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Abstract

Large-scale foundation models have shown promising success in processing multi-

modal information (e.g., vision, text, audio, etc.) for the purpose of achieving

artificial general intelligence. However, conventional systems are typically built on

the assumption that all modalities exist, so the lack of modalities will lead to poor

multimodal fusion, which results in lower inference performance and potentially lim-

its the capability in practical applications. In addition, multimodal systems require

tremendous parameters, making inference computationally ine�cient. Therefore,

studying how to improve the performance e�ciency of multimodal representation

learning is crucial to achieving realistic multimodal systems.

This thesis involves various endeavors aimed at improving the performance ef-

ficiency of multimodal representation learning. These e↵orts not only facilitate

high-performance multimodal fusion but also enhance the e�ciency of multimodal

inference. This thesis consists of two parts. In part 1, we focus on performing

high-performance multimodal fusion. We propose a multiple attention fusion net-

work (MAFN), which includes a multimodal domain adaptation module designed to

obtain expressive multimodal representations capturing dynamic interactions across

modalities. We also propose a VAE-based adversarial multimodal domain transfer

(VAE-AMDT) method to further improve e↵ective multimodal fusion by reduc-

ing the distribution di↵erence between diverse modal representations. We further

propose a new visual question answering (VQA) method called VQA-GNN that per-

forms bidirectional fusion between unstructured and structured multimodal knowl-

edge to obtain unified knowledge representations. In part 2, we focus on achiev-

ing e↵ective multimodal transfer learning aiming for e�cient multimodal systems—

unimodal systems can achieve competitive performance with multimodal systems

even when provided with a specific unimodal input. We propose a language knowl-

edge injectable deep neural network (LDNN) to achieve a vision modal model en-

hanced with implicit language knowledge. Then, we develop VideoAdviser, a video
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knowledge distillation method to transfer multimodal knowledge from a multimodal

fundamental model to a specific modal fundamental model via optimizing a step-

distillation objective loss.
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Chapter 1

Introduction

1.1 Motivation

Humans e↵ortlessly interpret the real world around them by utilizing multiple

modalities such as vision, text, and audio. Mimicking human intelligence to inte-

grate multimodal information has demonstrated remarkable success across a range

of tasks. (1) video-level sentiment analysis task [2, 3] aims to make sentiment pre-

dictions from unified diverse modal representations encoded by readily available

pretraining models by utilizing diverse modal representations derived from read-

ily available pretraining models [4, 5, 6]. (2) Cross-modal retrieval tasks include

text-visual retrieval [7, 8], as well as audio-visual retrieval [9, 10, 11]). These tasks

aim to retrieve one modal content from a pool of candidate belongings to another

modality by learning their cross-modal representations within a common domain

space. (3) Visual question answering (VQA) task aims to provide answers to ques-

tions about a visual scene [12]. It is crucial in many real-world tasks including scene

understanding, autonomous vehicles, search engines, and recommendation systems

[13, 14, 15].

To obtain holistic features of diverse modalities for e↵ective fusion, preliminary

attempts were made by leveraging deep learning techniques. For instance, convo-

lutional neural networks (CNN) such as VGG [16] and ResNet [17] have broadly

been used for extracting visual features. Convo lutional recurrent neural networks

(CRNNs) provide a robust approach to audio feature extraction [18]. Word2Vec is

a widely used method for learning word embeddings, which are dense vector repre-

sentations of words in a continuous vector space [19]. Concatenating diverse modal

features encoded with these techniques within a single vector enables the fusion of

1
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multiple modalities. However, the dynamic interaction across modalities can not be

captured for modeling expressive multimodal representations. Consequently, early

deep learning model-based methods give limited performance improvement [20].

Recently, the Transformer model built with attention mechanisms has emerged

as a promising technique of deep learning models, which allows models to selec-

tively process information, enhancing their ability to dynamically capture impor-

tant features and relationships within the data [21]. Indeed, the Transformer model

pretrained on large amounts of data has achieved remarkable success by capturing

potential features from raw data, such as visual models (e.g., ViT [4]), language

models (e.g., RoBERTa [5] and GPT-3 [22]), and audio models (e.g., VGGish [6],

and SoundNet [23]). As a result, there has been increasing interest in multimodal

fusion on unifying multimodal features encoded by these pretrained transformer

models. Moreover, recent visual-language pretraining (VLP) models [24, 25, 26, 27]

employ the pretrain-and-finetune approach, where they train a multimodal trans-

former model on large-scale visual-language datasets, and then finetune the pre-

trained model on the downstream VQA datasets, e.g., RESERVE-L model [28] is

pretrained using 1 billion image-caption data including video frames, text, and audio.

VLP models have shown strong performance by integrating various modalities and

capturing interactions among them using a large number of parameters. Thereby,

these models are gaining attention for their potential to serve as foundational mul-

timodal models capable of addressing a wide range of tasks [29, 30].

However, while VLP models enable the learning of potential multimodal repre-

sentations, the presence of various distributions among modalities yields inconsistent

fusion representations. As a result, it prevents systems from learning discrimina-

tive multimodal representations. For instance, consider the multimodal sensitive

analysis case where a multimodal representation is formed by concatenating visual

and language features from separate domains. Distributional di↵erences between

these representations can make it di�cult for the model to accurately associate this

combined representation with a consistently positive emotional state. Moreover, ex-

isting multimodal systems are typically built on the assumption that all modalities

exist, and the lack of modalities always leads to poor inference performance. These

limitations prevent enhancing the performance e�ciency of real-world multimodal

applications. In addition, multimodal systems require tremendous parameters, mak-

ing inference computationally ine�cient. Therefore, studying how to improve the

performance e�ciency of multimodal representation learning is crucial to achieving
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realistic multimodal systems.

1.2 Thesis Outline

This thesis involves various endeavors aimed at improving the performance ef-

ficiency of multimodal representation learning. These e↵orts not only facilitate

high-performance multimodal fusion but also enhance the e�ciency of multimodal

inference—an unimodal system can achieve competitive performance with a mul-

timodal system even when provided with a specific unimodal input. This thesis

consists of two parts.

Part 1: Improving high-performance multimodal fusion. We focus on im-

proving high-performance multimodal fusion by converting devise modalities into

common representation distribution domains.

• In Chapter 2, we propose a multiple attention fusion network (MAFN), which

includes a multimodal domain adaptation module designed to obtain expres-

sive multimodal representations capturing dynamic interactions across modal-

ities.

• In Chapter 3, we also propose a VAE-based adversarial multimodal domain

transfer (VAE-AMDT) method to further improve e↵ective multimodal fusion

by reducing the distribution di↵erence between diverse modal representations.

• In Chapter 4, we propose a new visual question answering (VQA) method

called VQA-GNN that performs bidirectional fusion between unstructured and

structured multimodal knowledge through a language model (LM) to eliminate

fusing distinct modalities directly.

Part 2: Achieving e↵ective multimodal transfer learning. We focus on

achieving e↵ective multimodal transfer learning aiming for e�cient multimodal sys-

tems.

• In Chapter 5, we propose a language knowledge injectable deep neural network

(LDNN) to achieve a visual model enhanced with implicit language knowledge

encoded by pretrained LM.
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• In Chapter 6, we extend LDNN proposed in chapter 5 to propose an end-to-end

architecture called implicit knowledge injectable cross attention audiovisual

deep neural network (K-injection audiovisual network), aiming to transfer the

potential knowledge provided by pretrained language and audio models into

an audiovisual model built from raw visual and audio data.

• In Chapter 7, we develop VideoAdviser, a video knowledge distillation method

to transfer multimodal knowledge from a multimodal fundamental model (e.g.,

CLIP) to a specific modal fundamental model via optimizing a step-distillation

objective loss.

We conclude and discuss future challenges in Chapter 8.

1.3 Contributions

The contributions of this thesis are summarized as follows:

• We proposed a VAE-based adversarial multimodal domain transfer learning

method. By jointly training it with a multi-attention module, our method

balanced the modal distribution di↵erence between any modality pairs and

reduced their average distance in total. As a result, we obtained discriminative

multimodal representations to further improve the performance of multimodal

tasks (e.g., video-level sentiment analysis).

• We proposed VQA-GNN to perform bidirectional fusion to unify multimodal

knowledge via graph neural networks for expressive concept-level reasoning.

Compared with existing works, which only perform a late fusion or unidi-

rectional fusion from unstructured knowledge to structured knowledge, our

method makes two technical innovations: bidirectional fusion and mul-

timodal GNN. By fairly comparing with existing works, our method sub-

stantially outperforms existing models. Ablative studies further suggest the

e�cacy of the bidirectional fusion and multimodal GNN method in unifying

unstructured and structured multimodal knowledge.
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• We proposed a novel multimodal knowledge distillation method, VideoAd-

viser, which leverages the strengths of learned multimodal space of the CLIP-

based teacher model and large-scale parameters of the RoBERTa-based stu-

dent model to perform multimodal knowledge transfer by optimizing a step-

distillation objective loss. By comparing to state-of-the-art methods (SoTA),

our method significantly outperforms SoTA methods with a single modal en-

coder used in inference, suggesting its strengths in high performance e�ciency.

In particular, the comparison results demonstrate the e�cacy of our proposed

step-distillation objective loss in improving multimodal knowledge distillation

to achieve a modality-agnostic multimodal system.
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Chapter 2

Multi-Attention Fusion Network

for Video-based Emotion

Recognition

In this chapter, with the goal of capturing dynamic multimodal interactions for im-

proving multimodal fusion, we propose a multiple attention fusion network (MAFN)

involving a multimodal domain adaptation module. MAFN consists of two types

of attention mechanisms: (1) intra-modality attention mechanism is computed

to dynamically highlight central features of an unimodal video frame sequence; (2)

Inter-modality attention mechanism is computed to automatically highlight

specific modal features from giving multiple modalities. Multimodal domain

adaptation module is further employed to reduce the distance of processed uni-

modal representation by (intra and inter)-modality attention mechanisms to enhance

expressive multimodal fusion.

2.1 Introduction

Emotion is an important part of human communication, and human-like automatic

emotion recognition (AER) technology is essential to achieve communication be-

tween humans and artificial intelligence (AI). With the development of deep learn-

ing technology, there are many studies on identifying human emotions through

processing facial expression, audio, and language information [31, 32, 33, 34, 35].

However, humans routinely recognize emotions by integrating multimodal informa-

tion, and in particular, both visual and audio information is very important for

8
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AER [36, 37, 38, 39, 40, 41]. Therefore, modeling human emotion recognition is

pivotal for obtaining e↵ective emotional information from multimodal data.

Recently, most of the research on multimodal emotion recognition tasks focuses

on the aspects of extracting representative modality features and defining dynamic

interactions between multiple modalities [36, 37, 38]. It has become easier to extract

representative modality features utilizing deep learning technology. For instance,

fine-tuning based on state-of-the-art CNNs (AlexNet [42], VGG [16], ResNet [17],

SENets [43]) is very useful for capturing the fine-grained facial expression features,

and Long Short-Term Memory units (LSTMs) are another deep learning technology

that can be used to store information including short-term interaction of time-step

features in memory over time. Based on these deep learning technologies, there

are many works on defining multimodal dynamic interactions by associating a rel-

evance score with each LSTM memory unit [40, 41]. To implement these works,

we need to align not only the dimensions of the multimodal features but also the

sequence lengths of all modalities, such as by duplicating previous frame features.

However, such a forced alignment strategy not only adversely a↵ects the extrac-

tion of important modality features, but also loses the opportunity to establish the

optimal interaction between multimodal information. As we know, humans recog-

nize emotion through combining complex multimodal information and tend to pay

attention only to important information across di↵erent modalities. For example,

some people always speak while keeping a smile, and others may speak loud but

not angry. Therefore, we consider that humans do not recognize emotions based on

alignment between modalities. Fig. 2.1 shows an example where humans extract

only important non-aligned modality information to recognize emotions.

In this chapter, we propose a multiple attention fusion network (MAFN) aiming

to improve emotion recognition performance by modeling human emotion recogni-

tion mechanisms. We implement MAFN utilizing the attention mechanism which

is designed to aggregate essential information over time corresponding to the re-

sults [44]. The attention mechanism has been successfully applied to LSTM for high-

lighting the most important sequence features and also has been used in an attempt

to build a connection between visual and audio modalities [45, 46]. MAFN consists

of two types of attention mechanisms: (1) intra-modality attention mechanism

is computed to dynamically highlight central features of an unimodal video frame se-

quence; (2) Inter-modality attention mechanism is computed to automatically

highlight specific modal features from giving multiple modalities. Moreover, reduce
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Figure 2.1: A conceptual figure demonstrates that humans pay attention to represen-
tative emotional information from visual and audio modalities without considering
multimodal alignment issues.

the distance of processed unimodal representation by (intra and inter)-modality at-

tention mechanisms to enhance expressive multimodal fusion. We do not apply a

forced alignment strategy to MAFN, which aims to extract the meaningful features

of each modality and to establish the optimal interactions between multimodal in-

formation.

We first demonstrate MAFN on the AFEW dataset [36, 47] which contains two

types of modality information: visual and audio modalities. As a result, MAFN

achieves 58.65% recognition accuracy with the AFEW testing set, which is a sig-

nificant improvement compared with the baseline of 41.07% [36].

2.2 Related Works

In terms of human emotion understanding, 93% rely on nonverbal (facial expressions:

55%, audio: 38%), and 7% rely on verbal language [48]. This is why there are many

works focused on facial expression recognition (FER) and audio emotion recognition
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(AER) tasks [32, 49, 31, 33, 34]. Most of these works utilize deep learning technol-

ogy to extract informatic features for achieving high emotion recognition [32, 31, 34].

For instance, Tang [32] built a DNN-based structure that combines convolutional

networks with L2-SVMs as an activation function and won the ICML 2013 FER

challenge. This work [31] employed and confirmed that modern DNN architectures

(VGG, ResNet, Inception [50]) have the potential to extract fine-grained facial ex-

pression features to improve FER performance. On the other hand, in terms of

AER tasks, the commonly used features include pitch, log-Mel filter banks energies

(log-Mels), and Mel-frequency cepstral coe�cients (MFCCs) [33, 34]. This work [51]

employed four types of convolutional operation to extract more comprehensive emo-

tion features with log-Mels features.

Due to human emotions being complex and diverse, some emotions are di�cult

to recognize by a single modal signal. Recently, there have been many research

works that focus on combining multimodal features to improve emotion recognition

performance. Audio-video emotion challenge is a part of Emotion Recognition in the

Wild (EmotiW) [36], which is a series of benchmarking works focusing on a↵ective

computing issues. This work [37] proposed a method that concatenates facial and

audio features extracted through several DNN models and achieves the best accu-

racy in the Acted Facial Expression in the Wild (AFEW) testing set of 61.87%. This

work [38] proposed a multiple spatio-temporal feature fusion (MSFF) framework.

They fine-tuned a pretrained model using facial expression images to extract facial

expression features and then applied VGG-19 and BLSTM models for extracting au-

dio emotion features. They finally employed a decision fusion approach to enhance

the performance of emotion recognition. However, these methods did not consider

the interactions between di↵erent modalities. In contrast, the work [40] consid-

ered the consistency and properties complementary of di↵erent modal information

and proposed a memory fusion network that models modal-specific and cross-modal

interactions over time to e↵ectively capture emotion features and achieved high per-

formance on the CMU-MOSI dataset [39]. Furthermore, the work [41] proposed

a Dynamic Fusion Graph neural model, which aims to model diverse multimodal

interactions such as unimodal, bimodal, and trimodal interactions. As a result, it

can dynamically alter multimodal features based on the importance of individual

multimodal dynamics during fusion. While [39] and [41] can capture interactions

of di↵erent modalities dynamically, it is required to align di↵erent modalities by

taking the average of their modal features over the word utterance time interval.
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However, the word-based alignment strategy may miss the opportunity to capture

more e↵ective interactions between modalities.

Target emotion

…

…

Inter-modality attention

Video data

Visual sequential features

Audio sequential features

Multimodal emotion features

Intra-modality attention

Intra-modality attention

Figure 2.2: Overview of Multi-Attention Fusion Network. MAFN consists of two
types of attention mechanisms: (1) intra-modality attention mechanism is com-
puted to dynamically highlight central features of an unimodal video frame sequence;
(2) Inter-modality attention mechanism is computed to automatically highlight
specific modal features from giving multiple modalities.

2.3 Multi-Attention Fusion Network (MAFN)

In this chapter, we propose a method based on the concept that humans tend to pay

attention to important information across di↵erent modalities even if the modality

information is not aligned with each other. Instead of an alignment strategy, our pro-

posed method applies multiple attention mechanisms that aim to model intra/inter-

modal dynamics to capture more meaningful multimodal emotion features compared

to previous works.

Fig. 2.2 shows an overview of our proposed MAFN. MAFN consists of two types

of attention mechanisms: 1) The intra-modality attention mechanism takes as input

single-modal features embedded by bi-directional LSTM, and dynamically outputs

meaningful modal attentional features corresponding to the target emotion. 2) The

inter-modality attention mechanism takes as input modal attentional features ex-

tracted from the intra-modality attention mechanism, and outputs inter-modality

attentional features based on modality importance. MAFN finally concatenates vi-

sual, audio, and inter-modality attentional features to generate multimodal emotion
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features. MAFN also applies the multimodal domain adaptation module to increase

the e↵ectiveness of the inter-modality attention mechanism. The following three

subsections describe the attention mechanisms and multimodal domain adaptation

module in detail.

2.3.1 Intra-modality attention mechanism

As mentioned in sec. 2.1, attention mechanisms [45, 21, 52] are designed to focus

on certain aspects of sequence data and aggregate important information over time

to correspond to the target results. The attention weight is not constrained by

the trained model and is adaptively calculated based on the importance of the

sequence data to extract necessary features [21, 52]. We apply the self-attention

mechanism [44] to both visual and audio sequence data to extract the important

visual and audio emotion features, respectively.

As shown in Fig. 2.3, giving a sequential feature X
m = [xm

t
: t  T, x

m

t
2 Rd

m
x ]

for the m 2 {v, a} modality, the intra-modality attention mechanism employs 2-

layer BLSTM followed by the intra-modality attention layer to generate m-modal

attentional feature x̂
m. Here, T and d

m

x
denote the sequence length and the dimen-

sion size respectively. Following Eqs. 2.1 and 2.2, we first calculate the output of

the 2-layer Hm = [hm

t
: t  T, h

m

t
2 Rd

m
h ], and then calculate the modal attention

weight Am = [am
t
: t  T, a

m

t
2 R1] by introducing two weight matrix Ws1 and Ws2

with shapes of (dm
h
, d

m

h
/2) and (dm

h
/2, 1). We use the activation function ReLU with

a range of [0, infinity] and the softmax function to ensure all weights sum up to 1.

Finally, we follow Eq. 2.3 to calculate m-modal attentional feature x̂
m.

H
m = BLSTM(BLSTM(Xm)) (2.1)

A
m = softmax (Ws2 ReLU(Ws1H

m)) (2.2)

x̂
m =

P
T

t=0(a
m

t
·Hm)

T
(2.3)

2.3.2 Inter-modality attention mechanism

Considering that humans recognize emotions by instinctively combining important

emotion features from di↵erent modalities, we introduce the inter-modality attention

mechanism to reveal and unify the dynamic interaction between visual and audio

modalities. As shown in Fig. 2.4, we have visual-modal attentional feature x̂
v and
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Figure 2.3: Intra-modality attention mechanism. ⌦ denotes the element-wise prod-
uct and � denotes the sum of the element-wise product for each time step.

audio-modal attentional feature x̂
a for the input of the inter-modality attention

mechanism. We first define Z = [Wvx̂
v
,Wax̂

a] where Wv and Wa are weight matrix

with shapes of (dv
h
, dm) and (da

h
, dm) respectively. d

v

h
and d

a

h
are the dimension

size of the visual and audio modality attentional features, and dm is a fixed size

for generating inter-modality attentional features. Following Eq. 2.4, we calculate

attention weight Av�a = [av�a

0 , a
v�a

1 ]. The inter-modality attentional feature x̂v�a is

computed following Eq. 2.5:

A
v�a = softmax (Wm2 ReLU(Wm1Z)) (2.4)
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Figure 2.4: Inter-modality attention mechanism. ⌦ is the element-wise product and
� represents the sum of the element-wise product of all modalities.

Here, Wm1 and Wm2 are weight matrix with di↵erent shape of (dm, dm/2) and

(dm/2, 1).

x̂
v�a =

a
v�a

0 · Z[0] + a
v�a

1 · Z[1]
2

(2.5)

2.3.3 Multimodal domain adaptation module

To make MAFN learn impressive interactions between visual and audio attentional

features, we introduce the distLoss to force MAFN to learn the mappings between

di↵erent modal feature domains by minimizing the distance between visual and audio

modal attentional features. Along with the target training for emotion classification,

the MAFN additionally optimizes the distLoss with mean squared error (MSE) loss

function as follows:

distLossv-a = MSE(Z[0], Z[1]) (2.6)

where Z[0] and Z[1] represent the weighted visual and audio modal attentional fea-

tures respectively.
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2.4 Experiment

In this section, we describe the details of the experiment and evaluate the perfor-

mance of MAFN on the AFEW dataset [36].

2.4.1 Data preprocessing

The AFEW dataset is collected from movies and TV shows and contains 773, 383,

and 653 video clips in training, validation, and testing sets, respectively. The AFEW

dataset is not large enough to be used to train representative emotion features from

raw video clips. Therefore, the extraction of features that well represent emotions

is the key to improving emotion recognition performance.

Visual features: To extract meaningful facial expression features as the input

visual modal features to MAFN, we first convert video clips into image sequences

at 16fps, then utilize OpenFace to detect the face in images, and finally apply the

detected face images to 5 types of pretrained FER models to extract facial ex-

pression features with 8 dimensions, respectively. These pretrained FER models

contain AlexNet [42], VGG M [16], VGG VD [53], SENet50 [43] and ResNet50 [17].

AlexNet, VGG M and VGG VD are fine-tuned on the Fer2013 dataset [54], and

SENet50 and ResNet50 are fine-tuned on the Fer2013+ dataset [55]. Due to each

video clip having a di↵erent sequence length, we process upsampling and downsam-

pling to generate a fixed visual sequence length of 32 frames.

Audio features: We choose a basic set of audio features as the input audio

modal features to MAFN. Firstly, we separate audio data from raw video data and

then extract log-Mel filter banks with 64 dimensions after resampling audio data with

a reduced sample rate from 48KHz to 44.1KHz. The audio frame length is 0.0415s,

and the window length is 0.064s. Finally, we process upsampling and downsampling

to generate a fixed audio sequence length of 128 frames.

Furthermore, we perform rolling feature engineering for both visual and audio

features to generate new features that can capture temporal variational information

in a video clip. We adopt three types of rolling methods (mean, standard deviation,

and variation of max and min) to visual and audio features with two di↵erent rolling

window sizes (visual features: 4, audio features: 6). As a result, the input visual

sequential features are sized to 29-sequence-length by 48 dimensions, and the input

audio sequential features are sized to 123-sequence-length by 192 dimensions.
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2.4.2 Training setting

Considering the small size of training (773) and validation (383), we concatenate

the training and validation sets and randomly re-split them at a rate of 90% for

training and 10% for validation. In the training process, we perform the re-splitting

process 5 times and choose the best model based on validation loss, then select

the appropriate hyperparameter (dropout rate: 0.5, batch size: 128, learning rate:

0.0001, epochs: 200) to achieve the best performance of MAFN.

2.4.3 Result

We trained MAFN utilizing five types of visual features with log Mel filter banks

audio features and evaluated them on the re-splitting validation set. To further

improve recognition accuracy, we assigned di↵erent weights depending on the vali-

dation accuracy of each model. The best result submitted is a fusion of the prediction

results of the testing set based on the following weights: AlexNet: 0.5, VGG M: 0.7,

VGG VD: 0.7, SENet50: 1.0, and ResNet50: 1.0.

