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Abstract

This thesis is a summary of the works of the author. In arithmetic geometry, one of

the fundamental problems is whether a given algebraic variety has a rational point. In

this thesis, we examine the proportions in certain families of algebraic varieties that have

rational points.

Part 1 concerns the proportion of everywhere locally soluble diagonal hypersurfaces.

Bright, Browning, and Loughran showed that the proportion of everywhere locally soluble

diagonal hypersurfaces which have fixed degree and dimension is equal to the product of

the proportions of Qv-soluble ones where v runs over all places of Q. We give a strategy

for calculating the proportions of Qv-soluble diagonal hypersurfaces for each degree and

dimension. As a corollary, we also obtain approximate values of proportions of soluble

ones for each dimension when they are quadratic and cubic under some assumptions. The

contents of the first part are based on the joint work [30] with Yoshinosuke Hirakawa.

Part 2 concerns the proportion of genus one soluble curves defined by integer binary

quartic forms. Bhargava and Bhargava–Ho determined the average sizes of n-Selmer

groups in some families of elliptic curves. Consequently, they estimated the proportions

of soluble curves defined by binary quartic forms and their subfamilies under the condition

of everywhere locally soluble. In this thesis, for smaller subfamilies than that of Bhargava

and Bhargava–Ho, we estimate the proportions of soluble curves under the condition of

everywhere locally soluble. A part of these results can be regarded as binary quartic

analogs of Browning’s result that the proportion of soluble genus one curves defined by

certain integer ternary cubic forms is positive. The contents of the second part are based

on the joint work [33] with Yashuhiro Ishitsuka.

Although our main topic in this thesis is rational points on algebraic varieties, we also

discuss the integer points on certain varieties called periodic continued fraction (PCF

for short) varieties in Part 3. A periodic integer continued fraction (PICF for short) is a

generalization of a periodic regular continued fraction. It is classical that a periodic regular

continued fraction expansion of
√
m is unique. On the other hand, a PICF expansion of

√
m is not unique in general. Brock, Elkies, and Jordan determined all (1, 1) and (1, 2)-

type PICF expansions of
√
2. Encouraged by their results, we determined all (1, l)-type

PICF expansions of
√
m for l = 1, 2, 3 and positive integers m. To prove our results, it

is essential to determine necessary and sufficient conditions for existing non-degenerate

integer points on (1, l)-type PCF varieties for
√
m. The contents of the third part are

based on the joint work with Hyuga Yoshizaki.
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Part 0

Introduction





1. Hilbert’s 10th problem

In number theory, one of the fundamental problems is to determine all rational solutions

or all integer solutions of algebraic equations. This problem is sometimes called the

Diophantine problem. Here, “Diophantine” comes from Diophantus of Alexandria who

was a mathematician of the 3rd century.

As a problem related to the Diophantine problem, Hilbert [29] posed the following

problem called the Hilbert’s 10th problem:

Problem 1.1. Consider a polynomial f(x1, . . . , xn) with integer coefficients. Find an

algorithm to determine whether an equation

f(x1, . . . , xn) = 0. (1.1)

has a solution in Z or Q.

Matijasevič [46] solved Problem 1.1 for Z negatively. In other words, he proved that

there exists no algorithm which decides whether or not an equation (1.1) has a solution in

Z. On the other hand, Problem 1.1 for Q is still an open problem. Hence many researchers

have studied this problem for polynomials satisfying some conditions.

Note that Problem 1.1 can be regarded as a problem in algebraic geometry. Let V be

a variety defined by f(x1, . . . , xn) = 0. Then Problem 1.1 is equivalent to finding an

algorithm to determine whether the set of rational points or integer points on V is empty

or not. In this thesis, we focus on the problem whether rational points or integer points

exist on certain algebraic varieties. More explicitly, we examine the proportions in certain

families of algebraic varieties that have rational points.

2. Existing rational points on projective varieties

Let V be a projective variety defined over Q. In this section, we consider the problem

whether V has a rational point or not. First, we introduce the local-global principle. If

it holds, it gives one of the effective methods for determining whether V has a rational

point or not. After that, we consider the arithmetic statistic for the local-global principle

which is related to our main theorems in Part 1 and Part 2.

2.1. Local-global principle. In this subsection, we explain the local-global principle

and some examples which satisfy this principle and some examples which do not satisfy

this principle. We say that V is everywhere locally soluble if it satisfies V (R) 6= ∅ and

V (Qp) 6= ∅ for all rational primes p. Then the local-global principle is the following.
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Definition 2.1 (local-global principle). We say that V satisfies the local-global principle

if

V is everywhere locally soluble ⇐⇒ V (Q) 6= ∅

holds.

If V satisfies the local-global principle, we can examine the existence of a rational point

on V easily. More explicitly, the intermediate value theorem is helpful to check V (R) 6= ∅
and Hensel’s lemma (see Proposition 6.1) is helpful to check V (Qp) 6= ∅.
The local-global principle holds for some specific classes of varieties. For example, the

following theorem holds.

Theorem 2.2 (Hasse and Minkowski, cf. Serre [59, Chapter IV, Theorem 8]). Every

quadratic hypersurface of Pn defined over Q satisfies the local-global principle.

Later, Birch [7] proved that complete intersections that have sufficiently large dimensions

compared with their degrees satisfy the local-global principle by using a certain analytic

method, called the Hardy–Littlewood circle method. Browning and Heath-Brown gener-

alized this theorem to smooth and geometrically integral varieties.

Theorem 2.3 (Browning and Heath-Brown [14, Theorem 1.1]). Let X ⊂ Pn be a

smooth and geometrically integral variety defined over Q. If the condition

dim(X) ≥ (deg(X)− 1)2deg(X) − 1,

holds for X, then X satisfies the local-global principle.

In addition to the above varieties, many varieties satisfy the local-global principle (cf.

Skorobogatov [64, Theorem 5.1.1]).

On the other hand, many varieties also do not satisfy the local-global principle. For

example, we have the following:

Theorem 2.4 (Selmer [58]). The curve in P2 given by 3x3 + 4y3 + 5z3 = 0 does not

satisfy the local-global principle.

Theorem 2.5 (Cassels and Guy [17]). The surface in P3 given by 5x3 + 12y3 + 9z3 +

10w3 = 0 does not satisfy the local-global principle.
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Theorem 2.6 (Birch and Swinnerton-Dyer [8]). The surface in P4 given by{
zw = x2 − 5y2

(z + w)(z + 2w) = x2 − 5v2

does not satisfy the local-global principle.

Theorem 2.7 (Fujiwara [25]). The curve in P2 given by (x3+5y3)(x2+xy+y2)−17z5 = 0

does not satisfy the local-global principle.

In 1970, Manin [44] proposed a criterion called the Brauer–Manin obstruction for verify-

ing the local-global principle geometrically. After that, many researchers have constructed

infinitely many counterexamples for the local-global principle which have the Brauer–

Manin obstruction (cf. Colliot-Thélène and Skorobogatov [19, Section 13.3.3]). Although

Skorobogatov [63] find a counterexample for the local-global principle which does not

have the Brauer–Manin obstruction, it is conjectured by many experts that the Brauer–

Manin obstruction explains whether the local-global principle holds or not for quite a lot

of varieties (cf. Colliot-Thélène and Swinnerton-Dyer [20, p. 49], Manin [45, Chapter VI],

Poonen [54, Chapter 8], Poonen and Voloch [56, Conjecture 3.2 and Appendix A]).

2.2. Arithmetic statistic for the local-global principal. In section 2.1, we dis-

cussed the local-global principle for each variety. Recently, many researchers studied the

local-global principle for a family of algebraic varieties. More explicitly, for a given family

of algebraic varieties, we ask how many varieties in its family satisfy the local-global prin-

ciple. Poonen and Voloch [56] gave a philosophy which the proportion of soluble algebraic

varieties is equal to the product of the proportions of everywhere locally soluble ones for a

family of algebraic varieties satisfying some suitable conditions. In the following, we will

explain their philosophy in detail.

Let n, k ∈ Z≥2 and Z[x0, . . . , xn]k be the set of homogeneous polynomials in Z[x0, . . . , xn]

of degree k. We set MQ = {p : primes} ∪ {∞} and Q∞ = R. For f ∈ Z[x0, . . . , xn]k,

let Vf be a hypersurface defined by f = 0 and the height h(f) be the maximum of the

absolute values of the coefficients of f . For H ∈ R≥0, define

δglob(H) =
#{f ∈ Z[x0, . . . , xn]k | h(f) ≤ H, Vf (Q) 6= ∅}

#{f ∈ Z[x0, . . . , xn]k | h(f) ≤ H}
, (2.1)

δloc(H) =
#{f ∈ Z[x0, . . . , xn]k | h(f) ≤ H, Vf (Qv) 6= ∅ for all v ∈ MQ}

#{f ∈ Z[x0, . . . , xn]k | h(f) ≤ H}
. (2.2)

Then Poonen and Voloch conjectured the following.
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Conjecture 2.8 (Poonen and Voloch [56, Conjecture 2.2]).

(1) If k > n+ 1, then lim
H→∞

δglob(H) = 0.

(2) If k < n+ 1 and (n, k) 6= (2, 2)a, then lim
H→∞

δglob(H) = c for some c ∈ R>0.

Note that (2) in Conjecture 2.8 is proved in 2023 by Browning, Le-Boudec, and Sawin [15,

Theorem 1.1] except for (n, k) = (3, 3). We also note that for n, k ≥ 2 with (n, k) 6= (2, 2),

Poonen and Voloch [56, Theorem 3.6] showed that limH→∞ δloc(H) exists and is given by

lim
H→∞

δloc(H) =
∏

v∈MQ

δv,

where δv is the proportion of polynomials in Z[x0, . . . , xn]k with a nontrivial zero over Qv

(see §3 for the detail of the definition). Hence (2) in Conjecture 2.8 is equivalent to

lim
H→∞

δglob(H) =
∏

v∈MQ

δv

under the condition on the Brauer–Manin obstruction for the local-global principle.

Although Poonen and Voloch gave the conjecture for certain families of hypersurfaces,

many experts predicted or found similar phenomena for other families in e.g. Bhargava [3],

Browning [11], Fisher–Ho–Park [24] (see also the table in Loughran, Rome, and Sofos [43,

pp. 2-3]).

In this thesis, there are two topics about the proportions in certain families of alge-

braic varieties. The first topic is the proportions of everywhere locally soluble diagonal

hypersurfaces. More explicitly, we give the explicit method to calculate the proportions

of diagonal hypersurfaces which have Qp-rational points for all rational primes p. We will

explain this topic in §3. The second topic is the proportions of genus one soluble curves

defined by certain binary quartic forms. More explicitly, we estimate the proportions of

soluble binary quartic forms in locally soluble ones. We will explain this topic in §4.

3. The proportion of everywhere locally soluble diagonal hypersurfaces

In part 1 of this thesis, we consider the proportion of everywhere locally soluble diagonal

hypersurfaces.

A family of diagonal hypersurfaces of Pn is a subfamily of hypersurfaces which appeared

in §2.2. Moreover, diagonal hypersurfaces of Pn have attracted special interests because

of their remarkable arithmetic properties. For example, although cubic hypersurfaces of

aIf (k, n) = (2, 2), Serre [60] showed that lim
H→∞

δglob(H) = lim
H→∞

δloc(H) = 0.
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Pn (n ≥ 1) may not have Qv-rational points in general, Lewis [41, Theorem 2] proved

that diagonal cubic hypersurfaces of Pn (n ≥ 6) have Qv-rational points for every v ∈ MQ.

Moreover, Baker [2, Theorem 1] proved that diagonal cubic hypersurface of Pn (n ≥ 6) also

have Q-rational points. For more classical works on Q-rational points on diagonal cubic

hypersurfaces of Pn, see e.g. Davenport [21,22], Hardy and Littlewood [27], Hua [32].

Before stating our main results, let us explain some simple applications. Fix n, k ∈ Z≥2.

For each a = [a0 : · · · : an] ∈ Pn(Q), let Xk
a be a diagonal hypersurfaces defined by∑n

i=0 a
′
ix

k
i = 0 where a′0, . . . , a

′
n are integers such that

[a′0 : · · · : a′n] = [a0 : · · · : an]

and gcd(a′0, . . . , a
′
n) = 1. We set

h([a0 : · · · : an]) = max
i

{|a′i|}

with the Euclidean norm |·| on R. We define

ρ(n, k) := lim
H→∞

#
{
a ∈ Pn(Q)

∣∣ h(a) < H and Xk
a(Q) 6= ∅

}
#
{
a ∈ Pn(Q)

∣∣ h(a) < H
}

if the limit exists.

In the following, we refer to hypersurfaces of Pn as (n− 1)-folds for n ≥ 2.

Theorem 3.1 ([30, Theorem 1.1]).

(1) For k = 2, we have the following table.

Table 1. approximate values of ρ(n, 2)
n 2 3 ≥ 4

ρ(n, 2) 0 0.8268 . . . 1− 2−n

(2) For k = 3, we have the following table under the assumption that if 3 ≤ n ≤ 5,

then the Brauer-Manin obstruction is the only obstruction to the local-global

principle for diagonal cubic (n− 1)-folds.

Table 2. approximate values of ρ(n, 3)
n 2 3 4 5 ≥ 6

ρ(n, 3) 0 0.8964 . . . 0.9965 . . . 0.9999 . . . 1

Some values in the above tables have been already known in the literature (e.g. Baker [2],

Bright, Browning, and Loughran [9], Browning and Dietmann [13], Serre [59]). For

7



example, the results for ρ(n, 3) (n ≥ 6) follow immediately from Baker’s result [2, Theorem

1] mentioned above. On the other hand, the author could not find any explicit references

which contain the values ρ(3, 2), ρ(4, 3), ρ(5, 3). For the last two values, ρ(4, 3) and ρ(5, 3),

it should be remarked that there is no known cubic (n− 1)-fold (n = 4, 5) which violates

the local-global principle. This fact is contrastive with the fact that there are several

counterexamples to the local-global principle for n = 2, 3 (e.g. Theorems 2.4 and 2.5).

For the proof of Theorem 3.1, we will use diagonal analogy of Poonen and Voloch’s

philosophy. We define

ρloc(n, k) = lim
H→∞

#
{
a ∈ Pn(Q)

∣∣ h(a) < H and Xk
a(Qv) 6= ∅ for all v ∈ MQ

}
#
{
a ∈ Pn(Q)

∣∣ h(a) < H
}

if the limit exists. Then Browning showed the following theorem.

Theorem 3.2 (a special case of Browning [11, Theorem 1.4]). Assume that the Brauer-

Manin obstruction is the only obstruction to the local-global principle for Xk
a. Then we

have

ρ(n, k) = ρloc(n, k)

for each n, k ∈ Z≥2 with n ≥ k.

Note that Brüdern and Dietmann [16, Theorem 1.3] also showed Theorem 3.2 for families

of diagonal hypersurfaces Xk
a with k ≥ 4 and n ≥ 3k + 2 without any assumption on the

Brauer–Manin obstruction (see also Remark 9.2).

We also note that the proportions ρ(n, k) and ρloc(n, k) can be defined by using the

height h like (2.1) and (2.2). In other words, we consider the following proportions

ρ′(n, k) := lim
H→∞

#
{
a = (a0, . . . , an) ∈ Z⊕n+1

∣∣ h(Xk
a) < H and Xk

a(Q) 6= ∅
}

# {a ∈ Z⊕n+1 | h(Xk
a) < H}

,

ρ′loc(n, k) := lim
H→∞

#
{
a ∈ Z⊕n+1

∣∣ h(Xk
a) < H and Xk

a(Qv) 6= ∅ for all v ∈ MQ
}

# {a ∈ Z⊕n+1 | h(Xk
a) < H}

if the limits exist. Here h(Xk
a) denotes h(

∑n
i=0 aix

k
i ). Then the equalities ρ(n, k) = ρ′(n, k)

and ρloc(n, k) = ρ′loc(n, k) hold if the limits ρ(n, k) and ρloc(n, k) exist (for more details,

see §A in Appendix).
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Thanks to Theorem 3.2, under the conditions in this theorem, the value ρ(n, k) coincides

with its local avatar ρloc(n, k). Moreover, set

ρv(n, k) :=

µp

({
a ∈ Z⊕n+1

p

∣∣ Xk
a(Qp) 6= ∅

})
if v is a prime p,

2−n−1µ∞
({

a ∈ [−1, 1]⊕n+1
∣∣ Xk

a(R) 6= ∅
})

if v = ∞.

Here, µp is the Haar measure on Zp normalized so that µp(Zp) = 1 and µ∞ is the Lebesgue

measure on R. We use the same letter µp (resp. µ∞) also for the product measure on Z⊕n+1
p

(resp. R⊕n+1). The calculation of ρloc(n, k) is reduced to that of ρv(n, k) for every v ∈ MQ

by the following theorem of Bright, Browning, and Loughran.

Theorem 3.3 (a special case of Bright, Browning, and Loughran [9, Theorem 1.3]).

Assume that n 6= 2. Then the limit ρloc(n, k) exists
b and is given by

ρloc(n, k) =
∏

v∈MQ

ρv(n, k).

Moreover, ρloc(n, k) is positive whenever n ≥ 3.

Let us explain our main results. In this thesis, we establish a strategy to calculate ρv(n, k)

for all v ∈ MQ for each fixed n and k (see Remark 7.4). Our strategy is regarded as a

quantitative refinement of the argument in Browning and Dietmann [13, §3]. As worked
examples, we carry out our strategy in the cases of k = 2, 3. In particular, Theorem 3.1

follows from Theorem 3.3 and the following Theorems 3.4 and 3.5.

Theorem 3.4 ([30, Theorem 1.3]). Suppose that k = 2.

(1) If n = 2, then

ρp(2, 2) =


7

12
if p = 2,

1− 3

2
p−1

(
1− p−1

1− p−2

)2

otherwise.

(2) If n = 3, then

ρp(3, 2) =


1231

1296
if p = 2,

1− 3

2
p−2

(
1− p−1

1− p−2

)4

otherwise.

bNote that ρloc(2, k) = 0 for every k ≥ 2 as proven in Browning and Dietmann [13, Theorem 1.1]. On the
other hand, Proposition 7.3 implies that

∏
v∈MQ

ρv(2, k) = 0 in the sense that
∑

v<H log ρv(2, k) → −∞
(H → ∞) because

∑
p<H,p≡1 mod k p

−1 → ∞ (H → ∞) (cf. Serre [59, p. 75]).
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(3) If n ≥ 4, then ρp(n, 2) = 1 (cf. Serre [59, Corollary 2]).

Note that the value ρ∞(n, 2) equals 1− 2−n for every n ∈ Z≥2.

Theorem 3.5 ([30, Theorem 1.4]). Suppose that k = 3.

(1) If n = 2, then

ρp(2, 3) =



13831

19773
if p = 3,

1− 2p−1

(
1− p−1

1− p−3

)
if p ≡ 1 mod 3,

1− 6p−3

(
1− p−1

1− p−3

)3

if p ≡ 2 mod 3.

(2) If n = 3, then

ρp(3, 3) =


6391

6591
if p = 3,

1− 8

3
p−2(1 + p−1)2

(
1− p−1

1− p−3

)3

if p ≡ 1 mod 3,

1 if p ≡ 2 mod 3

(Bright, Browning, and Loughran [9, Theorem 2.2]).

(3) If n = 4, then

ρp(4, 3) =

 1− 40

3
p−4

(
1− p−1

1− p−3

)4

if p ≡ 1 mod 3,

1 otherwise.

(4) If n = 5, then

ρp(5, 3) =

 1− 80

3
p−6

(
1− p−1

1− p−3

)6

if p ≡ 1 mod 3,

1 otherwise.

(5) If n ≥ 6, then ρp(n, 3) = 1 (cf. Lewis [41, Theorem 2]).

Note that the value ρ∞(n, 3) equals 1 for every n ∈ Z≥2.

