
A Thesis for the Degree of Ph.D. in Engineering

Quasi-reversible Weathering of

Rust Preventive Coating Films

July 2023

Graduate School of Science and Technology

Keio University

Akinori Ishitobi

Thesis Abstract

Quasi-reversible Weathering of Rust Preventive Coating Films

Age-related deterioration inevitably affects everything in reality. Changes in the appear-

ance of deteriorated objects signify the passage of time to our brain, and the degree of deterioration

is a meaningful factor in determining the “age” of objects at a glance. Conversely, a virtual world

rendered by computer graphics (CG) differs from reality in that it is inherently unaffected by

deterioration. Therefore, bridging this gap between the two worlds by assigning an “age” to CG

objects necessitates the application of weathering, which expresses degradation caused by rain and

wind.

Metallic corrosion is one of the commonest examples of real-life deterioration, and many

weathering methods have been proposed. However, in reality, vulnerable metal is usually coated

with rust preventive paint, so scenes in which metal alone is deteriorated are highly limited.

In addition, most existing weathering methods focus on changing the material, while few deal

with deformation. Most weathering methods use physical simulation, which computes the time

evolution of the state of an object based on a mathematical model and which has the advantage

of easily reproducing complex phenomena. However, when generating CG content, this one-way

time progression becomes a major problem, so people generally use parametric models that allow

the flexible control of time.

In this study, a novel method is proposed for the procedural simulation of cracks and

bends in coated films on metallic objects. In the proposed method, a coated film is imposed on

a 3D triangular mesh. Fractures are expressed by topological manipulation based on a simple

computation of force, whereas the mesh is bent by position-based simulation. As further defacing

elements on the coating film, chalking, runoff rust, and darkening are reproduced by changing the

color and reflectance of the surface. In addition, a pseudo time reversal of the simulation is achieved

by defining reverse time progressions of these processes, and directable weathering is realized by

locally adjusting the control parameters of designated surface areas.

The proposed method enabled the simulation of realistic patterns of cracks and peeled

areas. Thus, it was verified that the method is applicable to external polygon mesh models, and

the interactive control of both the time progression and the reversal of the weathering simulation

was confirmed.

Keywords

Computer graphics; visual simulation; weathering; interaction; coating; rust; deformation.

Acknowledgments

First, I would like to express my deepest gratitude to Prof. Issei Fujishiro for his continuous

guidance. He has been advising me on the development of my research and the improvement of

my academic skills ever since I began my research five years ago. Without his support, I would

neither have skipped a grade, been accepted to a prestigious international journal, nor received

numerous awards; most importantly, I would not have had so much confidence in myself. I feel

that my time in his laboratory was the most fulfilling and enjoyable in my life thus far. I hope to

apply his teachings to my social activities, which will allow me to demonstrate my abilities and

enjoy myself.

My appreciation also goes to Mr. Masanori Nakayama of Fujishiro Laboratory for his

assistance with my research as a co-author in the publications. He proposed the fundamental idea

and basic policy of the study. In addition, he taught me the fun of studying CG and standard

techniques, about which I knew nothing at the time.

I would like to express special gratitude to Prof. Tokiichiro Takahashi of Tokyo Denki

University, Prof. Hideo Saito of Keio University, and Prof. Maki Sugimoto of Keio University,

all of whom, as my committee members, offered insightful comments and helped me improve my

study from various perspectives.

Finally, I would like to thank all members of Fujishiro Laboratory, especially the Reality

Modeling team members, thanks to whom I was able to lead a fulfilling campus life and who often

gave me sound advice.

i

Contents

1 Introduction 1

1.1 Visual Simulation . 2

1.2 Weathering of Coating Films . 3

1.3 Interactive CG . 4

1.4 Purpose of Thesis Work . 4

1.5 Contributions of Thesis Work . 5

1.6 Organization of Thesis . 6

2 Related Work 7

2.1 Weathering Simulation . 8

2.2 Deformation Simulation . 9

2.3 Interactive Simulation . 10

2.4 Strengths of the Proposed Method . 11

3 Method Overview 12

3.1 Real Coating Films . 13

3.2 Simulation Flow . 17

4 Data Structure 20

4.1 Doubly Connected Edge List . 21

4.2 Attribute Parameters . 28

4.3 Control Parameters . 31

5 Bend Simulation 33

5.1 Outline of Position-Based Deformation . 34

5.2 Length Constraint . 35

5.3 Angle Constraint . 35

5.4 Bend Constraint . 36

5.5 Position Update Algorithm . 40

6 Fracture Simulation 43

6.1 Basic Model . 44

ii

6.2 Initialization and Updating of Parameters . 44

6.3 Separation . 48

6.4 Tearing . 49

6.5 Stripping . 54

7 Stain Expression 55

7.1 Chalking . 56

7.2 Rust Run-off . 56

7.3 Dust Accumulation . 61

7.4 Rendering Stains . 62

8 Interactive Control 65

8.1 Pseudo Time Reversal . 66

8.2 GPU Parallelization . 73

8.3 Visualization of Degradation Level . 77

8.4 Simulation Control . 78

9 Results and Discussions 80

9.1 Progress and Reversal of Weathering . 81

9.2 Weathering Control by External Input . 81

9.3 Reproduction of Real Peeled Films . 82

9.4 Temporal Complexity Analysis . 85

9.5 Application to Specific Scene . 86

9.6 Discussions . 89

10 Conclusion 100

Publications 102

References 102

iii

List of Figures

1.1 Results of visual simulation using the proposed weathering method. By weathering

the initial model (left), an aged model (middle) is obtained. In addition, partial time

reversal of the aged model gives an ununiformly aged model (right) 5

3.1 A coating film bending together with the metallic base 14

3.2 Virtual lifting force. It acts to peel the coating film from the base (left). If the coating

film were cut out in the shape of a disc with the base, it would be bent according to

Stoney’s law [90] (right) . 14

3.3 Three modes of fracture. Mode I is dominant among thin plates 15

3.4 A relative coordinate at a crack end. The black triangle on the left represents the

crack. The origin is at the end, the x-axis is in the crack’s direction, and the y-axis is

perpendicular to the x-axis . 16

3.5 The relation between the azimuth θ and the coefficient k(θ) on the opening-direction

component of the stress tensor . 16

3.6 The flow of processes in the proposed method. The input is polygon mesh data, and it

is weathered as a coating film, the process of which is simulated in every frame. The

deteriorating model can be displayed in real time and controlled by an external input 18

3.7 The peeling process in the proposed method. Whether to progress to the next stage

is determined by the static fracture criteria . 19

4.1 Doubly connected edge list. Each arrow means the elements connected by it can be

referenced in its specified direction. A dotted line arrow means an element reference

(or is referenced by) another element that is not shown in the figure 22

4.2 Topological data referenced in the conversion from DCEL to IFS 22

4.3 DCEL construction procedure. As described in Algorithm 4.3, Step 2 is actually run

concurrently for each triangle, but this figure subdivides Step 2 into Step 2-1 through

Step 2-6 and describes each step as if it were performed on the entire mesh 24

4.4 Simplified representation of DCEL . 24

iv

4.5 The basic policy for searching around a vertex V using DCEL, only if the edge of the

model is reached during a counter-clockwise search (a) and if the remaining vertices

are identified by the clockwise search (b) . 26

5.1 Position corrections with a length constraint Clength(p0,p1). Shown are two points,

p0 and p1, which are moved away from their initial positions indicated by dotted lines.

In this case, the length constraint brings p0 and p1 closer together to maintain the

distance doffset . 35

5.2 Division of angle constraint. The neutral direction vector nneutral is decided by the

normals of the faces and the angles ϕL and ϕR between nneutral and the faces, which

are set as the targets of the constraints . 36

5.3 The relation of the dot product between the normals with the angle formed by the two

adjacent polygons. The acos function cannot distinguish between valley and mountain

folds, and it cannot compute the gradient when the polygons are flat 37

5.4 The relation of the dot products of each normal and n′
neutral with the angle formed by

the adjacent polygons ϕ, where n′
neutral denotes a unit vector perpendicular to nneutral

and to the edge shared by the polygons. The constraint division reduces the behaviors

of the monotonic function . 37

5.5 Comparison between two bending constraints. While the target of a triangle bending

constraint (a) is the angle formed by the edges, that of a tetrahedron bending constraint

(b) is the angle formed by the faces . 38

5.6 Division of a tetrahedron bending constraint . 39

5.7 Vertex motion space using simple methods to prevent sinking 40

5.8 Bend simulation on a disk. The number of polygons is 4,047, and the target value of

the angles formed by every two adjacent polygons is set to 0.2 rad 42

6.1 Basic model. Red and blue arrows indicate forces that are compared to judge separation

and tearing, respectively . 44

6.2 Angle formed by two polygons that sandwich an edge 46

6.3 Discrete mean curvature at a vertex . 46

6.4 Half-edges around a vertex, which provide lifting forces to the vertex 48

6.5 Sensitivity analysis of the geometric property gamma 49

6.6 Patterns of the tearing process. The number in vertices shows the Stat value. 51

6.7 Update of the crack direction reflecting the previous direction. The direction is the

weighted sum of the direction of the newly extended crack newDir and the projected

and normalized previous direction oldDir . 52

v

6.8 Sensitivity analysis of the persistence of the crack direction h. The color indicates the

vertex status Stat. White denotes 0 (bonding), gray 1 (separated), red 2 (end of a

crack), yellow 3 (path of a crack), and green 4 (junction of cracks). Cracks are likely

to proceed straight, as h is large . 53

6.9 The effect of projecting the crack direction onto the model surface. In both (a) and

(b), the persistence of cracks was set to h = 1.0, so the cracks run straight. While

cracks stop on the curved surface because the directions point in the air or inside the

model in (a), cracks can extend, as in the case of a flat plane, because the directions

are updated to run along the model surface . 53

6.10 Cases in which a crack end disappears . 53

6.11 Stripping process . 54

7.1 Setting of rust sources at tearing . 57

7.2 Determination of vertical position relation between vertex A and its duplicate A’. Be-

cause A and A’ are at the same position immediately following duplication, the relation

is determined by predicting the direction in which A moves 57

7.3 The computation of the rust flow direction flowDir at a vertex V. The direction is

found by projecting the gravity direction vector gravity onto the plane perpendicular

to V.Nor and by normalizing it . 59

7.4 Transfer of rust from a vertex V to its nearby vertices 59

7.5 Flowchart for determining the transfer amount . 59

7.6 Geometric factors and appearance of dust accumulation 62

7.7 Sensitivity analysis of the coloring intensity of rust rustIntensity. If rustIntensity

is high, the base color is not reflected well, and the rust color is deeply drawn. Note

that when rustIntensity = 0, the mixed color is computed only by multiplication, so

rust does not appear at all in the black base color. Using this method, rustIntensity

= 0.2 was adopted . 64

8.1 Partial recovery by history preservation. The numbers of vertices and polygons in the

model are 83,139 and 166,408, respectively. Topological inconsistencies may occur at

the boundary . 67

8.2 An example of the difficulty in determining the area that should be bound due to the

disappearance of crack ends . 69

8.3 An example in which the number of cracks near the junction of cracks does not match

the maximum Stat value. If edges tear in the order of the black numbers, the Stat

values are incremented, as indicated in white numbers. Finally, their maximum value

is 5, whereas the number of cracks is 6 . 70

vi

8.4 Examples of binding corresponding to tearing patterns. The Stat value is basically set

to the number of surrounding vertices before binding but forced to be 1 only in Pattern B 72

8.5 Outline of normal rust run-off (a), time reversal using the same algorithm as with

normal rust run-off (b), and its outline (c). In the time reversal scenario, the difference

among rust amounts at vertices grows, and points at which rust stops and at which

there is no rust appear alternately . 75

8.6 Parallelization per vertex, where the process updates only a one vertex parameter. The

parameter of the i-th vertex in the n-th step is denoted as vni , and it is updated to

vn+1
i by the parallelization process . 75

8.7 Parallelization per length constraint, where the process updates the assumed displace-

ments of the target vertices. Letting the value of Verts[i].Delta in n-th step be

∆pn
i , and it is updated to ∆pn+1

i by the parallelization process 76

8.8 Conflicts due to parallelization and atomic operations 77

8.9 Pseudo color-coding visualization of parameter values. The upper and lower row display

the initial state and the state of weathering to some extent, respectively. Each column

shows, from left to right, the normal appearance, ease of separation, ease of tearing,

and degree of stains. Note that the model is initially shown in black to visualize stains 78

9.1 A result of weathering a coated curved plate. As time progresses, cracks and bends

are generated . 81

9.2 Progress and reversal of the simulation. Weathering is progressed from 1○ to 4○ and

then reversed from 4○ to 7○. The pseudo time reversal cannot completely reproduce

the reverse process of weathering, but it can gradually return the model to its initial

state . 82

9.3 Designation of areas for weathering and maintaining by interactive control. The lower

row visualizes the progress of weathering using the tearing mode, whereas red and blue

areas indicate the promotion and prevention of weathering, respectively 83

9.4 Repair of a weathered model by interactive control. The controlled model (bottom) is

the version whose lower part is the repaired weathered model (top) 83

9.5 Comparison between the simulation result (a) and a snapshot (b) of a coated iron pole

in reality. The simulation was performed with the settings s = 0.10, h = 0.10, and

curl = 0.00 and without interactive control . 84

9.6 Comparison between the simulation result (a) and (b) and a snapshot (c) of a coated

car stop fence in reality. The simulation was performed with the settings s = 0.00, h

= 0.00, and curl = 0.01 and without interactive control. (a) is the full automatic

simulation result, while (b) was washed by an interactive control to resemble the texture

of (c) . 84

vii

9.7 Comparison between the simulation result (a) and a snapshot (b) of a coated iron wall

in reality. The simulation was performed with the settings s = 1.00, h = 0.50, and

curl = 0.02 and without interactive control . 85

9.8 Results of reproducing the textures of objects on other models. (a), (b), and (c)

reproduce the textures of objects shown in Fig. 9.5(b), Fig. 9.6(c), and Fig. 9.7(b).