As shown in Tab. 2.1, MAFN taking ResNet50 facial expressions features as

visual features achieves the highest accuracy of 62.07% on the re-splitting validation

set compared with other models. The fusion result is 58.65% on the testing set,

which is a significant improvement compared with the baseline of 41.07% [36].

The confusion matrix of the fusion result on the testing set is shown in Fig. 2.5.

MAFN achieves recognition accuracy by over 70% on angry, happy, and neutral

emotion classes, while it cannot classify the disgust and surprise emotions correctly.

We also observed that disgust and surprise emotions tend to be recognized as neutral

emotions. We also submitted the results generated by MAFN without implementing

the multimodal domain adaptation module and achieved 56.20% accuracy on the

testing set, which is 2.45% lower than the fusion of MAFN models. The results

of the re-splitting validation set are shown in Tab. 2.2. All scores are lower than

MAFN implementing the multimodal domain adaptation module.

2.4.4 Discussion

According to the results of MAFN trained by utilizing di↵erent visual features, we

observed that the variation in validation accuracy is so large that it is di�cult to

determine which type of visual features can achieve high performance on the testing
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Figure 2.5: Confusion matrix of the fusion result of MAFN w/ multimodal domain
adaptation module shown in Tab. 2.1.

set. Many previous works have attempted fusing as many di↵erent modal features

or model types as possible to improve emotion recognition accuracy [36, 37, 38].

In contrast, we focused on new methods based on the analysis of human emotion

recognition mechanisms utilizing basic modal features. The results show that MAFN

is capable of improving emotion recognition accuracy. In addition, according to a

comparison of the results shown in Tab. 2.1 and Tab. 2.2, we confirmed that the

multimodal domain adaptation module is e↵ective in improving emotion recogni-

tion performance, and consider that the multimodal domain adaptation module can

accelerate the learning of interactions between modalities.

Meanwhile, similar to related works [37, 38], MAFN cannot classify disgust and

surprise emotions, we consider that it is insu�cient to classify them only based on

visual and audio information extracted from the AFEW dataset, and the context

information contained in the text should be analyzed together to capture more

meaningful emotion features.
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MAFN w/ multimodal domain adaptation module Validation (%) Test (%)

Visual encoder

– AlexNet 50.00 -

– VGG M 55.17 -

– VGG VD 55.17 -

– SENet50 61.21 -

– ResNet50 62.07 -

Fusion model - 58.65

Table 2.1: Comparison results of MAFN built using various visual encoders. Here,
we use the modified validation and test datasets to evaluate the accuracy of the
emotion recognition task.

MAFN w/o multimodal domain adaptation module Validation (%) Test (%)

Visual encoder

– AlexNet 49.68 -

– VGG M 51.30 -

– VGG VD 52.17 -

– SENet50 58.26 -

– ResNet50 60.87 -

Fusion model - 56.20

Table 2.2: Recognition accuracy of each MAFN w/o multimodal domain adaptation
module on the modified dataset. The performance is reduced compared to the results
in Tab. 2.1.

2.5 Conclusions

In this chapter, We proposed MAFN to model human emotion recognition mecha-

nisms, which is based on the concept that humans pay attention to representative

emotion information from visual and audio modalities. MAFN is constructed with

intra and inter-modality attention mechanisms and a multimodal adaption module.

It achieves competitive performance on the testing set without combining scores

generated by other models.



Chapter 3

VAE-Based Adversarial

Multimodal Domain Transfer for

Video-Level Sentiment Analysis

In the last chapter, we present an approach to improve multimodal fusion by intro-

ducing a multimodal domain adaptation module to enhance the (intra and inter)-

attention-based model for capturing multimodal interactions. In this chapter, to

obtain more discriminative multimodal representations that can further improve sys-

tems’ performance, we propose a VAE-based adversarial multimodal domain trans-

fer (VAE-AMDT) and jointly train it with a multi-attention module to reduce the

distance di↵erence between unimodal representations.

3.1 Introduction

Video-level sentiment analysis is a task to predict people’s sentiment intensity with

a given video clip. It is an essential task for achieving high-level artificial intelli-

gence (AI), and is expected to be applied to dialogue agents, virtual reality and

social robotics, and so on [56]. To let AI systems have a better understanding of

people’s sentiment, existing methods fuse multimodal representations obtained from

video frames (image), text, and audio, and predict sentiment intensity by doing re-

gression analysis [40, 57]. How to obtain discriminative multimodal representations

that can capture di↵erences in sentiments across various modalities is a core issue

for video-level sentiment analysis [20, 58, 59]. However, due to diverse distributions

of various modalities (e.g., one same sentiment intensity corresponds to di↵erent

20
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Joint sentiment embedding space
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VAE-AMDT

!"#$$%&%'( Non-negative	
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Figure 3.1: A conceptual diagram illustrates the distribution of various modalities
in diversity. VAE-AMDT is designed to transfer unimodal representations to a
joint sentiment embedding space. As a result, we obtain discriminative sentiment
multimodal representations and make it easier to predict sentiment intensity. “4”
and “�” indicate “non-negative” and “negative” respectively.

unimodal representations.) and the unified multimodal labels are not always adapt-

able to unimodal learning (e.g., a unified multimodal label is highly negative, but

text represents neutral), the distance di↵erence between unimodal representations

increases, and prevents systems from learning discriminative multimodal represen-

tations. The work [60] propose an adversarial encoder-decoder-classifier framework

to reduce the modality gap by using adversarial training [61, 62], and the work [63]

design a unimodal label auto-generation module to better learn unimodal represen-

tations for multimodal fusion. These two methods reduce the distance di↵erence

between unimodal representations via di↵erent approaches and aim to map various

modalities in a joint embedding space so that the model can easily learn a common

classifier. However, from the evaluation result, their e�cacy is limited on the small

and imbalanced sentiment dataset.



CHAPTER 3. VAE-AMDT 22

In this chapter, to obtain more discriminative multimodal representations that

can further improve the performance of video-level sentiment analysis, as shown in

Fig. 3.1, we propose a VAE-based adversarial multimodal domain transfer (VAE-

AMDT) to better reduce the distance di↵erence between unimodal representations

and transfer various modalities to a joint embedding space, so that the model can

easily learn discriminative multimodal representations and find an e↵ective classifier

over various modalities. Variational auto-encoder (VAE) is an auto-encoder whose

training is regularised so that the distributions returned by its encoder are enforced

to be close to a standard normal distribution [64, 65]. We perform it with visual, lin-

guistic, and acoustic modalities respectively to make encoded latent representations

follow a common distribution so that the modality gap can be reduced. Further-

more, motivated by [60], we introduce a discriminator trained with adversarial loss

to classify encoded latent representations of target modality as true but others as

false. As a result, we can better transfer encoded latent representations from var-

ious modalities to a joint embedding space as shown in Fig. 3.1. Then, we jointly

train VAE-AMDT with a multi-attention module on this joint embedding space to

learn more discriminative multimodal representations. The multi-attention mod-

ule consists of self-attention, cross-attention, and triple-attention components, we

employ it to highlight important sentimental representations over time and modal-

ity. Especially, we perform the cross-attention component under a “non-alignment”

modality data setting to make our method can capture sequence-level interactions

between modalities and have a much better multimodal fusion ability (e.g., text !
audio) [59]. We also perform self-attention to highlight important elements in each

modality, and triple-attention to highlight important modality.

We conduct detailed experiments on the video-level sentiment analysis dataset

MOSI [2] and MOSEI [3]. Our method improves the F1-score of the state-of-the-art

method Self-MM [63] by 3.6% on MOSI and 2.9% on MOSEI datasets respec-

tively. We also perform quantitative and qualitative analysis on the test set of both

datasets, and the results suggest that VAE-AMDT is capable of reducing distance

di↵erence among unimodal representations, and fused multimodal representation is

discriminative for improving the performance of video-level sentiment analysis.
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3.2 Related work

Unimodal sentiment analysis

Sentiment analysis from people’s facial expressions, voices, and speech texts has

some impressive progress by employing deep learning techniques [56]. Convolu-

tional neural networks (CNN) are employed to do facial expressions recognition

(FER) [66, 67]; Recurrent neural networks (RNN) are employed to do speech emo-

tion recognition (SER) [68, 69, 70, 71]; Language models (e.g., BERT [72]) are

finetuned to do textual sentiment analysis [73, 74, 75]; All these methods focus on

learning e↵ective latent representations from single modality. However single modal-

ity is not enough to provide comprehensive information to analyze people’s complex

sentiments. In contrast, our method focuses on how to fuse these unimodal latent

representations to further improve the performance of sentiment analysis.

Multimodal fusion

Recent works on video-level sentiment analysis are increasing, and aim to gain

more e↵ective multimodal representations from various modalities. Several recent

works [40, 57, 58] employ attention mechanisms to fuse multimodal representations

through modeling interactions across various modalities. The work [3] proposes a

dynamic fusion graph to do inter-multimodal fusion and the work [58] dynamically

adjusts word representations using its aligned facial expressions and voice represen-

tations. However, these methods work with the forced alignment data setting and

are limited to building sequence-level interactions between modalities. Our method

works with a non-alignment data setting, so we can use cross-attention to build

sequence-level optimal interactions cross modality.

To further improve the performance of multimodal fusion, recent works [60, 63]

focus on how to reduce distance di↵erence of unimodal representations since it is

hard for systems to learn a common classifier from various modality domains as

shown in Fig. 3.1. Motivated by adversarial training [76, 62], The work [60] in-

troduce an adversarial encoder-decoder-classifier framework to transfer unimodal

representations to a joint embedding space, and the work [63] designs a unimodal

label auto-generation module to better learn unimodal representations so that the

distance di↵erence between modality can be reduced. However, their e�cacy is

limited on the small and imbalanced sentiment dataset. We perform adversarial
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training by using VAE-encoded unimodal representations to better reduce the dis-

tance di↵erence of unimodal representations.

3.3 Problem Statement

In this chapter, we aim to predict people’s sentiment intensity with a given video

clip. The video clip includes multimodal signals: people’s face image frames (Iv),

audio (Ia), and speech text (It). We regard this task as a regression task, and our

model takes Iv, Ia, and It as inputs and outputs one sentiment intensity y 2 R.

Here, R is in the range of [�3, 3].

3.4 Modality data preprocessing

Given a video clip, we first drop out data that does not contain all of Iv, Ia, and

It to ensure our model works properly, and then we process each unimodal signal

following the below techniques to obtain their sequence features:

1. For the visual modality, we first use OpenFace [77] to extract Iv, and then we

initialize visual sequence features V 2 RTv⇥Dv by encoding facial expression

representations from Iv using a pretrained FER model [78]. Here, the FER

model is pretrained on the VGG-Face dataset [79]. Given an extracted face

image, we perform that pretrained FER model and use its prediction result as

facial expression representations. The facial expression result is represented

with an 8-dimensional vector. More details on Albanie’s website 1.

2. For the linguistic modality, we initialize language sequence features L 2 RTl⇥Dl

by extracting sentence embeddings of It using a pretraining language model

RoBERTa [5].

3. For the acoustic modality, we initialize audio sequence features A 2 RTa⇥Da

by extracting log-mel filter banks from Ia [69].

In this chapter, to solve one problem of di↵erent video clip lengths, we do padding

and truncation to adjust the length of V , L, and A respectively. We set Tv, Tl and

Ta to 64, 100 and 128, and Dv, Dl and Da to 8, 1024 and 128.

1
https://www.robots.ox.ac.uk/~albanie/mcn-models.html

https://www.robots.ox.ac.uk/~albanie/mcn-models.html
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Figure 3.2: Overview of our method: we first perform self-attention (§3.5.1) and
cross-attention (§3.5.1) using preprocessed sequence features V , L and A, and then
we perform VAE-AMDT that consisting of three VAEs and two generators G and
one discriminator D to reduce distance di↵erence between unimodal representations
(§3.5.2). Finally, we use the encoded unimodal representations as the input of
triple-attention (§3.5.1) to output one sentiment intensity result. Here, unimodal
representations xv, xl, and xa indicate concatenations of the output of attention
layers for each modality. µv, µl and µa are encoded unimodal representations with
VAE-AMDT.

3.5 Methodology

In this section, we explain our method in detail. As shown in Fig. 3.2, our method

includes VAE-AMDT and a multi-attention module that consists of self-attention,

cross-attention, and triple-attention components. We jointly train VAE-AMDT and

the multi-attention module to reduce the distance di↵erence between unimodal rep-

resentations and fuse multimodal representations to do sentiment intensity predic-

tion.

3.5.1 Multi-attention module

self-attention The self-attention is designed to highlight key sequence elements [21,

72], and performed by taking V , A and L as inputs and output self-attention vector
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x(v!v), x(l!l) and x(a!a), as follows:

X(m) = fm(X) (3.1)

x(m!m) = fs

 P
Tm

t=1 ↵(m!m) ·X(m)

Tm

!
,↵(m!m) = softmax(X(m) ·XT

(m)) (3.2)

where fm : RTm⇥Dm ! RTm⇥D is a linear transformation. We perform fm with

X 2 {V, L,A} to output X(m),m 2 {v, a, l} and they have a same dimension D. We

then calculate attention weight ↵(m!m) and get self-attention vector x(m!m) via a

2-layer MLP fs : RD ! RD.

Cross-attention We perform cross-attention between any two modalities to high-

light correlated sequence elements over modality. For example, corresponding to one

speech text “I enjoyed the party today.”, the word “enjoy” should attend to the en-

joyable facial expressions, and its cross-attention weight ↵(m1!m2) should be learned

with a high score. We use m1 and m2 to indicate di↵erent modalities. We perform

cross-attention in two attentional directions to get cross-attention vector x(m1!m2)

and x(m2!m1), as follows:

x(m1!m2) = fs

 P
Tm2

t=1 ↵(m1!m2) ·X(m2)

Tm2

!
,↵(m1!m2) = softmax(X(m1) ·XT

(m2))

(3.3)

As shown in Fig. 3.2, we concatenate self-attention and cross-attention vectors for

each modality to get unimodal representations xm, as follows:

xv = [x(v!v)||x(l!v)||x(a!v)] (3.4)

xl = [x(l!l)||x(v!l)||x(a!l)] (3.5)

xa = [x(a!a)||x(l!a)||x(v!a)] (3.6)

where “||” denotes concatenation operation. We take xv, xl and xa as inputs of

VAE-AMDT (§3.5.2).

Triple-attention We fuse VAE-AMDT encoded unimodal representations µv, µl,

and µa by using triple-attention so that the important unimodal representations can

be highlighted. We stack µv, µl, and µa in a list and then perform Eqs. 3.1 and 3.2 to
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get a multimodal representation vector x. Finally, we perform linear regression for

sentiment intensity prediction by employing mean squared error (MSE) loss function

Lm, as follows:

Lm(x,y) =
1

n

nX

i=1

|fr(xi)� yi|2 (3.7)

where fr : RD ! R1 is a linear transformation, used to output one sentiment

intensity result. x and y represent a batch size n of the multimodal representation

and ground truth label.

3.5.2 VAE-AMDT

VAE-AMDT is composed of three VAEs and two generators G and one discriminator

D (Fig. 3.2). We jointly train it with the multi-attention module to transfer xv,

xl, and xa to a joint embedding space and use its output µv, µl and µa to predict

sentiment intensity (§3.5.1). We show how to learn VAEs and how G and D worked

in the adversarial training process as follows:

Variational auto-encoder (VAE) The Kullback-Leibler Divergence (KLD) term

of VEA allows us to regularize the encoder to produce a latent vector z that follows

a standard normal distribution [64, 65]. As a result, we have each mean layer µ(m)

that follows a similar distribution [64]. To further include modality type information

in the encoder, we define a one-hot vector cm representing di↵erent modality types

and concatenate them with z to generate a modality conditional vector m for each

modality. Here, (1,0,0), (0,1,0), and (0,0,1) represent three types of modalities. We

define an MLP layer l as a decoder P✓, and maximize the loss function Lvae to learn

VAEs together as follows [65]:

Lvae(✓,�) =
RX

r=1

NX

n=1

{��KL(Q�(z|xr

n
)||P✓(z)) + EQ�(z|xr

n) [logP✓(x
r

n
|z,m)]} (3.8)

where � and ✓ denote the parameters of the encoder and decoder respectively. R

denotes the number of modalities and N denotes the data size. We set � to 0.5.

This is a trade-o↵ coe�cient that allows the model to prioritize one term over the

other. KL represents the KLD term, used to constrain the variational posterior

Q�(z|x) close to the prior P✓(z). The second term on the right-hand side of Eq. 3.8

indicates the values of the expected log-likelihood generated by the decoder P✓. To
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maximize it to enforce z return to the original data space with the constraint m.

Here, m represents a batch of modality conditional vectors. When KL is minimized,

the encoder Q� is also constrained by m. As a result, the type of modality can a↵ect

the encoder optimization and make the encoder represent the type of modality as

well.

Adversarial training We take VAE encoded unimodal representations µv, µl,

and µa as the input. To further reduce the distance between any two unimodal

representations, we introduce twoG to generate fake linguistic modal representations

from visual and acoustic modality and then design a D to discriminate the real

linguistic modal representation from generated fake representations by employing an

adversarial loss Lat. In addition, we perform binary classification for the generator

by using binary cross entropy loss (BCELoss). We jointly train two G and one D

to as follows:

LG

m
= argmin

Em

V (Em),

V (Em) = Eµm⇠Q m (µm) [logE(µm)] + Eµm⇠Q m (µm) [log (1� Em(µm)))]
(3.9)

where Em indicates generator of modality m 2 {v, a}.

LD = arg min
Ev ,Ea

max
D

V (Ev, Ea, D),

V (Ev, Ea, D) = Eµl⇠Q l
(µl) [logD(µl)] + Eµ(v)⇠Q v (µ(v))

⇥
log
�
1�D

�
Ev(µ(v))

��⇤

+Eµ(a)⇠Q a (µ(a))

⇥
log
�
1�D

�
Ea(µ(a))

��⇤

(3.10)

Consequently, we have Lat for adversarial training.

Lat = LG

v
+ LG

a
+ LD (3.11)

3.5.3 Learning

We finally have a joint loss L for training the multi-attention module and VAE-

AMDT, as follows:

L = ↵Lm + �Lave + �Lat (3.12)

where ↵, �, and � are hyperparameters, which are used to indicate the importance

of each loss value. We empirically set them as 1.
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3.6 Experiment

3.6.1 Dataset

We evaluate our method by using video-level sentiment analysis datasets MOSI [2]

and MOSEI [3]. Both datasets are collected from online video: MOSI contains 2,199

opinion video clips and MOSEI contains more than 65 hours of video from more than

1000 speakers and 250 topics. To ensure our method behaves correctly, we drop out

data that does not contain all of the modalities. Tab. 3.1 shows the number of data

in both datasets in detail. The MOSEI dataset is over 6x larger than the MOSI

dataset. Both datasets are annotated in the range of the [-3,3] likert scale, i.e., [-3:

highly negative, -2: negative, -1: weakly negative, 0: neutral, +1: weakly positive,

+2: positive, +3: highly positive]. From the data distribution over annotations in

Fig. 3.3, we have very imbalanced data annotations for both datasets. In particular,

there is over 65% of MOSEI dataset is annotated in the range of [-1, 1].

Dataset Train Validation Test Total

MOSI 1,257 229 686 2,172

MOSEI 9,473 1,206 2,710 13,389

Table 3.1: The size of datasets.
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Figure 3.3: Annotation distributions on (a) MOSI and (b) MOSEI. We show “neg-
ative” classes in red color and “non-negative” classes in blue color.
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3.6.2 Metric

We use the mean absolute error (MAE), accuracy (A2), and weight F1 score as

evaluation metrics. A
2 is a binary accuracy metric, the prediction result y < 0

are belonged to “Negative” class and y � 0 are belonged to “Non-negative” class

(Fig. 3.3). Furthermore, due to the small and imbalanced dataset, we also use the

precision-recall curve to show the model’s performance at various threshold settings.

3.6.3 Full model hyperparameters

We show full hyperparameters of our model on MOSI and MOSEI datasets in

Tab. 3.2. We use AdamW [80] as our optimizer, with ✏=1e-8. We use cosine an-

nealing schedular [81] to adjust the learning rate (1e-8). We also show the feature

size of each attention component in our multi-attention module (Fig. 3.2) in de-

tail. Our hidden layer size (fm) is di↵erent from datasets, so we have di↵erent

hyperparameters for training their best performance (Tab.3.2: “Training”).

3.6.4 Performance

As shown in Tab. 3.3, under the same modality alignment setting (non-alignment),

our method achieves a much lower MAE result than Self-MM(+) by over 0.16

(MOSI) and 0.05 (MOSEI). Especially, a low MAE indicates that our method is

superior to the sentiment regression problem. Compared to Self-MM(+), we also

note that our method improves MAE results better with MOSI than with MOSEI.

This suggests that VAE-AMDT is much more e↵ective for relatively small datasets

(Tab. 3.1). Here, Self-MM(+) is trained by using the same preprocessed data in

our method (§3.4). Especially, we use the same pretrained RoBERTa model to

encode speech text for a fair comparison between Self-MM(+) and our approach.

We take out the data that lacks some modalities so that we can fairly compare their

performance in terms of the modal fusion capability. To fairly confirm the binary

classification ability of models trained with imbalanced annotations (Fig. 3.3), in

addition to the accuracy (A2) comparisons, we also show precision-recall curve for

both MOSI and MOSEI in Fig. 3.4. The results suggest that our method is superior

to Self-MM(+). Even though Self-MM(+)’s A
2 result (84.6%) is higher than our

method (82.8%), when both precision and recall scores are over 80% as shown in the

2
https://github.com/TadasBaltrusaitis/OpenFace

3
https://huggingface.co/docs/transformers/v4.17.0/en/model_doc/roberta

https://github.com/TadasBaltrusaitis/OpenFace
https://huggingface.co/docs/transformers/v4.17.0/en/model_doc/roberta
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MOSI MOSEI

A
u
d
io

Sample rate 44.1KHz
FFT hop length 0.02s
FFT window size 0.01s

Mel bins 128
Sequence length 128

Im
ag
e

Frame rate 8fps
Face detection OpenFace 2

Face frame size 128*128
Facial expressions feature (dim) 8

Sequence length 64

T
ex
t Tokenization Roberta Tokenization 3

Embeddings(dim) 1024
Sequence length 100

f
m

Feature size (input) V:(B, 64, 8); L:(B, 100, 1024); A:(B, 128, 128) V:(B, 64, 8); L:(B, 100, 1024); A:(B, 128, 128)
Feature size (output) V:(B, 64, 128); L:(B, 100, 128); A:(B, 128, 128) V:(B, 64, 64); L:(B, 100, 64); A:(B, 128, 64)

S
el
f Feature size (input) V:(B, 64, 128); L:(B, 100, 128); A:(B, 128, 128) V:(B, 64, 64); L:(B, 100, 64); A:(B, 128, 64)

Feature size (output) V:(B,128); L:(B, 128); A:(B, 128) V:(B,64); L:(B, 64); A:(B, 64)

C
ro
ss

[v ⌦ l] Feature size (input) V:(B, 64, 128); L:(B, 100, 128) V:(B, 64, 64); L:(B, 100, 64)
[v ⌦ l] Feature size (output) [v ! l] and [l ! v]:(B, 128) [v ! l] and [l ! v]:(B, 64)
[v ⌦ a] Feature size (input) V:(B, 64, 128); A:(B, 128, 128) V:(B, 64, 64); A:(B, 128, 64)
[v ⌦ a] Feature size (output) [v ! a] and [a ! v]:(B, 128) [v ! a] and [a ! v]:(B, 64)
[a ⌦ l] Feature size (input) A:(B, 128, 128); L:(B, 100, 128) A:(B, 128, 64); L:(B, 100, 64)
[a ⌦ l] Feature size (ouput) [a ! l] and [l ! a]:(B, 128) [a ! l] and [l ! a]:(B, 64)

Jo
in
t

Feature size (input) xv, xl and xa:(B, 384) xv, xl and xa:(B, 192)

T
ri
p
le Feature size (input) (B,3,32) [µv, µl, µa]

Feature size (output) (B,32) [x]

O
p
ti
m
iz
er

Peak learning rate 1e-4
Weight decay 0
AdamW � 0.9
AdamW ✏ 1e-8
Schedular CosineAnnealingLR

T
ra
in
in
g

Loss function Mean Squared Error (MSE)
GPU GTX 1080 Ti

Batch size 4 20
Training epochs 200 80
Parameters 3.3M 1.7M

Training time 1h13m 46m
Inference time 0.000738 0.000125

Training time (Self-MM) 3h29m -
Inference time (Self-MM) 0.001131 -

Table 3.2: Full hyperparameters for our model. “dim” indicates the number of
dimensions. “Self”, “Cross” and “Triple” indicate self-attention, cross-attention,
and triple-attention components respectively.

precision-recall curve graph (Fig. 3.4b), our method is still better than Self-MM(+).

