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Abstract 

 This dissertation explores flexible operation strategies in fresh fruit supply chains 

(FSCs) with cold storages. In traditional FSCs, growers usually sell fresh fruits with 

thin profit right after harvesting due to the perishability. In order to mitigate the 

deterioration of fresh fruits, cold storages, which are generally divided into the 

regular atmosphere storage (RAS) and the controlled atmosphere storage (CAS), are 

built accelerating in rural areas. Depending on the extension period of shelf life, we 

propose flexible operation modes in fresh FSCs with RAS and with CAS, 

respectively. 

For RAS, we propose the flexible supply contract with put options (SCPO) for a 

rural fresh FSC with RAS, where the grower stores fresh fruits in RAS to extend the 

shelf life, which incurs extra storage costs that can be recovered by salvaging at a 

higher price later. The proposed model is analyzed from both the grower’s and the 

buyer’s perspectives. And the buyer’s and the grower’s profit functions are 

formulated. We derive the buyer’s optimal policies for the initial order and put 

options as well as the grower’s optimal policy for the planting quantity. The 

grower’s optimal supply tariff can be obtained only numerically. In particular, we 

obtain closed-form formulae to determine the buyer’s optimal order policy and the 

grower’s optimal planting quantity in a special case. We show numerical 

experiments in which we examined the effectiveness of the proposed model and 

analyze how the parameters affect the performances of both the grower and the 

buyer. 

For CAS, we consider a single-period, three-stage model in a rural fresh FSC with 
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CAS. With CAS, the grower produces fresh fruits and then sells them to a two-stage 

market, i.e., in-season and off-season, in sequence. We formulate the grower’s profit 

function, propose the solution for the grower to make the optimal planting quantity 

and derive the optimal rental capacity of CAS. In particular, we study this model in a 

special case, and analyze numerically how the parameters influence the grower’s 

behavior in such a supply chain.  

Finally, the conclusions of this dissertation are presented and we explain the 

future direction of this research. 
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Chapter 1 

 Introduction 

1.1   Background and motivation 

Fresh fruits are a major source of essential vitamins and minerals, such as vitamin 

A, vitamin C, and potassium, needed for human well-being (Brasil and Siddiqui, 

2018). They are metabolically active, undergoing ripening and senescence processes 

that must be controlled to prolong postharvest quality. With the progress of food 

globalization, the amount of agri-foods that are traded has been increasing, and the 

distance transported and the duration have been extended (Fahmy and Nakano, 

2016). Fresh fruits are perishable living products that require coordinated activity by 

growers, storage operators, processors, and retailers to maintain quality and reduce 

food loss and waste. Inadequate management of these processes can result in major 

losses in nutritional and quality attributes, outbreaks of food-borne pathogens, and 

financial loss for all players along the fresh fruit supply chains (FSCs), from growers 

to consumers (Siddiqui, 2017). Such inadequate management especially exists in 

developing countries. 

As the largest developing country in the world, China is implementing the rural 

revitalization strategy in order to realize prosperous industry and rich life in rural 

areas. China is the world’s largest fruit producer, and the fruit industry is one of the 

important industries for growers to increase their income (Liao and Li, 2023). In 

China, fresh FSCs include many channel participants, such as growers, agricultural 
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enterprises, rural wholesalers, urban wholesalers, distributors, retailers and 

customers. Fruit planting areas are across cold, temperate, and tropical zones with 

large regional differences. Fruits are produced and sold all over the country. 

Consumers of fresh fruits are fussy about freshness and expect them to be year-

round. Furthermore, the supply and procurement modes in fresh FSCs are 

diversified, such as multi-level wholesale market systems, and direct supply modes 

(for instance, e-commerce). Retailers can procure fruits through various channels, 

such as distributors, wholesaler markets, or directly from growers. Furthermore, a 

kind of fruit often faces competition with other similar fruits. On the other hand, 

growers also can sell fruits through various channels. Therefore, both planting area 

and demand of fresh FSCs have high uncertainty. Besides that, the output rate is 

random since it is largely affected by climate, and planting practices in each process, 

such as fertilizer spreading, mowing and thinning. A kind of fruit is popular and 

expensive this year and may be sold cheaply the next year. In addition, coupled with 

the problems of concentrated ripening and perishability, growers generally only can 

make limited profits in the supply chain.  

In a traditional fresh FSC, the grower usually sells the fruits to the buyer right 

after harvesting because there are no cold storages to keep them fresh. When a 

large number of fruits mature, knowing the grower’s eagerness to sell, the 

buyer may discount the wholesale price, which always results in low profits 

even huge losses for the grower. This is a serious problem in such supply 

chains in China. Consider the case of the kiwifruits supply chain in Pujiang County, 

Sichuan Province, China. The kiwifruit harvest season begins from July. After 

harvesting, most growers sell produce to buyers. Due to the perishability of 

kiwifruits and poor storage technology, growers are eager to sell all the produce as 

soon as possible, especially when a large number of kiwifruits has matured in a short 

time. Knowing the grower’s eagerness to sell, buyers may discount the wholesale 

price. Thus, growers usually sell produce at a low price. With the development of 

rural e-commerce platforms, such as Taobao and TikTok, some growers start selling 

produce directly to customers at a higher price than before. However, poor storage 
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technology makes it difficult to support the online sale of a large number of fresh 

fruits. Consequently, despite a large amount of labor and capital invested in a long 

planting season, growers usually gain only a thin profit or even loss. Similar cases 

can also be found in other fresh FSCs in rural China, such as cherry and lemon 

supply chains, which might be one of the reasons why some growers have a low 

enthusiasm for planting and living in poverty. 

To solve such problems, China is developing the rural cold chain, especially 

by constructing cold storages which are effective and essential instruments to 

mitigate the quality decay and extend the life cycle of products. For example, 

Tongnan district in Chongqing is now planning to construct a controlled 

atmosphere storage with a capacity of two hundred thousand tons to improve 

the fresh-keeping ability mainly for lemons. 

Two main types of cold storages are being constructed in rural areas, that is, 

regular atmosphere storage (RAS) and controlled atmosphere storage (CAS). RAS 

refers to a warehouse where temperature and humidity are constantly monitored and 

adjusted, whereas CAS refers to a gas-tight warehouse where the oxygen, carbon 

dioxide, and nitrogen levels are regulated along with temperature and humidity. The 

construction cost of CAS is higher than that of RAS, exceeding about 1,000 to 2,000 

CNY per square meter. The lifetime of fresh fruits stored in CAS can be more than 

doubled than that in RAS, in the case of kiwifruits, up to 5-6 months. Moreover, in 

RAS, fruits can be stored, graded and taken out for sale based on markets. By 

contrast, in CAS, fruits only can be stored and taken out all one time, because a lot 

of oxygen entering again would accelerate the deterioration of fruits.  

After introducing the cold storage into the traditional fresh FSC, the participants’ 

bargaining power and the operation mode may be different. The grower’s bargaining 

power may be enhanced because the cold storage can extend the shelf life of fruits. 

The buyer may also be favored because he needs not to take the risks associated with 

a large amount of inventory whereas to discount the price may become more 

difficult than before. For such a new fresh FSC, how to make full use of the cold 
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storage to improve the grower’s profit and also the supply chain’s performance is an 

important subject. One can find various studies pertaining to freshness reagents, 

preservation packaging, fresh-keeping facilities and equipment, investment in 

preservation technologies, and so on. Here, the focus of our study is the operation 

mode associated with cold storages.  

1.2   The proposed flexible operation mode  

As mentioned before, regular atmosphere storage (RAS) and controlled 

atmosphere storage (CAS) are two main types of cold storages. Generally, RAS can 

keep fruits fresh for several weeks (for instance, 3 weeks for bananas) while CAS 

can keep them fresh for several months (for instance, 4 months for bananas), which 

provides more opportunities for participants in the supply chain and makes the 

operation mode to be more flexible rather than the traditional mode that selling right 

after harvesting. Depending on the extension period of shelf life, we propose flexible 

operation modes in fresh FSCs with RAS and CAS, respectively. 

1.2.1 Flexible operation mode with RAS 

For the case that RAS is available, growers can extend the lifetime of fruits. Their 

eagerness to sell in a short time right after harvesting may wane. Moreover, fruits 

not stored in cold storages may be sold at a higher price than before (Minten et al. 

2014), due to a decrease in the quantity supplied at one time. For the buyer, it may 

become more difficult than before to discount the price, which may lead to a 

declined order quantity. On the other hand, the buyer may also be favored because 

he can transfer the overage risk to the grower when facing stochastic demand. 

Knowing this, the grower has an incentive to provide a flexible operation mode with 

downward adjustment in order to encourage the buyer to place a larger order before 

planting.  

We introduce put options into the traditional supply contract, i.e., supply 

contract with put options (SCPO). Option contracts (real options) originate from 
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financial options. Based on the adjustment direction, options can be divided into call, 

put, and bidirectional options. Put option gives the buyer the right, but not the 

obligation to respond to a coming or realized demand decrease by reducing the 

initial order, which is widely used in various industries. For example, a flexible 

contract with put options is introduced into a two-echelon container shipping service 

chain in order to enable carriers to give back the surplus empty containers to the 

leasing company (Liu et al., 2013). With a put option contract, the buyer purchases 

put options at a unit option price for each option, while can receive a corresponding 

full or partial refund for every exercised option. In this way, the grower shares a part 

of the buyer’s demand decreasing risk, and encourages the buyer to place a larger 

order (Yang et al., 2017) . 

 In Chapter 3, we develop a single-period two-stage supply contract model 

with put options (SCPO), consisting of one grower and one buyer. The grower can 

rent RAS to extend the shelf life of fruits. The decision processes are as follows: at 

the beginning of the planning horizon, based on the supply tariff from the grower 

and the demand forecast, the buyer places an initial order and purchases options. 

With the buyer’s order and the random output rate, the grower determines the 

planting quantity. During the planting season, the buyer updates the demand forecast. 

At the beginning of the selling season, the buyer exercises options if necessary. Then, 

the grower delivers the final order and stores surplus products in RAS to extend the 

shelf life, which incurs extra storage costs that can be recovered by salvaging at a 

higher price later. We try to examine whether SCPO can improve the performances 

of the grower and the buyer. 

Some literature related to option contracts in fresh FSCs does not consider the 

random yield. Few studies include the supplier’s decision on the supply tariff. In our 

study, under the condition of random yield, we investigate the grower’s decision on 

both the planting quantity and the prices of the option contract. 
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1.2.2 Flexible operation mode with CAS 

For CAS, the life cycle of products can be extended longer (Paam et al., 2022). 

For some growers who leave the marketing of their produce to buyers and other 

intermediaries, the operation of rural agri-food supply chains can be more flexible. A 

longer life cycle enables growers to engage in selling produce in the off-season 

rather than only in the in-season. Many fresh fruits, especially high-value and 

storable ones, stored in CAS can be sold in the off-season. For example, kiwifruits 

are harvested from July to early November. After stored in CAS, the selling season 

can be extended to April (of the next year). Moreover, the selling price in the off-

season may be higher 2-3 times than that in the in-season.  

In this case, at the beginning of the planting season, the stochastic demand faced 

by growers would change from single stage to two stages, i.e., in-season and off-

season. In addition, the output rate is random since it is affected by planting 

conditions and practices. It would be complicated for the grower to make policies on 

planting, store and sale. If the output quantity is less than the total demand, the 

grower would incur shortage cost. On the contrary, the grower has to salvage the 

leftover at little or even no value due to the perishability. Moreover, after harvesting, 

the grower would rent CAS space for fruits to sell in the off-season. CAS is charged 

costly. If the fruits stored in CASs exceed the off-seasonal demand, the grower 

would not only lose high storage costs but also miss the chance to sell the leftover in 

season. Conversely, the grower would incur shortage costs, which may be caused by 

allocating more products for sale in season. We try to provide solutions and address 

the grower’s policies on planting, store and sale, i.e., 

⚫ How many quantities to plant under random yield? 

⚫ How to utilize cold storages (e.g., rent or not; how large capacity to rent) 

        under stochastic two-stage demand? 

⚫ How to make an effort to improve the profit? 

In Chapter 4, we consider a single-period three-stage model in a fresh FSC with 

CAS which enables the grower to sell the fruits in the off-season. The grower 
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produces fruits during the planting season at Stage 1 and sells them to a two-stage 

market, i.e., in-season and off-season, in sequence. The grower has two decision- 

making points. One is the planting quantity at the beginning of the planting season 

and the other is the rental capacity of CAS at the beginning of the selling season. 

The decision processes are as follows: At the beginning of the planting season 

(Stage 1), based on the random yield and the two-stage stochastic demand, the 

grower determines the planting quantity. During the planting season, the grower 

updates forecast information. At the beginning of the in-season (Stage 2), with the 

updated demand information, the grower determines the rental capacity of CAS to 

store full or part of fruits. The remained fruits are assigned to the in-season. At the 

beginning of the off-season (Stage 3), the grower sells products stored in CAS.  

Most of the literature focuses on the planting policy or/and inventory policy. 

However, to the best of our knowledge, there is no literature to study the planting 

policy and the inventory policies considering two-stage demand, simultaneously. We 

provide solutions for the grower on planting, store and sale to in-season and off-

season. 

1.3   Dissertation structure 

This research mainly relates to three fields in fresh FSCs, i.e., supply contracts, 

planting and inventory planning. Chapter 2 reviews the related research by 

classifying them into two categories: supply contracts for agri-food supply chains, 

planting and inventory planning in agri-food supply chains. In each category, we 

describe the related literature and explain the difference with our models. 

Depending on the extension period of shelf life, we propose flexible operation 

modes in rural fresh FSCs with RAS in Chapter 3 and with CAS in Chapter 4, 

respectively. 

In Chapter 3, we propose the flexible supply contract with put options (SCPO) for 

a rural fresh FSC with RAS, where the grower stores fresh fruits in RAS to extend 

the shelf life, which incurs extra storage costs that can be recovered by salvaging at 
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a higher price later. The proposed model is analyzed from both the grower’s and the 

buyer’s perspectives. We formulate the buyer’s and the grower’s profit functions, 

and derive the buyer’s optimal policies for the initial order and put options as well as 

the grower’s optimal policy for the planting quantity. The grower’s optimal supply 

tariff can be obtained only numerically. In particular, we obtain closed-form 

formulae to determine the buyer’s optimal order policy and the grower’s optimal 

planting quantity in a special case. We show numerical experiments and analyze 

how the parameters affect the performances of both the grower and the buyer. 

In Chapter 4, we consider a single-period, three-stage model in a fresh fruit 

supply chain with CAS. With rural CAS, the grower produces fresh fruits and then 

sells them to a two-stage market, i.e., in-season and off-season, in sequence. We 

formulate the grower’s profit function, propose the solution for the grower to make 

the optimal planting quantity and derive the optimal rental capacity of CAS. In 

particular, we study this model in a special case, and analyze numerically how the 

parameters influence the grower’s behavior in such a supply chain. 

Finally, the conclusions of this dissertation are presented in Chapter 5. 

Subsequently, we explain the future direction of this research. 
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Chapter 2 

 Literature Review 

2.1   Introduction 

This research mainly relates to two fields in fresh FSCs, i.e., supply contracts, 

planting and inventory planning. Cachon (2003) provides a general review of supply 

contracts, such as return policy, backup agreement, pay-to-delay contract, and so on. 

Zhao et al. (2016) present a review of the supply contracts with stochastic demand, 

especially for option contract models. The reviews of Ahumada and Villalobos 

(2009) and Takner and Bilgen (2021) cover the research on planting, harvest, 

production, inventory and distribution planning for agri-food supply chains. 

Furthermore, Nguyen et al. (2021) provide a similar review for fresh FSCs.  

This chapter classifies the related literature into two categories: supply contracts 

for agri-food supply chains, planting and inventory planning in agri-food supply 

chains. In each category, after presenting pertinent studies, we review the most 

relevant literature to highlight the motivation of our study. Differences between 

these models and ours are also discussed. 