Because these simulations do not use texture mapping, no distortion caused by UV

mapping arises, and the texture can be transferred considering the geometry of the

target model . 86

9.9 Results of automatic weathering simulations whose net execution time was measured.

See the obtained statistics in Table 9.1 and Table 9.2 87

9.10 Weathering of a signboard model in a devastated city scene. Weathering integrates

the object into the scene . 88

9.11 Weathering of playground equipment. The areas people frequently touch are designated

by an external input for easy degradation . 89

9.12 Example of partial recovery. If an object is uniformly weathered (a) and a parasol is

placed to block some of the sunlight hitting the object (b), repairing only the blocked

area (c) renders the parasol’s appearance to reflect as if it were placed before (a) . . 89

9.13 Technology map of the weathering method. Colored items are discussed in Sec. 9.6 . 90

9.14 Modeling concept of the proposed method. Aged degradation is caused by complex in-

teractions among various factors in reality (left), whereas the proposed method assumes

the interactions can be summarized as variations in several parameters (right) 91

9.15 Weathering of coating films considering base corrosion. The base is unchanged in the

upper row, while a prepared texture is gradually applied to exposed base areas in the

middle and bottom rows, and the coating film is hidden in the bottom row 91

9.16 Snapshot of actual galvanic corrosion. The screw has a lower ionization tendency than

the body, so it retains its metallic luster, but the body corrosion is accelerated near the

screw . 92

9.17 Mathematical modeling and discretization flow in crack generation using mesh. Re-

stricting crack extension to polygon boundaries results in a plausible appearance,

whereas in the continuum model, the crack is considered to go straight through . . . 93

9.18 High-resolution rendering by mesh mapping. The simulation mesh is drawn as is in the

left column, while the mesh is projected to the fine mesh before rendering in the right

column so that fine contours can be expressed while maintaining the general crack

shape. The middle column superimposes the wireframes of the simulation mesh and

rendering mesh in green and gray, respectively . 94

9.19 High-resolution rendering by mesh subdivision. The torn edges are randomly distorted

to express fine contours . 94

viii

9.20 A scene of a weathered pulley. (a) is a real photograph, (b) is overlaid with a weathered

CG, and (c) is overlaid with a non-weathered CG. The virtual objects were manually

overlaid with fine-tuning . 96

9.21 A scene of a non-weathered pole. (a) is a real photograph, (b) is overlaid with a

weathered CG, and (c) is overlaid with a non-weathered CG. The virtual objects were

manually overlaid with fine-tuning . 96

9.22 A coated plate that is restored once but then weathered again. The subject is the

backside of the signboard of Hiyoshi Shrine, which is adjacent to Keio University Yagami

Campus. In the restoration work, warped coating films were removed and then paint

was coated, but over time, the restored area deteriorated again 98

9.23 Weathering simulation of oil painting. The effects of rust run-off stains are turned off

and a model that imitates a canvas is placed behind the painting model 98

ix

List of Tables

4.1 Topological data possessed by geometric elements 22

4.2 Geometric data possessed by geometric elements . 22

4.3 Basic attribute parameters . 28

4.4 Constraint classes and their member variables . 29

4.5 Geometric properties possessed by elements . 29

4.6 Parameters representing the state of force . 30

4.7 Parameters representing the state of degradation . 30

4.8 Parameters influencing the degrees of stains . 30

4.9 Control parameters. The five parameters listed in the top rows can be manipulated by

an external input . 32

9.1 Simulation statistics of the three models in Fig. 9.9 86

9.2 Ratio of time required for each simulation part . 87

x

List of Algorithms

4.1 Conversion from DCEL to IFS . 23

4.2 The first step of DCEL construction: Initialization of Verts 24

4.3 The second step of DCEL construction: Initialization of Faces and Edges 25

4.4 The third step of DCEL construction: Setting of Pair 25

4.5 Search for connected vertices . 27

5.1 Updating vertex positions in PBD-2 . 41

6.1 Computing the angle formed by two polygons that sandwich an edge 47

6.2 Computing the curvature at a vertex . 47

7.1 Propagating rust . 60

8.1 Binding a half-edge E . 71

8.2 Condensation of rust . 74

xi

Chapter 1

Introduction

Chapter 1 Introduction ───────────────────────────────── 2

This chapter introduces this thesis. Section 1.1, 1.2, and 1.3 present the background of the thesis

work. Sec. 1.4 and 1.5 clarify the purpose and contributions of this research, respectively. Finally,

Sec. 1.6 overviews the thesis organization.

1.1 Visual Simulation

The main purpose of visual simulation is to reproduce plausibly the appearance of natural phe-

nomena using computer graphics (CG). Thus, improvements to CG realism not only enhance the

quality of works in art and entertainment but also reinforce the information transmission ability

of visual media to illustrate specific information to people, such as in disaster simulation.

The most basic policy for realizing photorealistic CG is the use of physical simulation,

which involves rigorous numerical computations based on the laws of nature. It ideally seems

that the perfect reproduction of any natural laws in a virtual world leads to the photorealistic

reproduction of the appearance of phenomena, but it is impossible in practice. The biggest reason

is that the real world is too complex to construct governing equations of most phenomena to explain

how they look. For example, turbulent flow, a common elemental phenomenon, is generally believed

to obey Navier-Stokes equations, but this has not been rigorously analyzed yet. Even if the velocity

field and density field in the turbulent flow were completely identifiable, optical analysis would be

necessary to clarify how the result affects the rays of light reaching our eyes. Strictly speaking, the

physiological aspect of how the stimuli from the rays would be processed cannot be ignored.

Therefore, many mathematical models have been introduced for visual simulation. In-

deed, physical simulation also depends on mathematical models, but they are well-grounded in

physics, and most are derived from minimum principles that must be accepted as preconditions.

Conversely, the models in the visual simulation are not necessarily physical and are sometimes

phenomenological and/or artificial, that is, they often explain just a phenomenon’s appearance,

expressed as results without consideration of the underlying mechanisms. Perlin noise [80], which

generates continuous and random distributions by random sampling and vector operation, is a

representative example of the artificial model. Perlin noise is used very frequently to generate pho-

torealistic representations of natural objects, such as clouds, fire, waves, and terrain, even though

it has no physical significance.

While optical analysis is typically necessary for the rigorous reproduction of appearance,

three-dimensional (3D) CG usually accepts a mathematical model in which light is modeled as

rays composed of three primary colors (red, green, and blue) and light behavior is approximated

geometrically. The three primary colors correspond with the frequency band of electromagnetic

waves, which activate three types of cone cells within the human retina, so the model is based

on physiology. Although it still contains bold approximations and assumptions, the basic pipeline

for drawing 3D subjects produced by visual simulation is set up, in a way. Indeed, if the result

Chapter 1 Introduction ───────────────────────────────── 3

of physical simulation is a 3D object, it can be displayed through the same pipeline. However,

conversion to a 3D model and the drawing process may face a bottleneck concerning realism,

and the difference in accuracy between thesimulation and drawing would be large. In this case,

computational resources assigned to physical simulations are not effectively utilized. Therefore,

visual simulation must adopt simplified models that properly consider the rendering capabilities

of the pipeline and computational resources.

1.2 Weathering of Coating Films

Age-related deterioration inevitably affects everything in reality. Changes to the appearance of

deteriorated objects signify to our brain the passage of time, and the degree of deterioration is a

meaningful factor suggesting the “age” of an object at a glance. Conversely, virtual worlds rendered

by CG differ from reality in that they are inherently unaffected by deterioration. Therefore,

bridging this gap between the two worlds by assigning an “age” to CG objects necessitates the

application of weathering, which expresses degradation caused by rain and wind.

Metallic corrosion is one of the commonest examples of real-life deterioration, and many

weathering methods have been proposed to achieve this look. However, in reality, vulnerable metal

is usually coated with rust-proof paint, so scenes in which metal alone deteriorates are highly

limited. In addition, most existing weathering methods focus on changing the material, whereas

few deal with deformation. Some methods are able to express 3D fissures in rocks or the peeling

of coating films based on the result of a crack simulation in a two-dimensional (2D) texture space,

but the deformation remains superficial.

Aged degradation is a comprehensive phenomenon that progresses through extremely com-

plex interactions among various factors, and it is almost impossible to achieve by physical simula-

tion. Particularly, extended time variations in physical properties are highly difficult to measure.

Moreover, although peeled coating films are often observed in reality, they are undesirable from

a safety standpoint, and engineering interest is directed to the process before deformation. Thus,

there are no sufficient data to reproduce the process of coating films bending after cracking. There-

fore, the visual simulation of aged degradation must involve the construction of mathematic models

that describe the time variations in physical properties.

Chapter 1 Introduction ───────────────────────────────── 4

1.3 Interactive CG

The rapid development of extended reality (XR) and the metaverse presently has expanded the

opportunities for people to experience virtual CG objects up close. To avoid spoiling the immersive

experience, the generation and drawing of high-resolution objects that look photorealistic from any

distance or angle are increasingly becoming required. In addition, because CG objects, which were

mostly observed through rectangular displays, are shown as if they existed right in front of our

eyes, it is expected to control the CG objects much more intuitively.

Such high-resolution CG and interactive control are important topics, not only in relation

to XR and the metaverse, but also in relation to regular CG systems, and particularly, interactive

control is essential for content generation tools. While content generation through visual simulation

has the advantage of easily and automatically reproducing natural objects without special skills

or knowledge of the user, it has the disadvantage of making it difficult to reflect user intentions.

It is thus desirable to improve the directability (the property that allows users to manipulate

the simulation process intuitively, including the usability of the user interface) by receiving the

user’s intended controls to deal with the disadvantage. However, while the next state can reflect

intended control, simulation generally cannot restore an object to its previous state, because states

are updated by iterating computations of parameters. A complete record of all states allows the

time from the initial state to the final simulated state to be manipulated at will, but it also requires

significant computational resources.

1.4 Purpose of Thesis Work

The main purpose of this thesis is to represent and simulate visually the aged degradation of

coating films, which is difficult to reproduce by physical simulation using simple mathematical

models. Cracks and bends of coating films are expressed by deforming a 3D polygon mesh, in

consideration of mechanical effects. Moreover, stains on the surfaces of coating films are also

expressed in consideration of the model shape. To improve the simulation directability, pseudo

time reversal of the degradation is achieved, and simulation results for the proposed method are

shown in Fig. 1.1.

Note that this thesis proposes a visual simulation method that aims to depict plausibly

the appearance of the phenomenon, rather than to reproduce it in a physically accurate manner.

This method is intended primarily for the generation of entertainment content, such as video game

development, digital art production, and pre-visualization special effects for movies. In addition,

unique applications of such a proposed method as a weathering technique must include a landscape

assessment and the generation of analytic images that warn of the aging of social infrastructure.

Chapter 1 Introduction ───────────────────────────────── 5

Fig. 1.1 Results of visual simulation using the proposed weathering method. By weathering

the initial model (left), an aged model (middle) is obtained. In addition, partial time reversal of

the aged model gives an ununiformly aged model (right)

1.5 Contributions of Thesis Work

The contributions of this thesis are five-fold, as follows:

1. Reproduction of the gradual bending of coating films by applying position-based defor-

mation dependent on the fracture condition;

2. Statics-based fracture determination and topological manipulation of triangular polygon

mesh to represent plausible cracks on coating films, as well as the generation of various

peeling patterns using several control parameters;

3. Expression of stains including rust run-off from peeled areas;

4. Quasi-reversible weathering of coating films by defining a reversal process for each of

the above three weathering processes; and

5. Directable weathering, where the simulation state is displayed in real time and external

input during the simulation is accepted to enable interactive control.

Parts of this study were published as [MP-1], [MP-2], [RP-1], [RP-2], and [RP-3].

Chapter 1 Introduction ───────────────────────────────── 6

1.6 Organization of Thesis

The remainder of this thesis is organized as follows:

Chapter 2 Related Work

Prior works related to weathering and simulation are surveyed.

Chapter 3 Method Overview

An overview of the proposed method is presented.

Chapter 4 Data Structure

A data structure to realize the proposed method is introduced.

Chapter 5 Bend Simulation

The position-based deformation simulation to express film bending is explained.

Chapter 6 Fracture Simulation

The fracture simulation, considering force balance and topological manipulation, is pre-

sented.

Chapter 7 Stain Expression

The expression of stains caused by external effects is explained.

Chapter 8 Interactive Control

Interactive control, including the time reversal of weathering, is detailed.

Chapter 9 Results and Discussions

The results of the simulation using the proposed methods and discussions are provided.

Chapter 10 Conclusion

This chapter concludes the thesis.

Chapter 2

Related Work

Chapter 2 Related Work ──────────────────────────────── 8

This chapter gives an overview of existing simulation works related to the proposed method.

Section 2.1 introduces weathering methods to express aged degradation in CG. Then, Secs. 2.2

and 2.3 present methods to simulate solid deformation and interactive simulation methods, respec-

tively. Finally, the strengths of the proposed method are highlighted in Sec. 2.4, in comparison

with related works.

2.1 Weathering Simulation

Everything in reality is affected by age-related deterioration, and to reflect this, the surveys by

Merillou and Ghazanfarpour [63], Muguercia et al. [67], and Frerich et al. [29] introduced many

known attempts to express changes in appearance due to aged deterioration. Weathering has been

applied to various objects, including paper, corks [55], leaves [49], wood [57], stones [23][77][106],

bricks [87], and concrete [99]. Crack generation methods [22][28][98] are also proposed for stiff

materials. Furthermore, as examples of human aging, there exist face age manipulation by deep

learning [1] and hair deterioration in consideration of biological features [2].