We also show the result of our method trained in a 10-fold cross-validation strategy

(CV), which is a bit worse due to the small and imbalanced dataset, but it is still

better than Self-MM(+) except A
2 for MOSEI. This result also suggests that our

method is not overfitting to the training set.

We additionally compare the number of parameters of Self-MM and our method.

Self-MM finetunes the pretrained BERT model [72], so it needs to reuse and update

BERT’s parameters, and the training parameters exceed 100M. This is 33X larger

than our method (3.3M). Since we utilize the pretrained RoBERTa [5] to embed

speech text during preprocessing (§ 3.4), it is not essential to update massive pre-

trained parameters. As a result, we can not only train our method in a short time

(13th of Self-MM) as shown in Tab. 3.2 but also achieves a model that is 1.5X faster

than Self-MM for inference.
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Model
MOSI MOSEI Modality

alignmentMAE A
2 F1 MAE A

2 F1

Graph-MFN 0.965 77.4 77.3 - 76.0 76.0 Yes

RAVEN 0.915 78.0 76.6 0.614 79.1 79.5 Yes

ARGF - 81.3 81.5 - - - Yes

MulT 0.861 81.5 80.6 0.580 - - Yes

MISA (*) 0.804 80.8 80.8 0.568 82.6 82.7 Yes

MAG-BERT (*) 0.731 82.5 82.6 0.539 83.8 83.7 Yes

Self-MM (*) 0.713 84.0 84.4 0.530 82.8 82.5 No

Self-MM (+) 0.885 80.6 80.6 0.579 84.6 84.6 No

VAE-AMDT 0.716 84.3 84.2 0.526 82.8 87.5 No

VAE-AMDT (CV) 0.745 82.2 82.2 0.529 81.6 86.2 No

Human 0.710 85.7 87.5 - - - No

Table 3.3: Comparison of VAE-AMDT and state-of-the-art results in both MOSI
and MOSEI. VAE-AMDT outperforms state-of-the-art Self-MM (MAE/F1 ) by over
0.16/3.6 point (MOSI) and 0.05/2.9 point (MOSEI). Here, the lower the MAE,
the better the performance. (*) indicates that the results are referenced from the
Self-MM paper. (+) indicates that Self-MM is trained by using the same prepro-
cessed data in our method; (CV) indicates the result of the 10-fold cross validation.

3.6.5 E↵ect of VAE-AMDT

We first show the comparison results of our method built (w/o and w/) VAE-AMDT

in Tab. 3.4. The results suggest that our proposed VAE-AMDT is e↵ective for

improving the performance of the model only built by employing the multi-attention

module (§ 3.5.1). We further study the e↵ect of VAE-AMDT through quantitative

and qualitative analysis.

Model
MOSI MOSEI Modality

alignmentMAE A
2 F1 MAE A

2 F1

w/o VAE-AMDT 0.808 80.3 80.6 0.603 81.8 85.8 No

w/ VAE-AMDT 0.716 84.3 84.2 0.526 82.8 87.5 No

Table 3.4: Comparison results of the model trained w/o and w/ VAE-AMDT. The
model trained with VAE-AMDT further improves F1 score of (w/o VAE-AMDT)
by 3.6% (MOSI) and 1.7% (MOSEI).
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(a) MOSI (b) MOSEI

Figure 3.4: The precision-recall curve is created by using VAE-AMDT’s test predic-
tion results on both datasets. The curve indicates that VAE-AMDT outperforms
Self-MM when both precision and recall scores exceed 0.8. Here, a better model
should perform better for both metrics.

Maximum mean discrepancy score(MMD) We do quantitative analysis by

analyzing the maximum mean discrepancy (MMD) on both MOSI and MOSEI test

sets. The MMD is a kernel-based approach that is used to measure the distance

between two probability distributions [82]. We use encoded unimodal representa-

tions µv, µl, and µa to calculate the MMD score between any two modalities and

show their results in Tab. 3.5. Our proposed VAE-AMDT not only can balance

the distance di↵erence between any modality pairs (e.g., v!l, a!l and v!a), but

also reduce their average distance di↵erence in total and prove the e�cacy of VAE-

AMDT.

Method
MOSI MOSEI

v ! l a ! l v ! a Average v ! l a ! l v ! a Average

w/ AMDT 0.51 0.17 1.44 0.71 0.98 0.92 0.45 0.79

w/ VAE-AMDT 0.68 0.53 0.33 0.51 0.28 0.30 0.25 0.28

Table 3.5: MMD results show that not only can the model (w/ VAE-AMDT) balance
the distance between any two modalities, but the average result is lower than the
model (w/ AMDT).

Visualization To further explain the e�cacy of VAE-AMDT, we perform qualita-

tive analysis by visualizing the encoded unimodal representations using t-SNE and

show the result on the MOSEI test set in Fig. 3.5. We concatenate encoded unimodal
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representations µv, µl, and µa and use t-SNE to map them into a joint embedding

space. By applying VAE-AMDT (Fig. 3.5b), the dots indicating “negative” and

“non-negative” classes tend to split into two clusters and prove that VAE-AMDT

is capable of obtaining discriminative multimodal representations.

(a) w/ AMDT (b) w/ VAE-AMDT

Figure 3.5: Visualization result on MOSEI. The green color indicates the “negative”
class and the red color indicates the “positive” (including “neutral”) class. The
model (w/ VAE-AMDT) classifies both classes by discriminative representations.

3.6.6 Ablation study

To prove the e�cacy of all components in our method, we study the Multi-attention

module and Modality respectively. Here, we discuss all comparison results based on

the MAE metric. We consider that the MAE metric should be more reliable than

the A2 and F1 metric on regression learning, especially for small and imbalanced

datasets.

Multi-attention module To confirm the e↵ect of all components of the multi-

attention module, we show the comparison results of the model trained by employing

di↵erent attention components in Tab. 3.6. For the model employing triple-attention

w/o VAE-AMDT, we use unimodal representations xv, xl and xa instead of µv, µl

and µa. The result suggests that (self, cross, triple)-attention improves performance

when used together. Especially, the MAE result is improved much after adding

triple-attention and suggests its e�cacy in highlighting the important modality.
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Attention type
Sentiment intensity

MAE A
2

F1

self-attention 0.688 80.2 85.5

(self, cross)-attention 0.683 81.2 86.3

(self, cross, triple)-attention 0.603 81.8 85.8

Table 3.6: Ablation study of the multi-attention module on MOSEI dataset. All
models are trained w/o VAE-ADMT, (self, cross, triple)-attention shows the lowest
MAE score compared to others.

Modality To ensure that increasing the number of modalities can improve perfor-

mance, we compare the models that are trained given various modalities as the input

and show the results in Tab. 3.7. It is clear that adding modality improves perfor-

mance. However, we note that speech text performs better than other modalities

(e.g., image, audio). We believe that the language encoder (RoBERTa model [5])

we used is more powerful than encoders used for image and audio.

Modality
MOSI MOSEI

MAE A
2

F1 MAE A
2

F1

Image 1.467 43.4 57.3 0.854 70.0 82.4

Audio 1.498 46.9 54.7 0.867 70.0 83.4

Text 0.990 83.8 75.7 0.698 78.9 84.3

Image, Audio 1.473 52.0 56.2 0.837 67.9 78.6

Audio,Text 0.875 80.0 69.0 0.646 82.8 87.9

Image,Text 1.140 74.9 68.1 0.593 82.7 87.8

Image,Text,Audio 0.716 84.3 84.2 0.526 82.8 87.5

Table 3.7: E↵ect of modality. The test results show that adding modality improves
performance.

3.6.7 Case study

We show some data samples from the MOSEI test set in Tab. 3.8. The predicted

sentiment intensity by our method is close to ground truth. Although we select

samples randomly the result suggests that our method performs stable with these

data. Furthermore, we note that some predicted score is more reasonable than

ground truth. For example, the sample (ID:5) is predicted to be 0.52, which is

lower than ground truth. However, we note that the speech text represents negative
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sentiment. These results not only prove that our method is not overfitting to the

training set but also suggest that it is robust to practical use.

ID Speech text Face image
Sentiment intensity

Ground Truth Prediction

1
This movie (umm) if you saw previews for it it looks kind of funny, but this

movie wasn’t very funny
-1.33 -1.69

2
On the other hand he’s battling against his fellow atheists who deny that there

are any objective moral values and duties
0.00 0.13

3
Millions of women, men, and children have better lives today thanks to the

work that many of you have done for decades.
2.00 1.46

4
We will accomplish these goals by reviewing the law that pertains to mandatory

child abuse reporting.
1.00 0.82

5 Get ready for this to be bad.“ That’s not good, that’s not what you want to do. 1.00 0.52

6
What I cared about was my finances and I felt like I was a pretty smart person

and yet you know my financial life was not going where I wanted it to go.
-1.67 -1.27

7
I’m pleased that the United States is represented in Doha by Attorney General-

Eric Holder and one of my key White House advisors, Mike Froman.
1.67 0.84

Table 3.8: Case study on MOSEI test set. The predicted sentiment intensity by our
method is close to ground truth.

3.7 Conclusion

We proposed (VAE-AMDT ) and jointly trained it with a multi-attention module

to reduce the distance di↵erence of various unimodal representations. As a re-

sult, we obtained discriminative multimodal representations to further improve the

performance of video-level sentiment analysis. Our method balanced the distance

di↵erence between any modality pairs and reduced their average distance in total.

We finally improve the F1-score of the state-of-the-art Self-MM by 3.6% on MOSI

and 2.9% on MOSEI datasets, and prove the e�cacy of our method in obtaining

discriminative multimodal representations.



Chapter 4

VQA-GNN: Reasoning with

Multimodal Knowledge via Graph

Neural Networks for Visual

Question Answering

In the last chapter, we introduced an approach called VAE-AMDT to enforce mul-

timodal representations following a common regular distribution. As a result, our

approach improved multimodal fusion and obtained discriminative multimodal rep-

resentations. In this chapter, we propose a bidirectional fusion approach to enable

systems performing concept-level reasoning by unifying unstructured (e.g., the con-

text in question and answer; “QA context”) and structured (e.g., knowledge graph

for the QA context and scene; “concept graph“) multimodal knowledge.

4.1 Introduction

The visual question answering (VQA) task aims to provide answers to questions

about a visual scene. It is crucial in many real-world tasks including scene un-

derstanding, autonomous vehicles, search engines, and recommendation systems

[12, 13, 14, 15]. To solve VQA, systems need to perform concept-level reasoning by

unifying unstructured (e.g., the context in question and answer; “QA context”) and

structured (e.g., knowledge graph for the QA context and scene; “concept graph”)

multimodal knowledge.

Most of the high-performing VQA methods [24, 25, 26, 83, 84, 27, 28] pretrain a

37
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multimodal transformer model on a large-scale dataset to obtain unstructured mul-

timodal knowledge from image and language contexts, and then finetune the pre-

trained model to reason on downstream tasks (e.g., visual commonsense reasoning

(VCR) task [85]). Existing methods (e.g., SGEITL [86]) also incorporate structured

knowledge into these transformer-based models by including a scene graph in the

input of a pretrained multimodal transformer model. More recent methods [87, 88]

further combine the scene graph and the concept graph by inter-connecting corre-

sponding visual nodes and concept nodes through graph neural networks (GNNs)

and then incorporate the unstructured QA context representation to perform ques-

tion answering. However, these methods only perform late fusion or unidirectional

fusion from unstructured knowledge to structured knowledge and do not train the

model to mutually aggregate information from both sides. This can limit their

potential to perform joint reasoning over the heterogeneous modalities of knowl-

edge. As unstructured knowledge and structured knowledge have complementary

benefits—pretrained unstructured representations capture broader knowledge and

structured representations o↵er sca↵olds for reasoning—[89], this motivates the de-

velopment of models that deeply fuse the two modalities of knowledge for visual

question answering.

We propose VQA-GNN (Fig. 4.1), a new visual question answering model per-

forming bidirectional fusion between unstructured and structured multimodal knowl-

edge to obtain a unified, more expressive knowledge representation. VQA-GNN ex-

tracts a scene graph from the given input image using an o↵-the-shelf scene graph

generator [90] and then retrieves a relevant concept graph for the input image and

QA context from a general knowledge graph like ConceptNet [91], obtaining a

structured representation of the scene. Simultaneously, to obtain an unstructured

knowledge representation for the scene, (1) we use pretrained RoBERTa [5] to en-

code the context in question and answer (“QA-context”) as QA-context node, and

(2) we retrieve relevant visual regions from a general scene graph VisualGenome [92]

and take their mean pooled representation as a QA-concept node, which we connect

to the scene graph. We then connect the scene graph and the concept graph through

QA-context node to build a multimodal semantic graph.

To achieve bidirectional fusion across the multimodal semantic graph, we intro-

duce a new multimodal GNN technique that performs inter-modal message passing.

The multimodal GNN consists of two modality-specialized GNN modules, one for

each modality, which perform inter-message aggregation between the QA-context
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Figure 4.1: Overview of VQA-GNN. Given an image and QA sentence, we obtain
unstructured knowledge (e.g., QA-concept node p and QA-context node z) and
structured knowledge (e.g., scene-graph and concept-graph), and then unify them
to perform bidirectional fusion for visual question answering.

node and nodes in structured graphs, aiming to reduce representational gaps be-

tween modalities. Meanwhile, by leveraging the robust transformer-based architec-

ture of RoBERTa, we unfreeze and finetune the weights of the QA-context node to

enable mutual information aggregation from modality-specialized GNN modules.

We evaluate VQA-GNN on two challenging VQA tasks, VCR [85] and GQA [93].

These tasks require systems to perform conceptual and compositional reasoning to

answer diverse questions (e.g., multiple-choice question answering and rationale se-

lection in VCR; open-domain question answering in GQA). Our model outperforms

strong baseline VQA methods [86, 94] by 3.2% on VCR (Q-AR) and 4.6% on GQA.

Moreover, ablation studies show the e�cacy of our two main techniques, bidirec-

tional fusion and multimodal GNN message passing. On VCR, our multimodal GNN

technique that reduces multimodal gaps outperforms existing works that use generic

GNNs [87, 88] by 4.5%. On GQA, bidirectional fusion outperforms a unidirectional
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fusion variant by 4%. These results confirm the promise of VQA-GNN in unifying

unstructured and structured multimodal knowledge for reasoning.

4.2 Problem Setup

This work focuses on multiple-choice and open-domain visual question answering,

respectively. Each data point consists of an image c, and a natural language question

q. For the multiple-choice setting, each question corresponds to a set of candidate

answers A, where only one candidate acorrect 2 A is the correct answer to the

question. Given a QA example (c, q,A), we assume we have access to its relevant

joint graph G(vcr) and our goal is to identify the correct answer acorrect 2 A. For

the open-domain setting, all questions correspond to a large set of common answer

classes B, where only one candidate bcorrect 2 B is the best answer to each question.

Given a data example (c, q) with relevant scene graph G(gqa), the goal is to identify

bcorrect 2 B.

4.3 Related Work

4.3.1 Multimodal transformer

VQA has emerged as one of the most popular topics in the computer vision com-

munity over the past few years [12, 13, 14, 15, 95, 96]. Existing methods for VQA

[24, 25, 26, 27] employ the pretrain-and-finetune approach, where they train a multi-

modal transformer model on large-scale visual-language datasets, and then finetune

the pretrained model on the downstream VQA datasets, e.g., RESERVE-L model

[28] is pretrained using 1 billion image-caption data including video frames, text,

and audio. However, these methods only focus on obtaining unstructured multi-

modal representations by modeling implicit interactions over the visual and lan-

guage domains. In contrast, our method introduces a multimodal GNN module to

obtain unified knowledge representations from unstructured and structured multi-

modal knowledge based on explicit interactions over a well-structured multimodal

semantic graph.



CHAPTER 4. VQA-GNN 41

4.3.2 Structured knowledge-based VQA

Scene graph. Existing methods such as [83] introduce a scene graph prediction

task to learn structured knowledge conditioned multimodal representations, and the

work [86] proposes to incorporate extracted scene graph in multimodal transformer

models. These works [97, 98, 94, 99] also exploit GNNs [100, 101, 102, 103] to

incorporate unstructured QA-context knowledge into a structured scene graph for

question answering. However, these methods only perform late fusion or unidirec-

tional fusion from unstructured knowledge to structured knowledge. In contrast, our

method performs bidirectional fusion to unify unstructured and structured knowl-

edge.

Concept graph. Aiming to achieve concept-level reasoning beyond image-level

recognition for visual understanding, existing works [104, 105, 106, 107, 108, 109,

87, 88, 110, 111, 112, 113] utilize knowledge graphs (KGs) to explore how to unify

commonsense knowledge [89, 114, 115] about background concepts of the scene. The

work [116] converts the image into captions and performs GPT-3 [22] in joint knowl-

edge retrieval and reasoning. The work [111] encodes question-related knowledge

from the retrieved knowledge facts to a knowledge-aware question representation,

and then performs a question and knowledge-guided graph attention operation for

answer reasoning. However, structured concept knowledge relevant to the QA con-

text is not enough to represent the background scene. We build a concept graph to

cover structured and unstructured concept knowledge relevant to the QA context

as well as the background scene.

Scene graph & concept graph. To enrich structured knowledge, these works [107,

108, 110] utilize GNNs to learn graph representations of the scene graph and concept

graph respectively, and then perform later fusion across the QA context, scene graph

and concept graph for question reasoning. However, it is insu�cient to capture the

interactions across di↵erent modalities for concept-level reasoning. These works

[87, 88] unify the scene graph and concept graph by interconnecting corresponding

visual and concept nodes to capture their interactions. However, the representational

gap between modalities adversely a↵ects the performance of inter-modal message

passing for capturing joint reasoning [117, 118]. Our method inter-connects the scene

graph and concept graph via a QA context node and introduces a new multimodal

GNN technique to mitigate representational gaps between modalities.
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4.4 Methodology

As shown in Fig. 4.2, given an image and its related question with an answer choice,

first we build a multimodal semantic graph to unify unstructured and structured

multimodal knowledge into a joint graph (§4.4.1). Then we propose a multimodal

GNN-based bidirectional fusion method that performs inter-modal message passing

to obtain node representations enhanced with unstructured and structured multi-

modal knowledge (§4.4.2). Finally, we get the pooled representations of scene-graph

and concept-graph and concatenate them with the representations from the QA-

context node and QA-concept node for answer prediction (§4.4.3).

Figure 4.2: Reasoning procedure of VQA-GNN. We first build a multimodal seman-
tic graph for each given image-QA pair to unify unstructured (e.g., “node p” and
“node z”) and structured (e.g., “scene-graph” and “concept-graph”) multimodal
knowledge (§4.4.1). Then we perform inter-modal message passing with a multi-
modal GNN-based bidirectional fusion method (§4.4.2) to update the representa-
tions of node z, p, vi and ci for k + 1 iterations in two steps. Finally, we predict
the answer with these updated various node representations (§4.4.3). Here, “S” and
“C” indicate scene-graph and concept-graph respectively. “LM encoder” indicates
a language model used to finetune QA-context node representation, and “GNN”
indicates a relation-graph neural network for iterative message passing.

4.4.1 Multimodal semantic graph

Scene-graph encoding. Given an image, we use a pretrained scene graph genera-

tor to extract a scene graph that consists of recall@20 of (subject, predicate, object)

triplets to represent structured image context [90], e.g., (car, behind,man). Then

we apply a pretrained object detection model for embedding a set of scene graph

nodes V (s) = {vi}Ni=1 (N indicates the maximum number of scene-graph nodes of

“20”) and represent v
(s)
i

with a 2048 dimensional visual feature vector [119]. We

indicate the predicate edge types in the scene graph with a set of scene graph edges
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E (s) = {r(s)
i
}D
i=1 (D denotes the number of edge types) and represent r

(s)
j

with a

D-dimensional one-hot vector.

QA-concept node retrieval. In addition to the local image context, with an as-

sumption that the global image context of the correct choice aligns with the local

image context, we employ a pretrained sentence-BERT model to calculate the simi-

larity between each answer choice and all descriptions of the region image within the

VisualGenome dataset [92]. This process allows us to extract relevant region images

that capture the global image context associated with each choice [120]. We retrieve

the top 10 results and utilize the same object detector to embed them. These em-

beddings are averaged to obtain a QA-concept node denoted as p. Subsequently, we

introduce a QA-concept edge, denoted as r(p), which serves to fully connect node p

with node vi.

Concept-graph retrieval. We retrieve a concept graph from the image and Con-

ceptNet KG, a general-domain knowledge graph [91]. Our process is illustrated in

Fig. 4.3. In Step 1, we extract concept entities from both the image and the answer

choices. Specifically, for the image, we consider the detected object names as poten-

tial contextual entities, while excluding general terms like “person“ to streamline the

reasoning process. For the answer choice, we ground phases if they are mentioned

concepts in the ConceptNet KG, e.g., “beverage” and “shop“. In step 2-1, we use

grounded phases to retrieve their 1-hop neighbor nodes from the ConceptNet KG. In

step 2-2, since many concept nodes retrieved are semantically irrelevant to the an-

swer choice, we use a word2vec model released by the spaCy library1 to get relevance

score between concept node candidates and answer choices, and prune irrelevance

nodes when the relevance score is less than 0.6. As a result, given an answer choice,

we can retrieve a relevance subgraph from ConceptNet KG based on the relevance

score. In step 3, to better comprehend concept knowledge from the image as well,

in addition to linking adjacent object entities in the ConceptNet KG domain, we also

combine parsed local concept entities of the image with the retrieved subgraph. For

instance, considering that ConceptNet encompasses various types of local concept

entities, when a local concept entity (e.g., “bottle”) is found adjacent to a retrieved

entity (e.g., “beverage”), we build a new knowledge triple, e.g., (bottle, allocation,

beverage). Finally, we can construct a concept graph to depict the structured knowl-

edge at the concept level. We obtain a collection of concept-graph nodes denoted

as V (c) = {ci}Ni=1, where N represents the maximum number of concept-graph nodes

1
https://spacy.io/

https://spacy.io/
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of 60. The concept entity ci is represented using a 1024-dimensional text feature

vector as the concept entity embedding in [121]. Additionally, we initialize a set

of concept-graph edges denoted as E (c) = {r(c)
i
}D
i=1, using D-dimensional one-hot

vectors, where D is the number of edge types in concept-graph.