2.2   Supply contracts for agri-food supply chains 

To overcome the drawbacks of the wholesale contract in agri-food supply chains, 
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many flexible supply contracts are proposed. The commonly studied supply 

contracts include revenue/cost sharing contracts, wholesale/quantity discount 

contracts (Cai et al., 2013; Zheng et al., 2019) and option contracts. 

Many researchers study revenue/cost sharing contracts to coordinate agri-food 

supply chains. Sun and Li (2018) propose a secondary-income contract where the 

third-party organization buys the agri-foods from farmers at a fixed-purchase price 

lower than the unit wholesale price and then gives the farmers the chance of getting 

secondary income at a distribution ratio of the revenue. They derive the optimal 

production cost input of farmers. Considering the circulation loss of fresh agri-foods, 

Yan et al. (2020a) propose a revenue-sharing contract in a fresh agri-food supply 

chain based on radio frequency identification. Feng et al. (2021) develop cost-

sharing and compensation strategies where the retailer takes the initiative to 

undertake the supplier’s part of proportion of freshness preservation effort level. 

They obtain the optimal fresh-keeping effort level of the supplier. Shi and Wang 

(2022) present a revenue-sharing contract under weather-related uncertain yield 

where the retailer shares not only the yield risk by purchasing all the realized output 

but also shares a portion of his sales revenue with the supplier.  

To further reduce supply chain risks, some researchers combine revenue and cost 

sharing contracts. Zhao and Wu (2011) design a revenue-sharing contract where a 

supplier delivers goods with a price lower than unit production cost to the retailer 

while the retailer returns part of its revenue to the supplier, and derive the supplier’s 

optimal input quantity. Zhang et al. (2015) design a revenue sharing and cooperative 

investment contract where the manufacturer provides a subsidy proportion to the 

retailer's preservation technology investment and the retailer shares a portion of 

revenue. Ye et al. (2017) develop a revenue-sharing-and-production-cost-sharing 

contract of an agribusiness firm and multiple risk-averse farmers and analyze the 

farmer’s optimal production quantity. Ma et al. (2019) propose a coordination 

contract based on cost and revenue sharing in a three-echelon supply chain where 

third-party logistics service providers (TPLSP) offer refrigeration services for a 
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supplier and a retailer. The supplier shares a ratio of the TPLSP’s freshness-keeping 

costs and the retailer shares a percentage of sales revenue with the TPLSP. Similar to 

Zhang et al. (2015), Moon et al. (2020) propose a revenue sharing coupled with 

investment cost sharing contract where the retailer invests in fresh-keeping 

technology. They further propose an incremental quantity discount contract where 

the manufacturer provides incremental discounts according to order quantity.  

Different from the above literature, the option contract is a risk sharing 

mechanism by quantity flexibility, which is widely used in various industries, such 

as electricity (Oum et al., 2006), air cargo (Chen and Parlar, 2007) and container 

leasing (Liu et al., 2013). Some researchers study option contracts in agri-food 

supply chains where the products are perishable. Yang et al. (2017) develop call, put 

and bidirectional option contracts. They derive the supplier’s optimal production 

quantity and the retailer’s optimal initial order quantity and the optimal option 

quantity. They find that the initial order quantity with the put option contract is the 

highest. Wang and Chen (2018) investigate a newsvendor problem for fresh produce 

with put option contracts, and find that the newsvendor when using put option 

contracts can reduce the inventory risks that is caused by demand uncertainty and 

high circulation loss of fresh produce, while they do not consider the supplier’s 

decision. Yan et al. (2020b) propose a call option contract combined with a cost 

sharing contract to coordinate the supply chain where fresh agri-foods are with two-

period price due to the perishability. They obtain the farmer’s optimal output 

quantity and the optimal order quantity for agri-foods trading company. Wan et al. 

(2021) propose a call option contract for a fresh agri-food supply chain when the 

production cost and the loss rate are disrupted, simultaneously. They derive the 

optimal quantity of options purchased by the distributor and find the supplier’s 

optimal supply tariff numerically. Liao and Lu (2022) consider a three-level fresh 

agri-food supply chain and discuss a call option contract between the supplier and 

the retailer, and a wholesale price contract between the supplier and the producer. 

They obtain the optimal production input of the producer, and the optimal order 

quantity of the retailer. 
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Please observe that the characteristic of the supply chain in Chapter 3 is a fresh 

FSC with cold storages where the grower has an incentive to provide a put option 

contract for a larger order. Yang et al. (2017) and Wang and Chen (2018) are the 

closest to our model. However, different from them, we consider the random yield 

during production but they do not. Furthermore, we optimize the grower’s supply 

tariff whereas they assume the contract prices are fixed parameters. 

2.3   Planting and inventory planning in agri-food 

supply chains 

2.3.1 Planting planning 

A summary of the research related to planting planning is presented in Table 2.1, 

most of which focus on the fresh FSC. Many researchers consider planting planning 

models in multiple periods. In addition to the decision on planting quantity, 

decisions on varieties selection or/and planting time are also analyzed. Willis and 

Hanlon (1976) propose a temporal model to select an “optimum mix” of varieties of 

apples for planting over time, with the resources including storage capacity, capital 

and acres of orchard land. Darby-Dowman et al. (2000) present a recourse model for 

the problem of determining optimal planting plans involving the area, spacing and 

timing of planting the different varieties for a vegetable grower. Hester and Cacho 

(2003) build a bioeconomic model from planting to maturity utilizing dynamic 

simulation to find optimal thinning rates over the lifetime of the orchard by 

maximizing net present value. Cittadini et al. (2008) explore options for farm-scale 

strategic and tactical decision-making in farms in South Patagonia specialized in 

fruit production to maximize the profit and optimize the cumulative farm labor. 

Their main outcomes are the selected combinations of crop species and production 

techniques, the area of each combination assigned to specific land units and the 

timing of implementation of the orchard development plan. Tan and Çömden (2012) 

present a long-range planning methodology for a firm that purchases premium fruits 
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or vegetables from farms and sells to retailers, and propose an approach to the 

optimal seeding time and area for each farm. Catalá et al. (2013) present a strategic 

planning model for pear and apple production and show optimal investment policy 

for the replacement of varieties under different scenarios.  

Table 2.1: Summary of the research related to planting planning 

 

Some researchers consider single-period models. Hamer (1994) builds a decision 

support system for planting plans including variety selecting, sowing date and 

planting density for Brussels sprouts to meet the demand of different customers, and 

takes the cost of cooling and storage into consideration. Kazaz (2004) studies 

production planning for an olive oil producer who leases farm space from farmers to 

grow olives, and then determines the optimal amount of farm space to be leased and 

the optimal choices for olive oil production. Golmohammadi and Hassini (2019) 

Reference 
Varieties 

of agri-foods 

Planting 

policy 

  Considerations 

Q
u
an

tity
 

V
ariety

 

T
im
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 R
an
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ield
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astic d
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an

d
 

C
o
ld

 sto
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Willis and Hanlon (1976) Apple ○ ○ ○       ○ 

Hamer (1994)  Brussels sprout ○  ○ ○   ○   ○ 

Darby-Dowman et al. (2000) Vegetable  ○ ○ ○   ○ ○   

Hester and Cacho (2003) Apple ○        ○     

Kazaz（2004） Olive ○       ○ ○   

Cittadini et al. (2008)  Cherry ○ ○ ○         

Tan and Çömden (2012) Fruit and vegetable ○   ○   ○ ○   

Catalá et al. (2013) Pear and apple ○ ○     ○     

Golmohammadi and Hassini

（2019） 

  ○       ○ ○   

The model in Chapter 4 Fresh fruit ○    ○ ○ ○ 
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study the problem of production planning, pricing and capacity planning of a farmer, 

and analyze the optimal size of the land to be planted and that to be rented in order 

to maximize the farmer’s profit. Similar to Kazaz (2004) and Golmohammadi and 

Hassini (2019), the model built in Chapters 4 focus on decision-making for planting 

quantity. However, we take cold storages into consideration whereas they do not. 

2.3.2 Inventory planning 

A summary of the research related to inventory planning is presented in Table 2.2. 

There are three main categories: economic order quantity (EOQ), inventory control 

and inventory allocation. The EOQ model is one of the oldest known models and a 

lot of work has been done on this model. Chen et al. (2016) provide a method to 

determine the optimal replenishment policy of a deteriorative agri-products supply 

chain including a supermarket and a facility agriculture enterprise. Singh (2016) 

builds an inventory model for perishable items with constant demand, for which the 

holding cost increases with time, such as the warehouse cost in cold storages, and 

provides the optimal solution for the inventory level and the order quantity. Some 

researchers focus on the inventory control problem. Masini et al. (2011) present a 

tactical planning model for a typical large company that operates several nodes of 

the fruit industry supply chain and provide the “production profiles” of packed fruit, 

concentrated juice and cider, which should be pursued to optimize the business 

profit, along with the required profiles of raw fruit and cold storage to feasibly 

operate throughout the fruit business cycle. Xu et al. (2019) propose a simulation-

based optimization model of the three-level inventory system for fresh agri-foods, 

which consists of one manufacturer, multiple distributors, multiple retailers and one 

supplier. They provide the optimal inventory control policy.  

Inventory allocation problem, widely concerned by researchers, can be divided 

into two types: allocation based on storages and allocation based on time. In the 

argi-food supply chain, many researchers focus on inventory allocation based on 

storages. Some literature considers three types of cold storage, i.e., RAS, CAS and 
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smart-fresh CAS. Soto-Silva et al. (2017) develop a model combined purchasing and 

storage for an apple processing plant that purchases apples stored in different cold 

chambers divided by fresh keeping ability to minimize the storage cost. Based on 

Soto-Silva et al. (2017), Mateo-Fornés et al. (2021) explore the benefits of a two-

stage stochastic programming model for purchase and storage decisions. Paam et al. 

(2019) propose inventory policies by optimizing the configuration of storage rooms 

for an apple industry in order to reduce apple loss.   

Table 2.2: Summary of the research related to inventory planning 

Reference 
Varieties of  

agri-foods 

Inventory policy   Considerations 

E
O

Q
 

In
v
en

to
ry

 co
n
tro

l 

In
v
en

to
ry

 allo
catio

n
*

 

 
 

R
an

d
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ield
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em
an

d
 

C
o
ld

 sto
rag

es 

Masini et al. (2011) Pear and apple  ○     ○ 

Chen et al. (2016) Deteriorative agri-food ○     ○  

Singh (2016) Perishable items ○      ○ 

Hou et al. (2017) Fresh agri-food  ○ T   ○ ○ 

Soto-Silva et al. (2017) Apple   S    ○ 

Liu et al. (2018) Perishable agri-food   T   ○ ○ 

Paam et al. (2019) Apple   S    ○ 

Xu et al. (2019) Fesh agri-food  ○    ○  

Pourmohammadi et al. 

(2020) 

Wheat   S  ○ ○  

Mateo-Fornés et al. 

(2021) 

Apple   S    ○ 

Paam et al. (2022) Fresh agri-food  ○ S    ○ 

The models  

in Chapter 4 
Fresh fruit   T  ○ ○ ○ 

* Inventory allocation according to storages (S) or time (T).      

Pourmohammadi et al. (2020) propose a mixed-integer linear mathematical model 

for redesigning and planning of the wheat supply chain to address supplier selection, 

ordering, storing, transportation, and distribution problems considering long-term 
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and short-term storage facilities. They determine the location and capacity of new 

storage facilities. Paam et al. (2022) solve multiple-period, multiple-product and 

multiple-warehouse inventory control and allocation problem where each warehouse 

has two modes (RAS and CAS). They provide the optimal number and mode of 

warehouses in each period.  

Different from them, the model in Chapter 4 analyzes the inventory allocation 

problem based on time, that is, whether to allocate the fruits to be stored in CAS for 

a later off-season sale or not. Few researchers focus on inventory allocation based on 

time. Hou et al. (2017) build a multi-stage inventory control and allocation model 

for a wholesaler who sells fresh produce at a wholesale market and addresses display, 

disposal and order policies with cooling facilities. Liu et al. (2018) propose a single-

product finite-stage inventory model for a wholesaler where warehouses are 

available. They address policies on the optimal purchase and inventory retrieval 

quantities. Both of them assume that sell fresh produce in the in-season, while our 

model in Chapter 4 focuses on the inventory allocation in a two-stage market, i.e., 

in-season for the first stage and off-season for the second stage, with relative 

independence and different retail prices. 

2.3.3 Planting and inventory planning 

After a long planting season, growers might proceed to participate in logistics, 

such as inventory, transportation and distribution. Some researchers integrate 

planting and inventory decisions. Ahumada and Villalobos (2011) present a tactical 

planning model for a large fresh produce grower to maximize revenues. The main 

decisions involve when and how much to plant of each crop, when to harvest and 

sell the crops and how much products to store. Based on Ahumad and Villalobos 

(2011), Ahumada et al. (2012) expand the model with the variability of weather and 

demand. Costa et al. (2014) study a vegetable crop rotation problem with demand 

constraints to decide what and when to produce given a set of lands. They analyze 

the inventory policy with the possibility of stocking harvested crops. Catalá et al. 
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(2016) propose a bi-objective optimization model for tactical planning in the pome 

fruit supply chain with CAS and RAS, and integrate production, distribution and 

inventory decisions. Fikry et al. (2021) presents an integrated strategic-tactical 

planning model for the sugar beet supply chain to optimally solve the production 

planning problem of when, where and how much to plant and the logistics problem 

involving transportation and inventory. Alemany et al. (2021) develop a set of 

models to analyze when and how much to plant and store of fresh tomatoes for 

multi-farmer supply chains under yield and demand uncertainties in different 

scenarios. They consider selling fresh products in in-season markets.  

From Table 2.3, we can observe that the related literature studies the planting and 

inventory planning under a single-stage demand. However, the demand in our study 

has two stages. Among the researches, Ahumada et al. (2012) and Alemany et al. 

(2021) also consider both random yield and stochastic demand. Different from our 

models in Chapter 4 and 5, they do not study the effect of CAS on the supply chain. 

2.4   Chapter summary 

As this research mainly relates to three fields in fresh FSCs, i.e., supply contracts, 

planting and inventory planning, we classify the related literature into two categories: 

supply contracts for agri-food supply chains, planting and inventory planning in 

agri-food supply chains. In each category, after presenting pertinent studies, we 

review the most relevant literature to highlight the motivation of our study. 

Differences between these models and ours are also discussed. 
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Table 2.3: Summary of the research related to planting and inventory planning 

Reference 
Varieties of 

agri-foods 

Planting 

policy 

  Inventory 

policy   
Considerations 

Q
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T
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Ahumad and 

 Villalobos (2011) 

Fresh 

produce 
○ ○ ○   ○      

Ahumad et al.  

(2012) 

Fresh 

produce 
○ ○ ○   ○  ○ ○   

Costa et al. (2014) Vegetable  ○ ○ ○   ○   ○   

Catalá et al. 

(2016)  

Pear and 

 apple 
○ ○   ○     ○  

Fikry et al. (2021) Suger beet ○ ○ ○   ○      

Alemany et al.  

(2021)  
Tomato  ○ ○ ○   ○  ○ ○   

The model  

in Chapter 4 
Fresh fruit ○     ○  ○ ○ ○ ○ 
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Chapter 3 

Flexible Supply Contract with Put 

Options with Regular Atmosphere 

Storage 

 

3.1   Introduction 

This chapter studies the flexible supply contract with put options (SCPO) for a 

rural fresh FSC with RAS, where the grower stores fresh fruits in RAS to extend the 

shelf life, which incurs extra storage costs that can be recovered by salvaging at a 

higher price later. Our objective is to determine the grower’s optimal planting policy 

and optimal supply tariff as well as the buyer’s optimal order policies. We also 

analyze how the parameters affect the performances of both the grower and the 

buyer1. 