Metal has also become the primary target of CG weathering, and the method for generating

metallic patinas proposed by Dorsey and Hanrahan [24] is one of the most recognized weathering

techniques. Meanwhile, metal corrosion [45][46][62], the synthesis of rust in seawater [13], and

rust generation considering the physical and chemical properties of water [44] are other examples

of metal weathering. In addition, the method of generating rust texture by cell automata [94] is

applied to voxels to represent cubic metal corrosion [92][93].

Conversely, few weathering methods have targeted coated objects. Paquette et al. [79] and

Gobron et al. [31] demonstrate the peeling of coating films by generating cracks and bending in

the surrounding films. However, cracks are simulated in texture space, while bending is simulated

using a 3D polygon mesh, so combining both processes is not straightforward. As a result, only

coating films near cracks bend, whereas large warps cannot be expressed.

Dust accumulation on the surface of objects [40] is another example of weathering whose

simulation deals with phenomena on material surfaces rather than changes to the material. Spe-

cific objects that should be considered in the simulation of dust accumulation include fur [52],

carpets [51], and cities [66]. Dust accumulation on solar panels [72] is another important topic

in engineering because it affects the efficiency of energy production. In addition, a method to

reproduce characteristic patterns caused by water currents conveying sediments [25] has been pro-

posed, and there also exist an image-based method [8] and an interactive editing system [9][26] to

express such phenomena. Further, weathering methods that deal with biological factors include

moss propagation [76] and lichen growth [21].

As examples of versatile weathering, methods for estimating the deterioration process

with an appearance manifold [101][107] and the weathering of a single image [11][27][42] have

Chapter 2 Related Work ──────────────────────────────── 9

been proposed, among which are many texture-generation methods, such as those considering

the cubic shape of the object [33][60][103] and pseudo time-manipulation by processing a single

texture [5][34][85]. However, these methods manipulate the material of object surfaces or objects

in images, but they do not enable 3D deformation. In response, γ-ton tracing [16] is a generalized

method introduced to estimate the likely weathering areas throughout the 3D space, but it must

be combined with other techniques to express spatial deterioration.

2.2 Deformation Simulation

Deformation simulation is essential to 3D CG animations that must reproduce realistic object

behaviors, and surveys by Nealen et al. [71] and Huang et al. [41] mention several types of simulation

approaches.

The most classic model for deformation, the mass-spring system allows diverse and excel-

lent deformation expressions, even though it is a simple model that composes objects with mass

points and springs. Especially in CG, this model is often applied to hair [86] and clothes [18],

which move concurrently with the acting characters. Moreover, it applies to phenomena involving

topology changes, such as fractures [73] and cracks [37][38]. Acceleration of the mass-spring system

for time integration schemes has been also proposed [59], and the introduction of the Maxwell-

Voigt model, where sliders and dumpers in addition to springs are used as connectors among mass

points, has enabled the model to express viscoelastic and plastic deformation [96].

The finite element method (FEM) [97] is a representative simulation method that is appli-

cable to solid deformation. When applied to structural analysis in the field of physical simulation,

an element equation can be formulated for each element constituting an object, the solution to

each of which is displacement at the nodes located on the surface of or inside the element. Then,

a hypercomplex equation whose solution is the displacement of all nodes is solved to satisfy all

element equations with consideration of boundary conditions. In the field of CG, many deforma-

tion methods use FEM, among which the simulation of brittle fractures by O’Brien [75] is one of

the commonest attempts. In addition, methods for contact between multiple objects [43][53] and

a tearing simulation of films with adaptive mesh [81] have been proposed. Further, acceleration

for elastic deformation simulation with mesh [69] is applicable to both FEM and the mass-spring

system. However, existing methods using FEM in the field of CG often emphasize the fact that

internal continuous stress is integrated into discrete force when formulating element equations, and

they avoid solving the hypercomplex equation. For these methods, FEM is reduced to substituting

elements with springs in the mass-spring model.

Alternatively, particle methods, as represented by smoothed particle hydrodynamics [30],

the particle-in-cell method [36], and the moving particle semi-implicit method [56] are known as

numerical analysis methods for fluids, but they are also utilized for solid simulation. Especially, the

Chapter 2 Related Work ─────────────────────────────── 10

material point method (MPM) [89] combines the particle and lattice method, which is applicable

to various materials, including elastic bodies, snow, lava, and sand, as demonstrated by Jiang

et al. [50]. Recently, there have been active studies on MPM, such as fractures in anisotropic

materials [102], application to magnetic fluid [91], and acceleration by hierarchical processing

distribution [82]. Peridynamics [88] is a molecular dynamics-based method that is similar to the

particle method, which has been applied to CG to simulate fractures [15].

Deformation methods based on continuum mechanics, including FEM and particle meth-

ods, lead to exact results according to the governing equations, but applying them to complex

phenomena is difficult because they require the formulation of governing equations. In addition,

they require large computational complexity to obtain an exact solution. For these reasons, prac-

tical CG systems often deal with deformation in a geometrical manner. Thus, baraff et al. [3]

proposed a method for avoiding penetration by geometric computation considering mechanics.

Position-based dynamics (PBD) [70], a well-known CG simulation method, replicates de-

formation and motion based on geometric constraints instead of natural laws. Many applications

of PBD have been proposed, as presented by Bender et al. [7] and Wu et al. [104], as PBD enables

the easy simulation of complex mechanical phenomena because the values of the geometric param-

eters produced as a result of a phenomenon can be given as constraints. However, PBD may lead

to physically incorrect behavior, but Bender et al. [6] realized physically exact PBD by setting

constraints based on mechanical energy.

2.3 Interactive Simulation

While physical simulation tries to reproduce phenomena accurately under specific conditions as

objective facts, visual simulation focuses on the subjective plausibility of their appearances. There-

fore, visual simulation often pursues directability, that is, expertise that enables the simulation to

be intentionally controlled by human external inputs.

A sort of directability can be observed in a study of dents on surfaces caused by impacts [78]

and interactive γ-ton tracing [35]. Further, Endo et al. proposed a design system to produce water

flow stains on walls in image [26]. In addition, interactive terrain generation considering erosion

caused by water currents [100] is an example of interactive weathering, and Wu et al. proposed a

design system for corroded fruit [105].

There exist many methods to control fluid in virtual worlds, which is difficult to manip-

ulate intuitively in reality, and their control targets include water [39][108], smoke [19][20], and

fire [12][65]. Position-based fluid [61] is an application of PBD [70] and a particle method, and it

realizes a fast, stable, and interactive fluid simulation.

Solid deformation simulations, in which the shape of the model is maintained if no external

forces are exerted, achieve interactive control without special processing in most cases by using

Chapter 2 Related Work ─────────────────────────────── 11

the mass-spring system or PBD. Further, to control FEM interactively, which generally requires

large computational complexity, a method using precomputed Green functions [47] and detailed

deformation with deep learning [83][84] was proposed. In addition, Barbic et al. proposed a

framework to generate animations interactively by FEM-based simulation [4].

PBD can also be utilized for an interactive fracture simulation, and a method related

to PBD, projective dynamics [10], has been applied to the fast-tearing simulation of cloth [58].

Needle insertion for surgical simulators with FEM [17] and texture-space deformation, including

penetration using a collision simulation [74], were proposed.

In the case of controlling elastic deformation or stable-state flow, it may not be necessary

to restart the simulation from the beginning. For example, when an interactive simulation is used

to put a wrinkled cloth model in a virtual scene, the change from one state to another is relatively

easy, and it is possible to fine-tune the model’s shape. As an example of fluid, a fire control system

can generate various fire shapes without restarting the simulation, except for ignition, where the

velocity field changes dynamically. Conversely, a fracture is an irreversible change, so an excessively

broken model cannot be undone. In the simulation of irreversible phenomena, undoing the state

requires restarting the simulation or saving the history.

2.4 Strengths of the Proposed Method

The proposed method focuses on the weathering of coating films covering metallic objects, which is

seen regularly in reality, even though few existing methods deal with its simulation. Furthermore,

as mentioned in Sec. 2.1, most existing methods, not just those for the weathering of coating films,

manipulate the material of an object’s surface, but few allow 3D deformation.

Therefore, the proposed method adopts the deformation simulation demonstrated in

Sec. 2.2. When simulating the deformation of a thin board, such as a coating film, by FEM,

the computation is more complicated, because not only the displacement but also the angles of

deflection must be derived as the solution. Particle methods must position multiple particles

in the thickness direction, and they require much computational complexity. In both FEM and

particle methods, changes to the values of some mechanical parameters due to aged deterioration

cannot be theoretically derived or actually measured. Thus, the proposed method deals with

bends in coating films geometrically and phenomenologically, expresses them using PBD-based

deformation, and realizes natural deformation by setting geometric constraints.

In addition, the proposed method is a kind of interactive simulation, as presented in

Sec. 2.3, and it deals with an irreversible phenomenon, the simulation of which is usually not

undone. However, this method can approximate the state of the previous step by causing virtual

inverse phenomena that never occur in reality. This inverse processing makes up for the simulation’s

disadvantage of time unidirectionality and achieves highly directable weathering.

Chapter 3

Method Overview

Chapter 3 Method Overview ───────────────────────────── 13

This chapter gives an overview of the proposed method. Section 3.1 explains the aged degradation

of coating films in reality and Sec. 3.2 illustrates the processing flow.

3.1 Real Coating Films

3.1.1 Bend

The main factor in the aged degradation of real coating films is the changes in the internal stress

and physical properties due to drying. In reality, because it is difficult to measure stress in coating

films, the stress comes from a measurable displacement by coating a small metal plate and letting

the base deform together with the coating film. As shown in Fig. 3.1, according to Stoney’s

law [90], with an assumption that a coating film bends thin metal disk, the relation between the

stress in the coating film σF and r can be expressed by:

σF =
EStS

2

6(1− νS)tF
R−1, (3.1)

where r, tS, νS, and ES denote the radius, thickness, Poisson’s ratio, and Young’s modulus of

the disk, respectively, and tF denotes the thickness of the coating film and R the radius of the

curvature. If the center of the disk is fixed, R is approximated as:

R =
r2

2δ
,

where δ denotes the displacement of the circumference. Substituting this into Eq. (3.1), the

following equation is obtained:

δ =
3(1− νS)tF

EStS
2 σFr

2.

Then, multiplying σF by the volume of the coating film πr2tF yields the contraction force of the

coating film T = πr2tFσF, and the relation between T and δ is obtained as follows:

δ =
3(1− νS)

πEStS
2 T. (3.2)

As shown in Fig. 3.2, FL is assumed a virtual force acting on the edge of the disc to lift

the coating film from the base, and it equals the force required to bend coating films with the base

when the base is not fixed. FL can be computed according to Eq. (3.2), where if FL is proportional

to δ in accordance with Hooke’s law and all parameters other than T are constants, FL is simply

given by:

FL = kLT, (3.3)

where kL denotes a constant coefficient that represents the ease of separation.

If the contraction force in the tangential plane direction becomes strong enough, the coating

film tears and a crack appears, as mentioned in the next subsection. In addition, the lifting force

peels the film from the base.

Chapter 3 Method Overview ───────────────────────────── 14

Fig. 3.1 A coating film bending together with the metallic base

Fig. 3.2 Virtual lifting force. It acts to peel the coating film from the base (left). If the coating

film were cut out in the shape of a disc with the base, it would be bent according to Stoney’s

law [90] (right)

3.1.2 Crack

Any material including coating film can be modeled as a continuum, whose distributions of physical

properties are continuous. Continuum mechanics is a powerful theory that describes stress and

strain in a wide variety of solids and fluids, and it underlies numerous physical simulations, such

as FEM and particle methods. However, continuum mechanics is not applicable to phenomena

strongly influenced by microscopic discontinuities, so the difference between theoretical analysis

and experimental results becomes large.

A fracture is a representative phenomenon to which it is difficult to apply continuum theory,

and most real materials are broken by a smaller load than the theoretical value. In contrast, fracture

mechanics focuses on the stress distribution on the material surface and describes how fractures

are caused by the stress concentration at the ends of cracks. According to fracture mechanics, the

reason materials are easier to break than continuum theory assumes are the tiny cracks inherent in

the materials as defects and the large stresses around the ends of defects. Extended defects appear

as large cracks that can be seen by the naked eye. Note that except for some differences in usage,

Chapter 3 Method Overview ───────────────────────────── 15

Fig. 3.3 Three modes of fracture. Mode I is dominant among thin plates

fracture mechanics assumes the same yield criterion as continuum mechanics, in which a fracture

occurs if the stress is over the limit value given as a physical property.

As shown in Fig. 3.3, there are three modes of fracture: mode I (tension), mode II (in-

plane shear), and mode III (anti-plane shear). Mode I is dominant among thin plates, so this thesis

discusses only mode I. However, this assumption means that it is acceptable to ignore in-plane and

anti-plane stresses in the crack analysis, but it does not neglect the existence of anti-plane forces.

An xy-coordinate system whose origin is the end of a crack and whose x-axis is in the

direction of the crack is set parallel to the coating films, as illustrated in Fig. 3.4. If the stress

intensity factor is denoted as KI and the radius and azimuth at position p are r and θ, respectively,

the stress tensor σ at p can be expressed by:

σxx =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
,

σyy =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
,

σxy =
KI√
2πr

cos
θ

2
sin

θ

2
sin

3θ

2
,

σ =

σxx σxy

σxy σyy

 .