Figure 4.3: The process of concept-graph retrieval involves the calculation of simi-
larity between concept-graph nodes and the answer context, denoted as Relev(e|a).

QA-context node encoding. To construct a multimodal semantic graph, we in-

troduce an unstructured QA-context node denoted as z to inter-connect the scene-

graph and concept-graph using three additional relation types: the question edge

r
(q), the answer edge r

(a), and the image edge r
(e). The image edge r

(e) fully links

node z with V (s), capturing the relationship between the QA context and relevant en-

tities within the scene-graph. The question edge r(q) and answer edge r(a) link node z

with the entities extracted from the question and the answer text, respectively, cap-

turing the relationship between the QA context and the relevant entities within the

concept-graph. As a result, we construct a multimodal semantic graph G = {S,C}
to provide a joint reasoning space, which includes two sub-graphs of scene-graph S

and concept-graph C, two super nodes of QA-concept node and QA-context node.

Here, the QA-concept node is included in S and the QA-context is included in S and
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C for performing inter-modal message passing in §4.4.2. Especially, the QA-context

node z is assigned to not only learn unstructured discriminative representations by

giving Q and A text pairs but also to incorporate structured multimodal knowledge

from scene-graph and concept-graph for e↵ective VQA. As the transformer-based

method is powerful for multimodal representation learning [25, 24], we employ the

RoBERTa LM [5] as the encoder of QA-context node z and finetune it with GNN

modules to achieve bidirectional multimodal knowledge fusion (see Fig. 4.2).

4.4.2 Multimodal GNN-based bidirectional fusion

To improve inter-modal message passing by avoiding directly aggregating neigh-

borhood nodes that may be initialized in di↵erent modality domains, we propose

a multimodal GNN-based bidirectional fusion method built by two relation-graph

neural networks for scene-graph and concept-graph respectively (see §4.4.1). The

relation-graph neural network is built on the Graph Attention Networks (GAT) [101]

by introducing multi-relation aware message for attention-based message aggrega-

tion process to better capture multiple relation information.

The details of the relation-graph neural network are as follows: we have four node

types: T = {Z,P ,S,C} in the multimodal semantic graph and they indicate QA-

context node z, QA-concept node p, scene-graph node s, and concept-graph node c.

As relation edge representation ri,j should capture relationship from node i to node

j and di↵erence of node types represents a special relation between neighborhood

nodes, we first obtain node type embedding ui, uj and then concatenate them with

edge embedding eij to generate multi-relation embedding rij from i to j by

rij = fr([eij||ui||uj]) (4.1)

where ui, uj 2 {0, 1}|T | are one-hot vectors indicating the node types of i and j,

eij 2 {0, 1}|R| is a one-hot vector indicating relation type of edge (i, j). || is the

concatenation operation, and fr : R|R|+2|T | ! RD is a 2-layer MLP. Based on multi-

relation embedding rij, the multi-relation aware messagemij from i to j is computed

by

mij = fm([h
(k+1)
i

||rij]) (4.2)

where fm : R2D ! RD is a linear transformation. h
(k+1)
i

is the node representation
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of each node i in the graph. We then recursively updated it k + 1 times by

h(k+1)
i

= fh

 
X

j2Ni

↵ijmij

!
+ h(k)

i
(4.3)

where fh : RD ! RD is 2-layer MLP with batch normalization [122]. Ni indicates the

neighborhood of node i, ↵ij is an attention weight to emphasize important messages

passed from Ni to node i. We obtain qi,kj by

qi = fq(h
(k+1)
i

),kj = fk([h
(k+1)
j

||rij]) (4.4)

where fq : RD ! RD and fk : R2D ! RD are linear transformations. ↵ij is computed

using the softmax function by

�ij =
qT
i kjp
D
, (4.5)

↵ij = softmaxj(�ij) =
exp(�ij)P

j02Ni
exp(�ij0)

(4.6)

By referring to Eq. 4.3, we perform message passing to update node representa-

tions in each graph in parallel by aggregating multi-relation aware messages from

neighborhood nodes in each node. As a result, we obtain structured graph node rep-

resentations h(k+1)
(vi)

and h
(k+1)
(ci)

, unstructured node representations h(k+1)
(p) and h

(k+1)
(z) .

For node z, we update it with scene-graph and concept-graph respectively, and

concatenated by

h(k+1)
(z) = fz([h

(k+1)

(z(s))
||h(k+1)

(z(c))
]) (4.7)

where fz : R2D ! RD is a linear transformation.

4.4.3 Inference and Learning

To identify the correct answer acorrect 2 A with a QA example (c, q,A), we compute

the probability p(a|c, q) for each answer choice with its multimodal semantic knowl-

edge from scene-graph, concept-graph, QA-context node, and QA-concept node.

With various node representations on the L-th (L = k + 1) layer updated by GNN

modules (shown in Fig. 4.2), we obtain pooling representations h(k+1)
(s) and h(k+1)

(c)

of scene-graph and concept-graph and then concatenate with QA-context node and
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QA-concept node representations. Finally we calculate p(a|c, q) by

h(k+1)
a

= [h(k+1)
(s) ||h(k+1)

(c) ||h(k+1)
(p) ||h(k+1)

(z) ], (4.8)

logit(a) = fc(h
(k+1)
a ), (4.9)

p(a|c, q) = softmaxa(logit(a)) (4.10)

where logit(a) indicates the confident score of answer choice a, fc : R4D ! R1 is a

linear transformation that maps the concatenation of representations to a scale. We

normalize it across all answer choices using the softmax function. For the training

process, we apply the cross entropy loss to optimize the VQA-GNN model end-to-

end.

4.5 Experiments

4.5.1 Experiment Setup

Visual Commonsense Reasoning (VCR).We evaluate VQA-GNN on VCR [85].

It contains 290k pairs of questions, answers, and rationales, over 110k unique movie

scenes. VCR consists of two tasks: visual question answering (Q!A), and answer

justification (QA!R). Each question in the dataset is provided with four candidate

answers. The goal of (Q!A) is to select the best answer, while the goal of (QA!R)

is to justify the given question-answer pair by picking the best rationale out of the

four candidates. We joint train VQA-GNN on Q!A and QA!R, with a common

LM encoder, the multimodal semantic graph for Q!A, a concept graph retrieved

by giving question-answer pair with a rationale candidate for QA!R. We use a

pretrained RoBERTa Large model to embed the QA-context node and finetune its

all parameters with the multimodal GNN for 50 epoch by using learning rates 1e-5

and 1e-4 respectively. We set the number of layers (L = 5) of VQA-GNN and use

AdamW [80] optimizer to minimize the loss. We use a linear warmup of the learning

rate over the 15-th epoch, with a cosine decay thereafter to 0.

GQA dataset. It contains open-ended questions (1.5M questions correspond to

1,842 answer tokens), along with 110K scene graphs and the semantic functional

programs to o↵er unambiguous instructions [93]. We only use questions without

giving a semantic feature program that limits the development of the model’s rea-

soning abilities in a more practical setting. We define the question as the context
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node (node q) to fully connect visual and textual scene graphs (SG) respectively to

structure multimodal semantic graphs. The node q is embedded with a pretrained

RoBERTa large model, and we initialize object nodes’ representations in visual SG

using o�cial object features, object nodes in textual SG by concatenating GloVe

[123] based word embedding of the object name and attributes. Di↵erent from the

training target of VCR, the goal of GQA is to classify the given image-question pair

out of 1,842 answer classes. We finetune the node q with VQA-GNN for 50 epoch

by using learning rates 2e-5 and 2e-4 respectively.

4.5.2 Performance

Evaluation on VCR dataset

Comparison with state-of-the-art methods. We compared VQA-GNN with

state-of-the-art methods on the VCR test set in Tab. 4.1. Compared with the

unidirectional fusion method SGEITL+VLBERT that can boost multimodal trans-

former model VLBERT by incorporating visual scene graphs, VQA-GNN is a mul-

timodal GNN-based bidirectional fusion method built on the multimodal semantic

graph. Both were not pretrained on the large-scale dataset. VQA-GNN improves

SGEITL+VLBERT on the Q!AR metric by 3.2%, and further reduces over 11M

training parameters. We think that the structured multimodal semantic graph pro-

vides much more commonsense knowledge related to QA and original image than

SGEITL, and the multimodal GNN-based bidirectional fusion method works much

better on unifying unstructured and structured multimodal knowledge than mul-

timodal transformer models. Moreover, since we retrieve commonsense knowledge

from structured multimodal semantic graphs directly, VQA-GNN is a cost-e↵ective

approach compared to multimodal transformer models that consume much GPU

resources to learn commonsense knowledge with large parameters.

We also demonstrate the e↵ectiveness of VQA-GNN by comparing it with state-

of-the-art multimodal transformer models that were pretrained across text and im-

ages and were finetuned on the VCR dataset. As shown in Tab. 4.1, the larger

image caption data and parameters, the higher performance the model can achieve.

In contrast, VQA-GNN trained with VCR dataset with 290K image-caption pairs

performs similarly to UNITER-L that requires over 32x larger image-caption data

than us in the pretraining process. These results suggest that VQA-GNN obtaining



CHAPTER 4. VQA-GNN 49

Model
# Image-caption

Parameters Structured knowledge
Test Acc.(%)

in pretraining Q!A QA!R Q!AR

ViLBERT [24] 3.3M 221M No 73.3 74.6 54.8

VLBERT-L [25] 3.3M 383M No 75.8 78.4 59.7

SGEITL+VLBERT [86] 290k � 383M Yes 76.0 78.0 59.6

UNITER-(B/L)[84] 9.5M 154M/378M No 75.0/77.3 77.2/80.8 58.2/62.8

ERNIE-ViL-(B/L) [83] 3.8M 212M/533M No 77.0/79.2 80.3/83.5 62.1/66.3

VQA-GNN (Ours) 290k 372M Yes 77.9 80.0 62.8

MERLOT [27] 180M 223M No 80.6 80.4 65.1

RESERVE-(B/L) [28] 1B 200M/644M No 79.3/84.0 78.7/84.9 62.6/72.0

RESERVE-L + VQA-GNN (Ours) 1B 1B Yes 85.3 86.9 74.3

Table 4.1: Accuracy scores for VCR test set. VQA-GNN outperforms
SGEITL+VLBERT model on Q!AR metric by 3.2%, and achieves competitive
accuracy with SOTA methods, which have a close number of parameters but SOTA
methods require a large amount of image caption data in pre-training process (over
13x larger than our model), e.g., “UNITER-L”, “ERNIE-ViL-B”, “RESERVE-
B”. Moreover, “RESERVE-L+VQA-GNN” outperforms RESERVE-L by 2.3% on
Q!AR metric.

structured context knowledge inferred from image-level and concept-level knowl-

edge sources is as e↵ective as the pretraining process for previous methods. More-

over, VQA-GNN can further enhance RESERVE-L performance on both Q!A and

QA!R and finally improves the score by 2.3% on Q!AR metric. As correcting

some questions requires the model to understand commonsense knowledge related

to image context and have good reasoning ability, it is di�cult for multimodal trans-

former methods including RESERVE-L. On the other hand, VQA-GNN not only

structures a joint semantic graph to provide commonsense knowledge related to im-

age context but also has a good reasoning ability thanks to its multimodal GNN

module. Additionally, in the supplementary material, we detail the results com-

pared to baselines pretrained only with the VCR dataset, as well as the evaluation

of di↵erent question types.

E↵ectiveness of the multimodal semantic graph. To further study the be-

havior of modules in the multimodal semantic graph, and quantitatively evaluate

pretrained models used in this work (e.g., RoBERTa-L, scene-graph[scene graph

generator], concept-graph[conceptNet KG]), we report the performance of using dif-

ferent node representations in Tab. 4.2. We respectively build classification models

by applying Node p and Node z to get their validation accuracy on Q!A subtask.

The scene-graph structured by connecting Node p and Node z with extracted visual

scene graph improves over 25% on average of these two nodes. In terms of concept-

graph, it is structured by connecting Node z with retrieved conceptual triplets from
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ConcepNet KG, improving Node z’s performance by 15.2%. We further compare

VQA-GNN on “scene-graph + concept-graph” w/ and w/o Node p, and the re-

sult shows that including Node p can further improve the performance by 2%. We

believe that the Node p representing global visual knowledge associated with the

correct answer is able to pass visual commonsense knowledge to the multimodal se-

mantic graph, and it is e↵ective besides employing ConcepNet KG to obtain textual

commonsense knowledge [89].

Model Val Acc.(%) (Q!A)

Node p (Vinvl) 43.5

Node z (RoBERTa-L) 53.8

concept-graph 69.0

scene-graph 73.7

concept-graph + scene-graph (w/o node p) 75.1

concept-graph + scene-graph (w/ node p) 77.1

Table 4.2: All modules in the multimodal semantic graph help boost the final perfor-
mance. Here, “scene-graph” includes node z and node p, “concept-graph” includes
node z.

Model Val Acc.(%) (Q!A)

Ablation 1 (single GNN) 73.0

Ablation 2 (single GNN w/ cross-modal edges) 70.6

VQA-GNN (two modality-specialized GNNs) 75.1

Table 4.3: Ablation 1 and Ablation 2 indicate a single GNN on the multimodal
semantic graph w/o and w/ direct cross-modal edges, respectively (Fig. 4.4).
VQA-GNN with two modality-specialized GNNs on the multimodal semantic graph
achieves the best score.

Analysis of the multimodal GNN method. To analyze the e↵ect of the mul-

timodal GNN method on mitigating the multimodal gap in performing inter-modal

message passing, we compared the final VQA-GNN with two single GNNs built on

multimodal semantic graphs with and without direct cross-modal edges in Fig. 4.4.

As the results of VCR validation set shown in Tab. 4.3, the final VQA-GNN built

with the multimodal GNN on the multimodal semantic graph improves the accu-

racy of both ablative architecture by over 2%. We believe that the multimodal GNN

built by two modality-specific GNNs can e↵ectively avoid directly aggregating nodes

from scene-graph and concept-graph to alleviate the modality gap. As a result, the
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Figure 4.4: Ablation architectures. We find that our final VQA-GNN architecture
with two modality-specialized GNNs overcomes the representation gaps between
modalities (§4.4.1).

inter-modal message passing can be improved. We further explored the aggregation

process for some node samples to demonstrate why the two ablation architectures

fail to alleviate the modality gap. Here, m(k)
N (u) represents the aggregated messages

from all neighbors of node u at the k-th iteration.

m
(k)
N (u) = Aggregate(k)(u(k)

, 8v 2 N (u)) (4.11)

where N (u) denotes a set of neighborhood nodes of the node u, and k denotes the

iterations of m(k)
N (u).

For (c) Ablation 2 in Fig. 4.4, we assume that node v2 is connected with node

c1 as both represent the same notion. However, their feature vectors are distributed

in di↵erent modality domains and a↵ect the aggregation process. We show the

neighborhood nodes of QA-context node z, visual node v2 and concept node c1 are

follows:

N (z) = {v2, v4, c1, c3} (4.12)

N (v2) = {z, v1, v4, c1};N (c1) = {z, c2, c3, v2} (4.13)

where their neighborhood nodes include heterogeneous nodes from di↵erent modality

domains.

For (b) Ablation 1 in Fig. 4.4, the neighborhood nodes of QA-context node z,
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visual node v2 and concept node c1 are follows:

N (z) = {v2, v4, c1, c3} (4.14)

N (v2) = {z, v1, v4};N (c1) = {z, c2, c3} (4.15)

Compared with (c) Ablation 2, node c1 and node v2 are removed from the neigh-

borhood nodes of v2 and c1 which helped improve the performance of (c) Ablation 2

by 2.4%. However, it is limited by the QA-context node z that aggregates messages

across scene-graph and concept-graph. Although QA-context node z is a pretrained

LM that can be finetuned on multimodal domains, it is more di�cult to adapt to

two modalities (Eq. 4.14) than to a single modality (Eq. 4.16). In contrast, the

multimodal GNN method is designed by introducing two GNNs for each modality.

We perform aggregation for QA-context node z for each modality so that the pre-

trained LM is finetuned on a single modality to alleviate the modality gap. The

neighborhood nodes of QA-context node z, visual node v2 and concept node c1 are

follows:

N (z)(m1) = {v2, v4};N (z)(m2) = {c1, c3} (4.16)

N (v2) = {z(m1)
, v1, v4};N (c1) = {z(m2)

, c2, c3} (4.17)

where m1 and m2 indicate two message passing methods for each modality.

Evaluation on GQA dataset

Comparison with baselines. We also compared VQA-GNN with baseline models

on GQA dataset, under the realistic setup of not using the annotated semantic func-

tional programs (see §4.5.1). As the results shown in Tab. 4.4, our model achieves

validation accuracy of 58.9% for visual SG and 87.9% for textual SG. Compared with

SGEITL [86] and GCN [99] which are unidirectional fusion methods, our method

performs bidirectional fusion to unify unstructured and structured knowledge, and

improved the reasoning ability of SGEITL by 5.6% and GCN by 2.2%. Moreover,

by inter-connecting the visual and textual SG, our method achieves validation accu-

racy of 90.3% and further suggests its e�cacy in performing inter-modal message

passing.

Ablation study on the bidirectional fusion. To fairly study the e↵ect of bidi-

rectional fusion for improving concept-level reasoning, we evaluated the performance
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Model Visual SG Textual SG Val Acc.(%)

SGEITL[86] X 53.3

CFR[124] X X 73.6

GCN[99] X 85.7

X 58.9

VQA-GNN X 87.9

X X 90.3

Table 4.4: Accuracy scores on the GQA validation set. All models are trained under
the realistic setup of not using the annotated semantic functional programs.

Method Val Acc.(%) " Inference time (ms) #
Average pooling 62.3 (±0.40) 5.2

Unidirectional fusion 86.3 (±0.01) 8.6

Bidirectional fusion (ours) 90.3 (±0.03) 5.5

Table 4.5: Ablation results on the e↵ect of our proposed bidirectional fusion for
GQA.

of VQA-GNN with and without structured multimodal knowledge-enhanced ques-

tion representations. We show their di↵erence in Fig. 4.5, compared with the

unidirectional fusion, the bidirectional fusion approach is able to utilize the message

aggregated from scene-graph and concept-graph in node z to predict the correct

answer. It facilitates the joint reasoning ability of VQA-GNN in capturing bidirec-

tional interactions between unstructured node z and structured multimodal semantic

graph. As a result in Tab. 4.5, the bidirectional fusion approach further improved

the performance of the unidirectional fusion approach by 4%. We also compared

our approach with an average pooling method that simply averages all node rep-

resentations. We indeed find that this ablation performs significantly worse than

others, which suggests that our approach can capture special relationship informa-

tion between di↵erent nodes but average pooling cannot.

4.5.3 Comparison with baselines pretrained only on VCR

dataset

We compared VQA-GNN and multimodal transformer models in Tab. 4.6 which

were only trained on VCR dataset (290K instances), as reported in SGEITL paper

[86]. SGEITL is an add-on module that can boost multimodal transformer models
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Figure 4.5: Illustration of two knowledge fusion methods: our proposed bidirectional
fusion v.s. the unidirectional fusion baseline.

(UNITER, VLBERT) by incorporating finetuned visual scene graph with multi-

modal transformer models. Compared with SGEITL, VQA-GNN is a GNN-based

method built on the structured multimodal semantic graph. As shown in Tab. 4.6,

VQA-GNN improves over SGEITL+VLBERT on the Q!AR metric by 4% for the

validation set, and further suggests the e�cacy of VQA-GNN on the well-structured

multimodal semantic graph.

Model Parameters
Val Acc.(%)

Q!A QA!R Q!AR

VLBERT-L 383M 72.9 75.3 54.9

UNITER-L 378M 73.4 76.0 55.8

ERNIE-ViL-L 533M 74.1 76.9 56.9

SGEITL+UNITER > 378M 74.8 76.8 57.4

SGEITL+VLBERT > 383M 74.9 77.2 57.8

VQA-GNN(ours) 372M 77.1 80.0 62.1

Table 4.6: All models are trained only on the VCR dataset. Compared to the
“SGEITL+VLBERT” model that inputs a visual scene graph to VLBERT network,
VQA-GNN applied to a well-structured multimodal semantic graph improves accu-
racy on Q!AR metric by over 4%.
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4.5.4 Comparison results on di↵erent question types

We studied the performance of VQA-GNN in di↵erent question types and compared

it with a strong baseline model RESERVE-L in Tab. 4.7. VQA-GNN outperforms

RESERVE-L in some question types such as “Will”, “Have”, and “Can/Should”,

and we consider that some questions require the model to understand commonsense

knowledge related to image context and have good reasoning ability. Hence, the

model “RESERVE-L+VQA-GNN” boosted the performance of RESERVE-L.

Question type
Val Acc.(%) (Q!A) Val Acc.(%) (QA!R)

VQA-GNN RESERVE-L VQA-GNN RESERVE-L

Why 73.2 78.6 81.8 84.8

What 79.1 85.7 80.0 85.2

Where 77.9 87.7 76.7 86.0

Who 89.4 91.3 77.1 85.0

When 77.8 94.4 100 100

Which 88.9 88.9 81.5 87.0

Do 81.6 81.6 73.5 82.5

Will 86.2 83.8 82.7 82.3

Have 92.9 91.4 87.1 82.9

If 89.2 92.3 96.9 95.4

Can/Should 93.3 88.5 87.5 84.6

Table 4.7: Comparison results on the di↵erent question types. VQA-GNN performs
better than RESERVE-L for “Will”, “Have” and “Can/Should” question types.

4.6 Interpretability

To interpret how VQA-GNN reason a correct answer based on a structured multi-

modal semantic graph, we show the reasoning process on Q!A and QA!R subtasks

of VCR respectively in Fig. 4.6 by using a validation sample that is given a correct

answer on both Q!A and QA!R subtasks by VQA-GNN.

Q!A subtask. We trace high attention weights from two directions: d1: QA-

context node Z ! Answer nodes (purple) ! KG concept nodes (blue) ! Oject

concept nodes (pink); d2: QA-concept node P ! SG object nodes (orange) ! Z.

At the d1, Z pays more attention to A nodes “breakfast” and “make breakfast” in

answer “A0” choice than nodes in other choices, “breakfast” attends to both KG
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Figure 4.6: Interpreting VQA-GNN ’s reasoning process across multimodal knowl-
edge domains by indicating attention weight of the relationship between nodes. Ar-
rows indicate the direction of the relationship, and darker and thicker edges indicate
higher attention weights. The red color highlights the message passing routine for
reasoning the correct answer and the gray color indicates the opposite.

node “first meal” and O node “table”, O node “table” further attends to O node

“bowl”, and both strongly attend to Z. A node “breakfast” bridges the reasoning

between Z and O “table” at the concept-level. Besides with d1, we also track the

attention weights from d2, Z strongly attends to SG nodes “table”, “drawer” and

“woman”, all nodes attend to Z, which reveals image-level semantic knowledge of

SG nodes “table”, “drawer” and “woman” are all essential for reasoning “A0: she is

making breakfast” correct. These two reasoning paths demonstrate that VQA-GNN

is an inoperable method that can give a reasonable explanation to each choice with

our well-structured multimodal semantic graph, also suggest that our multimodal

semantic graph is capable of unifying unstructured (e.g., QA-context node and QA-

concept node) and structured (e.g., scene-graph and concept-graph) multimodal

knowledge.

QA!R subtask. We trace reasoning path for the rational answerR0 on concept-

graph. There are two reasonable directions: Z ! “breakfast” ! “morning” !
“getting up”, and Z ! “kitchen” ! “drawer”, “bowl”, “table”. Both of them show

strong attention between QA text and R0, compared to the attention direction

for R1 indicating that “breakfast” also strongly attends to “sausages” and “plate”

attends to “fruit”, however, “fruit” weakly attends to Z. As a result, VQA-GNN
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can select a rational answer, and suggest its interpretability on QA!R subtask. In

addition, we noted that our method has close reasoning paths that attend to the

image context of “bowl”, “table” and “drawer” on both Q!A and QA!R subtasks.

