering

Enhancing Performance and Security
of Virtual CPUs in Cloud

Environments

February 2024

Graduate School of Science and Technology
Keio University

Kenta Ishiguro

Acknowledgement

I would like to thank my advisor, Prof. Kenji Kono. His constant guidance helped
me in all the time of research. I would like to express my sincere gratitude to my
collaborator: Dr. Pierre-Louis Aublin. I am also thankful to my colleagues in the
sslab. Their surprising enthusiasm and skills have always inspired me. This dis-
sertation would not have been possible without their advice and encouragement.

I am grateful to the members of my thesis committee as well: Prof. Masaaki
Kondo, Prof. Baptiste Lepers, and Prof. Jianchen Shan. Their valuable feedback
greatly improved this dissertation.

I appreciate the financial support from the Amano Scholarship, the Core Re-
search for Evolutional Science, and the Support for Pioneering Research Initiated
by the Next Generation.

Finally, I thank my family, parents, and sister for their support all these years.
Without their support and encouragement, many accomplishments in my life,
including this dissertation, would not have been possible.

2

Abstract

Hardware virtualization is widely used in cloud computing platforms. Multi-
tenancy and oversubscribing hardware resources are leveraged in many types
of public cloud computing to maximize their data center efficiency. Hypervi-
sors play a crucial role in achieving these two features by multiplexing virtual
machines on a single physical server. Despite continued hypervisor studies, com-
modity hypervisors still suffer from inefficiencies of virtual CPUs (vCPUs) and
security concerns. The complexity and large code base of the commodity hyper-
visors make it challenging to uncover issues and apply the results of studies.

In this dissertation, we revisit the design and implementation of commodity
hypervisors to uncover issues of CPU virtualization and address the issues with
modest modifications. Our investigation shows the following two issues. First,
the vCPU scheduling with ad-hoc optimizations is insufficient to mitigate exces-
sive vCPU spinning, which occurs when a vCPU is waiting in a spin loop for an
event from a descheduled vCPU. Second, ignorance of contexts in instruction
emulation leads to a large attack surface.

To address excessive vCPU spinning, we identify three problems: 1) sched-
uler mismatch, 2) aggressive limitation of candidate vCPUs, and 3) inter-
processor interrupt (IPI) context misuse. The first problem stems from the mis-
match between the KVM vCPU scheduler and the Linux scheduler. The second
and third problems come from failures in choosing candidate vCPUs to be sched-
uled next. Our in-depth analysis reveals simple modification to KVM (89 LoC)
can mitigate excessive vCPU spinning. Our simple modification reduces exces-
sive vCPU spinning by up to 96% and improves benchmark performance by up to
2.6×. Part of the proposed mitigation has been integrated with KVM from Linux
KVM v5.13 onward.

To address the large attack surface of the instruction emulator, we propose

3

FWinst that is designed to identify illegitimate instructions and prevent them
from being emulated based on emulation contexts. The key insight behind
FWinst is that the instruction emulator needs to emulate only a small subset
of instructions, depending on the underlying CPU micro-architecture and the
hypervisor configuration. We have implemented a prototype of FWinst on KVM
with modest modifications (279 LoC). Our experimental results demonstrate that
FWinst defends against 14 real-world vulnerabilities in the KVM instruction em-
ulator with negligible runtime overhead.

The contribution of this dissertation is twofold. First, we show that virtual
machines running on KVM still suffer from excessive vCPU spinning. We un-
cover the three problems that incur frequent excessive vCPU spinning and pro-
pose mitigations with modest modifications. This improves the performance of
vCPUs in cloud computing. Second, we show that the instruction emulator in
the commodity hypervisor has a large attack surface. We design and implement
FWinst to eliminate the need to emulate many instructions on CPUs with full-
fledged support for virtualization by considering emulation contexts. This im-
proves the security of vCPUs in cloud computing.

4

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Dissertation Contributions . 3

1.2.1 Mitigating Performance Issue of CPU Virtualization . . 3
1.2.2 Mitigating Security Issue of CPU Virtualization 6

1.3 Organization . 8

2 Mitigating excessive virtual CPU spinning 9
2.1 Background and Motivation . 9

2.1.1 Excessive Virtual CPU Spinning 9
2.1.2 Revisiting VM-agnostic KVM vCPU Scheduler 11
2.1.3 CPU Throttling . 14

2.2 Analysis of KVM Behaviors . 14
2.2.1 Analysis of PLE Events 15
2.2.2 Scheduler Mismatch . 18
2.2.3 Issues in Candidate vCPU Selection 20

2.3 Design . 23
2.3.1 vCPU Hierarchical Debooster 23
2.3.2 Candidate Selection Improvement 25

2.4 Implementation . 26
2.5 Evaluation . 27

2.5.1 Experimental Settings 28
2.5.2 PLE Reduction . 29
2.5.3 Benchmark Performance Improvement 31
2.5.4 vCPU Hierarchical Debooster Effectiveness 33

i

2.5.5 IPI-aware Boost Effectiveness 34
2.5.6 Relaxed Boost Effectiveness 36
2.5.7 Effectiveness for VMs of different numbers of vCPUs . . 38

2.6 Related work . 39
2.7 Summary . 42

3 Mitigating vulnerabilities in instruction emulation 43
3.1 Background . 43

3.1.1 Intel VT-x Extension . 43
3.1.2 Instruction Emulation in Hypervisors 44
3.1.3 Evolution of Intel VT-x 46

3.2 Threat Model and Vulnerability Analysis 47
3.2.1 Threat Model . 47
3.2.2 Vulnerability Analysis 49

3.3 Design and Implementation . 50
3.3.1 Overall Architecture . 50
3.3.2 Identifying Emulation Contexts 51
3.3.3 Legitimate Instructions 54
3.3.4 Implementation . 56

3.4 Experiments . 59
3.4.1 Security Analysis . 59
3.4.2 Runtime Overhead . 63

3.5 Related work . 66
3.5.1 Protecting Virtual Machines 66
3.5.2 Hardening Hypervisors 68
3.5.3 Hypervisor Testing . 70

3.6 Summary . 70

4 Conclusion 72
4.1 Contribution Summary . 72
4.2 Future Direction . 73

Bibliography 75

List of Figures

2.1 Normalized number of PLE events with Change-A to -D. 13
2.2 Number of PLE events in each benchmark (in log-scale). The left

bar shows the number of PLE events per second. The right bar
shows the average number of PLE events during a single execution. 15

2.3 CDF of the length of continuous PLE events. The vertical dotted
line shows the 16 (= 8 vCPUs × 2 rounds) continuous PLE events. 16

2.4 PLE reasons (intentional delays are rare). 17
2.5 Example of scheduler mismatch problem (group scheduling dis-

abled). Although KVM directs vCPU B to be boosted, CFS sched-
ules vCPU A because vCPU B’s priority is much lower than vCPU
A’s. 18

2.6 Example of scheduler mismatch problem with hierarchical
scheduling. The KVM vCPU scheduler asks CFS to yield vCPU
A and boost vCPU B so that all groups including vCPU A are
labeled skip and all groups including vCPU B is labeled next. . . 18

2.7 Reduction in number of PLE events, normalized with baseline
KVM running two VMs. 28

2.8 Proportion of scheduler mismatch, underboost, and overboost on
2-VM/8-pCPU setting. 30

2.9 Performance improvement normalized with baseline KVM run-
ning 2VM. 31

2.10 Normalized total time spent on native_spin_lock (spin-
lock) and smp_call_function_many (TLB shootdown).
In the figure, “B” stands for “Baseline” and “O” stands for “+ Our
mitigations” . 33

iii

2.11 PLE reduction with/without debooster on 2VM/8-pCPU server,
normalized with baseline KVM. 33

2.12 Performance of co-runner VM on 2 or 4VM/8-pCPU setting. . . 35
2.13 PLE reduction with/without IPI-aware boost on 2VM/8-pCPU,

normalized with baseline KVM. 35
2.14 PLE reduction with/without relaxed boost on 2VM/8-pCPU

server, normalized with baseline KVM + debooster. 37
2.15 Reduction in the number of PLE events (in log-scale) in VMs of

diffrent number of vCPUs, normalized with baseline KVM run-
ning 2-vCPU VM. 38

3.1 Evolution of Intel VT-x and corresponding emulation contexts
over time. 48

3.2 Timing Attack on Instruction Emulation. 48
3.3 Instruction Emulator in Ordinary Hypervisors and in Hypervi-

sors with FWinst. 52
3.4 The control and data flow between the components of the in-

struction emulator in KVM with FWinst. 59
3.5 Normalized performance of UnixBench, Apache Bench, sys-

bench, micro benchmark and graphic benchmarks on Skylake
with the original KVM as the baseline 64

3.6 Normalized performance of UnixBench, Apache Bench, sys-
bench, micro benchmark and graphic benchmarks on Westmere
with the original KVM as the baseline 64

3.7 # of FWinst invocations . 65

List of Tables

2.1 Multi-threaded benchmarks . 29

3.1 Summary of Emulation Contexts and Legitimate Set of Instructions. 51
3.2 Experimental Environment for FWinst 60
3.3 Summary of vulnerabilities. 61

v

Chapter 1

Introduction

Hypervisors play a crucial role in cloud computing. They enable the efficient
sharing of cloud providers’ physical resources among multiple virtual machines
(VMs) by multiplexing hardware resources, including CPUs, memory, and I/O
devices. This capability provides two fundamental characteristics of cloud com-
puting: high resource efficiency and multi-tenancy.

High resource efficiency is critical to cloud computing, allowing cloud
providers to enhance their data center efficiency regarding the price-per-
performance ratio. Hypervisors employ a technique called CPU oversubscription
to achieve this goal. CPU oversubscription enables multiple virtual CPUs (vC-
PUs) to share a single physical CPU, effectively increasing the number of VMs
that can run on a given server. This approach improves resource utilization by
allowing cloud providers to allocate idle resources to VMs that need them.

Multi-tenancy refers to the ability of a single physical server to host mul-
tiple VMs, each operating independently and securely. Hypervisors achieve
multi-tenancy by isolating each VM, preventing them from interfering with each
other’s operations. This isolation is achieved through hypervisors’ memory ac-
cess control mechanisms and fair resource allocation methods. Hypervisors en-
sure that each VM has access to its resources while preventing any single VM
from consuming excessive resources and accessing the memory contents of other
VMs. Multi-tenancy allows cloud providers to offer cost-effective and scalable
solutions to a wide range of users.

This dissertation focuses on CPU virtualization, which is at the heart of hy-

1

CHAPTER 1. INTRODUCTION

pervisors. While essential, CPU virtualization is a complex endeavor that de-
mands careful implementation. CPU virtualization issues can compromise re-
source efficiency and multi-tenancy, two fundamental characteristics of cloud
computing. Scheduling vCPUs is crucial for maintaining fairness among VMs
and maximizing hardware utilization. However, suboptimal scheduling algo-
rithms lead to resource wastage in guest VMs. Moreover, unfair resource alloca-
tion can undermine multi-tenancy, allowing a single VM to consume resources
at the expense of others.

The point that CPU virtualization is implemented in the most privileged CPU
mode introduces security concerns. Vulnerabilities in CPU virtualization can
compromise multi-tenancy because attackers gain full system control once they
exploit them. However, bug-free implementation of CPU virtualization is chal-
lenging because developers must consider various possible architectural states
during implementation. Additionally, the trade-off between security and perfor-
mance is a constant challenge in cloud computing. Ensuring hypervisor security
without compromising resource efficiency requires careful consideration.

Early CPU virtualization relied on a software approach, leading to perfor-
mance overhead without optimizations and implementation complexities. To
overcome these problems, hardware virtualization extensions like Intel VT-x
have emerged and become available for commodity environments. These ex-
tensions enable hypervisors to offload virtualization tasks, alleviating the imple-
mentation complexities.

The development of hardware virtualization extensions continues. The evo-
lution of the hardware virtualization extensions provides room for resource effi-
ciency improvements to the hypervisor and allows task offloading. For example,
Intel pause-loop-exiting (PLE) [77] can improve resource efficiency in cloud com-
puting. PLE is a later-introduced hardware assist that notifies when a vCPU is
stuck in a pause loop for an extended period. The second-level address trans-
lation, like Intel extended page table (EPT), is also a later-introduced hardware
assist that releases hypervisors from shadow page table management for guest
VMs.

2

CHAPTER 1. INTRODUCTION

1.1 Motivation

Despite the efforts of many prior studies and hardware virtualization extensions,
KVM [55], a widely adopted open-source commodity hypervisor [26, 33], con-
tinues to suffer from resource inefficiencies and security concerns of CPU virtu-
alization. Applying the existing studies to commodity hypervisors is still chal-
lenging because modern commodity hypervisors, including KVM, are complex
and integrated with an operating system (OS) kernel to leverage OS functional-
ities. Although leveraging OS functionalities simplifies the implementation and
maintenance of the hypervisors, it makes it hard to modify those functionalities
for hypervisor-specialized use cases while keeping the maintainability of the hy-
pervisors.

Since prior studies aim to resolve general issues in hypervisors without con-
sidering applicability to the commodity hypervisors, they left two research ques-
tions: 1) what are the real-world issues that cause inefficiency and security con-
cerns in KVM CPU virtualization, and 2) can the real-world issues be mitigated
with minimal host modifications? Thus, exploring the real-world issues and mit-
igations against them is valuable to enhance the performance and security of
cloud environments that leverage the commodity hypervisor.

1.2 Dissertation Contributions

This dissertation focuses on uncovering and resolving performance and security
issues in CPU virtualization with minimal modifications. By revisiting the de-
sign and implementation of KVM, we gain a deeper understanding of its internal
workings, enabling us to identify and address underlying limitations. This ap-
proach allows us to develop effective mitigation strategies without introducing
significant changes to the existing infrastructure.

1.2.1 Mitigating Performance Issue of CPU Virtualization

As mentioned, cloud providers strive to oversubscribe hardware resources like
CPUs to maximize hardware utilization. However, oversubscription comes at a
cost: it requires multiplexing virtual CPUs (vCPUs) on physical CPUs (pCPUs).

3

CHAPTER 1. INTRODUCTION

Oversubscription violates an underlying assumption of the operating system
(OS) design: OSes assume all of the CPUs to be active, and even if halted, they
can respond to interrupts immediately. If pCPUs are oversubscribed, the execu-
tion of vCPUs is preempted by the hypervisor to schedule vCPUs, and vCPUs are
not always active or cannot respond to interrupts immediately. Violating this OS
design assumption results in the well-known problem of excessive vCPU spin-
ning [2, 3, 20, 30, 97, 46, 50, 51, 73, 74, 42, 86, 89, 91, 95, 104, 105, 108, 114, 80].
This occurs when a vCPU waits in a tight loop for the completion of a short
synchronous task by a descheduled vCPU. The waiting vCPU spins until the hy-
pervisor schedules the descheduled vCPU. Excessive vCPU spinning originates
from the following variants of the scheduling problem: 1) lock-holder preemp-
tion (LHP), 2) lock-waiter preemption (LWP), and 3) delayed response to inter-
rupts.

Excessive vCPU spinning is difficult to solve in VM-agnostic hypervisors.
The problem stems from a semantic gap between the hypervisor and guest OSes;
the hypervisor is ignorant of the contexts in which a vCPU is running. Recent
hardware support for virtualization detects long-running tight loops to mitigate
the excessive vCPU spinning. When excessive spinning is detected, an Intel pro-
cessor raises an event called Pause Loop Exit (PLE), and the control is transferred
to the hypervisor. The hypervisor gains a chance to reschedule vCPUs to solve
the root cause of excessive vCPU spinning.

Efforts have been devoted in KVM to mitigate excessive vCPU spinning. In
this dissertation, we investigate the mitigations introduced into KVM. Once a
PLE event occurs, KVM preempts the spinning vCPU and boosts the priority of
another vCPU in the same VM. This mechanism was introduced in Linux v2.6.39.
KVM selects and boosts a vCPU from candidate vCPUs in a round-robin fashion
at every PLE. KVM optimizes the vCPU selection in four ways. The first three
optimizations are for LHP and LWP, and were introduced in Linux v3.5, v3.9, and
v4.13, respectively. The fourth optimization is for PLE events caused by delayed
response to interrupts and was introduced in Linux v5.2. Unfortunately, these
optimizations do not always reduce PLE events because they struggle to solve
each problem in ad hoc ways.

Our in-depth analysis reveals that KVM suffers from 1) scheduler mismatch, 2)
aggressive candidate limiting, and 3) inter-processor interrupt (IPI) context misuse.

4

CHAPTER 1. INTRODUCTION

Scheduler mismatch is peculiar to hypervisors that are integrated with the host
OS where the host OS scheduler schedules other threads, based on its own pol-
icy, along with vCPUs without any distinction. The KVM vCPU scheduler gives
a hint to the host OS scheduler, but scheduler mismatch occurs if the host OS
scheduler eventually ignores the hint because it contradicts the host scheduling
policy.

Aggressive candidate limiting and IPI context misuse are problems that occur
when selecting vCPUs to boost. Due to the semantic gap between VM-agnostic
KVM and guest OSes, KVM does not always correctly identify the exact root
cause of excessive vCPU spinning. The KVM vCPU scheduler attempts to limit
candidate vCPUs to avoid boosting vCPUs that are less likely to be a root cause.
Aggressive candidate limiting occurs if the vCPU scheduler misjudges the root
cause and excludes the root-cause vCPU from the candidates. However, the
vCPU scheduler sometimes selects vCPUs as candidates that cannot be the root
cause. Our analysis reveals that IPI context misuse is a major cause of this phe-
nomenon.

We introduce three mitigations for the three aforementioned problems in
KVM. First, the hierarchical vCPU debooster mitigates scheduler mismatch by
lowering the priority of the vCPU preempted by a PLE. Because lowering the
priority does not interfere with other threads in the host, the host OS scheduler
does not ignore the hint to lower the priority. Second, IPI-aware boost mitigates
IPI context misuse and partially mitigates aggressive candidate limiting by track-
ing IPI communications between vCPUs. IPI-aware boost enhances the vCPU
selection by taking into account the information on IPI senders and receivers.
Third, relaxed boost mitigates aggressive candidate limiting. This works as a
safety net for vCPU selection by boosting all descheduled vCPUs after boosting
all candidate vCPUs.

We have implemented the three above mitigations in Linux v5.6 in as few
as 89 LoC. Our evaluation on 8- and 28-core machines with two different over-
commit ratios and multicore benchmarks shows that our mitigations reduce PLE
events resulting from spinlocks and delayed interrupt response. This reduction
in PLE events improves the benchmark performance by up to 2.6×. Our evalua-
tion further shows that the hierarchical vCPU debooster resolves scheduler mis-
match while maintaining system fairness, and IPI-aware boost and relaxed boost

5

CHAPTER 1. INTRODUCTION

reduce PLE events caused by delayed interrupt response without compromising
the existing mitigations for PLE events caused by spinlocks. Part of IPI-aware
boost has been already integrated into Linux v5.13 [38, 60].

1.2.2 Mitigating Security Issue of CPU Virtualization

While vulnerabilities in hypervisors are crucial in multi-tenant clouds, there are
many reported vulnerabilities in the hypervisors. As of November 2018, 111
CVEs are reported for KVM [55] and 275 vulnerabilities are in Xen Security Ad-
visories (XSA) [110].

This dissertation focuses on vulnerabilities in instruction emulation in the
hypervisors. Ideally, the hypervisors would only need to emulate a small subset
of the instruction set. However, on x86 architecture, the hypervisors may be
required to emulate most instructions [7, 11] for the following cases:

• Port I/O (PIO): When an I/O port is accessed, the port I/O instructions are
interpreted to emulate the accessed I/O device.

• Memory Mapped I/O (MMIO): An access to an MMIO region is trapped
by the hypervisor and the accessing instruction is interpreted by the in-
struction emulator to emulate the accessed I/O device.

• Shadow Page Tables: Prior to Nehalem micro-architecture, Intel CPUs
did not support second level address translation. To keep the consistency
between “shadow” and “guest” page tables, the hypervisor tracked changes
of guest page tables by trapping and emulating VM writes to them.

• Real Mode: Prior to Westmere micro-architecture, Intel CPUs prevented
real-mode code from running in guest-mode. Since CPUs boot in real-
mode, hypervisors began with emulating the virtual CPU execution [15].

• Migration: To allow VM migration between Intel and AMD CPUs,
some hypervisors trap and emulate vendor-specific instructions such as
sysenter (specific to Intel). If sysenter is executed on AMD, the
hypervisor traps and emulates it.

6

CHAPTER 1. INTRODUCTION

• User-Mode Instruction Prevention (UMIP): UMIP is a security feature
introduced since Cannon Lake micro-architecture, which prevents some
privileged registers from being read at user-level. Some hypervisors emu-
late UMIP on legacy (before Cannon Lake) micro-architectures by emulat-
ing the instructions that read those privileged registers.

Emulating most of the x86 instructions is complicated and error-prone. In
fact, vulnerabilities in x86 emulators are not rare. To name a few, CVE-2016-
9756 points out vulnerabilities in far jump and far ret. CVE-2017-2584
reports those in fxrstor, fxsave, sgdt, and sidt. CVE-2015-0239 and
CVE-2017-2583 report vulnerabilities insysenter andmov SS, respectively.
CVE-2016-9756, CVE-2017-2584, CVE-2015-0239, CVE-2017-2583 are all related
to vulnerabilities in the emulator. Making matters worse, Amit et al. [7] demon-
strate any instructions can be forced to be emulated. This attack allows an at-
tacker to exploit a vulnerability in any instructions.