(3.4)

When the factors derived from θ in σxx, σxy, and σyy are abbreviated to kxx(θ), kxy(θ), and kyy(θ),

respectively, Eq. (3.4) can be rewritten as:

σxx =
KI√
2πr

kxx(θ),

σyy =
KI√
2πr

kyy(θ),

σxy =
KI√
2πr

kxy(θ),

σ =
KI√
2πr

kxx(θ) kxy(θ)

kxy(θ) kyy(θ)

 .

If nθ = (− sin θ, cos θ)T denotes a unit vector in the azimuth direction at position p, the opening-

direction component of stress σθ can be obtained by:

σθ = nT
θ σnθ =

KI√
2πr

(
kxx(θ) sin

2 θ − 2kxy(θ) cos θ sin θ + kyy(θ) cos
2 θ

)
=

KI√
2πr

k(θ), (3.5)

Chapter 3 Method Overview ───────────────────────────── 16

Fig. 3.4 A relative coordinate at a crack end. The black triangle on the left represents the

crack. The origin is at the end, the x-axis is in the crack’s direction, and the y-axis is perpendicular

to the x-axis

Fig. 3.5 The relation between the azimuth θ and the coefficient k(θ) on the opening-direction

component of the stress tensor

where k(θ) denotes the following function of the azimuth θ, whose value range is [0, 1]:

k(θ) = cos
θ

2
sin2 θ

(
1− sin

θ

2
sin

3θ

2

)
− 2 cos

θ

2
sin

θ

2
cos θ sin θ sin

3θ

2
+ cos

θ

2
cos2 θ

(
1 + sin

θ

2
sin

3θ

2

)
.

(3.6)

Figure 3.5 illustrates the relation between θ and k(θ), which Eq. (3.6) represents. According to

Eq. (3.6) and Fig. 3.5, the stress is strongest in the forward direction and about 35 % of the

maximum value in the perpendicular direction. This stress distribution leads to the phenomenon

where cracks tend to grow straight. The stress intensity factor KI depends on stretch stress σ∞
yy

in the y-direction at the distance and length of crack a, and it is computed as:

KI = σ∞
yy

√
πa. (3.7)

Equations (3.4), (3.5), (3.6), and (3.7) are derived from the ideal model, and there

are some points to note when applying them to the simulation. First, according to Eq. (3.5), the

stress becomes infinitely large as r approaches 0. In this regard, plastic deformation at the crack

end limits the stress to a certain value and redistributes the excess stress to the surrounding area.

However, because it is extremely difficult to measure the redistributed stress, Eq. (3.5) must be

Chapter 3 Method Overview ───────────────────────────── 17

used as an approximate formula, while paying attention to the applicable range. Conversely, the

stress is computed as 0 when r is large enough, but there exists stress at least σ∞
yy. In addition,

Eq. (3.7) is applicable only when the crack length a is a few dozen percent of the material thickness

and the crack is a straight line. In the case of a long and complex crack, the dependence of KI on

a seems to weaken, but an alternative mathematical model to Eq. (3.7) is difficult to construct

because it must consider influences on the thickness and physical properties of the material.

3.1.3 Stain

Aged degradation affects not only the shape of an object but also its superficial texture. Chalk-

ing [32] is an important chemical change in coating films, a phenomenon whereby resin in the film

is decomposed by rain and light and pigment powder appears on the surface of the coating film.

If a coating film is chalked, the surface diffuses light and loses its gloss. Chalking occurs earlier

than deformation, but cracking and peeling usually appear right after chalking, because chalking

means a lack of the rust preventive function of the coating film.

One of the characteristic effects of rust preventive coating films is rust run-off stains, which

can also be seen on reinforced concrete. Rust run-off is a phenomenon where the metallic base is

oxidized and outflows from peeled areas. Oxidization is promoted by moisture and rust is conveyed

by water flow, so rain is the prime contributor to rust run-off stains.

Moreover, in highly populated cities where many people live, most objects are darkened

from accumulating dust due to exhaust gas. Darkening appears more significantly on bumpy sur-

faces, which prevents rain and wind from washing the dust. In addition, dust tends to accumulate

on upward-facing surfaces, which apply vertical drag force against gravity.

3.2 Simulation Flow

The processing flow is illustrated in Fig. 3.6, and the proposed method models a coating film with a

triangle polygon mesh, as detailed in Chap. 4. Then, the model is deformed with a position-based

bend simulation, and its topology is manipulated according to a statics-based fracture simulation

to express fracturing. Either coordinate system is acceptable, but in this thesis, the left-hand

coordinate system is adopted.

The position-based bend simulation, described in Chap. 5, parallels the fracture simula-

tion, and it proceeds following a coherent algorithm independent of the fracture progress, but its

target is updated when a fracture occurs. The effects of bend simulation cannot be seen in the

initial state, but once the fracture simulation separates vertices from the base, the bend simulation

moves vertices to deform the mesh.

As shown in Fig. 3.7, the simulation of fractures due to aged deterioration proceeds in

three stages: separation, tearing, and stripping. In this thesis, the transition to the next stage is

Chapter 3 Method Overview ───────────────────────────── 18

Fig. 3.6 The flow of processes in the proposed method. The input is polygon mesh data,

and it is weathered as a coating film, the process of which is simulated in every frame. The

deteriorating model can be displayed in real time and controlled by an external input

Chapter 3 Method Overview ───────────────────────────── 19

Fig. 3.7 The peeling process in the proposed method. Whether to progress to the next stage

is determined by the static fracture criteria

referred to as a fracture. Note that these stages can coexist in the same space because a fracture

is judged for each local region and is based on static equilibriums. The parameter values and

topological data of the polygon mesh are updated when a part of the model fractures, the specific

computation method and process of which will be detailed in Chap. 6.

Further, stains are expressed as non-deformation aged deterioration. As explained in

Chap. 7, parameters concerning stains are set to each vertex, and parameter values are given by

geometric computations. Then, stains are drawn by manipulating the color and reflectance at each

vertex according to the degree of stains.

These processes are performed based on simplified mathematic models such that the state

of the previous step can be estimated from the current and initial states, allowing for a pseudo

time reversal of the simulation. In addition, the simulation process is drawn in real time by GPU

parallelization. The directable simulation is achieved by manipulating parameter values according

to external input, and the methods for the time reversal, parallelization, and parameter control

are detailed in Chap. 8.

Chapter 4

Data Structure

Chapter 4 Data Structure ─────────────────────────────── 21

This chapter describes the data structure and related algorithms to run the weathering simulation.

First, Sec. 4.1 introduces the doubly connected edge list (DCEL) [68], also known as the half-edge

data structure, to deal effectively with 3D triangular polygon mesh. Then, Sec. 4.2 demonstrates

attribute parameters added to DCEL. Finally, Sec. 4.3 mentions parameters to control the simu-

lation.

4.1 Doubly Connected Edge List

The proposed method must frequently manipulate the mesh topology to express the tearing of

coating films. Therefore, DCEL is adopted as a fundamental data structure to manage the mesh,

which can efficiently update the reference relations among the geometric elements, that is, the

topological data.

As illustrated in Fig. 4.1, DCEL consists of three kinds of geometric elements: vertices,

faces, and half-edges, the latter of which is an edge split in two whose face has three unique half-

edges. Note that in this method, an edge located on the edge of an open-curved surface model

is expressed as a single half-edge that does not constitute a pair. Therefore, the total number of

half-edges in a triangular polygon mesh equals three times the number of faces. Although edges

do not exist as data, a pair of half-edges or a single half-edge that has no pair is simply referred

to as an edge hereinafter. To manage all model data, the vertex list Verts, half-edge list Edges,

and face list Faces are defined, and each geometric element is stored in the corresponding list.

Each geometric element records some of its adjacent elements as the topological data, as

illustrated in Table 4.1. In this thesis, to simplify the notation,the vertex, half-edge, and face

are implemented with the classes Vert, Edge, and Face, respectively, and the topological data

are stored as instances of these classes that are reference-type variables. In fact, each geometric

element is implemented with a structure to run in the GPU, and the topological data are stored as

indexes in the corresponding list, which is a value-type variable. For example, the state “Substitute

one of the faces adjacent to a face F to X” is expressed in terms of structures and classes as follows:

X = Faces[Edges[Edges[F.Edge].Pair].Face];// structure, X is index (value)

X = F.Edge.Pair.Face;// class, X is instance (reference)

The geometric data are only the 3D position vector data set to the vertex class Vert, as shown in

Table 4.2.

While DCEL is suitable for phase manipulation, it includes data redundant for rendering.

In contrast, an indexed face set (IFS) is the simplest data structure for shape modeling, as it

expresses triangular polygon meshes with the index list Triangles and vertex list Vertices. If

the index of each Vert in DCEL is denoted as a member variable Index, DCEL can be converted

to IFS by Algorithm 4.1, and topological data referenced in the conversion are illustrated in

Fig. 4.2.

Chapter 4 Data Structure ─────────────────────────────── 22

Fig. 4.1 Doubly connected edge list. Each arrow means the elements connected by it can

be referenced in its specified direction. A dotted line arrow means an element reference (or is

referenced by) another element that is not shown in the figure

Table 4.1 Topological data possessed by geometric elements

Element Member variable

(class) Type Name Description

Vert Edge Edge One of adjacent half-edges

Edge Edge Pair Pair to the half-edge

Edge Next Next half-edge clockwise around the perimeter

Edge Prev Previous half-edge clockwise around the perimeter

Vert Vert Vertex shared with Prev

Edge Face Face whose perimeter consists of the edge, Next, Prev

Face Edge Edge One of the half-edges that compose the perimeter

Table 4.2 Geometric data possessed by geometric elements

Element Member variable

(class) Type Name Description

Vert Vector3 Pos Position vector

Fig. 4.2 Topological data referenced in the conversion from DCEL to IFS

Chapter 4 Data Structure ─────────────────────────────── 23

Algorithm 4.1 Conversion from DCEL to IFS

Require: Vertex list Verts, half-edge list Edges, and face list Faces in accordance with DCEL

Ensure: Obtain Vertex list Vertices and index list Triangles in accordance with IFS

1: for all F in Faces do

2: Add F.Edge.Vert.Index to Triangles;

3: Add F.Edge.Next.Vert.Index to Triangles;

4: Add F.Edge.Prev.Vert.Index to Triangles;

5: end for

6: for all V in Verts do

7: Add V.Pos to Vertices;

8: end for

Most general file formats for 3D models, such as OBJ and PLY, are IFS-compliant, so

applying the proposed method to these files requires an inverse conversion from IFS to DCEL. If

data read from a model file are stored in Triangles and Vertices, and each of the Verts, Edges,

and Faces is initialized with a list of zero elements, the procedure of the inverse conversion is as

follows, also illustrated in Fig. 4.3:

1. Retrieve geometric data from Vertices and Vert to send to the vertex list Verts

(Algorithm 4.2);

2. Generate Face and Edge according to Triangles, and set topological data except for Pair

(Algorithm 4.3); and

3. Set the remaining topological data Pair (Algorithm 4.4).

Hereinafter, in the process where the topology data are assumed already properly con-

figured, a half-edge Edge is simply depicted as an arrow that omits the topological data, with

Edge.Vert as the start and Edge.Next.Vert as the end point, as shown in Fig. 4.4. Edge.Vert

and Edge.Next.Vert are referred to as the start and end point of Edge, respectively. Note that

Face.Edge and Vert.Edge cannot be uniquely determined, so these kinds of topological data are

shown if necessary.

Chapter 4 Data Structure ─────────────────────────────── 24

Fig. 4.3 DCEL construction procedure. As described in Algorithm 4.3, Step 2 is actually run

concurrently for each triangle, but this figure subdivides Step 2 into Step 2-1 through Step 2-6

and describes each step as if it were performed on the entire mesh

Fig. 4.4 Simplified representation of DCEL

Algorithm 4.2 The first step of DCEL construction: Initialization of Verts

Require: Array Vertices of length n storing the vertex positions, and vertex list Verts of zero

elements

Ensure: Store n Vert into Verts

1: for i ← 0 to n - 1 do

2: Generate a new Vert newVert;

3: newVert.Pos ← Vertices[i];

4: Add newVert to Verts;

5: end for

Chapter 4 Data Structure ─────────────────────────────── 25

Algorithm 4.3 The second step of DCEL construction: Initialization of Faces and Edges

Require: Array Triangles of length m*3 storing the indexes of vertices, the configured vertex

list Verts, half-edge list Edges of zero elements, and face list Faces of zero elements

Ensure: Store m Face into Faces, and m*3 Edges into Edge

1: for i ← 0 to m - 1 do

2: Generate a new Face newFace;

3: Generate new three of Edge newEdges[j] (j = 0, 1, 2);

4: newFace.Edge ← newEdges[0];

5: for j ← 0 to 2 do

6: newEdges[j].Face ← newFace;

7: newEdges[j].Next ← newEdge[(j + 1) % 3];

8: newEdges[j].Prev ← newEdge[(j + 2) % 3];

9: newEdges[j].Vert ← Verts[Triangles[i * 3 + j]];

10: newEdges[j].Vert.Edge ← newEdges[j];

11: Add newEdges[j] to Edges;

12: end for

13: Add newFace to Faces;

14: end for

Algorithm 4.4 The third step of DCEL construction: Setting of Pair

Require: The configured vertex list Verts and face list Faces, the list Edges whose elements’

topological data are set except for Pair, and the number of polygons m constitute the model

Ensure: Set an appropriate Edge pair (∈ Edges) to E.Pair

1: for i ← 0 to m - 1 do

2: for j ← 0 to i - 1 do

3: if Edges[i].Next.Vert is Edges[j].Vert and Edges[i].Vert is Edges[j].Next.Vert

then

4: Edges[i].Pair ← Edges[j];

5: Edges[j].Pair ← Edges[i];

6: end if

7: end for

8: end for

Chapter 4 Data Structure ─────────────────────────────── 26

(a) Counter-clockwise search. Half-edges whose starting point is V are

traced in a counter-clockwise order. If the current half-edge is curtEdge,

curtEdge.Next.Vert is connected with V and the next half-edge is

curt.Pair.Next

(b) Clockwise search. Half-edges whose end point is V are traced in a clockwise order.