Hence, we consider that our method has strong reasoning ability across multimodal

knowledge domains.

4.7 Conclusion

We proposed a novel visual question answering method, VQA-GNN, which unifies

unstructured and structured multimodal knowledge to perform joint reasoning of

the scene. In the evaluation of two challenging VQA tasks (VCR and GQA), our

method substantially outperforms existing models without pretraining using mas-

sive image-caption data under the same training setting, our method outperforms

strong baseline VQA methods by 3.2% on VCR (Q-AR) and 4.6% on GQA, sug-

gesting its strength in performing concept-level reasoning. Ablation studies further

demonstrate the e�cacy of the bidirectional fusion and multimodal GNN method

in unifying unstructured and structured multimodal knowledge.



Part 2: Achieving e↵ective

multimodal transfer learning
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Chapter 5

LDNN: Linguistic Knowledge

Injectable Deep Neural Network

for Group Cohesiveness

Understanding

In Part 1, we explored the e↵ects of varying representation distributions across dif-

ferent modalities and developed methods to enhance the e↵ectiveness of multimodal

fusion. In the last chapter, we proposed a new bidirectional fusion to enable the

expressive integration of multimodal structured graph knowledge and unstructured

knowledge in the pretrained language models. Specifically, our proposed method

VQA-GNN achieved fine-grained video understanding for interpretable multimodal

reasoning by unifying commonsense knowledge within visual scenes.

In Part 2, we focus on a new problem setting for developing an e�cient modality-

agnostic multimodal system—an unimodal system that can achieve competitive per-

formance with a multimodal system when only provided with an unimodal signal

input. In this chapter, we propose a simple approach called linguistic knowledge

injectable deep neural network (LDNN) to build a visual model (visual LDNN) that

can automatically associate the linguistic knowledge hidden behind images when

provided with a single visual modality as input.
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5.1 Introduction

Group cohesion is one of the essential characteristics of group activities and reflects

the level of intimacy people feel with each other [125, 126, 127]. The greater the level

of group cohesiveness, the closer the relationships between the people. Thus, the

prediction of group cohesiveness is an important task for achieving a dialog robot

that can facilitate human communication [128].

Due to many features correlated to group cohesiveness that exist in the image, it

is an intuitive way to extract those visual features to predict the levels of cohesion.

There have been some studies that have attempted to extract visual features such

as scene, skeleton, especially the facial expression features of group members using

pretrained DNN-based models, and apply these in an attempt to group cohesiveness

prediction [129, 130, 131]. Although these visual features are related to group

cohesiveness, they cannot represent the group cohesiveness concept semantically like

the language representations. As shown in Fig. 5.1, the language representations for

“A young mother is comforting her daughter” contain much more knowledge of

group cohesiveness than visual representations extracted from image pixels such

as “a little girl”, “one woman”. Furthermore, visual feature extraction consumes

relatively higher computational time, which makes it hard to meet the demands of

practical applications.

Visual
prediction model

Extract Visual 
representations  
from pixels

Colors, Face , 
Pose, Facial 
Expression

Cohesiveness 
levels

0
1
2
3

A young mother is comforting
her daughter

Prediction

Language 
representations 
hidden behind the 
image

Prediction
Inject linguistic knowledge

Figure 5.1: A conceptual diagram illustrating the injection of linguistic knowledge
into a visual prediction model.

Exploring ways to obtain the linguistic knowledge of group cohesiveness hidden
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behind images makes sense to improve performance. Image captioning is a mul-

timodal translation task that maps visual domain-specific features into language

domain-specific features by implementing an encoder-decoder framework [132]. It

can be used to get visual features that reflect the language features, however, these

language features cannot represent group cohesiveness directly. On the other hand,

multimodal representation learning aims to generate informative representations by

integrating di↵erent modal features and has been widely applied to emotion recogni-

tion tasks [133] and visual dialog tasks [134], etc. Although it is a useful way to gain

both visual and language representations correlating group cohesiveness, language

information is essential for practical use.

Inspired by the fact that humans intuitively associate linguistic knowledge ac-

cumulated in the brain with the visual images [135], we propose a linguistic knowl-

edge injectable deep neural network (LDNN) for constructing a visual model (visual

LDNN) that can associate related linguistic knowledge of group cohesiveness hid-

den behind images without any language information at inference time. LDNN is

composed of two components, a visual encoder, and a language encoder, to ap-

ply multimodal domain adaptation and linguistic knowledge transition mechanisms.

We train the LDNN by adding descriptions to the training and validation set of

the Group AFfect Dataset 3.0 (GAF 3.0) [136] and test the visual LDNN without

any description. Comparing visual LDNN with various fine-tuned DNN models and

three state-of-the-art models in the test set, the results demonstrate that the visual

LDNN not only improves the performance of the fine-tuned DNN model leading to

an MSE very similar to the state-of-the-art model but is also a practical and e�-

cient method that requires relatively little preprocessing. Further ablation studies

are convinced that LDNN is an e↵ective method to inject linguistic knowledge into

visual models. The contributions of this paper can be summarized as follows:

(i) We propose LDNN which can transform the linguistic knowledge distilled from

a language model and transfer it into a single visual model.

(ii) We train a linguistic knowledge injected visual model using language and vi-

sual modal information only in the training phase and single visual modal

information in the inference phase.

(iii) We expand an existing dataset of GAF 3.0 by adding a description to each

video data and show performance comparable to state-of-the-arts using mul-

timodal information as single modal information.
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5.2 Related works

Group cohesiveness understanding from video data is becoming a standard way by

employing advanced artificial intelligence techniques such as deep neural network

(DNN)-based methods [125, 126, 127]. Many studies have proven that DNN-based

methods can perform extremely well in the field of image understanding, not only

in relation to coarse-grained tasks such as the MNIST task but also in fine-grained

tasks such as facial expression recognition tasks [137]. These works [129, 130, 131]

propose DNN-based methods for the prediction of group cohesiveness in images by

adopting a common strategy, namely, extracting as many visual features as possible

including scenes, skeletons, and faces utilizing pretrained DNN models. Although

these visual features correlate with group cohesiveness, it cannot be guaranteed that

all features can always be extracted from any image, such as when someone’s face is

hidden by others in some images. In addition, the linguistic knowledge that describes

the images helps to represent the interpersonal intimacy of group members, but this

matter is not considered in these studies.

Language sca↵olds concept knowledge in humans, helping them to acquire ab-

stract concepts [138]. Analyzing image descriptions will help to obtain complex

representations that facilitate the understanding of interpersonal intimacy. With re-

cent advances in natural language processing (NLP), human language can be easily

transformed into a high-dimensional vector with embedded linguistic knowledge [21].

Bidirectional encoder representations from transformers (BERT) is a state-of-the-art

language model for NLP, by which a pretrained model can be fine-tuned to produce

state-of-the-art results in a wide range of NLP tasks [72], such as question answering

(SQuAD) [139], machine reading comprehension [140], and visual commonsense rea-

soning [25]. We fine-tune a pretrained model of BERT to obtain a high-dimensional

vector from the image description to represent linguistic knowledge of group cohe-

siveness.

It makes sense to merge much more information to help understand complex

concepts. Many tasks focus on how to integrate multimodal information that re-

sults in high recognition performance. The work [59] proposes a multimodal fusion

method for the human emotion recognition task. It takes features extracted by

the visual and audio encoders as the inputs and applies attention mechanisms that

highlight important modal features to achieve higher scores than single modalities.
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[133, 141] proposed an emotion recognition method that attempts to achieve human-

like emotion recognition by integrating features extracted from visual, audio, and

linguistic data. The visual question answering (VQA) [12] task is a much more

challenging multimodal task that requires not only extracting the important fea-

tures from the image and question text but also exploring the interaction between

visual and linguistic features. The work [142] proposes a method of applying a co-

attention mechanism to dynamically learn the interaction between objects in images

and question text. However, these methods need to provide multimodal information

to generate meaningful representations and cannot be applied in practice without

providing the linguistic information hidden behind images. Image captioning is a

task that generates image descriptions by learning the mapping relationships be-

tween image pixels and descriptions [143, 144, 145]. Although existing methods

can produce mapping features based on the objects present in the image, it is not

enough to represent linguistic knowledge that is hidden behind images. Thus, an

image captioning method is not the best choice to apply to extend the learning of

high-level representations to predict cohesive levels.

5.3 Method

We propose an LDNN based on the concept that humans unconsciously associate

linguistic knowledge accumulated in the brain with visual images [135]. We aim

to construct a visual model for group cohesiveness understanding that can consider

related linguistic knowledge hidden behind images. As shown in the top part of

Fig. 5.2, an LDNN consists of a visual encoder and a language encoder for process-

ing raw images and image descriptions respectively, and applies two mechanisms:

domain adaptation and linguistic knowledge transition. As shown in the bottom

of Fig. 5.2, the multimodal domain adaptation mechanism is used to map visual

and language representations into a common vector space to influence the process

of linguistic knowledge transition; the linguistic knowledge transition mechanism is

designed to inject linguistic knowledge into the visual model.

LDNN is an end-to-end architecture in which the visual model and language

model are jointly trained corresponding to the cohesive levels. As shown in the

top part of Fig. 5.2, the LDNN takes two inputs (an image and its description) for

training, the visual model (visual LDNN) is built with an adaptation layer and a

knowledge layer following a visual encoder, and the language model is built with an
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Figure 5.2: Architecture for training LDNN. The visual model and the language
model are jointly trained to inject linguistic knowledge into the visual model. The
visual encoder is a pretrained DNN model for extracting visual representations. The
Language encoder is a BERT-based pretrained model for extracting language rep-
resentations. The bottom part of this figure shows the learning process of injecting
linguistic knowledge.

adaptation layer and a knowledge layer following an language encoder. To train the

visual LDNN that can obtain both visual and linguistic knowledge of the cohesive

levels simultaneously, we provide the learned linguistic knowledge as another target

of the visual model. Thereby, linguistic knowledge can be injected into the visual

LDNN.

As shown in Fig. 5.3, we only utilize a visual LDNN to predict the cohesive

levels of an image. Even though we do not provide language information hidden

behind the image, a visual LDNN can associate linguistic knowledge that has been

extracted from the language model through training.

5.3.1 Visual Encoder and Language Encoder

Visual encoder: The visual encoder extracts the feature map output by DNN

models pretrained on the ImageNet dataset. The input image I is converted to

a 2048-dimensional vector vimg. We apply seven DNN models with performance

variations as the visual encoders of the visual LDNN, which are AlexNet, VGG11,



CHAPTER 5. LDNN 65

Visual 
encoder

Knowledge
layer

LDNN visual model

Adaptation
layer

Cohesive
Level: 1 

Figure 5.3: LDNN visual model used for predicting the cohesive level of an image.

VGG16, ResNet18, ResNet50, DenseNet161 and SENet154 [42, 16, 17, 146]. In

section 4, we evaluate the performance of the visual LDNN and discuss how linguistic

knowledge a↵ects the performance of the visual LDNN by applying various visual

encoders.

vimg = VisualEncoder(I) (5.1)

Language encoder: The language encoder is composed of a BERT embedding

layer (“BertLayer”) and a self-attention layer (“SelfLayer”), which have the function

of transforming the image description into an embedding vector vlang [21]. In the

“BertLayer”, we use a BERT model pretrained on the Japanese Wikipedia corpus

to extract word embedding vector by giving the image description [72]. We input

the words {w1, ..., wn} of the image description to the “BertLayer”, and output an

embedding metric Vlang with the size of (n, d). Here, n and d denote the number of

words and the dimension size of the word vector respectively. In the “SelfLayer”, to

emphasize important words in the image description, we calculate attention energy

Attn ene with a size of (n, 1) by inputting Vlang to a feed-forward sub-layer composed

of a single neuron with a softmax function. Here, we apply the softmax function to

ensure all the attention energy of words sum up to 1. The output of the “SelfLayer”

is an d-dimensional embedding vector vlang that is the sum of the element-wise

product of Attn ene and Vlang.

Vlang = BertLayer({w1, ..., wn}) (5.2)

vlang = SelfLayer(Vlang) (5.3)
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5.3.2 Domain adaptation and linguistic knowledge transi-

tion

Domain adaptation: While distinct modal features can represent the same tar-

get, the domain disparities between these features pose challenges in their direct joint

processing. It makes sense to map multimodal features to a common domain space,

not only for facilitating the integration of multimodal features but also for learning

the correlations between multimodal features. To learn the correlations between

visual and language representations and facilitate the following linguistic knowledge

transition process, we build the domain adaptation mechanism to learn the mapping

of visual and linguistic representations by minimizing their vector distance at the

backpropagation process.

We apply two feed-forward sub-layers (“AdaptLayer”) to LDNN. These sub-

layers take the output of visual and language encoders as input and process the

visual adaptation vector vimg a and language adaptation vector vlang a. We calcu-

late the pairwise distance between two adaptation vectors and define it as the loss

function La. Here, the “LayerNorm” is a normalization sublayer followed by the

“AdaptLayer”. We minimize the La to process domain adaptation at the backprop-

agation process.

vimg a = LayerNorm(AdaptLayer(vimg)) (5.4)

vlang a = LayerNorm(AdaptLayer(vlang)) (5.5)

La(vimg a, vlang a) =

 
dX

i=1

|vi
img a

� v
i

lang a
|2
!1/2

(5.6)

Linguistic knowledge transition: A typical fusion model requires all single

modalities to train meaningful representations, in preparation for practical use.

LDNN is trained on images and their descriptions to achieve a visual LDNN into

which linguistic knowledge can be injected. Thus, image descriptions are not re-

quired to prepare for practical use. Inspired by the distillation methods [147] pro-

posed to transfer pretrained knowledge to a lightweight model, the linguistic knowl-

edge transition mechanism is designed to simultaneously obtain and inject linguistic

knowledge into a visual model. Following the “AdaptLayer”, we build the “knowl-

edgeLayer”, a feed-forward layer with a single unit to not only learn visual and

linguistic knowledge of cohesive levels but also to transfer linguistic knowledge to
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the visual LDNN. We perform the following steps below to achieve linguistic knowl-

edge transition:

1. Take the “knowledgeLayer” as two regression layers and learn the visual and

linguistic knowledge of cohesive levels. We jointly minimize both regression

loss Limg

k
and Llang

k
by using the mean squared error (MSE) loss function

defined as follow:

MSE(y, ŷ) =
1

n

 
nX

i=1

|yi � byi|2
!

(5.7)

where y and ŷ represent a batch size n of the prediction value and ground

truth label and the actual value.

vimg k = LayerNorm(knowledgeLayer(vimg a)) (5.8)

vlang k = LayerNorm(knowledgeLayer(vlang a)) (5.9)

Limg

k
= MSE(vimg k, T ) (5.10)

Llang

k
= MSE(vlang k, T ) (5.11)

Limg

k
and Llang

k
are computed by applying the outputs of the “LayerNorm”

layers, vimg k and vlang k to Eq. 5.7. Here, T denotes the actual cohesive level

in a range of [0, 3].

2. Regard the linguistic knowledge vlang k as the ground truth of the visual LDNN,

transferring linguistic knowledge to the visual LDNN by forward conducting

MSE loss between vlang k and vimg k, which is defined as Knowledge transition

loss Llang!img

k
.

Llang!img

k
= MSE(vlang k, vimg k) (5.12)

3. Adapt two hyperparameters of ↵ and � to the La and Llang!img

k
to control the

e↵ects of domain adaptation and linguistic knowledge transition mechanisms

on di↵erent visual encoders. Empirically, setting ↵ to 1 and � to 2 is reasonable

for most visual encoders. Finally, we train the LDNN by minimizing L which

is the integration of all losses.

L = Limg

k
+ Llang

k
+ ↵ ⇤ La + � ⇤ Llang!img

k
(5.13)
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5.4 Experiment

In this section, we first introduce the dataset, experiment settings, and metrics,

and then empirically compare visual LDNNs to fine-tuned DNNs and three state-of-

the-art methods [129, 130, 131], aiming to demonstrate the e↵ectiveness of LDNN.

Besides, we performed two ablation experiments to ascertain why LDNN is e↵ective

in injecting knowledge of the language model into the visual model. We also assessed

how e↵ective LDNN is for various visual encoders.

5.4.1 Dataset, settings and metric

Dataset: GAF 3.0 [136] is created by web crawling various keywords related to

social events such as football World Cup winners, birthday parties, and violence.

It contains a total of 16,443 images, 9,300 images for training, 4,244 images for

validation, and 2,899 images for testing, respectively (details in Tab. 5.1). We utilize

the labels for group cohesiveness as provided by [125] except testing labels. Since

the testing labels were not released, we re-annotated them with the same annotation

policy as the GAF 3.0 dataset. There are samples of the GAF 3.0 shown in Tab. 5.2.

The group’s perceived cohesiveness is in the range from 0 to 3, where 0 represents

very weak cohesion, 1 represents weak cohesion, 2 represents strong cohesion and 3

represents very strong cohesion, respectively.

Dataset Total 0: very weak 1: weak 2: strong 3: very strong

Train 9,300 1,141 1,561 4,601 1,997

Valid 4,244 351 1,226 1,394 1,273

Test 2,899 179 606 1,717 397

Table 5.1: The size of training (Train), validation (Valid), and testing (Test) set for
individual classes.

In addition, using professional annotators, we add image descriptions to the

training and validation datasets for training LDNN1. The image descriptions are

created by three annotators (one male and two females). To guarantee the quality

of the annotation result, none of the annotators was allowed to refer to group co-

hesiveness scores and each was required to describe the image from the viewpoint

of human interaction objectively. For example, the sample image at the bottom of

1
https://github.com/wangyanan326/Additional-EmotiW-dataset
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Tab. 5.2 can be annotated as “Three siblings face each other and snuggle up to each

other”.

Image Description Cohesive level

é’Æ. ⌦à�KÆ.$ÏR.S'⌅K
(Multiple police o�cers surround a man)

0: very weak

2⌧�!�ù⌅⇡+¥⌅ïŸRÁ�&|S'⌅K
(Girls are carrying shopping bags on wheelchairs)

1: weak

›�.?ï'$Ï�2⌧RÂ⌅&�#&⌅K
(Guy stands in the center of the group and hugs the girl)

2: strong

⇡9¶�¿R �î⌅ Jœ#&⌅K
(Three siblings face each other and snuggle up to each
other)

3: very strong

Table 5.2: Samples from GAF 3.0 validation set. The description is annotated in
the Japanese language and added to the training and validation dataset for training
LDNN. A high score indicates strong cohesion among people shown in the image.

Settings: We select various DNN-based models pretrained on the ImageNet dataset

as visual encoders. They are AlexNet, VGG11, VGG16, ResNet18, ResNet50,

ResNet152, and DenseNet161, and all these models take images of size 224 ⇥ 224

as input. The output of the visual encoder is a 2048-dimensional vector extracted

from the last pooling layer of the pretrained model. Regarding the language en-

coder, we apply Japanese and English language-based BERT models to extract

word-embedded features from image descriptions. Here, the English description is

translated using Google translation API from Japanese content. A single description

is converted to a words embedding vector of shape (N,D), N indicates the number

of words in a description and D indicates the dimension of the embedded vector.

The dimension size of Japanese-based embeddings is 768 and the English-based em-

beddings are 1024. For the training settings, we train LDNN models by applying

the Adam optimizer for 100 epochs with a batch size of 64. We also adjust the

learning rate so that each model has their best score.
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Metrics: We apply the Mean Squared Error (MSE) as the evaluation metric of

the group cohesiveness prediction.

5.4.2 Results

We built and compared Japanese and English-based language encoders to select the

better one to apply to the LDNN training. The MSE results of the validation set

in Tab. 5.3 show that the Japanese-based language encoder has a much lower MSE

and is superior to the English-based language encoder. The gap between the results

is believed to be generated by the automatic translation of the English descriptions.

Language encoder Dimension
MSE

Val Test

English-based 1,024 0.8417 -

Japanese-based 768 0.6899 -

Table 5.3: Comparison results of Japanese and English-based language encoder.

We trained several LDNNs constructed using a Japanese-based language encoder

and various visual encoders. We then present a comparison of the visual LDNNs

with the fine-tuned DNNs in Tab. 5.4. AlexNet and ResNet18/50/152-based vi-

sual LDNNs have lower MSE than DNNs for both the validation set and the test

set. VGG11/16 and DenseNet161-based visual LDNNs have comparable MSE with

DNNs for the validation set and lower MSE for the test set than fine-tuned DNNs. In

particular, the ResNet50-based visual LDNN has the lowest MSE in the test set and

is far superior to the fine-tuned DNN. From the test results, it is clear that LDNN

is an e↵ective method for training visual models that can improve the performance

of fine-tuned DNNs.

Visual Encoder
Parameters Hyper parameter Val(MSE) Test(MSE)

(million) ↵ � fine-tuned DNN visual LDNN fine-tuned DNN visual LDNN

AlexNet 58 2 2 0.8077 0.7432 0.5998 0.5167

VGG11 155 1 2 0.7336 0.7556 0.5378 0.5099

VGG16 122 1 2 0.7052 0.7067 0.4944 0.4862

ResNet18 11 1 2 0.6896 0.6774 0.4976 0.4893

ResNet50 24 1 2 0.7428 0.6892 0.5611 0.4677

ResNet152 58 1 2 0.7367 0.7032 0.5343 0.4678

DenseNet161 26 1 2 0.6889 0.6896 0.5170 0.4820

Table 5.4: Comparison results of fine-tuned DNNs and visual LDNNs on valida-
tion(Val) and test sets.
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Model
Features MSE

Training Inference Val Test

Multi-stream Hybrid Network [129] face, scene, skeleton, UV coordinates same as training 0.525 0.487

Multi-task learning with regularization methods [130] face, scene, body same as training 0.497 0.525

Attention Based GRU Architecture [131] face, scene, skeleton same as training 0.691 0.466

ResNet50-based visual LDNN (ours) scene, image description scene 0.689 0.468

Table 5.5: Results of comparing ResNet50-based visual LDNN and state-of-the-art
methods.

We also compared ResNet50-based visual LDNN with three state-of-the-art meth-

ods [129, 130, 131] under similar experimental conditions. All of the state-of-the-art

results are solely trained on the training set, and not boosted by the ensemble

method. As the test results in Tab. 5.5 show, the ResNet50-based visual LDNN has

an MSE of 0.468, which is almost the same as the lowest MSE of 0.466 [131]. The

ResNet50-based visual LDNN is trained using scene features and image descriptions

instead of extracting lots of visual features such as face, scene, and skeleton, how-

ever, it only takes scene features as input during inference time. Therefore, LDNN

is also a practical and e�cient method that requires relatively little preprocessing.

Here, even though we showed both the validation results and the test results in

Tab. 5.4, 5.5, the validation set was used for tuning the parameters of our model.

On the contrary, the test set is independent of the training process so the test results

are much more reliable for performance evaluation [148]. As the inconsistent valida-

tion results (lower validation MSE but higher test MSE compared to other methods)

and the resulting gap between the validation and test set (higher validation MSE

but lower test MSE) show, it is easy to confirm that the validation results are insuf-

ficient for performance evaluation. Furthermore, we consider those results may be

related to the size gap between the validation set (4,244) and the test set (2,899),

some overfitting to the validation set, and the di↵erence in the class distribution of

individual datasets (details in Tab. 5.1).