When we prove Theorems 3.4 and 3.5, we need to examine whether Xk
a(Qp) 6= ∅ or

not for infinite many rational primes p and tuples of integers a ∈ Z⊕n+1. It seems hard

although we can check Xk
a(Qp) 6= ∅ easily for each rational prime p and tuple of integers

a ∈ Z⊕n+1. In order to resolve such difficulty, we introduce an equivalence relation on

Q⊕n+1
p . For more details, see part 1.
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4. The proportion of certain genus one curves which have Q-rational points

In part 2 of this thesis, we consider the proportion of certain genus one curves which

have Q-rational points.

Let f(x, y) be a binary quartic form over Q, i.e. f(x, y) = ax4+bx3y+cx2y2+dxy3+ey4

with a, b, c, d, e ∈ Q. We call the curve Cf : z
2 = f(x, y) locally soluble if Cf (Qv) 6= ∅ for

all v ∈ MQ. We also call the curve Cf soluble if Cf (Q) 6= ∅. In what follows, we also

call f(x, y) locally soluble (resp. soluble) when Cf is locally soluble (resp. soluble). For

an integral binary quartic form f , the naive height h(f) means the maximum of absolute

values of the coefficients of f . Let W be a set of integer binary quartic forms, that is,

W = {f(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 | a, b, c, d, e ∈ Z}.

Then Bhargava conjectured the following.

Conjecture 4.1 (cf. Bhargava [3, Conjecture 7]). We have

lim
X→∞

#{f ∈ W | h(f) < H,Cf (Q) 6= ∅}
#{f ∈ W | h(f) < H,Cf (Qv) 6= ∅ for all v ∈ MQ}

=
1

4
.

This conjecture is still open, but Bhargava obtained a partial result as follows. Remark

that although Bhargava [3, Theorem 2] is the result for ternary cubic forms, he also proved

the same result for binary quartic forms.

Theorem 4.2 (cf. Bhargava [3, Theorem 2 and the last two paragraphs in §1.1]). When

locally soluble integral binary quartics f(x, y) are ordered by the naive height, the pro-

portion of soluble forms is positive.

In other words, the above theorem states that

lim inf
H→∞

#{f ∈ W | h(f) < H,Cf (Q) 6= ∅}
#{f ∈ W | h(f) < H, Cf (Qv) 6= ∅ for all v ∈ MQ}

> 0.

Note that the proportion of locally soluble forms in integral binary quartic forms is already

determined by Poonen–Stoll and Bhargava–Cremona–Fisher.

Theorem 4.3 (Bhargava, Cremona, and Fisher [4, Theorem 3], cf. Poonen and Stoll [55,

Lemma 20]). We have

lim
H→∞

#{f ∈ W | h(f) < H, Cf (Qv) 6= ∅ for all v ∈ MQ}
#{f ∈ W | h(f) < H}

=
23087

24528
c

∏
p : odd prime

(
1− 4p7 + 4p6 + 2p5 + p4 + 3p3 + 2p2 + 3p+ 3

8(p+ 1)(p2 + p+ 1)(p6 + p3 + 1)

)
,
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where c is a certain real number satisfying 0.873954 ≤ c ≤ 0.871424.

Hence Conjecture 4.1 states that the exact value of the proportion of soluble binary

quartic forms is

lim
H→∞

#{f ∈ W | h(f) < H,Cf (Q) 6= ∅}
#{f ∈ W | h(f) < H}

=
1

4
× 23087

24528
c
∏
p>2

(
1− 4p7 + 4p6 + 2p5 + p4 + 3p3 + 2p2 + 3p+ 3

8(p+ 1)(p2 + p+ 1)(p6 + p3 + 1)

)
.

This can be regarded as the analogy to Conjecture 2.8.

Recently, Bhargava and Ho showed a similar theorem on a subfamily of binary quartics.

Before stating their result, we introduce the Bhargava–Ho height. For an integral binary

quartic f = ax4 +Bx2y2 + cy4, we define the Bhargava–Ho height hBH as

hBH(f) = max{B2, |ac|}.

Then Bhargava–Ho’s result is the following.

Theorem 4.4 (Bhargava and Ho [6, Theorem 1.6]). When locally soluble integral binary

quartic forms ax4 + Bx2y2 + cy4 are ordered by the Bhargava–Ho height, the proportion

of soluble forms is 0%.

Comparing the results of Bhargava and Bhargava–Ho, we find that the proportions are

different in the two cases. In part 2, we examine the proportion of soluble forms in some

other subfamilies. In particular, we find some subfamilies whose proportions of soluble

forms are different.

For an integer B and M , we write WB
M(Z) for the set of binary quartic forms f(x, y) =

ax4 +Bx2y2 + cy4 with a, c ∈ Z and ac = M . We also define

FB
M = {ax4 +Bx2y2 + cy4 ∈ WB

M(Z) | 0 ≤ ordp a ≤ 1 for all primes p}.

In what follows, we abbreviate squarefree to “sqf.”.

Theorem 4.5 ([33, Theorem 1.3], see Theorem 11.2). When locally soluble forms f ∈⋃
n≥1

n: sqf.
F0

4n2 are ordered by the Bhargava–Ho height, the proportion of soluble forms is

100%.

By slightly changing the condition on the coefficients, we obtain the exact opposite

result.

12



Theorem 4.6 ([33, Theorem 1.4], see Theorem 12.5). When locally soluble forms f ∈⋃
n≥1

n: sqf.
F0

−n2 are ordered by the Bhargava–Ho height, the proportion of the soluble forms

is 0%.

Note that we also obtain similar theorems for four slightly different subfamilies (see

Theorem 11.3 and Theorem 12.6).

Bhargava’s and Bhargava–Ho’s results are related to the average size of the Selmer groups

in families of elliptic curves. For example, to prove Theorem 4.2, they first interpret the

locally soluble binary quartics as elements of the 2-Selmer group of an elliptic curve. Then

Theorem 4.2 is obtained by using the average size of the 2-Selmer groups in all elliptic

curves. Similarly, to prove our results, Theorems 4.5 and 4.6, we interpret locally soluble

binary quartic forms in FB
M as elements of the 2-isogeny or its dual isogeny Selmer groups

in the family of elliptic curves En : y
2 = x3−n2x, where n runs over all squarefree positive

integers. Then the results follow from the average sizes of those Selmer groups. The

average sizes of these Selmer groups in the family have been studied by many researchers.

Our results rely on the results of Heath-Brown [28] and Xiong–Zaharescu [68].

Key facts to prove Theorems 4.5 and 4.6 are the difference in the order between the

number of locally soluble quartics and that of soluble quartics. In particular, in the case

of Theorem 4.6, there exist much more locally soluble quartics than soluble ones. Hence

we next consider whether there are subsets of locally soluble forms comparable to soluble

ones in the sense of order. To answer this problem, we introduce the condition which is

called strictly locally soluble.

Let n be a squarefree integer. A curve Cf : z
2 = f(x, y), where f ∈ F0

−n2 , is called strictly

locally soluble if the curve “comes from” 2-Selmer groups of En. We will explicitly explain

the meaning of “comes from” in §13. In a manner similar to a locally soluble quartic,

we call a binary quartic form f(x, y) strictly locally soluble when Cf is strictly locally

soluble. Then we answer the above problem of comparable subsets of locally soluble

quartics, which is our last theorem.

Theorem 4.7 ([33, Theorem 1.5], see Theorem 13.1). The proportion of soluble forms

is greater than 42% when strictly locally soluble forms f ∈
⋃

n≥1
n: sqf.

F0
−n2 are ordered by

the Bhargava–Ho height.

Theorem 4.7 can be considered as the analogy of genus one curves defined by ternary

cubic curves. Let g(x, y, z) be a ternary cubic form over Q. For an integer ternary cubic

form g(x, y, z), we call h(x, y, z) locally soluble if Dg(Qv) 6= ∅ for all v ∈ MQ. We also
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call h(x, y, z) soluble if Dg(Q) 6= ∅. As we mentioned, Theorem 4.2 also holds for the

ternary cubic forms. In other words, when locally soluble ternary cubics are ordered by

the naive height, the proportion of soluble forms is positive. Later, Browning showed a

similar theorem for a subfamily of ternary cubic forms:

Theorem 4.8 (cf. Browning [12, Theorem 1.3]). When locally soluble integral ternary

cubic forms ax3 + bx2y + cxy2 + dy3 − z3 are ordered by the naive height, the proportion

of soluble forms is positive.

The proof of Theorem 4.8 is also similar to Theorem 4.7. More precisely, Browning used

Davenport–Heilbronn’s result (cf. [12, Lemma 3.1]) and Kriz–Li’s result ([40, Theorem

1.8]) instead of Heath-Brown’s result (Lemma 12.3) and Smith’s result (Proposition 13.2)

respectively.

5. Integer points on PCF varieties

Although our main topic in this thesis is rational points on algebraic varieties, we also

discuss the integer points on algebraic varieties.

Let V be an affine variety defined by

f1(x0, . . . , xn) = 0, . . . , fr(x0, . . . , xn) = 0

where f1, . . . , fr are polynomials with integer coefficients. We say that an integer tuple

(a1, . . . , an) is an integer point on V if the condition

f1(a1, . . . , an) = 0, . . . , fr(a1, . . . , an) = 0

holds. In this section, we consider the problem whether periodic continued fraction vari-

eties have non-degenerate integer points or not. As a consequence, we also determine all

(1, l)-type periodic integer continued fraction expansions of quadratic irrationals
√
m for

l = 1, 2, 3. In the following, we explain more explicitly.

For an integer sequence {an}n≥0, let [a0, a1, a2, . . .] be

a0 +
1

a1 +
1

a2 + · · ·

. (5.1)

We say that (5.1) is a regular continued fraction (RCF for short) if an ≥ 1 for all n ≥ 1.

A RCF (5.1) is periodic if there exist l ∈ Z≥1 and N ∈ Z≥0 such that ak = al+k for all
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k ≥ N . In the following, we assume that N = 1c and l is the smallest integer satisfying

the periodic condition. We call l the period of a periodic RCF. Let

[a0, a1, . . . , al] := [a0, a1, . . . , al, a1, . . . , al, . . . ]

denote a periodic RCF and call it a (1, l)-type RCF. It is well-known that every irrational

number has a unique RCF expansion. In particular, every quadratic irrational number
√
m has a (1, l)-type RCF expansion for some l.

In this thesis, we consider periodic integer continued fractions (PICFs for short). Here,

an integer continued fraction is (5.1) in which all an are integers (not necessarily positive).

Of course, the unique periodic RCF expansion of a quadratic irrational number
√
m is

a PICF expansion. However, there are other PICF expansions of
√
m in general. For

example, we obtain
√
2 = [1, 2] = [−1, 1,−2, 1].

Hence it is natural to consider the following question.

Problem 5.1. For each positive integer l, determine all (1, l)-type PICF expansions of a

square root of positive nonsquare integer.

In 2021, Brock, Elkies, and Jordan determined all PICF expansion of
√
2 for some types

(cf. [10, Table 1 in p. 381]). Inspired by their results, we give partial answers to this

question for square roots of positive nonsquare integers.

Set

m1(t) := t2 + 1,

m2(s, t) := s2t2 + t,

m′
2(s, t) := s2t2 + 2t,

m3(s, t) := 16t2s4 + 8ts3 + (8t2 + 1)s2 + 6ts+ t2 + 1.

Then, for each l = 1, 2, 3, we give a necessary and sufficient condition for existing PICF

expansions of square roots of positive nonsquare integers.

Theorem 5.2. Let m be a positive nonsquare integer.

(1)
√
m has a (1, 1)-type PICF expansion if and only if m is m1(t) for some t ∈ Z.

cWe assume that N = 1 since we also consider an application to the solutions of the Pell equations. For
details, see §17
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(2)
√
m has a (1, 2)-type PICF expansion if and only if m is m2(s, t) or m

′
2(s, t) for

some s, t ∈ Z.
(3)

√
m has a (1, 3)-type PICF expansion if and only if m ism3(s, t) for some s, t ∈ Z.

We also obtain all (1, l)-type PICF expansions of square roots of ml(s, t) for l = 1, 2, 3.

Theorem 5.3. For all non-zero integers s, t except for ml(s, t) ≤ 0, we have (1, 1),

(1, 2), and (1, 3)-type PICF expansions

sgn(t)
√

m1(t) = [t, 2t], (5.2)

sgn(st)
√
m2(s, t) = [st, 2s, 2st], (5.3)

sgn(st)
√

m′
2(s, t) = [st, s, 2st], (5.4)

sgn(t)
√

m3(s, t) = [s+ (4s2 + 1)t, 2s, 2s, 2(s+ (4s2 + 1)t)]. (5.5)

We further obtain (1, 3)-type PICF expansions

sgn(t)
√
m3(0, t) = [−2 + t, 1,−2,−1 + 2t] = [−1 + t, 2,−1, 1 + 2t], (5.6)

sgn(t)
√
m3(±1, t) = [2 + 5t,−2, 3, 3 + 10t] = [1 + 5t, 3,−2, 3 + 10t] (5.7)

for t ∈ Z \ {0} and
√

m3(±1, 0) =
√
2 = [2,−2, 3, 3] = [1, 3,−2, 3].

Moreover, these PICFs are all of (1, 1), (1, 2), and (1, 3)-type PICF expansions of square

roots of positive nonsquare integers.

Note that some of (5.2), (5.3), (5.4) and (5.5) are obtained from classical results. Indeed,

we obtain them from Jacobson and Williams [34, p. 125, l. 13] if s and t are both positive

integers. By using sufficient condition on converging PICFs by Katok and Ugarcovici (see

Proposition 16.1), we also check that PICF expansions appeared in RHS of (5.5) converge

to sgn(t)
√

m3(s, t) even if s and t are not necessarily positive integers. However, the

second part of Theorem 5.3 is not obtained from the above method and we could not find

any explicit references which contain (5.6) and (5.7).

To prove Theorems 5.2 and 5.3, we determine all non-degenerate integer points on pe-

riodic continued fraction varieties (PCF varieties for short). Here, a PCF variety is an

algebraic variety such that some integer points on it correspond to PICF expansions of

a quadratic irrational number. We will explain the precise definition of PCF varieties in

§14.1.
Our main theorem deals with the cases l = 1, 2 and 3. When l ≥ 4, it seems difficult

to obtain a similar result since it may be hard to determine all integer points on PCF
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varieties. Indeed, the dimensions of PCF varieties grow as l is increased, and simultaneous

equations which define PCF varieties become complicated.

Outline of this thesis

In this thesis, our main goal is to prove Theorems 3.1, 3.4, 3.5 and 4.5 to 4.7. We also

give the proof of Theorems 5.2 and 5.3 and some applications of them although they are

not our main theorems in this thesis.

In part 1, we will prove Theorems 3.1, 3.4 and 3.5. In §6 we introduce an equivalence

relation on Q⊕n+1
p and recall the Hensel’s lemma and the Hasse–Weil bound which we

use in the proof. In §7 we give a general upper bound for the value ρp(n, k). In fact,

ρp(n, k) attains this upper bound for a generic p. In §8 we calculate the values ρp(n, k) for

pathological pairs (p, k) = (2, 2), (3, 3) and complete the proofs of Theorems 3.4 and 3.5.

Our strategy in §8 works also for general n and k in principle. In §9 we prove Theorem 3.1

and discuss a consequence for the proportions of (uni)rationality.

In part 2, we will prove Theorems 4.5 to 4.7. In §10, we prepare some notations or

properties which we use in the proof. In §11 (resp. §12, and §13), we state the explicit

forms of Theorem 4.5 (resp. Theorem 4.6 and Theorem 4.7) and give their proof.

In part 3, we will prove Theorems 5.2 and 5.3. In §14, we recall fundamental solutions

of the Pell equations and PCF varieties. In §15, we determine the set of integer points

on some PCF varieties. This is a key ingredient when we prove Theorem 5.3. In §16,
we prove Theorems 5.2 and 5.3. In §17, we give some applications of Theorem 5.3 to

integer solutions of Pell equations. In §18, instead of
√
m, we consider PCF expansions of

certain algebraic integers related to the Z2-extension over Q. Moreover, we also discuss

the relationship between such PCFs and the generalized Pell equations.

Notation

For each abelian group A, let A⊕n+1 denotes the (n + 1)-th direct sum of A. The

following notation is used throughout this thesis. Let Z be the ring of rational integers

and Q, R be the fields of rational numbers and real numbers respectively. Let MQ be the

set {∞}∪ {p : primes}. For each v ∈ MQ, let Zv be the ring of v-adic integers and Qv be

its field of fractions if v is a prime and Q∞ be R. We denote the multiplicative groups of

Zp and Qp by Z×
p and Q×

p respectively. We denote the (additive) p-adic valuation map by

vp : Q×
p → Z, and we use the same symbol also for its direct sum vp : (Q×

p )
⊕n+1 → Z⊕n+1

defined by vp(a) := (vp(a0), . . . , vp(an)) for every a = (a0, . . . , an) ∈ (Q×
p )

⊕n+1.
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Part 1

The proportion of everywhere locally

soluble diagonal hypersurfaces





6. Preliminaries

In this section, we introduce a certain equivalence relation on Q⊕n+1
p . Moreover, we

recall the Hensel’s lemma and the Hasse–Weil bound.

For every k, r ∈ Z≥0, set [k] := {0, 1, . . . , k−1} ⊂ Z, and let [k](r) be the set of subsets of

[k] consisting of r elements. For every K = {k1, . . . , kd} ⊂ [k], set w(K) := k1 + · · ·+ kd.

Recall that Xk
a is a diagonal hypersurfaces defined by

∑n
i=0 a

′
ix

k
i = 0 where a ∈ Q⊕n+1

p .

In a manner similar to Bright, Browning, and Loughran [9, §2.1.1], we define an equiva-

lence relation ' on Q⊕n+1
p as follows. Set Γp(n, k) := Q×

p ×
(
(Q×k

p )⊕n+1 ⋊Sn+1

)
. Here, the

semi-direct product (Q×k
p )⊕n+1 ⋊Sn+1 is defined by the natural left permutation action

of Sn+1. Define an action of Γp(n, k) on Q⊕n+1
p by

(α;αk
0, . . . , α

k
n;σ) · (a0, . . . , an) := (αaσ(0)(α0)

k, . . . , αaσ(n)(αn)
k).

Define an equivalence relation ' on Q⊕n+1
p by a ' b if there exists γ ∈ Γp(n, k) such that

a = γ(b). Then Xk
a is isomorphic to Xk

b over Qp if a ' b.

Next, we recall the Hensel’s lemma and the Hasse–Weil bound.

Proposition 6.1. (Hensel’s lemma, cf. Serre [59, Chapter II, Theorem 1]) Let f ∈
Z[x1, . . . , xm], α = (α1, . . . , αm) ∈ Z⊕m

p , n, v ∈ Z and j an integer such that 1 ≤ j ≤ m.

Suppose that 0 < 2v < n and that

f(α) ≡ 0 mod pn and vp

(
∂f

∂xj

(α)

)
= k.

Then there exists β = (β1, . . . , βm) ∈ Z⊕m
p such that βi ≡ αi mod pn−v for all 1 ≤ i ≤ m

and f(β) = 0

Proposition 6.2 (Hasse–Weil bound, Weil [67]). Let p be a prime number and C be a

non-singular projective curve of genus g defined over Fp. Then we have

|#C(Fp)− (p+ 1)| ≤ 2g
√
p.

7. ρp(n, k) for generic primes

In this section, we give an explicit formula of ρp(n, k) for generic primes p with respect

to k. Here, we say that a prime p is generic with respect to k if the following conditions

hold.

(1) gcd(p, k) = 1.

(2) p ≥ (k − 1)2(k − 2)2 or gcd(p− 1, k) = 1.
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Note that for each fixed k almost all but finitely many primes p are generic with respect

to k.

Since the set Q⊕n+1
p / ' is finite, we can calculate ρp(n, k) for each fixed n, k, p. In fact,

by using the following Proposition 7.3, we can calculate ρp(n, k) for many n, k, p uniformly.

In what follows, the measure µp({a ∈ Z⊕n+1
p | · · · }) is abbreviated by µp(· · · ). We set

κp(n, k) :=
µp (vp(a) ≡ 0 (mod k))

µp (vp(a) = 0)
=

∑
e0,...,en≥0

p−ke0−···−ken = (1− p−k)−n−1.

Intuitively, this quantity gives the “expansion ratio by (pkZ≥0)⊕n+1-action”.