For the security issue of CPU virtualization, this dissertation presents FWinst
(derived from “Instruction Firewall”), which raises the bar for attacks on instruc-
tion emulation by narrowing the attack surface against it. The key insight behind
FWinst is twofold. First, the emulator supports a wide range of x86 instructions
only for backward compatibility. Recent x86 micro-architectures diminish the
need for instruction emulation. For example, allowing real-mode in guest-mode
eliminates the need for emulating real-mode code in the hypervisors. Supporting
second level address translation eliminates the need for emulating VM writes to
guest page tables.

Second, a legitimate subset of instructions to be emulated depends on the em-
ulation context in which the emulator is invoked. If the emulator accepts only the
legitimate set of instructions in each context, the attack surface is narrowed be-
cause the attacker cannot exploit vulnerabilities in the emulation of instructions
that are not legitimate in the current context. FWinst identifies six contexts: 1)
PIO context, 2) MMIO context, 3) shadow page table context, 4) real-mode con-
text, 5) migration context, and 6) UMIP context, and is given a list of legitimate in-
structions for each context. For example, in the migration context, sysenter,
which is specific to Intel CPU, is emulated only on AMD CPUs; its emulation is
denied on Intel CPUs. In the MMIO context, the emulator deniesjmp instruction
because an MMIO region is accessed only through memory access instructions

7

CHAPTER 1. INTRODUCTION

such as mov.
To narrow the attack surface, FWinst uses a hypervisor’s configuration and

determines which context is valid. When the hypervisor invokes the emulator to
emulate an instruction, FWinst checks if the current context is valid. If it is not,
no instruction is emulated. For example, if second level address translation is
enabled, no instruction should be emulated in the shadow page table context. If
the current context is valid, FWinst passes only the legitimate instruction to the
emulator. For example, in the MMIO context, the legitimate set of instructions
are memory-access instructions. Emulation of, for instance, jmp instruction, is
denied.

We have implemented a prototype of FWinst on KVM (Linux version 4.8.1),
which runs on Intel Westmere and Skylake micro-architectures with the full-
fledged support for virtualization turned on. Our experiment demonstrates
FWinst can defend against several attacks on vulnerabilities in the emulation of
sysenter, far jump, far ret, mov SS, fxrstor, fxsave, sgdt,
sidt, clflush and hint-nop in KVM (Linux version 4.8.1). It also shows
the performance overheads of FWinst is negligible. Furthermore, the code size
of FWinst is small (279 LoC) and unlikely to introduce new security holes.

1.3 Organization

This dissertation is organized as follows. Chapter 2 shows our in-depth analysis
of KVM vCPU scheduler and our mitigations against the issues uncovered by our
analysis. Chapter 3 introduces FWinst. This chapter shows FWinst effectively
enhances the security of the KVM instruction emulation. Chapter 4 concludes
this dissertation and disscusses the future directions.

8

Chapter 2

Mitigating excessive virtual CPU
spinning

This chapter aims to demonstrate our three mitigations, debooster, relaxed boost,
and IPI-aware boost, against excessive vCPU spinning that cause resource in-
efficiency in cloud environments. First, Section 2.1 describes excessive vCPU
spinning that degrades guest VM performance running on KVM and the KVM
approach against it. Second, Section 2.2 provides a quantitative analysis of the
KVM vCPU scheduler, revealing three issues that enlarge excessive vCPU spin-
ning in KVM. Then, Section 2.3 and 2.4 describe the details of our mitigations
against the uncovered issues. The evaluation in Section 2.5 shows that our miti-
gations effectively reduce excessive vCPU spinning and improve guest VM per-
formance.

2.1 Background and Motivation

In this section, we introduce the problem of excessive vCPU spinning in vir-
tualized systems. Then, we present the current KVM approach to alleviate the
performance degradation caused by excessive vCPU spinning.

2.1.1 Excessive Virtual CPU Spinning

CPU spinning is common in OSes when waiting for another CPU to complete a
short task. In virtualized environments, this approach causes severe performance

9

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

degradation due to excessive vCPU spinning. This occurs when a vCPU spins to
wait for an event from a descheduled vCPU, in which causes the waiting vCPU
to not make any progress. Guest OSes are given the illusion their vCPUs are
running continuously, but in reality, the hypervisor preempts them to schedule
other vCPUs. Hence, the short task on a vCPU descheduled by the hypervisor
can take a long time to complete while another vCPU is spinning and waiting
for the descheduled vCPU.

Lock holder preemption (LHP) is a widely known problem that causes exces-
sive vCPU spinning [97, 30]. If a vCPU holding a spinlock is scheduled out by the
hypervisor, another vCPU waiting for the spinlock cannot make any progress.
Older versions of Linux (until version 4.1) supported ticket spinlocks in which a
lock is acquired in the requesting order. The ticket spinlock amplifies the prob-
lem of vCPU spinning because a vCPU waiting for a ticket spinlock cannot make
any progress until all vCPUs preceding it in the ticket requesting order are sched-
uled. This problem is called Lock waiter preemption (LWP). Linux has dropped
support for ticket spinlock to avoid LWP.

To mitigate vCPU spinning, hardware-level support for virtualization pro-
vides a function to detect excessive vCPU spinning and enable the hypervisor
to re-schedule vCPUs. Modern processors are equipped with a special instruc-
tion (PAUSE in Intel x86) that gives a hint to the processor that the code is in
a spinning loop. The use of PAUSE instructions in spin-wait loops is strongly
recommend by Intel to improve the performance of spin-wait loops [36].

Pause Loop Exit (PLE) [77] in Intel x86 processors checks the interval be-
tween consecutive PAUSE instructions performed in kernel mode. If the inter-
val is shorter than PLE_gap, a pre-defined parameter, the vCPU is considered to
be excessively spinning. If the spinning continues beyond another pre-defined
parameter, PLE_window, a VMExit is triggered to transfer control to the hyper-
visor, which deschedules the spinning vCPU and schedules another vCPU. KVM
dynamically adjusts the PLE_window value to reduce false positives in excessive
spinning identification based on the frequency of PLE events. The PLE_window
value grows when PLE happens and shrinks when a vCPU is scheduled. AMD
supports Pause Filter (PF) [6], which is essentially the same as PLE. This work
focuses on PLE but can be applied to PF as well. Our work relies on PLE to de-
tect excessive vCPU spinning, so user-level synchronization primitives like those

10

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

used in OpenMP [72] are out of the scope.

2.1.2 Revisiting VM-agnostic KVM vCPU Scheduler

This work provides a quantitative analysis of all changes made to the VM-
agnostic KVM vCPU scheduler. A quantitative analysis of each change reveals
that each attempt to resolve some of the root causes of excessive spinning but
introduces new issues to be addressed. Because of the semantic gap, each change
cannot resolve the root cause perfectly. Relaxed boost (described in Section 2.3.2)
is complementary to all the changes, and tries to mitigate excessive spinning that
the existing and proposed solutions fail to resolve.

To mitigate excessive vCPU spinning, the hypervisor needs to schedule the
root-cause vCPU that causes another vCPU to spin. Modern hypervisors lever-
age hardware assistance such as Intel’s PLE to detect excessive vCPU spinning.
The hypervisor reschedules vCPUs every time a PLE event occurs.

A straightforward rescheduling policy postpones scheduling the pause-loop-
exiting (PLE-ing) vCPU for a certain period with the expectation that the root-
cause vCPU was scheduled during the period. The Xen credit scheduler and the
initial KVM vCPU scheduler implement this policy. The current KVM vCPU
scheduler has been enhanced; KVM deschedules the PLE-ing vCPU and selects
another vCPU to schedule, expecting the scheduled vCPU to be the root cause.

The current KVM vCPU scheduler has directed yield [99], which allows
a PLE-ing vCPU to yield to another vCPU directly. This mechanism was in-
troduced in Linux v2.6.39. KVM is integrated into the Linux kernel so that the
KVM vCPU scheduler cooperates with the Linux scheduler. KVM gives the Linux
scheduler a hint regarding which vCPU should be boosted. To decide which
vCPU is boosted, the KVM vCPU scheduler selects candidate vCPUs from all de-
scheduled vCPUs. This mechanism is called candidate vCPU selection. Note that
the Linux scheduler decides which thread to run in the end. The boosted vCPUs
are not always scheduled immediately by the Linux scheduler.

Candidate vCPU selection is vital for mitigating excessive vCPU spinning.
KVM attempts to boost the root-cause vCPU but does not know exactly which
vCPU is the root cause because of the semantic gap. KVM selects a candidate
vCPU to be boosted in two rounds. After boosting all candidates in the first

11

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

round, KVM rebuilds its candidate set in the second round. To avoid boosting
vCPUs that are unlikely to be the root cause, the KVM vCPU scheduler has been
enhanced with the following changes:

Change-A: Skips boosting lock-waiters in the first round. Introduced in
Linux 3.5 to mitigate LHP and LWP. KVM assumed all vCPUs that have caused
PLEs are lock-waiters. In the first round, KVM skips boosting the other PLE-
ing vCPUs because they are unlikely to be lock-holders. In the second round,
the skipped vCPUs are boosted as well as the other candidates because KVM fa-
vors boosting the lock-waiters. KVM expects the lock-holders to have released
their locks in the first round. Consequently, all not-running vCPUs are the can-
didates in the second round and later. PLE-ing vCPUs are excluded from the
candidates in the first round. Note that Change-A assumes PLE-ing vCPUs are
lock-waiters, but PLE-ing vCPUs can be waiters of synchronous IPIs (described
in Section 2.2.1).

Change-B: Avoids boosting HLT-ing vCPUs. Introduced in Linux 3.9 to
boost the lock-holder vCPU more quickly than Change-A alone. If a vCPU has
been halted with HLT instruction, KVM skips boosting it in both the first and
second rounds because it is unlikely to be a spinlock-holder. HLT is not issued
inside a critical section protected by a spinlock. After introducing Change-B,
PLE-ing and HLT-ing vCPUs are excluded from the candidates in the first round,
and HLT-ing vCPUs are excluded in the second round and later.

Change-C: Avoids boosting vCPUs in user mode. Introduced in Linux
4.13 to boost the lock-holder vCPU more quickly than Change-A and -B. If a
vCPU is in user mode, KVM skips boosting it in both the first and second rounds
because it cannot hold a spinlock in kernel code; PLE happens only when the
vCPU is executing a pause-loop in kernel mode. After introducing Change-C,
vCPUs in user mode are excluded from the candidates as well as PLE-ing and
HLT-ing vCPUs in the first round, and HLT-ing vCPUs and vCPUs in user mode
are excluded in the second round and later.

Change-D: Boosts HLT-ing IPI receivers. Introduced in Linux 5.2 to deal
with delayed response to IPIs. To respond to an IPI quickly, the recipient vCPU
should be scheduled as soon as possible even if it is halted withHLT. If not sched-
uled immediately, the vCPU waiting for the response to the IPI causes a PLE.
However, Change-B excludes HLT-ing vCPUs from the candidates. Change-D

12

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

bl
ac

k
sc

ho
le

s0

2

4

6

de
du

p0
1
2
3

gm
ak

e0.00
0.25
0.50
0.75
1.00

pb
zip

20

2

4

6

st
re

am
clu

st
er

0.00
0.25
0.50
0.75
1.00

ca
nn

ea
l0.0

0.5

1.0

No
rm

al
ize

d

of
 P

LE
 e

ve
nt

s

eb
izz

y0.0

0.5

1.0

1.5

ha
ck

be
nc

h0.00
0.25
0.50
0.75
1.00

ps
ea

rc
hy

0
1
2
3
4

sw
ap

tio
ns

0

1

2

0) Debooster + Directed yield
1) 0) + Change-A

2) 1) + Change-B
3) 2) + Change-C

4) 3) + Change-D

db
en

ch

0.00
0.25
0.50
0.75
1.00

fe
rre

t0

2

4

6

pa
ge

ra
nk

0

2

4

6

ra
yt

ra
ce

0.0
0.5
1.0
1.5
2.0

vi
ps

0
1
2
3
4

Figure 2.1. Normalized number of PLE events with Change-A to -D.

mitigates the negative effect due to Change-B for responses to IPI, while it main-
tains the positive effect for spinlock-holders. If aHLT-ing vCPU is an IPI receiver,
it is considered a vCPU candidate to be boosted in the first round and later. After
introducing Change-D, PLE-ing vCPUs, HLT-ing non-IPI-receivers, and vCPUs
in user mode are excluded from the candidates in the first round, and HLT-ing
non-IPI receivers and vCPUs in user mode are excluded from the candidates in
the second round and later.

KVM has been optimizing its rescheduling policy for over a decade. How-
ever, the changes may introduce additional PLE events in some workloads like
Change-B. Figure 2.1 shows the normalized number of PLE events of the bench-
marks listed in Table 2.1 with Change-A to -D. The experimental setup is de-
scribed in Section 2.2.3. Figure 2.1 indicates that both the expansion and shrink-

13

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

age of the candidate set with the changes cause an increase in PLE events depend-
ing on the benchmark. A more detailed analysis of Figure 2.1 is in Section 2.2.3.
We address the increase in PLE events with relaxed boost that we describe in
Section 2.3.2.

2.1.3 CPU Throttling

In commercial cloud environments, the pay-per-use model is standard. Hyper-
visors throttle the resources of each VM depending on the customers’ payment.
CPU throttling is one of the fundamental requirements to prevent each VM from
exceeding its reserved resources.

KVM leverages cgroups to throttle CPU usage on each VM via
cpu.shares, to which one cgroup is assigned. Throttling CPU usage
with cgroups affects the KVM solution to excessive vCPU spinning because it
changes the scheduling algorithm of Linux CFS. The group scheduling of Linux
CFS is enabled to throttle the CPU usage of each VM. Run queues in the group
scheduling are organized as a hierarchical tree. An internal node of the tree
corresponds to one cgroup and has its run queue. A leaf node corresponds to
a scheduling entity (vCPU or host thread), whose parent node is a cgroup to
which the entity belongs. If the group scheduling is not enabled, a scheduling
entity with the highest priority is chosen to run. Otherwise, CFS chooses an
internal node (cgroup) in each hierarchy from top to bottom, and then schedules
an entity with the highest priority in the leaf. All parent nodes account for the
CPU usage in the leaf node.

This dissertation investigates the effectiveness of KVM mitigations of vCPU
spinning with the hierarchical Linux CFS.

2.2 Analysis of KVM Behaviors

As described in Section 2.1, the KVM optimizations do not always reduce PLE
events. This section shows the experimental results on Linux/KVM v5.6.0
which suggest that PLE events stem from the scheduler mismatch problem (Sec-
tion 2.2.2) and the issues in the candidate vCPU selection (Section 2.2.3).

14

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

bl
ac

ks
ch

ol
es

ca
nn

ea
l

db
en

ch

de
du

p

eb
izz

y

fe
rre

t

gm
ak

e

ha
ck

be
nc

h

pa
ge

ra
nk

pb
zip

2

ps
ea

rc
hy

ra
yt

ra
ce

st
re

am
clu

st
er

sw
ap

tio
ns

vi
ps

100
101
102
103
104
105
106

of

 P
LE

 e
ve

nt
s (

Lo
g-

sc
al

e) PLE events / sec PLE events / single execution

Figure 2.2. Number of PLE events in each benchmark (in log-scale). The left bar
shows the number of PLE events per second. The right bar shows the average
number of PLE events during a single execution.

2.2.1 Analysis of PLE Events

We evaluate the number of PLE events on Linux/KVM v5.6.0 with the default
PLE parameters (PLE_gap set to 128 and PLE_window dynamically adjusted by
KVM). Experiments are conducted on a machine containing a 2.10 GHz 8-pCPU
Intel Xeon Silver 4110 processor with 128 GB of RAM. Hyperthreading is turned
off.

In the experiments, two VMs run simultaneously on the machine. Each VM
runs Ubuntu 18.04 LTS with Linux kernel 4.15 as the guest OS. We allocate eight
vCPUs and 16 GB of RAM for each. One VM executes one of the benchmark
from: mosbench, parsec3.0, pagerank from CloudSuite[28],
pbzip2, dbench, ebizzy, and hackbench (detailed in Table 2.1). The
other co-runner VM executes the CPU-intensive swaptions. All experiments
are executed ten times, and the results are averaged.

PLE events in VM-agnostic KVM

Figure 2.2 shows the number of PLE events per second and the total number
of PLE events in each benchmark in log scale. The seven benchmarks out of 15
show more than 1,000 PLE events per second. In particularly,vips,dedup, and

15

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

0.00
0.25
0.50
0.75
1.00

blackscholes canneal dbench dedup ebizzy

0.00
0.25
0.50
0.75
1.00

Cu
m

ul
at

iv
e

Fr
ac

tio
n

of
 P

LE
 o

cc
ur

re
nc

es

ferret gmake hackbench pagerank pbzip2

100 101 102 103

of continuous PLE
0.00
0.25
0.50
0.75
1.00

psearchy

100 101 102 103

of continuous PLE

raytrace

100 101 102 103

of continuous PLE

streamcluster

100 101 102 103

of continuous PLE

swaptions

100 101 102 103

of continuous PLE

vips

Figure 2.3. CDF of the length of continuous PLE events. The vertical dotted line
shows the 16 (= 8 vCPUs × 2 rounds) continuous PLE events.

psearchy show 48,000, 13,000, and 8,800 PLE events per second, respectively.
In vips, a PLE event occurs every 45,000 cycles, corresponding to 21 𝜇s on our
machine. In contrast, a PLE event occurs every 5,700 𝜇s in swaptions which
rarely causes PLE events.

Interestingly, PLE events occur continuously once one occurs. They occur at
the same code location on the same vCPU without being interleaved with PLE
events from other code locations. Figure 2.3 shows the CDF of the length of
continuous PLE events in each benchmark. The vertical dotted line is drawn
on 16 (= 8 vCPUs × 2 rounds) continuous PLE events because the KVM vCPU
scheduler is expected to resolve the root cause by boosting all of the vCPUs in the
8-vCPU VM in two rounds. However, most PLE events are not resolved within 16
continuous PLE events. Moreover, 10 to 56% of PLE events come from continuous
PLE events whose length exceeds 100.

PLE Reason

Spinning loops with PAUSE instructions are ubiquitous in the kernel and
used for various purposes. To understand which kernel code causes
PLE events, we trace the vCPUs’ instruction pointers during the exper-
iments. For instance, if a PLE event occurs while a vCPU executes
native_queued_spin_lock_slowpath function (a spinlock imple-
mentation in Linux), the vCPU may be waiting for the completion of a lock-

16

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

bl
ac

ks
ch

ol
es

ca
nn

ea
l

db
en

ch
de

du
p

eb
izz

y
fe

rre
t

gm
ak

e
ha

ck
be

nc
h

pa
ge

ra
nk

pb
zip

2
ps

ea
rc

hy
ra

yt
ra

ce
st

re
am

clu
st

er
sw

ap
tio

ns
vi

ps
Av

er
ag

e0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 P

LE
 re

as
on

spinlock TLB shootdown delay

Figure 2.4. PLE reasons (intentional delays are rare).

holder vCPU’s execution in a critical section.
In the experiments, we identified 28 functions that cause PLE events in the

Linux kernel and categorized them into spinlock, TLB shootdown, and inten-
tional delay. Note that PLE events related to TLB shootdown are caused by
smp_call_function_many, which sends an IPI to multiple cores. This
function is not solely for TLB shootdown, but we determine that all of the calls
to the function that caused PLE events are for TLB shootdown. TLB shootdown
causes a PLE event because a vCPU waits in a spinning loop for all the other
vCPUs to flush their own TLBs.

Figure 2.4 shows the proportion of PLE reasons in each benchmark. Although
the main PLE reason differs from benchmark to benchmark, spinlock and TLB
shootdown are the two major causes of PLE events. More than 95% of PLE events
in vips, dedup, and psearchy are caused by TLB shootdown because these
benchmarks invoke many system calls to shrink the heap size that is shared ad-
dress space among threads [2, 21]. In dbench, 99% of PLE events are caused
by spinlock and more than 1,000 PLE events occur per second. The intentional
delay is negligible (less than 0.1%).

Although the KVM vCPU scheduler takes both spinlock and TLB shootdown
into account, they incur long continuous PLE events due to the scheduler mis-
match problem (Section 2.2.2) and problems related to the candidate vCPU selec-

17

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

......

vCPU A
(yielded)

vCPU B
(boosted)

CFS runqueue

skip next

vruntime based
priorityHigh Low

Figure 2.5. Example of scheduler mismatch problem (group scheduling disabled).
Although KVM directs vCPU B to be boosted, CFS schedules vCPU A because
vCPU B’s priority is much lower than vCPU A’s.

......

Group vCPU A
(yielded)

Group vCPU B
(boosted)

CFS runqueue
in Group VM A

skip next

vruntime based
priorityHigh Low

......

Group VM A
(yielded, boosted)

CFS runqueue

skip next

vCPU A
(yielded)

CFS runqueue
in Group vCPU A

skip

vCPU B
(boosted)

CFS runqueue
in Group vCPU B

next

Figure 2.6. Example of scheduler mismatch problem with hierarchical schedul-
ing. The KVM vCPU scheduler asks CFS to yield vCPU A and boost vCPU B so
that all groups including vCPU A are labeled skip and all groups including vCPU
B is labeled next.

tion (Section 2.2.3).