5.4.3 Analysis

To prove LDNN is an e↵ective method that can improve visual model performance

by injecting linguistic knowledge of the language model into the visual model, we

performed two ablation experiments to analyze the impact of the KnowledgeLayer

and the Language model. In addition, we also analyzed how e↵ective LDNN is for

various visual encoders.
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Ablative Study 1: We built a knowledgeLayer ablation network (KnowledgeAb-

lationNet) by clipping the knowledgeLayer of LDNN as shown in Fig. 5.4. It was

similar to image captioning methods aimed at learning the mapping between visual

and language representations. We compared this network to LDNN to verify the

e↵ect of the LDNN knowledgeLayer. As the results in Tab. 5.6 show, almost all the

results of visual LDNN with AdaptLayer and Knowledge Layer have much lower

MSE than the visual LDNN trained with the KnowledgeAblationNet. Even though

KnowledgeAblationNet could incorporate the general language representations in-

cluded in the description into the visual model, these general language represen-

tations did not contain any linguistic knowledge of cohesive levels. On the other

hand, the LDNN KnowledgeLayer was applied to distill the linguistic knowledge of

cohesive levels that can be transferred into the visual model, and thus the trained

visual LDNN could achieve state-of-the-art performance.

Figure 5.4: A knowledgeLayer ablation network for ablative Study 1.

Visual Encoder
visual LDNN (AL) visual LDNN (AL+KL)

Val Test Val Test

ResNet50 0.6884 0.5295 0.6892 0.4677

ResNet152 0.7279 0.5402 0.7032 0.4678

DenseNet161 0.7375 0.5623 0.6896 0.4820

Table 5.6: Comparison results of ablative study 1. “AL” and “KL” denote the
AdaptLayer and KnowledgeLayer, respectively.

Ablative Study 2: We further analyze the impact of the language model by

comparing an LDNN composed of two visual encoders (LDNN[V + V]) with a
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regular LDNN[V + L] using one visual encoder and one language encoder. As the

results in Tab. 5.7 show, all the visual models trained on LDNN [V + L] show much

lower MSE than those trained on LDNN [V + V]. These findings confirm that the

linguistic knowledge of cohesive levels trained by the language model could a↵ect

the performance of the visual model. As was made clear by ablative study 1, we

believe that the linguistic knowledge in descriptions was injected into the visual

model through domain adaptation and linguistic knowledge transition mechanisms.

In addition, we compared the AlexNet-based and ResNet50-based visual LDNNs

with a typical multimodal model (Fusion) [40] that combines visual and language

features in the final regression layer. The results of the validation set provided in

Tab. 5.7 show that visual LDNNs could achieve comparable to those obtained using

the fusion model, even though the visual LDNN does not use language features for

inference. We can accordingly a�rm that LDNN is an e↵ective method to inject

linguistic knowledge into visual models.

Visual Encoder
LDNN (V+L) LDNN (V+V) Fusion

Val Test Val Test Val

AlexNet 0.7432 0.5167 0.8016 0.6125 0.7481

VGG11 0.7556 0.5099 0.7747 0.5394 -

ResNet18 0.6774 0.4893 0.7747 0.5394 -

ResNet50 0.6892 0.4677 0.7112 0.5485 0.6835

Table 5.7: Comparison results of ablative study 2.

E↵ective size: Ablation studies have proved that LDNN is an e↵ective way to

inject linguistic knowledge of language models into visual models. On the other

hand, how much linguistic knowledge could be injected into the visual model also

needs to be clarified. We compared visual LDNNs that are trained with the same

language encoder and various visual encoders, and show the comparison results for

the test set in Fig. 5.5. We define the MSE gap between the visual LDNN and fine-

tuned DNN as e↵ective size. We noticed that the e↵ective size is di↵erent from the

visual encoders, and the visual LDNN trained with a high MSE visual encoder has a

large e↵ective size. This could be explained by the fact that those high MSE visual

encoders are not su�cient to obtain meaningful representations so it is easy to inject

the linguistic knowledge into the visual model. In contrast, we also consider that

the language model performance is another limitation on e↵ective size. Since the
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Japanese-based language encoder has an MSE (shown in Tab. 5.3 ) comparable to

that of the visual encoder (shown in Tab. 5.4), we believe that the current language

model is insu�cient to provide much more meaningful linguistic knowledge to a↵ect

the visual model training.

Figure 5.5: Comparison results of LDNN and DNN baselines on the testing set.

5.5 Conclusion

We proposed a linguistic knowledge injectable deep neural network (LDNN) that

can build a visual model for predicting group cohesiveness that could automati-

cally associate related linguistic knowledge hidden behind images. LDNN consisted

of a visual encoder and a language encoder and applied domain adaptation and

linguistic knowledge transition mechanisms to transform linguistic knowledge by

training visual LDNN and a language model together. We evaluated LDNN on the

GAF 3.0 dataset, and the results show that the visual model not only improves

the performance of the fine-tuned DNN model leading to an MSE very similar to

the state-of-the-art model but is also a practical and e�cient method that requires

relatively little preprocessing. Furthermore, ablation studies confirmed that LDNN

is an e↵ective method for injecting linguistic knowledge into visual models.



Chapter 6

Implicit Knowledge Injectable

Cross Attention Audiovisual

Model for Group Emotion

Recognition

In this chapter, we extend LDNN by additionally injecting audio and language

knowledge encoded by pretrained models into a multimodal model. Here, we present

a knowledge injection audiovisual network that facilitates knowledge distillation

across diverse modalities, leading to comprehensive multimodal knowledge trans-

formation.

6.1 Introduction

Group emotion recognition is a critical step towards future artificial intelligence

(AI) technologies that can understand complex human relationships and enable

high-level interaction with humans [149]. Unlike Inferring individual emotions in

videos by applying visual face region pixels and audio frequency domain features

(Melspectrogram, MFCCs, etc.) [59, 40, 150, 151], group emotions have been

inferred by applying multiple visual features such as faces, scenes, skeletons, and

objects [152, 153]. However, group emotion is a reflection of human interactions

that involve intentions, activities, and relationships within the group, and those

explicit visual features are insu�cient to represent complex human interactions.

According to the mechanism by which the conceptual knowledge accumulated

75
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in the brain is transformed into a visual cognition process [154, 155, 156, 157],

humans can unconsciously understand the context of a video beyond the audiovisual

information presented in the video. Therefore, we believe that various potential

information related to human interactions can be used to gain meaningful knowledge

to facilitate an understanding of group emotions. For example, in Fig. 6.1, the

emotion being expressed in the video can be correctly recognized as positive. Not

only can we see objects such as three men, one woman, and an L-shaped sofa, but

we can also understand the context that “two men and a woman sit on an L-shaped

sofa and talk to each other on a TV show”.

5s video clip

Group emotion
1. Negative
2. Neutral
3. Positive

PredictionExplicit features

Audiovisual 
model

Video: ROI
Audio: Melspectrogram

Implicit 
knowledge 
of emotionsAudio signal

Two men and a woman 
sit on an L-shaped sofa 
and talk to each other on 
a TV show.

Video 
situation 
description

Implicit knowledge injection process  

Utterance-level
acoustic knowledge

Linguistic knowledge

Figure 6.1: A conceptual figure demonstrating the process of injecting implicit
knowledge into an audiovisual model, and the emotion prediction by using only
explicit features.

In this chapter, we define the information that is presented in the video as explicit

information, and the features extracted from them as explicit features. We apply

two kinds of explicit features: 1) The ROI features represent the region of the objects

that are present in the video, and these features are extracted using a pretrained

model directly [142]; 2) Melspectrogram features are extracted by processing the

raw audio signals contained in the video [158]. In contrast, we define the linguistic

and acoustic emotional representations that do not exist in the audio-video data as
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implicit knowledge. Human language contains a rich source of knowledge that can be

used to describe human interactions from the perspectives of intentions, activities,

and relationships within the group. We convert the video situation descriptions

to word embeddings using the BERT pretraining model [72] and distill emotional

linguistic knowledge from them. In addition, i-vector is a kind of utterance-level

acoustic feature that can explain the variability of channel, speaker, language, and

emotion [159]. We construct and process i-vector features with linear discriminant

analysis (LDA) [160] from basic acoustic features (MFCCs, pitch, and energy) and

further distill emotional acoustic knowledge from them.

As implicit knowledge does not exist in the video and cannot be used to directly

infer group emotions, we propose an end-to-end architecture, called the implicit

knowledge injectable cross-attention audiovisual deep neural network (K-injection

audiovisual network) to train an audiovisual model that can not only obtain au-

diovisual representations of group emotions through an explicit feature-based cross

attention audiovisual subnetwork (audiovisual subnetwork) but also can absorb im-

plicit knowledge of emotions through two implicit knowledge-based injection sub-

networks (K-injection subnetwork). As a result, though the K-injection audiovisual

network is trained with explicit features and implicit knowledge, it is easy to apply

since it does not require any implicit knowledge during inference.

As shown in Fig. 6.1, the K-injection audiovisual network is built by integrating

the audiovisual subnetwork and two K-injection subnetworks. The audiovisual sub-

network is a multi-head cross-attention network, which takes explicit features as the

input and dynamically integrates both explicit features throughout the sequence.

On the other hand, the K-injection subnetwork distills implicit linguistic and acous-

tic knowledge corresponding to the emotion target from video situation descriptions

and basic acoustic features and aims to transform them into the audiovisual model.

We trained the K-injection audiovisual network on the training set and achieved an

overall accuracy of 66.19% for the validation outperforming the baseline accuracy

for the validation set of 50.05% [125]. Furthermore, we take the average of the

audiovisual models trained with the (linguistic, acoustic, and linguistic-acoustic)

K-injection subnetworks for the testing set, and the overall accuracy is 66.40% com-

pared to the baseline accuracy of 47.88%.

Our contribution to this chapter is summarized as follows: 1) We propose an

end-to-end architecture that can not only obtain audiovisual representations from

the video directly but also can absorb implicit knowledge of emotions hidden in
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the video; 2) We apply a multi-head cross-attention subnetwork as the audiovi-

sual subnetwork that can dynamically integrate multimodal features throughout

the sequence level; 3) We apply two knowledge-based injection subnetworks that

can transform the knowledge distilled from an unimodal model and transfer it into

another model; 4) We train an audiovisual model that is a simple model that only

requires explicit features during inference.

6.2 Related works

Most recent studies on emotion recognition have aimed to assign emotion labels to

one person in a video [59, 161, 40]. Although it is becoming recognized as com-

mon to build an audiovisual emotion model using visual face region pixels and

audio frequency domain features, how to e↵ectively fuse these audio-video features

for obtaining expressive multimodal representations is still a critical issue. These

works [58, 40] employ attention mechanisms for integrating word-level multimodal

representations. In particular, the work [59] proposes a multiple attention-based

network to dynamically select the key representations of each modality throughout

the sequence for multimodal fusion. In contrast, our model focuses on how to ad-

ditionally transfer multimodal knowledge encoded by pretrained unimodal encoders

into a multi-head cross-attention network to further enhance the performance.

Preparing various features from diverse modalities is crucial for obtaining expres-

sive representations. For achieving group-level cohesion prediction from the visual

scene, these works [152, 153, 129, 130, 131] have tried several visual features such as

faces, scenes, skeletons, and objects [142]. As group cohesion is the reflection of hu-

man interaction, explicit visual features alone are not su�cient for obtaining holistic

representations, and the background knowledge hidden in the image, especially the

implicit knowledge related to human interactions, can be expected to be a key fac-

tor. Instead of extracting linguistic knowledge by diverting image captioning tasks

that are not suitable for acquiring linguistic knowledge of group emotion [144, 145],

we propose two K-injection subnetworks to learn implicit linguistic knowledge and

utterance-level acoustic knowledge representing group emotion from the video de-

scription and utterance-level audio signals. This allows us to train an audiovisual

model that can incorporate this implicit knowledge.

Recent knowledge distillation approaches have been proposed for training lightweight

models by transferring knowledge from a large model into a smaller model [147],
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and the cross-modal transfer was designed for training a speech emotion recognition

model by distilling the knowledge of a pretrained facial emotion recognition net-

work [162]. These studies demonstrate that the knowledge extracted from pretrained

models can be transferred or injected into other models, regardless of whether the

model applies the same modality. Our proposed K-injection subnetworks are built

by distilling the implicit knowledge representing group emotions and transferring it

into a multimodal audiovisual model. Thereby, once the audiovisual model has been

trained, no implicit knowledge is required during inference.

6.3 Method

To learn an audiovisual model that can not only obtain meaningful representations

from explicit features (i.e., visual and audio features) but also obtain pretraind

implicit K-injection linguistic and acoustic knowledge representing group emotions,

our method contains an audiovisual subnetwork and two knowledge-injection subnet-

works (a linguistic K-injection subnetwork and an acoustic K-injection subnetwork).

We explain the detail of our proposed K-injection audiovisual network as shown in

Fig. 6.2.

6.3.1 Audiovisual subnetwork

Explicit features: We build a video feature extractor following [142, 163] in taking

the features of detected objects as video features feat
o

v
. A 5-second video is first

clipped into n frames, and each frame fv is further detected m objects {o1, ..., om}.
Each object oi is finally converted to the ROI pooling features with 2048 dimensions.

Here, we use a frame size of 40 and set the maximum number of objects at 18, the

video features of a video are shaped as (40, 18, 2048); In terms of the audio feature

extraction, we build an audio feature extractor that utilizes ↵mpeg command to

convert the 5-second video into the waveform audio data with a sampling rate of

44.1KHz, and then extract 128-dimensional melspectrogram features from every

single frame fa as the audio features featf
a
. Since the audio frame size is set to 0.02

seconds and the shift size is set to 0.01 seconds, we finally get a melspectrogram

feature sequence with a shape of (501, 128).
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Figure 6.2: K-injection audiovisual network: An end-to-end architecture for training
an audiovisual model in which the implicit knowledge representing the emotions
of a group is transferred from two K-injection subnetworks. The top part shows
the audiovisual subnetwork. “FF”, “Norm”, and “Sum” denote the feedforward
layer, normalization method, and attention-weighted sum calculator, respectively.
“Attention” indicates multi-head self attention and “Cross” indicates multi-head
cross attention. The bottom part shows the linguistic K-injection subnetwork and
acoustic K-injection subnetwork. “GRU” denotes the gated recurrent unit layer, and
“Self” indicates self-attention. The symbol of “�” presents a residual connection.

Architecture: The audiovisual subnetwork is composed of the object/video-

frame/audio-frame interaction encoders and an audio-video cross-interaction en-

coder (shown in Fig. 6.2). All the encoders are built on a multi-head attention

mechanism [21], which consists of two parts, the scaled dot-product attention and

multi-head attention. As Eq. 6.1 shows, the scaled dot-product attention is com-

puted by packing a batch of queries, keys, and values into matrices Q, K, and V ,

respectively. It takes these matrices as the inputs and outputs weighted values,

where the weights are computed by applying a softmax function. In Eq. 6.2, the

multi-head attention is computed to jointly capture multiple correlations between

the query and key.

Att(Q,K, V ) = softmax(QK
T )V (6.1)

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
o
,

where headi = Att(QW
Q

i
, KW

K

i
, V W

V

i
)

(6.2)

where dk and dv are the dimension size of keys and values matrices; The pa-

rameter matrices are W
Q

i
2 Rdmodel⇥dk , W

K

i
2 Rdmodel⇥dk , W

V

i
2 Rdmodel⇥dv and
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W
o

i
2 Rhdv⇥dmodel . In this study, we set dmodel = 128 and h = 2, and thus

dk = dv = dmodel/h = 64.

The object/video-frame/audio-frame interaction encoders are built by the multi-

head self-attention layer, and all of the keys, values, and queries are the same as

each other. The object interaction encoder is intended to dynamically highlight

objects based on the interaction of all objects within each frame. All the Q,K, V is

feat
o

v
, and the output of the object interaction encoder is computed as a weighted

sum of feato
v
throughout all objects, called feat

f

v
with a shape of (40, 2048). The

video/audio frame interaction encoders are also built by the multi-head self-attention

layer and assign the frame sequence feature feat
f

v
, feat

f

a
to the attention layer,

respectively. The video/audio frame attentional features featAtt
f

v
, featAtt

f

a
are

computed by assigning attention weights to each frame of featf
v
and feat

f

a
.

Di↵erent from the multi-head self-attention, we build an audio-video cross-interaction

encoder, a bidirectional multi-head cross-attention architecture, to dynamically ob-

tain audiovisual representations corresponding to the target emotion. Following

the equations Eq. 6.3 and 6.4, we compute crossAttv!a by inputting featAtt
f

v
as

Q, featAttf
a
as K and V , and compute crossAtta!v by inputting featAtt

f

a
as Q,

featAtt
f

v
as K and V , where both crossAtt are followed by the normalization layer

to avoid large domain distances. Finally, the audiovisual representations featav are

computed by concatenating the output of the feedforward layers which is applied

to the weighted sum of crossAttv!a and crossAtta!v, named as crossAttFeat
f

a
and

crossAttFeat
f

v
, respectively.

crossAttv!a = MultiHead(featAttf
v
, featAtt

f

a
, featAtt

f

a
) (6.3)

crossAtta!v = MultiHead(featAttf
a
, featAtt

f

v
, featAtt

f

v
) (6.4)

featav = Concat(crossAttFeat
f

a
, crossAttFeat

f

v
) (6.5)

6.3.2 K-injection subnetwork

Implicit knowledge: We defined the linguistic and acoustic implicit knowledge

that does not exist in the video but is related to the video context in § 6.1. We add

video situation descriptions1 from the viewpoint of human interactions, and process

these descriptions to obtain word embedding features using the BERT pretraining

1
https://github.com/wangyanan326/Additional-EmotiW-dataset
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model [72]. And then we apply these embedding features to the linguistic K-injection

subnetwork to distill emotional linguistic knowledge. Since the video descriptions

are created in Japanese, we use the BERT model provided by Kyoto University

which is pretrained on the Japanese Wikipedia corpus. As a result, we can extract

BERT embedding features with shape (L,D) from each piece of video data, where L

denotes the number of words in the description, and D denotes the dimension of the

word embedding vector. Here, we upsample the words to a maximum description

length of 16 words, each word is a 768-dimensional vector. We construct and process

i-vector features with LDA using video level group a↵ect (VGAF) [127] to further

improve the discrimination ability across emotion classes. The i-vector features yield

a 2-dimensional feature vector and adapt to the acoustic K-injection subnetwork to

distill emotional acoustic knowledge.

Architecture: The K-injection subnetwork is built by a knowledge distillation

encoder with a knowledge injection loss function (shown at the bottom of Fig. 6.2).

The linguistic knowledge distillation encoder takes BERT embedding features as

input and follows “GRU”, “Self”, “Sum”, and “FF” layers to distill linguistic emo-

tional knowledge from the emotion target. On the other hand, the acoustic knowl-

edge distillation encoder applies i-vector acoustic features to a 3-layer neural net-

work to distill acoustic emotional knowledge. The outputs of both the linguistic and

acoustic knowledge distillation encoders are further calculated by a feedforward layer

with three output units and finally passed to the softmax function. We call the last

layer of the K-injection subnetwork the knowledge injection layer, where the distilled

knowledge can be transferred to the audiovisual subnetwork through a knowledge

injection loss function Lk. In this chapter, we adopt the negative log-likelihood loss

as the knowledge injection loss, and the linguistic and acoustic knowledge injection

loss is defined as:

`(x, y) = � log(softmax(xy)) (6.6)

Lk = `(xe
, y

l) + `(xe
, y

a) (6.7)

where the x
e is the output of the last layer of the audiovisual subnetwork, the

y
l and y

a denote the prediction results of the linguistic and acoustic K-injection

subnetworks, respectively. Both y
l and y

a are in the range [0, C� 1], where C is the

number of classes (positive, neutral, negative).
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6.3.3 Training and Inference

As described above, the K-injection audiovisual network is constructed by the au-

diovisual subnetwork and two K-injection subnetworks, and thus it is a multi-task

learning network. We minimize the following loss L at the backpropagation process

to train these subnetworks jointly. Here, we use the negative log-likelihood loss as

the emotion classification loss as well as the knowledge injection loss.

L = `(xe
, y) + `(xl

, y) + `(xa
, y) + Lk (6.8)

where x
l and x

a denote the output of the linguistic and acoustic K-injection sub-

network, respectively, and y is the index of the target emotion class in the range

[0, 3].

We train an audiovisual model that can not only obtain meaningful represen-

tations from explicit features but also acquire emotional knowledge from implicit

knowledge. In the inference, we only utilize the audiovisual model with the input of

explicit information to predict the group’s emotions.

6.4 Experiment

In this section, we introduce the task, dataset, baseline, and experimental settings,

and then evaluate the performance of our audiovisual K-injection subnetwork on the

VGAF validation dataset [127]. In addition, we explain the ensemble strategies for

obtaining robust results on the testing set.

6.4.1 Task, dataset

The Audio-video Group Emotion Recognition task is to assign a single emotion

label from three classes (positive, neutral, and negative) to each video [127]. The

video data are collected from YouTube and have been clipped into 5-second lengths,

referred to as the Video level Group AFfect (VGAF) dataset [127]. In the VGAF

dataset, each video contains a group of people who are singing, talking, protesting,

fighting, or engaged in other activities (A sample video frame is shown in Tab .6.2).

The VGAF dataset shown in Tab. 6.1 consists of Training (2,661), Validation (766),

and Testing sets (756).
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Dataset Total Positive Neutral Negative

Train 2,661 802 923 936

Valid 766 302 280 184

Test 756 - - -

Table 6.1: The size of training (Train), validation (Valid), and testing (Test) sets.

Video frame

Video caption: ⇤⌅ã.⌧Ï�⇥3.ã.⌧Ï+ú�KH⌃+⌫&⌅K
(A woman in green is amusing a woman in blue)

Label: Positive

Table 6.2: A video frame randomly selected from the VGAF validation set, the
bounding boxes on the image indicate the region of objects. We added the video
situation description in the Japanese language and used it as implicit information
for training.

6.4.2 Baseline

The baseline model is an inception-based network that was trained on an image-

based group-level emotion dataset (GAF) [125]. Video frame features are extracted

using the pretrained inception model, and audio features are extracted based on the

ComParE challenge feature set [164]. The baseline model was built as an LSTM and

fully connected based network taking the video frame features and audio features

as inputs, respectively. The classification accuracy of the baseline for the validation

set is 50.05%.
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6.4.3 Experimental settings

To optimally train our method, as shown in Fig. 6.2, we adopt a normalization

layer for the object/video-frame/audio-frame interaction encoders and the audio-

video cross-interaction encoder to avoid large domain distances, and also process

residual connections in these encoders to integrate more information. For the multi-

head attention mechanism, we experimentally set the number of heads as 2 and the

dimension of input as 128. A dropout rate of 0.5 is applied to all the encoders and the

K-injection subnetworks. Since our method is a multiple learning network, we set an

optimal learning rate (LR) for the audiovisual subnetwork and linguistic/acoustic

K-injection subnetwork, respectively. The LR for the audiovisual subnetwork is

0.00001, the linguistic K-injection subnetwork is 0.01, and the acoustic K-injection

subnetwork is 0.001. In addition, we train our method for 200 epochs on the training

set and also train each fold for 150 epochs based on the cross-validation training

(details in §6.4.4).

6.4.4 Ensemble strategy

We adopt 7-fold, 8-fold, and 9-fold cross-validation methods to generate various

prediction results for the testing set [165]. Here, the stratified cross-validation used

to keep the class distribution is the same in each fold. The average of the k-fold

prediction results for the testing set is computed for subsequent ensemble processing.

Since we train 3 kinds of audiovisual models, i.e., the linguistic K-injection model,

acoustic K-injection model, and linguistic-acoustic K-injection model, the average

of these models for the testing set is taken as the first submission. Furthermore, the

second submission is the 7-fold cross-validation model, the third submission is the

8-fold cross-validation model and the fourth submission is the 9-fold cross-validation

model. We finally take the average of the first/second/third/fourth submissions as

the fifth submission.