Let ∆n be the set
{
a ∈ Z⊕n+1

p

∣∣ ∏n
i=0 ai = 0

}
. Then we have

µp(X
k
a is singular) = µp (∆n) = 0.

Therefore, it is sufficient to consider a ∈ Z⊕n+1 \ ∆n. In the proof of Proposition 7.3,

the following Lemma 7.2 is essential. To state Lemma 7.2, we introduce the following

definition.

Definition 7.1. Let n, k ∈ Z≥2, p be a prime, and a ∈ Z⊕n+1
p \∆n.

(1) If there exist some u0, . . . , un ∈ Z×
p and k3, ..., kn ∈ [k] such that

a ' (u0, u1, u2, p
k3u3, . . . , p

knun),

then we say that a is of type I.

(2) If there exist some u1, . . . , un, t ∈ Z×
p , and k2, ..., kn ∈ [k] such that

a ' (u1,−u1t
k, pk2u2, p

k3u3, . . . , p
knun),

then we say that a is of type II.

(3) If there exist some r ∈ Z≥0, u1, . . . , un+1−r ∈ Z×
p , t1, . . . , tr ∈ Z×

p \ Z×k
p , and

distinct k1, ..., kn+1−r ∈ [k] such that

a ' (pk1u1,−pk1u1t1, . . . , p
krur,−pkrurtr, p

kr+1ur+1, . . . , p
kn+1−run+1−r), (7.1)

then we say that a is of type III.

Note that types I and II are not exclusive.

Lemma 7.2. Let n, k ∈ Z≥2, and p be a prime. Then every a ∈ Z⊕n+1
p \∆n is of type I,

II, or III. Moreover the following statements hold.

(1) Suppose that p is generic with respect to k. If a is of type I, then Xk
a(Qp) 6= ∅.

(2) If a is of type II, then Xk
a(Qp) 6= ∅.
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(3) If a is of type III, then Xk
a(Qp) = ∅.

Proof. For the former statement, we focus on the p-adic valuations of the components

of a. We may assume that 0 ≤ vp(ai) ≤ k − 1 for all i. If some three components of a

have the same p-adic valuations to each other, then a is of type I. If any two components

of a do not have the same p-adic valuations to each other, then a is of type III. In

order to treat the remaining cases, by changing the order of the components of a, we

may assume that vp(a0) = vp(a1) < vp(a2) = vp(a3) < · · · < vp(a2r) = vp(a2r+1) for

some r, and vp(ag) 6= vp(ah) for every distinct g ≥ 2r + 2 and h ≥ 0. If at least one of

−a0/a1,−a2/a3, . . . ,−a2r/a2r+1 lies in Z×k
p , then a is of type II. Otherwise, a is of type

III. This completes the proof of the former statement.

For the latter statement, we use the same notations in Definition 7.1. More precisely,

it is sufficient to consider a = (a0, . . . , an) such that a = . . . instead of a ' . . . in

Definition 7.1.

(1) If gcd(p, k) = 1 and p ≥ (k−1)2(k−2)2, then by Proposition 6.2, a curve C defined

by u0x
k
0+u1x

k
1+u2x

k
2 = 0 has a smooth Fp-rational point. This Fp-rational point

lifts to a Qp-rational point of C, say [y0 : y1 : y2], by Proposition 6.1. Therefore,

Xk
a has a Qp-rational point [y0 : y1 : y2 : 0 : · · · : 0].
If gcd(p, k) = gcd(p− 1, k) = 1, then we have Z×

p = Z×k
p . In this case, Xk

a has

a Qp-rational point [u
1/k
1 : (−u0)

1/k : 0 : · · · : 0].
(2) In this case, Xk

a has a Qp-rational point [t : 1 : 0 : · · · : 0].
(3) We prove the assertion by contradiction. Suppose that Xk

a has a Qp-rational

point, say [x0 : · · · : xn] with x0, . . . , xn ∈ Zp. Take j so that vp(ajx
k
j ) =

min{vp(alxk
l ) | 0 ≤ l ≤ n}. If 0 ≤ j ≤ 2r−1, we may assume that j is even. If we

divide the defining equation of Xk
a by ajx

k
j , then we obtain 1− tj/2+1(xj+1/xj)

k ≡
0 mod p, which contradicts that tj/2+1 /∈ Z×k

p . If 2r − 1 ≤ j ≤ n, then we obtain

1 ≡ 0 mod p, which is a contradiction.

This completes the proof. �

Proposition 7.3. Let n, k ∈ Z≥2, and p be a prime. Then we have

ρp(n, k)

≤ 1− (n+ 1)!

(
1− p−1

1− p−k

)n+1∑
r≥0

(
1

2
− 1

2 gcd(p− 1, k)

)r ∑
K∈[k](r)

L∈[k](n+1−2r)

s.t. K ∩ L = ∅

p−2w(K)−w(L).
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Moreover, if p is generic with respect to k, then equality holds. d

Here, the sum with respect to r is finite which runs over max{n − k + 1, 0} ≤ r ≤
min{[n+1

2
], k}, where [x] denotes the largest integer not exceeding x.

Proof. The whole statement is a direct consequence of Lemma 7.2. Indeed, since the

Sn+1-orbit of (p
k1 , pk1 , . . . , pkr , pkr , pkr+1 , pkr+2 , . . . , pkn+1−r) with distinct ki ∈ [k] consists

of (n+ 1)!/2r vectors, we obtain

ρp(n, k) ≤ 1− µp (a is of type III)

= 1

−
∑
r≥0

∑
{k1,...,kr}⊂[k]

∑
{kr+1,...,kn+1−r}
⊂[k]\{k1,...,kr}

µp (a satisfies (7.1) with some ui, ti)

= 1−
∑
r≥0

∑
K={k1,...,kr}∈[k](r)

L={kr+1,...,kn+1−r}∈[k](n+1−2r)

s.t. K ∩ L = ∅

(n+ 1)!

2r
p−2k1−···−2kr−kr+1−···−kn+1−r

× κp(n, k)

× µp (a = (u1,−u1t1, . . . , ur,−urtr, ur+1, . . . , un+1−r) with some ui, ti)

= 1− (n+ 1)!
∑
r≥0

1

2r

∑
K∈[k](r)

L∈[k](n+1−2r)

s.t. K ∩ L = ∅

p−2w(K)−w(L)

× (1− p−k)−(n+1)

(
1− 1

gcd(p− 1, k)

)r

(1− p−1)n+1.

This completes the claimed inequality. For the last statement, it is sufficient to note that

when p ≥ (k − 1)2(k − 2)2 or gcd(p− 1, k) = 1, Lemma 7.2 implies that

ρp(n, k) = 1− µp (a is of type III)

in the above argument. �

Remark 7.4. Thanks to Proposition 7.3, in order to determine ρp(n, k) for all primes p,

it is sufficient to consider the following two kinds of pathological primes with respect to k:

dIn fact, if one of the following conditions holds, then Xk
a(Qp) 6= ∅ for all a ∈ Z⊕n+1 \∆n:

(1) p ≥ (k − 1)2(k − 2)2 and n ≥ 2k.
(2) gcd(p− 1, k) = 1 and n ≥ k.

In particular, if (1) or (2) holds, then we obtain ρp(n, k) = 1.
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(1) gcd(p, k) 6= 1.

(2) p < (k − 1)2(k − 2)2 and gcd(p− 1, k) 6= 1.

The problems of these cases are as follows:

• In the case (1), every Fp-rational point on a scheme Xk
a mod p is singular.

• In the case (2), a scheme Xk
a mod p may not have a Fp-rational point.

Anyway, since the number of pathological primes p with respect to k is finite, we can

determine ρp(n, k) for all primes p by tour de force and eventually obtain ρloc(n, k).

8. ρp(n, k) for pathological primes

In this section, we carry out tour de force analysis in order to calculate ρp(n, k) for

pathological primes p. Although we consider only the cases of k = 2 and k = 3, the same

method works also for any k in principle.

If k = 2 (resp. 3), then there is no prime number of second kind in Remark 7.4. Therefore,

it is sufficient to calculate ρ2(n, 2) (resp. ρ3(n, 3)) as we will do in what follows.

8.1. The case of k = 2 and p = 2.

Proposition 8.1 (p = 2 and n = 2). Let u0, u1, u2 ∈ Z×
2 .

(1) X2
(u0,u1,u2)

has a Q2-rational point if and only if

(u0, u1, u2) ' (1, 1, 3), (1, 1, 7), (1, 3, 7).

(2) X2
(u0,u1,2u2)

has a Q2-rational point if and only if

(u0, u1, 2u2) ' (1, 1, 6), (1, 1, 14), (1, 5, 2), (1, 7, 2), (1, 7, 6).

In particular, X2
a has a Q2-rational point if and only if

a ' (1, 1, 3), (1, 1, 7), (1, 3, 7), (1, 1, 6), (1, 1, 14), (1, 5, 2), (1, 7, 2), (1, 7, 6).

Proof. (1) We may assume that u0 = 1 and u1, u2 ∈ {1, 3, 5, 7}. Moreover, if

u1 = 7 or u2 = 7, then X2
(1,u1,u2)

has a rational point. Therefore, it is sufficient to

consider the following six cases.

(a) If (u1, u2) = (1, 1), then we can check that X2
(1,1,1) has no Q2-rational point.

In fact, assume that X2
(1,1,1) has a Q2-rational point, say [y0 : y1 : y2].

Without loss of generality, we may assume that v2((y0, y1, y2)) = (0, 0, 0)

or (1, 0, 0). If v2((y0, y1, y2)) = (0, 0, 0), then
∑2

i=0 y
2
i ≡ 3 mod 8, which is a
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contradiction. If v2((y0, y1, y2)) = (1, 0, 0), then
∑2

i=0 y
2
i ≡ 6 mod 8, which

is a contradiction.

(b) If (u1, u2) = (1, 3), then X2
(1,1,3) has a Q2-rational point [

√
−7 : 2 : 1].

(c) If (u1, u2) = (1, 5), then we can check that X2
(1,1,5) has no Q2-rational point

by an argument similar to (a).

(d) If (u1, u2) = (3, 3), then X2
(1,3,3) is isomorphic to X2

(1,1,3) over Q2 and has a

Q2-rational point.

(e) If (u1, u2) = (3, 5), then X2
(1,3,5) is isomorphic to X2

(1,7,3) over Q2 and has a

Q2-rational point.

(f) If (u1, u2) = (5, 5), then X2
(1,5,5) is isomorphic to X2

(1,1,5) over Q2 and has no

Q2-rational point.

(2) We may assume that u2 = 1 and u0, u1 ∈ {1, 3, 5, 7}. Note that if x0x1 ≡ 0

(mod 2), then x0 ≡ x1 ≡ 0 (mod 2) and x2 ≡ 0 (mod 2). Therefore, it is

sufficient to consider rational points such that x0, x1 ∈ Z×
2 .

(a) If u1 ≡ u0 (mod 8), i.e., u1 = u0, then we have 2u0 + 2x2
3 ≡ 0 (mod 8),

which has a Z2-solution only if u0 ≡ 3 (mod 4), i.e., (u0, u1) = (3, 3), (7, 7).

We can check that X2
(3,3,2) (resp. X2

(7,7,2)) has a Q2-rational point [x0 : x1 :

x2] = [1 : 3 :
√
−15] (resp. [1 : 1 :

√
−7]).

(b) If u1 ≡ 3u0 (mod 8), then we have 4u0 + 2x2
3 ≡ 0 (mod 8), which is impos-

sible.

(c) If u1 ≡ 5u0 (mod 8), then we have 6u0 + 2x2
3 ≡ 0 (mod 8), which has a

solution only if u0 ≡ 1 (mod 4), i.e., (u0, u1) = (1, 5), (5, 1). We can check

that X2
(1,5,2) has a Q2-rational point [x0 : x1 : x2] = [1 : 3 :

√
−23], and

(5, 1, 2) ' (1, 5, 2).

(d) If u1 ≡ 7u0 (mod 8), then X2
(u0,u1,u2)

has a Q2-rational point [x0 : x1 : x2] =

[1 :
√
−7 : 0]. Note that (1, 7, 14) ' (1, 7, 2) and (1, 7, 10) ' (1, 7, 6).

This completes the proof. �

Proposition 8.2 (p = 2 and n = 3). Let a = (a0, a1, a2, a3) ∈ Z⊕4
p \ ∆3. Then X2

a has

no Q2-rational point if and only if

a ' (1, 1, 1, 1), (1, 1, 5, 5), (1, 1, 2, 2), (1, 1, 10, 10), (1, 3, 2, 6), (1, 3, 10, 14), (1, 5, 6, 14).

Proof. First of all, we may assume that a0 = 1, v2(a1) = 0, 0 ≤ v2(a2), v2(a3) ≤ 1,

and aip
−vp(ai) ∈ {1, 3, 5, 7}.
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(1) Suppose that v2(a) = (0, 0, 0, 0). If ai/aj ≡ −1 (mod 8) for some i, j, thenX2
a has

a Q2-rational point such that (xi, xj) = (1, (−ai/aj)
1/2). Therefore, it is sufficient

to consider the cases a = (1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 1, 5), (1, 1, 3, 3), (1, 1, 5, 5).

(a) Suppose that a = (1, 1, 1, 1). Then X2
a has no Q2-rational point.

(b) Suppose that a = (1, 1, 1, 3). Then X2
a has a Q2-rational point [x0 : x1 : x2 :

x3] = [
√
−7 : 2 : 0 : 1].

(c) Suppose that a = (1, 1, 1, 5), (1, 1, 3, 3). Then X2
a has a Q2-rational point

[x0 : x1 : x2 : x3] = [
√
−7 : 1 : 1 : 1].

(d) Suppose that a = (1, 1, 5, 5). Then X2
a has no Q2-rational point.

(2) Suppose that v2(a) = (0, 0, 0, 1). Then, by the proof of Proposition 8.1 (1),

it is sufficient to consider the cases (a0, a1, a2) = (1, 1, 1), (1, 1, 5). Moreover,

by Proposition 8.1 (2), it is sufficient to consider the cases (a0, a1, a2, a3) =

(1, 1, 1, 2), (1, 1, 1, 10). In each case, X2
a has a Q2-rational point [x0 : x1 : x2 :

x3] = [
√
−7 : 1 : 2 : 1], [

√
−15 : 1 : 2 : 1] respectively.

(3) Suppose that v2(a) = (0, 0, 1, 1). Then, by Proposition 8.1 (1), it is sufficient to

consider the cases a1 ∈ {1, 3, 5}.
(a) Suppose that a1 = 1. Then, by Proposition 8.1 (1), it is sufficient to consider

the cases a2, a3 ∈ {2, 10}. If (a2, a3) = (2, 10) (resp. (10, 2)), then X2
a

has a Q2-rational point [x0 : x1 : x2 : x3] = [2 : 0 :
√
−7 : 1] (resp.

[2 : 0 : 1 :
√
−7]). If a2 = a3, then X2

a has no Q2-rational point.

(b) Suppose that a1 = 3. Then, by Proposition 8.1 (1), it is sufficient to consider

the cases (a2, a3) = (2, 6), (10, 14). In both cases, X2
a has no Q2-rational

point.

(c) Suppose that a1 = 5. Then, by Proposition 8.1 (1), it is sufficient to consider

the cases a2, a3 ∈ {6, 14}. If a2 = a3 = 6 (resp. a2 = a3 = 14), then X2
a

has a Q2-rational point [x0 : x1 : x2 : x3] = [6 : 0 :
√
−7 : 1] (resp.

[14 : 0 :
√
−15 : 1]). If a2 6= a3, then X2

a has no Q2-rational point.

This completes the proof. �

Remark 8.3. In fact, the Γ2(3, 2)-orbits of the 7 vectors in the statement of Proposi-

tion 8.2 do not intersect each other. We can check it by noting that

• each orbit has a representative whose components lie in {1, 3, 5, 7, 2, 6, 10, 14},
• in terms of these representatives, the Γ2(3, 2)-action is reduced to the action of a

finite group 2Z/22Z × Z×
2 /Z×2

2 ×S3.
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Proposition 8.4 (p = 2 and n ≥ 4). Let n ∈ Z≥4 and a = (a0, . . . , an) ∈ Z⊕n+1
2 \ ∆n.

Then X2
a has a Q2-rational point.

Proof. First, it is sufficient to consider the case of n = 4. By Proposition 8.2,

it is sufficient to consider a = (1, 1, 1, 1, 1). In this case, X2
a has a Q2-rational point

[x0 : x1 : x2 : x3 : x4] = [
√
−7 : 2 : 1 : 1 : 1]. �

Proof of Theorem 3.4. For p 6= 2, the statement is immediate from Proposi-

tion 7.3. For p = 2, the statement is a direct consequence of Propositions 8.1, 8.2 and 8.4

as follows.

(1) For n = 2, we have

ρ2(2, 2)

= µ2 (a ' (1, 1, 3), (1, 1, 7), (1, 3, 7), (1, 1, 6), (1, 1, 14), (1, 5, 2), (1, 7, 2), (1, 7, 6))

= κ2(2, 2) ·
3 · 4 + 3 · 4 + 3! · 4

43
· µ2 (v2(a) = (0, 0, 0), (1, 1, 1))

+ κ2(2, 2) ·
3 · 4 + 3 · 4 + 3! · 4 + 3! · 4 + 3! · 4

43
· µ2 (v2(a) = (0, 0, 1), (1, 1, 0))

=
26

33
· 3
4
·
(

1

23
+

1

26

)
+

26

33
· 3
2
·
(

1

24
+

1

25

)
=

1

4
+

1

3

=
7

12
.

Here, in order to obtain the second equality, we use, for example,

{a ∈ Z⊕3
p | a ' (1, 5, 2)} =

∐
k0,k1,k2≥0

(22k0 , 22k1 , 22k2)S3A

and

µ2(A) =
3! ·#

(
Z2/Z×2

2

)
#
(
Z2/Z×2

2

)3 µ2(v2(a) = (0, 0, 1), (1, 1, 0)),

where

A :=
{
a ∈ Z⊕3

2

∣∣ a = (ut0, 5ut1, 2ut2), (2ut0, 10ut1, ut2) with ti ∈ Z×2
2 , u ∈ Z×

2

}
.

(2) Similarly, for n = 3, we have

ρ2(2, 3)

= 1−
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µ2 (a ' (1, 1, 1, 1), (1, 1, 5, 5), (1, 1, 2, 2), (1, 1, 10, 10), (1, 3, 2, 6), (1, 3, 10, 14), (1, 5, 6, 14))

= 1− κ2(3, 2) ·
4 +

(
4
2

)
· 2

44
· µ2 (v2(a) = (0, 0, 0, 0), (1, 1, 1, 1))

− κ2(3, 2) ·
(
4
2

)
· 4 +

(
4
2

)
· 4 + 4! · 2 + 4! · 2 + 4! · 2

44
· µ (v2(a) = (0, 0, 1, 1))

= 1− 28

34
· 4

43
·
(

1

24
+

1

28

)
− 28

34
· 48
43

· 1

26

= 1− 17 + 48

24 · 34

=
1231

1296
.

(3) For n ≥ 4, the statement is obvious from Proposition 8.4. �

8.2. The case of k = 3 and p = 3.

Proposition 8.5 (p = 3 and n = 2). Let u0, u1, u2 ∈ Z×
3 .

(1) X3
(u0,3u1,9u2)

has no Q3-rational point.

(2) X3
(u0,u1,9u2)

has a Q3-rational point if and only if u0 ≡ ±u1 (mod 9).

(3) X3
(u0,u1,3u2)

has a Q3-rational point.

(4) X3
(u0,u1,u2)

has a Q3-rational point if and only if {±u0,±u1,±u2} 6≡ {±1,±2,±4}
(mod 9).

Proof. Since Z×3
3 = ±1+9Z3, we may assume that u0, u1, u2 ∈ {1, 2, 4} by replacing

xi to wixi with some wi ∈ Z×
3 if necessary.

(1)(2) These are immediate by an argument similar to Proposition 8.1 (1)(a) with cal-

culation of modulo 9 instead of modulo 8.

(3) If u0 = u1, then our curve has a Q3-rational point [x0 : x1 : x2] = [1 : −1 : 0].