3.2   Model   

 
                       

1Partial content of this chapter has been published on the Journal of Japan Industrial 

Management Association, Vol.73, No.2E (Bai and Wang, 2022) 
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3.2.1 Notation and assumptions 

Table 3.1 presents the parameters and decision variables used throughout this 

chapter. We consider a single-period, two-stage supply contract in a rural fresh FSC 

with random yield and stochastic demand. The buyer, who is far away from the 

grower and the spot market, orders fresh fruits from the grower and sells them to the 

market. The grower has one opportunity to plant one batch and is not allowed to be 

out of stock. When the output is less than the order, the grower replenishes the 

shortfall from the spot market where the number of products is sufficient. Note that 

the buyer cannot replenish inventory from the grower or the spot market because the 

market is very far, and the grower only accepts orders under her maximum 

production capacity. The RAS, as an external party with enough storage capacity, is 

available for the grower, which enables the grower to salvage the unsold fruits at a 

higher salvage price. All of the unsold products may be salvaged by both the grower 

and the buyer.  

At the beginning of the planning horizon, the grower knows the output rate K (K > 

0) with distribution function ( )  . The mean of K is k . The values of n and m are 

based on experience but excluding extreme cases such as disasters resulted in no 

harvest. The buyer knows the demand ( 0)D D   with distribution function ( )F  . 

After harvesting, the grower specifies K as a value k. Just before delivery, the buyer 

updates information and specifies the D as a value  . 

Throughout the chapter, we assume the wholesale price and retail price are 

exogenously. We assume  , gw g c k v  . Let w c k  to ensure the grower to be 

possible to get marginal profit from planting. Let g c k , otherwise the grower 

would purchase fruits from the spot market rather than planting. Let gc k v , 

otherwise the grower would earn infinite profit by salvaging products if she could 

plant infinite products. Furthermore, we assume w > vb as well. 
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Table 3.1: Notation throughout Chapter 3 

Decision variables 

Qnvo Order quantity in NV model 

Qnvp Planting quantity in NV model 

Q0 Quantity of initial order 

q0 Quantity of put options purchased 

qep Quantity of put options exercised 

Qop Planting quantity in SCPO model 

wo Unit price of put option 

wep Unit exercise price of put option 

Parameters 

w Unit wholesale price (including the shipping cost) 

r Unit retail price 

p Unit shortage cost 

c Unit planting cost 

g Unit spot market price 

vg Unit salvage price of products stored in RAS for the grower 

vb Unit salvage price for the buyer 

K The output rate (stochastic variable) 

n Minimum output rate during certain years 

m Maximum output rate during certain years 

k Determined value of K 
( )   Probability density function of K 
( )   Cumulative density function of K 

D Demand for fresh fruits (stochastic variable) 
  Determined value of D 

( )f   Probability density function (pdf) of D 
( )F   Cumulative density function (cdf) of D 

 

3.2.2 The traditional operation mode with RAS 

This is a traditional operation mode of a fresh FSC with RAS, i.e., newsvendor 

(NV) model. The buyer places an order Qnvo according to the demand forecast at the 

beginning of the planning horizon t0, paying wholesale cost w for each unit. The 

grower plants the amount Qnvp based on the buyer’s order and the random output rate 

with unit planting cost c. At the beginning of the selling season t1, the grower 

delivers products to the buyer and any order that cannot be met will be satisfied via 
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the spot market. The grower’s surplus products can be stored in RAS to extend their 

shelf life and they can be salvaged at vg for each unit. During the selling season, the 

buyer earns revenues from each satisfied demand and incurs shortage cost p for any 

unsatisfied demand. At the end of the selling season, the buyer obtains an additional 

cash inflow from salvaging the unsold products. The model is graphically presented 

in Figure 3.1. 

 

Figure 3.1: Graphical representation of the NV model 

Based on the above description, the buyer’s expected profit at t0 is  

 

( )   ( )

  ( )

0

( )

( )

nvo

nvo

Q

nvb nvo nvo b nvo

nvo nvo

Q

PFT Q wQ r v Q f d

rQ p Q f d

   

  


= − + + −

+ − −




  

The first term represents the purchase cost. The second term is the revenues from 

selling and salvage when the buyer’s order quantity meets the actual demand. The 

third term is the selling revenue and shortage cost when the buyer’s order quantity 

does not satisfy the actual demand. 

The buyer’s problem is to maximize the profit by choosing the appropriate order 

quantity Qnvo at the beginning of the planting season t0. 

 ( )max nvb nvoPFT Q   

subject to 0nvoQ    
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Taking the derivative of ( )nvb nvoPFT Q  with respect to Qnvo and equating it to zero, 

we get the following optimality condition: 

 ( )=nvo

b

r p w
F Q

r p v

+ −

+ −
 (3.1) 

If there exists a non-negative value of '

nvoQ  which satisfies equation (3.1), then the 

optimal order quantity is * '

nvo nvoQ Q= . 

The grower’s expected profit at t0 is 

 

( ) ( ) ( )

( ) ( )

0

nvo nvp

nvo nvp

Q Q

nvg nvp nvp nvo nvo nvp

g nvp nvo

Q Q

PFT Q cQ wQ g Q kQ k dk

v kQ Q k dk






= − + − −

+ −





  

The first term is the planting cost. The second term is the revenue received from 

the order. The third and fourth terms are the replenishment cost and the salvage 

revenue when the output quantity does not satisfy and meets the order, respectively.  

The grower’s problem is to maximize the profit by choosing the appropriate 

planting quantity Qnvp at the beginning of the planting season t0. 

 ( )max nvg nvpPFT Q   

subject to 0nvpQ    

Proposition 1. There exists a non-negative value of 
'

nvpQ  which satisfies equation 

(3.2), and the optimal planting quantity is * '

nvp nvpQ Q= . 

 ( ) ( )
0

nvo nvp

nvo nvp

Q Q

g
Q Q

g k k dk v k k dk c 


+ =   (3.2) 

Proof: See Appendix A.1. 
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3.2.3 The flexible operation mode with RAS 

This is a flexible operation mode with put options for a fresh FSC with RAS, i.e., 

SCPO model. At the beginning of the planting season t0,1, the grower provides a 

supply tariff (i.e., wholesale price w (exogenous variable), option price wo and 

exercise price wep.). With the supply tariff, the buyer determines the order policy (i.e., 

initial order Q0 and put options q0) based on the market demand forecast at t0,2. After 

that, considering the buyer’s order and random output rate, the grower determines 

the planting quantity Qop at t0,3. At the beginning of the selling season t1, according 

to the updated information, the buyer can exercise options qep at the unit exercise 

price wep to adjust the initial order quantity downward if necessary. Then, the grower 

delivers the final order Q0 - qep to the buyer and any unsatisfied order can be 

satisfied via the spot market. The grower’s surplus products can be stored in RAS, 

which can be salvaged at vg for each unit later. At the end of the selling season, the 

buyer obtains an additional cash inflow from salvaging unsold products or incurs a 

shortage cost. Graphical representation of SCPO model is presented in Figure 3.2. 

 

Figure 3.2: Graphical representation of the SCPO model 

In this model, it is assumed that wep ≤ w to ensure that the buyer can get back a 

full or partial refund if exercising options, and that vb ≤ wep – wo to ensure that the 

options are profitable for the buyer to exercise. To ensure the buyer’s incentive to 

purchase options, it is assumed wo ≤ w and r + p > w + wo. Let vg < wep ensure that 

the grower earns a profit from selling products rather than options.  
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The buyer’s problem 

The buyer’s problem is to determine the optimal values of Q0 and q0 at t0,2 and qep 

at t1. In order to solve the buyer’s problem at t0,2, we first analyze the optimal policy 

at t1. At the beginning of the selling season t1, the buyer has placed an initial order 

Q0 and purchased q0 options. With D =  observed, the buyer determines the 

quantity of options to be exercised qep in order to satisfy the demand during the 

selling season. Depending on the value of  , the buyer’s optimal quantity of options 

to be exercised at time t1 is  

 

0 0 0

*

0 0 0 0

00

ep

q if Q q

q Q if Q q Q

if Q



 



  −


= − −  




  

At t0, the buyer’s expected profit can be written as 

 

( ) ( )

( ) ( )   ( )

0 0

0

0 0 0

0 0 0 0 0 0 0

0

0 0 0

, ( )

( )

Q q

ob o ep b

Q

ep

Q q Q

PFT Q q wQ w q w q r v Q q f d

w Q r f d rQ p Q f d

   

      

−



−

 = − − + + + − − 

 + − + + − − 



 

  

The first and second term represents the purchase costs of the initial order and put 

options. The third, fourth and fifth terms are the expected profits during the selling 

season when the actual demand   is in the intervals (0, Q0 - q0), [Q0 - q0, Q0] and 

(Q0,  ), respectively. When   is in the interval (0, Q0 - q0),  < Q0 - q0 holds, i.e., 

even if the buyer exercises all options q0, the demand is smaller than the final order 

quantity Q0 - q0. Thus, the buyer inevitably holds overage inventory. The fourth and 

fifth terms can be analyzed similarly. 

The buyer’s problem is to determine the number of the initial order Q0 and the 

number of options purchased q0 to maximize the profit function during the planning 

horizon. 

( )0 0max ,obPFT Q q   
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subject to 
0 00 0Q q ，   

Differentiating ( )0 0,obPFT Q q  with respect to Q0 and q0, respectively, and 

equating them to zero, we get the optimal solution at t0 as described in Proposition 

2. 

Proposition 2. If there exist non-negative values of '

0Q  and '

0q  which satisfy 

 ( )0
o

ep

r p w w
F Q

r p w

+ − −
=

+ −
 (3.3) 

and 

 ( )0 0

ep b

o

w v
F Q q

w

−
− =  (3.4) 

then the optimal initial order is 
0

* '

0Q Q=  and the optimal number of put options 

purchased is 
0

* '

0q q= . 

Proof: See Appendix A.2. 

 

The grower’s problem 

The grower’s problem is to determine the optimal values of wo and wep at t0,1, and 

then to determine the planting quantity Qop at t0,3. In order to solve the grower’s 

problem at t0,1, we first analyze the optimal planting quantity. At t0,3, after receiving 

the order from the buyer, the grower determines the optimal planting quantity 

considering the random output rate. Depending on the values of the actual demand 

  and the output rate k at t1, six cases can be derived in Table 3.2.  
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Table 3.2: Six cases for values of demand   and output rate k at t1 

No. Intervals of  , k 
Buyer’s final 

order quantity 

Overage inventory  

or shortage for the grower 

1   0 0,
op

kQ Q q  −  Q0 - q0 Shortage 

2 
0 0 op

Q q kQ  −   Q0 - q0 Overage inventory 

3  0 0 0
,

op
Q q kQ Q−      Shortage 

4  0 0 0
,

op
Q q Q kQ−      Overage inventory 

5 0op QkQ    Q0 Shortage 

6  0
,

op
Q kQ  Q0 Overage inventory 

 

At t0,3, the grower determines the planting quantity Qop to maximize the profit 

function as below 

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( )

0 0

0 0

0 0

0

0 0

)

0 0 0

0

0

0 0

)

0

0

max

max
( )

og

op

op

op

op
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Q q Q
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Q q Q

Q
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

 



  

 
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

−



−
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 
+  

  + − −  
 

 =
 − − + − −  

 
+  

 + −
 
 

+ −
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


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 
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  

 

subject to 0opQ   

Taking the derivative of ( )
og opPFT Q  with respect to Qop and equating it to zero, 

we get the optimal planting quantity at t0,3 as described in Proposition 3. 
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Proposition 3. There exists a non-negative value of 
'

opQ  which satisfy the equation 

(3.5), and the optimal planting quantity is 
* '

op opQ Q= . 

( ) ( )

( ) ( )
( )

( ) ( )

( )

0 0

0

0

0

0 0

0

0

op

op

op

op

op

op

Q q Q

Q Q
Q

g g Q
Q Q

Q Q

F Q q k k dk

v k k dk g v c g k k dk

F Q k k dk







 



−



 
− 

 
+ − = − 

 
+ 
  



 



 (3.5) 

Proof: See Appendix A.3. 

At t0,1, the grower’s problem is to find the optimal supply tariff by solving the 

optimization equation: 

 ( ) ( )
0, 0 0max , = max

ogog t o ep o opPFT w w wQ w q Q + +
    

subject to 0 0o epw w ，  

The closed-form solutions for wo and wep are difficult to derive since Qo and q0 are 

functions of wo and wep.
 
Therefore, we use numerical experiments to analyze the 

optimal supply tariff. 

To obtain closed-form solutions of the buyer’s order policy and the grower’s 

planting quantity, we demonstrate the above two models in a case of uniformly 

distributed demand and output rate below. 

3.3   Justification of the proposed model 

In this section, we analyze a special case where demand and output rate are both 

uniformly distributed. At t0, the grower knows the output rate K follow uniform 

distribution over interval [n, m]. And the buyer knows that demand D is uniformly 

distributed over [ ,   − + ]. After harvesting, the grower specifies K as a value k. 

Just before delivery, the buyer specifies the D as a value   with the updated 

demand information. The pdf and cdf of   and K are as follows. 
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( )  

( )  

1
, ,

2

, ,
2

f

F

     


  
     



=  − +

− +
=  − +

 

( )  

( )  

1
, ,

, .

k k n m
m n

k n
k k n m

m n

 = 
−

−
 = 

−

 

In this model, considering the grower neither holds overage inventory nor is out 

of stock absolutely, we have nvo nvo
nvp

Q Q
Q

m n
   in NV model and 

0 0 0
op

Q q Q
Q

m n

−
   in SCPO model. 

3.3.1 The traditional operation mode with RAS 

At t0, the buyer’s problem is to maximize the profit function ( )nvb nvoSPFT Q  by 

choosing the appropriate order quantity Qnvo.  

( )

  ( )

  ( )

( )

max max

( )

nvo

nvo

Q

nvo b nvo

nvb nvo

nvo nvo

Q

wQ r v Q f d

SPFT Q

rQ p Q f d

 

 

   

  

−

+

 
− + + − 
 

=  
 
+ − −
 
 





 

Taking the derivative of  ( )nvb nvoSPFT Q  with respect to Qnvo, the buyer’s optimal 

order quantity is obtained: 

 
( )*

2
=

b

nvo

b

w v
Q

r p v


 

−
+ −

+ −
 (3.6) 

At t0, the grower’s problem is to maximize the profit function ( )nvg nvpSPFT Q  by 

choosing the appropriate planting quantity Qnvp.  
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( )
( ) ( )

( ) ( )

max max

nvo nvp

nvo nvp

Q Q

nvp nvo nvo nvp

n

nvg nvp m

g nvp nvo

Q Q

cQ wQ g Q kQ k dk

SPFT Q

v kQ Q k dk





 
− + − − 
 

=  
 + −
 
 





 

Taking the derivative of  ( )nvg nvpSPFT Q  with respect to Qnvp, the grower’s optimal 

planting quantity is described in Proposition 4. 

Proposition 4. The grower’s optimal planting quantity is defined as 

 
*

1

1 1

1

=

   

     

   

nvp

nvo nvo
nvp

nvo nvo
nvp nvp

nvo nvo
nvp

Q

Q Q
if Q

m m

Q Q
Q if Q

m n

Q Q
if Q

n n







 






  

where 

 1 2 2 2( )

g

g

nvp nvo

g v
Q

v
Q

gn m m n c

−
=

− + −
  

Proof: See Appendix A.4. 