2.2.2 Scheduler Mismatch

The scheduler mismatch problem occurs when a scheduling hint from the vCPU
scheduler is ignored by the host OS scheduler. When a vCPU causes a PLE event,

18

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

the KVM vCPU scheduler selects a candidate vCPU (a vCPU to be boosted) and
conveys these vCPU threads as a scheduling hint to the Linux scheduler. The
default Linux scheduler, Completely Fair Scheduler (CFS), computes the virtual
runtime based on the actual execution time (as well as the nice value) for each
vCPU thread or other host OS thread and schedules the one with the lowest
virtual runtime. However, CFS has two special labels, next and skip, for threads
in its run queue for temporary changes in priority. If a thread is labeled next, CFS
schedules the thread as soon as possible, whereas if a thread is labeled skip, CFS
usually postpones scheduling the thread. For instance, when the KVM vCPU
scheduler asks CFS to change the priority of the vCPUs, CFS labels the PLE-ing
vCPU thread as skip and the boosted vCPU thread as next. However, CFS does not
always schedule the next thread immediately to maintain fairness among threads.
CFS schedules threads regardless of the skip and next labels if the virtual runtime
difference between threads is above the threshold defined by CFS because it is
considered too unfair to schedule the next thread or to not schedule the skip
thread.

If the skip vCPU happens to be in the same run queue as the next vCPUs,
rescheduling the skip vCPU leads to continuous PLE events because the virtual
runtime of the skip vCPU tends to be short due to the preemption. In contrast,
the virtual runtime of the next vCPU tends to be long because it used the entire
time slice especially in LHP. If the skip and the next vCPUs are in the same run
queue, the skip vCPU is scheduled again but will be preempted immediately due
to another PLE event. Figure 2.5 shows the worst case, i.e., when the yielded
and boosted vCPUs are in the same run queue and the virtual runtime difference
is above the threshold. Suppose vCPU B holds a spinlock and has used up the
entire time slice. Then, vCPU A is scheduled and tries to acquire the lock but
immediately causes a PLE event. The KVM vCPU scheduler gives a hint to CFS
to yield vCPU A and boost vCPU B. Since vCPU A’s virtual runtime is much
shorter than vCPU B’s, CFS prioritizes vCPU A and schedules it again.

The scheduler mismatch problem remains when the group scheduling is en-
abled to throttle CPU usage. The difference from the case without group schedul-
ing is the CFS run queue where the scheduler mismatch occurs. As described
in Section 2.1.3, the CFS run queue is organized hierarchically when the group
scheduling is enabled. When CFS labels a vCPU thread with skip or next, all an-

19

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

cestor groups are also labeled skip or next to control CPU usage through cgroups
(recall each cgroup corresponds to one group in the hierarchy). Figure 2.6 il-
lustrates the scheduler mismatch problem with the group scheduling. The leaf
nodes correspond to vCPU A (skip) and B (next), and their parent node groups
them into a VM group. While the KVM vCPU scheduler notifies the vCPU
threads that are the leaf nodes in Figure 2.6 to CFS, scheduler mismatch occurs
due to the large virtual runtime difference between the group vCPU A and B, not
between the vCPU A and B.

Because of the semantic gap between KVM and the host OS scheduler, it is
impossible for the host OS scheduler to distinguish vCPUs from other scheduling
entities. The host OS scheduler treats all vCPUs completely in the same way as
normal threads. Therefore, the host OS scheduler adheres to its own scheduling
policy, even if KVM requests it to boost a vCPU.

2.2.3 Issues in Candidate vCPU Selection

The candidate vCPU selection is the other important factor in reducing PLE
events. We evaluate the multiple candidate selection algorithms with debooster
to discern the effectiveness of vCPU selection.

As shown in Figure 2.1, the changes for the KVM vCPU scheduler do not
consistently reduce PLE events. For example, while Change-C is effective for
gmake and hackbench, it causes an increase in PLE events by more than
2× among 8 out of 15 benchmarks. On the other hand, Change-A reduces PLE
events for all benchmarks. In the rest of this section, we quantitatively analyze
the changes and define the two problems, aggressive candidate limiting and IPI
context misuse.

Quantitative Analysis of Candidate vCPU Selection

Change-A reduces PLE events for all benchmarks in this experiment. Change-
A primarily targets LHP and LWP. Although the ticket spinlock is not used in
the experiment to avoid LWP, Change-A can reduce PLE events caused by LHP
without negative side effects. Theoretically, the vCPU selection with Change-A
delays boosting the root-cause vCPU if the PLE reason is not spinlock because
it skips boosting other PLE-ing vCPUs in the first round. However, the skipped

20

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

vCPUs are eventually boosted in the second round. Consequently, Change-A
reduces PLE events thanks to more LHP reduction than an increase in PLE events
caused by TLB shootdown.

Change-B increases PLE events by more than 20% in canneal and
raytrace. To resolve LHP quickly, Change-B excludes HLT-ing vCPUs from
the candidates in the first round and later. This leads to underboost, in which
the root-cause vCPU is excluded from the candidate vCPUs. The underboost
happens when PLE events are caused by TLB shootdown, which uses IPIs syn-
chronously. A vCPU that sends an IPI for TLB shootdown waits in a pause-loop
for acknowledgements from the IPI receivers. Since HLT-ing vCPUs can receive
IPIs, IPI receivers must be boosted even if it is a HLT-ing vCPU. If a HLT-ing IPI
receiver is not boosted, the IPI sender triggers PLE events repeatedly until the
HLT-ing IPI receiver is eventually scheduled. Thus, underboost causes long con-
tinuous PLE events once it occurs. Since PLE events caused by TLB shootdown
occur in both canneal and raytrace as shown in Figure 2.4, underboost
makes continuous PLE events dominant in these benchmarks.

Change-C increases PLE events by more than 2× in 8 benchmarks while it
is effective for gmake and hackbench. Change-C leads underboost as well
as Change-B when the PLE event is caused by TLB shootdown because it skips
boosting vCPUs in user mode in the first round and later. Since a preempted
vCPU in user mode may receive the synchronous IPI for TLB shootdown, IPI
receivers must be boosted regardless of the vCPU mode.

Change-C is effective for LHP because Intel x86 raises PLE events only when
the vCPU is running in kernel mode. As shown in Figure 2.1, Change-C reduces
PLE events in gmake and hackbench, which are spinlock-intensive. The
penalty of boosting vCPUs in user mode outweights the benefit of not boosting
vCPUs in user mode. Underboost due to Change-C increases PLE events more
significantly than Change-B because preempted vCPUs in user mode tend to run
out CPU time, whereas HLT-ing vCPUs voluntary yield before running out CPU
time.

Change-D increases PLE events in vips by 36% while it reduces PLE events
in canneal, ebizzy, etc. Change-D has been introduced to mitigate the un-
derboost caused by Change-B. If a HLT-ing vCPU is an IPI receiver, it is consid-
ered a candidate for vCPU selection. Unfortunately, Change-D causes overboost,

21

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

which boosts vCPUs that should not be boosted. A typical overboost scenario
with Change-D is as follows. First, vCPU 𝐴 sends an IPI to HLT-ing vCPU 𝐵 and
waits for a reply from vCPU 𝐵. Then, before vCPU 𝐴 causes a PLE event, another
vCPU 𝐶 triggers a PLE event caused by LHP. In this scenario, vCPU 𝐵 becomes a
candidate for vCPU selection, although running vCPU 𝐵 never resolves the root
cause of vCPU 𝐶 causing PLE events.

Each change reduces PLE events only in the specific benchmark for which it
has been designed. However, the changes may cause underboost or overboost
in unexpected situations and result in a significant increases PLE events in some
benchmarks. We define the two problems, aggressive candidate limiting and IPI
context misuse, as the root causes of these underboost and overboost.

Aggressive Candidate Limiting

Limiting candidates to boost is effective for benchmarks focused on, as shown
the results with Change-A, B, and C. However, aggressive candidate limiting
incurs underboost as described in the cases of Change-B and -C in Section 2.2.3.

Change-B and -C both attempt to narrow down candidates of vCPU selection
to boost the root-cause vCPU more quickly. Unfortunately, due to the semantic
gap between hypervisors and guest VMs, it is almost impossible to identify which
vCPU is the root cause of PLE events. Change-B and -C have been introduced
mainly to deal with LHP, but they falsely narrow down vCPU candidates if PLE
events are triggered due to reason other than LHP. In the worst case, the root-
cause vCPU never becomes a candidate for selection.

The most significant difference between Change-A and others is that Change-
A boosts all not-running vCPUs in the second round. Although Change-A in-
tends to boost lock-waiters in the second round, this algorithm eventually works
as a safety net and avoids underboost.

IPI context misuse

Leveraging the IPI context is effective in resolving PLE events caused by TLB
shootdowns, as shown in the results with Change-D in Figure 2.1. This is because
the PLE-ing vCPU can be waiting for the HLT-ing IPI receivers. However, IPI
context misuse for the candidate vCPU selection incurs overboost. Boosting IPI

22

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

receivers regardless of context degrades the effectiveness of the optimizations
for the vCPU selection against LHP.

There are two cases of IPI context misuse. In the first case, as described in
Section 2.2.3, the IPI receiver vCPU is the candidate even if the PLE-ing vCPU
has not sent the IPI to the receiver vCPU. In the second case, an IPI is not syn-
chronous. If the IPI is not synchronous, the IPI sender does not wait for a re-
sponse from the receiver. Thus, asynchronous IPI receivers need not be boosted
to resolve PLE events caused by TLB shootdown. Since the need for boosting IPI
receivers depends on the IPI context, the context in which an IPI is sent must be
deliberately taken into account.

2.3 Design

This section describes the design of our mitigations for excessive vCPU spin-
ning. We introduce the vCPU hierarchical debooster to mitigate the scheduler
mismatch problem, and IPI-aware boost and relaxed boost to improve the vCPU
selection.

2.3.1 vCPU Hierarchical Debooster

As described in Section 2.2.2, scheduler mismatch occurs when the priority of
the skip vCPU is much higher than that of the next vCPU. The hierarchical de-
booster alleviates the scheduler mismatch problem by deboosting, i.e., lowering
the priority of, the skip vCPUs that are preempted by PLEs so that the next vCPU
is scheduled before the skip. Since the priority difference between the deboosted
skip vCPU and the next vCPU is set to be lower than the predefined threshold,
scheduling the next before the skip does not violate the scheduling policy of the
host OS.

The hierarchical debooster deboosts a skip vCPU only when it is in the same
run queue as the next. In this case, setting the priority difference lower than
the threshold can enforce the scheduling order in which the next is scheduled
prior to the skip. If they are in different run queues, the scheduling order cannot
be enforced because the skip and the next are scheduled independently of each
other.

23

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

The hierarchical debooster can be applied to group scheduling for CPU throt-
tling. When the group scheduling turned on, the debooster traverses the hierar-
chy of run queues to find the lowest common run queue of the skip and the next.
In Figure 2.6, the lowest common queue is in Group VM A. Then, it lowers the
priority of the skip in the lowest common queue if it is too high to switch to the
next.

The priority of vCPUs is calculated from virtual runtime as described in Sec-
tion 2.2.2. If the difference in virtual runtimes between the skip and the next is
larger than a predefined threshold, CFS ignores the hint from the vCPU sched-
uler. The debooster sets the virtual runtime of the skip to (the virtual runtime of
the next) − (the threshold). This adjustment makes the difference of virtual run-
times of the skip and next equal to the threshold, and CFS obeys the hint from the
vCPU scheduler. Debooster does not undermine fairness between the skip and
the next vCPUs because debooster upholds the priority of the skip as high as pos-
sible. Since the skip’s virtual runtime is still lower than the next’s virtual runtime
(i.e. regarding virtual runtime, the skip has higher priority than the next) after
adjusting their runtime, the skip will likely be scheduled after the next is sched-
uled. The current debooster design is similar to the design of the adjustment by
CFS for woke-up threads/processes. Both designs keep the target thread priority
as high as possible while lowering the target thread priority that has too much
low virtual runtime. CFS updates a woke-up thread’s virtual runtime equal to the
minimum virtual runtime of the threads waiting to be scheduled if the woke-up
thread has lower virtual runtime than the minimum virtual runtime in the run
queue. This prevents threads that sleep a lot from having too much low virtual
runtime compared to other threads in the run queue. Also, CFS ensures that the
woke-up thread is the highest priority in the run queue. Debooster prevents skip
vCPUs from having too much low virtual runtime but ensures the skip vCPUs
have the possible highest priority.

This design does not violate the fairness of vCPU scheduling. CFS can main-
tain fairness as usual among VMs and other threads on the host because the
debooster does not raise the priority of any vCPUs. Furthermore, the debooster
contributes to more efficient utilization of CPU time. Without the debooster, the
CPU time for the skip is wasted until CFS considers the boost to be fair because
the skip cannot make any progress until the root cause is resolved. With the de-

24

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

booster, the CPU time is allocated to other VMs or threads because the execution
of the skip is deferred.

Note that vCPU pinning is effective against scheduler mismatch. It ensures
that each per-core run queue contains at most one vCPU of the same VM. The
vCPU pinning reduces the degree of oversubscription, hence it is usually used for
high-performance settings [115]. It also requires careful configuration of vCPU
affinity. While mitigating the scheduler mismatch, the debooster enables the
hypervisor to delegate management of load-balancing to the host OS scheduler.

2.3.2 Candidate Selection Improvement

As shown in Section 2.2.3, the candidate vCPU selection in the current KVM
involves two issues, aggressive candidate limiting and IPI context misuse. We
introduce IPI-aware boost to mitigate IPI context misuse and underboost caused
by Change-C, and relaxed boost to mitigate aggressive candidate limiting.

IPI-Aware Boost

IPI-aware boost tracks IPI communication between vCPUs to select vCPU can-
didates to be boosted (or next in CFS). Tracking IPI communication enables the
vCPU scheduler to take the IPI contexts into account in the vCPU selection. In
IPI-aware boost, the vCPU scheduler checks if a vCPU that caused a PLE event
has sent an IPI since the previous PLE. If an IPI has been sent, only the vCPU
(either in user or kernel mode) that is supposed to receive the IPI becomes a
candidate for boost. The other vCPUs, to which no IPI has been sent, are not
included in the candidate vCPU to be boosted.

IPI-aware boost mitigates IPI context misuse and underboost caused by
Change-C. In underboost, a receiver of a synchronous IPI is excluded from the
vCPU candidates if it is in user mode. IPI-aware boost brings back an IPI receiver
in user mode to the vCPU candidate. In IPI context misuse, IPI-aware boost does
not boost a vCPU to which no IPI has been sent from the PLE-ing vCPU by track-
ing IPI communication. IPI-aware boost also deals with asynchronous IPIs. If IPI
is asynchronous, an IPI sender will not trigger a PLE event because it does not
wait for a reply from the IPI receiver. In IPI-aware boost, no IPI receiver becomes
a candidate for boosting if the IPI sender does not trigger a PLE event.

25

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

Relaxed Boost

Relaxed boost mitigates aggressive candidate limiting. Because of the semantic
gap between hypervisors and guest VMs, the vCPU scheduler cannot always
determine which vCPU is the root cause of PLE events. Once the root-cause
vCPU is overlooked, the PLE event repeatedly occurs until the root-cause vCPU
is scheduled without boosting.

The relaxed boost boosts all not-running vCPUs in the second round and
later. Not boosted vCPUs in the first round are back to the vCPU candidate in
the second round by the relaxed boost. The relaxed boost behaves as a safety
net for vCPU selection in the second round, while the vCPU selection benefits
by limiting candidates in the first round. The key insight behind this design is
that limiting candidates is effective for the specific benchmarks, but overlooking
the root-cause vCPU increases a significant number of PLE events. Although the
relaxed boost may delay scheduling root-cause vCPUs, it prevents root-cause
vCPUs from not being scheduled for a long time.

To summarize, our mitigation works as follows. In the first round, it focuses
on boosting either a spinlock holder or a TLB shootdown request receiver. In the
second round, all descheduled vCPUs are candidates to be boosted. This design
enables us to schedule root-cause vCPUs quickly in the first round and avoids
overlooking root-cause vCPUs in the second round.

2.4 Implementation

We have implemented our mitigations on Linux/KVM with Linux kernel version
5.6.0. Our implementation modifies less than 100 lines of code in KVM and does
not require code modifications in the guest. 1 Regarding portability, our miti-
gations do not require additional modification to port them from Linux kernel
version 5.6.0 to 5.12-rc5.

Hierarchical vCPUdebooster is implemented without modifying the KVM
vCPU scheduler or the Linux scheduler core. The Linux scheduler, designed to
work with the KVM vCPU scheduler, provides the yield_to_task inter-
face that takes two scheduling entities, one for yielding (skip) and the other for

1Our patch is available at https://github.com/sslab-keio/ple-kvm.

26

https://github.com/sslab-keio/ple-kvm

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

boosting (next). This interface is implemented for each Linux scheduler. 2 We
implement the hierarchical vCPU debooster inside yield_to_task.

The hierarchical vCPU debooster identifies the lowest common run queue to
which skip and next vCPUs belong. It uses for_each_sched_entity, a
helper function in CFS, to traverse the ancestor scheduling entities and find the
lowest common run queue. If necessary, the hierarchical vCPU debooster adjusts
the virtual runtime of the yielded vCPU group as described in Section 2.3.1.

IPI-aware boost is implemented in the KVM vCPU scheduler and the KVM
virtual IPI handler. Every time a vCPU issues an IPI to another vCPU, the virtual
IPI handler in KVM is invoked to virtualize the IPI. To keep track of IPI commu-
nication, IPI-aware boost records IPI senders and receivers in the handler. The
records are cleared when the IPI receiver is scheduled. The KVM vCPU scheduler
refers to the records when selecting vCPU candidates for boosting. For further
optimization, we can make use of the IPI convention in the guest OS. For ex-
ample, KVM can detect that an IPI is for TLB shootdown and synchronous by
checking the least significant 8 bits in the IPI request value in Linux. This opti-
mization can be introduced without any modifications to the guest OS if KVM
can know in advance what guest OS is running.

Relaxed boost is implemented in the KVM vCPU scheduler. To record a
vCPU that has been skipped for boosting in the first round, an extra field is added
to the vCPU management structure. If this extra field indicates that the vCPU is
skipped in the first round, the vCPU scheduler selects it for boosting and labels
it as next in the second round. The field is cleared after the vCPU is scheduled
by the host.

2.5 Evaluation

We evaluate our mitigations on a wide range of benchmarks on 8-core and 28-
core servers with two different VM overcommit ratios. Our evaluation demon-
strates that our mitigations reduce the number of PLE events in every combina-
tion of setups and improve the performance on the benchmarks. In addition, our
mitigations maintain the system fairness and do not degrade the performance of

2To the best of the authors’ knowledge, only CFS implements this interface.

27

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

8-pCPU Intel Silver 4110
0
2
4
6
8

black-
scholes canneal dbench dedup ebizzy ferret gmake

hack-
bench

Baseline + Our mitigations
pagerank pbzip2 psearchy

ray-
trace

stream-
cluster swaptions vips

2v
m

4v
m

28-pCPU Intel Gold 6330

0

2

4

6

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

No
rm

al
ize

d

of
 P

LE
 e

ve
nt

s

Figure 2.7. Reduction in number of PLE events, normalized with baseline KVM
running two VMs.

co-runner VMs.

2.5.1 Experimental Settings

The baseline for our experiments is Linux/KVM v5.6.0. We use the default PLE
parameters. PLE_gap is set to 128 and PLE_window is dynamically adjusted by
KVM. We use two servers: the first one has a 2.10 GHz 8-pCPU Intel Xeon Silver
4110 processor with 128 GB of RAM, the second one has a 2.00 GHz 28-pCPU
Intel Xeon Gold 6330 processor with 256 GB of RAM. Hyperthreading is turned
off. Each VM runs Ubuntu 18.04 LTS with Linux kernel 4.15 as the guest OS
with the same number of vCPUs as pCPUs in the server. For each VM, 16 GB of
memory is allocated. Our experiments are conducted without static pinning.

Two or four VMs run simultaneously on each server so that the over-
commit ratio is 2 to 1 or 4 to 1, respectively. One of the VMs executes a
CPU-intensive benchmark, swaptions, and all the other VM(s) execute(s) a
wide range of benchmarks: mosbench, parsec3.0, PageRank from
CloudSuite, pbzip2, dbench, ebizzy, and hackbench. Table 2.1
describes each benchmark. We use these benchmarks to test KVM with a wide
range of parallel workloads. The average of 10 executions is shown for all exper-
iments.

28

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

Table 2.1. Multi-threaded benchmarks

Benchmark name Workload
mosbench.gmake Parallel build system
mosbench.psearchy In-memory parallel search & indexer
parsec.blackscholes Financial analysis with Black-Scholes
parsec.canneal Minimizing the routing cost of

a chip design
parsec.dedup Compression with deduplication
parsec.ferret Content-based similarity search
parsec.raytrace Real-time raytracing
parsec.streamcluster Online clustering of input stream
parsec.swaptions Pricing of a portfolio of swaptions
parsec.vips Image processing
CloudSuite.pagerank Grapn analytics with PageRank
pbzip2 Data compressor
dbench Filesystem I/O
ebizzy Common web application servers
hackbench Unix-socket or pipe stress

2.5.2 PLE Reduction

We measure the total number of PLE events for each benchmark. Figure 2.7
shows the normalized number of PLE events for each benchmark on the 8-pCPU
and 28-pCPU server with the 2 to 1 (2-VM) and 4 to 1 (4-VM) overcommit ra-
tios. Each result is normalized with the baseline KVM running two VMs. Our
mitigations reduce the PLE events on average by 72.0%/73.9% and 80.0%/80.4% in
8-pCPU (2VM/4VM) and 28-pCPU (2VM/4VM), respectively.