If the current half-edge is curtEdge, curtEdge.Vert is connected with V and the next

half-edge is curt.Pair.Prev

Fig. 4.5 The basic policy for searching around a vertex V using DCEL, only if the edge of the

model is reached during a counter-clockwise search (a) and if the remaining vertices are identified

by the clockwise search (b)

The proposed method frequently performs search processes around a vertex V. As an

example of search processes using DCEL, Algorithm 4.5 represents a procedure to store vertices

connected with V to conVerts. Further, as illustrated in Fig. 4.5(a), it is the basic policy to start

with V.Edge as the departure half-edge (homeEdge) and move the current half-edge (curtEdge)

counter-clockwise. However, if V is on the edge of the model and curtEdge.Pair does not exist, a

clockwise search, as shown in Fig. 4.5(b), must be performed. In Algorithm 4.5, the body of the

if statement from lines 6 to 12 represents the clockwise search and the others the counter-clockwise

search.

Chapter 4 Data Structure ─────────────────────────────── 27

Algorithm 4.5 Search for connected vertices

Require: Vertex list Verts, half-edge list Edges and face list Faces constructed according to

DCEL and the target vertex V (∈ Verts)

Ensure: Store all Vert connected with V to list conVerts

1: homeEdge ← V.Edge;

2: curtEdge ← homeEdge;

3: repeat

4: Add curtEdge.Next.Vert to conVerts;

5: if curtEdge.Pair is null then

6: curtEdge ← homeEdge.Prev;

7: while curtEdge.Pair is not null do

8: Add curtEdge.Vert to conVerts;

9: curtEdge ← curtEdge.Pair.Prev;

10: end while

11: Add curtEdge.Vert to conVerts;

12: break;

13: end if

14: curtEdge ← curtEdge.Pair.Next;

15: until curtEdge is not homeEdge

Chapter 4 Data Structure ─────────────────────────────── 28

Table 4.3 Basic attribute parameters

Element Member variable

(Class) Type Name Description

Vert Vector3 Nor Unit normal

Vector2 UV UV coordinate

Color Col Vertex color

Vector3 Pos0 Initial value of Pos

Vector3 Nor0 Initial value of Nor

float Cur Discrete mean curvature

Edge float Ang Angle formed by adjacent polygons

4.2 Attribute Parameters

The previous section presented geometric data and topological data, but the simulation requires

additional attribute parameters. As such, this section introduces attribute parameters that are set

for geometric elements.

First, as listed in Table 4.3, the standard parameters often set in general CG systems,

and the geometric properties used in several processes are set as member variables. Note that the

parameters Vert.Nor, Vert.UV, and Vert.Col are passed to the mesh for rendering in IFS format,

similar to how Vert.Pos was sent to Vertices. Vert.Cur is the dot product of the discrete mean

curvature vector and the unit normal, which is positive and negative when convex on the front and

back side, respectively.

To apply PBD [70] to the polygon mesh, the classes of the length constraint

LengthConstraint and of the bend constraint BendConstraint are defined, whose member

variables are listed in Table 4.4. These constraints and how they are applied to the mesh in the

proposed method are detailed in Chap. 5. Note that each constraint is actually implemented as

a structure but described as a class in this thesis in the same way as the geometric elements,

as mentioned in the previous section. Both length constraints and bend constraints are set to

half-edges, and just as half-edges are stored in Edge, length and bend constraints are stored to the

lists LengthConstraints and BendConstraints, respectively. The indexes of the half-edge list

and the constraint lists correspond to each other. In other words, to the i-th half-edge Edge[i],

the length constraint LengthConstraints[i] and bend constraint BendConstraints[i] are set.

Hereinafter, LengthConstraints[i] and BendConstraints[i] are referred to as constraints that

correspond to Edge[i]. In addition, three parameters shown in Table 4.5 are set to compute the

movements of vertices according to constraints.

Chapter 4 Data Structure ─────────────────────────────── 29

Table 4.4 Constraint classes and their member variables

Constraint Member variable

(Class) Type Name Description

Length Vert[] Verts Array with 2 target vertices

Constraint float Offset Target length

float Offset0 Initial value of Offset

float Stiff Strength of constraint [0.0, 1.0]

float Thr Threshold for iteration

Bend Vert[] Verts Array with 4 target vertices

Constraint float Offset Target angle

float Offset0 Initial value of Offset

float Stiff Strength of constraint [0.0, 1.0]

float Thr Threshold for iteration

Table 4.5 Geometric properties possessed by elements

Element Member variable

(Class) Type Name Description

Vert Vector3 AssPos Assumed position

Vector3 Delta Assumed displacement

float Weight Mobility of vertex

Next, the parameters for running the fracture simulation, as detailed in Chap. 6, are ex-

plained. As Table 4.6 presents, four parameters denote the forces used to compute the criteria

of a fracture, and a parameter holds the crack direction. Because the simulation requires per-

forming different processes depending on the state of geometric elements, status parameters used

for the condition determination are needed, as represented in Table 4.7. Vert.Orig basically

holds the vertex itself Vert, but when a vertex is duplicated and all parameter values, including

Vert.Orig, are copied, the parameter at the duplicated vertex indicates the original vertex, not

itself. Vert.OnEdge is set to 1 if the vertex Vert is on the edge of the open-curved surface model

and 0 otherwise. Further, each element holds a parameter Stat to denote the condition of the

fracture, which is initially set to 0, but at a half-edge Edge on the edge of the model, exceptionally,

it is set to 2. Changes to their values during the simulation are explained in Chap. 6.

Chapter 4 Data Structure ─────────────────────────────── 30

Table 4.6 Parameters representing the state of force

Element Member variable

(Class) Type Name Description

Vert float Adhere Adhesion to the base

Vector3 Direction Direction of crack

Edge float Lifting Lifting force to separate vertex

float Binding Binding force to hold connection between polygons

Face float Contraction Contraction forces to stretch adjacent polygons

Table 4.7 Parameters representing the state of degradation

Element Member variable

(Class) Type Name Description

Vert Vert Orig Original vertex

int OnEdge Whether it is on the edge of the model

int Stat State of degradation

Edge int Stat State of degradation

Face int Stat State of degradation

Table 4.8 Parameters influencing the degrees of stains

Element Member variable

(Class) Type Name Description

Vert float Chalk Degree of chalking

float Rust Degree of rust run-off staining

float RustBuf Rust value before update

bool RustSource Presence of a source of rust

float Dust Degree of dust accumulation

Table 4.8 shows the parameters needed to express stains, as detailed in Chap. 7. Each

denotes the degree of stain at a vertex, and the initial value is 0. Chalk, Rust, and Dust refer

to the degree of chalking, rust run-off stains, and dust accumulation, respectively. Note that the

computation of Rust for each frame requires a read buffer RustBuf holding Rust values before

updating, because it must reference values at nearby vertices. In addition, each vertex remembers

whether it is a source of rust as a boolean RustSource.

Chapter 4 Data Structure ─────────────────────────────── 31

4.3 Control Parameters

While Secs. 4.1 and 4.2 introduce individual parameters set to each geometric element or con-

straint, this section mentions global control parameters that affect the weathering progress of the

entire model. Table 4.9 lists all control parameters.

There are many parameters in the simulation, but most are fixed with empirical values. It

may realize application in more varied scenes to after these values according to an external input

or set non-uniform distribution. However, excessively, many parameters hinder intuitive control,

so parameters that can be manipulated by an external input are limited to the five listed in the

top rows of Table 4.9.

dT is the most important parameter, which denotes the virtual elapsed time per step.

While weathering deals with long-term time lapse and assumes the simulation time step to be

several days or months, the real time scale to display the simulation process is much shorter, at

less than a second. Therefore, the weathering simulation uses the time step dT independent of

the frame ratio. Moreover, dT is allowed to be a negative value, meaning the virtual time can be

reversed. As for the other variable parameters, curl is detailed in Sec. 6.2, s and h in Sec. 6.4,

and range in Sec. 8.4.

Chapter 4 Data Structure ─────────────────────────────── 32

Table 4.9 Control parameters. The five parameters listed in the top rows can be manipulated

by an external input

Type Name Description Values

float dT Time elapsed per step [-10.0, 10.0]

float curl Sensitivity for bending [0.0, 0.025]

float s Sensitivity for stress concentration [0.0, 2.0]

float h Persistence of crack direction [0.0, 1.0]

float range Control range [0.01, 10]

Vector3 gravity Direction of gravity (0.0, -1.0, 0.0)

int iteration Number of iterations in PBD 50

float probDefect Existence ratio of defects 1.0× 10−3

float fragDefect Ratio of binding force at a defect 1.0× 10−3

float shrink Sensitivity for shrinking 1.0× 10−3

float sppedCo Increasing speed of contraction force 0.50

float speedAd Decreasing speed of adhesion force 0.25

float kL Ratio of lifting force to contraction force 0.10

float gamma Sensitivity of lifting force for curvature 2.0

float speedBi[0] Decreasing speed of binding force 0.00

around a face with 0 torn edges

float speedBi[1] Decreasing speed of binding force 0.20

around a face with 1 torn edge

float speedBi[2] Decreasing speed of binding force 1.00

around a face with 2 torn edges

float speedBi[3] Decreasing speed of binding force 0.00

around a face with 3 torn edges

float speedCh Speed of chalking 5.0× 10−3

float sppedRu Speed of rust run-off 0.10

float rangeRu1 Range of mainstream 0.10

float rangeRu2 Range of sub-stream 0.45

float ratioRu Ratio of Rust Amount conveyed through 0.10

sub-stream to one through mainstream

Color rustColor Color of rust (0.75, 0.37, 0.00)

float ratioIntensity Strength of rust color 0.20

float speedDu Speed of dust accumulation 2.0× 10−4

float weightNor Sensitivity of darkening for normal 4.0

float weightCur Sensitivity of darkening for curvature 1.0

float epsilon Maximum length between two points 0.01

considered at the same location

float exAdhere Max value of adhesion force 2.0× 102

float exBinding Max value of binding force 2.0× 103

float rateCtrl Sensitivity of interactive control 0.05

Chapter 5

Bend Simulation

Chapter 5 Bend Simulation ────────────────────────────── 34

This chapter introduces a simulation method for bent films. By applying a bend simulation to a

coated film with cracks, the film on each side of the crack will bend and the cracks will widen.

First, the underlying PBD framework [70] is introduced in Sec. 5.1, and the method for controlling

the length of the line segment in accordance with PBD is demonstrated in Sec. 5.2. Then, the

conventional method for maintaining the angle formed by two adjacent triangles is explained in

Sec. 5.3, and a potential method for expressing bends of films is proposed in Sec. 5.4. Finally,

the bend simulation algorithm is presented in Sec. 5.5.

5.1 Outline of Position-Based Deformation

This section introduces the outline of the PBD framework [70]. In PBD, geometric constraints are

set on the vertices of a scene, and the positions of the vertices are repeatedly updated to satisfy

the constraints. A constraint on N vertices is described as a function of their position vectors

Cj(p0,p1, ...,pN−1), and the function is defined such that its value is 0 when the constraint is

satisfied. Then, for the n-th (n = 0, 1, ..., N − 1) vertex pn, if its inverse mass is wn, the correction

∆pnj of the position with the constraint Cj is computed by:

∆pnj = −sjwn∇pnCj(p0,p1, ...,pN−1),

sj =
Cj(p0,p1, ...,pN−1)∑

k wk∥∇pk
Cj(p0,p1, ...,pN−1)∥2

.
(5.1)

As demonstrated by Eq. (5.1), the corrections are computed from the gradient of Cj with respect

to the positions of the vertices. Therefore, Cj must be differentiable and have no extrema within

the domain of the definition.

A vertex is generally manipulated by multiple constraints, and ts position is corrected

by computing the weighted linear sum of individual corrections for each constraint. Moreover,

corrections are computed each time in the iterative process. If the n-th vertex in the constraint

Cj is the i-th vertex in the entire scene and the position correction ∆pnj is rewritten as ∆pij , the

correction ∆pi for pi considering all constraints is computed by:

∆pi =
∑
j

∆pij

(
1− (1− kj)

1/m
)
, (5.2)

where kj (0 < kj < 1) denotes the intensity of the constraint Cj and m the current iteration count.

When m reaches a predetermined number of times, the iteration process is terminated, and each

position in the next step is determined.

Standard PBD methods predict rough positions in the next step by considering inertia, and

then modify them using Eqs. (5.1) and (5.2). However, because aged degradation is regarded as a

quasi-static process, the proposed method directly modifies positions without considering inertia.

In this thesis, such a version of PBD will be referred to as PBD-2. Note that the constraints

explained in Secs. 5.2, 5.3, and 5.4 are applicable to PBD-2, as well as to the original PBD.

Chapter 5 Bend Simulation ────────────────────────────── 35

Fig. 5.1 Position corrections with a length constraint Clength(p0,p1). Shown are two points,

p0 and p1, which are moved away from their initial positions indicated by dotted lines. In this

case, the length constraint brings p0 and p1 closer together to maintain the distance doffset

5.2 Length Constraint

For an edge whose ends are p0 and p1, a constraint Clength(p0,p1) to maintain its length at a

constant value doffset is defined as:

Clength(p0,p1) = ∥p0 − p1∥ − doffset.