3.3.2 The flexible operation mode with RAS 

The buyer’s problem 

Based on the description in Section 3.2.3, the buyer’s expected profit at t0,2, can 

be written as 

( ) ( )

( ) ( )   ( )

0 0

0

0 0 0

0 0 0 0 0 0 0

0 0 0

, ( )

( )

Q q

ob o ep b

Q

ep

Q q Q

SPFT Q q wQ w q w q r v Q q f d

w Q r f d rQ p Q f d

 

 

   

      

−

−

+

−

 = − − + + + − − 

 + − + + − − 



 

 

The buyer’s problem is to determine the number of the initial order Q0 and the 
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number of options purchased q0 to maximize the profit function during the planning 

horizon. Differentiating ( )0 0,obSPFT Q q  with respect to Q0 and q0, respectively, and 

equating them to zero, we derive the optimization conditions as 

 0

2 ( )o ep

ep

w w w
Q

p r w


 

+ −
= + −

+ −
 (3.7) 

 
( )0

2 ( ) 2o o

ep b ep

p r w w w
q

p r w v w

 + − −
= +

+ − −
 (3.8) 

It can be readily proved that Q0 > 0. On the other hand, to obtain q0 > 0, we need 

the following inequality 

 
( )( )ep b

o

b

w v p r w
w

p r v

− + −


+ −
 (3.9) 

If the inequality (3.9) holds, the optimal initial quantity *

0Q  and the optimal 

quantity of put options purchased *

0q  follow the equation (3.7) and equation (3.8), 

respectively. 

Otherwise, the optimal *

0 0q =  and * *

0 nvoQ Q=  as in the equation (3.6). 

Proposition 5. The buyer’s optimal policy for Q0 and q0 satisfies the following 

properties: 

(i) Q0 increases with wep and p, and decreases with wo. 

(ii) q0 increases with wep, 𝛽 and p, and decreases with wo and vb. 

Proof: See Appendix A.5. 

 

The grower’s problem 

At t0,3, after receiving the order from the buyer, the grower determines the optimal 

planting quantity. Depending on the values of Q0 and q0, four planting plans are 

derived as follows. 
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Plan 1. 0 0 0op opQ q nQ mQ Q−    . 

In this case, the output quantity cannot fulfill the initial order but can satisfy the 

firm order quantity (Q0 - q0) from the buyer. Here, depending on the values of the 

actual demand   and the output rate k at t1, six cases can be derived as shown in 

Table 3.3. 

Table 3.3: Six cases for values of demand   and output rate k at t1 in plan 1 

No. Intervals of  , k 
Buyer’s final order 

quantity 

Overage inventory or 

Shortage for the grower 

1 0 0 opQ q kQ  −   Q0-q0 Overage inventory 

2 0 0 0opQ q nQ Q−       Overage inventory 

3 0 0 0opQ q kQ Q−       Shortage 

4 0 0 0opQ q kQ Q−       Overage inventory 

5 0opmQ Q     Shortage  

6 0opkQ Q    Q0 Shortage 

 

The grower determines the optimal planting quantity Qop to maximize the profit 

function 

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

1

0 0 0

0

0

max

( ) ( )

max ( ) ( )

og

op

op op

op op

op

Q q m

op ep g op

n

nQ m

ep g op

Q q n

mQ Q m

ep op g op

nQ n Q

SPFT Q

cQ w q v kQ Q q k dk f d

w Q v kQ k dk f d

w Q g kQ k dk v kQ k dk f d

 





  

    

      

−

−

−

 
 − + − + − −  

 

 
+ − − + − 

 

  
 = + − − + − − + −  

  

+

 

 

  

( ) ( ) ( )

( ) ( ) ( )

0

0

0

0

( )

op

Q m

ep op

mQ n

m

op

Q n

w Q g kQ k dk f d

g Q kQ k dk f d

 

    

  
+

 
 
 
 
 
 
 
 
 
 
 
 

   − − + − −   
  

  
  + − −     

 

 

 

subject to 0 0 0
op

Q q Q
Q

n m

−
   
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Plan 2. 0 0 0op opnQ Q q Q mQ −   . 

Here, the maximum output quantity is higher than the initial order whereas the 

minimum output quantity is lower than the firm order (Q0 - q0). Six cases can be 

derived as shown in Table 3.2. 

The grower determines the optimal planting quantity Qop to maximize the 

expected profit function 

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( )

0 0

0 0

0 0

0

0 0

2

)

0 0 0

0 0

)

0

max

( )

max

og

op

op

op

op

op

Q q Q

ep opQ q

n

op m

g op

Q q Q

Q

ep opQ

n

m

Q q

g op

Q

SPFT Q

w q g Q q kQ k dk

cQ f d

v kQ Q q k dk

w Q g kQ k dk

f d

v kQ k dk

 







 



  



 

−

−

−

−

−

 
 − + − − −  

 
− +  

  + − −  
 

 
 − − + − −  

 
= +  

 + −
 
 











（

（

( ) ( ) ( ) ( ) ( )
0

0 0

0 0

op

op

Q Q m

op g op

Q n Q Q

g Q kQ k dk v kQ Q k dk f d

 



   
+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

  + − − + −  
    
  

 

subject to 0 0 0
op

Q Q q
Q

m n

−
   

Plan 3. 0 0 0op opnQ Q q mQ Q −   . 

In this plan, the initial order is higher than the maximum output quantity while the 

minimum output quantity is lower than the firm order. Here, six cases can be derived 

as shown in Table 3.4. 
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Table 3.4: Six cases for values of demand   and output rate k at t1 in plan 3 

No. Intervals of  , k 
Buyer’s final  

order quantity 

Overage inventory or 

shortage for the grower 

1   0 0,
op

kQ Q q  −  Q0 - q0 Shortage 

2 
0 0 op

Q q kQ  −   Q0 - q0 Overage inventory 

3  0 0
,

op opQ q kQ mQ−      Shortage 

4 
0 0 opQ q kQ−      Overage inventory 

5 
0op QmQ      Shortage 

6 0opkQ Q    Q0 Shortage 

 

The grower determines the optimal planting quantity Qop to maximize the profit 

function 

( )

( ) ( )
( )

( ) ( )
( )

( )

( ) ( ) ( )

( ) ( )

( )

0 0

0 0

0 0

0 0

3

/

0 0 0

0 0

/

/

0

/

max

g

max

og

op

op

op

op

op

op

Q q Q

ep opQ q

n

op m

g op

Q q Q

Q

ep opmQ

n

m

Q q

g op

Q

SPFT Q

w q Q q kQ k dk

cQ f d

v kQ Q q k dk

w Q g kQ k dk

f d

v kQ k dk

 







 



  



 

−

−

−

−

−

 
 − + − − − 
 

 
− +  

  + − −  
 

 
 − − + − −  

 
= +  

 + −
 
 











( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

0

0

op

Q m

ep op

mQ n

m

op

Q n

w Q g kQ k dk f d

g Q kQ k dk f d

 



    

  
+

 
 
 
 
 
 
 
 
 
  
 
 
 
 
  
  + − − + − −    
 
  

 + − −    
    

 

 
 

subject to 0 0 0 0 0,op

Q q Q q Q
Q

m n m

− − 
   

 
 

Plan 4. 
0 0 0op opQ q nQ Q mQ−    . 
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In this case, the maximum output quantity is higher than the initial order while the 

firm order is lower than the minimum output quantity. Six cases can be derived in 

Table 3.5. 

Table 3.5: Six cases for values of demand   and output rate k at t1 in plan 4 

No. Intervals of  , k 
Buyer’s final  

order quantity 

Overage inventory or 

shortage for the grower 

1 0 0 opQ q kQ  −   Q0-q0 Overage inventory 

2 0 0 0op
Q q nQ Q−      Overage inventory 

3 0 0 0op
Q q kQ Q−      Shortage 

4  0 0 0
,

op
Q q Q kQ−      Overage inventory 

5 0op QkQ    Q0 Shortage 

6  0
,

op
Q kQ  Q0 Overage inventory 

  

The grower determines the optimal planting quantity Qop to maximize the profit 

function 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

0 0

0 0

0

4

0 0 0

0

/

0

/

0

max

max

og

op

op

op

op

op

Q q m

op ep g op

n

nQ m

ep g op

Q q n

Q

ep opQ

n

m

nQ

g op

Q

SPFT Q

cQ w q v kQ Q q k dk f d

w Q v kQ k dk f d

w Q g kQ k dk

f d

v kQ k dk

g Q

 





  

    

  

 

 

−

−

−

 
 − + − + − −  

 

 
+ − − + − 

 

 
 − − + − − =  

 
+  

 + −
 
 

+ −

 

 






( ) ( ) ( ) ( ) ( )
0

0 0

/

0

/

op

op

Q Q m

op g op

Q n Q Q

kQ k dk v kQ Q k dk f d

 

   
+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 − + −   

    
  
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subject to 0 0 0 0, op

Q q Q Q
Q

n m n

− 
  

 
 

Taking the derivative of ( )
og

j

opSPFT Q with respect to Qop in plan j (j = 1,2,3,4), 

the grower’s optimal planting quantity *

,op jQ  is described in Proposition 6. 

Proposition 6. The grower’s optimal planting quantity *

,op jQ  in plan j is defined as 

below. 

(i) In plan 1, the optimal planting quantity is 

 

0 0 0 0
,1

* 0 0 0
,1 ,1 ,1

0 0
,1

        

              

               

op

op op op

op

Q q Q q
if Q

n n

Q q Q
Q Q if Q

n m

Q Q
if Q

m m

− −



−

=  






 

where 

( ),1 2 2

3( ) ( ) ( ) 12c

2 ( )

g g

op

g

n m g v g v
Q

n m nm g v

   + − + + − 
=

+ + −
 

(ii) In plan 2, the optimal planting quantity is 

0 0
,2

* 0 0 0
,2 ,2 ,2

0 0 0 0
,2

 

             

        

op

op op op

op

Q Q
if Q

m m

Q Q q
Q Q if Q

m n

Q q Q q
if Q

n n





−

=  


− −




 

where 
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( ) ( ) ( ) ( )

( )

3 2 2

0 0 0 0 0 0 0

,2 2 2

2 6 6 3

6 2

g

op

g

v g q q Q q Q q q
Q

gn v m c m n

    



 − + − − − + + − 
=

 − + − 

 

(iii) In plan 3, the optimal planting quantity is 

0 0 0 0
,3

* 0 0 0 0 0
3 ,3 ,3

0 0 0 0 0 0
,3

                        

                              ,

min ,        ,

op

op op op

op

Q q Q q
if Q

m m

Q q Q q Q
Q Q if Q

m n m

Q q Q Q q Q
if Q

n m n m

 − −



 − − 

=    
 

 − −   
   

   

 

where 

 

1 2

3
, 1

2 3
3

9

i i
op i i

i

i i

B B
Q E

A
A E

= + + ,  (i = 3, 4)                                        (3.10)            

3

3 2( )gA g v m= −  

2 2 2

3 3 ( ) 3 ( ) 2 4 ( )g gB g v m g v m gn c m n   = − + + − − −   

( )( ) ( )
2

3 0 0 0 03 3 2 2gC g v Q q Q q = − − − − +  

3

4 2( )gA g v n= −  

2 2 2

4 3 ( ) 3 ( ) 2 4 ( )g g gB g v n g v n v m c m n   = − + + − + −   

( ) ( )2

4 0 03 2 3gC g v Q Q = − − +  

(iv) In plan 4, the optimal planting quantity is  



 

38 

 

0 0 0 0 0 0
,4

* 0 0 0 0
,4 ,4 ,4

0 0
,4

max ,        ,

                             ,
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where 
,4opQ  can be found in equation (3.10). 

Proof: See Appendix A.6. 

At t0,3, the grower’s optimal planting quantity *

opQ  is defined as following: 

(i) When ( )0 0 0m Q q nQ−  , *

opQ  takes one of * *

1 3,op opQ Q， ，
and *

4opQ ，
 that 

maximizes the grower’s expected profit. 

(ii) When ( )0 0 0m Q q nQ−  , *

opQ  takes one of * *

2 3,op opQ Q， ，
and *

4opQ ，
that 

maximizes the grower’s expected profit. 

At t0,1, the grower’s problem is to find the optimal supply tariff to maximize the 

following formula, 

 ( ) ( )
0, 0 0max , max

og

j j

og t o ep o opSPFT w w wQ w q G Q = + +
   

subject to 0 0o epw w ，  

Let ( )* *

, ,,o j ep jw w  denote the optimal supply tariff for the grower in plan j. The 

optimal supply tariff ( )* *,o epw w  takes one of value among ( )* *

,1 ,1,o epw w  , ( )* *

, 2 , 2,o epw w  , 

( )* *

, 3 , 3,o epw w  and ( )* *

, 4 , 4,o epw w  that maximizes the grower’s expected profit. Similarly, 

we analyze the optimal supply tariff in numerical experiments. 
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 3.4   Numerical experiments 

In this section, we first examine the effectiveness of the proposed model, and then 

analyze to what extent, the SCPO model under various parameters and also the RAS 

can improve the profits for the grower and also for the buyer. The parameter settings 

are as follows: c = 30, n = 0.4, m = 1, g = 85, vg = 20, w =80, r = 150, p = 150, vb = 0, 

γ = 1000 and β = 500. When analyzing a parameter, the values of the others are kept 

at the initial setting as shown above. For each parameter set, the optimal solution 

and the corresponding expected profit are calculated. What’s more, to evaluate the 

improvement when using SCPO for the grower and the buyer, respectively, we 

compute the two ratios, 

'

'
B

NV

Buyer s profit

Buyer s profit


 =  and 

'

'
G

NV

Grower s profit

Grower s profit


 =  

where 

' ' 'SCPO NVBuyer s profit Buyer s profit Buyer s profit = −  

' ' 'SCPO NVGrower s profit Grower s profit Grower s profit = −  

3.4.1 Performance comparison for models 

We propose the SCPO model with three conditions: random yield, optimal supply 

tariff and RAS. To prove the effectiveness of the proposed model, we use the 

traditional operation mode under the same conditions as a benchmark and compare 

participants’ performances for SCPO model with only two of these three conditions 

as below. 

(i)  SCPO model without considering random yield.  
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In this case, the grower’s optimal planting quantity is Qp = 1318 (See Appendix 

A.7 for the formula) while the optimal planting quantity in our model is equal to 

1518. 

(ii)  SCPO model without considering the supply tariff as decision variables.  

In this case, we set the supply tariff (wo, wep) to (4, 22) while the optimal supply 

tariff obtained in our model is (5, 21). 

(iii) SCPO model without considering RAS.  

In this case, we set the salvage price of unsold products to 0 (vg = 0) while the 

salvage price of unsold products stored in RAS may be increased to 20 (vg = 20). 

Figure 3.3 presents expected profits of the grower and the buyer for different 

models with various conditions, and Figure 3.4 shows the grower’s optimal planting 

quantity and the buyer’s optimal order policy in the proposed and the traditional 

models. From Figure 3.3, we find that the grower’s performance of the proposed 

SCPO model is better than that of the traditional operation mode and also than that 

of SCPO model with other conditions, from which we can conclude that the 

proposed SCPO model is effective for the grower. And with rural cold storages, the 

grower can get affluent. Moreover, compared with traditional operation mode, the 

proposed SCPO model enhances both the grower’s and the buyer’s profits. 

Interestingly, in the proposed SCPO model, the grower’s profit may be higher than 

the buyer’s profit. From Figure 3.4, we observe that the grower receives a larger 

order from the buyer while plants less fruits. Obviously, the proposed SCPO model 

is more beneficial to the grower, which protects the grower’s profit. 
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Figure 3.3: Expected profit vs. supply contracts 

 

Figure 3.4: Solutions of SCPO and traditional models 

3.4.2 Sensitivity analysis 

Effect of the salvage price of products stored in RAS vg 

Figure 3.5, Table 3.6 and Figure 3.6 present the optimal quantities, optimal supply 

tariff and corresponding expected profits under various values of vg, respectively. 
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The corresponding ratios △ under different values of vg are plotted in Figure 3.7. 

We vary vg from 0 to 25, which satisfies the assumption gc k v  in Section 3.2.1.  