The reduction rate of PLE events is higher on the 28-pCPU than on the 8-
pCPU server. In addition, the rate is slightly higher on the 4-VM setting than on
the 2-VM. Selecting vCPU candidates for boosting becomes more difficult with
a greater number of vCPUs. Recall each VM has the same number of vCPUs as
pCPUs in the server. If a root-cause vCPU is skipped by accident, PLE events
continue to be triggered because it takes more time to schedule the root-cause

29

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

bl
ac

ks
ch

ol
es

ca
nn

ea
l

db
en

ch

de
du

p

eb
izz

y

fe
rre

t

gm
ak

e

ha
ck

be
nc

h

pa
ge

ra
nk

pb
zip

2

ps
ea

rc
hy

ra
yt

ra
ce

st
re

am
clu

st
er

sw
ap

tio
ns

vi
ps

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
op

or
tio

n
of

 u
se

le
ss

bo
os

t a
nd

 re
as

on
Scheduler mismatch Underboost Overboost

Figure 2.8. Proportion of scheduler mismatch, underboost, and overboost on 2-
VM/8-pCPU setting.

vCPU on more vCPU VMs. The higher reduction rate on the 4-VM/28-pCPU set-
ting suggests that our mitigations successfully select root-cause vCPUs in many
situations.

Figure 2.8 shows the rate of scheduler mismatch, underboost, and overboost
in the baseline KVM with the 2-VM/8-pCPU setting. The reduced rate of PLE
events with our mitigations is higher than the total rate of the scheduler mis-
match, underboost, and overboost in most benchmarks. For example, PLE events
are reduced by 96%, but the total rate of the scheduler mismatch, underboost, and
overboost is around 41% in dbench. Even if an inappropriate vCPU is boosted,
the KVM vCPU scheduler believes the root cause has been resolved and sched-
ules the vCPU that triggered a PLE event. In case of the scheduler mismatch and
underboost, the vCPU scheduler schedules the vCPU again and again, trigger-
ing the PLE event. This amplifies the number of PLE events, and as a result, the
reduction rate of the PLE events is higher than the total rate of the scheduler
mismatch, underboost and overboost.

The reduction in PLE events for psearchy and vips is over 70%, but the
total rate of scheduler mismatch, underboost, and overboost is less than 30%.
Underboost is frequent in these two benchmarks because they are TLB shoot-
down intensive and spend most of their execution time in user mode. In addi-
tion, they trigger more than 10,000 PLE events per second as shown in Figure 2.2.

30

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

8-pCPU Intel Silver 4110
0

1

2

3

black-
scholes canneal dbench dedup ebizzy ferret gmake

hack-
bench

Baseline + Our mitigations
pagerank pbzip2 psearchy

ray-
trace

stream-
cluster swaptions vips

2v
m

4v
m

28-pCPU Intel Gold 6330

0
2
4
6
8

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

2v
m

4v
m

No
rm

al
ize

d
pe

rfo
rm

an
ce

 im
pr

ov
em

en
t

Figure 2.9. Performance improvement normalized with baseline KVM running
2VM.

Consequently, our mitigations effectively reduce PLE events, which have been
amplified by frequent underboosts.

The reduction in PLE events for gmake and hackbench is less than 30%,
where the total rate of scheduler mismatch, underboost, and deboost is also less
than 30%. These benchmarks are spinlock intensive as shown in Figure 2.4. There
is less room for improvement in these benchmarks with our mitigations. The
number of PLE events slightly increases in hackbenchwith the 2-VM/8-pCPU
setting. In all other settings, our mitigations reduce PLE events in hackbench
because the issues in the baseline KVM become more severe in the settings with
more vCPUs or/and pCPUs.

2.5.3 Benchmark Performance Improvement

Overall performance improvement

Figure 2.9 shows the performance normalized with the baseline KVM running
2VM/8-pCPU or 2VM/28-pCPU. The performance improvement is 12%/10%,
31%/22% on average in 8-pCPU (2VM/4VM) and 28-pCPU (2VM/4VM), respec-
tively. The performance improvement is significant (33−118%) for dedup
and vips. These benchmarks trigger a large number of PLE events (>10,000
PLEs/sec) as shown in Figure 2.2. Reducing PLE events largely contributes to
the performance improvement. Other benchmarks (pbzip2, and psearchy),
which trigger >1,000 PLEs/sec, show moderate performance improvement

31

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

(3%−21%).
Interestingly, the performance of pagerank improves by 8% even though

it shows the lowest number of PLEs/sec among the 15 benchmarks. Although
the rate of PLE events is low in pagerank, the total number of PLE events is
high because of the long execution time. Thus, reducing PLE events contributes
to performance improvement.

Comparing the performance of 8-pCPU and 28-pCPU, the performance im-
provement is greater on 28-pCPU (12 to 31% on 2VM, 10 to 22% on 4VM). The
increased number of vCPUs increases PLE events; thus, our mitigations can re-
duce more PLE events in the 28-pCPU setting. For example, the number of PLE
events increases 140× in dbench, and the performance improvement increases
from 14% to 156% (2.6×).

Altough the performance improvement is lower in the 4VM setting than in
the 2VM setting, this does not mean our mitigations are not effective for the 4VM
settings. As shown in Figure 2.12, the average co-runner performance improve-
ment is 3.6% with 4VM while it is 2.6% with 2VM.

Time Spent on Spinlock and TLB Shootdown

We evaluate the execution time of spinlock and TLB shootdown inside the
guests to see the impact of PLE event reduction. We monitor two functions,
native_spin_lock (spinlock) and smp_call_function_many
(TLB shootdown), because these two functions are the major producers of PLE
events.

Figure 2.10 shows the normalized execution time of spinlock and TLB shoot-
down inside the guests in each benchmark on the 8-pCPU server. Our mitiga-
tions reduce the total execution time from the baseline in all benchmarks by
48% on average. Since our mitigations suppress a large number of continuous
PLE events, the worst-case latency is reduced. Consequently, the total execution
time is reduced from the baseline.

The various performance improvement shown in the section comes from the
proportion of the execution time of spinlock and TLB shootdown in the total
benchmark execution time. Although the execution time reduction of spinlock
and TLB shootdown is similar invips andferret by 59% and 55%, the perfor-

32

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

bl
ac

ks
ch

ol
es

-B
bl

ac
ks

ch
ol

es
-O

0.0

0.5

1.0

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

ca
nn

ea
l-B

ca
nn

ea
l-O

db
en

ch
-B

db
en

ch
-O

de
du

p-
B

de
du

p-
O

eb
izz

y-
B

eb
izz

y-
O

fe
rre

t-B
fe

rre
t-O

gm
ak

e-
B

gm
ak

e-
O

ha
ck

be
nc

h-
B

ha
ck

be
nc

h-
O

pa
ge

ra
nk

-B
pa

ge
ra

nk
-O

pb
zip

2-
B

pb
zip

2-
O

ps
ea

rc
hy

-B
ps

ea
rc

hy
-O

ra
yt

ra
ce

-B
ra

yt
ra

ce
-O

st
re

am
clu

st
er

-B
st

re
am

clu
st

er
-O

sw
ap

tio
ns

-B
sw

ap
tio

ns
-O

vi
ps

-B
vi

ps
-O

Spinlock
TLB
shootdown

Figure 2.10. Normalized total time spent on native_spin_lock (spin-
lock) and smp_call_function_many (TLB shootdown). In the figure, “B”
stands for “Baseline” and “O” stands for “+ Our mitigations”

bl
ac

ks
ch

ol
es

ca
nn

ea
l

db
en

ch

de
du

p

eb
izz

y

fe
rre

t

gm
ak

e

ha
ck

be
nc

h

pa
ge

ra
nk

pb
zip

2

ps
ea

rc
hy

ra
yt

ra
ce

st
re

am
clu

st
er

sw
ap

tio
ns

vi
ps

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d

of
 P

LE
 e

ve
nt

s

1) Baseline
2) Baseline + Debooster

3) Baseline + IPI-aware boost + Relaxed boost
4) Baseline + IPI-aware boost + Relaxed boost + Debooster

Figure 2.11. PLE reduction with/without debooster on 2VM/8-pCPU server, nor-
malized with baseline KVM.

mance improvement of vips is more significant than ferret. The execution
time of TLB shootdown is dominant in vips, whereas it is less dominant in
ferret.

2.5.4 vCPU Hierarchical Debooster Effectiveness

PLE reduction by Debooster

To evaluate the effectiveness of the hierarchical debooster, we compare the num-
ber of PLE events with four configurations: 1) the baseline KVM, 2) 1) + de-

33

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

booster, 3) 1) + IPI-aware & relaxed boost, and 4) 3) + debooster. Figure 2.11
shows the normalized number of PLE events on the 2VM/8-pCPU setting. First,
we compare 1) and 2) to determine the debooster effectiveness. The debooster
reduces PLE events in 13 benchmarks out of 15, with an average reduction rate
of 38%. Meanwhile, PLE events increase in pbzip2 and hackbench. CPU
utilization is high in these benchmarks, and the host Linux scheduler distributes
vCPUs across different run queues as a result. Since the debooster works only
when the skip and the next are in the same run queue, the debooster is not effec-
tive in these benchmarks.

Next, we compare 2) and 4) to verify that the IPI-aware & relaxed boost do
not interfere with the debooster. The number of PLE events is lowered in all
benchmarks except for gmake. By comparing 1) and 3) in gmake, we can see
that the IPI-aware & relaxed boost increase PLE events. As gmake is a spinlock-
intensive workload, it does not benefit from the IPI-aware boost which selects
user-mode IPI-receivers for boosting. The comparison of 3) and 4) indicates that
the debooster successfully reduces the PLE events inflated by the IPI-aware boost.

System fairness with debooster

To verify that the debooster does not violate scheduling fairness, we evaluate
the performance of the co-runner VM. If the debooster severely degrades the
performance of the co-runner VM, it interferes with the host OS scheduler; the
vCPU priority lowered by the debooster has a negative impact on the co-runner
VM. Figure 2.12 shows the normalized performance of swaptions running
in the co-runner VM. Even with the debooster, the performance is almost the
same as on the baseline KVM. It is improved 2.7% over the baseline on average.
Interestingly, the performance co-located with vips improves by 29% because
the reduction in PLE events gives more CPU time to the co-runner VM.

2.5.5 IPI-aware Boost Effectiveness

IPI-aware boost consists of two sub-mitigations: boosting user-mode IPI-
receivers and HLT-ing IPI-receivers, if and only if a vCPU that triggered a PLE
event has sent an IPI to them. To evaluate the effectiveness of IPI-aware boost,
we compare the number of PLE events with four configurations: I-1) the baseline

34

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

2v
m

4v
m

0.0

0.5

1.0

black-
scholes

2v
m

4v
m

canneal

2v
m

4v
m

dbench

2v
m

4v
m

dedup

2v
m

4v
m

ebizzy

2v
m

4v
m

ferret

2v
m

4v
m

gmake

2v
m

4v
m

hack-
bench

Baseline Baseline + IPI-aware boost + Relaxed boost + Debooster

2v
m

4v
m

pagerank

2v
m

4v
m

pbzip2

2v
m

4v
m

psearchy

2v
m

4v
m

ray-
trace

2v
m

4v
m

stream-
cluster

2v
m

4v
m

swaptions

2v
m

4v
m

vips

Co
ru

nn
er

 p
er

fo
rm

an
ce

im
pr

ov
em

en
t

Figure 2.12. Performance of co-runner VM on 2 or 4VM/8-pCPU setting.

bl
ac

ks
ch

ol
es

ca
nn

ea
l

db
en

ch

de
du

p

eb
izz

y

fe
rre

t

gm
ak

e

ha
ck

be
nc

h

pa
ge

ra
nk

pb
zip

2

ps
ea

rc
hy

ra
yt

ra
ce

st
re

am
clu

st
er

sw
ap

tio
ns

vi
ps

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
ize

d

of
 P

LE
 e

ve
nt

s

I-1) Baseline + Debooster
I-2) + Debooster + boosting user-mode IPI receivers
I-3) + Debooster + boosting HLT-ing IPI receivers
I-4) + Debooster + boosting both user-mode and HLT-ing IPI receivers

Figure 2.13. PLE reduction with/without IPI-aware boost on 2VM/8-pCPU, nor-
malized with baseline KVM.

KVM + debooster, I-2) I-1) + boosting user-mode IPI receivers, I-3) I-1) + boosting
HLT-ing IPI receivers, and I-4) I-2) & I-3). The debooster is incorporated in all
configurations to mitigate scheduler mismatch. Figure 2.13 shows the number of
PLE events normalized with I-1) on the 2VM/8-pCPU setting.

The comparison of I-1) and I-2), indicates that boosting user-mode IPI-
receivers reduces PLE events by 35% on average. Since I-2) mitigates under-
boost, it is effective for benchmarks that involve many TLB shootdowns such
as blackscholes, dedup, ferret, pbzip2, psearchy, and vips.
On the other hand, the benchmarks that are spinlock-intensive such as gmake,
hackbench, and raytrace do not benefit from I-2). Although I-2) boosts
non-lock-holder vCPUs, it is still effective for spinlock-intensive benchmarks

35

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

such as canneal, dbench, ebizzy, and pagerank. This indicates that
a single occurrence of underboost incurs many PLE events because the vCPU
scheduler never boosts the root-cause vCPU if it is in user mode.

The comparison of I-1) and I-3) shows that boosting HLT-ing IPI-receivers
sometimes reduces PLE events but not always. Since it mitigates the overboost,
the benchmarks that involve many TLB shootdowns such as blackscholes,
dedup, pbzip2, and vips benefit from it. On the other hand, the
benchmarks that are spinlock-intensive such as gmake, hackbench, and
raytrace do not. It should be noted that I-3) increases PLE events for
ferret, pagerank, and psearchy, although TLB shootdown is dominant
in these benchmarks. As described in Section 2.2.3, the overboost is problematic
when two vCPUs trigger PLE events at the same time, so introducing only I-3)
is not effective in these benchmarks.

The comparison of I-1) and I-4) indicates that combining I-2) and I-3) reduces
PLE events by 41% on average. Interestingly, I-4) is effective for the three bench-
marks mentioned above (ferret, pagerank, and psearchy) whose PLE
events are increased by I-3).

2.5.6 Relaxed Boost Effectiveness

To show the effectiveness of relaxed boost, we compare the number of PLE events
on 2VM/8-pCPU with three configurations: R-1) the baseline KVM + debooster,
R-2) R-1) + IPI-aware boost, and R-3) R-2) + relaxed boost. Note that the de-
booster is always turned on to mitigate the scheduler mismatch. Figure 2.14
shows the number of PLE events normalize with R-1). Relaxed boost reduces
PLE events by 47% on average, which is 7% greater than R-2). The benchmark
that benefits the most is psearchy, with a 66% reduction in PLE events.

Relaxed boost reduces PLE events from 17% to 54% in the benchmarks that
involve many TLB shootdowns such as dedup, ebizzy, ferret, pbzip2,
vips, canneal, pagerank, and streamcluster. Although IPI-aware
boost mitigates PLE events caused by TLB shootdown, the KVM vCPU sched-
uler without the relaxed boost sometimes overlooks root-cause vCPUs when
PLE events are triggered by TLB shootdown. For example, overlooking happens
when the root-cause IPI receiver is scheduled but preempted before completing

36

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

bl
ac

ks
ch

ol
es

ca
nn

ea
l

db
en

ch

de
du

p

eb
izz

y

fe
rre

t

gm
ak

e

ha
ck

be
nc

h

pa
ge

ra
nk

pb
zip

2

ps
ea

rc
hy

ra
yt

ra
ce

st
re

am
clu

st
er

sw
ap

tio
ns

vi
ps

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d

of
 P

LE
 e

ve
nt

s

R-1) Baseline + Debooster
R-2) + Debooster + IPI-aware boost

R-3) + Debooster + IPI-aware boost + Relaxed boost

Figure 2.14. PLE reduction with/without relaxed boost on 2VM/8-pCPU server,
normalized with baseline KVM + debooster.

the IPI response. IPI-aware boost clears the IPI communication history of the IPI
receiver when the IPI receiver is scheduled. In this case, IPI-aware boost with-
out the relaxed boost does not boost the root-cause vCPU in the rest of rounds
because it considers the root-cause vCPU has already responded to IPI. There-
fore, the relaxed boost is effective for the benchmarks that involve many TLB
shootdowns.

In contrast, relaxed boost increases PLE events by up to 39% in spinlock-
intensive benchmarks such as dbench, gmake, and raytrace. The baseline
KVM rarely overlooks root-cause vCPUs if PLE events are triggered by spin-
locks. The relaxed boost is a safety net to avoid overlooking root-cause vCPUs
when PLE events are triggered by TLB shootdowns (more precisely, IPIs). If PLE
events are seldom triggered by TLB shootdowns, the relaxed boost is likely to
boost vCPUs not related to the root cause. Therefore, the relaxed boost tends to
increase PLE events in spinlock-intensive benchmarks. Note that this does not
mean the relaxed boost should not be applied. Compared with R-1), R-3) reduces
PLE events in all the benchmarks other than gmake. Even in gmake, compared
with the baseline KVM, R-3) reduces PLE events as seen in Figure 2.7.

37

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

bl
ac

k
sc

ho
le

s

103

104

de
du

p

104

105

106

gm
ak

e

104

105

pb
zip

2

104

105

st
re

am
clu

st
er

104

105

ca
nn

ea
l103

104

of

 P
LE

 e
ve

nt
s

eb
izz

y

104

2 × 103
3 × 103
4 × 103
6 × 103

ha
ck

be
nc

h

104

105

ps
ea

rc
hy

104

105

sw
ap

tio
ns

103

104

Baseline-2vcpu
Mitigated-2vcpu

Baseline-4vcpu
Mitigated-4vcpu

Baseline-8vcpu
Mitigated-8vcpu

db
en

ch

103

104

105

fe
rre

t

104

105

pa
ge

ra
nk

106
ra

y
tra

ce

103

2 × 103

vi
ps

104

105

106

Figure 2.15. Reduction in the number of PLE events (in log-scale) in VMs of
diffrent number of vCPUs, normalized with baseline KVM running 2-vCPU VM.

2.5.7 Effectiveness for VMs of different numbers of vCPUs

To show the effectiveness of our mitigations for VMs of different numbers of
vCPUs, we compare the number of PLE events with 2-, 4-, and 8-vCPU VMs on
the 8-pCPU server. In this setup, each benchmark shown in Table 2.1 runs in 2-,
4-, or 8-vCPU VM along with the CPU-intensive swaptions in the 8-vCPU
VM on the 8-pCPU server.

As shown in Figure. 2.15, our mitigations reduce PLE events from the baseline
for all the VMs of different numbers of vCPUs. The PLE event reduction is usually
more significant for 8-vCPU VM than for 2- or 4-vCPU VMs. This is because PLE
events more frequently occur with more vCPUs for two reasons. First, resolving

38

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

spinlocks becomes challenging as the number of vCPUs increases because the
boosting candidates increase at every PLE event. Second, the waits due to TLB
shootdown take longer and frequently happen as the number of vCPUs increases
because the mapping can be shared with more vCPUs.

In some cases, PLE events do not increase even if the number of vCPUs in-
creases. For example, inebizzy, the experiment with 2-vCPU shows more PLE
events than with 4-vCPU. The high spinlock rate for the in-kernel read/write
semaphore increases PLE events from 2-vCPU to 4-vCPU in ebizzy. To ac-
quire the semaphore, threads optimistically spin until exceeding their time limit.
In VMs with more vCPUs, using blocking instead of spinning for synchronization
reduces PLE events. The same phenomenon happens with 4-vCPU and 8-vCPU
in dedupwhen our mitigations are enabled. Another PLE event reduction with
more vCPUs can be seen in blackscholes, canneal, and raytrace.
These reductions are due to shorter execution time with more vCPUs.

2.6 Related work

Alleviating virtualization overhead has been tempting for academics and indus-
tries for over a decade to improve cloud computing efficiency. Excessive vCPU
spinning remains one of the major causes of the virtualization overhead of multi-
threading [80]. Most previous works tried to reduce virtualization overhead due
to excessive vCPU spinning by leveraging para-virtualization or requiring heavy
modification of hypervisor schedulers. In contrast, our work revisits the ap-
proach taken by VM-agnostic KVM and Linux CFS to uncover the issues that
enlarge excessive vCPU spinning and address them with modest modification.

Initially, problems related to spinlocks were explored to reduce the virtual-
ized overhead that stems from excessive vCPU spinning. Uhlig et al. [97] pointed
out that the lock holder preemption (LHP) problem occurs when a vCPU hold-
ing a spinlock gets preempted, and all waiters waste CPU cycles for the lock.
Ticket spinlocks [66], which are a form of spinlock that enforces ordering among
lock acquisitions, incur the lock waiter preemption (LWP) problem when a par-
ticular waiter is preempted before acquiring the lock. To deal with LHP and
LWP, a software-based approach with para-virtualization [30] and hardware-
based approaches [77, 6, 104] were proposed to notify unusual long waits in

39

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

guest VMs to hypervisors. Several vCPU schedulers, including the KVM vCPU
scheduler, leverage these hardware-based detection systems to mitigate exces-
sive vCPU spinning. As mentioned earlier, when a PLE event occurs, candidate
vCPU selection to boost directly affects the time it takes to resolve excessive
vCPU spinning. Raghavendra proposed several optimizations for candidate se-
lection of the KVM vCPU scheduler [42]. However, it incurs additional overheads
on TLB shootdown heavy workloads because it focuses on resolving excessive
vCPU spinning caused by spinlocks. APPLES [86] prioritizes resource waiter
vCPUs to prevent excessive vCPU spinning that stems from spinlocks. These
enhancements work in tandem with the KVM vCPU scheduler and our mitiga-
tions to resolve excessive vCPU spinning quickly. Several works proposed para-
virtualized spinlock mechanisms to reduce excessive vCPU spinning. To avoid
the LWP, a queue-based spinlock is used instead of the ticket-based spinlock [64].
Preemptable ticket spinlocks [73] allow vCPUs to acquire ticket spinlocks in re-
laxed order. Opportunistic ticket spinlock [45] was proposed to alleviate sleepy
spinlock anomaly caused by the para-virtualized spinlock. All para-virtualized
spinlocks need to modify the spinlock implementation of guest OSes.