Therefore, it is sufficient to prove that for every (u0, u1) = (1, 2), (1, 4), (2, 4)

u0x
3
0 + u1x

3
1 + 3 · 13 = 0

has a Z3-solution, for instance, (x0, x1) = (−1,−1), (1,−1), ((−7/2)1/3, 1) respec-

tively.

(4) By the above argument, it is sufficient to prove that if (u0, u1, u2) = (1, 2, 4), then

X3
(1,2,4) has no Q3-rational point. This can be proven by an argument similar to

Proposition 8.1 (1)(a) with calculation of modulo 9 instead of modulo 8.

This completes the proof. �
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We define an equivalence relation ∼ on the group Im v3 = Z⊕n+1 as the induced equiv-

alence relation by ' on (Q×
3 )

⊕n+1 (cf. Bright, Browning, and Loughran [9, §2.2.1]).

Proposition 8.6 (p = 3 and n ≥ 3). Let n ∈ Z≥3 and a = (a0, . . . , an) ∈ Z⊕n+1
3 \∆n.

(1) Suppose that n = 3. Then Xk
a has a Q3-rational point if and only if one of the

following conditions hold:

• v3(a) ∼ (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), or (0, 0, 1, 2).

• v3(a) ∼ (0, 0, 0, 2), and if one normalizes v3(a) so that

v3(a) = (0, 0, 0, 2), then {±a0,±a1,±a2} 6≡ {±1,±2,±4} (mod 9).

(2) Suppose that n ≥ 4. Then Xk
a has a Q3-rational point.

Proof.

(1) For the detail of the case of n = 3, see Bright, Browning, and Loughran [9, §2.1.2].
(2) For n ≥ 4, it is sufficient to consider the case of n = 4 and v3(a) = (0, 0, 0, 2, 2).

In this case, X3
(a0,a3,a4)

⊂ X3
a has a Q3-rational point by Proposition 8.5 (3).

This completes the proof. �

Proof of Theorem 3.5. We can prove it in a similar manner to the proof of The-

orem 3.4.

(1) Suppose that n = 2. By Proposition 7.3, it is sufficient to consider the case of

p = 3. By Proposition 8.5, we have

ρ3(2, 3) = 1− µ3 (a ' (1, 2, 4))

− µ3

(
a ' (u0, tu0, 3

2u1) with u0, u1 ∈ Z×
3 , t ∈ Z×

3 \ Z×3
3

)
− µ3 (v3(a) ∼ (0, 1, 2))

= 1− κ3(2, 3) ·
3! · 1
33

· µ3 (v3(a) = (0, 0, 0), (1, 1, 1), (2, 2, 2))

− κ3(2, 3) ·
3 · 32 · 2

33
· µ3 (v3(a) = (0, 0, 2), (1, 1, 0))

− κ3(2, 3) ·
3! · 33

33
· µ3 (v3(a) = (0, 1, 2))

=
13831

19773
.

(2) For the detail of the case of n = 3, see Bright, Browning, and Loughran [9, §2.1].
(3) For n ≥ 4, the statement is an immediate consequence of Propositions 7.3 and 8.6.

This completes the proof. �
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9. Applications

9.1. Proof of Theorem 3.1. Now, we can prove Theorem 3.1.

Proof of Theorem 3.1. Under the assumption with Theorem 3.2 and Theorem 3.3,

we have ρ(n, k) = ρloc(n, k) =
∏

v:place ρv(n, k). Here, note that the local-global principle

holds for the case of k = 2 (resp. k = 3 and n ≥ 6) due to Serre [59, p.48, Theorem 8]

(resp. Baker [2, Theorem 1]). We can estimate the last infinite product by using the Rie-

mann zeta function ζ(s) =
∏

p:prime(1− p−s)−1 (s ∈ R>1), that is, we obtain the following

inequalities which give the desired approximations:

ζ(2)−2
∏

p<106

(1− p−2)−2
∏

p<106

ρp(3, 2) <
∏

p:prime

ρp(3, 2) <
∏

p<106

ρp(3, 2),

ζ(2)−4
∏

p<106

(1− p−2)−4
∏

p<106

ρp(3, 3) <
∏

p:prime

ρp(3, 3) <
∏

p<106

ρp(3, 3),

ζ(4)−15
∏

p<106

(1− p−4)−15
∏

p<106

ρp(4, 3) <
∏

p:prime

ρp(4, 3) <
∏

p<106

ρp(4, 3),

ζ(6)−28
∏

p<106

(1− p−6)−28
∏

p<106

ρp(5, 3) <
∏

p:prime

ρp(5, 3) <
∏

p<106

ρp(5, 3). �

Remark 9.1. Bright, Browning, and Loughran [9] obtained the formulas of ρp(3, 3) (σp in

the notation of [9]) correctly. These formulas give the approximation ρ(3, 3) = ρloc(3, 3) =

0.8964 . . .. However, they stated that ρloc(3, 3) (σ in the notation of [9]) equals 0.8605 . . .,

which is incorrect.

Remark 9.2. For k ≥ 4 and n ≥ 3k + 2, Brüdern and Dietmann [16, Theorem 1.3]

implies that

ρloc(n, k)− ρ(n, k) ≤ lim
H→∞

cHn+1−θ

(2H + 1)n+1
= 0

for some c, θ ∈ R>0. Hence we obtain ρ(n, k) = ρloc(n, k) in these cases without the

assumption of the Brauer–Manin obstruction. Since we can express ρ(n, k) by an explicit

infinite product, we can approximate ρ(n, k) with arbitrary precision in similar manners

to the proof of Theorem 1.1 in principle.

9.2. Rationality and unirationality. In this subsection, we make some remarks

on the proportion of Q-rational and Q-unirational hypersurfaces.

Let K be the field of rational numbers Q or the field of v-adic numbers Qv for some

place v of Q. Recall that an algebraic variety defined over K is said to be K-rational if it
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is birationally equivalent to Pn over K for some n. Set

δ(n, k) := lim
H→∞

#
{
a ∈ Z⊕n+1

∣∣ |a| < H and Xk
a is Q-rational

}
# {a ∈ Z⊕n+1 | |a| < H}

.

Proposition 9.3.

δ(n, 2) = ρ(n, 2) =


0 if n = 2,

0.8268 . . . if n = 3,

1 if n ≥ 4.

Proposition 9.3 follows immediately if we apply the following proposition.

Proposition 9.4. Let Q ⊂ Pn be a non-singular quadratic hypersurface defined over Q
and n ∈ Z≥2. Then Q is Q-rational if and only if it has a Q-rational point.

Proof. The only if part is trivial. We prove the if part. Indeed, the given non-

singular Q-rational point has an open neighborhood isomorphic to an affine quadratic

hypersurface Q′ ⊂ An passing through the origin O = (0, ..., 0). Then we can take a

Zariski dense subset U of An so that for every Q-rational point A on U the line OA

intersects with Q′ \O exactly once. This induces a birational (i.e. generically one-to-one

and dominant) map of Pn−1 to Q′, hence Q itself is Q-rational. �

In a similar manner, we can prove a v-adic version of Proposition 9.3. More precisely,

if we set δv(n, 2) := µv (X
2
a is Qv-rational) for v ∈ MQ, then we obtain δv(n, 2) = ρv(n, 2)

for every v ∈ MQ. Therefore, combining it with Proposition 9.3, we obtain the product

formula

δ(n, 2) =
∏

v∈MQ

δv(n, 2).

Moreover, the whole argument works also for the family of all quadratic hypersurfaces of

Pn for every fixed n (cf. Bhargava, Cremona, Fisher, Jones and Keating [5]). It is a natural

question whether or not similar product formulas hold for other families of geometrically

rational algebraic varieties. However, as far as the author knows, there is no reference

answering this question for diagonal cubic surfaces.

On the other hand, if we replace “Q-rational” to “Q-unirational”, then similar product

formulas hold for the families of diagonal cubic hypersurfaces of Pn (n ≥ 3). Let K be

the field of rational numbers Q or the field of v-adic numbers Qv for some v ∈ MQ. Recall

that an algebraic variety V defined over K is said to be K-unirational if there exists
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a dominant rational map Pn 99K V over K for some n. Then we obtain the following

proposition.

Proposition 9.5. Suppose that the Brauer–Manin obstruction is the only obstruction to

the local-global principle for diagonal cubic (n− 1)-folds if 3 ≤ n ≤ 5. Then we obtain

δ′(n, 3) = ρ(n, 3) =



0 if n = 2,

0.8964 . . . if n = 3,

0.9965 . . . if n = 4,

0.9999 . . . if n = 5,

1 if n ≥ 6.

Moreover, for n ∈ Z≥2, we also obtain δ′v(n, 3) = ρv(n, 3) for every v ∈ MQ and the

product formula

δ′(n, 3) =
∏

v∈MQ

δ′v(n, 3).

Here, δ′(n, 3) is defined by

δ′(n, 3) = lim
H→∞

# {a ∈ Z⊕n+1 | |a| < H and X3
a is Q-unirational}

# {a ∈ Z⊕n+1 | |a| < H}
,

and δ′v(n, 3) := µv(X
3
a is Qv-unirational) for v ∈ MQ.

Note that an analogue of Proposition 9.4 also holds for diagonal cubic hypersurfaces.

Proposition 9.6 (cf. Kollar [38, Theorem 1.2], see also Colliot-Thélène, Sansuc and

Swinnerton-Dyer [18, Remark 2.3.1]). Suppose a ∈ Z⊕n+1\∆n. Then X3
a isK-unirational

if and only if X3
a has a non-singular K-rational point.

The Q-unirational argument works also for the del Pezzo surfaces defined by
x0x1 = x2x3,
4∑

i=0

aixi = 0,

with ai ∈ Q such that
∏4

i=0 ai(a0a1 − a2a3) 6= 0 (cf. Mitankin and Salgado [48] and

Manin [45, Theorem 29.4 and Theorem 30.1]).
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Part 2

The proportions of soluble binary quartic

forms under the everywhere locally soluble

ones





10. Preliminaries

In this section, we prepare some notations and recall some properties on certain elliptic

curves. We will use them to prove Theorems 4.5 to 4.7.

For integers B and M , we set

WB
M(Q) = {f(x, y) = ax4 +Bx2y2 + cy4 | a, c ∈ Q, ac = M},

WB
M(Z) = {f(x, y) = ax4 +Bx2y2 + cy4 | a, c ∈ Z, ac = M}.

The discriminants and Bhargava–Ho height of f ∈ WB
M(Q) is determined by B,M since

Disc(f) = 16M(B2 − 4M)2, (10.1)

hBH(f) = max{B2, |M |}. (10.2)

In this thesis, we mainly consider the non-degenerate quartics, i.e., the quartics with

Disc(f) 6= 0. By the above description, the non-degeneracy of f ∈ WB
M(Q) only depends

on B and M .

A non-degenerate quartic f(x, y) ∈ WB
M(Q) defines a genus one curve Cf : z

2 = f(x, y)

over Q. We write the subsets of WB
M(Q) of locally soluble (resp. soluble) binary quartic

forms as WB
M(Q)ls (resp. WB

M(Q)sol). In concrete terms,

WB
M(Q)ls = {f ∈ WB

M(Q) | Cf (Qv) 6= ∅ for all places v of Q},

WB
M(Q)sol = {f ∈ WB

M(Q) | Cf (Q) 6= ∅}.

Similarly we define WB
M(Z)ls and WB

M(Z)sol.
We define an equivalence relation

ax4 +Bx2y2 + cy4 ∼ a′x4 +Bx2y2 + c′y4

on WB
M(Q) if a′ = s2a and c′ = s−2c for some s ∈ Q×. This equivalence preserves solubility

and local solubility. We write [f ] for the equivalent class of f ∈ WB
M(Q). We set

FB
M(Q) = {ax4 +Bx2y2 + cy4 ∈ WB

M(Q) | 0 ≤ ordp a ≤ 1 for all places v in Q}.

Then we have FB
M = FB

M(Q) ∩WB
M(Z). The set FB

M(Q) (resp. FB
M) is a complete system

of representatives of the equivalence classes in WB
M(Q) (resp. WB

M(Z)). We also set

FB,sol
M = FB

M ∩WB
M(Z)sol,

FB,ls
M = FB

M ∩WB
M(Z)ls.
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Next, we recall the definition of the Selmer groups of elliptic curves and some properties

of them.

Let E be an elliptic curve and ϕ : E → E ′ is a nonzero isogeny defined over Q. We

write the absolute Galois group Gal(Q/Q) as GQ/Q. Then there is an exact sequence of

GQ/Q-modules

0 → E[ϕ] → E
φ−→ E ′ → 0

where E[ϕ] denotes the kernel of ϕ. By taking Galois cohomology, we obtain the long

exact sequence

0 → E(Q)[ϕ] → E(Q)
φ−→ E ′(Q)

δ−→ H1(Q, E[ϕ]) → H1(Q, E)
φ−→ H1(Q, E ′)

and from this we obtain the short exact sequence

0 → E ′(Q)/ϕ(E(Q))
δ−→ H1(Q, E[ϕ]) → H1(Q, E)[ϕ] → 0.

Here, we set H1(Q, E[ϕ]) := H1(GQ/Q, E[ϕ]). Repeating the above argument to Qv for

each v ∈ MQ, we also obtain

0 → E ′(Qv)/ϕ(E(Qv))
δ−→ H1(Qv, E[ϕ]) → H1(Qv, E)[ϕ] → 0.

The natural inclusion GQv/Qv
⊂ GQ/Q and E(Q) ⊂ E(Qv) give restriction maps on coho-

mology. Hence we obtain the following commutative diagram:

0

0

∏
v∈MQ

E ′(Qv)/ϕ(E(Qv))

E ′(Q)/ϕ(E(Q))

∏
v∈MQ

H1(Qv, E[ϕ])

H1(Q, E[ϕ])

∏
v∈MQ

H1(Qv, E)[ϕ]

H1(Q, E)[ϕ]

0.

0
β

Then the ϕ-Selmer group of E is the subgroup of H1(Q, E[ϕ]) defined by

Selφ(E) = ker β.

Note that if we consider the multiplication-by-2 isogeny [2] : En → En instead of ϕ, we

can define the 2-Selmer group Sel2(En).

In what follows, we consider the elliptic curves En defined by

En : y
2 = x3 − n2x
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for an integer n > 0. We write the point of infinity of En as ∞. The curves En have three

types of isogenies:

ϕ1 : En → E1,n : y
2 = x3 + 4n2x, (x, y) 7→

(
y2

x2
,−y(n2 + x2)

x2

)
,

ϕ2 : En → E2,n : y
2 = x(x2 − 6nx+ n2), (x, y) 7→

(
y2

(x+ n)2
,
y(2n2 − (x+ n)2)

(x+ n)2

)
,

ϕ3 : En → E3,n : y
2 = x(x2 + 6nx+ n2), (x, y) 7→

(
y2

(x− n)2
,
y(2n2 − (x− n)2)

(x− n)2

)
.

For i = 1, 2, 3, we write the dual isogenies of ϕi as ϕ̂i. We write the weak Mordell–Weil

group corresponding to the isogeny ϕi as Ei,n(Q)/ϕi(En(Q)) and similarly for ϕ̂i. The

relation between these isogenies and the set WB
M(Q) is summarized in the following lemma.

Lemma 10.1 (cf. Silverman [61, Proposition X.4.9]). For any integer n 6= 0, we obtain

Q×/Q×2 ∼= H1(Q, En[ϕ1]) ∼= W 0
4n2(Q)/∼, d 7→

[
dx4 +

4n2

d
y4
]
,

Q×/Q×2 ∼= H1(Q, En[ϕ2]) ∼= W−6n
n2 (Q)/∼, d 7→

[
dx4 − 6nx2y2 + (n2/d)y4

]
,

Q×/Q×2 ∼= H1(Q, En[ϕ3]) ∼= W 6n
n2 (Q)/∼, d 7→

[
dx4 + 6nx2y2 + (n2/d)y4

]
,

Q×/Q×2 ∼= H1(Q, E1,n[ϕ̂1]) ∼= W 0
−n2(Q)/∼, d 7→

[
dx4 − n2

d
y4
]
,

Q×/Q×2 ∼= H1(Q, E2,n[ϕ̂2]) ∼= W 3n
2n2(Q)/∼, d 7→

[
dx4 + 3nx2y2 + 2(n2/d)y4

]
,

Q×/Q×2 ∼= H1(Q, E3,n[ϕ̂3]) ∼= W−3n
2n2 (Q)/∼, d 7→

[
dx4 − 3nx2y2 + 2(n2/d)y4

]
.

In each case, the set of equivalence classes of locally soluble quartics (resp. soluble

quartics) corresponds to the Selmer groups (resp. weak Mordell–Weil groups).

For the quartics in one of six sets appearing in Lemma 10.1, the discriminant and

Bhargava–Ho height of the quartics only depend on n by (10.1) and (10.2). In the fol-

lowing, we mainly consider those quartics with n 6= 0. In particular, we do not consider

degenerate quartics.

In the last part of this section, we cite an integrality lemma analogous to Browning [12,

Lemma 3.2]. It states that locally soluble quartics in WB
M(Q) is equivalent to integral

ones.

Lemma 10.2 (cf. Silverman and Tate [62, Proposition 3.8 (c)]). Fix integers B,M ∈ Z
with M(B2 − 4M) 6= 0. Any equivalence class of WB

M(Q)ls contains a unique element of

FB
M .
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Proof. The uniqueness follows from the fact that FB
M(Q) contains a unique element

in each equivalence class of WB
M(Q)ls. We have to show that for each equivalence class [f ]

of WB
M(Q), the unique element in [f ] ∩ FB

M(Q) has integral coefficients.

Take a locally soluble quartic f(x, y) = ax4 + Bx2y2 + cy4 ∈ WB
M(Q)ls. Assume that

f ∈ FB
M(Q), or equivalently, that a ∈ Z and 0 ≤ ordp a ≤ 1 for any prime p. Since

a,B ∈ Z, we only have to show that c ∈ Z. It is enough to prove ordp c ≥ 0 for any prime

p.

For a prime p dividing M , we have ordp c ≥ 0 since ac = M . Thus, we may assume that

p ∤ M . Moreover, since ac = M ∈ Z and ordp a ≤ 1, we only have to consider the case

where (ordp a, ordp c) = (1,−1).

Since f is locally soluble, we may take a nontrivial solution (Z,X, Y ) of z2 = f(x, y) in

Qp. By scaling, we may assume X,Y, Z ∈ Zp. Then we have the following:

• The two values ordp(aX
4), ordp(cY

4) are odd and distinct because

ordp(aX
4) ≡ 1 mod 4 and ordp(cY

4) ≡ −1 mod 4.

• We would like to compare ordp(nX
2Y 2) with ordp(aX

4) and ordp(cY
4). Since

p ∤ M , we compute

ordp(aX
4) + ordp(cY

4) = ordp(acX
4Y 4)

= ordp(M) + ordp(X
4Y 4)

= ordp(X
4Y 4)

= 2 ordp(X
2Y 2).

Thus, we obtain (ordp(aX
4) + ordp(cY

4))/2 = ordp(X
2Y 2).

Combining the above two observations, we have

ordp(aX
4) > ordp(X

2Y 2) > ordp(cY
4),

or ordp(aX
4) < ordp(X

2Y 2) < ordp(cY
4).

It is enough to consider the former case. Since B ∈ Z, we have two inequalities

ordp(aX
4) > ordp(cY

4) and ordp(BX2Y 2) > ordp(cY
4).

These conclude

ordp(aX
4 +BX2Y 2 + cY 4) = ordp(cY

4),
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and the value is odd. However, it contradicts Z2 = aX4 + BX2Y 2 + cY 4 since ordp(Z
2)

is even. �

Applying Lemma 10.2 to six cases in Lemma 10.1, we see that each element in the

Selmer groups of the isogenies ϕi, ϕ̂i has a unique representative of binary quartics in FB
M

for appropriate B,M . Thus in order to count elements in FB,loc
M , it is sufficient to count

elements of the Selmer groups corresponding to the elements in FB,loc
M .