From Figure 3.5, we observe that with the SCPO model, as vg increases, the 

grower’s loss from salvage decreases. The grower tends to increase the planting 

quantity Qop because the loss from overage inventory decreases. However, the 

increasing risk related to overage inventory makes the grower increase the option 

price wo, as shown in Table 3.6, to compensate for the planting cost. At the same 

time, to keep the options attractive, the exercise price of the put option wep also 

increases, which enables the buyer to obtain a larger refund when exercising the 

options. As a result, the buyer increases the initial order Q0. However, the variation 

of the option quantity q0 is unclear because q0 is decreasing in wo and increasing in 

wep, according to Proposition 5. Moreover, a higher salvage value vg means a higher 

preservation level of RAS. We observe that the preservation level enhances the 

grower’s enthusiasm for planting.  

The corresponding expected profit increases as shown in Figure 3.6. The grower’s 

profit increases because of the high salvage value vg and the possible high order 

quantity from the buyer. Two conflicting effects affect the buyer’s profit. One is that 

the increase in wep enables the buyer to have more flexibility to respond to uncertain 

demand, hence the profit increases. Another effect is the higher option purchase cost 

due to the increasing wo. As a result, the buyer’s profit increases. Moreover, in Figure 

3.7, we can see that the SPCO model is more beneficial to the grower. Using SCPO 

model, the improvements for the grower △G  and the buyer △B can be up to 29% 

(when vg = 0) and 7.5% (when vg = 25), respectively.  
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Figure 3.5: Variation of optimal policy function of vg 

Table 3.6: Effect of vg on the grower’s optimal supply tariff 

vg 0 5 10 15 20 25 

wo 1 1 2 3 5 7 

wep 5 6 11 16 21 26 

 

Figure 3.6: Variation of expected profit function of vg 
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Figure 3.7: Variation of the ratio function of vg 

 

Effect of the spot market price g 

Figure 3.8, Table 3.7 and Figure 3.9 present the optimal quantities, optimal supply 

tariff and corresponding expected profits under various values of g, respectively. The 

corresponding ratios △ under different values of g are plotted in Figure 3.10. We 

vary g from 80 to 105, which satisfies the assumption g c k  in Section 3.2.1.  

From Figure 3.8, we observe that with the SCPO model, as g increases, the 

grower’s purchase cost in the spot market increases. The grower tends to increase 

the planting quantity Qop because the purchase cost in the spot market increases. To 

avoid the risks associated with the increased planting quantity, the grower keeps the 

exercise price of the put option wep at the lowest value, i.e., wep = vg + 1 = 21 and 

also keeps the option price wo unchanged to attract the buyer to purchase options as 

shown in Table 3.7. As a result, both the initial order Q0 and the number of 
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purchased options q0 also keep unchanged. The corresponding expected profit 

changes as shown in Figure 3.9. The grower’s profit decreases because of the high 

spot market g while the buyer’s expected profit is not affected. Moreover, in Figure 

3.10, we can see that when using SCPO model, the improvement for the grower △G  

and that for the buyer △B can be up to 28% (when g = 65) and 7%, respectively. 

 

 

Figure 3.8: Variation of optimal policy function of g 

 

Table 3.7: Effect of g on the grower’s optimal supply tariff 

g 80 85 90 95 100 105 

wo 5 5 5 5 5 5 

wep 21 21 21 21 21 21 
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Figure 3.9: Variation of expected profit function of g 

 

Figure 3.10: Variation of the ratio function of g 

Effect of the shortage cost p 

Figure 3.11, Table 3.8 and Figure 3.12 present the optimal quantities, optimal 

supply tariff and corresponding expected profits under various values of p, 
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respectively. The corresponding ratios △ under different values of p are plotted in 

Figure 3.13. We vary p from 50 to 550.  

From Figure 3.11, we observe that with the SCPO model, as p increases, the 

shortage cost of the buyer increases. As p increases 50 to 550, the buyer tends to 

increase the initial order Q0 to avoid the expensive shortage cost and increase the 

number of purchased options q0 to decrease the overage risk. Knowing this, the 

grower keeps the exercise price of the put option wep at the lowest value, i.e., wep = vg 

+ 1 = 21 and increases the option price wo to prevent the buyer from over-purchasing 

options that may be realized as shown in Table 3.8. The increase in the planting 

quantity Qop is due to receiving a larger order. It is worth noting that when the 

shortage cost is low, i.e., p = 50, the options are less attractive to the buyer. The 

grower would set the exercise price of the put option wep at the highest value, i.e., 

wep = w = 80. Also, the grower increases the option price wo to transfer more risk to 

the buyer. As a result, the buyer increases the firm order quantity (Q0 - q0), and then 

the grower increases the planting quantity Qop.  

The corresponding expected profit changes as shown in Figure 3.12. The buyer’s 

expected profit decreases because of the increasing shortage cost while the grower’s 

expected profit increases because of receiving a larger order. Furthermore, the 

grower's expected profit may be higher than that of the buyer when the shortage cost 

p is high. We can conclude that the grower benefits from the buyer’s risk aversion. 

In Figure 3.13, we can see that when p = 550, the improvement in SCPO model for 

the grower △G  and that for the buyer △B can be up to 31% and 10%, respectively. 

We can conclude that the higher the shortage cost, the more beneficial the SCPO 

model is for supply chain participants. 
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Figure 3.11: Variation of optimal policy function of p 

 

Figure 3.12: Variation of expected profit function of p 

Table 3.8: Effect of p on the grower’s optimal supply tariff 

p 50 150 250 350 450 550 

wo 28 5 6 6 6 7 

wep 80 21 21 21 21 21 
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Figure 3.13: Variation of the ratio function of p 

 

Effect of uncertainties of the yield and the demand 

Figure 3.14, Table 3.9 and Figure 3.15 present the optimal quantities, optimal 

supply tariff and corresponding expected profits under different yield and demand 

uncertainties, respectively. The uncertainty is set to three levels, i.e., Ly: Low, My: 

Medium and Hy: High (y = K, β). The output rate K is uniformly distributed with 

mean 0.7. The yield uncertainty denoted as (n, m) decreases from (0.2, 1.2) to (0.6, 

0.8) by a step of 0.2 for both n and m. The demand uncertainty denoted as β 

increases from 100 to 900 by a step of 400. 

As the yield uncertainty decreases, i.e., from HK to LK, we notice that in Figure 

3.14, the grower would increase the planting quantity Qop. The grower increases the 

option price wo to transfer the risk of planting to the buyer and keeps the exercise 

price of the put option wep at the lowest value, i.e., wep = vg + 1 = 21 as shown in 

Table 3.9. As a result, the buyer decreases the number of purchased options q0. The 
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corresponding expected profits are shown in Figure 3.15. The grower’s expected 

profit increases due to the low yield uncertainty while the buyer’s expected profit 

decreases because he has less flexibility to respond to uncertain demand. We can 

conclude that with high yield uncertainty, the grower provides more flexibility. It is 

worth noting that with low yield uncertainty and medium/high demand uncertainty 

(Cases: MβLK and HβLK), the grower would prefer Plan  1 

(
0 0 0op opQ q nQ mQ Q−    ) in Section 3.2.2 where the output quantity cannot 

fulfill the initial order Q0 but can satisfy the firm order quantity (Q0 - q0) from the 

buyer, whereas prefer Plan 2 (
0 0 0op opnQ Q q Q mQ −   ) in other cases. 

As the demand uncertainty increases, i.e., from Lβ to Hβ, we observe that in Figure 

3.14, the buyer tends to increase the initial order Q0 to avoid the expensive shortage 

cost, and to increase the number of purchased options q0 to decrease the overage risk. 

Knowing this, the grower keeps the exercise price of the put option wep at the lowest 

value, i.e., wep = vg + 1 = 21 and increases the option price wo to prevent the buyer 

from over-purchasing options that may be realized as shown in Table 3.9. However, 

when the demand uncertainty is high and the yield uncertainty is medium (Case 

HβMK in Table 3.9), the grower would increase the exercise price of the put option 

wep to keep options attractive. As a result, the buyer increases both the initial order 

quantity and the number of put options. From Figure 3.15, we can see that the 

buyer’s expected profit decreases because of the increasing demand uncertainty 

while the grower’s expected profit increases because of receiving a larger order. We 

can conclude that the higher the demand uncertainty, the more attractive the SCPO is 

to the buyer. 

From Table 3.9, we observe that with low demand uncertainty and high yield 
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uncertainty (Case LβHK), the grower tends to provide more flexibility by decreasing 

the price of put option. And in Figure 3.15, the grower gets a high profit when the 

yield uncertainty is low and demand uncertainty is high (Case HβLK) while the buyer 

gets a high profit when the yield uncertainty is high and demand uncertainty is low 

(Case HβLK). We can conclude that participants benefit from each other’s risk 

aversion. Moreover, the improvement in SCPO model for the grower △G can be up 

to 53% and that of the buyer △B can be up to 29% when both the yield and the 

demand uncertainties are high (Case HβHK). We can conclude that the higher the 

uncertainties of the yield and demand, the more beneficial the SCPO model is for 

supply chain participants. 

 

Figure 3.14: Optimal policy vs. yield and demand uncertainties 
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Table 3.9: Effect of yield and demand uncertainties on the grower’s optimal supply 

tariff  

 

Lβ 

β = 100 

Mβ 

β = 500 

Hβ 

β = 900 

HK 

(0.2, 1.2) 
(4, 21) (4, 21) (5, 21) 

MK 

(0.4, 1) 
(4, 21) (5, 21) (7, 22) 

LK 

(0.6, 0.8) 
(5, 21) (6, 21) * (6, 21) * 

* In this case, the grower would prefer Plan 1. 

 

Figure 3.15: Variation of expected profit function vs. yield and demand uncertainties 

 

The grower’s profit sensitivity analysis 

This section is to examine in an example how parameters affect the grower’s 

profit, which parameter may affect the profit the most largely and which is valuable 

for the grower to invest if SCPO has been adopted. We set the basic parameters as 
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follows: c = 30, n = 0.4, m = 1, g = 85, vg = 10, w =80, r = 150, p = 50, vb = 0, γ = 

1000 and β = 500. 

We compare how the grower’s salvage price vg, the spot market price g, the 

shortage cost for the buyer p and the variation of the output rate affect the supplier’s 

expected profit, respectively. And we do the comparison by increasing vg, p, m-n and 

decreasing g by 6 steps from 10%~60% with a step of 10%, respectively. The values 

of m and n are changed to keep the mean of K (i.e., 
2

m n−
) constant. The 

corresponding profits are shown in Figure 3.16. From Figure 3.16, we observed that 

the most influential parameter on profit is the spot market price g. For all the 

parameters, the effect order is the spot market price, the yield uncertainty, the 

shortage cost for the buyer and the grower’s salvage price. We can conclude that the 

grower should reduce the purchase cost in the spot market and invest to improve the 

planting technology and management in order to keep the output rate in a small 

range. 

 

Figure 3.16: The grower’s expected profit vs. parameters 
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3.5   Chapter summary 

In this chapter, we modeled a single-period, two-stage contract with put options 

(SCPO) in a fresh fruit supply chain (FSC) with regular atmosphere storages (RAS). 

Put options give the buyer the right, but not the obligation, to decrease the initial 

order, one for each option. At the beginning of the planning horizon, the buyer 

places an initial order and purchases put options with a preliminary demand forecast. 

Considering the buyer’s order and the random yield, the grower determines the 

planting quantity. During the planting season, the buyer updates the demand forecast. 

At the beginning of the selling season, the buyer exercises put options if necessary. 

Then, the grower delivers the final order and stores surplus products in RAS to 

extend their shelf life, which incurs extra storage costs that can be recovered by 

salvaging at a higher price later. 

The proposed model was analyzed from both the grower’s and buyer’s 

perspectives. And the buyer’s and the grower’s profit functions were formulated, 

which were then used to derive the buyer’s optimal policies for the initial order and 

put options as well as the grower’s optimal policy for the planting quantity. The 

grower’s optimal supply tariff can be obtained only numerically. In particular, we 

obtained closed-form formulae to determine the buyer’s optimal order policy and the 

grower’s optimal planting quantity in a special case. We showed numerical 

experiments in which we examined the effectiveness of the proposed model and 

analyzed how the parameters vg, g, p and uncertainties of the yield and the demand 

influence the optimal policies and expected profits in such a supply chain. 

In the numerical analysis, some managerial insights in SCPO have been observed: 

1. The grower’s performance of the proposed SCPO model is better than that of 
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SCPO model with other conditions. Compared to the traditional operational 

mode, the proposed SCPO model can improve the grower’s and buyer’s 

performances, simultaneously. And the proposed SCPO model is more 

beneficial to the grower, which protects the grower’s profit. 

2. With rural cold storages, the grower can get affluent. A higher preservation 

level of RAS and a low yield uncertainty enhances a grower’s enthusiasm for 

planting. 

3. Supply chain participants benefit from each other’s risk aversion.  

4. The higher the demand uncertainty, the more beneficial the SCPO model is for 

supply chain participants. With high uncertainties of the yield and the demand, 

the grower’s and buyer’s profits can be enhanced up to 53% and 29%, 

respectively. 

5. With SCPO model, comparing parameters’ effect on expected profit, the spot 

market price may affect the grower’s profit most largely. 
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Chapter 4 

Flexible Operation Mode with 

Controlled Atmosphere Storage 

 

4.1   Introduction 

In Chapter 3, we prove that the SCPO contract can improve the grower’s profit in 

a fresh FSC with RAS. This chapter tries to provide a solution for the grower on 

how to plant, store and sell in a fresh FSC with CAS. The grower produces fresh 

fruits during planting season and sells them to a two-stage market, i.e., in-season and 

off-season. Our objective is to determine the grower’s optimal planting policy and 

optimal rental capacity of CAS. We also analyze how the parameters affect the 

behaviors and outcomes2. 

4.2   Model 

                       

 

2Partial content of this chapter has been accepted by Asian Journal of Management Science 

and Applications, 2023 
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4.2.1 Notation and assumptions 

Table 4.1 presents the parameters and decision variables throughout this chapter. 

we consider a single-period three-stage model in a fresh FSC with CAS under 

random yield and stochastic demand. The grower produces fresh fruits at Stage 1 

and then sells them to markets. Since CAS can mitigate the deterioration of fruits for 

several months, the selling season can be divided into two stages, i.e., selling season 

A (In-season, Stage 2) and selling season B (Off-season, Stage 3). The selling season 

A is to sell the fruits right after harvesting and the selling season B is to sell after 

storage. After harvesting, the grower rents capacity of CAS and divides the fruits 

into two groups, one group for the selling season A, and the other for the selling 

season B. Any unsold fruits for each stage may be salvaged by the grower. Note that 

the leftover at the end of the selling season A cannot be handed over to the selling 

season B due to the perishability. And CAS, as an external party, with enough 

storage capacity is available for the grower. 

Let K (K > 0) represent the random output rate in the planting season. The mean 

of K is k . The values of n and m are based on experience but excluding extreme 

cases such as disasters resulted in no harvest. Let Di (Di ≥ 0) represent the stochastic 

demand in the selling season i (i=A, B). At the beginning of the planting season, the 

grower knows the demand DA with distribution function ( )DAG   and the demand DB 

with distribution function ( )
DB XB

F  . The XB (XB ≥ 0) with distribution function ( )XBF   

is a location parameter of the conditional demand distribution of DB. For the output 

rate K, the grower knows its distribution function ( )  . After harvesting, with the 

updated demand information, the grower specifies K, the demand DA and the 
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location parameter XB as a value k, 
A  and xB, respectively. The updated parameter xB 

is with distribution function ( )
DB xB

F  . 