Subsequent studies tackled the latency of IPI synchronization in guest VMs
to address excessive vCPU spinning. To mitigate the problem, demand-based
coordinated scheduling [50] prioritizes IPI involving vCPUs for fast responses
to IPI by monitoring IPI signals. Contrary to our work, demand-based coordi-
nated scheduling requires drastic scheduler changes to support urgent and load-
conscious balance scheduling. To reduce the latency of IPI synchronization, para-
virtualized TLB shootdown schemes were proposed [59, 74, 49, 9]. Performing
remote TLB flush through a hypercall can reduce not only excessive vCPU spin-
ning but also VMExit because of sending IPIs, but these works require guest OS
modification as well as hypervisor modification.

Serving multi-threaded applications with micro-timeslice vCPUs can com-
plete critical sections in guest VMs quickly, resulting in effective mitigation of
excessive vCPU spinning. Since frequent context switches with micro-timeslice
vCPUs degrade the performance of cache-sensitive applications, the negative
effect due to frequent context switches needs to be minimized. Ahn et al. [2]
proposed a scheme to serve only critical OS services with micro-timeslice by
leveraging kernel symbols of guest OSes and the instruction pointer of vCPUs to

40

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

detect vCPUs preempted while executing critical OS services. Reducing the cost
of context switches by manipulating caches with new architectural support [3] is
also effective in minimizing the negative effect of micro-timeslice vCPUs. Several
works [108, 51, 96, 116] leverage vCPU behavior (e.g., spinlock latency) as an in-
dicator to identify applications’ characteristics and change vCPU timeslice based
on the applications. However, these approaches require heavy modifications to
their host scheduler.

Sharing the scheduling information of host OS and guest VMs is another pos-
sible approach to address virtualization overhead. I-Spinlock [95] and eCS [46]
share the guest OS execution information with hypervisors to change the
scheduling time slice if vCPUs are in critical sections. Dynamic vCPU scal-
ing [89, 20] allows the guest scheduler to schedule threads in guest VMs on
only active vCPUs. While dynamic vCPU scaling is effective in avoiding ex-
cessive vCPU spinning because it increases the chance that each vCPU occupies
a dedicated pCPU, it requires modification of the guest OSes and the hypervisor
scheduler for fast vCPU reconfiguration. IRS [117] applies the classical sched-
uler activation approach in hybrid threading to vCPU scheduling for excessive
vCPU spinning mitigation. IRS performs load-balancing by considering whether
vCPUs are preempted. Thus the guest OS can migrate the thread running on
the preempted vCPU to another running vCPU to avoid excessive vCPU spin-
ning. To bridge the semantic gap, IRS requires changes to the guest OSes and
the hypervisors. Contrary to these works, our approach tackles excessive vCPU
spinning in a VM-agnostic way.

For hypervisor scheduler-based approaches, co-scheduling can be utilized
to mitigate the negative effects of excessive vCPU spinning. It simultaneously
schedules all the sibling vCPUs in the same VM [100]. Co-scheduling has draw-
backs, such as CPU fragmentation and priority inversion. To address these draw-
backs, some works minimize the period of co-scheduling by leveraging additional
information with para-virtualization [105] or modifying drastically the hypervi-
sor scheduler [114]. Although balance scheduling [91] can alleviate such draw-
backs, it prevents migrating vCPUs to maintain a fair load balance. In contrast,
because our mitigations do not require modifying the host OS scheduler core, a
fair load balance is maintained.

41

CHAPTER 2. MITIGATING EXCESSIVE VIRTUAL CPU SPINNING

2.7 Summary

Excessive vCPU spinning is a widely known problem caused by a semantic gap
between the hypervisor and guest operating systems. Unfortunately, as we
demonstrated, KVM still suffers from non-negligible overheads caused by ex-
cessive vCPU spinning.

We performed an in-depth analysis of excessive vCPU spinning in the VM-
agnostic KVM hypervisor and analyzed the root causes of this problem. We then
presented slight modifications (89 LOC) on the KVM vCPU scheduler that effi-
ciently solve these issues and improve the performance by up to 2.6× without
sacrificing scheduling fairness.

42

Chapter 3

Mitigating vulnerabilities in
instruction emulation

The objective of this chapter is to demonstrate FWinst, which is a context-aware
instruction filter to reduce the attack surface of the instruction emulator in com-
modity hypervisors. First, Section 3.1 describes the necessity of instruction em-
ulation in KVM and how the evolution of hardware virtualization extensions
eliminates the need for emulation. Second, Section 3.2 provides the threat model
of FWinst and an analysis of the vulnerabilities in instruction emulation. Then,
based on the analysis, Section 3.3 introduces FWinst. Section 3.4 shows that
FWinst effectively protects hypervisors against real-world vulnerabilities and
works with negligible overhead.

3.1 Background

3.1.1 Intel VT-x Extension

Hardware virtualization extensions, Intel VT-x and AMD-V for instance, enable
almost all instructions of a guest VM to run natively on host CPUs. Many cur-
rent hypervisors are implemented with hardware virtualization extensions. For
example, KVM and Xen Hardware-assisted Virtual Machine (HVM) make use of
the virtualization extensions. The rest of this section explains how an instruction
emulator is invoked inside the hypervisor, targeting on Intel CPU with virtual-

43

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

ization support (VT-x).
In Intel VT-x, two execution modes, the root and non-root modes are added.

Hypervisor code runs in the root mode, whereas a guest VM code runs in the non-
root mode. Both the root and non-root modes have traditional execution modes
(i.e. real mode and protected mode) and privilege levels (i.e. ring protections).
Therefore, guest VMs in the non-root mode can use any of the execution modes
and the privilege levels without any support from the hypervisor. Whenever
some support is necessary from the hypervisor, the control is transferred from a
guest VM to the hypervisor, called “VMExit”, changing the CPU mode from the
non-root mode to the root mode.

Once a VMExit occurs, the reason of VMExit is written in a Virtual Machine
Control Structure (VMCS) by the hardware. The VMCS is a key virtualization
structure in memory that consists of several fields, for example, the guest or host
state fields, control fields, and VMExit information fields. The hypervisor can
control VM state and settings through writing to the VMCS and get information
about VM state from the VMCS. On the VMExit, a handler dedicated to each
VMExit reason is invoked to emulate virtualized hardware.

A VMExit occurs, for instance, when a guest VM attempts to execute the
cpuid instruction. A host CPU cannot execute the cpuid instruction in a
guest VM because it should return the VCPU ID instead of the physical CPU’s.
Other system instructions, for example, accesses to the CRx, GDTR, LDTR, and
MSR registers cause VMExits.

3.1.2 Instruction Emulation in Hypervisors

Some instructions executed in a guest VM must be emulated in the hypervisor [7,
11] although most instructions execute natively on host CPUs. For example, if
an MMIO region is accessed, the hypervisor must intercept the I/O operation
and emulate it. Because VT-x does not virtualize devices and thus the issued I/O
operation cannot be executed natively on the physical device.

To trap access to an MMIO region from a guest VM, the hypervisor sets all
MMIO regions inaccessible from every guest VM. A VMExit is caused with EPT
violation (illegal memory access) as the VMExit reason when a guest VM accesses
an MMIO region. The hypervisor analyzes the faulting address to determine

44

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

whether the access is caused by the access to an MMIO region.
Then, the hypervisor fetches the instruction that accessed to the MMIO re-

gion. The instruction emulator decodes and partially emulates the fetched in-
struction to recognize its operand. According to the operand, a device emulator
such as QEMU is invoked.

Instruction emulation is not limited to the access to MMIO regions. The con-
texts that must be emulated are not only in the case of accessing an MMIO region.
The hypervisor emulates instructions in the following six contexts.

• Port I/O (PIO) context: The hypervisor emulates an instruction that per-
forms PIO. PIO is as an interface to interact with devices and accessed
through in or out instructions are used to perform PIO. Executing in or
out instructions in guest VMs incurs VMExit and these instructions are
emulated by the hypervisor.

• Memory Mapped I/O (MMIO) context: The access to an MMIO region
must be emulated for device emulation. MMIO is an interface to interact
with devices through system memory. The memory and registers of de-
vices are mapped to system memory so that CPUs can access devices by
the same instructions that are used to access system memory. The hy-
pervisor traps and emulates MMIO operations by making MMIO regions
inaccessible.

• Shadow Page Tables context: The hypervisor needs to emulate an in-
struction that updates a guest page table to keep the consistency between
guest and host (shadow) page tables. Prior to Nehalem micro-architecture,
Intel CPUs did not support the second-level address translation. The hy-
pervisor uses shadow page tables to translate guest virtual addresses into
host physical addresses. The hypervisor traps and emulates an instruction
that writes to a guest page table, and updates shadow page tables to keep
the consistency.

• Real Mode context: Prior to Westmere micro-architecture, all guest in-
structions in real-mode must be emulated by the hypervisor. Intel CPUs
prevent real-mode code from running in guest-mode. CPUs boot in real-
mode and thus the hypervisor emulates all the instructions until they enter

45

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

protected-mode.

• Migration context: To allow VM migration between different ven-
dor CPUs (Intel and AMD), vendor-specific instructions must be emu-
lated if the VCPU’s vendor differs from the physical CPU’s. For ex-
ample, vmcall and vmmcall are specific to Intel and AMD respec-
tively. Both of them invoke hypercall that hypervisors prepared for para-
virtualization. Fast control transfer instructions such as sysenter,
sysexit, syscall and sysret are vendor-specific. Intel CPUs do
not support syscall/sysret instructions for 32-bit kernels and also
AMD CPUs do not support sysenter/sysexit instructions for 64-bit
kernels. The hypervisor reports that the VCPU supports vendor-specific
instructions to use them even if they are not supported by the physical
CPU. If the migrated VM execute vendor-specific instructions not sup-
ported by the physical CPU, the physical CPU throws an illegal instruc-
tion exception. Then, the hypervisor traps illegal instruction exceptions
and emulates vendor-specific instructions.

• User-Mode Instruction Prevention (UMIP) context: UMIP is a secu-
rity feature of Intel processors to prevent unprivileged code from reading
system-wide settings such as the physical address to an interrupt vector
table (interrupt descriptor table in Intel). More concretely, UMIP prevents
execution of sgdt, sidt, sldt, smsw, andstr instructions at unpriv-
ileged level [36]. To emulate UMIP on legacy CPUs not supporting it, the
hypervisor traps and emulates them.

The new hardware virtualization extensions obviate the need for instruction em-
ulation in some contexts. We describe the detail of eliminated contexts in Sec-
tion 3.1.3.

3.1.3 Evolution of Intel VT-x

Intel VT-x has evolved since the first introduction on Pentium 4 in 2005. While six
contexts require instruction emulation in Intel Pentium 4, the hypervisor on the
most recent micro-architecture has to support three contexts. Figure 3.1 shows

46

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

the evolution of Intel VT-x and the relationship between CPU features and em-
ulation contexts over time. Since the new features of VT-x allow guest VMs
in Real-Mode and Shadow Page Table contexts to execute instructions natively,
these contexts no longer require the instruction emulation. These features have
been enabled by default in popular hypervisors such as KVM and Xen for ten
years [43, 44]

In Nehalem micro-architecture, the extended page table (EPT) was intro-
duced as second-level address translation. The hypervisor does not need to
perform instruction emulation in the shadow page table context if the EPT is
enabled. The EPT holds translations of guest physical address to host physical
address and the hypervisor maintains EPTs instead of shadow page tables. There-
fore, the hypervisor does not need to trap and emulate instructions that modify
guest page tables because the hypervisor does not need to monitor the updates
to guest page tables.

In Westmere micro-architecture, “Unrestricted Guest” feature was intro-
duced. This feature enables guest VMs to run real-mode code in guest-mode.
The emulation in real-mode context has not been necessary anymore.

The instruction emulator still supports many instructions for backward com-
patibility while new features of VT-x obviate the need for instruction emulation
in Real-Mode and Shadow page Table contexts. The current hypervisors invoke
the instruction emulator in those contexts if the host uses legacy CPUs; they
do not support EPT or unrestricted guest. A cross-modifying code attack that
enables attackers to force the emulation of arbitrary instructions to exploit its
emulation exists [7]. As a result, in spite of the new features of VT-x, the attack
surface in the instruction emulator is still large.

3.2 Threat Model and Vulnerability Analysis

3.2.1 Threat Model

Before describing the threat model, this section explains the detail of a cross-
modifying code attack. This attack is necessary to exploit a wide range of vul-
nerable instructions. To exploit the instruction emulator, an attacker has to force
the hypervisor to perform emulation of a vulnerable instruction. However, as

47

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Figure 3.1. Evolution of Intel VT-x and corresponding emulation contexts over
time.

mov rax, [MMIO]

Hypervisor

sysenter

time

VMExit handler
(MMIO is accessed)

VMExit

Instruction Emulator

Read “vulnerable” instructionGuest VM

Replaced by an attacker

invoke

Figure 3.2. Timing Attack on Instruction Emulation.

described in Section 3.1.2, the contexts of the instruction emulator invoked are
limited.

At first glance, an attacker appears unable to exploit a vulnerable instruction
if it does not cause any VMExit because the emulator is not invoked. Suppose that
an attacker is trying to exploit a vulnerability in the emulation of sysenter
instruction (CVE-2015-0239). When sysenter is executed on Intel x86, it does
not cause any VMExits and thus the emulator is not invoked. Interestingly, Amit
et al. [7] have shown the cross-modifying code attack to force the emulator to
decode whichever instruction the attacker wants to exploit. This attack is a tim-
ing attack and exploits a short time interval between the VMExit and the emu-

48

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

lator invocation. In Figure 3.2, an attacker accesses an MMIO region to cause a
VMExit, and quickly replaces the accessing instruction with a vulnerable instruc-
tion (sysenter). If the replacement finishes before the VMExiting instruction
(mov) is fetched, the emulator fetches and decodes the vulnerable instruction.

Our threat model is as follows. We assume that a guest operating system is
not trustworthy; it may have security holes and be subverted by an attacker. To-
gether with the attack vector shown by Amit et al., this assumption implies that
an attacker can force any instruction to be emulated through an MMIO region.
Note that an attack on the instruction emulator is sometimes possible from the
user-space. Recent Linux allows a small portion of the MMIO region to be ex-
posed to user-space; HPET (High Precision Event Timer) can be configured to be
exposed to user-space in Linux.

3.2.2 Vulnerability Analysis

As described in Section 3.1.3, the emulator in the hypervisor supports many in-
structions for backward compatibility. The complexity of x86 instruction set
leads to vulnerabilities in the emulator. In particular, instructions rarely used in
modern environments are not tested and maintained well and are likely to be vul-
nerable. CVE-2015-0239 reports a vulnerability in the emulation of sysenter
in 16-bit mode, which results in the privilege escalation. CVE-2016-9756 reports
vulnerabilities in the emulation of far jump and far ret in 32-bit mode,
which leads to the leak of the host kernel stack. More vulnerabilities are re-
ported; CVE-2017-2584, CVE-2017-2583, CVE-2014-8480, CVE-2014-3647, CVE-
2016-8630, and CVE-2014-8481 are all related to vulnerabilities in the emulator.

The goal of FWinst is to narrow an attack surface against vulnerabilities in
instruction emulation. Our insight behind FWinst is twofold. First, emulation of
most instructions is required for backward compatibility. If the hypervisor runs
on CPUs with full-fledged support for virtualization, the number of emulation
contexts that require instruction emulation becomes much smaller. While the hy-
pervisor on legacy x86 micro-architectures must support 6 emulation contexts,
the hypervisor on recent micro-architectures has to support only 3 contexts: 1)
Port I/O, 2) MMIO, and 3) Migration. Emulation in Real-Mode, Shadow Page Ta-
ble, and UMIP is not necessary in recent micro-architectures because real-mode

49

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

in guest-mode is allowed, EPT (extended page table) is supported for second level
address translation, and guest VMs can leverage UMIP without VMExiting.

Second, a legitimate subset of instructions is very limited that is allowed to be
emulated in each emulation context; arbitrary instructions should be emulated
in every emulation context. For example, an MMIO region is accessed only by
memory-accessing instructions; it is not legitimate to jump into an MMIO region
or to invoke sysenter on an MMIO region. If the instructions not legitimate
in the current emulation context are filtered out, the attack surface is narrowed;
an attacker can exploit a vulnerability in the instructions that are legitimate in
the current context.

By narrowing the attack surface, FWinst is expected to prevent an attacker
from exploiting vulnerabilities in instruction emulation. Since only the memory-
accessing instructions are legitimate in MMIO context, it is impossible to force
the emulation of vulnerable sysenter, far jump, and far ret through
the MMIO region. On recent micro-architectures, a legitimate set of instructions
does not include legacy, rarely-used instructions. In addition, it would be easier
to maintain the emulation code and verify its correctness because the number of
legitimate instructions is much smaller than that of the entire instructions. This
would enhance the overall safety of the instruction emulator.

3.3 Design and Implementation

The vulnerability analysis in Section 3.2 suggests the attack surface against the
instruction emulator can be narrowed if the emulation context is taken into ac-
count. This section describes the design and implementation of FWinst, which
filters out instructions that should not be emulated in the current emulation con-
text.

3.3.1 Overall Architecture

Figure 3.3 b) illustrates the overall architecture of FWinst. FWinst resides in
the hypervisor between VMExit handlers and the instruction emulator. When
a VMExit handler is invoked and needs the instruction emulation, it invokes
FWinst and passes it the VMExit reason. It tells the hypervisor what event has

50

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Table 3.1. Summary of Emulation Contexts and Legitimate Set of Instructions.

Emulation Context Legitimate
Context Identification Instructions
PIO I/O instruction in, out
MMIO EPT violation mov, movsx

or EPT misconfig stosx, or
Shadow page table Exception or NMI (#PF) memory access

instructions
Real mode VCPU status all real-mode

(No VMExit) instructions
Migration Exception or NMI (#UD) vmcall, vmmcall

syscall, sysenter
sysexit, rsm, movbe

UMIP Access to GDTR or IDTR sgdt, sidt, sldt
or Access to LDTR or TR smsw, str

happened in the guest VM and provides a good clue to estimate the emulation
context. If FWinst cannot determine the emulation context only from the VMExit
reason, it collects more pieces of information from the internal states managed
by the hypervisor.

To determine which instruction should be emulated in each emulation con-
text, FWinst maintains a list of legitimate instructions for each context. This
list is constructed in advance. For some contexts, it is straightforward to define
the legitimate set of instructions. For example, the legitimate instructions for
Port I/O context are those in the family of in and out instructions, because I/O
ports are accessed only through them. For other contexts, such as MMIO context,
some engineering efforts are needed to determine the legitimate set. Section 3.3.3
describes the approach FWinst has taken to determine the legitimate set.

3.3.2 Identifying Emulation Contexts

Table 3.1 shows the summary of the emulation contexts identified in FWinst.
FWinst identifies six contexts: 1) Port I/O, 2) MMIO, 3) shadow page table, 4) real

51

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

VM-exit

Guest VM

Instruction Emulator

VMExit handlers

Hypervisor

CPUIDI/O instruction EPT Violation Exception or NMI

......

......

mov sysenter

a) Ordinary Hypervisor. A VMExit handler invokes the instruction emulator
regardless of the emulation context.

VM-exit

Guest VM

Instruction Emulator

VMExit handlers

Hypervisor

CPUIDI/O instruction EPT Violation Exception or NMI

......

......

FWinst
Instruction Filter VCPU status

Collects information of Hypervisor

mov sysenter

b) Hypervisor with FWinst. FWinst filters out instructions that should not be
emulated in the current context.

Figure 3.3. Instruction Emulator in Ordinary Hypervisors and in Hypervisors
with FWinst.

mode, 5) migration, and 6) UMIP.
Port I/O context. It can be identified directly from the VMExit reason.

When a guest OS makes an access to an I/O port, it incurs a VMExit with the
reason set to ‘I/O instruction’. FWinst determines the current context is Port I/O
from the VMExit Reason.

MMIO context. It is identified by confirming a VMExit occurs due to an
access to an MMIO region. When a guest OS makes an access to an MMIO region,
the faulting address is notified. FWinst confirms the faulting address fits in the
MMIO region. The detailed behavior differs depending on the configuration of

52

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

the hypervisor. If the EPT feature is turned on, the VMExit reason is set to ‘EPT
Violation/Misconfiguration’. If the EPT feature is unavailable or turned off, the
VMExit reason is set to ‘Exception or Non-maskable interrupt (#PF)’. In both
cases, if the faulting address resides in an MMIO region, FWinst concludes the
context is MMIO, because there is no overlap between an MMIO region and guest
page tables.

There are two things to be noted. First, when the memory-mapped APIC (Ad-
vanced Programmable Interrupt Controller) is accessed, an VMExit with ‘APIC
Access’ occurs. In this case, FWinst concludes the current context is MMIO be-
cause this is the access to the APIC control registers using an MMIO interface.
Second, the hypervisor sometimes — e.g., for host swapping — intentionally con-
figures EPT entries or shadow page tables to cause VMExits on the access to a
certain page. In this case, FWinst is not invoked because the hypervisor does
not emulate any instructions. The hypervisor resolves the VMExits by loading
memory pages and/or setting page tables properly.