11. Proof of Theorem 4.5

Now we prove Theorem 4.5. For h ∈ {±1,±2,±3}, define

S(X, h) = {D ∈ Z | D ≡ h mod 8, 1 ≤ D ≤ X, D : squarefree}.

The number of elements is estimated as

#S(X, h) =
1

π2
X + o(X)

as X → ∞. For more detailed estimation, see the proof of Xiong and Zaharescu [68,

Lemma 14].

Lemma 11.1 (Xiong and Zaharescu [68, Theorem 6]). For i ∈ {1, 2, 3}, one has∑
n∈S(X,h)

#Selφi
(En) = #S(X, h) + o(X)

as X → ∞. In particular, the contribution of nontrivial elements in Selφi
(En) is estimated

as o(X).

Proof. For h = ±1,±3, see the proof of Xiong and Zaharescu [68, Theorem 6].

In the following, we consider the case when h = ±2 and i = 1. In a similar manner, we

can treat the other cases when h = ±2 and i = 2, 3. Suppose p 6= 2. The conditions on n, d

for the existence of Qp-rational points on C1,d are given by Feng and Xiong [23, Lemma

3.1 (1)-(3)]. For the case h = ±1,±3, we obtain∑
n∈S(X,h)

#Selφ1(En) ≤
∑
n=dd′

∏
p|d
p ̸=2

1

4

((
−1

p

)
+ 1

)((
d′

p

)
+ 1

)∏
p|d′
p ̸=2

1

2

((
d

p

)
+ 1

)

= #S(X, h) + o(X)
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as X → ∞. Here,
( ·
·

)
is the Legendre symbol. Moreover, we obtain

#S(X, h) ≤
∑

n∈S(X,h)

#Selφ1(En)

by counting the trivial elements of Selφ1(En). Hence we complete the proof. �

Now, we will prove Theorem 4.5. We can rewrite Theorem 4.5 explicitly as

lim
X→∞

#{f ∈ F0,sol
4n2 | n: sqf. and hBH(f) = 4n2 < X}

#{f ∈ F0,ls
4n2 | n: sqf. and hBH(f) = 4n2 < X}

= 1. (11.1)

The left hand side quantity is equal to

lim
X→∞

∑
0<n<

√
X/2

n: sqf.

#F0,sol
4n2

∑
0<n<

√
X/2

n: sqf.

#F0,ls
4n2

,

so that by writing X instead of
√
X/2, we only have to show the following theorem.

Theorem 11.2. We obtain

lim
X→∞

∑
0<n<X
n: sqf.

#F0,sol
4n2

∑
0<n<X
n: sqf.

#F0,ls
4n2

= 1.

Proof. Using Lemma 10.2, we can freely interpret elements of the Selmer group

Selφ1(En) as elements in F0,ls
4n2 under the bijection in Lemma 10.1.

In Lemma 11.1, the main term #S(X, h) comes from identity elements of the Selmer

groups Selφ1(En), and the other elements are negligible. Since elements of F0,ls
4n2 which

come from identities are soluble, the inequalities∑
h=±1,±2,±3

#S(X, h) =
∑

0<n<X
n: sqf.

1 ≤
∑

0<n<X
n: sqf.

#F0,sol
4n2

≤
∑

0<n<X
n: sqf.

#F0,ls
4n2

≤
∑

h=±1,±2,±3

#S(X, h) + o(X)
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hold as X → ∞. Hence we obtain ∑
0<n<X
n: sqf.

#F0,sol
4n2

∑
0<n<X
n: sqf.

#F0,ls
4n2

→ 1

as X → ∞. �

In a similar manner to Selφ1(En), we also obtain the following theorem for Selφ2(En)

and Selφ3(En).

Theorem 11.3. We obtain

lim
X→∞

∑
0<n<X
n: sqf.

#F6n,sol
n2

∑
0<n<X
n: sqf.

#F6n,ls
n2

= lim
X→∞

∑
0<n<X
n: sqf.

#F−6n,sol
n2

∑
0<n<X
n: sqf.

#F−6n,ls
n2

= 1.

12. Proof of Theorem 4.6

In §12.1, we employ results on the 2-Selmer groups to estimate soluble binary quartic

forms. Later in §12.2, we prove Theorem 4.6.

12.1. Results on 2-coverings. We set n = D1D2D3D4 for pairwise coprime integers

D1, D2, D3, D4 > 0 and C = C(D1, D2, D3, D4) is the genus one curve defined by

C(D1, D2, D3, D4) :

D1X
2 +D4W

2 = D2Y
2,

D1X
2 −D4W

2 = D3Z
2.

As the following lemma says, this curve represents 2-coverings of E.

Lemma 12.1. (cf. Silverman [61, X.4.5.1], Heath-Brown [28, Lemma 1]) Let n be a

squarefree integer. Then the 2-Selmer group Sel2(En) is bijective to the set(D1, D2, D3, D4)

∣∣∣∣∣∣∣∣
D1, D2, D3, D4 ∈ Z>0 are pairwise coprime,

n = D1D2D3D4,

C(D1, D2, D3, D4)(Qv) 6= ∅ for all places v of Q.

 .

We quote the following lemma on the existence of local solutions for C. Although Heath-

Brown treated only the case when n is odd in [28], the following statements are valid when

n is even and squarefree.
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Lemma 12.2. (Heath-Brown [28, pp. 175-176]) Let p be ∞ or an odd prime.

(1) C(Q∞) 6= ∅, where Q∞ = R.
(2) If p ∤ 2n, then C(Qp) 6= ∅.
(3) If p | D1, then C(Qp) 6= ∅ ⇐⇒

(
D4D2

p

)
=
(

−D4D3

p

)
= 1.

(4) If p | D2, then C(Qp) 6= ∅ ⇐⇒
(

−D1D4

p

)
=
(

2D1D3

p

)
= 1.

(5) If p | D3, then C(Qp) 6= ∅ ⇐⇒
(

D1D4

p

)
=
(

2D1D2

p

)
= 1.

(6) If p | D4, then C(Qp) 6= ∅ ⇐⇒
(

D1D2

p

)
=
(

D1D3

p

)
= 1.

Lemma 12.3. For h = ±1,±2,±3, we have∑
n∈S(X,h)

#Sel2(En) ≤ 12#S(X, h) + o(X)

as X → ∞.

Proof. For the case where h is odd, more strict estimate is given in Heath-Brown [28,

Theorem 1]. To consider the case where h is even, we briefly sketch the proof (for the

details, see Heath-Brown [28]).

By Lemma 12.1, it is enough to count the quadruples of pairwise coprime positive integers

(D1, D2, D3, D4) such that C(D1, D2, D3, D4) has Qv-rational points for any place v of Q.

For odd primes v and v = ∞, Lemma 12.2 gives the condition under which the curve

C(D1, D2, D3, D4) has a Qv-rational point. When v = 2, Heath-Brown [28, Lemma 2]

states that the existence of Q2-rational points in C(D1, D2, D3, D4) is determined by the

existence of Qv-rational points for every v ∈ MQ \ {2}. By counting coefficients satisfying

the local conditions for any odd prime v and v = ∞, we obtain the desired estimation.

For the case where h is even, we apply Lemma 12.1 again and reduce to count the

quadruples of integers. For odd primes v or v = ∞, the conditions for the existence of

Qv-rational points are the same as those of Lemma 12.2. To obtain an estimation from

above, we ignore the condition on v = 2. �

12.2. Proof of Theorem 4.6. First, we show the following lemma, which is essential

when we evaluate the number of locally soluble integral quartics.

Lemma 12.4 (Xiong and Zaharescu [68, p. 47. (9)]). Define

s(n, ϕ̂i) := dimF2 Selφ̂i
(Ei,n)− 2.
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For each h = ±1,±3 and i ∈ {1, 2, 3}, we obtain∑
n∈S(X,h)

s(n, ϕ̂i) =
#S(X, h) log logX

2
+O(X)

as X → ∞.

Before we begin to prove Theorem 4.6, we show the explicit statement of Theorem 4.6.

As a similar manner to (11.1), we can rewrite Theorem 4.6 explicitly as

lim
X→∞

#{f ∈ F0,sol
−n2 | n: sqf. and hBH(f) = n2 < X}

#{f ∈ F0,ls
−n2 | n: sqf. and hBH(f) = n2 < X}

= 0.

Hence, by changing
√
X to X, it is sufficient to show the following theorem.

Theorem 12.5. We obtain

lim
X→∞

∑
0<n<X
n: sqf.

#F0,sol
−n2

∑
0<n<X
n: sqf.

#F0,ls
−n2

= 0.

Proof. We estimate the denominator and the numerator independently.

First, consider the denominator. From Lemmas 10.1 and 12.4, we obtain∑
0<n<X
n: sqf.

#F0,ls
−n2 ≥

∑
0<n<X

n: sqf. and odd

#Selφ̂1(E1,n)

=
∑

0<n<X
n: sqf. and odd

22+s(n,φ̂1)

= 4
∑

0<n<X
n: sqf. and odd

(1 + 1)s(n,φ̂1)

≥ 4
∑

0<n<X
n: sqf. and odd

(1 + s(n, ϕ̂1))

= 4× 4× X log logX

2π2
+O(X)

=
8X log logX

π2
+O(X)

as X → ∞.
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Next, we consider the numerator. By Lemma 10.2, the natural map

F0,sol
−n2 → W 0

−n2(Q)sol/∼

is bijective for each n. By Lemma 10.1, the set W 0
−n2(Q)sol/∼ is bijective to the weak

Mordell–Weil group En(Q)/ϕ̂1(E1,n(Q)). Since there are a surjection

En(Q)/ϕ̂1(E1,n(Q)) � En(Q)/2En(Q)

and an inclusion

En(Q)/2En(Q) ⊆ Sel2(En),

we can bound #F0,sol
−n2 for each n from above as

#F0,sol
−n2 ≤ #Sel2(En).

Summing this estimate up over sqf. n, we obtain∑
0<n<X
n: sqf.

#F0,sol
−n2 ≤

∑
0<n<X
n: sqf.

#Sel2(En) ≤ O(X)

as X → ∞ by Lemma 12.3. Hence we conclude that∑
0<n<X
n: sqf.

#F0,sol
−n2

∑
0<n<X
n: sqf.

#F0,ls
−n2

≤ O(X)

8X log logX/π2 +O(X)
→ 0

as X → ∞ and complete the proof. �

In a similar manner to the case of i = 1, we can also show the case of i = 2 and 3.

Theorem 12.6. We obtain

lim
X→∞

∑
0<n<X
n: sqf.

#F3n,sol
2n2

∑
0<n<X
n: sqf.

#F3n,ls
2n2

= lim
X→∞

∑
0<n<X
n: sqf.

#F−3n,sol
2n2

∑
0<n<X
n: sqf.

#F−3n,ls
2n2

= 0.
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13. Proof of Theorem 4.7

Since ϕ1 maps En[2] to E1,n[ϕ̂1] (cf. Aoki [1, 2nd paragraph in p. 79]), the map ϕ1

induces the natural homomorphisms

H1(Q, En[2]) → H1(Q, E1,n[ϕ̂1]) ; (σ 7→ Pσ) 7→ (σ 7→ ϕ1(Pσ))

and

π1 : Sel2(En) → Selφ̂1(E1,n).

We say a binary quartic form f ∈ W 0
−n2(Z)ls is strictly locally soluble if the element in the

Selmer group Selφ̂1(E1,n) corresponding to f is in the image of π1. We write the subset of

W 0
−n2(Z) of strictly locally soluble binary quartic forms as W 0

−n2(Z)sls.
The set W 0

−n2(Z)sol is a subset of W 0
−n2(Z)sls. In fact, this follows from Lemma 10.1 and

the following commutative diagram (cf. Aoki [1, p. 97]):

0 E1,n(Q)/ϕ1(En(Q)) En(Q)/2En(Q) En(Q)/ϕ̂1(E1,n(Q)) 0

0 Selφ1(En) Sel2(En) Selφ̂1(E1,n).
π1

In a similar manner to F0,sol
−n2 or F0,ls

−n2 , we define F0,sls
−n2 as F0

−n2 ∩ W 0
−n2(Z)sls. Now we

restate Theorem 4.7 in a rigorous form. As in Theorems 4.5 and 4.6, it is sufficient to

show the following theorem.

Theorem 13.1. We have

lim inf
X→∞

∑
0<n<X
n: sqf.

#F0,sol
−n2

∑
0<n<X
n: sqf.

#F0,sls
−n2

≥ 2.559

6
.

In the rest of this section, we will prove this theorem. To prove it, we estimate the

denominator and the numerator independently. First, consider the denominator.

The number of strictly locally soluble forms are bounded above by the number of ele-

ments of the 2-Selmer groups. This leads us to estimate∑
0<n<X
n: sqf.

#F0,sls
−n2 ≤

∑
h∈{±1,±2,±3}

∑
n∈S(X,h)

#Sel2(En)

≤ 6× 12× 1

π2
X + o(X) (13.1)
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as X → ∞. Here, the last inequality follows from Lemma 11.1.

Next, consider the numerator. When we evaluate the number of soluble forms, the

following proposition plays an important role.

Proposition 13.2 (Smith [65, Theorem 1.5], cf. Li [42, Theorem 5.3]). Consider the

family of elliptic curves {En | n: sqf. and n ≡ −1,−2,−3 (mod 8)}. In this family, the

proportion of the curves with rankQ(En) = 1 is at least 55.9%.

Proof. By Smith [65, Theorem 1.5], the analytic rank of En is equal to one for at least

62.9%, 41.9% and 62.9% of squarefree integers n with n ≡ −1,−2 and −3 (mod 8) respec-

tively. Hence, in the family of elliptic curves {En | n is sqf. and n ≡ −1,−2,−3 (mod 8)},
the proportion of elliptic curves En whose analytic rank is equal to one is at least

(62.9 + 41.9 + 62.9)/3 = 55.9%. Combining with the results of Gross and Zagier [26]

and Kolyvagin [39], we deduce that the same is true for the arithmetic rank. �

We need another proposition on the structure of the Mordell–Weil groups of En. Recall

that the following theorem holds.

Theorem 13.3 (Mordell’s theorem, cf. Silverman [61, ChapterVIII, Theorem 4.1]). Let

E be an elliptic curve defined by Q. Then the group E(Q) is finitely generated.

Thanks to this theorem, a group E(Q) can be written as E(Q) ∼= E(Q)tors × Zr, where

E(Q)tors is the torsion subgroup of E(Q) and r is a non-negative integer in general. Hence

let us write the torsion part of En(Q) as T , and the torsion part of E1,n(Q) as T1. Since

ϕ̂1 is a morphism of degree 2, we have ϕ̂1(T1) ⊆ T . Moreover, we can take subgroups

A ⊆ En(Q) and A1 ⊆ E1,n(Q) such that

En(Q) ∼= T × A, E1,n(Q) ∼= T1 × A1,

and ϕ̂1(A1) ⊆ A. Note that A, and A1 are free of rank r. By these, we can consider the

decompositions

En(Q)/2En(Q) ∼= T/2T × A/2A, (13.2)

En(Q)/ϕ̂1(E1,n(Q)) ∼= T/ϕ̂1(T1)× A/ϕ̂1(A1). (13.3)

The following proposition states that the contribution of the torsion parts does not depend

on n > 1.
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Proposition 13.4. When n > 1, we have

r = dimF2 A/2A = dimF2

En(Q)

2En(Q)
− 2,

dimF2 A/ϕ̂1(A1) = dimF2

En(Q)

ϕ̂1(E1,n(Q))
− 2.

Proof. The natural inclusion En(Q)[2] ↪→ En(Q) and the natural surjection En(Q) �
En(Q)/2En(Q) give a composite map

En(Q)[2] → En(Q)

2En(Q)
. (13.4)

Since ϕ̂1 ◦ ϕ1 = [2], there is also a natural surjection

En(Q)

2En(Q)
� En(Q)

ϕ̂1(E1,n(Q))
. (13.5)

By the decompositions (13.2) and (13.3), the maps (13.4) and (13.5) give two homomor-

phisms

En(Q)[2] → T/2T, (13.6)

T/2T � T/ϕ̂1(T1). (13.7)

Recall that #En(Q)[2] = 4. Thus, in order to prove the proposition, it is sufficient to

show that En(Q)[2], T/2T and T/ϕ̂1(T1) are isomorphic by the homomorphisms (13.6)

and (13.7).

We show that the composition map of (13.6) and (13.7) is injective. This amounts to

show ϕ̂1(E1,n(Q)) ∩ En(Q)[2] = {∞}. Since the degree of ϕ̂1 is two, we have

ϕ̂1(E1,n(Q)) ∩ En(Q)[2] ⊆ ϕ̂1(E1,n(Q)[4]) ∩ En(Q)[2].

Since Ker(ϕ̂1) = E1,n(Q)[2] = E1,n(Q)[4], we have

ϕ̂1(E1,n(Q)[4]) ∩ En(Q)[2] = ϕ̂1(E1,n(Q)[2]) ∩ En(Q)[2]

= {∞} ∩ En(Q)[2] = {∞}.

Hence we obtain ϕ̂1(E1,n(Q)) ∩ En(Q)[2] = {∞}.
Next, we show that the map (13.6) is an isomorphism. Since the composition map of

(13.6) and (13.7) is injective, the map (13.6) is also injective. The groups En(Q)[2] =

T [2] and T/2T have the same order since they are the kernel and the cokernel of an
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endomorphism T
2→ T of a finite abelian group T , respectively. Hence the map (13.6) is

surjective.

Combining these with the fact that the map (13.7) is surjective, we see that the maps

(13.6) and (13.7) are isomorphisms. This completes the proof. �

Remark 13.5. Under the bijection in Lemma 10.1, all 2-torsion points

∞, (0, 0), (n, 0), (−n, 0) ∈ En(Q)[2]

correspond to

x4 − n2y4,−x4 + n2y4, nx4 − ny4,−nx4 + ny4 ∈ F0,sol
−n2 .

For details, see Silverman [61, Proposition X.4.9].

Using the above propositions, we can show the following proposition which estimates

the numerator.

Proposition 13.6. We have∑
0<n<X
n: sqf.

#F0,sol
−n2 ≥ 4(6 + 0.559× 3)

π2
X + o(X)

as X → ∞.

Proof. First, consider the exact sequence (Silverman [61, Remark X.4.7])

0 → E1,n(Q)[ϕ̂1]

ϕ1(En(Q)[2])
→ E1,n(Q)

ϕ1(En(Q))
→ En(Q)

2En(Q)
→ En(Q)

ϕ̂1(E1,n(Q))
→ 0.

For n > 1, we have
E1,n(Q)[ϕ̂1]

ϕ1(En(Q)[2])
= 0.

By the above exact sequence, if n > 1, we obtain

dimF2

E1,n(Q)

ϕ1(En(Q))
+ dimF2

En(Q)

ϕ̂1(E1,n(Q))
= dimF2

En(Q)

2En(Q)
.

Recall that E1,n(Q)/ϕ1(En(Q)) ⊆ Selφ1(En). As stated in Lemma 11.1, we have∑
0<n<X
n: sqf.

#(Selφ1(En) \ {0}) = o(X)
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as X → ∞. Hence we obtain ∑
0<n<X
n: sqf.

dimF2

E1,n(Q)

ϕ1(En(Q))
= o(X)

and ∑
0<n<X
n: sqf.

dimF2

En(Q)

ϕ̂1(E1,n(Q))
=
∑

0<n<X
n: sqf.

dimF2

En(Q)

2En(Q)
+ o(X) (13.8)

as X → ∞.

Since

#
En(Q)

ϕ̂1(En(Q))
= #(En(Q)[2]× A/ϕ̂1(A1))

= #En(Q)[2]× 2dimF2 A/φ̂(A1)

≥ 4× (1 + dimF2 A/ϕ̂1(A1)),

Lemmas 10.1 and 10.2 yields the inequality∑
0<n<X
n: sqf.

#F0,sol
−n2 =

∑
0<n<X
n: sqf.

#
En(Q)

ϕ̂1(E1,n(Q))

≥
∑

0<n<X
n: sqf.

4× (1 + dimF2 A/ϕ̂1(A1)).

Moreover, the inequalities∑
0<n<X
n: sqf.

4× (1 + dimF2 A/ϕ̂(A1)) =
∑

0<n<X
n: sqf.