6.4.5 Results on the validation set

Unimodal models: We trained various unimodal models with inputs of explicit

and implicit modal features, and show the accuracy for the validation set in Tab. 6.3.

The visual modal models took ROI features (bounding boxes shown in Tab. 6.2),

Resnet152 features [17] and DenseNet161 features [146] as inputs, and were trained
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based on the same Bi-GRU attention architecture. It is particularly worthy that

the ROI features have a higher score than the others. The reason for this outcome

can be attributed to the fact that the ROI features are pretrained bottom-up at-

tention features which contain far more reasonable features than pretrained CNN

features[142]. From the results of audio modal models, it is obvious that the im-

plicit acoustic features (i-vector) have much higher accuracy than the explicit audio

features (Melspectrogram). In addition, the results based on the video situation de-

scription (BERT embedding) demonstrate that implicit linguistic information can

lead to much higher accuracy compared to video-audio information. That is why we

adopt this implicit information to distill emotional knowledge. We also annotated

ground truth for the validation set and compared it with the actual labels, As shown

in Tab. 6.3, the human score overwhelmed all unimodal models. It is a challenging

task and no unimodal models can exceed human intelligence.

Modality Model Feature Val(Acc)

Dual Bi-GRU attention ROI 0.6084

Vision Bi-GRU attention Resnet152 0.5614

Bi-GRU attention DenseNet161 0.6070

Audio Bi-GRU attention Melspectrogram 0.5183

3-layer neural network i-vector 0.5561

Language Self-Attention BERT embedding 0.6501

Table 6.3: Comparison results of unimodal models on the validation set.

Modality Model
Feature Validation (Acc)

explicit implicit BERT embedding i-vector audiovisual

human score - - - - - 0.7802

vision, audio
LSTM-based network

(Baseline)

Inception visual feature,

ComParE audio feature
- - - 0.5005

vision, audio cross-multi head attention ROI, Mel spectrogram - - - 0.6279

vision, audio K-injection network ROI, Mel spectrogram i-vector - 0.5509 0.6358

vision, audio, lang K-injection network ROI, Mel spectrogram BERT embedding 0.5640 - 0.6527

vision, audio, lang K-injection network ROI, Mel spectrogram
i-vector,

BERT embedding
0.5470 0.5525 0.6619

Table 6.4: Comparison results with a baseline on the validation set.

Multimodal models: We trained our model by applying the above unimodal

features (explicit and implicit features), and show the results in Tab. 6.4 for the accu-

racy of audiovisual models where the inputs were solely explicit features. Compared
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to the cross-multi head attention model (the top part of the Fig. 6.2) trained with

explicit features (ROI and Mel spectrogram), all the K-injection subnetwork-based

audiovisual model have much higher accuracy for the validation set. In particular,

the K-injection subnetwork trained with both implicit features (i-vector and BERT

embedding) achieved the highest accuracy of 66.19% compared to other multimodal

models, and this is 16.14% higher than the baseline model. In addition, we com-

pare the training progress of the cross-multihead attention network (Fig. 6.3) and

K-injection subnetworks (Fig. 6.4). From the training loss progress, the K-injection

subnetwork-based audiovisual model is hard to train in the initial epochs. This is

because our method is a multiple learning network and the learning speed of each

subnetwork is di�cult to control. Once the training of all subnetworks has con-

verged, the loss value of the K-injection subnetwork becomes lower than that of

the cross-multihead attention network. The K-injection subnetwork with both im-

plicit features has the lowest loss value, and its accuracy is higher than unimodal

models. Therefore, we believe that our proposed K-injection subnetwork is e↵ective

in achieving an audiovisual model that is superior to all unimodal and multimodal

models by integrating implicit knowledge during inference.

(a) Loss: i-vector (b) Loss: BERT embedding

Figure 6.3: Training progress of the cross-multi head attention based audiovisual
model

6.4.6 Ensemble results on the testing set

Following the ensemble strategies (section 6.4.4), we obtained the accuracy results

of all submissions. As shown in Tab. 6.5, submission 1 achieved the highest score

of 66.40%, which is the average of the prediction results of the three K-injection
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(a) Loss: i-vector (b) Loss: BERT embedding

(c) Loss: i-vector and BERT embedding (d) Acc: i-vector

(e) Acc: BERT embedding (f) Acc: i-vector and BERT embedding

Figure 6.4: Training progress of the K-injection subnetwork-based audiovisual
model.

subnetwork-based audiovisual models. On the other hand, the other submissions

using the cross-validation method achieved much higher classwise accuracy on the

neutral and negative classes, but much lower positive class accuracy than submission

1. As a consequence, the overall accuracy of the cross-validation method did not
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achieve the expected results. We noticed that some of the video data clipped from

the same video existed in di↵erent folds so the cross-validation methods were not able

to learn more discriminative emotional representations. We should have separated

the validation set under the premise of no video clips coming from the same video

data to further improve the performance.

Submission
Classwise (Test: acc) Overall

Positive Neutral Negative (Test: acc)

1 0.5576 0.7864 0.6000 0.6640

2 0.4470 0.7994 0.6000 0.6376

3 0.4793 0.7735 0.6174 0.6415

4 0.4148 0.8188 0.6000 0.6362

5 0.4700 0.8058 0.6087 0.6495

Table 6.5: Submission accuracy for the testing set.

6.5 Conclusion

We proposed a K-injection audiovisual network to train an audiovisual model that

can not only obtain audiovisual representations of group emotions through the audio-

visual subnetwork but is also able to absorb implicit knowledge of emotions through

two K-injection subnetworks. The K-injection audiovisual network was trained by

applying explicit features (ROI and Melspectrogram) and implicit features (BERT

embedding and i-vectors) as the input. It is an e�cient method that only requires

explicit features during inference.



Chapter 7

VideoAdviser: Video Knowledge

Distillation for Multimodal

Transfer Learning

In chapter 5 and chapter 6, two knowledge injection approaches were discussed.

These approaches involve distilling pretrained unimodal knowledge into other modal

models to create e�cient multimodal models. However, the success of these ap-

proaches is constrained by the quality of the pretrained knowledge and the e↵ective-

ness of the chosen multimodal knowledge distillation strategy.

In this chapter, to address the above issues to achieve high e�ciency-performance

multimodal transfer learning, we propose VideoAdviser, a video knowledge distil-

lation method to transfer multimodal knowledge of video-enhanced prompts from

a multimodal fundamental model (teacher) to a specific modal fundamental model

(student). With an intuition that the best learning performance comes with profes-

sional advisers and smart students, we use a CLIP-based teacher model to provide

expressive multimodal knowledge supervision signals to a RoBERTa-based student

model via optimizing a step-distillation objective loss—first step: the teacher dis-

tills multimodal knowledge of video-enhanced prompts from classification logits to a

regression logit—second step: the multimodal knowledge is distilled from the regres-

sion logit of the teacher to the student. We evaluate our method in two challenging

multimodal tasks: video-level sentiment analysis (MOSI and MOSEI datasets) and

audio-visual retrieval (VEGAS dataset). The student (requiring only the text modal-

ity as input) achieves an MAE score improvement of up to 12.3% for MOSI and

MOSEI. Our method further enhances the state-of-the-art method by 3.4% mAP

90
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score for VEGAS without additional computations for inference.

7.1 Introduction

Transfer learning is a promising methodology that focuses on transferring pretrained

representation domains to nearby target domains [166]. For instance, finetuning a

pretrained language model on a small annotated dataset enables high-performance

text sentiment analysis [167]. Recent fundamental models on diverse modalities such

as language models (e.g., RoBERTa [5], GPT-3 [22]), visual models (e.g., ViT [4]),

and multimodal models (e.g., CLIP [29], MEET [168]) have millions of parameters

and can provide robust modal representations. With such advancement, multimodal

transfer learning aims to transform pretrained representations of diverse modalities

into a common domain space for e↵ective multimodal fusion [169, 162]. It has been

broadly applied to multimodal tasks such as video-level sentiment analysis [63, 170,

171], and audio/text-video retrieval tasks [172, 173, 174, 175].

Existing works on multimodal transfer learning unify adversarial learning to reg-

ularize the embedding distributions between di↵erent modalities, leading to e↵ective

multimodal fusion [176, 177, 178, 173, 1]. However, conventional systems are typ-

ically built on the assumption that all modalities exist, and the lack of modalities

always leads to poor inference performance. For instance, vision-language models

typically fail to achieve expected performance when given only text data as input.

Furthermore, extracting pretrained embeddings for all modalities is computationally

ine�cient for inference. Therefore, improving robust multimodal transfer learning

to achieve high e�ciency-performance inference is crucial for practical applications,

which motivates this work.

Knowledge distillation (KD) is first proposed for achieving an e�cient student

model by transforming embedded knowledge in the predicted logits of the teacher

model to a smaller student model [147]. Recent works have expanded it to mul-

timodal transfer learning by distilling mutual information from one modality to

another [179, 180, 181, 182, 183]. However, these works always need to sacrifice

the performance of the teacher model, requiring the teacher model and the student

model distributed in neighboring domains (e.g., vision!vison, text!text).

In this paper, with an intuition that the best learning performance comes with

professional advisers and smart students, to achieve high e�ciency-performance mul-

timodal knowledge distillation, we propose VideoAdviser shown in Figure 7.1, a



CHAPTER 7. VIDEOADVISER 92

Figure 7.1: A conceptual diagram illustrates the di↵erence between the conventional
system and our system: our system focuses on transferring multimodal knowledge
from a multimodal fundamental model (e.g., CLIP) to a language fundamental
model (e.g., RoBERTa-Large), and requires text only to achieve high e�ciency-
performance inference. On the other hand, the conventional system focuses on
multimodal fusion and requires complex modules (diverse modal encoders and a
multimodal fusion module) for inference.

video knowledge distillation method to transfer multimodal knowledge from a strong

multimodal fundamental model (teacher) to a powerful specific modal fundamen-

tal model (student) via optimizing a step-distillation objective loss. As CLIP is

a multimodal fundamental model pretrained with cross-modal contrastive learning

on tremendous image-text pairs [29], we employ it as the teacher model to ob-

tain multimodal knowledge of video-enhanced prompts by incorporating the video

and text prompt representations. The teacher model utilizes CLIP’s visual and

text encoders to obtain video and text prompt embeddings without freezing the

pretrained weights to preserve multimodal representation space learned by CLIP.

By adapting transformer-based modules on these embeddings and extracted frame-

level facial expression features, the teacher model acquires expressive multimodal
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knowledge of video-enhanced prompts by performing video and text prompt rep-

resentations learning. To su�ciently absorb distilled multimodal knowledge from

the teacher model, we employ a large-scale language model RoBERTa [5] as the

student model. Since RoBERTa is a transformer-based architecture composed of

huge parameters, we finetune its full parameters to leverage RoBERTa’s powerful

architecture to achieve high-performance student models for inference. In addition,

we propose a step-distillation objective loss to distill coarse-fine grained multimodal

knowledge to further improve the multimodal knowledge distillation. Motivated by

multiscale representation learning enabling the fusion of enriched coarse-fine grained

representations [184, 185], we consider that multitask with di↵erent target granular-

ities allows the model to acquire representative knowledge at diverse granularities.

For instance, classification encourages the model to separate the data point into

multiple categorical classes representing an interval of consecutive real values to ac-

quire knowledge at a coarse granularity. In contrast, regression enables the model

to distinguish the data point into continuous real values instead of using classes to

learn knowledge at a fine granularity. To this end, in the first step, the teacher

model distills multimodal knowledge of video-enhanced prompts from classification

logits to a regression logit to unify knowledge at both coarse and fine granularity;

In the second step, the unified multimodal knowledge is further distilled from the

teacher model to the student model.

We evaluate VideoAdviser in two challenging multimodal tasks: video-level sen-

timent analysis (MOSI and MOSEI datasets) and audio-visual retrieval (VEGAS

dataset). The RoBERTa-based student model requiring only text data as input out-

performs the state-of-the-art multimodal model’s MAE score by 12.3% for MOSI

and 2.4% for MOSEI. Our method also enhances the state-of-the-art audio-visual

cross-modal model by 3.4% mAP score for VEGAS without additional computa-

tions for inference. Ablation studies further demonstrate that our method is able

to improve the state-of-the-art method’s MAE score by over 3.0% with almost half

the parameters. These results suggest the strengths of our method for achieving

high e�ciency-performance multimodal transfer learning.



CHAPTER 7. VIDEOADVISER 94

7.2 Related work

Multimodal fundamental model

CLIP [29] is a multimodal fundamental model that learns transferable visual models

from natural language supervision on a dataset of 400 million (image, text) pairs. It

jointly trains an image encoder and a text encoder using contrasting learning objec-

tives to obtain a joint multimodal representation space. Inspired by its remarkable

zero-shot generation ability for downstream image tasks, the work [186] proposes

XCLIP to expand pretrained CLIP on general video recognition by finetuning it on

video data using a video-specific prompting module that enhances the video rep-

resentation to the text representation. The work [187] utilizes a pretrained CLIP

for open-vocabulary object detection by distilling visual knowledge from cropped

image regions. In this work, we adapt a pretrained CLIP on distilling multimodal

knowledge of video-enhanced prompts from the teacher model to the student model

via a step-distillation objective loss.

Knowledge distillation based transfer Learning

In addition to achieving a lightweight student model by minimizing the KL di-

vergence between the probabilistic outputs of a teacher and student model [147],

recent works on knowledge distillation focus on transferring representational knowl-

edge from a teacher model to a student model [188, 187, 189]. For instance, these

works [190, 191] distill linguistic knowledge from a text encoder to a visual encoder

by learning the mapping between modal representations. The work [8] utilizes mul-

tiple text encoders to perform cross-modal knowledge distillation for stronger text-

video retrieval. The work [192] distills expressive text representations from a gener-

ation model to the text encoder of CLIP by minimizing text-text feature distance.

However, these works mostly focus on knowledge distillation in the common modal

domain or show limited performance in the cross-modal domain. In contrast, to

achieve expressive knowledge distillation for multimodal transfer learning tasks, we

propose a RoBERTa-based student model to improve multimodal knowledge distil-

lation by leveraging its powerful transformer architecture.
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Video-level sentiment analysis task

Recent works [167, 170, 63] on video-level sentiment analysis tasks focus on im-

proving modality fusion. The work [177] proposes VAE-Based adversarial learning

method to map multimodal representations to a joint domain space for improv-

ing the modality fusion process. The work [171] achieves SOTA performance on

MOSI [2] and MOSEI [3] dataset by introducing a pretrained modality fusion mod-

ule that fuses multimodal representation from multi-level textual information by

injecting acoustic and visual signals into a text encoder. However, all these works

require preprocessed multimodal embeddings as the input which is ine�cient for

inference. In contrast, we employ a knowledge distillation approach that requires

only one specific modality leading to e�cient inference.

Audio-visual retrieval task

Recent works on audio-visual retrieval tasks exploit supervised representation learn-

ing methods to generate new features across modalities in a common space [174, 193,

194, 195, 173, 172, 175, 11], such that the audio-visual features can be measured

directly. Inspired by the C-CCA [193] that aims at finding linear transformations

for each modality, C-DCCA [194] tries to learn non-linear features in the common

space by using deep learning methods. Deep learning methods by using rank loss

to optimize the predicted distances, such as TNN-C-CCA [172], and CCTL [175]

models, which apply triplet losses as the objective functions to achieve better re-

sults than other CCA-variant methods. The EICS model [11] learns two di↵erent

common spaces to capture modality-common and modality-specific features, which

achieves the SOTA results so far. In this paper, we enable our method to enhance

the extracted audio and visual representations of the SOTA model by distilling

multimodal knowledge from a CLIP-based teacher model.

7.3 Problem setting

This work focuses on video-level sentiment analysis and audio-visual retrieval tasks,

respectively. For the video-level sentiment analysis task, each data point consists of

a video M , the cropped sequential face images I, the divided speech text Tspeech,

and the class text Tclass, our goal is to predict the sentiment intensity Zpred 2 [�3, 3]

by giving only speech text Tspeech for inference. For the audio-visual retrieval task,
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assume that � = {�i}Ni=1 is a video collection, �i = {ai, vi}, where N indicates the

data size, ai 2 RD1 and vi 2 RD2 are audio and visual features from di↵erent feature

spaces. Our target aims at feeding them into a common space by mapping functions

f(x) and g(x) to generate new features f(ai) and g(vi). As a result, each query ai

for example will obtain a rank list from another modality based on query-vj(i 6= j)

similarity.

7.4 Methodology

In this section, we explain our method VideoAdviser in detail. As shown in Fig.

7.2, our method consists of a CLIP-based model as the teacher (§ 7.4.1) and a

RoBERTa-based model as the student (§ 7.4.2). The teacher and student models

are jointly trained to achieve knowledge distillation across modalities. The student

model enables sentiment intensity prediction by giving only a speech text for in-

ference (§ 7.4.3). We use F(·), V(·), P(·) and T (·) to denote the facial expression

encoder, visual encoder, prompt encoder, and text encoder.

7.4.1 The CLIP-based teacher model

Facial expression embedding To enhance the visual representations of the

teacher model for sentiment intensity prediction, we first use OpenFace [77] to crop

face images {Ii}Ti=1 2 RP
2⇥3 with each of size P ⇥ P pixels from T sampled video

frames, then, we extract frame-level facial expression embedding v(f) 2 RT⇥D with a

facial expression encoder F(·) [78] that is pretrained on the VGG-Face dataset [79].

Here, v(f) is an 8-dimensional sequential vector of length 64 [T = 64, D = 8]. More

details of the pretrained model on Albanie’s website 1.

v(f) = F({Ii}Ti=1) (7.1)

Visual embedding To fully transfer the powerful generality of pretrained CLIP [29]

from image to video, we freeze the parameters of pretrained CLIP visual encoder V(·)
to obtain frame-level visual embedding v(v) 2 RT⇥D, where T denotes the number of

sampled video frames and D is the dimension of visual embedding. Following [186],

given a video clip M 2 RT⇥H⇥W⇥3 of T sampled video frames with H⇥W pixels, we

use ViT-L/14 [4] to first divide t-th frame into N patches {xt,i}Ni=1 2 RP
2⇥3, where

t 2 T and N = HW/P
2. Then, the patches {xt,i}Ni=1 is mapped to v(v) = {v(v)t }T

t=1
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Figure 7.2: Architecture of VideoAdviser using a CLIP-based model (the teacher)
to distill multimodal knowledge of video-enhanced prompts to a RoBERTa-based
model (the student): the teacher model utilizes pretrained CLIP’s text and visual
encoders, and a facial expression encoder to obtain the sentiment class text embed-
ding, the frame-level embedding, and the facial expression embedding. Then, the
teacher model employs CCT, MIT, MLP, and a video-specific prompting module,
and minimizes a binary sentiment classification loss and a sentiment regression loss.
Meanwhile, the student model is finetuned on speech text by minimizing a sentiment
regression loss and a step-distillation loss (the region in purple). During inference,
the speech text is used to enable sentiment intensity prediction. Here, CCT, MIT,
and MLP stand for the cross-frame communication transformer, multi-frame inte-
gration transformer, and multi-layer perceptron, respectively.

with a linear transformation fm : RP
2⇥3 ! R3P 2⇥D.

v(v) = V(fm({xt}Tt=1)) (7.2)

Text prompt embedding We employ the text encoder P(·) of pretrained CLIP

to obtain text prompt embedding v(p) 2 RC⇥D of C sentiment classes by giving the

sentiment class label Tclass 2 {negative,positive}, where “positive” class includes 0.

The text prompt such as “A video with the {Tclass} face” is generated with a text

prompt generator fg and encoded as

v(p) = P(fg(Tclass)) (7.3)
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We employ the cross-frame communication transformer (CCT), multi-frame in-

tegration transformer (MIT), and video-specific prompting modules to obtain ex-

pressive multimodal sentiment knowledge. The CCT is a multi-layer transformer

with cross-frame attention introduced in [186] to enable cross-frame information

exchange. It is used to obtain cross-frame visual representations by giving a mod-

ified visual embedding v̄(v) = {v̄(v)
t }T

t=1, where v̄(v)
t = [xclass, v

(v)
t ] + epos. xclass is

a learnable frame representation and epos is a position embedding of patches in a

frame. The MIT is a normal transformer layer constructed by standard multi-head

self-attention and feed-forward networks. Given frame-level embeddings v(f) and

v̄(v), we finally obtain the video representation V as follows:

V
(f) = AvgPool(MIT(v(f))) (7.4)

V
(v) = AvgPool(MIT(CCT(v̄(v)))) (7.5)

V = fv([V (f)||V (v)]) (7.6)

where fv : R2D ! RD is a two-layer MLP. AvgPool denotes an average pooling layer.

“||” denotes a concatenation operator used to process facial expression-conditioned

video representation. We then transform the video representation V to the video

logit (see Fig. 7.2) with a two-layer MLP.

Inspired by [186], the teacher model employs a video-specific prompting module

to enhance the prompt embedding with cross-frame visual representations. The

video-specific prompting module applies a normal multi-head attention [21] to obtain

the video-enhanced prompt representation v̄(p) 2 RC⇥D (see Fig. 7.2) as

v̄(p) = v(p) +Multi Head Attention(CCT(v̄(v))) (7.7)

Then, we compute dot product between video representation V and video-specific

prompt representation v̄(p) = {v̄(p)
i
}C
i=1 to output the similarity score p = {pi}Ci=1

with a softmax layer as

pi = softmax(v̄(p)
i

· V ) =
exp(v̄(p)

i
· V )

P
i2C exp(v̄(p)

i
· V )

(7.8)

where C indicates the number of sentiment classes. We further transform p into the

video-enhanced prompt logit (see Fig. 7.2) with a two-layer MLP.
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7.4.2 The RoBERTa-based student model

To leverage the powerful transformer-based architecture of fundamental language

models, we structure a RoBERTa-based student model [5] that consists of a text

encoder T (·) and a two-layer MLP. Given the speech text Tspeech, the student model

obtains text representation V
(t) with T (·), and output sentiment intensity Zpred with

the MLP into the text logit (see Fig. 7.2) as

Zpred = logit(V (t)), V (t) = T (Tspeech) (7.9)

Where V
(t) 2 RD, and logit(·) : RD ! R1 indicates the two-layer MLP.

7.4.3 Training objectives

We simultaneously optimize the teacher and student models by applying mean

squared error (MSE) loss to obtain video and text sentiment knowledge. Both

teacher and student models minimize the L2 distance as follows:

L(r)
v

= MSE
�
logit(V ), l(r)

�
, L(r)

t = MSE
�
Zpred, l

(r)
�

(7.10)

where L(r)
v indicates MSE between the teacher model’s video logit and sentiment

label l(r), and L(r)
t indicates MSE between the student model’s text logit (Zpred) and

l
(r). Here, logit(V ) is a two-layer MLP for transforming video representation V into

the video logit.

To learn the video-enhanced prompt representation to fuse multimodal knowl-

edge of video and class text, we use the binary sentiment classification label l(c) (see

Fig. 7.3) synthesized from the sentiment label to optimize the teacher model with

a cross-entropy loss L(c)
v as

L(c)
v = �

CX

i=1

l
(c)
i

log(pi), (7.11)

We optimize a step-distillation objective loss to achieve multimodal knowledge

distillation from the teacher model to the student model. The step-distillation objec-

tive loss consists of a prompt-video distance minimization Lp!v and a video-

text distance minimization Lv!t, where Lp!v is optimized to align coarse-grained



CHAPTER 7. VIDEOADVISER 100

classification knowledge in the video-enhanced prompt logit and fine-grained regres-

sion knowledge in the video logit, Lv!t is optimized to align knowledge in the video

logit of the teacher model and the text logit of the student model. We apply MSE

loss to perform the step-distillation as follows:

Lp!v = MSE(logit(p), logit(V )), Lv!t = MSE(logit(V ),Zpred) (7.12)

where logit(p) indicates the coarse-grained classification knowledge in Eq. 7.11.