Table 4.1: Notation throughout Chapter 4 

Decision variables 

Qp Planting quantity in the FSC with CAS 

Qr Rental capacity of CAS 

Qnp Planting quantity in the FSC with CAS for in-season 

Parameters 

ri Unit retail price in the selling season i (i=A, B) 

pi Unit shortage cost in the selling season i 

vi Unit salvage price in the selling season i  

c0 Unit planting cost 

c1 Unit rental cost of CAS 

K The output rate (stochastic variable) 

n Minimum output rate during certain years 

m Maximum output rate during certain years 

k Determined value of K 

( )   Probability density function (pdf) of K 

( )   Cumulative density function (cdf) of K 

Di Demand in the selling season i (stochastic variable) 

i  Determined value of Di  

( )DAg   pdf of DA 

( )DAG   cdf of DA 

XB Location parameter of DB 

( )XBf   pdf of XB 

( )XBF   cdf of XB 

( )
DB xB

f   Conditional pdf of DB for XB = xB 

( )
DB xB

F   Conditional cdf of DB for XB = xB 
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The graphical representation of the model in the FSC with CAS is shown in 

Figure 4.1. At the beginning of the planting season t0, considering the random output 

rate and the forecasted two-stage demand in the selling season, the grower 

determines the planting quantity Qp at unit planting cost c0. During the planting 

season, the grower collects more demand information to update the two-stage 

demand forecast. At the beginning of the selling season t1, the grower determines the 

rental capacity for CAS at unit rental cost c1 to store part of the fruits based on the 

updated demand information. Then, the remained fruits are assigned to the selling 

season A. At t2, the beginning of the selling season B, the grower sells fruits stored 

in CAS. At the end of each stage in the selling season, the grower may salvage the 

unsold fruits or incur shortage cost.  

Throughout the paper, we assume rB - c1 > rA > 
0c k  to ensure that the sale after 

storage is profitable and that the grower has an incentive to plant, and let pB > pA 

because the loss of the margin on the sale after storage is larger than that right after 

harvesting. Let 
0c k  > {vA, vB - c1} to ensure the loss from overage inventory. 

 

Figure 4.1: Graphical representation of the model in Chapter 4 
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4.2.2 Formulation 

The costs are imposed two times. The first is at t0 when planting and the second is 

at t1 when renting capacity of CAS. We first formulate the profit function at t1.  

At t1, the grower’s profit function denoted by ( )
1

, , ,t p r A BPFT Q Q k x , which is the 

sum of the profit during the selling season A and the expected profit during the 

selling season B, can be formulated as, 

 
( ) ( ) ( )

( ) ( )

1

2

, , min ,

+E

t r A B A p r A A p r A

A A p r t B r B

PFT Q k x r kQ Q v kQ Q

p kQ Q PFT Q x

  



+

+

= − + − −

   − − −   

 (4.1) 

where 

 ( ) ( ) ( ) ( )
2 1E = min ,t B r B B r B B r B B B r B rPFT Q x E r Q D v Q D p D Q x c Q

+ +   + − − − −   
 

and 

 ( )  max 0,Z Z
+
=  

In equation (4.1), the first two terms are the revenues in the selling season A from 

sold and salvaged products, the third term represents the shortage cost in the selling 

season A, and the fourth term represents the expected profit in the selling season B 

which is the expected revenues of the grower coming from sold and salvaged 

products subtracting the expected shortage cost and the rental cost of CAS. 

At t0, the expected profit over the planning horizon can be expressed as 

 ( ) ( )
0 10 , ,

rt p p t A BPFT Q c Q E PFT Q K D X = − +
 
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The grower’s purpose is to maximize the expected profit, that is, 

 ( )
0

max t pPFT Q  

subject to 0pQ   

4.2.3 Optimal solution at t1 

At the beginning of the selling season t1, the grower knows the output quantity 

kQp. With DA = 
A  and XB = xB observed, the grower’s problem is to find the optimal 

rental capacity of CAS Qr to maximize the profit function ( )
1

, ,t r A BPFT Q k x  

during the selling season. According to the specified values of k, 
A  and xB, two 

cases are derived as below. 

Case 1. 
A pkQ  . 

In this case, the demand A  is larger than the output quantity kQp. Therefore, 

shortage occurs in the selling season A. The grower’s problem can be written as 

below, 

 ( ) ( ) ( ) ( ) 
21

1max , , max E
t r A B A p r A A p r t B r BPFT Q k x r kQ Q p kQ Q PFT Q x    = − − − − +   

 

Case 2. 
A pkQ  . 

In this case, whether the grower is in shortage or overage in the selling season A 

depends on the supply quantity reserved for the selling season B, which equals to the 

rental capacity of CAS. The grower’s problem can be written as below, 



 

62 

 

 ( )
( )

( )
1

1

1

1

3

2

max , ,
max , ,

max , ,
t

t r A B r p A

r A B

t r A B r p A

PFT Q k x if Q kQ
PFT Q k x

PFT Q k x if Q kQ

 


 

  −
= 

 −

 

where 

 ( ) ( ) ( )
21

2 , , E
t r A B A A A p r A t B r BPFT Q k x r v kQ Q PFT Q x    = + − − +    

Noting that ( ) ( )
1 1

1 2, , , ,t p A A B t p A A BPFT kQ k x PFT kQ k x   − = − , we know that 

the function ( )
1

3 , ,
t r A BPFT Q k x  is continuous.  

By solving the grower’s problem for the two cases, we derive the optimal solution 

which can be shown as below. 

Proposition 1. At t1, the optimal rental capacity of CAS *

rQ  is defined as following: 

(i) When 
A pkQ  , 

 

( )

( ) ( )

( )

1

*

1 1

1

0

0 0

p p B

r B B p

B

kQ if kQ s x

Q s x if s x kQ

if s x




=  




 

(ii) When 
A pkQ  , 

 

( )

( ) ( )

( ) ( )

( ) ( )

( )

1

1 1

*

1 2

2 2

2

0

0 0

p p B

B p A B p

r p A B p A B

B B p A

B

kQ if kQ s x

s x if kQ s x kQ

Q kQ if s x kQ s x

s x if s x kQ

if s x



 






−  


= −  − 


  −
 

 

                 where 

                        ( )j Bs x  (j = 1, 2) is characterized by ( )
D xB B

j B jF s x   =  . 
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1
1

( )
= B B A A

B B B

r p c r p

r p v


+ − − +

+ −
 

1
2 = B B A

B B B

r p c v

r p v


+ − −

+ −
 

( ) ( )1 2 <B Bs x s x  

Proof: See Appendix B.1. 

The corresponding maximum profit functions at t1 are described as following: 

(i) When 
A pkQ  , 

( )

( ) ( )

( )( ) ( )

( ) ( )

1

1 1

1

1

1

1* 1

1 1

1

1

, ,

, , , , 0

0 , , 0

t

t t

t

p A B p B

r A B B A B B p

A B B

PFT kQ k x if kQ s x

PFT Q k x PFT s x k x if s x kQ

PFT k x if s x



 



 



=  




  (4.2) 

(ii) When 
A pkQ  , 

 

( )

( ) ( )

( )( ) ( )

( ) ( ) ( )

( )( ) ( )

( ) ( )

1

1

1

1

1

1

3*

1

1

1

1 1

3

1 2

2

2 2

2

2

, ,

, ,

, ,

, ,

, , 0

0 , , 0

t

t

t

t

t

t

r A B

p A B p B

B A B p A B p

p A A B B p A B

B A B B p A

A B B

PFT Q k x

PFT kQ k x if kQ s x

PFT s x k x if kQ s x kQ

PFT kQ k x if s x kQ s x

PFT s x k x if s x kQ

PFT k x if s x





 

  

 



 

 −  



= −  − 


  −




 (4.3) 

4.2.4 Optimal solution at t0 

At t0, the grower’s problem is to determine the optimal planting quantity to 

maximize the total expected profit over the planning horizon. 

 ( ) ( ) ( ) 0 1 1

1* 3*

0max max , , , ,
r rt p p t A B t A BPFT Q c Q E PFT Q K D X PFT Q K D X = − + +

 
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subject to 0pQ   

To obtain the expected function at t1, with respect to the random variable XB, we 

get the equation (4.4) as below through mathematical manipulations (Wang and Tsao, 

2006). 

 ( ) ( )0j B j Bs x s x= +  (4.4) 

Substituting (4.2) and (4.3) by (4.4) and noting xB ≥ 0, we have the maximum 

profit functions at t1 after deformation as following: 

(i) When 
A pkQ  , 

 ( )

( ) ( )

( )( ) ( ) ( )

( ) ( )

1

1 1

1

1

1

1* 1

1 1 1

1

1

, , 0

, , , , 0 0

0 , , 0 0

t

t t

t

p A B p B

r A B B A B B p

A B B

PFT kQ k x if kQ s x

PFT Q k x PFT s x k x if s x kQ s

PFT k x if x s



 



 − 



= −   −


  −

 

(ii) When 
A pkQ  , 

( )

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )

1

1

1

1

1

1

3*

1

1

1

1 1 1

3

2 1

2

2 2 2

2

2

, ,

, , 0

, , 0 0

, , 0 0

, , 0 0

0 , , 0 0

t

t

t

t

t

t

r A B

p A B p B

B A B p A B p

p A A B p A B p A

B A B B p A

A B B

PFT Q k x

PFT kQ k x if kQ s x

PFT s x k x if kQ s x kQ s

PFT kQ k x if kQ s x kQ s

PFT s x k x if s x kQ s

PFT k x if x s





 

   

 



 − 

 − −   −



= − − −   − −


−   − −

  −






 

Then the expected function at t1 with respect to the random variables K, DA and 

XB is obtained as follows: 
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( ) ( )

( )
( )

( )( )
( )

( )

( )
( )

( )
( )

1 1

1

1

1

1

1

1

1

2

1

1* 3*

0

1

0

0

1

1

0

1

0

0

2

0

, , + , ,

0 , , ( )

, , ( ) ( )

, , ( )

0 , , ( )

=

+

B r r

t B

p

t B

p

t B

p

t B

D t A B t A B

s

A B X B B

kQ s

B A B X B B DA A A

kQ s

p A B X B B

kQ s

s

A B X B

E Q K D X Q K D X

k x f x dx

s x k x f x dx g d

kQ k x f x dx

k x f x



  





−

−

−



−

−

  
 

 
  
 
 
 
+ 
 
 
 
 + 
  





 





( )( )
( )

( )

( )
( )

( )

( )( )
( )

( )

( )
( )

2

1

2

1

1

2

1

1

1

1

1

0

2

2

0

0

3

0

0

1

1

0

1

0

, , ( )

, , ( )

+ , , ( )

+ , , ( )

p A

t B

p A

t B

p A

p

t B

p A

t B

p

B

kQ s

B A B X B B

s

kQ s

p A A B X B B

kQ s

kQ s

B A B X B B

kQ s

p A B X B B

kQ s

dx

s x k x f x dx

kQ k x f x dx

s x k x f x dx

kQ k x f x dx











 





− −

−

− −

− −

−

− −



−

 
 
 
 
 
+  
 
 
 +  −



 





 









( )
0

0

( )

pkQ

DA A A

k dk

g d



 



 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  





 

To describe the grower’s behavior, we analyze the grower’s optimal policy in a 

specific case below. 

4.3   Justification of the proposed model 

In this section, we analyze a specific case for justification of the proposed model. 

At t0, the grower knows that the demand DA follows normal distribution with the 

mean μA and the standard deviation σA, and that the demand DB follows uniform 

distribution over the interval [XB - α, XB + α], where the average demand during the 

selling season B, the XB is unknown but uniformly distributed over [μB - b, μB + b]. 
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The output rate K is known as uniform distribution over the interval [n, m]. During 

the planting season (from t0 to t1), the grower updates the demand forecast. At t1, the 

grower specifies the K as a value k. And based on the forecast update, the grower 

specifies the DA and the XB as a value
A  and value xB, respectively. We assume that 

μB ≥ α + b to ensure DB ≥ 0. The pdf of DA, the pdf and cdf of XB and DB given XB = 

xB and K are as follows: 

( )

( )

 

( )  

( ) ( )  

( )  

( ) ( )  

 

( ) ( )  

2

221
0, ,

2

1
 , ,

2

1
 , ,

2

1
 , ,

2

1
 , ,

2

1
( ) , ,

1
 , .

A A

A

B

B

DA A A

A

X B B B B

X B B B B B B

B B B BDB xB

B B B B B BDB xB

g e

f x x b b
b

F x x b x b b
b

f x x

F x x x

k k n m
m n

k k n k n m
m n

 


 



 

  

   


     




 −
 −
 
 =  +

=  − +

= − +  − +

=  − +

= − +  − +

= 
−

 = − 
−

 

4.3.1 Optimal solution at t1 

Depending on the value of the location parameter XB, we derive two cases as 

below. 

Case 1. 
p BkQ x  −  (i.e., 

B px kQ  + ). 

In this case, the maximum rental capacity of CAS for the grower is kQp. Even if 

the grower rents capacity kQp, the supply quantity in the selling season B cannot 
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meet the possible demand DB. The grower inevitably incurs shortage cost both in 

selling season B and selling season A. The profit function can be written as 

( ) ( ) ( )

( ) ( )

1

1

1, , +

+

t

B

B

r A B r A p r A A p r

x

B r B B r B B
x

SPFT Q k x c Q r kQ Q p kQ Q

r Q p Q f d




 

  
+

−

 = − − − − −
 

− −  
 

Obviously, the optimal rental quantity of CAS is 
*

r pQ kQ=  and the maximum 

profit function is 

( ) ( ) ( )
1

1*

1, , +
B

t
B

x

p A B p A A B p B B p B B
x

SPFT kQ k x c kQ p r kQ p kQ f d



    

+

−

 = − − − −
   

Case 2. 
p BkQ x  −  (i.e., 

B px kQ  + ). 

In this case, either overage or shortage inventory in the selling season B may 

occur. Depending on the values of the output rate K and the demand DA, we can 

derive two cases as below. 

Case 2-1. 
A pkQ  . 

In this case, shortage occurs in the selling season A. The profit function is 

 

( ) ( ) ( )

( ) ( )

( ) ( )

1

2

1, , +

+ +

t

r

B

B

r

r A B r A p r A A p r

Q

B B B r B B B
x

x

B r B B r B B
Q

SPFT Q k x c Q r kQ Q p kQ Q

r v Q f d

r Q p Q f d





 

   

  

−

+

 = − − − − −
 

−  

+ − −  





 

The optimal rental capacity *

rQ  for the case 2-1 is given by 

( )

( ) ( )
*

+p p A A B p

r

B A A B B p A A

kQ if kQ y p r x kQ
Q

x y p r if b x kQ y p r





− +  
= 

+ + −   − +

 

where 
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( ) 12 ( )
 = B

B B B

z c v
y z

r p v




+ −
−

+ −
 

Then, the maximum profit function for the case 2-1 can be written as 

 

( )

( ) ( )

( )( ) ( )

1

1

1

2*

2

2

, ,

, , +

, ,

t

t

t

r A B

p A B p A A B p

B A A A B B B p A A

SPFT Q k x

SPFT kQ k x if kQ y p r x kQ

SPFT x y p r k x if b x kQ y p r



 

 

 − +  
= 

+ + −   − +

 

Case 2-2. 
A pkQ  . 

In this case, whether the grower results in shortage or overage in the selling 

season A depends on the supply quantity reserved for the selling season B, which 

equals to the rental capacity of CAS. Therefore, the profit function may be written as 

below: 

 ( )
( )

( )
1

1

1

2

4

3

, ,
, ,

, ,

t

t

t

r A B r p A

r A B

r A B r p A

SPFT Q k x if Q kQ
SPFT Q k x

SPFT Q k x if Q kQ

 


 

  −
= 

 −

 

where 

 

( ) ( )

( ) ( )

( ) ( )

1

3

1, , +

+ +

t

r

B

B

r

r A B r A A A p r A

Q

B B B r B B B
x

x

B r B B r B B
Q

SPFT Q k x c Q r v kQ Q

r v Q f d

r Q p Q f d





  

   
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−

+

= − + − −

−  

+ − −  





 

The optimal solution for case 2-2 is to rent *

rQ capacity, which is given by 
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( )

( ) ( ) ( )

( ) ( )

( ) ( )

*

+p p A A B p

B A A p A A A B p A A

r

p A p A A B p A A A

B A B B p A A

kQ if kQ y p r x kQ

x y p r if kQ y p r x kQ y p r
Q

kQ if kQ y v x kQ y p r

x y v if b x kQ y v




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 

− +  


+ + − − +   − +
= 
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

+ −   − −

 

Then, the maximum profit function for the case 2-2 can be written as 

( )

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )
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 
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  
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
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
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Combing the optimal profit functions in the above cases, the corresponding 

maximum profit functions at t1 are described as following: 

(i) When 
A pkQ  , 
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(ii) When 
A pkQ  , 
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4.3.2 Optimal solution at t0 

At time t0, the grower’s problem is to find the optimal planting quantity to 

maximize the total expected profit. 