4× (1 + r) + o(X)

≥

( ∑
0<n<X
n: sqf.

+
∑

0<n<X
n: sqf.

n≡5,6,7 mod 8
rankEn(Q)=1

)
4 + o(X)

≥ 4(6 + 0.559× 3)

π2
X + o(X)
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also hold as X → ∞. Here, the first equality follows from (13.8) and Proposition 13.4 and

the second inequality follows from Proposition 13.2. Therefore, we obtain the inequality∑
0<n<X
n: sqf.

#F0,sol
−n2 ≥ 4(6 + 0.559× 3)

π2
X + o(X)

as X → ∞ and we complete the proof. �

Combining with (13.1) and Proposition 13.6, we obtain

lim inf
X→∞

∑
0<n<X
n: sqf.

#F0,sol
−n2

∑
0<n<X
n: sqf.

#F0,sls
−n2

≥ 4(6 + 0.559× 3)/π2

6× 12× (1/π2)
=

2.559

6
∼ 0.4265,

which completes the proof of Theorem 13.1.

In a similar manner to strictly locally soluble quartics in W 0
−n2(Z)ls, we define strictly

locally soluble quartics in W±3n
2n2 (Z)ls and consider the subsets W±3n

2n2 (Z)sls ⊆ W±3n
2n2 (Z)ls

of all strictly locally soluble quartics. We also define F3n,sls
2n2 = F3n

2n2 ∩ W 3n
2n2(Z)sls and

F−3n,sls
2n2 = F−3n

2n2 ∩W−3n
2n2 (Z)sls. The arguments throughout this section also hold when we

use ϕ2 or ϕ3 instead of ϕ1. Combining this with Lemmas 10.1 and 10.2, we obtain the

following:

Theorem 13.7. We have

lim inf
X→∞

∑
0<n<X
n: sqf.

#F3n,sol
2n2

∑
0<n<X
n: sqf.

#F3n,sls
2n2

≥ 4(6 + 0.559× 3)/π2

6× 12× (1/π2)
=

2.559

6
∼ 0.4265

and

lim inf
X→∞

∑
0<n<X
n: sqf.

#F−3n,sol
2n2

∑
0<n<X
n: sqf.

#F−3n,sls
2n2

≥ 4(6 + 0.559× 3)/π2

6× 12× (1/π2)
=

2.559

6
∼ 0.4265.

Remark 13.8. Assume that the Goldfeld conjecture holds. Then the proportion of the

elliptic curves {En | n: sqf. and n ≡ −1,−2,−3 (mod 8)} which satisfy rankEn(Q) = 1
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is 1. Hence we obtain∑
0<n<X
n: sqf.

#F0,sol
−n2 ≥

( ∑
0<n<X
n: sqf.

+
∑

0<n<X
n: sqf.

n≡5,6,7 mod 8
rankEn(Q)=1

)
4 ≥ 4(6 + 3)

π2
X + o(X)

as X → ∞ and

lim inf
X→∞

∑
0<n<X
n: sqf.

#F0,sol
−n2

∑
0<n<X
n: sqf.

#F0,sls
−n2

≥ 4(6 + 3)/π2

6× 12× (1/π2)
=

1

2
.

We expect the limit exists, and coincides with 1/2.
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Part 3

Non-degenerate integer points on PCF

varieties





14. Preliminaries

In this section, we recall the PCF varieties and fundamental solutions of the Pell equa-

tions. We will use them in the proof of Theorems 5.2 and 5.3 and Corollary 17.3.

14.1. PCF variety. In this subsection, we introduce the definition of PCF varieties

over a number field K. Let O be a ring of integers of K. Note that we define only (N, l)-

type PCF varieties for square roots of α ∈ O which are the needed ones in our thesis. See

Brock, Elkies, and Jordan [10, Section 3] for the definition of general PCF varieties.

Before introducing the definition of PCF varieties, we prepare some notations. For a

finite RCF [c1, . . . , cn], define

M([c1, c2 . . . , cn]) =

[
M([c1, c2 . . . , cn])11 M([c1, c2 . . . , cn])12

M([c1, c2 . . . , cn])12 M([c1, c2 . . . , cn])22

]

=

[
c1 1

1 0

][
c2 1

1 0

]
. . .

[
cn 1

1 0

]
.

For N ∈ Z≥0 and l ∈ Z≥1, we set

E((y1, . . . , yN , x1, . . . , xl))

=

[
E((y1, . . . , yN , x1, . . . , xl))11 E((y1, . . . , yN , x1, . . . , xl))12

E((y1, . . . , yN , x1, . . . , xl))21 E((y1, . . . , yN , x1, . . . , xl))22

]

:=

M([y1, . . . , yN , x1, . . . , xl, 0,−yN , . . . ,−y1, 0]) if N ≥ 1,

M([x1, . . . , xl]) if N = 0.

Note that E((y1, . . . , yN , x1, . . . , xl)) = E((x1, . . . , xl)) when N = 0.

Definition 14.1. Fix N ∈ Z≥0 and l ∈ Z≥1. For α ∈ O with
√
α 6∈ O, we define a PCF

variety V (
√
α)N,l of (N, l)-type byE((y1, . . . , yN , x1, . . . , xl))22 − E((y1, . . . , yN , x1, . . . , xl))11 = 0,

E((y1, . . . , yN , x1, . . . , xl))12 = αE((y1, . . . , yN , x1, . . . , xl))21,

where y1, . . . , yN , x1, . . . , xl are variables. In what follows, (y1, . . . , yN , x1, . . . , xl) denotes

the coordinate of V (
√
α)N,l.

In what follows, we consider N = 1 and α = m, where m is a positive nonsquare integer.

The following proposition is essential to prove Theorems 5.2 and 5.3
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Proposition 14.2. (cf. Brock, Elkies, and Jordan [10, (a) in Section 3.1 and Proposi-

tion 2.8]) If
√
m has a (1, l)-type PICF expansion [b1, a1, . . . , al], then a tuple of integers

(b1, a1, . . . , al) is an integer point on V (
√
m)1,l. Moreover, if (b1, a1, . . . , al) ∈ V (

√
m)1,l

is an integer point and [b1, a1, . . . , al] converges, then the value of [b1, a1, . . . , al] is
√
m or

−
√
m.e

Proof. Throughout this proof, we set P := [b1, a1, . . . , al]. Suppose
√
m has a (1, l)-

type PICF expansion P ∈ C. For a matrix A =

[
a b

c d

]
∈ GL2(C), we regard A as the

automorphism of the projective line P1 over C by

z 7→ az + b

cz + d

for z ∈ P1(C). Then we have

P = [b1, a1, . . . , al, 0,−b1, 0, b1, a1, . . . , al]

= M([b1, a1, . . . , al, 0,−b1, 0])P.

Since

M([b1, a1, . . . , al, 0,−b1, 0]) = E((b1, a1, . . . , al))

and P =
√
m, we have

E11((b1, a1, . . . , al))P + E12((b1, a1, . . . , al))

E21((b1, a1, . . . , al))P + E22((b1, a1, . . . , al))
= P (14.1)

and

E21((b1, a1, . . . , al))m+ [E22((b1, a1, . . . , al))− E11((b1, a1, . . . , al))]
√
m

− E12((b1, a1, . . . , al)) = 0.

Hence we obtain E((b1, a1, . . . , al))22 − E((b1, a1, . . . , al))11 = 0,

E((b1, a1, . . . , al))12 = mE((b1, a1, . . . , al))21,
(14.2)

which proves (b1, a1, . . . , al) ∈ V (
√
m)1,l(Z).

ewe can determine the sign of [b1, a1, . . . , al]. For details, see Brock, Elkies, and Jordan [10, Theorem
4.3].
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Next, suppose that (b1, a1, . . . , al) ∈ V (
√
m)1,l is an integer point and P = [b1, a1, . . . , al]

converges. Then (14.1) and (14.2) hold and we obtain the equation

E((b1, a1, . . . , al))12(P
2 −m) = 0.

Here we have E((b1, a1, . . . , al))12 6= 0 since [b1, a1, . . . , al] converges (cf. Brock, Elkies,

and Jordan [10, Corollary 4.4 and l.12 in p. 392]). Hence we obtain P = ±
√
m and we

complete the proof. �

From this proposition, it is sufficient to determine all the elements of V (
√
m)1,l(Z) in

order to obtain all (1, l)-type PICF expansions of
√
m.

We also remark that if a1 · · · al = 0, then the period of [b1, a1, . . . , al] is less than l (cf.

Brock, Elkies, and Jordan [10, Lemma 2.2]). Hence we only consider non-degenerate

integer points on V (
√
m)1,l(Z) defined as follows.

Definition 14.3. Let V (
√
m)1,l be a PCF variety. An integer point (b1, a1, . . . , al) on

V (
√
m)1,l is said to be non-degenerate if the condition ai 6= 0 holds for all 1 ≤ i ≤ l. We

write V (
√
m)1,l(Z)nd for the set of non-degenerate integer points on V (

√
m)1,l.

Remark 14.4. There are some results on geometric properties of PCF varieties (e.g.

Jordan–Logan–Zaytman [35] and Jordan–Zaytman [36]). In particular, V (
√
m)1,l(Z)nd is

a finite set for l ≤ 3 (see Jordan–Logan–Zaytman [35, Proof of Theorem 2.5]).

14.2. Pell equation. In this subsection, we recall the classical algorithm for finding

the fundamental solution of Pell equation. Throughout this subsection, let m be a positive

nonsquare integer. We consider all the integer solutions of the Pell equation x2 −my2 =

±1. Set

W := {(u, v) ∈ Z2 | u2 −mv2 = 1 or u2 −mv2 = −1}.

There is a natural bijection (u, v) 7→ u + v
√
m between W and the group of units of the

ring Z[
√
m]. Moreover the group of units is isomorphic to Z/2Z ⊕ Z by Dirichlet’s unit

theorem. Using these bijections, we define the fundamental solution of the Pell equation

x2 −my2 = ±1.

Definition 14.5. We call (u, v) ∈ W fundamental if (u, v) corresponds to one of

(1, 1), (1,−1), (0, 1), (0,−1) ∈ Z/2Z⊕ Z.
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Note that an isomorphism between the group of units Z[
√
m]× and Z/2Z ⊕ Z is not

canonical. However, for any isomorphism, the corresponding elements to {(1,±1), (0,±1)}
are the same. Thus the fundamental solutions are well-defined.

To find the fundamental solution of the Pell equation x2 − my2 = ±1, we can use the

RCF expansion of
√
m. It is well-known that

√
m has the (1, l)-type RCF expansion for

some l ∈ Z≥1 (cf. Niven, Zuckerman, and Montgomery [53, Theorem 7.21]). Hence we can

write
√
m = [a0, a1, . . . , al] for some a0, a1, . . . , al ∈ Z≥1, where l is the period. To state

the relationship between the fundamental solution of the Pell equation x2−my2 = ±1 and

(1, l)-type RCF expansion of
√
m, we introduce the convergent of a RCF [a0, a1, a2, . . . ].

Definition 14.6. We define the nth convergent pn/qn of the RCF [a0, a1, a2, . . . ] by

(pn, qn) = (anpn−1 + pn−2, anqn−1 + qn−2)

for each n ≥ 1. Here, (p−1, q−1) := (1, 0) and (p0, q0) := (a0, 1).

Note that pn/qn = [a0, . . . , an] (cf. Niven, Zuckerman, and Montgomery [53, Theorem

7.4]). Under the above preparation, the following holds.

Proposition 14.7. The fundamental solution of the Pell equation x2−my2 = ±1 is given

by

(x, y) = (pl−1, ql−1),

where l is the period of the RCF expansion of
√
m.

For the proof of Proposition 14.7, see Niven, Zuckerman, and Montgomery [53, Theorem

7.25].

15. Non-degenerate integer points on PCF varieties

In this section, we determine all non-degenerate integer points on PCF varieties of (1, l)-

type for l = 1, 2, 3. We recall that

m1(t) = t2 + 1,

m2(s, t) = s2t2 + t,

m′
2(s, t) = s2t2 + 2t,

m3(s, t) = 16t2s4 + 8ts3 + (8t2 + 1)s2 + 6ts+ t2 + 1.
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15.1. (1, 1)-type. We see that E((y1, x1)) is[
y1 x1y1 + 1− y21
1 x1 − y1

]
.

Hence V (
√
m)1,1 is given by  x1 − 2y1 = 0,

y21 − x1y1 − 1 = −m.

By easy calculation, V (
√
m)1,1 consists of two points ±(

√
m− 1, 2

√
m− 1). Therefore,

we immediately obtain the following propositions (cf. Brock, Elkies, and Jordan [10,

Proposition 5.3]).

Proposition 15.1. A (1, 1)-type PCF variety V (
√
m)1,1 has a non-degenerate integer

point if and only if m = m1(t) for some t ∈ Z \ {0}.

Proposition 15.2. Suppose that m = m1(t) for some t ∈ Z \ {0}. We have

V (
√
m)1,1(Z)nd = {±(t, 2t)}.

15.2. (1, 2)-type. We see that E((y1, x1, x2)) is[
y1x1 + 1 y1x1x2 + x2 − y21x1

x1 x1x2 − y1x1 + 1

]
.

Hence V (
√
m)1,2 is given by {

x1x2 − 2y1x1 = 0, (15.1)

y21x1 − y1x1x2 − x2 = −mx1. (15.2)

Proposition 15.3. A (1, 2)-type PCF variety V (
√
m)1,2 has a non-degenerate integer

point if and only if m = (st/2)2 + t for some s, t ∈ Z \ {0} with 2 | st.

Proof. Suppose that m = (st/2)2 + t for some s, t ∈ Z \ {0} with 2 | st. Then we

find (st/2, s, st) ∈ V (
√
m)1,2(Z)nd and we can check the if part.

Hence it is sufficient to show the only if part. Suppose that (y1, x1, x2) ∈ V (
√
m)1,2 is a

non-degenerate integer point. From (15.1), we obtain x2 = 2y1 since x1 6= 0. Substituting

this into (15.2), we obtain y21x1 + 2y1 − mx1 = 0 and m = y21 + 2y1/x1. Since m ∈ Z,
2y1 = tx1 for some t ∈ Z \ {0}, we obtain m = (tx1/2)

2 + t and complete the proof by

putting s = x1. �
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Remark 15.4. Since s or t is even by 2 | st, the condition m = (st/2)2 + t for some

s, t ∈ Z \ {0} with 2 | st is equivalent to m = m2(s, t) or m
′
2(s, t) for some s, t ∈ Z \ {0}.

From the proof of Proposition 15.3 and Remark 15.4, we obtain the following corollary.

Corollary 15.5. We have

V (
√
m)1,2(Z)nd

= {±(st, 2s, 2st) | m = m2(s, t), s, t 6= 0} ∪ {±(st, s, 2st) | m = m′
2(s, t), s, t 6= 0}.

15.3. (1, 3)-type. We see that E((y1, x1, x2, x3)) is[
y1x2x1 + (x2 + y1) ((y1x3 − y21)x2 + y1)x1 + (x3 − y1)x2 + y1x3 − y21 + 1

x2x1 + 1 ((x3 − y1)x2 + 1)x1 + x3 − y1

]
.

Hence V (
√
m)1,3 is given by{

2y1x2x1 + 2y1 − x3x2x1 + x2 − x1 − x3 = 0, (15.3)

m(x2x1 + 1) = y1(x3x2x1 + x1 + x3 − x2)− y21(x2x1 + 1) + x3x2 + 1. (15.4)

Before determining the non-degenerate integer points on V (
√
m)1,3, we give a nec-

essary and sufficient condition for the existence of a non-degenerate integer point on

V (
√
m)1,3(Z).

Proposition 15.6. A (1, 3)-type PCF variety V (
√
m)1,3 has a non-degenerate integer

point if and only if m = m3(s, t) for some s, t ∈ Z with (s, t) 6= (0, 0).

Proof. Suppose that m = 16t2s4 + 8ts3 + (8t2 + 1)s2 + 6ts+ t2 + 1 for some s, t ∈ Z
with (s, t) 6= (0, 0). Then we can take non-degenerate integer points such as (s + (4s2 +

1)t, 2s, 2s, 2(s+ (4s2 + 1)t)) and we showed the if part.

Hence it is sufficient to show the only if part. Suppose that (y1, x1, x2, x3) is a non-

degenerate integer point on ∈ V (
√
m)1,3. From (15.3), we obtain

|(2y1 − x3)(x2x1 + 1)| = |x1 − x2| . (15.5)

In what follows, we divide the proof into two cases, namely |x1 − x2| > |x2x1 + 1| and
|x1 − x2| ≤ |x2x1 + 1|.
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(1) If |x1 − x2| > |x2x1 + 1|, we obtain
−x1−1
x1−1

< x2 <
x1−1
x1+1

if x1 6= ±1,

x2 > 0 if x1 = −1,

x2 < 0 if x1 = 1.

Hence it is sufficient to consider the following five cases:

• (x1, x2) = ±(2,−2),

• x1 ≥ 2 and x2 = −1,

• x1 ≤ −2 and x2 = 1,

• x1 = −1 and x2 > 0,

• x1 = 1 and x2 < 0.

If (x1, x2) = ±(2,−2), we immediately show that V (
√
m)1,3(Z)nd = ∅. Hence

we consider the remaining cases.

(a) If |x1| ≥ 2, consider the case where x1 ≥ 2 and x2 = −1. Substituting

x2 = −1 into (15.3), we obtain (x1 − 1)(x3 − 2y1 − 1) = 2 and (x1, x3) =

(3, 2y1 + 2), (2, 2y1 + 3) since x1 ≥ 2. If (x1, x3) = (3, 2y1 + 2), there are

no non-degenerate integer points since y1 6∈ Z. If (x1, x3) = (2, 2y1 + 3),

we obtain y21 + 2y1 + 2 − m = 0 by (15.4) and y1 = −1 ±
√
m− 1. Since

y1 ∈ Z, the necessary condition for V (
√
m)1,3(Z)nd 6= ∅ is m = t2 + 1 for

some t ∈ Z \ {0}.
Similarly, the necessary condition for V (

√
m)1,3(Z)nd 6= ∅ is m = t2 + 1 for

some t ∈ Z \ {0} when x1 ≤ −2 and x2 = 1.

(b) If |x1| = 1, consider the case where x1 = −1 and x2 > 0. Substituting

x1 = −1 into (15.3), we obtain (x2 − 1)(x3 − 2y1 + 1) = −2 and (x2, x3) =

(2, 2y1 − 3), (3, 2y1 − 2) since x2 > 0. If (x2, x3) = (3, 2y1 − 2), there are

no non-degenerate integer points since y1 6∈ Z. If (x2, x3) = (2, 2y1 − 3),

we obtain y21 − 4y1 + 5 − m = 0 from (15.4) and y1 = 2 ±
√
m− 1. Since

y1 ∈ Z, the necessary condition for V (
√
m)1,3(Z)nd 6= ∅ is m = t2 + 1 for

some t ∈ Z \ {0}.
Similarly, the necessary condition for V (

√
m)1,3(Z)nd 6= ∅ is m = t2 + 1 for

some t ∈ Z \ {0} when x1 = 1 and x2 < 0.
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(2) If |x1 − x2| ≤ |x2x1 + 1|, we obtain (|2y1 − x3| − 1) |x2x1 + 1| ≤ 0. In what

follows, we assume |2y1 − x3| − 1 ≤ 0 since we can check that there are no non-

degenerate integer points if |2y1 − x3| − 1 > 0f.

(a) If |2y1 − x3| − 1 = 0, consider the case 2y1 − x3 = 1. From (15.3), we obtain

(x1+1)(x2−1) = −2 and (x1, x2) = (−3, 2), (−2, 3). If (x1, x2) = (−3, 2), we

obtain 5y21−4y1+1−5m = 0 from (15.4) and y1 = (2±
√
25m− 1)/5. Since

y1 ∈ Z, the necessary condition for V (
√
m)1,3(Z)nd 6= ∅ is m = 25t2+14t+2

for some t ∈ Z. If (x1, x2) = (−2, 3), we obtain 5y21 − 6y1 +2− 5m = 0 from

(15.4) and y1 = (3 ±
√
25m− 1)/5. Since y1 ∈ Z, the necessary condition

for V (
√
m)1,3(Z)nd 6= ∅ is m = 25t2 + 14t+ 2 for some t ∈ Z.