Shadow page table context. If the EPT feature is not available, the
shadow page table context is identified with the cooperation of the hypervisor.
This context is identified by confirming a VMExit occurs due to an access to a
guest page table. When a guest page table is accessed in the guest, a VMExit with
the VMExit reason set to ‘Exception or Non-maskable interrupt(#PF)’ is incurred
and the faulting address is notified to the hypervisor. The hypervisor keeps track
of the addresses to guest page tables (stored in CR3) and thus can determine if
the access is to a page table or not.

Real mode context. If the unrestricted guest mode is not available, the
real-mode code is executed either in the virtual 8086 mode or on the emula-
tor [43]. The hypervisor maintains a global state that tells whether the emula-
tion for real-mode is required or not. By checking the status register (CR0 in this
case), the hypervisor can know whether the VCPU is in real mode or not. Note
that the instructions are not always emulated in real mode. KVM checks the
VCPU status and lets the guest run in the virtual 8086 mode if possible. FWinst
inquires of the hypervisor whether the emulation is necessary. FWinst checks
the global state to determine the current emulation context.

Migration context. If an unsupported instruction is executed in a guest,
a VMExit occurs with the reason set to ‘Exception or Non-maskable interrupt

53

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

(#UD)’. Encountering this VMExit reason, FWinst concludes the current context
is migration. At first glance, this strategy looks dangerous because all vendor-
specific instructions are emulated without further inspection. Since the number
of legitimate instructions is small in the migration context, FWinst checks which
vendor-specific instruction is supported and rejects the emulation of the instruc-
tions natively supported because it is nonsense to emulate natively supported
instructions. Note that FWinst does not confirm a virtual machine in question is
actually migrated from another machine because a virtual machine image built
for AMD, for instance, can be executed on Intel x86 without migration.

UMIP context. It can be identified directly from the VMExit reason. Ex-
ecuting the instructions covered by UMIP incurs a VMExit with the reason set
to ‘Access to GDTR or IDRT’ or ‘Access to LDTR or TR’. FWinst determines the
current context is UMIP if these VMExit reasons are set in the VMCS.

Note that determining the emulation context is quite simple. Since the map-
ping between the emulation contexts and the reason the hypervisor is invoked is
straightforward, we believe the possibility of making a mistake in determining a
valid context is quite low. If there is a mistake in determining a valid context, it
can lead to false-positive or -negative. A false-positive occurs if an incorrect con-
text prevents the emulation of a legitimate instruction. A false-negative occurs
if an incorrect context allows the emulation of an illegitimate instruction.

3.3.3 Legitimate Instructions

For each emulation context, a set of legitimate instructions are defined. Table 3.1
shows the summary of the legitimate set of instructions for each context.

For PIO and UMIP context, it is straightforward to define the sets. For PIO
context, the family of in and out instructions are legitimate because I/O ports
are accessed only through them. For UMIP context, sgdt, sidt, sldt, smsw,
and str instructions are legitimate because these instructions are covered by
UMIP [36].

For MMIO context and shadow page table context, the legitimate set of in-
structions is memory-accessing instructions; i.e. instructions having memory-
access operands. By default, FWinst allows these instructions to be emulated in
these contexts. If the operating systems hosted on the hypervisor are known in

54

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Listing 3.1. Example of MMIO accessor in Linux kernel 4.8.1
arch/x86/include/asm/io.h line 46
#define bui ld_mmio_read (name , s i z e , type , \

reg , b a r r i e r) \
s t a t i c i n l i n e type name (\

const v o l a t i l e void __iomem ∗ addr) \
{ \

type r e t ; \
asm vo l a t i l e (" mov " s i z e " ␣ %1 ,%0 " : r eg (r e t) \

: "m" (∗ (vo l a t i l e type _ _ f o r c e ∗) addr) \
b a r r i e r) ; \

return r e t ; \
}

advance, their coding conventions can be leveraged to further restrict the legit-
imate set. For example, the hosted operating systems are known in advance in
the PaaS (Platform-as-a-Service) environments.

For MMIO context, the legitimate set can be further restricted. An MMIO
region is accessed solely by device drivers, and the operating systems provide
accessor functions/macros to MMIO regions to encapsulate the coding difficulties
in memory coherence such as barriers. Listing 3.1 and 3.2 exemplify the accessors
in Linux and Windows, respectively. The legitimate set can be derived from
memory-accessing instructions in the accessors. Our current prototype restricts
the legitimate set in this way for Linux and Windows. This approach works well
for drivers that use the accessors to access MMIO regions. In practice, driver
developers use the accessors to avoid writing the code for complicated memory
synchronization.

For the shadow page table context, all the functions that update page tables
in the guest OS must be investigated. The legitimate set is memory-accessing
instructions in those functions. Fortunately, the number of those functions is
small. Linux has five functions that update page tables.

For the real mode context, it is almost impossible to define a small set of legit-
imate instructions because real-mode code can execute a bunch of instructions

55

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Listing 3.2. Example of MMIO accessor in wdm.h line 17433 that is included in
the Windows Driver Kit, build version 0162
_ _ f o r c e i n l i n e
UCHAR
READ_REGISTER_UCHAR (

_ In_ _ N o t l i t e r a l _ vo l a t i l e UCHAR ∗ R e g i s t e r
)

{
_ R e a d W r i t e B a r r i e r () ;
return ∗ R e g i s t e r ;

}

during the boot sequence. Currently, FWinst includes all the instructions valid
in real mode in the legitimate set. To avoid attacks during the boot sequence,
it is better to load a virtual machine image after the boot sequence (i.e., CPU in
protected mode), which has been built in an isolated and secure environment.

For migration context, vendor-specific instructions must be emulated.
KVM/QEMU lists up all the vendor-specific instructions: vmcall, vmmcall,
syscall, sysenter, sysexit, rsm, and movbe. These instructions are
included in the legitimate set for the migration context. Since it is nonsense to
emulate natively supported instructions, the legitimate set excludes the instruc-
tions that are supported natively on the physical CPUs.

3.3.4 Implementation

A prototype of FWinst 1 has been implemented on Linux KVM (Linux kernel
4.8.1) for Intel x86-64 architecture. FWinst is implemented with 279 LoC and can
be ported from Linux kernel 4.8.1 to 6.6.8 with one day of work by one person.
We assume the micro-architectures posterior to Westmere, and the full-fledged
features (EPT and unrestricted guest mode) for virtualization are enabled. West-
mere was released around 2010 and thus, it is natural to assume Westmere micro-

1The FWinst prototype for Linux kernel 6.6.8 is available at https://github.com/
sslab-keio/FWinst.

56

https://github.com/sslab-keio/FWinst
https://github.com/sslab-keio/FWinst

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

architecture or later. FWinst assumes Intel x86. Our description targets on KVM
but FWinst can be applied to Xen or other hypervisors in principle.

The current prototype identifies PIO, MMIO, migration, and UMIP contexts.
Shadow page table or real mode contexts are not recognized because the EPT
feature and the unrestricted guest mode are enabled.

Building the Legitimate Instruction Set

For PIO and UMIP contexts, the legitimate set of instructions is straightforward,
as described in Section 3.3.3.

For the migration context, our current prototype includes the instruc-
tions specific to AMD (vmcall) and those supported on later Intel micro-
architectures(movbe). FWinst can recognize which vendor-specific instructions
are supported because the hypervisor in which FWinst is running has an access
to the model-specific register (MSR) that tells the CPU micro-architecture. As
described in Section 3.3.2, the current implementation of FWinst does not con-
firm a virtual machine is actually migrated from another machine but this does
not mean migration context is not handled; it rejects the emulation of vendor-
specific instructions natively supported on the current micro-architecture.

For MMIO context, the legitimate set is restricted for Linux and Windows
Vista, 7, 8, and 10. In the case of Linux, the MMIO region is accessed only through
some macros and inline functions used in device drivers. From the compiled
binary of the device drivers, we have extracted memory-accessing instructions
and included them in the set. The resulting set of legitimate instructions in-
cludes only the instructions of the mov family. In the case of Windows, another
approach has been taken because of the unavailability of the source code. The
legitimate set is extracted from the log of instructions executed during the ker-
nel launch and shutdown times. Since device drivers are loaded at the launch
time and unloaded at the shutdown time, this log covers the memory-accessing
instructions used to access to MMIO regions. The resulting set of legitimate in-
structions includes the mov family of instructions.

There is a subtle problem in MMIO context. During the boot sequence, BIOS
makes an access to an MMIO region. Therefore, the legitimate set for MMIO
context has to include instructions used by BIOS to access to an MMIO region. To

57

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

extract those instructions we again relied on the execution log. BIOS uses movs
andstos instructions to access to the MMIO region and thus, those instructions
have been added to the legitimate set. The MMIO-accessing instructions solely
used by BIOS can be excluded from the legitimate set after the boot sequence.
Since the BIOS can be accessed only in some CPU modes, FWinst can remove
those instructions from the legitimate set when the CPU is not in those CPU
modes. Or they can be entirely removed if we can assume the guest VM always
loads a booted VM image.

Implementation of the Instruction Filter

The control and data flow between the components of the instruction emulator
are depicted in Figure 3.4. Solid lines show the control flow and dotted lines show
the data flow. KVM instruction emulator consists of three major components: 1)
opcode decoder, 2) operand decoder, and 3) emulator. When KVM emulates an
instruction, these three components are invoked in this order. We add FWinst
(depicted as a gray box) as a new component to the instruction emulator. FWinst
filters improper instructions according to the emulation context and the legiti-
mate set.

When a VMExit occurs, the VMExit handler determines the emulation con-
text according to the VMExit reason with the support from the hypervisor. If
the emulation is necessary, it invokes the opcode decoder. The opcode decoder
fetches the instruction to be emulated from the guest memory and stores it in a
memory area for the emulation that is accessible only from the inside of KVM.
After decoding the opcode, it invokes FWinst with the emulation context passed
to FWinst. FWinst gets the instruction to be emulated. If it is not included in
the legitimate set, FWinst filters out the instruction. If it is included in the set,
FWinst invokes the operand decoder.

To filter the instruction before emulating, FWinst needs only the opcode of
an emulated instruction in the contexts. To avoid duplicated implementation of
opcode decoders, FWinst lets the instruction emulator decode each instruction.
This design allows us to reuse the opcode decoder and releases us from maintain-
ing two decoders (the one in the instruction emulator and the other in FWinst).
Note that FWinst does not rely on the operand decoder, which is more com-

58

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Figure 3.4. The control and data flow between the components of the instruction
emulator in KVM with FWinst.

plicated and more vulnerable than the opcode decoder. The operand decoder
has 665 LOC, whereas the opcode decoder has 279 LOC. Three vulnerabilities
(CVE-2016-8630, CVE-2014-8481, and CVE-2014-8480) in the operand decoder
have been reported whereas one vulnerability (CVE-2009-4031) in the opcode
decoder has been reported. Even if there is a vulnerability in the operand de-
coder, FWinst works properly.

3.4 Experiments

To demonstrate the effectiveness of FWinst, we have implemented a prototype of
FWinst on Intel x86 Skylake and Westmere micro-architectures. In the following
analysis and experiments, all the CPU support for virtualization is turned on; i.e.
EPT and the unrestricted guest mode are both turned on. Table 3.2 shows the
experimental environment.

3.4.1 Security Analysis

To demonstrate the effectiveness of FWinst, we have investigated 110 vulnera-
bility reports from 2009 to 2018 that are related to KVM and found that 17 vul-

59

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Table 3.2. Experimental Environment for FWinst

Hardware for Skylake
Host CPU Intel Xeon Silver 4110

2.10GHz (Skylake)
Host memory 32 GB

Hardware for Westmere
Host CPU Intel Xeon X5650

2.67GHz (Westmere)
Host memory 4 GB

Software for both
Host OS Linux kernel 4.8.1
Host QEMU Version 2.9.50
Guest OS Ubuntu 18.04 x86_64
of VCPUs 2
Guest memory 1 GB
Virtual drive IDE
Virtual graphics card VGA standard
Virtual network interface card e1000

nerabilities reside in the instruction emulator, which are listed in Table 3.3. For
these vulnerabilities we have collected or implemented PoC (proof-of-concept)
code and tested it on FWinst. As shown in Table 3.3, FWinst can defend against
14 vulnerabilities out of 17 on Haswell, (indicated by √ in column ‘Haswell’), 13
vulnerabilities out of 17 on Westmere (indicated by √ in column ‘Westmere’),
and 13 out of 17 on AMD Jaguar (indicated by √ in column ‘AMD’ and ‘AMD’
refers to AMD Jaguar in the rest of this section). Since FWinst can filter out more
instructions in more recent micro-architectures, Haswell prevents more attacks
than Westmere.

The column ‘emu. context’ denotes the emulation contexts whose legitimate
sets of instructions include vulnerable instructions listed in ‘vul. inst’. The vul-
nerable instructions cannot be exploited on micro-architectures in which the
contexts in ‘emu. context’ would not be effective. ‘None’ in the context col-

60

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Table 3.3. Summary of vulnerabilities.

Intel Intel vul.
CVE # vulnerable instruction Westmere Haswell AMD comp. emu. context

2018-10853 fxrstor, fxsave, √ √ √ emu. UMIP, Real Mode
sgdt, sidt

2017-17741 vmmcall, vmcall d d d emu. Migration
2017-7518 syscall

√ √ √ emu. Migration
2017-2584 fxrstor, fxsave, × × × emu. UMIP, Real Mode

sgdt, sidt
2017-2583 mov SS

√ √ √ emu. Real Mode
2016-9756 far jump or √ √ √ emu. Real Mode

far ret
2016-8630 illegal instruction √ √ √ operand None
2015-0239 sysenter

√ √ d emu. Migration
2014-8481 movbe d √ √ operand Migration, Real Mode
2014-8480 clflush, hint-nop, √ √ √ operand Real Mode

prefetch
2014-7842 unsupported instructions √ √ √ emu. None

by the instruction emulator
2014-3647 far jump or √ √ √ emu. Real Mode

far ret
2014-0049 pusha

√ √ √ emu. Real Mode
2012-0045 syscall

√ √ √ emu. Migration
2010-5313 unsupported instructions √ √ √ emu. None

by the instruction emulator
2010-0435 mov DR

√ √ √ emu. Real Mode
2009-4031 instruction that contains × × × opcode All

too many bytes
√: defended, ×: not defended, d: depends on migration contexts, emu.: emulation, operand: operand decoder

umn in Table 3.3 means the vulnerable instructions should never be emulated in
any context. The discussion below follows the contexts listed in ‘emu. context’.

Real Mode context only: In CVE-2017-2583, CVE-2016-9756, CVE-2014-
8480, CVE-2014-3647, CVE-2014-0049 and CVE-2010-0435, vulnerable instruc-
tions are included only in the legitimate set of Real Mode context. The ‘unre-
stricted guest mode’ is turned on to natively execute real-mode instructions on
all the tested machines. Therefore, Real Mode context would not be effective and
these vulnerable instructions are not emulated at all.

In CVE-2017-2583 and CVE-2010-0435, the vulnerable instructions have
memory-accessing operands. As described in Section 3.3.3, the instructions that
have memory-accessing operands should be included in the legitimate set of
MMIO context. Mov SS in CVE-2017-2583 loads or stores the stack segment
register, and mov dr in CVE-2010-0435 loads or stores the debug registers.

61

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

These instructions are excluded from the legitimate set of MMIO context because
they are not used to access to MMIO regions.

Migration context only: In CVE-2017-17741, CVE-2017-7518, CVE-2015-
0239 and CVE-2012-0045, vulnerable instructions are included only in the le-
gitimate set of Migration context. All the vulnerable instructions here are
vendor-specific. In CVE-2017-17741, the vulnerable instructions are Intel-
specific vmcall and AMD-specific vmmcall. If these instructions are re-
quested to be emulated on the machines that can natively execute them, FWinst
rejects the emulation and can prevent the attack. If the requesting guest is mi-
grated from another machine and the running binary is for a different vendor,
FWinst considers the emulation request is legitimate and cannot prevent the at-
tack. Thus, all the columns for CVE-2017-17741 are marked as ‘depend’.

In CVE-2015-0239, the vulnerable instruction is sysenter, an Intel-
specific instruction, which would not be emulated on Intel machines. On AMD
machines, this instruction is emulated only if a guest running the Intel binary is
migrated from another machine. Thus, the columns except for AMD are marked
as ‘√’, and the column for AMD is marked as ‘d’.

In CVE-2017-7518 and CVE-2012-0045, the vulnerable instruction is
syscall. This instruction is not implemented only on the 32-bit version of
Intel x86; the micro-architectures listed in the table all support syscall and
thus, this instruction will not be emulated.

Migration and Real Mode contexts: In CVE-2014-8481, the vulnerable
instruction is included in both Migration and Real Mode contexts. Since the ‘un-
restricted guest mode’ is effective on all the tested machines, Real Mode context
would not be effective and the vulnerable instruction would be emulated only in
Migration context.

CVE-2014-8481 is marked as ‘depends’ in Intel Westmere, and the vulnerable
instruction is movbe introduced in Intel Haswell or AMD Jaguar. If FWinst
recognizes a guest is running binary for Westmere, FWinst rejects the emulation
of movbe because it is strange that Westmere binary is executing unsupported
movbe. But if the guest is migrated from another machine and runs binary
for Haswell, FWinst emulates movbe on Westmere; the vulnerability can be
exploited.

UMIP and Real Mode contexts: In CVE-2018-10853 and CVE-2017-2584,

62

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

the vulnerable instructions are included in either UMIP or Real Mode contexts.
Instructions fxrstor and fxsave are included only in Real Mode context
and thus are not emulated in our testbeds. Vulnerable instructions sgdt and
sidt are included in UMIP context. If the guest is running in UMIP context
and the vulnerabilities are exploited, FWinst cannot defend against it. Because
of this, all the columns of CVE-2017-2584 are marked as ‘×’.

Interestingly, the vulnerability pointed out in CVE-2018-10853, which
launches privilege escalation from non-root/ring3 to non-root/ring0, can be pre-
vented. Privilege escalation to non-root/ring0 is meaningful only if a user-level
process launches an attack. Fortunately, the current implementation of the in-
struction emulator rejects sgdt and sidtwhen they are issued at user-level, if
UMIP is turned on, because UMIP does not allow the execution of those instruc-
tions at user-level. As the result, the privilege escalation is unsuccessful even
though FWinst does not filter out vulnerable instructions sgdt and sidt.

All contexts: CVE-2009-4031 is marked as ‘×’ in all columns. This vulner-
ability lies in the opcode decoder and can be exploited when the opcode length
exceeds the maximum length (15 bytes). FWinst cannot defend against this vul-
nerability because FWinst reuses the KVM opcode decoder. This vulnerability
is exceptional in that it lies in the opcode decoder. As Table 3.3 indicates, most
vulnerabilities lie in the operand decoder or the emulator. Checking the opcode
length suffices to defend against this vulnerability and thus we have already ex-
tended FWinst to have this verification phase before the opcode decoding.

Not in any contexts: In CVE-2016-8630, CVE-2014-7842, and CVE-2010-
5313, the vulnerable instructions are not included in any contexts and thus,
FWinst can defend against attacks that attempt to exploit these vulnerabilities.

3.4.2 Runtime Overhead

To estimate runtime overhead introduced by FWinst, we measured the runtime
overhead of several benchmarks. Our machine environment and its configura-
tion are given in Table 3.2. We prepared a micro-benchmark that accesses to
an MMIO region repeatedly to show the overhead of FWinst; FWinst is invoked
every time an MMIO region is accessed by a guest VM. For macro-benchmarks,
UnixBench [98], sysbench [53], ApacheBench [10], and Phoronix Test Suite [76]

63

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Figure 3.5. Normalized performance of UnixBench, Apache Bench, sysbench,
micro benchmark and graphic benchmarks on Skylake with the original KVM as
the baseline

Figure 3.6. Normalized performance of UnixBench, Apache Bench, sysbench,
micro benchmark and graphic benchmarks on Westmere with the original KVM
as the baseline

are used. UnixBench and sysbench are standard benchmarks to measure the per-
formance of the operating system. ApacheBench is chosen for the server work-
loads and Phoronix Test Suit is for graphics-intensive workloads. OpenArena
and Unreal Tournament 2004 (UT2004), chosen from Phoronix Test Suits, exe-
cute OpenGL 3-D games.

Figure 3.5 and 3.6 show the relative performance on Skylake and Westmere,
respectively. The overhead of FWinst on Skylake is from 0.0 % to 2.7 % and the
highest overhead benchmark is the sequential read of sysbench. In the case of
Westmere the overhead of FWinst is from 0.0 % to 3.8 %. FWinst causes relatively
low overheads for the following reasons. First, the overhead due to FWinst is
caused when an instruction emulator is invoked. Recent advance in hardware

64

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Figure 3.7. # of FWinst invocations

virtualization reduces the number of instructions that should be emulated and
thus the overhead is getting lower. Second, instruction emulation in our experi-
ments is primarily for the device emulation. KVM emulates device at userspace
and thus the relative overhead of FWinst becomes very low.