Substituting this into Eq. (5.1), ∆p0 and ∆p1 become:

∆p0 = − w0

w0 + w1
(∥p0 − p1∥ − doffset)

p0 − p1

∥p0 − p1∥
,

∆p1 = +
w1

w0 + w1
(∥p0 − p1∥ − doffset)

p0 − p1

∥p0 − p1∥
,

where both ∆p0 and ∆p1 are parallel to p0 − p1, and Clength acts as a spring between the two

points, as illustrated in Fig. 5.1.

5.3 Angle Constraint

Constraints for angle control are also proposed by Müller et al. [70], but they cannot be applied to

the proposed method, which must bend the mesh model. To explain why, this section introduces

the angle constraint proposed by Müller et al.

As shown in Fig. 5.2(a), Cangle is a constraint to maintain the angle ϕ formed by adjacent

polygons at a constant value ϕoffset. Let p0 and p1 be the end positions of the edge shared

by the faces, whereas p2 and p3 are the positions of the other vertices. Let us assume that

NL = (p0−p1)× (p1−p2) and NR = −(p0−p1)× (p1−p3) are directed to the front side of each

face. By using the unit normals of each face nL = NL/∥NL∥,nR = NR/∥NR∥, ϕ is given by

ϕ = acos(−nL · nR). Further, the angle constraint is defined as Cangle(p0,p1,p2,p3) = ϕ− ϕoffset

and is substituted into Eq. (5.1) to enable position corrections. For more detailed derivations,

Chapter 5 Bend Simulation ────────────────────────────── 36

(a) Before division (b) After division

Fig. 5.2 Division of angle constraint. The neutral direction vector nneutral is decided by the

normals of the faces and the angles ϕL and ϕR between nneutral and the faces, which are set as

the targets of the constraints

refer to the paper by Müller et al. [70].

However, Cangle is available only if ϕoffset = π; otherwise, it causes a defect. For example,

suppose that a pair of polygons transforms from a valley-fold shape, where ϕ = π − α (α > 0), to

a mountain-fold shape, ϕoffset = π + β (0 < β < α < π). Figure 5.3 shows the relation between

−nL ·nR and ϕ in this case. Because the acos function confuses the valley-fold shape ϕ = π−β and

mountain-fold shape ϕ = π + β, Cangle misunderstands the former as the target shape and stops

deforming. By setting ϕoffset = π as an intermediate target, this stop may be avoided. However,

Cangle is not differentiable when ϕ = π, and the corrections are computed considering a limit value

of 0. Therefore, when two polygons are flat, Cangle cannot deform them. The atan2 function (the

two-argument arctangent that divides cases according to the signs of the arguments) can be used

instead of acos to distinguish between valley and mountain folds, but it is not differentiable when

ϕ = π/2 and ϕ = 3π/2, and it cannot compute corrections. For these reasons, the proposed method

cannot adopt the angle constraint, and hence, it substitutes a bend constraint, as proposed in the

next section.

5.4 Bend Constraint

Physically based methods considering bending energy, such as in [14], realize a qualitative thin

shell simulation, through which the bend direction can be determined, but they require more

computational time than position-based methods. Thus, Jeong et al. [48] proposed a simulation

method for sheet bending in a certain direction by structuring two-layer meshes, but it is only

applicable to structural lattices.

In the proposed method, as shown in Fig. 5.2, let nneutral = (nL + nR)/∥nL + nR∥ be

a neutral direction vector and ϕL and ϕR angles between nneutral and the faces. Two constraints

are set such that both ϕL and ϕR approach ϕoffset/2. By setting the two angle constraints, the

bend direction can be designated as a valley fold for 0 < ϕoffset < π and a mountain fold for

π < ϕoffset < 2π. As for the example discussed in the previous section, as shown in Fig. 5.4, the

Chapter 5 Bend Simulation ────────────────────────────── 37

Fig. 5.3 The relation of the dot product between the normals with the angle formed by the

two adjacent polygons. The acos function cannot distinguish between valley and mountain folds,

and it cannot compute the gradient when the polygons are flat

Fig. 5.4 The relation of the dot products of each normal and n′
neutral with the angle formed

by the adjacent polygons ϕ, where n′
neutral denotes a unit vector perpendicular to nneutral and to

the edge shared by the polygons. The constraint division reduces the behaviors of the monotonic

function

polygons can reach the target shape, where ϕ = π + β from ϕ = π − α through ϕ = π.

Moreover, the application of the triangle bending constraint in [54], where an angle con-

straint is described as a combination of simple length constraints, provides high-quality simulations

with fast convergence. As shown in Fig. 5.5(a), a triangle bending constraint controls the angle

formed by two connected edges by setting a length constraint on the distance between the center

of the triangle, which has the two edges as sides, and the junction point of the edges.

Let v be the vertex shared by the two edges and let p0 and p1 be the other vertices, so

Chapter 5 Bend Simulation ────────────────────────────── 38

(a) Triangle bending constraint [54] (b) Tetrahedron bending constraint

Fig. 5.5 Comparison between two bending constraints. While the target of a triangle bending

constraint (a) is the angle formed by the edges, that of a tetrahedron bending constraint (b) is

the angle formed by the faces

the center of three points c is obtained by:

c =
1

3
(v + p0 + p1).

Therefore, the triangle bending constraint Ctriangle for v,p0, and p1 is defined as:

Ctriangle(v,p0,p1) = ∥v − c∥ − doffset =
1

3
∥2v − p0 − p1∥ − doffset,

where doffset denotes the target value of the distance between c and v.

Figure 5.5(b) shows a tetrahedron bending constraint, which controls the angle formed

by two adjacent faces. A tetrahedron bending constraint sets a length constraint on the distance

between the center of a tetrahedron, which has the two faces as surfaces, and the edge shared by

the faces. Note that each polygon has a shape similar to an equilateral triangle, and the distance

is equal to the distance between the center and the midpoint of the edge. If the ends of the edges

are p0,p1 and the other vertices are p2,p3, the middle point of the edge v and the center of the

tetrahedron c are given as:

v =
1

2
(p0 + p1),

c =
1

4
(p0 + p1 + p2 + p3).

Therefore, if the target value of the distance between v and c is doffset, the tetrahedron bending

constraint Ctetrahedron is described as:

Ctetrahedron(p0,p1,p2,p3) = ∥v − c∥ − doffset =
1

4
∥p0 + p1 − p2 − p3∥ − doffset.

Then, the tetrahedron bending constraint is applied to the divided angle constraint, as shown in

Fig. 5.6. Given lL = ∥v−p2∥, lR = ∥v−p3∥, the target value of the angle ϕoffset (0 < ϕoffset < 2π),

and the positions on the neutral axis vL = v + lLnneutral,v
R = v + lRnneutral, two tetrahedron

bending constraints, CL
tetrahedron and CR

tetrahedron, are defined as:

CL
tetrahedron(p0,p1,p2,v

L) =
1

4
∥p0 + p1 − p2 − vL∥ − dL,

CR
tetrahedron(p0,p1,p3,v

R) =
1

4
∥p0 + p1 − p3 − vR∥ − dR,

Chapter 5 Bend Simulation ────────────────────────────── 39

Fig. 5.6 Division of a tetrahedron bending constraint

where the constraint that offset dL and dR are given by:

dL =
lL

4

√
2

(
1 + cos

ϕoffset

2

)
, dR =

lR

4

√
2

(
1 + cos

ϕoffset

2

)
.

Because vL and vR are virtual points, their inverse masses are set to 0. Let ∆pL
0 ,∆pL

1 , and ∆pL
2

be the corrections for p0,p1, and p2, respectively, according to CL
tetrahedron, and let ∆pR

0 ,∆pR
1 , and

∆pR
3 be the corrections for p0,p1, and p3, respectively, according to CR

tetrahedron. If the inverse mass

of pi is denoted as wi and the sums of the inverse masses W = w0 +w1 +w2 +w3, W
L = W −w3,

and WR = W − w2 are defined, then Eq. (5.1) yields corrections for the positions, given as:

∆p0 = (∆pL
0 +∆pR

0)×
W0W1

W (w0 + w1)
,

∆p1 = (∆pL
1 +∆pR

1)×
W0W1

W (w0 + w1)
,

∆p2 = ∆pL
2 ×

W0

W
,

∆p3 = ∆pR
3 ×

W1

W
.

Hereinafter, the pair of divided angle constraints, each of which is expressed by the tetrahedron

bending constraint, is referred to as a bend constraint.

Chapter 5 Bend Simulation ────────────────────────────── 40

Fig. 5.7 Vertex motion space using simple methods to prevent sinking

5.5 Position Update Algorithm

This section explains the procedure to compute Eqs. (5.1) and (5.2) according to the data struc-

ture defined in Chap. 4. The parameters wi, pi, and ∆pi correspond to member variables of

Verts[i]: Weight, AssPos, and Delta, respectively, and the intensity of constraint k is saved

as LengthConstraint.Stiff or BendConstraint.Stiff. Further, the procedure to update the

vertex position according to the length and bend constraints is given in Algorithm 5.1.

Lines 10 and 18 compare the member variable of a constraint Thr to a variable C to branch

the process, where the C holds a value computed by the definitional function of the constraint and

the computation of the correction is avoided when the absolute value of C is less than the threshold

Thr. In addition, because the computation is also set to inactive when the Thr is less than 0, this

parameter acts as a flag to alternate the constraint between active and inactive. In the proposed

method, active and inactive Thr were set to 0.001 and -1, respectively; thus, substituting 0.001

or -1 as Thr is referred to as activating or inactivating the constraint, respectively. Further, as can

be seen from Eq. (5.1), when the Weight of a vertex is 0, the vertex does not move, regardless of

the constraint type. Therefore, substituting 1 or 0 as the Weight signifies activation or inactivation

of the vertex, respectively.

If updating positions considering only geometric constraints, coating films might sometimes

sink into the surface, so judging whether the vertex would be within or outside the scope of the

model to prevent sinking in line 24. General PBD detects collisions and sets constraints for resolving

collisions to prevent objects from sinking, but the proposed method adopted simplified collision

detection, where the motion space of a vertex is limited to the outer region of its initial position.

The boundary of the motion space is the plane perpendicular to the initial normal, and it contains

the initial position, as shown in Fig. 5.7. By setting the length and bend constraints for each edge,

the polygon mesh can be bent, as shown in Fig. 5.8.

Chapter 5 Bend Simulation ────────────────────────────── 41

Algorithm 5.1 Updating vertex positions in PBD-2

Require: Length constraint list LengthConstraints, bend constraint list BendConstraints, the

number of iterations iteration

Ensure: Update the position V.Pos of each element V in Verts according to the constraints

1: for all V in Verts do

2: V.AssPos ← V.Pos;

3: end for

4: for m ← 1 to iteration do

5: for all V in Verts do

6: V.Delta ← (0, 0, 0);

7: end for

8: for all LC in LengthConstraints do

9: C ← function value of LC;

10: if 0 ≤ LC.Thr < |C| then

11: for all V in LC.Verts do

12: Add the weighted correction computed from LC and i to V.Delta;

13: end for

14: end if

15: end for

16: for all BC in BendConstraints do

17: C← function value of BC;

18: if 0 ≤ BC.Thr < |C| then

19: for all V in BC.Verts do

20: Add the weighted correction computed from BC and i to V.Delta;

21: end for

22: end if

23: end for

24: if V.AssPos + V.Delta is out of the initial mesh then

25: V.AssPos ← V.AssPos + V.Delta;

26: end if

27: end for

28: for all V in Verts do

29: V.Pos ← V.AssPos;

30: end for

Chapter 5 Bend Simulation ────────────────────────────── 42

(a) Mesh in the initial state (b) Simulation result

Fig. 5.8 Bend simulation on a disk. The number of polygons is 4,047, and the target value of

the angles formed by every two adjacent polygons is set to 0.2 rad

Chapter 6

Fracture Simulation

Chapter 6 Fracture Simulation ──────────────────────────── 44

Chapter 5 demonstrated a method to bend an entire film, but the actual bends occur partially

around cracks. Therefore, a fracture simulation should be performed in parallel with the bend sim-

ulation, and bends should be applied according to the fracture progress. Thus, this chapter presents

fracture conditions based on the static balance of forces and processing when the fracture occurs,

including parameter updating, topological manipulation, and constraint setting. Section 6.1 in-

troduces a model to consider the mechanical effects on the polygon mesh, and Sec. 6.2 details the

method to initialize and update the mechanical parameters. Finally, Secs. 6.3, 6.4, and 6.5 refer

to occurrence conditions and processes upon separation, tearing, and stripping, respectively.

6.1 Basic Model

To reproduce the peeling of coated films using a polygon mesh, a basic, as model shown in Fig. 6.1,

is introduced, wherein each polygon applies lifting and contraction forces to its adjacent polygons,

while each node attaches to the base in the initial state, but its adhesion force may weaken and

separate from the base over time. The contraction force becomes strong during the simulation,

but the connection of two adjacent polygons is torn when the contraction force becomes stronger

than the binding force of the polygons.

6.2 Initialization and Updating of Parameters

This section explains the initialization and updating of parameters expressing the magnitude of

forces. Note that lifting force does not require initialization because it is computed from contraction

force in every frame, as detailed in the next section.

The initial distributions of the adhesion force and binding force are generated by Perlin

noise [80] to reproduce a realistic output that is non-uniform and continuous. The correlation

between the distributions is debatable, but in this thesis, they are assumed independent of each

other, and the adhesion force and binding force were initialized by Perlin noise, whose mean values

Fig. 6.1 Basic model. Red and blue arrows indicate forces that are compared to judge sepa-

ration and tearing, respectively

Chapter 6 Fracture Simulation ──────────────────────────── 45

for each are 100 and 750, respectively. The binding force is set to be extremely low on certain edges

to reproduce defects, as mentioned in Sec. 3.1. The existence probability of the weak edges was

empirically set to 1 % and the binding force of the weak edges was also empirically set to 0.1 % of

the other edges. Further, the contraction force of each face was set to 100, assuming contraction

forces are balanced.