( ) ( ) ( ) 0 1 1

* *

0 ,1 ,2max =max , , , ,
B r rt p p D t A B t A BSPFT Q c Q E SPFT Q K D X SPFT Q K D X − + +
 

 

subject to 0pQ    
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Due to the complexity, it is difficult to describe the optimal policy for the planting 

quantity at t0. Therefore, we calculate the optimal planting quantity numerically in 

numerical experiments. 
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4.4   Numerical experiments  

In this section, we analyze the justification of the proposed model and examine 

how various parameters influence the grower’s behavior with the traditional model 

as the benchmark (See Appendix B.2 for the formula). The basic parameters are set 

as follows: c0 = 30, c1 = 4, rA = 100, rB = 200, pA = 50, pB = 100, n = 0.4, m = 1, 𝜇A = 

70, σA = 20, 𝜇B = 70, b = 35, α = 5 and vi = 0. When analyzing a parameter, the 

values of the others are kept at the initial setting as shown above. For each parameter 

set, the optimal planting quantity and the corresponding expected profit are 

calculated. 

4.4.1 Performance comparison for models 

We use the traditional model as a benchmark, where the grower sells fruits only in 

in-season (See Appendix B.2 for the formula). We compare the planting quantity and 

the expected profit from the traditional model and the proposed model as shown in 

Figure 4.2. From Figure 4.2, we observe that compared with the traditional model, 

both the planting quantity and the expected profit in the proposed model are higher. 

We can conclude that the flexible operation mode with CAS not only improves the 

performance of the grower significantly but also increases the grower’s planting 

enthusiasm.  
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Figure 4.2: Planting quantity and expected profit vs. models 

 

4.4.2 Sensitivity analysis 

Effect of the rental cost of CAS c1 

In Figure 4.3, the optimal planting quantity Qp and the corresponding expected 

profit under different values of c1 are plotted. We vary c1 from 2 to 8. From Figure 

4.2, we observe that as c1 increases, Qp increases and the expected profit decreases. 

In this case, the supply cost of products to be sold to the selling season B increases 

as the rental cost c1 increases, which reduces the supply quantity in the selling 

season B. The grower would increase the supply quantity in the selling season A, 

which results in the increase in the planting quantity. The decrease in the expected 

profit is as one's expect because the increases in both the rental and the planting cost 

may decrease the profit.  
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Figure 4.3: Planting quantity and expected profit vs. c1 

 

Effect of the shortage cost pi 

Figure 4.4 presents the optimal planting quantity Qp and the corresponding 

expected profit for the parameter pB ranging from 100 to 400 with pA = 50, 100, 150. 

From Figure 4.3, we observe that as pB increases, Qp decreases. This is because as pB 

increases, the grower would first transfer some products from selling season A to 

selling season B in order to avoid high shortage cost in the selling season B, which 

also means higher supply costs in the selling season B. Thus, the grower decreases 

the planting quantity Qp to reduce the total supply cost. And in Figure 4.4, as pA 

increases, Qp increases. The reason is that the grower would increase the planting 

quantity to supply more products for the selling season A in order to decrease the 

shortage cost in the selling season A. Also, we observe that as pi increases, the 

expected profit decreases. This is as expected because the grower incurs a high 

shortage cost during the selling season. 
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Figure 4.4: Planting quantity and expected profit vs. pB for various pA 

 

Effect of the yield uncertainty 

Figure 4.5 shows the optimal planting quantity Qp and the corresponding expected 

profit under different yield uncertainty, where the output rate K is uniformly 

distributed with a mean 0.7. The yield uncertainty denoted as (n, m) increases from 

(0.6, 0.8) to (0.1, 1.3) by a step of 0.05 for both n and m. From Figure 4.5, we can 

see that both the planting quantity and the expected profit decrease as the yield 

uncertainty increases. This means that the yield uncertainty prevents growers from 

increasing planting quantity, which gives the grower an incentive to decrease yield 

uncertainty by improving the planting technology and management in order to gain 

higher profit through increasing planting quantity. 
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Figure 4.5: Planting quantity and expected profit vs. yield uncertainty 

 

Effect of the value of demand forecast update in the selling season B 

Figure 4.6 shows the optimal planting quantity Qp and the corresponding expected 

profit for the parameter α with a varying from 5 to 35. The ratio b/α is defined as the 

forecasting improvement. From Figure 4.6, we observe that as α increases, both Qp 

and the expected profit decrease. As α increases, the value of updating the forecast 

of the demand DB reduces due to the small reduction in demand variance. The 

grower would decrease the supply amount in the selling season B. Therefore, the 

planting quantity decreases. The profit decreases because the uncertainty of the 

demand in the selling season B increases, which gives the grower an incentive to 

reduce the demand forecast variance in the off-season. 
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Figure 4.6: Planting quantity and expected profit vs. 𝛼 

 

Profit sensitivity analysis  

This part is to examine in an example how parameters affect the profit, which 

parameter may affect the profit the most largely and which is valuable for the grower 

to invest. We set the basic parameters as follows: c0 = 30, c1 = 7, rA = 100, rB = 200, 

pA = 100, pB = 300, n = 0.3, m = 1.1, 𝜇A = 70, σA = 20, 𝜇B = 70, b = 35, α = 35 and vi = 

0. 

We compare how the planting cost c1, the shortage cost pi, the variation of the 

output rate and the variation of the demand DB affect the expected profit, 

respectively. And we do the comparison by decreasing c1, pi, m-n, α by 6 steps from 

10%~60% with a step of 10%, respectively. The corresponding profits are shown in 

Figure 4.7. From Figure 4.7, we observe that besides the shortage cost pB, 

uncertainties of the yield and the demand, denoted by (n, m) and α, respectively, are 

the most influential parameters on profit. And for other parameters, the effect order 

is pA > c1. We can conclude that the grower should invest to improve the planting 
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technology and management to keep the output rate in a small range, and to enhance 

the ability of demand forecast for the off-season.  

 

Figure 4.7: Profit vs. parameters 

4.5   Chapter summary 

In this chapter, we studied a single-period, three-stage model in a fresh fruit 

supply chain with controlled atmosphere storages (CAS). With rural CAS, the 

grower produces fresh fruits and then sells them to a two-stage market, i.e., in-

season and off-season, in sequence. At the beginning of the planting season, the 

grower determines the planting quantity. Before the selling season, the grower 

updates the two-stage demand forecast. At the beginning of the selling season, the 

grower determines the rental capacity for CAS and stores products. Then, the 

remained products are assigned to the selling season A (in-season). At the beginning 

of the selling season B (off-season), the grower sells fruits stored in CAS. 

We formulated the grower’s profit function, provided the solution for the grower 
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to make the optimal planting quantity and derived the optimal rental capacity of 

CAS. In particular, we analyzed this model in a special case. We showed numerical 

experiments and analyzed how the parameters c1, pi, the yield uncertainty and the 

value of demand forecast update influence the grower’s behavior in such a supply 

chain. 

In numerical experiments, we found that decreasing the rental cost of CAS, the 

shortage cost, the yield uncertainty and the forecast error in the selling season B, can 

improve the grower’s profit. For the traditional model, we observe that both the 

planting quantity and the expected profit in the traditional model are lower than that 

in the proposed one. We can conclude that the flexible operation mode with CAS not 

only improves the performance of the grower significantly but also increases the 

grower’s planting enthusiasm. From the sensitivity analysis, we find besides the 

shortage cost, uncertainties of the yield and the demand are the most influential 

parameters on profit. Therefore, we can get managerial insights that the grower 

should invest to improve the planting technology and management to keep the 

output rate in a small range, and to enhance the ability of demand forecast for the 

off-season.   
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Chapter 5 

Conclusion and future study 

 

This dissertation attempts to develop flexible operation modes in fresh fruit 

supply chains (FSCs) with these two types of cold storages, i.e., regular atmosphere 

storage (RAS) and controlled atmosphere storage (CAS), respectively, in order to 

help growers get affluent and increase the enthusiasm of planting.  

We propose the flexible supply contract with put options (SCPO) for a rural fresh 

FSC with RAS, where the grower stores fresh fruits in RAS to extend the shelf life, 

which incurs extra storage costs that can be recovered by salvaging at a higher price 

later. Put options give the buyer the right, but not the obligation, to decrease the 

initial order, one for each option. At the beginning of the planning horizon, the buyer 

places an initial order and purchases put options with a preliminary demand forecast. 

Considering the buyer’s order and the random yield, the grower determines the 

planting quantity. During the planting season, the buyer updates the demand forecast. 

At the beginning of the selling season, the buyer exercises put options if necessary. 

Then, the grower delivers the final order and stores surplus products in RAS to 

extend their shelf life, which incurs extra storage costs that can be recovered by 

salvaging at a higher price later. The proposed model is analyzed from both the 
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grower’s and the buyer’s perspectives. And the buyer’s and the grower’s profit 

functions are formulated, and we derive the buyer’s optimal policies for the initial 

order and put options as well as the grower’s optimal policy for the planting quantity. 

The grower’s optimal supply tariff can be obtained only numerically. In particular, 

we obtain closed-form formulae to determine the buyer’s optimal order policy and 

the grower’s optimal planting quantity in a special case. We show numerical 

experiments and analyze how the parameters affect the performances of both the 

grower and the buyer. 

For CAS, we consider a single-period, three-stage model in a rural fresh FSC with 

CAS. With CAS, the grower produces fresh fruits and then sells them to a two-stage 

market, i.e., in-season and off-season, in sequence. At the beginning of the planting 

season, the grower determines the planting quantity. Before the selling season, the 

grower updates the two-stage demand forecast. At the beginning of the selling 

season, the grower determines the rental capacity for CAS and stores products. Then, 

the remained products are assigned to the selling season A (in-season). At the 

beginning of the selling season B (off-season), the grower sells fruits stored in CAS. 

We formulate the grower’s profit function, propose the solution for the grower to 

make the optimal planting quantity and derive the optimal rental capacity of CAS. In 

particular, we study this model in a special case, and analyze numerically how the 

parameters influence the grower’s behavior in such a supply chain. 

5.1   Summary of results 

In Chapter 3, we modeled a single-period, two-stage contract with put options 

(SCPO) in a fresh fruit supply chain (FSC) with regular atmosphere storages (RAS). 

The proposed model was analyzed from both the grower’s and the buyer’s 
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perspectives. And the buyer’s and the grower’s profit functions were formulated, 

which were then used to derive the buyer’s optimal policies for the initial order and 

put options as well as the grower’s optimal policy for the planting quantity. The 

grower’s optimal supply tariff can be obtained only numerically. In particular, we 

obtained closed-form formulae to determine the buyer’s optimal order policy and the 

grower’s optimal planting quantity in a special case. We showed numerical 

experiments in which we examined the effectiveness of the proposed model and 

analyzed how the parameters vg, g, p and the yield uncertainty influence the optimal 

policies and expected profits in such a supply chain. 

In the numerical analysis, some managerial insights in SCPO have been observed: 

1. The grower’s performance of the proposed SCPO model is better than that of 

SCPO model with other conditions. Compared to the traditional operational 

mode, the proposed SCPO model can improve the grower’s and buyer’s 

performances, simultaneously. And the proposed SCPO model is more 

beneficial to the grower, which protects the grower’s profit.  

2. With rural cold storages, the grower can get affluent. A higher preservation 

level of RAS and a low yield uncertainty enhances a grower’s enthusiasm for 

planting.  

3. Supply chain participants benefit from each other’s risk aversion.  

4. The higher the demand uncertainty, the more beneficial the SCPO model is for 

supply chain participants. With high uncertainties of the yield and the demand, 

the grower’s and buyer’s profits can be enhanced up to 53% and 29%, 

respectively. 



 

82 

 

5. With SCPO model, comparing parameters’ effect on expected profit, the spot 

market price may affect the grower’s profit most largely. 

In Chapter 4, we studied a single-period, three-stage model in a fresh fruit supply 

chain with controlled atmosphere storages (CAS). With CAS, the grower produces 

fresh fruits and then sells them to a two-stage market, i.e., in-season and off-season, 

in sequence. We formulated the grower’s profit function, provided the solution for 

the grower to make the optimal planting quantity and derived the optimal rental 

capacity of CAS. In particular, we analyzed this model in a special case. We showed 

numerical experiments and analyzed how the parameters c1, pi, the yield uncertainty 

and the value of demand forecast update influence the grower’s behavior in such a 

supply chain. In numerical experiments, we found that decreasing the rental cost of 

CAS, the shortage cost, the yield uncertainty and the forecast error in the selling 

season B, can improve the grower’s profit. For the traditional model, we observe 

that both the planting quantity and the expected profit in the traditional model are 

lower than that in the proposed one. We can conclude that the flexible operation 

mode with CAS not only improves the performance of the grower significantly but 

also increases the grower’s planting enthusiasm. From the sensitivity analysis, we 

find besides the shortage cost, uncertainties of the yield and the demand are the 

most influential parameters on profit. Therefore, we can get managerial insights that 

the grower should invest to improve the planting technology and management to 

keep the output rate in a small range, and to enhance the ability of demand forecast 

for the off-season.  

5.2   Future study 

The results presented in this research can be seen as a framework that can be 
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further developed to study flexible operation modes with cold storages in more 

realistic situations. Future study as a natural extension would analyze the case of a 

limited scale of cold storages. It would also be interesting to study the operation mode 

in a fresh FSC with multiple types of cold storages.  
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Appendix A 
 

A.1 Proof of Proposition 1 

In the NV model, the grower’s problem at t0 is: 

 ( )
( ) ( )

( ) ( )

0
max max

nvo nvp

nvo nvp

Q Q

nvp nvo nvo nvp

nvg nvp

g nvp nvo

Q Q

cQ wQ g Q kQ k dk

PFT Q

v kQ Q k dk






 
− + − − 
 

=  
 + −
 
 





  

Taking the second derivative of ( )nvg nvpPFT Q  with respective to Qnvp, we have 

( )
( )

2 2

2 3

nvg nvp nvo nvo
g

nvp nvp nvp

d PFT Q Q Q
v g

d Q Q Q

 

= −   
 

 

Considering the assumption 
gg v  in Section 3.2.1, 

( )2

2
0

nvg nvp

nvp

d PFT Q

d Q
  holds. 

Therefore, the objective function ( )nvg nvpPFT Q is concave in Qnvp.  

Equating 
( )nvg nvp

nvp

dPFT Q

dQ
 to zero, we get 

 
( )

( ) ( )
0

0
nvo nvp

nvo nvp

Q Qnvg nvp

g
Q Q

nvp

dPFT Q
g k k dk v k k dk c

dQ
 



= + − =   (A.1) 
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Obviously, 
( )nvg nvp

nvp

dPFT Q

dQ
 is continuous with respect to Qnvp. 

Considering the assumption gg c k v   in Section 3.2.1, we have 

( )
( )

( )
( )

00

0

lim 0

lim 0

nvp

nvp

nvg nvp

Q
nvp

nvg nvp

g
Q

nvp

dPFT Q
c g k k dk

dQ

dPFT Q
c v k k dk

dQ







→



→

= − + 

= − + 





 

  Therefore, there exists a non-negative value of 
'

nvpQ  satisfies the equation (A.1), 

and the optimal planting quantity is * '

nvp nvpQ Q= . 