The number of FWinst invocations in one second for each benchmark is
shown in Figure 3.7. This result shows that the most cause of instruction em-
ulation is I/O operation, because FWinst is invoked many times in I/O intensive
workloads except graphics benchmarks. Since the guest OS in these workloads
performs a lot of I/O operations, the instruction emulator must emulate I/O in-
structions frequently. Hence, FWinst must verify every emulated instruction and
FWinst is also frequently invoked. Although graphics-intensive workloads are
I/O intensive workloads, the number of FWinst invocations is not high. There
are two reasons as follows. First, the graphics library in this guest environment
uses LLVMpipe [63] as a 3D graphics driver and it performs all rendering on the
CPU. This eliminates the need for emulating I/O instructions. Another reason is
that the emulation of I/O operations is not necessary when the guest OS updates
its video ram. Because, in the implementation of virtual VGA in QEMU, KVM
and QEMU enable the guest OS to write directly to its video ram for performance
reason and the VMExit never occurs writing to its video ram.

65

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

3.5 Related work

3.5.1 Protecting Virtual Machines

Initially, hypervisors were believed to be trustworthy because of their small code
base and narrow interfaces. By leveraging this characteristic, security systems
with virtualization had been extensively studied [84, 85, 78, 102, 88, 39, 40]. How-
ever, commodity hypervisors are far from without security concerns due to their
complexity and large code base. Attackers shifted their focus from breaking into
individual OSes to compromising entire virtual environments [52, 4, 54, 106].

The primary goal of virtual environment security is to ensure security of
VMs so that providing security for VMs, even if the underlying hypervisor is
compromised or untrusted, is one of the research areas. To protect VMs from
untrusted hypervisors, several works eliminate a large part of hypervisors from
their trusted computing base (TCB) by leveraging architectural support. For ex-
ample, H-SVM [41] modifies hardware to protect the memory of VMs from unau-
thorized access with an untrusted hypervisor. H-SVM intercepts access to nested
page tables and manages its ownership. This improves memory isolation among
the VMs by blocking the hypervisor’s direct modifications of nested page tables.
HyperWall [93, 94] leverages the hardware-only accessible memory regions to
protect the Confidentiality and Integrity Protection (CIP) tables. The CIP tables
hold the information on memory access rights based on the customer’s speci-
fications. The memory of the VMs is not accessible by the hypervisor without
permission from HyperWall. HyperCoffer [111] only trusts the processor chip
to protect VMs from an untrusted hypervisor. The secure processor chip pro-
vides memory encryption and integrity checking. However, applying the se-
cure processor alone is insufficient because the semantic gap between the VMs
and the hypervisor exists. To bridge the semantic gap, HyperCoffer provides a
mechanism called VM-Shim, which helps to exchange data between the VM and
the hypervisor while interposing the control transition between them. Besides
these approaches, using trusted execution environments deployed in commodity
hardware, e.g., Intel SGX [37] or AMD SEV [5], is another approach to protect
applications or VMs from untrusted hypervisors. Haven [14], SCONE [12], and
Graphene-SGX [18] use SGX to defend applications from software and hardware

66

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

attacks, including attacks by untrusted hypervisors. Fidelius [109] is a software-
based extension to SEV to address resource encryption issues. Although these
previous approaches are attractive because the VMs do not need to trust their
underlying hypervisor, using specific hardware is not always feasible for virtual
environments because of their various demands. Thus, enhancing virtual envi-
ronment security through a software-based approach remains necessary to make
hypervisors trustworthy.

Deprivileging hypervisors has also been widely studied to reduce TCB of hy-
pervisors. To deprivilege the parts of hypervisors, a couple of works run most
hypervisor functionality at a less privilege mode. For example, NOVA [90] de-
signs a new hypervisor in the manner of microkernel from a clean slate. Thanks
to the architecture, NOVA only needs kernel mode to run microhypervisor, and
the rest of components (e.g., root partition manager and multiple VM monitors)
runs at user mode. DuVisor [19] is a user-space hypervisor to reduce TCB. Du-
Visor directly interacts with VMs at runtime instead of the traditional KVM by
leveraging a hardware virtualization extension that securely exposes hardware
virtualization interfaces. HypSec [57] splits a monolithic hypervisor into two
parts: a trusted an privileged corevisor with full access to VM data, and an un-
trusted and deprivileged hostvisor delegated with most hypervisor functionality.
HypSec leverages hardware virtualization support to isolate and protect the core-
visor and execute it at a higher privilege level than the hostvisor. DeHype [107]
is a system that applies the least privilege principle to hosted hypervisors. In
DeHype, a minimal subset of privileged hypervisor code is responsible for ex-
ecuting instructions in privileged mode when the deprivileged hypervisor de-
mands to issue a privileged instruction. Nested virtualization is also used to de-
privilege hypervisors because it allows hypervisors to run in non-root mode.
By leveraging nested virtualization, CloudVisor [112] puts Xen and Dom0 in
non-root mode so that all privileged operations will trap to Cloudvisor for se-
curity checking. CloudVisor-D [67] extends CloudVisor to reduce heavy con-
text switches by leveraging extended page table switching with the VMFUNC
instruction. In-kernel isolation is another approach to deprivilege most func-
tionalities of hypervisors. For example, HyperLock [103] provides a secure hy-
pervisor isolation runtime to isolate hypervisors from compromising host OSes
by enforcing memory and instruction access control. HyperLock also creates a

67

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

shadow hypervisor and pairs it with each VM to limit the negative impact of
the compromised hypervisor to only the paired VM. NEXEN [87] decomposes
the monolithic Xen into a minimal fully privileged security monitor, a less priv-
ileged shared service domain, and fully sandboxed Xen slices. NEXEN uses the
Nested Kernel [23, 24] architecture to isolate these components at a single priv-
ilege level so that NEXEN can suppress performance overhead due to frequent
context switches. NoHype [47, 48, 92] eliminates the virtualization layer rather
than deprivileging the hypervisor while it preserves the semantics of virtualiza-
tion technology. In conclusion, removing a large part of the hypervisor from
the TCB improves the virtual environment security. However, in practice, the
exposed attack surface of the trusted components increases with vulnerabilities
in the deprivileged hypervisor. So, deprivileging and hardening the hypervisor
should be done simultaneously.

A control VM such as Xen Dom0 is included in the TCB as well as the rest
parts of hypervisors. Hardening the control VM is important to enhance VM se-
curity. For example, Xoar [22] focuses on the large code base of the control VM
and breaks it into nine classes of service VMs. Each service VM has a single pur-
pose so that Xoar can remove the original monolithic control VM. Several works
present the need to differentiate between cloud service providers and cloud sys-
tem administrators. Butt et al. [16] pointed out cloud system administrators are
adversarial, and it resulted in that administrative domain is untrusted. SSC [16]
splits Dom0 between a system-wide domain (SDom0) and per-client administra-
tive domains (Udom0s). Disaggregated Xen [68] decouples all the code for build-
ing a VM from Dom0. MyCloud [56] removes the control VM from root mode
and provides isolation with EPT. These works reduce the TCB of the virtual
environment by reconstructing the control VM. These security mechanisms for
the control virtual machine are complementary to enhancing CPU virtualization
security.

3.5.2 Hardening Hypervisors

In this dissertation, FWinst hardens the hypervisor by reducing the attack sur-
face of the CPU emulator of the hypervisor. Like FWinst, hardening hypervisors
has been studied to enhance virtual environment security. For example, Hyper-

68

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

Safe [101] provides hypervisor control-flow integrity by managing page table
updates strictly and restricting indirect control transfer. SeKVM [58] is a layered
Linux KVM hypervisor that is formally verified. To minimize the effort of verifi-
cation, the TCB of the hypervisor needs to be small. Thus, SeKVM requires the
reconstruction of KVM/Arm and 15K LOC modification. Risotto [34] eliminates
errors in CPU emulation involving concurrent memory access through formal
verification. Hyper-TP [69] and VM-PHU [79] leverage kernel soft reboot and
migration to address security issues of hypervisors at data center scale. These
previous works complement FWinst; hardening hypervisors with multiple as-
pects effectively improves the overall hypervisor security.

Continuously monitoring a hypervisor is a way to improve hypervisor secu-
rity. However, monitoring the hypervisor is challenging because the hypervisor
runs with a high privilege to virtualize hardware. HyperCheck [113], HyperSen-
try [13], and MGuard [62] monitor the hypervisors by leveraging systems with
higher privileges than the hypervisor to overcome the challenge. For example,
HyperCheck and HyperSentry leverage the CPU system management mode pre-
sented in x86. MGuard monitors the hypervisor with their new programmable
hardware. Deng et al. [25] place a trusted event-driven monitor at the same
privilege level and in the same address space as the untrusted hypervisor. While
hypervisor monitoring protects the whole system against compromised hyper-
visors, FWinst reduces the attack surface of the hypervisor to raise the bar of
compromising hypervisors.

Several works focus on security concerns associated with device emulation
of hypervisors. Nioh [71] and Nioh-PT [83] provide runtime protection for hy-
pervisors from attacks against virtual devices. The key insight of these works
is that the attacks against virtual devices are typically performed through ille-
gal I/O requests that are not issued for devices during normal operations. They
protect device emulators of hypervisors by filtering out the illegal I/O requests.
Min-V [70] focuses on the fact that VMs use limited virtual devices at runtime
in cloud environments. To reduce the attack surface of the hypervisor, Min-
V analyzes which virtual devices are required only at boot time and eliminates
them from VMs at runtime. Firecracker [1] and crosvm [32] re-build the part
of KVM/QEMU for their specific purposes. Thanks to their slim designs, these
works can reduce the attack surfaces of the hypervisor. These I/O virtualization

69

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

protection systems and FWinst should be utilized simultaneously because both
CPU and I/O virtualization are essential parts of hardware virtualization.

3.5.3 Hypervisor Testing

Testing software like fuzzing or symbolic execution is used to discover bugs and
vulnerabilities in a wide range of software. Targets of these approaches have
been extended to complicated systems such as hypervisors. Since most fuzzing
toolchains are implemented to test applications running in user mode, ring-3 I/O
virtualization bugs were the primary targets in the early stages of hypervisor
testing, and they are still explored extensively [35, 82, 81, 75, 61, 17]. Despite
technical complexity, several works tackle finding CPU virtualization bugs. To
enhance vCPU security, Amit et al. [8] perform blackbox testing for vCPUs by
taking advantage of Intel’s testing facilities. PokeEMU [65] generates test cases
for low-fidelity emulators, including CPU emulation of hypervisors, by using
symbolic execution on high-fidelity emulators like Bochs. MultiNyx [29] is a
symbolic execution framework to test hypervisors’ CPU and memory virtual-
ization. MultiNyx leverages the Bochs CPU emulator as an executable specifi-
cation to model the semantics of complex instructions for virtualization. Hy-
perFuzzer [31] is a hybrid fuzzer for vCPUs. To overcome the complexity and
scalability issues of hypervisor testing, HyperFuzzer performs symbolic execu-
tion efficiently by leveraging hardware tracing and recovering some semantics
from the recorded traces with their new technique, called Nimble Symbolic Ex-
ecution. These works showed that the complex CPU emulation of the hyper-
visors contains uncovered bugs. To lower the risk of such bugs, FWinst limits
the instructions to be emulated based on the observation that the evolution of
the hardware virtualization extension has eliminated the need to emulate a large
number of instructions.

3.6 Summary

This chapter describes a new approach to narrow the attack surface against vul-
nerabilities in the KVM instruction emulator if the underlying micro-architecture
and the hypervisor configration are taken into account. FWinst identifies a legiti-

70

CHAPTER 3. MITIGATING VULNERABILITIES IN INSTRUCTION EMULATION

mate set of instructions by recognizing emulation contexts, and filters out illegit-
imate instructions, thereby narrowing the attack surface. Our preliminary eval-
uation shows FWinst effectively prevents emulator vulnerabilities from being
exploited on posterior to Westmere micro-architectures, and the runtime over-
head is from 0.0% to 2.7% on Skylake and from 0.0 % to 3.8 % on Westmere on
widely-used benchmarks.

71

Chapter 4

Conclusion

4.1 Contribution Summary

This dissertation has conducted studies to enhance the performance and security
of virtual CPUs in the commodity hypervisor. First, our in-depth analysis of
the design and implementation of KVM shows that the commodity hypervisor
continues to suffer from inefficiency and security concerns associated with CPU
virtualization despite tremendous efforts from previous studies. Then, based on
the analysis, this dissertation proposes mitigations against the uncovered real-
world issues with minimal host modifications to consider applicability to the
commodity hypervisor. Thanks to this minimal modification concept, the part
of our proposal has been integrated into the mainline Linux/KVM, which is a
widely adopted open-source commodity hypervisor.

As for the performance issues, this dissertation shows three issues in KVM:
scheduler mismatch, aggressive candidate limiting, and IPI context misuse.
These issues enlarge excessive vCPU spinning in KVM and cause severe per-
formance degradation. Our quantitative analysis of the KVM vCPU scheduler
reveals that these issues come from semantic gaps between Linux and KVM or
guest VMs and KVM. To mitigate these issues, this dissertation proposes three
mitigations: debooster, relaxed boost, and IPI-aware boost. For applicability to
the commodity hypervisor, these mitigations require only 89 LoC and do not
modify guest OSes and the host scheduler core. Despite the modest modifica-
tions, these mitigations reduce excessive vCPU spinning and improve the per-

72

CHAPTER 4. CONCLUSION

formance of the benchmarks running in the guest VMs.
As for the security issue, this dissertation shows that the support for back-

ward compatibility of KVM broadens the attack surface of the instruction em-
ulator. This dissertation proposes FWinst against the security issue. FWinst is
a context-aware instruction filter that minimizes the instruction emulator log-
ically by utilizing hardware virtualization extensions. The experiments in this
dissertation describe that FWinst effectively prevents exploiting the real-world
vulnerabilities of the instruction emulator while it introduces negligible perfor-
mance overhead.

4.2 Future Direction

As shown in Section 2.3.2, limiting candidate vCPUs to boost effectively reduces
excessive vCPU spinning unless an unexpected underboost exists. Although the
KVM vCPU scheduler already has optimizations to limit the candidates, it still
needs to consider a new design of the guest OS. For example, the design per-
forms polling at high privilege for high-performance I/O like DPDK [27] with an
unikernel approach. In this case, boosting other vCPUs is meaningless because
the polling vCPU does not wait for other vCPUs. It is necessary to propose new
heuristic-based candidate restrictions for each possible guest OS type by taking
advantage of the safety net provided by relaxed boost.

While debooster effectively reduces PLE events in guest VMs, coordinating
inter run queue priority is out of scope in this dissertation. Consequently, the
yielded vCPU can cause continuous PLE events because the boosted vCPU is
not prioritized over other threads if the boosted vCPU and the yielded vCPU are
not in the same run queue, but this is necessary to maintain system fairness. As
shown in this dissertation, since the host Linux scheduler does not distinguish
between vCPUs and other threads, the KVM vCPU scheduler should have more
fine-grained vCPU management to consider the possibility of that the boosted
vCPUs are not scheduled.

For further vCPU security enhancement, dividing emulation contexts into
the finer ones and pruning a legitimate set of instructions for each fine-grained
context is also an interesting approach. In particular, if FWinst is installed in
PaaS (Platform-as-a-Service) clouds, the hypervisor can make more assumptions

73

CHAPTER 4. CONCLUSION

about guest OSes, enabling us to prepare fine-tuned contexts for each guest OS.
This would enhance the protection against vulnerable emulators.

Additionally, FWinst shows room for evolution in hardware virtualization
support to prevent cross-modifying code attacks. If hardware support can
uniquely determine the instruction that caused the VMExit, FWinst can build
a legitimate instruction set containing only one instruction. This is the min-
imum and ideal case of the attack surface, which means attackers must cause
VMExit with instructions that can exploit vulnerabilities in the instruction em-
ulator. Since the instructions used in attacks are typically not emulated with the
processor’s full-fledged support for virtualization turned on, as shown in Sec-
tion 3.4.1, the minimum attack surface model improves the security of commod-
ity hypervisors.

74

Bibliography

[1] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka,
and D.-M. Popa. Firecracker: Lightweight virtualization for serverless
applications. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 419–434, Santa Clara, CA, Feb. 2020.
USENIX Association.

[2] J. Ahn, C. H. Park, T. Heo, and J. Huh. Accelerating critical os services
in virtualized systems with flexible micro-sliced cores. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[3] J. Ahn, C. H. Park, and J. Huh. Micro-sliced virtual processors to hide
the effect of discontinuous cpu availability for consolidated systems. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-47, page 394–405, USA, 2014. IEEE Computer So-
ciety.

[4] J. R. Alexander Tereshkin. Bluepilling the xen hypervisor. Black Hat USA,
2008.

[5] AMD. AMD Secure Encrypted Virtualization (SEV). September 2023.

[6] AMD. AMD64 architecture programmer’s manual volume 2: System pro-
gramming. White paper, AMD, 2006.

[7] N. Amit, D. Tsafrir, A. Schuster, A. Ayoub, and E. Shlomo. Virtual CPU
Validation. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 311–327, New York, NY, USA, 2015. ACM.

75

BIBLIOGRAPHY

[8] N. Amit, D. Tsafrir, A. Schuster, A. Ayoub, and E. Shlomo. Virtual cpu
validation. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, page 311–327, New York, NY, USA, 2015. Association
for Computing Machinery.

[9] N. Amit and M. Wei. The design and implementation of hyperupcalls. In
2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 97–112,
Boston, MA, July 2018. USENIX Association.

[10] Apache. ab - Apache HTTP server benchmarking tool. https://
httpd.apache.org/docs/2.4/programs/ab.html, 2017.

[11] A. Arcangeli. Using Linux as Hypervisor with KVM. https:
//indico.cern.ch/event/39755/attachments/
797208/1092716/slides.pdf, 2008.

[12] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE: Secure linux containers
with intel SGX. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 689–703, Savannah, GA, Nov. 2016.
USENIX Association.

[13] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky. Hyper-
sentry: Enabling stealthy in-context measurement of hypervisor integrity.
In Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security, CCS ’10, page 38–49, New York, NY, USA, 2010. Association
for Computing Machinery.

[14] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an
untrusted cloud with haven. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14), pages 267–283, Broomfield, CO,
Oct. 2014. USENIX Association.

[15] P. Bonzini. KVM: x86 emulator: emulate MOVAPS and MOVAPD SSE in-
structions. Linux Kernel Mailing List. https://lkml.org/lkml/
2014/3/17/384, 2014.

76

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://indico.cern.ch/event/39755/attachments/797208/1092716/slides.pdf
https://indico.cern.ch/event/39755/attachments/797208/1092716/slides.pdf
https://indico.cern.ch/event/39755/attachments/797208/1092716/slides.pdf
https://lkml.org/lkml/2014/3/17/384
https://lkml.org/lkml/2014/3/17/384

BIBLIOGRAPHY

[16] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy. Self-service
cloud computing. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, page 253–264, New York, NY, USA,
2012. Association for Computing Machinery.

[17] C. Cesarano, M. Cinque, D. Cotroneo, L. De Simone, and G. Farina. Iris:
a record and replay framework to enable hardware-assisted virtualization
fuzzing. In 2023 53rd Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pages 389–401, 2023.

[18] C. che Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A practical library
OS for unmodified applications on SGX. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 645–658, Santa Clara, CA, July 2017.
USENIX Association.

[19] J. Chen, D. Li, Z. Mi, Y. Liu, B. Zang, H. Guan, and H. Chen. Security and
performance in the delegated user-level virtualization. In 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 23),
pages 209–226, Boston, MA, July 2023. USENIX Association.

[20] L. Cheng, J. Rao, and F. C. M. Lau. Vscale: Automatic and efficient pro-
cessor scaling for smp virtual machines. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys ’16, New York, NY,
USA, 2016. Association for Computing Machinery.

[21] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. Scalable address spaces
using rcu balanced trees. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS XVII, page 199–210, New York, NY, USA, 2012.
Association for Computing Machinery.

[22] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P. Loscocco,
and A. Warfield. Breaking up is hard to do: Security and functionality in
a commodity hypervisor. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, SOSP ’11, page 189–202, New York,
NY, USA, 2011. Association for Computing Machinery.

77

BIBLIOGRAPHY

[23] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve. Nested
kernel: An operating system architecture for intra-kernel privilege sepa-
ration. In Proceedings of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS
’15, page 191–206, New York, NY, USA, 2015. Association for Computing
Machinery.

[24] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve. Nested
kernel: An operating system architecture for intra-kernel privilege sepa-
ration. SIGARCH Comput. Archit. News, 43(1):191–206, mar 2015.

[25] L. Deng, P. Liu, J. Xu, P. Chen, and Q. Zeng. Dancing with wolves: To-
wards practical event-driven vmm monitoring. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, VEE ’17, page 83–96, New York, NY, USA, 2017. Association for
Computing Machinery.

[26] Digital Ocean. The modern Droplet: how to choose the “right” VM for
business and personal use. https://www.digitalocean.com/
blog/how-to-choose-the-right-droplet-vm, 2021.

[27] DPDK Project. DPDK: the Data Plane Development Kit. https://
www.dpdk.org, 2022.

[28] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the Clouds:
A Study of Emerging Scale-out Workloads on Modern Hardware. In Proc.
17th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, page 37–48, 2012.

[29] P. Fonseca, X. Wang, and A. Krishnamurthy. Multinyx: A multi-level ab-
straction framework for systematic analysis of hypervisors. In Proceedings
of the Thirteenth EuroSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[30] T. Friebel and S. Biemueller. How to Deal with Lock Holder Preemption.
Xen Summit, 2008.

78

https://www.digitalocean.com/blog/how-to-choose-the-right-droplet-vm
https://www.digitalocean.com/blog/how-to-choose-the-right-droplet-vm
https://www.dpdk.org
https://www.dpdk.org

BIBLIOGRAPHY

[31] X. Ge, B. Niu, R. Brotzman, Y. Chen, H. Han, P. Godefroid, and W. Cui.
Hyperfuzzer: An efficient hybrid fuzzer for virtual cpus. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS ’21, page 366–378, New York, NY, USA, 2021. Association for
Computing Machinery.