When the elapsed time per frame is dT, update formulas of the adhesion force Vert.Adhere,

the contraction force Face.Contraction, and the binding force Edge.Binding vary linearly with

time as follows:

Vert.Adhere← Vert.Adhere - dT * speedAd;

Face.Contraction← Face.Contraction + dT * speedCo;

Edge.Binding← Edge.Binding - dT * speedBi[n];

(6.1)

where speedAd, speedCo, and speedBi[n] are coefficients representing the speed change of each

force, and speedAd and speedC were set to 0.25 and 0.50, respectively. The parameter n (n = 0,

1, 2, 3) denotes the number of torn edges on the perimeter of Edge.Face, while the values for

speedBi[0], speedBi[1], speedBi[2], and speedBi[3] were empirically set to 0.0, 2.0, 10.0,

and 0.0, respectively. Note that if a force parameter is a negative value, it is continuously decreased

in this updating process, though it is regarded as 0 in the other processes. This is to prevent the

parameter distributions from flattening, and the negative parameter value acts as a delay until it

begins to increase when reversing the simulation.

Next, the initialization of constraints in PBD-2 is explained, such that LengthConstraint.Stiff

and BendConstraint.Stiff were set to 1.00 and 0.95, respectively, and these values are fixed

during the simulation. Both the Offset and Offset0 values of each constraint are initialized so

that the constraint is completely satisfied. At either of the two half-edges that make up an edge,

both length and bend constraints are activated, while on the other half-edge, both are inactivated.

The effects of PBD-2 do not appear at all in the initial state because all constraints and vertices

are inactivated. The Offset values of the LengthConstraint and BendConstraint corresponding

to a half-edge E are updated by:

LengthConstraint.Offset← LengthConstraint.Offset0

* (1 - shrink * E.Face.Contraction);

BendConstraint.Offset← BendConstraint.Offset0 + curl * E.Lifting;

(6.2)

where shrink and curl denote sensitivity parameters of shrink and bend, respectively. The curl

value was able to vary in the range [0, 0.05] by an external control, while the shrink value

was fixed to 0.001. These update formulas cause the coating films to shrink and bend as the

contraction and lifting force increase.

Chapter 6 Fracture Simulation ──────────────────────────── 46

Fig. 6.2 Angle formed by two polygons that sandwich an edge

Fig. 6.3 Discrete mean curvature at a vertex

The angle formed by adjacent polygons Edge.Ang, and the curvature Vert.Cur is a geomet-

ric property computed from vertex positions for each frame, and it does not require initialization.

The procedure of computing Edge.Ang is given in Algorithm 6.1, while the parameters used for

this computation are illustrated in Fig. 6.2. This algorithm is almost the same as the computing

procedure of ϕ in Sec. 5.3, but it differs in that the triple product of vectors is found to distin-

guish mountain and valley folds on line 8. Conversely, Vert.Cur is obtained using the discrete

mean curvature [64]. As illustrated in Fig. 6.2, the discrete mean curvature value at a vertex pi is

denoted by Ki, the set of vertices connected to the vertex is denoted by N(i), and the respective

angles of the corners opposite the line segment pipj in each of the two polygons that have pipj

as an edge are denoted by θ+ij and θ−ij . If the sum of areas of polygons that have pi as a vertex is

Aall, Ki is computed by:

Ki =
1

2Aall

∑
pj∈N(i)

(
cotθ+ij + cotθ−ij

)
(pi − pj).

The discrete mean curvature is a vector in the direction of convexity whose length represents the

magnitude of the curvature. Therefore, by computing the dot product with the normal, it is

converted to a scalar that is positive when convex on the front side. The procedure to obtain

Vert.Cur based on the above consideration is given in Algorithm 6.2.

Chapter 6 Fracture Simulation ──────────────────────────── 47

Algorithm 6.1 Computing the angle formed by two polygons that sandwich an edge

Require: A half-edge E that is not torn and has the pair

Ensure: Store angle formed by polygons connected to E to E.Ang

1: p0← E.Vert.Pos;

2: p01← E.Pair.Vert.Pos− p0;

3: p02← E.Pair.Prev.Vert.Pos− p0;

4: p03← E.Pair.Prev.Pos− p0;

5: n012← normalize(p01× p02);

6: n013← normalize(p01× p03);

7: phi← acos(−n012 · n013)− π;

8: E.Ang ← phi× sign((p01× p02) · p03);

Algorithm 6.2 Computing the curvature at a vertex

Require: V such that E.Stat = 0 for each E connected to V

Ensure: Store the dot product of the discrete mean curvature and V.Nor to V.Cur

1: sumA ← 0;

2: count ← 0;

3: k ← (0, 0, 0);

4: homeEdge ← V.Edge;

5: curtEdge ← homeEdge;

6: repeat

7: pi ← curtEdge.Vert.Pos;

8: pj ← curtEdge.Next.Vert.Pos;

9: pk ← curtEdge.Prev.Vert.Pos;

10: pl ← curtEdge.Pair.Prev.Vert.Pos;

11: cosA ← normalize(pi - pk) · normalize(pj - pk);

12: cosB ← normalize(pi - pl) · normalize(pj - pl);

13: cosA2 ← cosA * cosA;

14: cosB2 ← cosB * cosB;

15: cotA ← sqrt(cosA2 / (1 - cosA2)) * sign(cosA);

16: cotB ← sqrt(cosB2 / (1 - cosB2)) * sign(cosB);

17: k ← k + (cotA * cotB) * (pi - pj);

18: sumA ← sumA + length((v1 - v0) × (v2 - v0));

19: curtEdge ← curtEdge.Pair.Next;

20: until curtEdge is not homeEdge

21: V.Cur ← k · V.Nor / sumA;

Chapter 6 Fracture Simulation ──────────────────────────── 48

Fig. 6.4 Half-edges around a vertex, which provide lifting forces to the vertex

6.3 Separation

A vertex V is determined to separate from the base if V.Stat == 0, and the sum of lifting forces

from half-edges around V is greater than V.Adhere, where half-edges around V refer to half-edges

E such that E.Prev.Vert == V, as illustrated in Fig. 6.4. In this case, V.Stat is set to 1, and V

is activated in PBD-2.

A half-edge E gives Vertex E.Prev.Vert lifting force E.Lifing. Thus, if E is on a flat

surface, according to Eq. (3.3), the value of the lifting force is computed as:

E.Lifing ← kL * E.Face.Contraction;

where kL denotes a proportion coefficient that expresses the ease of separation, and its value was

empirically set to kL = 0.1.

The series of computations described in Sec. 3.1 assumes the model is initially flat. How-

ever, when observing actual coated films on curved objects, convex parts appear to peel easily. To

reproduce this kind of curvature effect, the lifting force is multiplied by the value of the sigmoid

function sigmoid, whose input is the angle E.Ang formed by faces connected to E:

sigmoid ← 1 / (1 + exp(-gamma * E.Ang));

E.Lifting ← kL * E.Face.Contraction * sigmoid;

where gamma is a positive constant. The larger its value, the greater the effect of the curvature

on the ease of peeling. As shown in Fig. 6.5(a), if gamma = 1, the effect of the curvature is so

small that aged deterioration uniformly progresses, even along the steep curve at the bottom of the

model. On another front, as shown in Fig. 6.5(c), if gamma = 4, the effect of the curvature is so

large that the difference in the degree of aged deterioration appears even on the gentle curve at the

top of the model. Thus, a moderate condition of gamma = 2 was adopted, where the difference in

the degree of aged deterioration appears only on somewhat steep curves, as shown in Fig. 6.5(b).

Chapter 6 Fracture Simulation ──────────────────────────── 49

(a) gamma = 1.0 (b) gamma = 2.0 (c) gamma = 4.0

Fig. 6.5 Sensitivity analysis of the geometric property gamma

6.4 Tearing

For a half-edge E to tear, all the following preconditions must be satisfied:

• E has not yet torn: E.Stat == 0;

• The starting point of E is separated: E.Vert.Stat > 0;

• The end point of E is separated: E.Vert.Next.Stat > 0;

E is determined to tear when it meets a standard or special condition, as described below, in

addition to the above three conditions. By letting E.Pair be Ep, the standard condition of tearing

is:

E.Face.Contraction + Ep.Face.Contraction > E.Binding + Ep.Binding;

This means the sum of the contraction forces from the adjacent polygons is greater than the binding

force.

In contrast, the special condition is applied when E.Vert.Stat or Ep.Vert.Stat is 2, and

it is satisfied by contraction forces less than the standard condition due to the stress concentration.

Because the computation when E.Vert.Stat == 2 is the same as that for Ep.Vert.Stat, only

the former is explained below. When E.Vert.Stat is 2 and the starting point of E is one end of a

crack, stress concentrates around the crack end, and the effect of concentrated stress is computed

according to Eq. (3.5) in Sec. 3.1. As for Eq. (3.5), because the existing crack is much longer

than the thickness of the coating film, it is assumed that the crack length will not affect the

stress concentration and that the stress intensity factor is proportional to the contraction force.

Moreover, if opening-direction stress at the end point of E is supposed to be proportional to an

additional contraction force, the special condition is formulated as:

Chapter 6 Fracture Simulation ──────────────────────────── 50

E.Vert.Stat == 2 and

(1 + s * kT / sqrt(E.Length)) * (E.Face.Contraction + Ep.Face.Contraction)

> E.Binding + Ep.Binding;

where s denotes a proportion coefficient that expresses the intensity of the stress concentration,

kT the value of the function introduced in Eq. (3.6), and sqrt(E.Length) the square root of the

length of E. Note that the azimuth used for the computation of kT is determined by using the

crack direction parameter E.Vert.Direction as the polar axis.

If E tears, E.Stat and Ep.Stat are set to 1, and E.Vert.Stat and Ep.Vert.Stat are

incremented by 1. As for PBD-2, bend constraints corresponding to E and Ep are inactivated,

whereas length constraints are activated, and moreover, the vertex parameters are updated and the

topology is manipulated. These processes are also applied to E.Vert and Ep.Vert similarly, so only

the case of E.Vert is explained below. The tearing process for the vertex E.Vert branches into three

patterns according to the values of E.Vert.Stat and E.Vert.OnEdge. Note that E.Vert.Stat is

more than 1 at this time because the condition E.Vert.Stat > 0 is required for tearing, and it is

incremented by 1 just after tearing. The three branched processes are as follows:

Pattern A: E.Vert.Stat == 2 and E.Vert.OnEdge == 0 (Fig. 6.6(a))

This process occurs when a crack is generated or extended inside the model and E.Vert

becomes the end of the crack. In this case, the crack direction vector is stored in

E.Vert.Direction.

Pattern B: E.Vert.Stat == 2 and E.Vert.OnEdge == 1 (Fig. 6.6(b))

This process occurs when a crack is generated at the edge of the model or has reached the

edge. In this case, E.Vert.Stat is changed to 3 and E.Vert is duplicated.

Pattern C: E.Vert.Stat > 2 (Fig. 6.6(c)–(e))

This process occurs when a crack is extended through E.Vert or E.Vert is a junction of

cracks. In this case, E.Vert is duplicated.

Figure 6.7 illustrates the method to compute the crack direction in Pattern A. The crack

direction is basically a unit vector in the direction from the end point to the starting point of E. If

the extension of a crack in Pattern A has been already applied to Ep.Vert, the end of a crack is

moved from Ep.Vert to E.Vert, and the crack direction is changed from Ep.Vert.Direction to

E.Vert.Direction. However, the crack direction is updated each time the crack extends, so the

complexity of the crack shape strongly depends on the resolution of the mesh. Therefore, crack

shape manipulation is realized by reflecting the previous crack direction in E.Vert.Direction. If

oldDir denotes a vector obtained by projecting Ep.Vert.Direction onto the plane perpendicular

to E.Vert.Nor and newDir, a unit vector in the direction from the end point to the starting point

Chapter 6 Fracture Simulation ──────────────────────────── 51

(a) Pattern A (b) Pattern B

(c) Pattern C-1: Open (d) Pattern C-2: Branch or merge

(e) Pattern C-3: Merge on the model edge

Fig. 6.6 Patterns of the tearing process. The number in vertices shows the Stat value.

of E, E.Vert.Direction is found to be the weighted linear sum of these vectors:

E.Vert.Direction ← oldDir * h + newDir * (1 - h);

where h is a parameter that varies in the range [0, 1], which expresses the reflection ratio of the

previous direction, that is, the persistence of the crack direction. Figure 6.8 shows a sensitivity

analysis of h, where because h is large, the crack direction is maintained, and the crack shape

becomes linear. The reason why Ep.Vert.Direction is projected and normalized is that the crack

must proceed along the surface. Figure 6.9 compares a case where Ep.Vert.Direction is directly

set as oldDir and a case with projection and normalization. Without projection or normalization,

the crack direction vector gradually leaves the surface and points in the air or inside the model, so

the cracks stop in an unnatural pattern.