A.2 Proof of Proposition 2 

In the SCPO model, the buyer’s problem at t0 is: 

( )

( )

( ) ( )   ( )

0 0

0

0 0 0

0 0

0 0 0 0 0

0

0 0 0

max ,

( )

max
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Q q

o ep b
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Q q Q

PFT Q q

wQ w q w q r v Q q f d

w Q r f d rQ p Q f d

   

      

−



−

 
 − − + + + − −  

 
=  

  + − + + − −  
 



 

 

Taking the second partial derivative of  ( )
0,t 0 0,obPFT Q q  with respect to Q0, we 

have 

( ) ( ) ( ) ( ) ( )
0

2

,t 0 0 0 0 02

0

,ob ep b epPFT Q q w r p f Q v w f Q q
Q


= − − + − −


 

And we can calculate the hessian matrix: 
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( )( ) ( ) ( )
0 0

0 0

2 2

,t ,t2

0 0 0

0 0 02 2

,t ,t2

0 0 0

ob ob

ep b ep

ob ob

PFT PFT
Q q Q

w r p v w f Q f Q q

PFT PFT
Q q q

 

  
= − − − −

 

  

 

Considering the assumptions wep ≤ w, r + p > w + wo and vb ≤ wep – wo in Section 

3.2.3, the objective function ( )
0,t 0 0,obPFT Q q is concave. 

Differentiating ( )0 0,obPFT Q q  with respect to Q0 and q0, respectively, and 

equating them to zero, we have 

 ( )0
o

ep

r p w w
F Q

r p w

+ − −
=

+ −
 (A.2) 

 ( )0 0

ep b

o

w v
F Q q

w

−
− =  (A.3) 

If there exist non-negative values of '

0Q  and '

0q  which satisfies the equation (A.2) 

and (A.3), then the optimal solution is 
0

* '

0Q Q=  and 
0

* '

0q q= . 

A.3 Proof of Proposition 3 

In the SCPO model, at t0,3, the grower’s problem is: 
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    Taking the derivative and second derivative of ( )
og opPFT Q  with respective to Qop, 

respectively, we have 
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Similar with A.1 Proof of Proposition 1, we can prove that there exists a non-

negative value of Qop which satisfies the following equation 



 

94 

 

( )
( ) ( )

( ) ( ) ( )
( )

( ) ( )

0

0

0 0

0

0

0 0 0 0

op

og

op

op op

op op

Q Q

op

g

op Q Q

Q q Q Q

g

Q Q Q

dPFT Q
c g k k dk v k k dk

dQ

g v F Q q k k dk F Q k k dk





 

 



−

= − + +

 
 + − − + =
  

 

 

 

Considering the assumption 
gg v in Section 3.2.1, we easily have 

( )2

2
0

og op

op

d PFT Q

d Q
 . Therefore, the objective function ( )

og opPFT Q  is concave in Qop.   

Therefore, there exists a non-negative value of 
'

opQ  which satisfies the following 

equation  
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

(A.4) 

and the optimal planting quantity is 
* '

op opQ Q= . 

A.4 Proof of Proposition 4 

Considering the output rate in this case is uniformly distributed, we get the 

equation (A.5) according to the equation (A.1). 

 
2 2

2 2 2( )

g

g

nvp nvo

g v
Q Q

vgn m m n c

− 
=  

− + − 
 (A.5) 

It can be readily proved that 
2 2

0
2( )

g

g

g v

vgn m m n c

−


− + −
 holds. Let 

1 0nvp nvpQ Q=   

satisfy the equation (A.5), we can get  
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1 2 2 2( )

g

g

nvp nvo

g v
Q

v
Q

gn m m n c

−
=

− + −
 

Considering the assumption nvo nvo
nvp

Q Q
Q

m n
  , the optimal planting quantity can 

be derived as three cases. 

⚫ If 
1

nvo nvo
nvp

Q Q
Q

m n
  , the optimal planting quantity 

*

1nvp nvpQ Q= . 

⚫ If 
1

nv
nvp

oQ
n

Q
 , the optimal planting quantity * nvo

nvp

Q
Q

n
= . 

⚫ If 
1

nv
nvp

oQ
m

Q
 , the optimal planting quantity is * nvo

nvp

Q
Q

m
= . 

Combining the above cases, we conclude our proof. 

A.5 Proof of Proposition 5 

    Taking the partial derivative of Q0 with respective to wo, wep and p, respectively, 

we have 

0 2
0

o ep

Q

w p r w


= − 

 + −
 

0

2

2 ( )
0

( )

o

ep ep

Q p r w w

w p r w

 + − −
= 

 + −
 

( )
0

2

2 ( )
0

o ep

ep

w w wQ

p p r w

 + −
= 

 + −
 

Thus, Q0 increases with wep and p, and decreases with wo. 

    Taking the partial derivative of q0 with respective to wo, wep, 𝛽 , p and vb, 

respectively, we have 
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0o o
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 + − −
= + 

 − + −
 

0

2

2 ( )
0

( )

o ep
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w w wq
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 + −
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 + −
 

0

2

2
0

( )

o

b b ep

q w

v v w


= − 

 −
 

Therefore, q0 increases with wep, 𝛽 and p, and decreases with wo and vb. 

A.6 Proof of Proposition 6 

(i) In plan 1, taking the second derivative of ( )1

og opSPFT Q with respect to Qop, we 

have 

( ) ( )( )2 1 2 2

2
0

6

og op g

op

d SPFT Q g v m mn n

d Q 

− + +
= −   

Therefore, the objective function ( )1

og opSPFT Q is concave. 

Taking the derivative of ( )1

og opSPFT Q with respect to Qop, and equating it to zero, 

we have the following equation: 
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( )
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1

2 22 ( )
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og op
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dSPFT Q
n m nm g v Q

dQ

n m g v g v  

= − + + −

 + + − + + − = 

                    (A.6) 

Let 
,1op opQ Q=  satisfy the equation (A.6), we can get 

( ),1 2 2

3( ) ( ) ( ) 12c

2 ( )

g g

op

g

n m g v g v
Q

n m nm g v

   + − + + − 
=

+ + −
 

Considering the assumption 0 0 0
op

Q q Q
Q

n m

−
   in plan 1, the optimal planting 

quantity can be derived as three cases. 

⚫ If 0 0 0
,1op

Q q Q
Q

n m

−
  , the optimal planting quantity 

*

,1op opQ Q= . 

⚫ If 0
,1op

Q
Q

m
 , the optimal planting quantity * 0

op

Q
Q

m
= . 

⚫ If 0 0
,1op

Q q
Q

n

−
 , the optimal planting quantity is * 0 0

op

Q q
Q

n

−
= . 

Combining these 3 cases, we conclude our proof in plan 1. 

(ii) In plan 2, considering the output rate in this case is uniformly distributed, we 

get the following equation according to the equation (A.4). 

 
( ) ( ) ( ) ( )
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3 2 2
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2 2

2 6 6 3
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 (A.7) 

It can be readily proved that the right side of the equation (A.7) is positive. Let 

,2 0op opQ Q=   satisfy the equation (A.7), we can get 

( ) ( ) ( ) ( )
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3 2 2
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,2 2 2

2 6 6 3

6 2

g

op
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=
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Considering the assumption 0 0 0
op

Q Q q
Q

m n

−
  in plan 2, the optimal planting 

quantity can be derived as the following cases. 

⚫ If 0 0 0
,2op

Q Q q
Q

m n

−
  , the optimal planting quantity 

*

,2op opQ Q= . 

⚫ If 0 0
,2op

Q q
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n

−
 , the optimal planting quantity * 0 0

op

Q q
Q

n

−
= . 

⚫ If 0
,2op

Q
Q

m
 , the optimal planting quantity is * 0

op

Q
Q

m
= . 

Combining these 3 cases, we conclude our proof in plan 2. 

(iii) In plan 3, taking the derivative of ( )3

og opSPFT Q with respect to Qop and 

equating it to zero, we get the following equation: 
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3 3 3

2
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12

og op op op
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dSPFT Q A Q B Q C
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− +
= − =

−
 (A.8) 

Let 
,3op opQ Q=  satisfy the equation (A.8), we can get 

1 2

3 33
,3 3 1

23 3
3 3

3
9

op

B B
Q E

A
A E

= + +  

Taking the second derivative of ( )3

og opSPFT Q with respect to Qop, we have 

( ) ( ) ( ) ( )

( )

23 32 3
0 0 0 0
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3 3 2 2
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 (A.9) 

Then equating it to zero, we can get the zero point of 
( )2 3

2

og op

op

d SPFT Q

d Q
, which is 

denoted by Qop,0, Qop,0 = Qop, as following 
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Note the assumption 0 0 0 0 0,op

Q q Q q Q
Q

m n m

− − 
   

 
in plan 3. We can get the ratio 

of Qop,0 and the minimal value of the planting quantity 0 0Q q

m

−
 is 

( ),0

0 0 0 0

3
2

opQ

Q q Q q

m

 −
= −

− −
 

Since the buyer’s firm order Q0 – q0 is larger than or equal the minimal demand 

 − , we can get 0 0
,0op

Q q
Q

m

−
 . In addition, since the expression 

( ) ( )
23 3

0 0 0 03 3 2 2opm Q Q q Q q − − − − +  in equation (A.9) increases with Qop, we 

have ( ) ( )
23 3

0 0 0 03 3 2 2 0opm Q Q q Q q − − − − +  . Therefore, 
( )2 3

2
0

og op

op

d SPFT Q

d Q


and the objective function ( )3

og opSPFT Q  is concave. 

Considering the assumption 0 0 0 0 0,op

Q q Q q Q
Q

m n m

− − 
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 
in plan 3, the optimal 

planting quantity can be derived as three cases. 

⚫ If 0 0 0 0 0
,3 ,op

Q q Q q Q
Q

m n m

− − 
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 
, the optimal planting quantity 

*

,3op opQ Q= . 

⚫ If 0 0 0
,3 ,op

Q q Q
Q

n m

− 
  
 

, the optimal planting quantity  
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* 0 0 0min ,op

Q q Q
Q

n m

− 
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 
. 

⚫ If 0 0
,3op

Q q
Q

m

−
 , the optimal planting quantity is * 0 0

op

Q q
Q

m

−
= . 

Combining the above cases, we conclude our proof in plan 3. 

Similarly, the optimal planting quantity in plan 4 can be proven. 

A.7 SCPO model without considering random yield 

This is a supply contract with put options for a fresh FSC with RAS, under 

deterministic yield and stochastic demand. At the beginning of the planting season t0, 

the grower provides a supply tariff (wo, wep). With the supply tariff, the buyer 

determines the order policy (Q0, q0) based on the market demand forecast. With the 

buyer’s order, the grower determines the planting quantity Qop. At the beginning of 

the selling season t1, according to the updated information, the buyer can exercise 

options qep at the unit exercise price wep to adjust the initial order quantity downward 

if necessary. Then, the grower delivers the final order Q0-qep to the buyer and any 

unsatisfied order can be satisfied via the spot market. The grower’s surplus products 

can be stored in RAS, which can be salvaged at vg for each unit later. At the end of 

the selling season, the buyer obtains an additional cash inflow from salvaging unsold 

products or incurs a shortage cost.  

Based on the above description, the buyer’s optimal order policy is the same 

as that in the proposed SCPO model. With the buyer’s order, the grower 

determines the planting quantity Qop to maximize the profit function as below 
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( )

( )  ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0

0 0 0 0

0

0

0 0 0

'

0

0

max max ( )

op

og

op

Q q

op ep g op

QQ

op ep g op

Q q Q q

Q

op op

Q Q

cQ w q v Q Q q f d

PFT Q w Q f d v Q f d

g Q f d g Q Q f d

 

 

 

     

    

−

−

− −

+

 
 − + − + − −  

 
 
 

 = + − − + −  
 
 
    + − − + − −

    
 



 

 

 

subject to 0 0 0opQ q Q Q−    

Taking the second derivative of ( )'

og opPFT Q with respect to Qop, we get  

( ) ( )2 '

2
0

2

og op g

op

d PFT Q v g

d Q 

−
=   

Therefore, the objective function ( )'

og opPFT Q  is concave. 

Taking the derivative with respect to Qop and equating it to zero, we get  

( )
( ) ( )

'

( ) 2 ( ) 0
og op

g op g g

op

dPFT Q
v g Q g v c v

dQ
  = − + + − − − =  (A.10) 

Let 
'op opQ Q=  satisfy the equation (A.10), we can get  

'

2 ( )

( )

g

op

g

c v
Q

g v


 

−
= + −

−
 

Considering the assumption 0 0 0opQ q Q Q−   , we can get the optimal planting 

quantity 
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0 0 ' 0 0

*

' 0 0 ' 0

0 0 '

      

           

            

op

op op op

op

Q q if Q Q q

Q Q if Q q Q Q

Q if Q Q

 −  −


= −  




 

At t0, the grower’s problem is to find the optimal supply tariff to maximize the 

following formula, 

 ( ) ( )
0

' '

, 0 0max , = max
ogog t o ep o opPFT w w wQ w q PFT Q + +

   (A.11) 

subject to 0 0o epw w ，  

Similarly, the optimal supply tariff would be solved numerically.  
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Appendix B 
 

 

B.1 Proof of Proposition 1 

When 
A pkQ  , the grower’s problem is 

( ) ( ) ( ) ( ) 
21

1max , , max E
t r A B A p r A A p r t B r BPFT Q k x r kQ Q p kQ Q PFT Q x    = − − − − +   

 

Taking the second derivative of ( )
1

1 , ,t r A BPFT Q k x x  with respect to Qr, we have 

( )
( )1

2 1

2

, ,
( )

B

r

t r A B

B B B X r

d PFT Q k x x
r p v f Q

dQ
= − + −  

Considering rB > vB, the objective function ( )
1

1 , ,t r A BPFT Q k x x  is concave in Qr. 

Taking the derivative of ( )
1

1 , ,t r A BPFT Q k x x  with respect to Qr and equating it to 

zero, we get the following equation: 

 
( )

( )1

1

1
, , ( )

0
B B

r

t r A B B B A A
rD x

B B B

dPFT Q k x x r p c r p
F Q

dQ r p v

+ − − +
= − =

+ −
 (B.1) 

If there exists a non-negative value of ( )1r BQ s x=  which satisfies equation  (B.1), 

considering the assumption 0 r pQ kQ  , the optimal rental capacity of CAS can be 
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derived as the following 3 cases. 

⚫  If ( )10 B ps x kQ  , the optimal rental capacity of CAS ( )*

1r BQ s x= . 

⚫  If ( )1 B ps x kQ , the optimal rental capacity of CAS 
*

r pQ kQ= . 

⚫  If ( )1 0Bs x  , the optimal rental capacity of CAS * 0rQ = . 

Combining the above cases, we conclude our proof for
A pkQ  . 

Similarly, the optimal rental capacity of CAS for 
A pkQ   can be proven. 

 

B.2 The traditional model in a fresh FSC with CAS 

This is a traditional single-period two-stage model in a fresh FSC with CAS under 

random yield and stochastic demand. The grower produces fresh fruits and then sells 

them to the in-seasonal market. At the planting point t0, the grower determines the 

planting quantity Qnp to plant at unit planting cost c0. At the beginning of the selling 

season t1, the grower sells the produce. At the end of the selling season, the grower 

may salvage the unsold products or incur shortage cost. 

Based on the above description, the grower’s expected profit at t0 is  

( ) ( ) ( )

( ) ( )

0, 0

0

= ( )

( )

np

np

kQm

A t np np A A A np A DA A A

n

m

A np A A np DA A A

n kQ

SPFT Q c Q r v kQ g d k dk

r kQ p kQ g d k dk

    

   


  
 − + + −  

  

  
 + − −  

  

 

 
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The first term is the planting cost. The second term is the revenue from sold and 

salvaged products when the demand in selling season A is smaller than the output 

quantity. And the third term is the revenues from sold products and the shortage cost 

when the demand in selling season A is larger than the output quantity. 

At t0, the grower’s problem is to determine the optimal planting quantity Qnp to 

maximize the total expected profit over the planning period. 

( )
0,max A t npSPFT Q   

subject to 0npQ   

The optimal planting quantity Qnp for in-season is calculated numerically. 
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