[32] Google. crosvm - The Chrome OS Virtual Machine Monitor.
https://chromium.googlesource.com/chromiumos/
platform/crosvm/, 2022.

[33] Google. Compute Engine Documentation. https://cloud.
google.com/compute/docs/faq, 2024.

[34] R. Gouicem, D. Sprokholt, J. Ruehl, R. C. O. Rocha, T. Spink, S. Chakraborty,
and P. Bhatotia. Risotto: A dynamic binary translator for weak memory
model architectures. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, Volume 1, ASPLOS 2023, page 107–122, New York, NY, USA, 2022.
Association for Computing Machinery.

[35] A. Henderson, H. Yin, G. Jin, H. Han, and H. Deng. VDF: Targeted Evo-
lutionary Fuzz Testing of Virtual Devices. In International Symposium on
Research in Attacks, Intrusions, and Defenses, pages 3–25. Springer, 2017.

[36] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, 2022.

[37] Intel. Intel Software Guard Extensions (Intel SGX). https://www.
intel.com/content/www/us/en/architecture-and-
technology/software-guard-extensions.html, 2023.

[38] K. Ishiguro. [RFC PATCH 0/2] Mitigating Excessive Pause-Loop Exiting
in VM-Agnostic KVM. https://lore.kernel.org/all/
20210421150831.60133-1-kentaishiguro@sslab.
ics.keio.ac.jp/, 2021.

[39] X. Jiang and X. Wang. "out-of-the-box" monitoring of vm-based high-
interaction honeypots. In Proceedings of the 10th International Conference

79

https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://cloud.google.com/compute/docs/faq
https://cloud.google.com/compute/docs/faq
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://lore.kernel.org/all/20210421150831.60133-1-kentaishiguro@sslab.ics.keio.ac.jp/
https://lore.kernel.org/all/20210421150831.60133-1-kentaishiguro@sslab.ics.keio.ac.jp/
https://lore.kernel.org/all/20210421150831.60133-1-kentaishiguro@sslab.ics.keio.ac.jp/

BIBLIOGRAPHY

on Recent Advances in Intrusion Detection, RAID’07, page 198–218, Berlin,
Heidelberg, 2007. Springer-Verlag.

[40] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through vmm-
based "out-of-the-box" semantic view reconstruction. In Proceedings of
the 14th ACM Conference on Computer and Communications Security, CCS
’07, page 128–138, New York, NY, USA, 2007. Association for Computing
Machinery.

[41] S. Jin, J. Ahn, S. Cha, and J. Huh. Architectural support for secure virtu-
alization under a vulnerable hypervisor. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-44, page
272–283, New York, NY, USA, 2011. Association for Computing Machin-
ery.

[42] R. K T. Virtual cpu scheduling techniques for kernel based virtual ma-
chine (kvm). In 2013 IEEE International Conference on Cloud Computing in
Emerging Markets (CCEM), pages 1–6, 2013.

[43] N. A. Kamble. KVM: VMX: Support Unrestricted Guest feature. Linux Ker-
nel Mailing List. https://lkml.org/lkml/2009/8/16/41,
2009.

[44] N. A. Kamble. Unrestricted guest support in VMX. Xen.org mail-
ing list. http://old-list-archives.xenproject.org/
xen-devel/2009-05/msg01196.html, 2009.

[45] S. Kashyap, C. Min, and T. Kim. Scalability in the clouds! a myth or reality?
In Proceedings of the 6th Asia-Pacific Workshop on Systems, APSys ’15, New
York, NY, USA, 2015. Association for Computing Machinery.

[46] S. Kashyap, C. Min, and T. Kim. Scaling guest OS critical sections with
eCS. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages
159–172, Boston, MA, July 2018. USENIX Association.

[47] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Nohype: Virtualized cloud
infrastructure without the virtualization. SIGARCH Comput. Archit. News,
38(3):350–361, jun 2010.

80

https://lkml.org/lkml/2009/8/16/41
http://old-list-archives.xenproject.org/xen-devel/2009-05/msg01196.html
http://old-list-archives.xenproject.org/xen-devel/2009-05/msg01196.html

BIBLIOGRAPHY

[48] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Nohype: Virtualized cloud
infrastructure without the virtualization. In Proceedings of the 37th An-
nual International Symposium on Computer Architecture, ISCA ’10, page
350–361, New York, NY, USA, 2010. Association for Computing Machin-
ery.

[49] O. Kilic, S. Doddamani, A. Bhat, H. Bagdi, and K. Gopalan. Overcoming vir-
tualization overheads for large-vcpu virtual machines. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), pages 369–380, 2018.

[50] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. Demand-based coordinated
scheduling for smp vms. In Proceedings of the Eighteenth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, page 369–380, New York, NY, USA, 2013. Association
for Computing Machinery.

[51] T. Kim, C. H. Park, J. Huh, and J. Ahn. Reconciling time slice conflicts
of virtual machines with dual time slice for clouds. IEEE Transactions on
Parallel and Distributed Systems, 31(10):2453–2465, 2020.

[52] S. King and P. Chen. Subvirt: implementing malware with virtual ma-
chines. In 2006 IEEE Symposium on Security and Privacy (S&P’06), pages
14 pp.–327, 2006.

[53] A. Kopytov. sysbench. https://github.com/akopytov/
sysbench, 2017.

[54] K. Kortchinsky. Cloudburst: Hacking 3d (and breaking out of vmware).
Black Hat USA, 2009.

[55] KVM. KVM. http://www.linux-kvm.org/page/Main_
Page, 2016.

[56] M. Li, W. Zang, K. Bai, M. Yu, and P. Liu. Mycloud: Supporting user-
configured privacy protection in cloud computing. In Proceedings of the
29th Annual Computer Security Applications Conference, ACSAC ’13, page
59–68, New York, NY, USA, 2013. Association for Computing Machinery.

81

https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page

BIBLIOGRAPHY

[57] S.-W. Li, J. S. Koh, and J. Nieh. Protecting cloud virtual machines from
hypervisor and host operating system exploits. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1357–1374, Santa Clara, CA, Aug.
2019. USENIX Association.

[58] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui. Formally verified memory
protection for a commodity multiprocessor hypervisor. In 30th USENIX
Security Symposium (USENIX Security 21), pages 3953–3970. USENIX As-
sociation, Aug. 2021.

[59] W. Li. KVM: X86: Add Paravirt TLB Shootdown. https://lwn.net/
Articles/740363/, 2017.

[60] W. Li. [PATCH] KVM: Boost vCPU candidiate in user mode which is de-
livering interrupt. https://lore.kernel.org/kvm/CANRm+
Cy-78UnrkX8nh5WdHut2WW5NU=UL84FRJnUNjsAPK+Uww@
mail.gmail.com/T/, 2021.

[61] Q. Liu, F. Toffalini, Y. Zhou, and M. Payer. Videzzo: Dependency-aware
virtual device fuzzing. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 3228–3245, 2023.

[62] Z. Liu, J. Lee, J. Zeng, Y. Wen, Z. Lin, and W. Shi. Cpu transparent pro-
tection of os kernel and hypervisor integrity with programmable dram. In
Proceedings of the 40th Annual International Symposium on Computer Ar-
chitecture, ISCA ’13, page 392–403, New York, NY, USA, 2013. Association
for Computing Machinery.

[63] LLVMpipe - The Mesa 3D Graphics Library. https://www.mesa3d.
org/llvmpipe.html, 2023.

[64] W. Long. qspinlock: a 4-byte queue spinlock with pv support. https:
//lwn.net/Articles/597672/, may 2014.

[65] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis.
Path-exploration lifting: Hi-fi tests for lo-fi emulators. In Proceedings of

82

https://lwn.net/Articles/740363/
https://lwn.net/Articles/740363/
https://lore.kernel.org/kvm/CANRm+Cy-78UnrkX8nh5WdHut2WW5NU=UL84FRJnUNjsAPK+Uww@mail.gmail.com/T/
https://lore.kernel.org/kvm/CANRm+Cy-78UnrkX8nh5WdHut2WW5NU=UL84FRJnUNjsAPK+Uww@mail.gmail.com/T/
https://lore.kernel.org/kvm/CANRm+Cy-78UnrkX8nh5WdHut2WW5NU=UL84FRJnUNjsAPK+Uww@mail.gmail.com/T/
https://www.mesa3d.org/llvmpipe.html
https://www.mesa3d.org/llvmpipe.html
https://lwn.net/Articles/597672/
https://lwn.net/Articles/597672/

BIBLIOGRAPHY

the Seventeenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVII, page 337–348,
New York, NY, USA, 2012. Association for Computing Machinery.

[66] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. Comput. Syst.,
9(1):21–65, feb 1991.

[67] Z. Mi, D. Li, H. Chen, B. Zang, and H. Guan. (mostly) exitless VM pro-
tection from untrusted hypervisor through disaggregated nested virtual-
ization. In 29th USENIX Security Symposium (USENIX Security 20), pages
1695–1712. USENIX Association, Aug. 2020.

[68] D. G. Murray, G. Milos, and S. Hand. Improving xen security through
disaggregation. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments, VEE ’08, page
151–160, New York, NY, USA, 2008. Association for Computing Machin-
ery.

[69] T. D. Ngoc, B. Teabe, A. Tchana, G. Muller, and D. Hagimont. Mitigat-
ing vulnerability windows with hypervisor transplant. In Proceedings of
the Sixteenth European Conference on Computer Systems, EuroSys ’21, page
162–177, New York, NY, USA, 2021. Association for Computing Machin-
ery.

[70] A. Nguyen, H. Raj, S. Rayanchu, S. Saroiu, and A. Wolman. Delusional
boot: Securing hypervisors without massive re-engineering. In Proceed-
ings of the 7th ACM European Conference on Computer Systems, EuroSys
’12, page 141–154, New York, NY, USA, 2012. Association for Computing
Machinery.

[71] J. Ogasawara and K. Kono. Nioh: Hardening the hypervisor by filtering
illegal i/o requests to virtual devices. In Proceedings of the 33rd Annual
Computer Security Applications Conference, ACSAC ’17, page 542–552, New
York, NY, USA, 2017. Association for Computing Machinery.

[72] OpenMP. OpenMP. https://www.openmp.org/, 2012-2023.

83

https://www.openmp.org/

BIBLIOGRAPHY

[73] J. Ouyang and J. R. Lange. Preemptable ticket spinlocks: Improving con-
solidated performance in the cloud. In Proceedings of the 9th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE ’13, page 191–200, New York, NY, USA, 2013. Association for Com-
puting Machinery.

[74] J. Ouyang, J. R. Lange, and H. Zheng. Shoot4u: Using vmm assists to
optimize tlb operations on preempted vcpus. In Proceedings of The12th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, VEE ’16, page 17–23, New York, NY, USA, 2016. Association for
Computing Machinery.

[75] G. Pan, X. Lin, X. Zhang, Y. Jia, S. Ji, C. Wu, X. Ying, J. Wang, and Y. Wu. V-
shuttle: Scalable and semantics-aware hypervisor virtual device fuzzing.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’21, page 2197–2213, New York, NY, USA, 2021.
Association for Computing Machinery.

[76] Phoronix Media. Phoronix Test Suite - Linux Testing & Benchmarking
Platform, Automated Testing, Open-Source Benchmarking. https://
www.phoronix-test-suite.com/, 2023.

[77] M. Righini. Enabling Intel virtualization technology features and benefits.
White paper, Intel, 2010.

[78] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention of kernel rootk-
its with vmm-based memory shadowing. In Proceedings of the 11th Inter-
national Symposium on Recent Advances in Intrusion Detection, RAID ’08,
page 1–20, Berlin, Heidelberg, 2008. Springer-Verlag.

[79] M. Russinovich, N. Govindaraju, M. Raghuraman, D. Hepkin, J. Schwartz,
and A. Kishan. Virtual machine preserving host updates for zero day
patching in public cloud. In Proceedings of the Sixteenth European Con-
ference on Computer Systems, EuroSys ’21, page 114–129, New York, NY,
USA, 2021. Association for Computing Machinery.

84

https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/

BIBLIOGRAPHY

[80] S. Schildermans, J. Shan, K. Aerts, J. Jackrel, and X. Ding. Virtualization
Overhead of Multithreading in X86 State-of-the-Art & Remaining Chal-
lenges. IEEE Transactions on Parallel and Distributed Systems, 32(10):2557–
2570, 2021.

[81] S. Schumilo, C. Aschermann, A. Abbasi, S. Wör-ner, and T. Holz. Nyx:
Greybox hypervisor fuzzing using fast snapshots and affine types. In
30th USENIX Security Symposium (USENIX Security 21), pages 2597–2614.
USENIX Association, Aug. 2021.

[82] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner, and T. Holz. HYPER-
CUBE: High-Dimensional Hypervisor Fuzzing. In NDSS Symposium 2020,
2020.

[83] M. Senuki, K. Ishiguro, and K. Kono. Nioh-pt: Virtual i/o filtering for
agile protection against vulnerability windows. In Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing, SAC ’23, page 1293–1300,
New York, NY, USA, 2023. Association for Computing Machinery.

[84] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A tiny hypervisor to
provide lifetime kernel code integrity for commodity oses. In Proceedings
of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles,
SOSP ’07, page 335–350, New York, NY, USA, 2007. Association for Com-
puting Machinery.

[85] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A tiny hypervisor to
provide lifetime kernel code integrity for commodity oses. SIGOPS Oper.
Syst. Rev., 41(6):335–350, oct 2007.

[86] J. Shan, X. Ding, and N. Gehani. Apples: Efficiently handling spin-lock
synchronization on virtualized platforms. IEEE Transactions on Parallel
and Distributed Systems, 28(7):1811–1824, 2017.

[87] L. Shi, Y. Wu, Y. Xia, N. Dautenhahn, H. Chen, B. Zang, and J. Li. Decon-
structing xen. In NDSS Symposium 2017, 2017.

[88] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie,
M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo,

85

BIBLIOGRAPHY

and K. Kato. Bitvisor: A thin hypervisor for enforcing i/o device security.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’09, page 121–130, New York, NY,
USA, 2009. Association for Computing Machinery.

[89] X. Song, J. Shi, H. Chen, and B. Zang. Schedule processes, not vcpus. In
Proceedings of the 4th Asia-Pacific Workshop on Systems, APSys ’13, New
York, NY, USA, 2013. Association for Computing Machinery.

[90] U. Steinberg and B. Kauer. Nova: A microhypervisor-based secure virtu-
alization architecture. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys ’10, page 209–222, New York, NY, USA, 2010.
Association for Computing Machinery.

[91] O. Sukwong and H. S. Kim. Is co-scheduling too expensive for smp vms? In
Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11, page
257–272, New York, NY, USA, 2011. Association for Computing Machinery.

[92] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating the hypervisor
attack surface for a more secure cloud. In Proceedings of the 18th ACMCon-
ference on Computer and Communications Security, CCS ’11, page 401–412,
New York, NY, USA, 2011. Association for Computing Machinery.

[93] J. Szefer and R. B. Lee. Architectural support for hypervisor-secure virtu-
alization. SIGPLAN Not., 47(4):437–450, mar 2012.

[94] J. Szefer and R. B. Lee. Architectural support for hypervisor-secure vir-
tualization. In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS XVII, page 437–450, New York, NY, USA, 2012. Association for
Computing Machinery.

[95] B. Teabe, V. Nitu, A. Tchana, and D. Hagimont. The lock holder and the
lock waiter pre-emption problems: Nip them in the bud using informed
spinlocks (i-spinlock). In Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys ’17, page 286–297, New York, NY, USA,
2017. Association for Computing Machinery.

86

BIBLIOGRAPHY

[96] B. Teabe, A. Tchana, and D. Hagimont. Application-specific quantum for
multi-core platform scheduler. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

[97] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. Towards scalable
multiprocessor virtual machines. In Proceedings of the 3rd Conference on
Virtual Machine Research And Technology Symposium - Volume 3, VM’04,
page 4, USA, 2004. USENIX Association.

[98] Unix Bench. https://github.com/kdlucas/byte-
unixbench, 2017.

[99] R. van Riel. directed yield for Pause Loop Exiting. https://lwn.
net/Articles/421575/, 2011.

[100] VMware. VMware vSphere 4: The CPU Scheduler in VMware ESX 4.1, 2010.

[101] Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide life-
time hypervisor control-flow integrity. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy, SP ’10, page 380–395, USA, 2010. IEEE
Computer Society.

[102] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel rootkits with
lightweight hook protection. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09, page 545–554, New
York, NY, USA, 2009. Association for Computing Machinery.

[103] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating commodity hosted hy-
pervisors with hyperlock. In Proceedings of the 7th ACM European Con-
ference on Computer Systems, EuroSys ’12, page 127–140, New York, NY,
USA, 2012. Association for Computing Machinery.

[104] P. M. Wells, K. Chakraborty, and G. S. Sohi. Hardware support for spin
management in overcommitted virtual machines. In Proceedings of the 15th
International Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’06, page 124–133, New York, NY, USA, 2006. Association
for Computing Machinery.

87

https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://lwn.net/Articles/421575/
https://lwn.net/Articles/421575/

BIBLIOGRAPHY

[105] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic adaptive scheduling for vir-
tual machines. In Proceedings of the 20th International Symposium on High
Performance Distributed Computing, HPDC ’11, page 239–250, New York,
NY, USA, 2011. Association for Computing Machinery.

[106] R. Wojtczuk. Subverting the xen hypervisor. Black Hat USA, 2008.

[107] C. Wu, Z. Wang, and X. Jiang. Taming hosted hypervisors with (mostly)
deprivileged execution. In NDSS Symposium 2013, 2013.

[108] S. Wu, Z. Xie, H. Chen, S. Di, X. Zhao, and H. Jin. Dynamic acceleration
of parallel applications in cloud platforms by adaptive time-slice control.
In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 343–352, 2016.

[109] Y. Wu, Y. Liu, R. Liu, H. Chen, B. Zang, and H. Guan. Comprehensive vm
protection against untrusted hypervisor through retrofitted amd memory
encryption. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 441–453, 2018.

[110] Xenproject.org Security Team. Xen Security Advisory. https://
xenbits.xen.org/xsa/, 2017.

[111] Y. Xia, Y. Liu, and H. Chen. Architecture support for guest-transparent vm
protection from untrusted hypervisor and physical attacks. In 2013 IEEE
19th International Symposium on High Performance Computer Architecture
(HPCA), pages 246–257, 2013.

[112] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor: Retrofitting protec-
tion of virtual machines in multi-tenant cloud with nested virtualization.
In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, page 203–216, New York, NY, USA, 2011. Association
for Computing Machinery.

[113] F. Zhang, J. Wang, K. Sun, and A. Stavrou. Hypercheck: A hardware-
assistedintegrity monitor. IEEE Transactions on Dependable and Secure
Computing, 11(4):332–344, 2014.

88

https://xenbits.xen.org/xsa/
https://xenbits.xen.org/xsa/

BIBLIOGRAPHY

[114] L. Zhang, Y. Chen, Y. Dong, and C. Liu. Lock-visor: An efficient transi-
tory co-scheduling for mp guest. In 2012 41st International Conference on
Parallel Processing, pages 88–97, 2012.

[115] X. Zhang, X. Zheng, Z. Wang, H. Yang, Y. Shen, and X. Long. High-Density
Multi-Tenant Bare-Metal Cloud. In Proc. 25th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems, pages 483–
495, 2020.

[116] Y. Zhao, J. Rao, and Q. Yi. Characterizing and optimizing the performance
of multithreaded programs under interference. In Proceedings of the 2016
International Conference on Parallel Architectures and Compilation, PACT
’16, page 287–297, New York, NY, USA, 2016. Association for Computing
Machinery.

[117] Y. Zhao, K. Suo, L. Cheng, and J. Rao. Scheduler activations for
interference-resilient smp virtual machine scheduling. In Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference, Middleware ’17, page
222–234, New York, NY, USA, 2017. Association for Computing Machin-
ery.

89

	Introduction
	Motivation
	Dissertation Contributions
	Mitigating Performance Issue of CPU Virtualization
	Mitigating Security Issue of CPU Virtualization

	Organization

	Mitigating excessive virtual CPU spinning
	Background and Motivation
	Excessive Virtual CPU Spinning
	Revisiting VM-agnostic KVM vCPU Scheduler
	CPU Throttling

	Analysis of KVM Behaviors
	Analysis of PLE Events
	Scheduler Mismatch
	Issues in Candidate vCPU Selection

	Design
	vCPU Hierarchical Debooster
	Candidate Selection Improvement

	Implementation
	Evaluation
	Experimental Settings
	PLE Reduction
	Benchmark Performance Improvement
	vCPU Hierarchical Debooster Effectiveness
	IPI-aware Boost Effectiveness
	Relaxed Boost Effectiveness
	Effectiveness for VMs of different numbers of vCPUs

	Related work
	Summary

	Mitigating vulnerabilities in instruction emulation
	Background
	Intel VT-x Extension
	Instruction Emulation in Hypervisors
	Evolution of Intel VT-x

	Threat Model and Vulnerability Analysis
	Threat Model
	Vulnerability Analysis

	Design and Implementation
	Overall Architecture
	Identifying Emulation Contexts
	Legitimate Instructions
	Implementation

	Experiments
	Security Analysis
	Runtime Overhead

	Related work
	Protecting Virtual Machines
	Hardening Hypervisors
	Hypervisor Testing

	Summary

	Conclusion
	Contribution Summary
	Future Direction

	Bibliography