Similarly, the necessary condition for V (
√
m)1,3(Z)nd 6= ∅ ism = 25t2+14t+2

for some t ∈ Z when 2y1 − x3 = −1.

(b) If |2y1 − x3| − 1 < 0, we obtain 2y1 = x3 from (15.5). Substituting this into

(15.3), we obtain x1 = x2. Combining this and (15.4), we obtain

(y21 −m)x2
1 + 2y1x1 + y21 + 1−m = 0. (15.6)

Hence 2 | x1 and we can write x1 = 2s for some s ∈ Z \ {0}. Combining

(15.6), we have m = y21 +
4sy1+1
4s2+1

∈ Z and 4sy1 ≡ −1 mod 4s2 + 1. Thus, we

obtain y1 = s + (4s2 + 1)t for some t ∈ Z and the necessary condition for

V (
√
m)1,3(Z)nd 6= ∅ is m = 16t2s4 +8ts3 +(8t2 +1)s2 +6ts+ t2 +1 for some

s ∈ Z \ {0} and t ∈ Z.

Therefore, combining the results of (1) and (2), we showed that if V (
√
m)1,3(Z)nd 6= ∅

then m = 16t2s4 + 8ts3 + (8t2 + 1)s2 + 6ts + t2 + 1 = m3(s, t) for some s, t ∈ Z with

(s, t) 6= (0, 0) since t2 + 1 = m3(0, t) and 25t2 + 14t+ 2 = m3(±1, t). �

Tracing the proof of the only if part of Proposition 15.6 and determining (y1, x1, x2, x3)

in each case, we obtain the following:

Corollary 15.7. We have

V (
√
m)1,3(Z)nd

= {±(s+ (4s2 + 1)t, 2s, 2s, 2(s+ (4s2 + 1)t)) | m = m3(s, t), s, t 6= 0}

∪ {±(−2 + t, 1,−2,−1 + 2t),±(−1 + t, 2,−1, 1 + 2t) | m = m3(0, t), t 6= 0}

∪ {±(2 + 5t,−2, 3, 3 + 10t),±(1 + 5t, 3,−2, 3 + 10t) | m = m3(±1, t)}.

fIn this case, we obtain x2x1 = −1, x2 = x1 but there are no integer x2, x1 satisfying the equations.
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16. Proof of Theorems 5.2 and 5.3

In this section, we prove Theorems 5.2 and 5.3.

16.1. Convergence to PICF. Before the proof of our theorems, we recall two propo-

sitions on the convergence of PICFs.

For a sequence of integers {an}n≥0, we define

Ja0, a1.a2, . . .K = a0 −
1

a1 −
1

a2 − · · ·

.

Then Katok and Ugarcovici gave the sufficient condition on the convergence of PICFs.

Proposition 16.1 (Katok and Ugarcovici [37, Lemma 1.1]). Let {an}n≥0 be a sequence of

non-zero integers such that |ai| = 1 implies aiai+1 < 0. Then the sequence Ja0, a1.a2, . . .K
converges and it satisfies a0 − 1 ≤ Ja0, a1.a2, . . .K ≤ a0 + 1.

Note that we can regard a PICF [a0, a1, a2, a3, . . . ] as Ja0,−a1.a2,−a3, . . .K. Hence

Proposition 16.1 gives the sufficient condition on the convergence of PICFs satisfying

the assumption in this theorem. Moreover, Brock, Elkies, and Jordan obtained neces-

sary and sufficient conditions on the convergence of all the PICFs. In what follows, for a

PICF P = [b1, . . . , bN , a1, . . . , al], we denote E((b1, . . . , bN , a1, . . . , al)) as E(P ) and denote

λ(P )+ as the eigenvalue of E(P ) such that |λ(P )+| ≥ 1.

Proposition 16.2 (a special case of Brock, Elkies, and Jordan [10, Theorem 4.3]). Let

P = [b1, . . . , bN , a1, . . . , al] be a PICF. Then P converges if and only if none of the following

three conditions is satisfied:

(1) E(P ) = ±I, where I is the identity matrix.

(2) M([aj+1, . . . , al+j])21 = 0 and |M([aj+1, . . . , al+j])22| > 1 for some 0 ≤ j ≤ k − 1.

(3) Tr(E(P ))2 ∈ R and 0 ≤ (−1)lTr(E(P ))2 < 4.

Moreover, P converges to (λ(P )+ − E(P )22)/E(P )21.

We will use these propositions in the proof of Theorems 5.2 and 5.3.

16.2. The proof of Theorem 5.2. First, the only if part follows from Proposi-

tion 14.2 and from the only if part of Proposition 15.1 (resp. Proposition 15.3, Proposi-

tion 15.6) in l = 1(resp. l = 2, l = 3). To show the if part, it is sufficient to check that

[b1, a1, . . . , al] converge for some (b1, a1, . . . , al) ∈ V (
√
m)1,l(Z)nd by Proposition 14.2. In-

deed, if a PICF [b1, a1, . . . , al] converges to −
√
ml(s, t), we just take (−b1,−a1, ...,−al)
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instead of (b1, a1, ..., al). For the convergence, we can check it easily by Proposition 16.1

except for [−2 + t, 1,−2,−1 + 2t] and [−1 + t, 2,−1, 1 + 2t]. In what follows, we check

the convergence of PICFs corresponding to non-degenerate integer points on (1, 1), (1, 2)

and (1, 3)-type PCF varieties.

Consider PICFs [t, 2t] = Jt,−2t, 2tK. Then t × (−2t) = −2t2 < 0 and we can check the

convergence.

Consider PICFs [st, 2s, 2st] = Jst,−2t, 2stK. If t ≥ 1, then st × (−2t) = −2s2t < 0. If

t < 0, then (t, s) = (−1,±1) since |st| = 1 and s, t ∈ Z. However, it is a contradiction

since m2(s, t) = 0. Hence we can check the convergence. In a similar manner, we can

check that PICFs [st, s, 2st] converge.

Lastly, consider PICFs [s+ (4s2 +1)t, 2s, 2s, 2(s+ (4s2 + 1)t)]. These PICFs are equiv-

alent to Js + (4s2 + 1)t,−2s, 2s,−2(s+ (4s2 + 1)t)K. By Proposition 16.1, it suffices to

check that [s+ (4s2 +1)t, 2s, 2s, 2(s+ (4s2 + 1)t)] converges when s+ (4s2 +1)t = ±1. If

s + (4s2 + 1)t = 1, we obtain s > 0. Indeed, assume s < 0. Then we obtain t = 1 since

t = (1− s)/(4s2 + 1) and t ∈ Z. However, it is a contradiction since s is 0 or 1/4. Hence

(s+ (4s2 + 1)t)× (−2s) = −2s < 0 and

Js+ (4s2 + 1)t,−2s, 2s,−2(s+ (4s2 + 1)t)K = [s+ (4s2 + 1)t, 2s, 2s, 2(s+ (4s2 + 1)t)]

converges by Proposition 16.1. In a similar manner, we can check that [s + (4s2 +

1)t, 2s, 2s, 2(s+ (4s2 + 1)t)] converges when s+ (4s2 + 1)t = 1.

For the convergence of [−2 + t, 1,−2,−1 + 2t] and [−1 + t, 2,−1, 1 + 2t], we can check

it by Proposition 16.2. Consider the case Q := [−2+ t, 1,−2,−1 + 2t]. First, E(Q) 6= ±I

holds for all non-zero integers t since

E(Q) =

[
−t −t2 − 1

−1 −t

]
.

Next, we write down M([aj+1, aj+2, aj+3])21 for each j = 0, 1, 2. Then we obtain

M([1,−2,−1 + 2t])21 = −4t+ 3,

M([−2,−1 + 2t, 1])21 = 2t,

M([−1 + 2t, 1,−2])21 = −1.

Since all M([aj+1, aj+2, aj+3])21 are non-zero, we check that M([aj+1, ..., aj+l])21 6= 0 or

|M([aj+1, ..., aj+l])22| ≤ 1 for all j = 0, . . . , l − 1.
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We also obtain

(−1)3Tr(E(Q))2 = −(−2t)2 < 0

for t ∈ Z \ {0}, and either (−1)lTr(E(Q))2 < 0 or 4 ≥ (−1)lTr(E(Q))2 holds. We also

check the convergence of R := [−1 + t, 2,−1, 1 + 2t] in a similar way. Indeed, we obtain

E(R) =

[
−t −t2 − 1

−1 −t

]
,

M([2,−1, 1 + 2t])21 = −2t,

M([−1, 1 + 2t, 2])21 = 4t+ 3,

M([1 + 2t, 2,−1])21 = −1,

and

(−1)3Tr(E(R))2 = −(−2t)2 < 0

for t ∈ Z \ {0}.
Combining these results with Proposition 15.2 and Corollaries 15.5 and 15.7, we complete

the proof.

16.3. Proof of Theorem 5.3. Recall that we determined all non-degenerate inte-

ger points on V (
√
ml)1,l(Z) for l = 1, 2, 3. Then by Proposition 14.2, it is sufficient to

consider the convergence of PICFs corresponding to non-degenerating integer points on

V (
√
ml)1,l(Z) in order to prove Theorem 5.3. Since the convergence of PICFs in Theo-

rem 5.3 has already been shown in §16.2, we need only to determine the signs of PICFs.

The signs can also be also determined by Proposition 16.1 except for [−2+t, 1,−2,−1 + 2t]

and [−1+t, 2,−1, 1 + 2t], and the signs of [−2+t, 1,−2,−1 + 2t] and [−1+t, 2,−1, 1 + 2t]

by Proposition 16.2. Indeed,

• [t, 2t] = sgn(t)
√
m1(s, t) since t− 1 ≤ [t, 2t] ≤ t+ 1,

• [st, 2s, 2st] = sgn(st)
√

m2(s, t) since st− 1 ≤ [st, 2s, 2st] ≤ st+ 1,

• [st, s, 2st] = sgn(st)
√

m2(s, t) since st− 1 ≤ [st, 2s, 2st] ≤ st+ 1,

• [s+ (4s2 + 1)t, 2s, 2s, 2(s+ (4s2 + 1)t)] = sgn(t)
√

m3(s, t) since

s+ (4s2 + 1)t− 1 > s+ (4s2 + 1)− 1 = 4s2 + s > 0
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for s ∈ Z \ {0} if t > 0 and

s+ (4s2 + 1)t+ 1 ≤ s− 4s2 − 1 + 1 = −4s2 + s < 0

for s ∈ Z \ {0} if t < 0.

Moreover, for [−2+t, 1,−2,−1 + 2t] and [−1+t, 2,−1, 1 + 2t], it is sufficient to determine

λ(P )+ for each PICF in Theorem 5.3. Easy calculations show that

λ((−2 + t, 1,−2,−1 + 2t))+ = −t− sgn(t)
√

m3(0, t),

and

λ((−1 + t, 2,−1, 1 + 2t))+ = −t− sgn(t)
√

m3(0, t).

Hence we complete the proof.

17. An application of Theorem 5.3 to the fundamental solutions of the Pell

equations

As an application of Theorem 5.3, we obtain the fundamental solutions of some families

of the Pell equations from PICF expansions of square roots of positive nonsquare integers.

As we seen in Proposition 14.7, we obtain the fundamental solution of the Pell equation

x2 −my2 = ±1 from the RCF expansion of
√
m for a nonsquare positive integer m. On

the other hand, the algorithm does not work when we consider PICFs of
√
m in general.

Indeed we obtain a solution (x, y) = (−7,−5) of the Pell equation from
√
m3(±1, 0) =√

2 = [2,−2, 3, 3] and this is not the fundamental solution (x, y) = (1, 1). Hence we can

consider the following question.

Problem 17.1. For every nonsquare positive integer m and l ∈ Z≥2, when the fundamen-

tal solution of the Pell equation x2 −my2 = ±1 is obtained from the (l− 1)th convergent

of a PICF expansion of
√
m?

If l = 1, the answer of this question is obtained from a classical result. Indeed, it

is a classical result that (x, y) = (t, 1) is the fundamental solution of the Pell equation

x2 − m1(t)y
2 = ±1 for every non-zero integer t and we can obtain it from all PICF

expansions of
√
m1(t) given in Theorem 5.3. In this thesis, we answer this question

completely for l = 2, 3.

Theorem 17.2. (1) Suppose that s, t are non-zero integers with m2(s, t) > 0. For

each s, t, the fundamental solution of the Pell equation x2 −m2(s, t)y
2 = ±1 is
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obtained from the 1st convergent of the PICF expansion of
√
m2(s, t) given in

Theorem 5.3 if and only if |s| = 1 or t 6= −1.

(2) Suppose that s, t are non-zero integers with m′
2(s, t) > 0. For each s, t, the

fundamental solution of the Pell equation x2 −m′
2(s, t)y

2 = ±1 is obtained from

the 1st convergent of the PICF expansion of
√

m′
2(s, t) given in Theorem 5.3.

(3) Suppose that s, t are non-zero integers with m3(s, t) > 0. For each s, t, the

fundamental solution of the Pell equation x2 −m3(s, t)y
2 = ±1 is obtained from

the 2nd convergent of the PICF expansion of
√
m3(s, t) given in Theorem 5.3

except for
√

m3(±1, 0) =
√
2 = [2,−2, 3, 3] = [1, 3,−2, 3].

Note that if |s| ≥ 2 and t = −1, we can obtain the fundamental solution of the Pell

equation x2−m2(s, t)y
2 = ±1 from the 0th convergent of the PICF expansion of

√
m2(s, t).

As a by-product of the proof of Theorem 17.2, we also find fundamental solutions of

some families of the Pell equations.

Corollary 17.3. Let s, t be non-zero integers.

(1) If s, t satisfy m2(s, t) > 0 and t 6= −1, then

(x2(s, t), y2(s, t)) := (2s2t+ 1, 2s)

is the fundamental solution of the Pell equation x2 −m2(s, t)y
2 = ±1.

(2) If s, t satisfy m′
2(s, t) > 0, then

(x′
2(s, t), y

′
2(s, t)) := (s2t+ 1, s)

is the fundamental solution of the Pell equation x2 −m′
2(s, t)y

2 = ±1.

(3) (x3(s, t), y3(s, t)) := (16ts4+4s3+8ts2+3s+t, 4s2+1) is the fundamental solution

of the Pell equation x2 −m3(s, t)y
2 = ±1.

Moreover, (x3(s, t), y3(s, t)) is also the fundamental solution of the Pell equation x2 −
m3(s, t)y

2 = ±1 for each pair of integers (s, t) except for (s, t) = (±1, 0), (0, 0).

Of course, Corollary 17.3 is a classical result when s, t are positive integers. Indeed, we

obtain Corollary 17.3 by applying the algorithm of obtaining the fundamental solutions of

the Pell equations to the first part of Theorem 5.3. Corollary 17.3 claims that this result

also holds when s, t are not necessarily positive.

We also note that Corollary 17.3 can be regarded as the result for fundamental so-

lutions of some families of the Pell equations parametrized by non-zero integers s, t.

There are some related results about fundamental solutions of them (e.g. Nathanson [52],
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Mollin [49], Ramasamy [57]). However, these previous results do not seem to cover our

results even if fundamental solutions look like our results since the range of parameter

values is different.

Since we obtain Corollary 17.3 by writing down the convergents explicitly in the proof

of Theorem 17.2, it is sufficient to show Theorem 17.2. Before proving Theorem 17.2, we

give the following lemma which gives the RCF expansion of m2(s, t), m
′
2(s, t) and m3(s, t).

Lemma 17.4. For t < 0, we have

√
m2(s, t) =

 [−st− 1, 1, 2s− 2, 1, 2(−st− 1)] if s ≥ 2,

[−t− 1, 2,−2t− 2] if s = 1, t 6= −1,
(17.1)

and

√
m′

2(s, t) =


[−st− 1, 1, s− 2, 1, 2(−st− 1)] if s ≥ 3,

[−2t− 1, 2, 2(−2t− 1)] if s = 2,

[−t− 2, 1, 2(−t− 2)] if s = 1, t 6= −1,−2.

(17.2)

If t > 0 and s < 0, then we have√
m3(s, t) = [s+ (4s2 + 1)t− 1, 1,−2s− 1,−2s− 1, 1, 2(s+ (4s2 + 1)t− 1)]. (17.3)

This lemma is proved in a similar way to that of section 16.3. Remark that we except

(s, t) = (1,−1) form2 and (s, t) = (1,−1), (1,−2) form′
2 sincem2(1,−1) = 0,m′

2(1,−1) =

−1, and m′
2(1,−2) = 0.

Proof of Theorem 17.2. (1) We may assume that s > 0 since m2(s, t) =

m2(−s, t). To prove the if part, suppose s ≥ 2 and t = −1. Then we obtain the

RCF expansion
√

m2(s,−1) = [s − 1, 1, 2s− 2] by Lemma 17.4. Since the 1st

convergent of [s−1, 1, 2s− 2] is s, the fundamental solution of x2−m2(s, t)y
2 = 1

is (x, y) = (s, 1) by Proposition 14.7. However, this is not obtained from PICF

expansions of
√
m2(s, t) = [st, 2s, 2st] since its 1st convergent is (−2s2+1)/(2s).

Now we prove the only if part. If t > 0, a PICF expansion [st, 2s, 2st] gives

the RCF expansion of
√

m2(s, t). Hence the fundamental solution is its 1st

convergent by Proposition 14.7. If t < 0, the RCF expansion of
√

m2(s, t) is given

in Lemma 17.4. Applying Proposition 14.7 to (17.1), we can find the fundamental

solution. When t 6= −1, the fundamental solution is the 3rd convergent of (17.1) if

s ≥ 2 and is the 1st convergent of (17.1) if s = 1. When t = −1, the fundamental

solution is the 1st convergent of (17.1). Hence we check that the fundamental
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solution coincides with the 1st convergent of
√
m2(s, t) = [−st,−2s,−2st] up to

signs if s = 1 or t 6= −1.

(2) We may assume that s > 0 since m′
2(s, t) = m′

2(−s, t). If t > 0, a PICF expan-

sion [st, s, 2st] gives the RCF expansion of
√

m′
2(s, t). Hence the fundamental

solution is its 1st convergents by Proposition 14.7. If t < 0, the RCF expansion

of
√

m′
2(s, t) is given in Lemma 17.4. Applying Proposition 14.7 to (17.2), we

find the fundamental solution. When s ≥ 3, the fundamental solution is the 3rd

convergent of (17.2). When s = 2 or s = 1, the fundamental solution is the 1st

convergent of (17.2). For each case, we can check that the fundamental solution

coincides with the 2nd convergent of
√

m′
2(s, t) = [−st,−s,−2st] up to signs.

(3) The proof of the if part is clear since the 2nd convergent of
√
2 = [2,−2, 3, 3]

does not coincide with the 0th convergent of
√
2 = [1, 2]. Hence it is sufficient to

prove the only if part.

Consider the case of

sgn(t)
√
m3(s, t) = [s+ (4s2 + 1)t, 2s, 2s, 2(s+ (4s2 + 1)t)]. (17.4)

We may assume that

s > 0 and t > 0

or

s < 0 and t > 0

since m3(s, t) = m3(−s,−t). If s > 0 and t > 0, (17.4) is the RCF expansion

of
√

m3(s, t) and the fundamental solution is its 2nd convergent. If s < 0 and

t > 0, the 4th convergent of (17.3) in Lemma 17.4 is the fundamental solution by

Proposition 14.7 and it coincides with the 2nd convergent of (17.4) up to signs.

Consider the case of

sgn(t)
√

m3(0, t) = [−2 + t, 1,−2,−1 + 2t] = [−1 + t, 2,−1, 1 + 2t].

Then both the 2nd convergents of [−2+t, 1,−2,−1 + 2t] and [−1+t, 2,−1, 1 + 2t]

are −t/(−1), which give the fundamental solutions of x2 −m3(0, t)y
2 = −1.