We finally have a joint loss L for training the teacher and student models end-

to-end as

L = ↵L(r)
v

+ �L(r)
t + �L(c)

v
+ �Lp!v +  Lv!t (7.13)

where ↵, �, �, �, and  indicate the importance of each loss value. They are

empirically set as 1 : 10 : 1 : 10 : 1 to keep all loss values on the same scale.

7.5 Experiment

In this section, we conducted empirical experiments on video-level sentiment analysis

and audio-visual retrieval tasks to demonstrate the high e�ciency-performance of

our method.

7.5.1 Dataset

MOSI [2] and MOSEI [3] are multimodal datasets collected from online video for

evaluating video-level sentiment analysis tasks. We show the dataset size in Tab. 7.1.

MOSEI drops the data lacking modalities to fairly evaluate recent modality fusion-

based methods [1]. We compared the video segment IDs of each data point for each

modality and saved only the data points associated with a common segment ID. The

modified MOSEI dataset was found to be more challenging than the original dataset

as it lowered the strong baseline MSE score by 4.9% (see Tab. 7.3). Both datasets

are annotated with a Likert scale in the range of [�3, 3], i.e., (-3: highly negative,

-2: negative, -1: weakly negative, 0: neutral, +1: weakly positive, +2: positive,

+3: highly positive). We further synthesize binary classification label, i.e., ([-3,0):

negative, [0,3]: non-negative) used for optimizing the teacher model (§7.4.1). The

label distribution is illustrated in Fig. 7.3. MOSEI is imbalanced and over 65% of

data is distributed in [�1, 1].
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Figure 7.3: Label distribution of (a) MOSI and (b) MOSEI. The synthesized binary
classification label is illustrated in di↵erent colors (the “negative” class in red color
and the “non-negative” class in blue color).

VEGAS dataset [196] is applied for the audio-visual retrieval task, which contains

28,103 videos in total as shown in Tab. 7.1. Each video can be embedded as an

audio feature vector and a visual feature vector, and the audio-visual pair shares

the same single label. The label represents an audio event (e.g., baby crying) of the

human voice or natural sound. The number of label classes is 10, and the length of

each audio-visual pair ranges from 2 to 10 seconds.

Dataset Train Validation Test Total

MOSI [2] 1,284 229 686 2,199

MOSEI [3] 9,473 1,206 2,710 13,389

VEGAS [196] 22,482 - 5,621 28,103

Table 7.1: Dataset size. MOSEI uses the same dataset as [1].
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7.5.2 Evaluation metric

We use the mean absolute error (MAE), accuracy (A7), accuracy (A2), and weight-

F1 score for evaluating MOSI and MOSEI. A7 denotes a 7-class and A
2 denotes

a binary accuracy metric. Since MOSI and MOSEI are regression problems, we

consider MAE to be the most reasonable metric for fair evaluations. In addition

to the binary accuracy reported by most of the previous works, we evaluate the

7-class accuracy as did the SOTA method [171] to eliminate the e↵ect of the data

imbalance. For the audio-visual retrieval task, we apply the mean average precision

(mAP) as previous works [11, 175] to evaluate our model.

7.5.3 Training setting

We train the teacher and the student models simultaneously and use only the student

model for inference. The text modality is used for evaluating MOSI and MOSEI.

On the other hand, as shown in Fig. 7.4, we utilize the teacher model to distill

multimodal knowledge for both visual and audio encoders of the state-of-the-art

model EICS [11] for audio-visual retrieval tasks. Both visual and audio encoders

are used as student models to evaluate VEGAS. We show the hyperparameters of

VideoAdviser (§7.4) for both tasks in detail in Tab. 7.2.

7.5.4 Performance

Evaluation of video-level sentiment analysis

We compared VideoAdviser with strong baseline methods on the test set of MOSI

and MOSEI in Tab. 7.3. Compared with the state-of-the-art method UniMSE [171]

that utilizes the powerful architecture of a large-scale pretraining model T5 [197] to

improve the multimodal fusion by embedding multimodal signals into an auxiliary

layer of T5, VideoAdviser is a multimodal knowledge distillation-based method that

distills multimodal knowledge from a multimodal fundamental model CLIP [186] to

a language model RoBERTa [5]. UniMSE was trained by integrating the training

datasets of MOSI, MOSEI, MELD [198], IEMOCAP [199] and multimodal signals

are required for inference. In contrast, our method was trained using the target

dataset and requires only text data for inference. VideoAdviser significantly im-

proves UniMSE’s MAE score by 12.3% for MOSI, and outperforms a strong base-

line method VAE-AMDT’s MAE score by 2.4% for MOSEI. As we use the teacher
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Figure 7.4: Architecture of VideoAdviser for audio-visual retrieval task using a
CLIP-based model (the teacher) to distill multimodal knowledge of video-enhanced
prompts to an EICS-based audio-visual model (the student). The teacher model is
finetuned for the audio event classification to distill multimodal knowledge to the
student model via the step-distillation loss (the region in purple). We adopt 3-layer
MLP with 128-dimensional hidden layers.

model to o↵er auxiliary multimodal supervision signals to the student model, by

leveraging the strengths of the learned multimodal space of the teacher model and

the large-scale parameters of the student model, we think our method is e↵ective for

achieving high-performance multimodal knowledge distillation via minimizing the

step-distillation objective loss (§7.4.3).

Evaluation of audio-visual retrieval

We further evaluated our VideoAdviser on the VEGAS dataset in Tab. 7.4. Com-

pared to the state-of-the-art method EICS [11] that builds two di↵erent common

spaces to learn the modality-common and modality-specific features, which achieves

an average mAP of 0.788. Our method utilizes the distilled multimodal knowledge

to enhance the performance of EICS. As a result, it achieves an average mAP of

0.822 and improves EICS [11] by 3.4%, suggesting the generality of our method on

audio-visual retrieval tasks.
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Hyperparameter MOSI, MOSEI VEGAS

V
id
eo

visual encoder ViT-L/14

Num. of frames 8

Frame size 224⇥224

visual embedding size (input) (B, 64, 8) (B, 1, 10)

Visual hidden layer size (B, 128)

P
ro
m
p
t Prompt encoder ClipTextModel

Prompt embedding size (input) (B,77,512)

Prompt hidden layer size 128

T
ex
t

Text encoder RoBERTa-large -

Text embedding size (input) (B,100,1024) -

Text hidden layer size 128 -

A
u
d
io

Audio encoder - EICS model

Audio feature size (input) - 10

audio hidden layer size - 128

O
u
tp
u
t
lo
gi
t Video-enhanced prompt logit (B, 1) (B, 10)

Video logit (B, 1) (B, 10)

Text logit (B, 1) -

Audio logit - (B, 10)

O
p
ti
m
iz
er

Method AdamW [80]

Learning rate 8e-6

Warmup steps 15

Schedular cosine schedule with warmup

T
ra
in
in
g GPU GTX 1080 Ti

Batch size 4

Training epochs 100

Table 7.2: The hyperparameters for training VideoAdviser. Here, “B” denotes the
batch size, “Audio logit” denotes the output of the audio encoder for VEGAS (see
Fig. 7.4).

7.5.5 E�ciency

By comparing the number of parameters with state-of-the-art models in Tab. 7.5,

our proposed VideoAdviser requires only a language model as the student that can

achieve a high e�ciency-performance model for inference. The Student (BERT [72])

achieved a compatible MAE score with fewer parameters than previous BERT-

based models. Moreover, these models always process visual and audio signals for

multimodal fusion, which might require more parameters and increase the compu-

tation cost. Compared with the state-of-the-art model UniMSE that uses a pre-

trained transformer-based language model T5 [197] to perform multimodal fusion,

our model, the student (ROBERTa-Base [5]) with nearly half of the parameters
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Model
MOSI MOSEI

MAE # A
7 " A

2 " F1 " Corr " MAE # A
7 " A

2 " F1 " Corr "
MISA [167] 0.804 - 80.8 80.8 0.764 0.568 - 82.6 82.7 0.717

VAE-AMDT [1] 0.716 - 84.3 84.2 - 0.526* - 82.8* 87.5* -

MAG-BERT [200] 0.712 - 84.2 84.1 0.796 0.539 - 84.7 84.5 -

Self-MM [63] 0.713 - 84.0 84.4 0.798 0.530/0.579* - 82.8/84.6* 82.5/84.6* 0.765/-

MMM [170] 0.700 46.7 84.1 84.0 0.800 0.526 54.2 82.2 82.7 0.772

UniMSE [171] 0.691 48.7 85.9 85.3 0.809 0.523 54.4 85.9 85.8 0.773

VideoAdviser (ours) 0.568 51.3 87.7 87.9 0.872 0.502* 54.5* 84.5* 85.0* 0.810*

Human 0.710 - 85.7 87.5 0.820 - - - - -

Table 7.3: Comparison results for MOSI and MOSEI. Our model reduces the state-
of-the-art UniMSE’s MAE score by 12.3% for MOSI, and VAE-AMDT’s MAE by
2.4% for MOSEI. Here, (#) indicates the lower the MAE, the better the performance,
and (") indicates the vice-versa. (*) indicates the results produced on the modified
MOSEI dataset.

reduces MAE score of over 3.0 point, suggesting the high e�ciency-performance

of our method. VideoAdviser was further improved over 9.0 point by adopting a

RoBERTa-Large model as the student model.

7.5.6 Analysis

E↵ectiveness of components of the teacher model

We studied the e↵ects of two core components of the teacher model (Facial expression

encoder and video-specific prompting module) in Tab. 7.6. The results show that

these two components help improve the multimodal knowledge distillation and boost

the final performance of the student model. We believe that the facial expression

encoder provided extra visual knowledge, and the video-specific prompting module

further associated visual knowledge with text prompt representations encoded by

the prompt encoder.

E↵ectiveness of the student model

We studied the e↵ects of VideoAdviser on di↵erent student models in Tab. 7.7. We

select two language models (BERT and RoBERTa) that have frequently been used

in recent works [167, 1, 200, 63, 170]. By comparing the performance of language

models with and without adopting a teacher model, the results demonstrate that

our method improves a general language model’s MAE score by over 6.0 point on

average, suggesting the e�cacy and generality of our method with di↵erent student

models. We consider that the teacher model o↵ers auxiliary multimodal supervision
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Model
VEGAS

A!V V!A Average

Random 0.110 0.109 0.109

BiC-Net [174] 0.680 0.653 0.667

C-CCA [193] 0.711 0.704 0.708

C-DCCA [201] 0.722 0.716 0.719

DCIL [195] 0.726 0.722 0.724

DSCMR [173] 0.732 0.721 0.727

TNN-C-CCA [172] 0.751 0.738 0.745

CCTL [175] 0.766 0.765 0.766

EICS [11] 0.797 0.779 0.788

VideoAdviser (ours) 0.825 0.819 0.822

Table 7.4: The mAP comparison results with state-of-the-art models for VEGAS.
Here, “V” and “A” indicate “Video” and “Audio”, respectively.

to the student model during training, the language model-based students are able

to learn multimodal knowledge from the teacher with their large-scale parameters.

We further trained a student model by freezing pretrained parameters, which

dramatically dropped the MAE score from 0.568 to 1.478. This result makes us

believe that in order to achieve expressive multimodal knowledge distillation across

modalities, it is essential to finetune full parameters to leverage the strengths of

large-scale pretrained models with powerful representational learning capabilities.

Modality e↵ectiveness

To confirm the robustness of VideoAdviser in multimodal knowledge distillation

not only for text modality but also for diverse modalities such as visual and audio

modalities, we respectively studied the e↵ects on visual and audio modalities for

audio-visual retrieval tasks. As the results indicated in Tab. 7.8, the proposed step-

distillation works for both modalities by boosting the baseline EICS model by over

1% mAP score. By associating both sides, we finally improved the baseline by 3.4%.
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Model Parameters
MOSI

MAE

BERT-based model

- MISA [167] > 110M 0.804

- MAG-BERT [200] > 110M 0.712

- Self-MM [63] > 110M 0.713

- MMM [170] > 110M 0.700

T5-based model

- UniMSE [171] > 231M 0.691

RoBERTa-based model

- VAE-AMDT [1] > 355M 0.716

VideoAdviser (ours)

- Student (BERT) 110M 0.704

- Student (RoBERTa-Base) 125M 0.660

- Student (RoBERTa-Large) 361M 0.568

Table 7.5: E�ciency comparison. VideoAdviser is able to train a high e�ciency-
performance student model compared to state-of-the-art methods for inference. The
student (RoBERTa-Base) outperforms the SOTA by over 3.0 point with nearly half
the parameters.

E↵ectiveness of dataset size

In general, the larger the dataset, the better the performance. We trained VideoAd-

viser with a combination of the MOSI and MOSEI datasets to see if we can further

improve the performance. As the results indicated in Tab. 7.9, The model performs

much better than those trained on individual datasets and suggests the e�cacy of

our approach for di↵erent dataset sizes.

E↵ectiveness of the step-distillation loss

We ablatively studied the e↵ects of our proposed step-distillation loss for multimodal

knowledge distillation in Tab. 7.10. Without the first step—distilling multimodal

knowledge from a video-enhanced prompt logit to a video logit (see Fig. 7.2), the

learned multimodal space of CLIP cannot be passed to the student model via the

video logit, resulting poor student model performance. On the other hand, it im-

proves the regular language model (w/o step-distillation) 4.2% MAE score and
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Model
MOSI

MAE A
7

A
2 F1

VideoAdviser (ours) 0.568 51.3 87.7 87.9

- w/o Facial expression encoder 0.579 50.2 86.8 86.4

- w/o Video-specific prompting 0.570 50.1 88.1 87.7

Table 7.6: Ablation results show the e↵ects of components of the teacher model for
multimodal knowledge distillation on MOSI dataset.

Model
MOSI

MAE A
2 F1

Teacher (CLIP-based model) - 57.3 -

BERT w/o teacher 0.753 84.1 83.6

Student (BERT) 0.704 84.7 83.8

RoBERTa-Base w/o teacher 0.719 84.6 84.3

Student (RoBERTa-Base) 0.660 85.4 84.6

RoBERTa-Large w/o teacher 0.660 87.3 87.3

Student (RoBERTa-Large) 0.568 87.7 87.9

Table 7.7: E↵ects in di↵erent student models. Our method improves the MAE score
of pretrained language models by over 6.0 point on average.

suggests the e↵ectiveness of the second step—distilling the knowledge of the video

logit from the teacher model to the student model. Moreover, by optimizing the

first and second steps, our proposed method outperforms a cutting-edge contrastive

representation distillation method (CRD) [188] that proposed a contrastive-based

objective for transferring knowledge between deep networks. Compared to the CRD

which is designed to model mutual information across dimensions of the knowledge

representations, Our proposed step-distillation applies MSE to mapping mutual in-

formation across modalities via one-dimensional logits (i.e., video-enhanced prompt

logit, video logit, and text logit). Our method performs better than CRD in trans-

ferring regression information for multimodal knowledge distillation.

In addition, we show comparison results of the proposed step-distillation loss

with three widely-known distillation function KD [147], FitNet [202] and PKT [203]

in Tab. 7.11. KD and PKT are proposed to minimize the KL divergence between

the probabilistic outputs of a teacher and student model. On the other hand, FitNet
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Model
VEGAS

A!V V!A Average

baseline (EICS [11]) 0.797 0.779 0.788

VideoAdviser (ours)

-w/ video distillation 0.794 0.810 0.802

-w/ audio distillation 0.791 0.815 0.803

-w/ (audio and video) distillation 0.825 0.819 0.822

Table 7.8: Ablation results show the e↵ects of step-distillation on audio and
video modalities for VEGAS. Here, “w/ video distillation” indicates that the step-
distillation is only adopted for the visual modality of the student model, “w/ audio
distillation” indicates the other side, and “w/ audio and video distillation” indicates
both sides (see Fig. 7.4).

Test dataset MAE A
7

A
2

MOSI 0.546 (0.568) 51.3 (51.3) 88.5 (87.7)

MOSEI 0.491 (0.502) 55.6 (54.5) 84.2 (84.5)

MOSI+MOSEI 0.502 54.79 85.05

Table 7.9: Results of VideoAdviser trained with a combination of MOSI and MOSEI
datasets. The model performs much better for both the MOSI and MOSEI test sets.
Here, (*) denotes the result of the model trained on the individual dataset.

and our step-distillation aim at minimizing the L2 distance for knowledge distilla-

tion. Compared to KD, FitNet and PKT are one-step distillation loss functions,

whereas our step-distillation performs two-step distillation, with the aim of trans-

ferring multimodal knowledge across multiple scales. To achieve a fair comparison,

we adapted these three approaches to our problem setting of two-step distillation.

As the results indicated in Tab. 7.11, the step-distillation outperforms other ap-

proaches and suggests its e�cacy on multimodal knowledge distillation. We noted

that the PKT-based two-step distillation achieves a compatible score with ours. We

consider that audio-visual tasks focus on distilling multimodal knowledge of categor-

ical audio events rather than fine-grained regressional knowledge so that transferring

probabilistic knowledge of each category can also work well. Compared to KD which

utilized the softmax function to obtain probabilistic knowledge, PKT adopted the

cos-similarity function to better obtain dimension-level correlation with the proba-

bilistic knowledge.
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Model
MOSI

MAE A
7

A
2 F1

CRD [188] 0.617 48.8 86.3 85.9

VideoAdviser (ours)

- w/o step-distillation 0.660 45.5 87.3 87.3

- w/o step-distillation:step1 0.618 49.0 86.5 86.3

- w/ step-distillation 0.568 51.3 87.7 87.9

Table 7.10: Ablation results show the e↵ects of the proposed step-distillation loss
for MOSI.

Model
VEGAS

A!V V!A Average

KD [147] 0.783 0.612 0.701

FitNet [202] 0.803 0.781 0.792

PKT [203] 0.824 0.807 0.816

step-distillation (ours) 0.825 0.819 0.822

Table 7.11: Comparison results between widely-known knowledge distillation loss
and the proposed step-distillation loss for VEGAS.

We further illustrate the logistic knowledge distribution with and without the

step-distillation loss in Fig. 7.5. Compared to the “Text logit w/o step-distillation”

that plots the histogram of regression scores without performing the step-distillation,

“Text logit w/ step-distillation” is close to the groundTruth label distribution. Es-

pecially the distribution in the range of [�1, 1] is strongly a↵ected by the teacher

model. Because the “Video logit w/o step-distillation” distributes in the range of

[�1.5, 2] and the “Video enhanced prompt logit w/o step-distillation” distributes in

the range of [�0.4, 0.2], by performing the step-distillation, the predicted regression

score produced by the student model can be a↵ected by the gap of these di↵erent

distributions, and demonstrate that our proposed step-distillation is e↵ective for

multimodal knowledge distillation.

7.5.7 Significance Testing

We tested the stability of the performance improvement by VideoAdviser using

the Almost Stochastic Order test (ASO) [204, 205] as implemented by [206]. We
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Figure 7.5: Visualization of logistic knowledge distribution with and without the
step-distillation objective loss. The top row plots the histograms of logit by applying
the step-distillation, and the bottom row indicates the vice-versa. The groudTruth
indicates the label distribution, and text logit indicates the predicted regression
score of the student model. Our method using the step-distillation (the top) demon-
strates a distribution of regression scores close to the groundTruth, a↵ected by the
knowledge distribution of the “video logit” and “video enhanced prompt logit”.

compared three models, VideoAdviser (ours), VideoAdviser w/o step-distillation

(baseline), and CRD based on five random seeds each using ASO with a confidence

level of ↵ = 0.05. ASO computes a score (✏min) indicated in Tab. 7.12 to represent

how far the first model is from being significantly better with respect to the second.

✏min = 0 represents truly stochastic dominance and ✏min < 0.5 represents almost

stochastic dominance.

Model ASO score (✏min)

VideoAdviser (ours) ! baseline 0

VideoAdviser (ours) ! CRD 0

CRD ! baseline 0.02

Table 7.12: ASO scores of models with di↵erent distillation objectives studied in
Sec. 7.5.6. For “VideoAdviser (ours) ! baseline”, ✏min = 0 indicates that VideoAd-
viser (ours) consistently outperform baseline. Here, the baseline denotes VideoAd-
viser (ours) w/o step-distillation.
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7.6 Conclusion

We proposed a novel multimodal knowledge distillation method, VideoAdviser,

which leverages the strengths of learned multimodal space of the CLIP-based teacher

model and large-scale parameters of the RoBERTa-based student model to perform

multimodal knowledge transfer by optimizing a step-distillation objective loss. In

the evaluation of two multimodal tasks, our method significantly outperforms SoTA

methods up to 12.3% MAE score with a single modal encoder used in inference

for video-level sentiment analysis, and 3.4% mAP for audio-visual retrieval tasks,

suggesting its strengths in high e�ciency-performance. Ablation studies further

demonstrate the e�cacy of our proposed step-distillation objective loss in improving

multimodal knowledge distillation. In the next step, we will adapt meta-learning to

further explore the capability of multimodal transfer learning in a few-shot setting.



Chapter 8

Conclusion

This thesis covers the topics of high-performance multimodal fusion through the mul-

timodal domain adaptation approaches (PART 1), and e↵ective multimodal transfer

learning to build e�cient multimodal systems (PART 2).

In Chapter 3, we explained the limitations of current multimodal fusion ap-

proaches, and how the solution for transferring multimodality into a common do-

main space brings remedy to these limitations. In particular, we present the key

contributions of VAE-AMDT: it performs VAE-based adversarial multimodal do-

main transfer learning to regularise devise modalities into a joint domain. This

allows cross-modal attention architectures to compute expressive multimodal fu-

sion. To achieve robust multimodal sentiment analysis systems, we plan to address

some of the future challenges including the lack of commonsense knowledge related

to the current video scene and inconsistent annotation for diverse modalities.

In Chapter 4, we propose a novel bidirectional fusion approach to enable concep-

tual reasoning of the model by e↵ectively unifying a structured knowledge graph and

unstructured pretrained language knowledge. It is built on a new multimodal GNN

technique that performs inter-modal message passing to achieve expressive unified,

multimodal graph representations. To further improve the temporal reasoning of

current multimodal models, we plan to model hierarchical temporal relationships

between objects in a video spatio-temporal graph.

We focus on building e�cient multimodal systems in Part 2. In Chapter 5 and

Chapter 6, we proposed two knowledge injection approaches based on knowledge dis-

tillation to enhance the performance of specific unimodal models. Moreover, these

113
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models demonstrate competitive performance with multimodal models on down-

stream tasks. To further address two issues: the quality of the pretrained knowl-

edge and the e↵ectiveness of the chosen multimodal knowledge distillation strategy,

Chapter 7 shows that our proposed VideoAdviser handled these issues—leveraging

the strengths of learned multimodal space of the CLIP-based teacher model and

large-scale parameters of the RoBERTa-based student model—optimizing a step-

distillation objective loss, achieved e↵ective multimodal knowledge transfer learn-

ing. As one of our future works, we plan to unify meta learning to further enhance

multimodal knowledge transfer learning.

Moreover, in the next step, seamlessly connecting multimodal knowledge aims

to achieve fine-grained real-world understanding, we are planning to work on the

following two topics: 1, unifying multimodal knowledge in structured graphs and

fundamental models to enhance the interpretable reasoning of AI models. 2, building

multimodal fundamental models that can not only solve general tasks but also can

easily adapt to specific applications such as healthcare, autonomous vehicles, etc.
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