Consider the case of

sgn(t)
√
m3(±1, t) = [2 + 5t,−2, 3, 3 + 10t] = [1 + 5t, 3,−2, 3 + 10t].
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Then both the 2nd convergents of [2+5t,−2, 3, 3 + 10t] and [1+5t, 3,−2, 3 + 10t]

coincide with the 4th convergent of (17.3) up to signs, which give the fundamental

solutions of x2 −m3(±1, t)y2 = −1.

�

18. Z[Xn−1]-PCF expansions of Xn and the generalized Pell equation

In this section, we consider PCF expansions of certain algebraic integers related to the

Z2-extension over Q. For each non-negative integer n, set Xn = 2 cos(π/2n+1). For

example,

X0 = 0, X1 =
√
2, X2 =

√
2 +

√
2, . . . .

Then Bn := Q(Xn) is the Galois extension over Q with Gal(Bn/Q) ∼= Z/2nZ and the ring

of integers of Bn is Z[Xn] for n ≥ 0. Note that ∪n≥0Bn is the Z2-extension over Q.

18.1. (0, 3)-type Z[Xn−1]-PCF expansion of Xn. For ai ∈ Z[Xn−1], let {ai} be a

sequence satisfying the periodic condition, that is, there exist l ∈ Z≥1, N ∈ Z≥0 such

that the condition ak = al+k holds for all k ≥ N . In a similar manner to a PICF, we

call [a0, . . . , aN−1, aN , . . . , aN+l−1] a (N, l)-type Z[Xn−1]-PCF. Block, Elkies, and Jordan

asked the following question:

Question 18.1 (Brock, Elkies, and Jordan [10, Problem 1.1]). For each n ≥ 0, N ≥ 0

and l ≥ 1, Find (N, l)-type Z[Xn−1]-PCF expansions of Xn.

Block, Elkies, and Jordan [10] gave partial answers to Question 18.1. More precisely,

for n = 1, 2, they determined the all (0, 1), (0, 2), (0, 3), (1, 1), (1, 2) and (2, 1)-types

Z[Xn−1]-PCF expansions of Xn. Moreover, they showed that there are no (0, 1), (0, 2) and

(1, 1)-types Z[Xn−1]-PCF expansions of Xn for all n ≥ 2. By using a different approach,

Yoshizaki also gave partial answers to this question. Indeed, he found (1, 2)-type Z[Xn−1]-

PCF expansions of Xn for all n ≥ 1.

Theorem 18.2 (Yoshizaki [69, Theorem 3.4]). For all n ≥ 1, we obtain

Xn =

[
1,

2

1 +Xn−1

, 2

]
.

In this thesis, we find (0, 3)-type Z[Xn−1]-PCF expansions of Xn for all n ≥ 1 by consid-

ering integer points on PCF varieties. Before stating and proving our result, we prepare

some notions and facts. Let Z[Xn]
× be the group of units of Z[Xn] and τn is the gener-

ator of Gal(Bn/Bn−1) ∼= Z/2Z. We define the relative norm of the quadratic extensions
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Bn/Bn−1 by Nn/n−1 : Bn → Bn−1;x 7→ xτn(x). For x ∈ Z[Xn], there exists a unique

pair (a, b) ∈ Z[Xn−1]
⊕2 such that x = a + Xnb, and the relative norm is of the form

Nn/n−1(x) = a2 −X2
nb

2. Set

ηn = 1 +
2n−1∑
k=1

2 cos

(
kπ

2n+1

)
.

Note that ηn satisfies Nn/n−1(ηn) = −1 (cf. Morisawa and Okazaki [51, (6.1)]). In par-

ticular, ηn ∈ Z[Xn]
× and we call it Horie unit or Weber’s normal unit (cf. Horie [31],

Morisawa and Okazaki [50]). Our result is the following:

Theorem 18.3. For every non-negative integer n and σ ∈ Gal(Bn/Q), a Z[Xn−1]-PCF[
σ

(
(ηn − ηn−1)Xn − 1

ηn−1

)
, σ(ηn−1), σ

(
(ηn − ηn−1)/Xn − 1

ηn−1

)]
gives a (0, 3)-type Z[Xn−1]-PCF expansion of σ(Xn) up to signs.

Proof. In a similar manner to Proposition 14.2, we obtain (0, 3)-type Z[Xn−1]-PCF

of Xn−1 from (a1, a2, a3) ∈ V (Xn)0,3(Z[Xn−1]) if [a1, a2, a3] converges. Hence, to prove

Theorem 18.3, we find the elements of V (Xn)0,3(Z[Xn−1]) and check the convergence for

n ≥ 1.

We see that E((x1, x2, x3)) is[
x1x2x3 + x1 + x3 x1x2 + 1

x2x3 + 1 x2

]
.

Hence V (Xn)0,3 is given by x2 − x1x2x3 − x1 − x3 = 0,

x1x2 + 1 = X2
n(x2x3 + 1).

(18.1)

By eliminating x1 from (18.1), we obtain

x2
2 −X2

n(x2x3 + 1)2 = −1. (18.2)
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Here, we take

x2 = ηn−1,

x3 =

(
−1 +

∑
1≤k≤2n−1,

2∤k

εk,n

)/
ηn−1,

(18.3)

where εk,n = (2 cos(kπ/2n+1))/(2 cos(π/2n+1)). Then we obtain ηn = x2 + Xn(x2x3 + 1)

since

ηn = 1 +
2n−1∑
k=1

2 cos(kπ/2n+1)

= ηn−1 +
∑

1≤k≤2n−1,
2∤k

2 cos(kπ/2n+1)

= ηn−1 + 2 cos(π/2n+1)
∑

1≤k≤2n−1,
2∤k

εk,n.

Combining this with Nn/n−1(ηn) = −1, we see that (18.3) are the solutions of (18.2). We

also obtain εk,n ∈ Z[Xn]
× since 2 cos(kπ/2n+1) are prime elements on 2 in Z[Xn] for each

odd integer k and 2 ramifies completely in Bn/Q for n ≥ 1. From τn(εk,n) = εk,n, we

see that εk,n ∈ Z[Xn]
× ∩ Bn−1 = Z[Xn−1]

× for each odd integer k and n ∈ Z≥1. Hence

x2, x3 ∈ Z[Xn−1].

By the definition of Xn and ηn, we obtain∑
1≤k≤2n−1,

2∤k

εk,n =
ηn − ηn−1

Xn

and

x1 =
X2

n(x2x3 + 1)− 1

x2

=
Xn(ηn − ηn−1)− 1

ηn−1

.

Hence we obtain the elements of V (Xn)0,3(Z[Xn−1]) for n ≥ 1. In a similar way, we also

check that(
σ

(
(ηn − ηn−1)Xn − 1

ηn−1

)
, σ(ηn−1), σ

(
(ηn − ηn−1)/Xn − 1

ηn−1

))
∈ V (Xn)0,3(Z[Xn−1])

for every σ ∈ Gal(Bn/Q).
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We can also check the convergence of the PCFs by using Theorem 4.3 in Brock, Elkies,

and Jordan [10]. Indeed, we obtain

E((x1, x2, x3)) =

[
σ(ηn−1) σ((ηn − ηn−1)Xn − 1)

σ((ηn − ηn−1)Xn − 1)/X2
n σ(ηn−1)

]
6= ±(

√
−1)3I,

M([x1, x2, x3])21 = x2x3 + 1 6= 0,

M([x2, x3, x1])21 = x3x1 + 1 6= 0,

M([x3, x1, x2])21 = x1x2 + 1 6= 0,

(−1)3Tr(E(x1, x2, x3))
2 = −4σ(ηn−1)

2 < 0.

Hence we complete the proof. �

Note that we obtain[
σ

(
(ηn − ηn−1)Xn − 1

ηn−1

)
, σ(ηn−1), σ

(
(ηn − ηn−1)/Xn − 1

ηn−1

)]

=

 σ(Xn) if |σ(ηn)| > 1,

−σ(Xn) otherwise,

for every σ ∈ Gal(Bn/Q).

18.2. An application to the generalized Pell equation. From Theorem 18.3,

we obtain (1, 3)-type Z[Xn−1]-PCF expansions of Xn, that is,[
(ηn − ηn−1)Xn − 1

ηn−1

, ηn−1,
(ηn − ηn−1)/Xn − 1

ηn−1

,
(ηn − ηn−1)Xn − 1

ηn−1

]
. (18.4)

We will show an application of Z[Xn−1]-PCF expansions (18.4) to solutions of the gen-

eralized Pell equation x2 − X2
ny

2 = ±1 in Z[Xn−1]. When n = 1, the generalized Pell

equation coincides with the Pell equation x2−2y2 = ±1. In what follows, we will consider

the solutions of the generalized Pell equation in Z[Xn−1]. Set

Wn := {(u, v) ∈ Z[Xn−1]
2 | u2 −X2

nv
2 = 1 or u2 −X2

nv
2 = −1}

and

REn = {ε ∈ Z[Xn] | Nn/n−1(ε) ∈ {±1}} ⊂ Z[Xn]
×.
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The REn is a subgroup of Z[Xn]
× and called the group of relative units. By Dirichlet’s

unit theorem, we obtain the isomorphism as a Z-module

REn
∼= Z/2Z× Z2n−1

.

In a similar manner to the Pell equation, there is a bijection

Wn
∼= REn; (x, y) 7→ x+Xny

for each n ≥ 1. The set in Wn corresponding to the generators of REn is called a

fundamental solution of the generalized Pell equation.

The REn is also related to the Weber conjecture. Let hn be the class number of Bn for

n ∈ Z≥1.

Conjecture 18.4 (cf. Miller [47, Section 2]). For each n ∈ Z≥1, we have hn = 1.

Assuming Conjecture 18.4, we find that the set of the 2nd convergents of (18.4) gives a

fundamental solution of the generalized Pell equation x2 −X2
ny

2 = ±1 for each n. This is

an analogue for Proposition 14.7. Let (p2, q2) be the 2nd convergent of (18.4) and set

An = 〈−1, σ(p2 +Xnq2) | σ ∈ Gal(Bn/Q)〉Z.

Proposition 18.5. Assuming Conjecture 18.4, we obtain REn = An for each n ∈ Z≥1.

Proof. Set Xn = [a1, a2, a3] as a (0, 3)-type Z[Xn−1]-PCF in Theorem 18.3. Then

p2
q2

=
a1a2a3 + a1 + a3

a2a3 + 1
=

ηn−1

(ηn − ηn−1)/Xn

and we see that p2Xn + q2 = ηn. Thus, we obtain

An = 〈−1, σ(ηn) | σ ∈ Gal(Bn/Q)〉Z.

In what follows, we will show (REn : An) = hn/hn−1 for n ∈ Z≥1, where (REn : An) is

the index. Set

A+
n = 〈−1, σ(ηn) | σ ∈ Gal(Bn/Q)〉Z ∩ {ε ∈ Z[Xn] | Nn/n−1(ε) = 1}.

By Morisawa and Okazaki [51, Lemma 3.2, (2)], we see that (REn : An) = (RE+
n :

A+
n ). Hence it is sufficient to show (RE+

n : A+
n ) = hn/hn−1, which is already shown in

Yoshizaki [69, Section 4]. For convenience, we will recall the outline of the proof.

Let Cn be the group of cyclotomic units in Bn (cf. Washington [66, Chapter 8]). Then

A+
n = RE+

n ∩ Cn and the relative norm induces the following exact sequence:

1 → RE+
n /A

+
n → Z[Xn]

×/Cn → Z[Xn−1]
×/Cn−1 → 1.
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Since (Z[Xn]
× : Cn) = hn (cf. Washington [66, Theorem 8.2]), we obtain (RE+

n : A+
n ) =

hn/hn−1. �
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Appendix





A. Comparison of two proportions

In this section, we consider the relationship between the proportion defined by affine

points and the proportion defined by projective points. Before stating and proving our

theorem, we prepare some notations. Let A be a subset of Z⊕n+1 such that

• A 6= {0},
• a ∈ A =⇒ da ∈ A for all d ∈ Z \ {0}

holds. Here we set da = (da0, . . . , dan) for a = (a0, . . . , an) ∈ Z⊕n+1 and d ∈ Z. For

a = (a0, . . . , an) ∈ Z⊕n+1, we denote gcd(a0, . . . , an) by gcd(a) and the set of (n + 1)-

tuples of integers a ∈ Z⊕n+1 with gcd(a0, . . . , an) = 1 by Z⊕n+1
prim . For H ∈ R≥0, we

define

BA(H) = #{a ∈ A | |a| < H},

BA,prim(H) = #
{
a ∈ A ∩ Z⊕n+1

prim | |a| < H
}
,

where |a| = maxi {|ai|} with the Euclidean norm |·| on R. In particular for A = Z⊕n+1,

we have BZ⊕n+1(H) and BZ⊕n+1,prim(H). Since there is a bijection{
a ∈ A

∣∣∣∣ gcd(a) = 1 and |a| < H

d

}
∼=−→ {a ∈ A | gcd(a) = d and |a| < H} ; a 7→ da

for d ∈ Z \ {0} and

#

{
a ∈ A

∣∣∣∣ |a| < H

d

}
= 0

for d ≥ H, we obtain

BA(H) =
∑

m∈Z≥1

BA,prim

(
H

m

)
. (A.1)

Note that BA,prim(H) is equal to

#
{
a = [a0 : · · · : an] ∈ Pn(Q)

∣∣ h(a) < H and a′ ∈ A
}
.

Recall that for a ∈ Pn(Q), there exists a tuple of integers a′ = (a′0, . . . , a
′
n) ∈ Z⊕n+1 that

satisfies

[a0 : · · · : an] = [a′0 : · · · : a′n] and gcd(a′) = 1.

Using a′, we define the height h by

h(a) := max
i

{|a′i|} .
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for a ∈ Pn(Q). Then we obtain the following:

Theorem A.1. Let n be an integer with n ≥ 2. Suppose that there exists c ∈ R such

that

BA,prim(H) = cBZ⊕n+1,prim(H) + o(Hn+1) (A.2)

as H → ∞. Then

BA(H) = cBZ⊕n+1(H) + o(Hn+1)

holds as H → ∞.

Proof. By (A.1), we obtain

BA(H) =
∑

m∈Z≥1

BA,prim

(
H

m

)

=
∑
m∈Z

1≤m<
√
H

BA,prim

(
H

m

)
+
∑
m∈Z√
H≤m

BA,prim

(
H

m

)
.

Since ∑
m∈Z

1≤m<
√
H

(
H

m

)n+1

= Hn+1
∑
m∈Z

1≤m<
√
H

(
1

m

)n+1

≤ Hn+1

(
1 +

∫ √
H

1

(
1

t

)n+1

dt

)

= Hn+1

(
1 +

[
t−n

n

]1
√
H

)

= Hn+1

(
1 +

1

n
− H−n/2

n

)
= O

(
H

n
2
+1
)
,

n ≥ 2, and (A.2), we obtain∑
m∈Z

1≤m<
√
H

BA,prim

(
H

m

)
=

∑
m∈Z

1≤m<
√
H

(
cBZ⊕n+1,prim

(
H

m

)
+ o

((
H

m

)n+1
))
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= c
∑
m∈Z

1≤m<
√
H

BZ⊕n+1,prim

(
H

m

)
+

∑
m∈Z

1≤m<
√
H

o

((
H

m

)n+1
)

= c
∑
m∈Z

1≤m<
√
H

BZ⊕n+1,prim

(
H

m

)
+ o

(
Hn+1

)
.

Moreover, the inequality∑
m∈Z√

H≤m<H

BA,prim

(
H

m

)
≤

∑
m∈Z√

H≤m<H

BA,prim

(√
H
)

≤
∑
m∈Z√

H≤m<H

BZ⊕n+1

(√
H
)

≤ H
(
2
√
H + 1

)n+1

= O
(
H

n+3
2

)
holds. Note that this inequality also holds for

∑
m∈Z√

H≤m<H

BZ⊕n+1,prim(H/m). Since n ≥ 2,

we deduce that

BA(H) = c
∑
m∈Z

1≤m<
√
H

BZ⊕n+1,prim

(
H

m

)
+ o

(
Hn+1

)

= c
∑

m∈Z≥1

BZ⊕n+1,prim

(
H

m

)
−

∑
m∈Z√

H≤m<H

BZ⊕n+1,prim

(
H

m

)
+ o

(
Hn+1

)
= cBZ⊕n+1(H) + o(Hn+1)

as H → ∞, which completes the proof. �

In what follows, we use the notations in §3. Recall that the proportions

ρ(n, k), ρloc(n, k), ρ′(n, k), ρ′loc(n, k)

are

ρ(n, k) := lim
H→∞

#
{
a ∈ Pn(Q)

∣∣ h(a) < H and Xk
a(Q) 6= ∅

}
#
{
a ∈ Pn(Q)

∣∣ h(a) < H
}
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= lim
H→∞

#
{
a ∈ Z⊕n+1

prim

∣∣ |a| < H and Xk
a(Q) 6= ∅

}
#
{
a ∈ Z⊕n+1

prim

∣∣ |a| < H
} ,

ρloc(n, k) := lim
H→∞

#
{
a ∈ Pn(Q)

∣∣ h(a) < H and Xk
a(Qv) 6= ∅ for all v ∈ MQ

}
#
{
a ∈ Pn(Q)

∣∣ h(a) < H
}

= lim
H→∞

#
{
a ∈ Z⊕n+1

prim

∣∣ |a| < H and Xk
a(Qv) 6= ∅ for all v ∈ MQ

}
#
{
a ∈ Z⊕n+1

prim

∣∣ |a| < H
} ,

ρ′(n, k) := lim
H→∞

#
{
a ∈ Z⊕n+1

∣∣ |a| < H and Xk
a(Q) 6= ∅

}
# {a ∈ Z⊕n+1 | |a| < H}

,

ρ′loc(n, k) := lim
H→∞

#
{
a ∈ Z⊕n+1

∣∣ |a| < H and Xk
a(Qv) 6= ∅ for all v ∈ MQ

}
# {a ∈ Z⊕n+1 | |a| < H}

if the limit exist. For H ∈ R, we set

den(H) = #
{
a ∈ Z⊕n+1

∣∣ |a| < H
}
= (2[H] + 1)n+1,

denprim(H) = #
{
a ∈ Z⊕n+1

prim

∣∣ |a| < H
}
,

num(H) = #
{
a ∈ Z⊕n+1

∣∣ |a| < H and Xk
a(Q) 6= ∅

}
,

numprim(H) = #
{
a ∈ Z⊕n+1

prim

∣∣ |a| < H and Xk
a(Q) 6= ∅

}
,

where [H] is the largest integer that does not exceed H. In a similar manner to the proof

of Theorem A.1, we obtain the following:

Lemma A.2. Suppose that n ≥ 2. Then we obtain

den(H) = Cdenprim(H) + o(Hn+1)

for some C ∈ R as H → ∞.

Combining Lemma A.2 with Theorem A.1, we obtain the desired result:

Corollary A.3. Fix n, k ∈ Z≥2. Suppose that the limits ρ(n, k) and ρloc(n, k) exist. Then

the limits ρ′(n, k) and ρ′loc(n, k) also exist and the equalities

ρ′(n, k) = ρ(n, k),

ρ′loc(n, k) = ρloc(n, k)

hold.

Proof. In the following, we prove ρ′(n, k) = ρ(n, k). In a similar manner, we can

prove ρ′loc(n, k) = ρloc(n, k).
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If num(H) = o(Hn+1) as H → ∞, we obtain ρ(n, k) = ρ′(n, k) = 0 by Lemma A.2.

Hence it is sufficient to consider the case when num(H) = O(Hn+1) as H → ∞. By

Lemma A.2 and the assumption of Corollary A.3, we obtain

numprim(H) = ρ(n, k)denprim(H) + o(Hn+1)

for some C ∈ R as H → ∞. Applying Theorem A.1, we obtain

num(H) = ρ(n, k)den(H) + o(Hn+1).

as H → ∞. Hence we deduce

ρ′(n, k) = lim
H→∞

num(H)

den(H)
= lim

H→∞

ρ(n, k)den(H) + o(Hn+1)

den(H)
= ρ(n, k),

which complete the proof. �

Note that we can prove a similar result for a family of hypersurfaces of degree k in

(n+ 1)-variables, which Poonen and Voloch mentioned in [56, Remark 2.1 (2)].
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