Chapter 6 Fracture Simulation ──────────────────────────── 52

Fig. 6.7 Update of the crack direction reflecting the previous direction. The direction is

the weighted sum of the direction of the newly extended crack newDir and the projected and

normalized previous direction oldDir

The duplication of E.Vert in Patterns B and C requires updating of the topological data

and target vertices of the constraints. In addition, to achieve the binding of cracks, as detailed in

Sec. 8.1, E.Stat and Ep.Stat are set to 3 if either of the following conditions is satisfied:

• E.Vert was processed following Pattern B (Fig. 6.10(a));

• E.Vert was processed following Pattern C, and all of the following conditions are satis-

fied (Fig. 6.10(b)):

– E.Vert.Stat > 2;

– Ep.Vert.Stat > 2;

– E.Vert.Stat == 3 and Ep.Vert.Stat == 3;

In these cases, the end of a crack disappears due to the tearing of E. Strictly speaking, when

Ep.Vert.Stat is 2 in Pattern B, the end is only on the model edge right after tearing, but E.Vert

is split soon after to remove the end.

Chapter 6 Fracture Simulation ──────────────────────────── 53

(a) h = 0.0 (b) h = 0.5 (c) h = 1.0

Fig. 6.8 Sensitivity analysis of the persistence of the crack direction h. The color indicates

the vertex status Stat. White denotes 0 (bonding), gray 1 (separated), red 2 (end of a crack),

yellow 3 (path of a crack), and green 4 (junction of cracks). Cracks are likely to proceed straight,

as h is large

(a) Without projecting the crack direction (b) With projecting the crack direction

Fig. 6.9 The effect of projecting the crack direction onto the model surface. In both (a) and

(b), the persistence of cracks was set to h = 1.0, so the cracks run straight. While cracks stop

on the curved surface because the directions point in the air or inside the model in (a), cracks

can extend, as in the case of a flat plane, because the directions are updated to run along the

model surface

(a) Arrival at the model edge (b) Connection between cracks

Fig. 6.10 Cases in which a crack end disappears

Chapter 6 Fracture Simulation ──────────────────────────── 54

(a) Case when all three edges on the perimeter are torn (b) Case when two of edges on the perimeter are torn

and the other is on the model edge

Fig. 6.11 Stripping process

6.5 Stripping

A face is determined to be stripped if each of the three edges on the perimeter of the face is torn

or on the model edge, as shown in Fig. 6.11. It is sufficient to determine the stripping only when

a half-edge E tears. If E.Next.Stat > 0 and E.Prev.Stat > 0, E.Face is stripped.

If E.Face is stripped, the following processes must be performed:

1. Set E.Face.Stat to 1;

2. Inactivate each length constraint corresponding to E, E.Next, and E.Prev;

3. Inactivate E, E.Next, and E.Prev in PBD-2.

In the algorithm, to generate mesh for rendering, as shown in Algorithm 4.1, a face F such that

F.Stat == 1 is not generated in the mesh for rendering. Rather, it hides stripped polygons while

preserving their DCEL data.

Chapter 7

Stain Expression

Chapter 7 Stain Expression ────────────────────────────── 56

Aged deterioration of coating films causes not only deformation but also color and material changes.

However, these changes to the texture of coating films due to aged degradation are difficult to

construct using rigorous mathematical models, which were not considered in the existing weathering

methods for coating films [79][31]. This research focuses on chalking caused by light exposure, rust

run-off stains caused by rains, and darkening caused by dust accumulation, and the methods for

depicting them are described in this chapter. The process for computing the degree of chalking,

rust run-off stain, and dust accumulation is presented in Secs. 7.1, 7.2, and 7.3, respectively. In

addition, Sec. 7.4 represents how these stains are reflected in the model’s appearance.

7.1 Chalking

In reality, chalking is a chemical change caused by light, heat, and ambient air, and it progresses

almost uniformly on an object, though there may be some bias depending on the shape. The

degree of chalking V.Chalk at each vertex V is initialized to 0 and linearly updated as follows,

independent of the geometric data:

V.Chalk ← V.Chalk + dT * speedCh;

where speedCh denotes the speed of chalking, whose value was empirically set to speedCh = 5.0×

10−3.

7.2 Rust Run-off

Rust run-off stains are expressed by controlling the amount of rust V.Rust at each vertex V, which

varies in the range [0, 1]. In the initial state, each Rust value is set to 0. At rust sources set

around cracks, Rust values are set to 1 and are propagated downward along the surface.

Whether a vertex V is a rust source is stored in the boolean V.RustSource, which is initially

set to false. If a half-edge E whose starting point is A and end point is B tears, RustSource is

determined according to the following four criteria:

• If A is the end of a crack and below B, A is designated a source (Fig. 7.1 (a))：
if A.Stat is 2 and (A.Pos - B.Pos) · gravity > 0, then A.RustSource ← true;

• If A is the end of a crack and above B, A is designated a non-source (Fig. 7.1 (b))：
if A.Stat is 2 and (A.Pos - B.Pos) · gravity < 0, then A.RustSource ← false;

• If A is not the end of a crack and below B, A is unchanged (Fig. 7.1 (c))：
if A.Stat is not 2 and (A.Pos - B.Pos) · gravity < 0, then do nothing;

• If A is not the end of a crack and above B, A is designated a source (Fig. 7.1 (d))：
if A.Stat is not 2 and (A.Pos - B.Pos) · gravity < 0, then A.RustSource ← false;

Note that if A is duplicated, the duplicate A’ is located above A, so A’ is designated a non-source.

Chapter 7 Stain Expression ────────────────────────────── 57

Fig. 7.1 Setting of rust sources at tearing

Fig. 7.2 Determination of vertical position relation between vertex A and its duplicate A’.

Because A and A’ are at the same position immediately following duplication, the relation is

determined by predicting the direction in which A moves

However, A.Pos and A’.Pos are the same values, and the heights of these two vertices cannot

be compared right after tearing. Therefore, the displacement of A by PBD-2 is approximately

predicted by summing vectors
−→
AV, such that V is connected to A, as shown in Fig. 7.2. Then,

if the dot product of the predicted displacement and the gravity direction vector gravity are

positive, A is determined to be below A’; otherwise, A is above A’ and swapped for A’.

Because external factors, such as wind, often alter flow paths over the long term, rust

diffuses and propagates downward, and Algorithm 7.1 gives the procedure for propagating the

value of V.Rust downward. The propagation process must reference the rust amounts at nearby

vertices. However, if Rust is directly referenced, the result depends on the order of the vertices

to be updated, because Rust contains a mixture of values before and after the update. Therefore,

the current value is saved to V.RustBuf at first. In subsequent processes, by using Rust for write

and RustBuf for read, each vertex can reference the pre-updated values of Rust.

Next, the rust inflow and outflow amounts at each vertex V are computed. However, the

vertex V designated as a rust source is assumed supplied with rust from the base to maintain the

rust amount, so V.Rust at V is not updated. Meanwhile, the direction of rust flow flowDir is

Chapter 7 Stain Expression ────────────────────────────── 58

determined by projecting the gravity direction gravity onto the plane perpendicular to V.Nor

and by normalizing it, as illustrated in Fig. 7.3.

By allowing S to be one of the vertices connected to the vertex V, the rust transfer between V

and S can be computed. If the normalized vector of
−→
SV is pathDir, the rust transfer is classified into

the following five patterns, as shown in Figure 7.5, and the amount of rust transferred flowRust

from S to V is obtained:

Large inflow: when flowDir · pathDir ≥ dirThr1 and S.RustBuf > amoThr:

flowRust ← (flowDir · pathDir - dirThr1) * (S.RustBuf - amoThr);

Small inflow: when dirThr1 < flowDir · pathDir < dirThr2 and S.RustBuf > amoThr:

flowRust ← (flowDir · pathDir - dirThr2) * (S.RustBuf - amoThr) * rustRatio;

Large outflow: when - flowDir · pathDir ≥ dirThr1 and V.RustBuf > amoThr:

flowRust ← (- flowDir · pathDir + dirThr1) * (V.RustBuf - amoThr);

Small outflow: when dirThr1 < - flowDir · pathDir < dirThr2 and V.RustBuf > amoThr:

flowRust ← (- flowDir · pathDir + dirThr2) * (V.RustBuf - amoThr) * rustRatio;

No inflow or outflow: when other than the above four cases:

flowRust ← 0;

where dirThr1 and dirThr2 are the parameters that control the range of areas with much and

little rust flow, respectively, satisfying 0 < dirThr1 < dirThr2 < 1. Further, rustRatio denotes

the ratio of a small amount to a significant amount of rust. In addition, rust cannot completely

flow from any area, so it can be assumed that a vertex that has received rust inflow always holds

at least a certain amount of rust amoThr, and only excess rust propagates downward. The values

of these control parameters of rust run-off were empirically set to dirThr1 = 0.10, dirThr2 =

0.45, rustRatio = 0.20, and amoThr = 0.20.

The computed flowRust is multiplied by the time step dT and the speed of rust run-off

speedRu and then added to V.Rust, where the value of speedRu was set to 0.10. V.Rust is

updated completely by performing this computation for each nearby vertex S, as given in line 23.

Chapter 7 Stain Expression ────────────────────────────── 59

Fig. 7.3 The computation of the rust flow direction flowDir at a vertex V. The direction is

found by projecting the gravity direction vector gravity onto the plane perpendicular to V.Nor

and by normalizing it

Fig. 7.4 Transfer of rust from a vertex V to its nearby vertices

Fig. 7.5 Flowchart for determining the transfer amount

Chapter 7 Stain Expression ────────────────────────────── 60

Algorithm 7.1 Propagating rust

Require: Vertex list Verts, gravity direction vector gravity, the time step dT, and the control

parameters for rust run-off dirThr1, dirThr2, amoThr, rustRatio, and speedRu

Ensure: Update V.Rust for each V that is an element of Verts

1: for all V in Verts do

2: V.RustBuf ← V.Rust;

3: end for

4: for all V in Verts do

5: if V.Source is true then

6: continue;

7: end if

8: flowDir ← a vector normalized after projecting gravity onto the plane perpendicular to

V.Nor;

9: for all S in set of vertices connected to V do

10: pathDir ← a normalized vector of V.Pos - S.Pos;

11: flowRust ← 0;

12: if flowDir · pathDir < dirThr2 and S.RustBuf > amoThr then

13: flowRust ← (flowDir · pathDir - dirThr1) * (S.RustBuf - amoThr);

14: if flowDir · pathDir ≥ dirThr1 then

15: flowRust ← flowRust * rustRatio;

16: end if

17: else if -flowDir · pathDir ≥ dirThr2 and V.RustBuf > amoThr then

18: flowRust ← (- flowDir · pathDir + dirThr1) * (V.RustBuf - amoThr);

19: if -flowDir · pathDir ≥ dirThr1 then

20: flowRust ← flowRust * rustRatio;

21: end if

22: end if

23: V.Rust ← V.Rust + flowRust * dT * speedRu;

24: end for

25: end for

Chapter 7 Stain Expression ────────────────────────────── 61

7.3 Dust Accumulation

As shown in Fig. 7.3, the amount of accumulated dust V.Dust at a vertex V is increased according

to two geometric properties: the normal V.Nor and the curvature V.Cur. If speedDu denotes the

accumulation speed of the dust, the update formula of V.Dust is:

V.Dust ← V.Dust + dT * speedDu * (1 + rN + rC);

where rN and rC are the influence ratio of the normal and curvature to the factor independent of

geometry, respectively, the computation of which is explained below. In addition, the accumulation

speed was set to speedDu = 2.0 ×10−4.

The closer the direction of the normal V.Nor is to the opposite direction opposite the grav-

ity vector gravity, the faster dust accumulates there, because the surface is upward. Therefore,

the influence ratio of normal rN is computed as:

rN ← weightNor / (1 + exp(-gainN * asin(-v.Nor · gravity)));

where weightNor is a coefficient to manipulate the influence ratio of the normal rN, whose value

was empirically set to weightNor = 4.0. Conversely, gainN is the sensitivity of the accumulation

speed to the normal, where the larger its value, the greater the difference of darkening between

the upward and downward surfaces. The value of gainN was empirically set to gainN = 10.0. As

the direction is changed, the value of rN varies smoothly in the range of [0, weightNor].

In contrast, rC is computed so the smaller the curvature V.Cur, the larger its value, as

follows:

rC ← weightCur / (1 + exp(gainC * V.Cur));

where weightCur denotes a coefficient for manipulating the influence ratio of the curvature gainC

and the sensitivity of the accumulation speed to the normal, and these values were empirically set

as weightCur = 1.0 and gainC = 1.0, respectively. The value of rC varies in the range of [0,

weightCur].

Chapter 7 Stain Expression ────────────────────────────── 62

(a) Uniform darkening (b) Normal (c) Curvature

(d) Initial state (e) All factors

Fig. 7.6 Geometric factors and appearance of dust accumulation

7.4 Rendering Stains

The time variation of the texture at a vertex V is expressed by manipulating the vertex color col

and reflection ref according to parameters that represent the degree of stains V.Chalk, V.Chalk,

and V.Chalk. First, the following process normalizes the stain parameters V.Chalk, V.Chalk, and

V.Chalk to the range[0, 1] to compute the variants chalk, rust, and dust, respectively:

chalk ← 1 - exp(- V.Chalk);

rust ← clump01(V.Rust);

dust ← 1 - exp(- V.Dust);

where clamp01(V.Rust) is a function that returns max(0, min(V.Rust, 1)). Let whiteColor

be the white color, blackColor the black color, and rustColor the color of rust. The rustColor

was set to dark brown, which is represented as (0.75, 0.34, 0.00) in RGB. If the base color of

Chapter 7 Stain Expression ────────────────────────────── 63

the model is c, the stained color col is given as:

col ← c * lerp(rustColor, whiteColor, rust);

col ← lerp(rustColor, col, rust * rustIntensity);

col ← lerp(blackColor, col, dust);

where lerp is a function for linear interpolation, and lerp(A, B, x) returns A * x + B * (1

- x). Note that the product between two colors is obtained by multiplying the two colors in a

component-wise manner. Thus, the effect of rust on color is computed in two steps. The first step

finds the reddish color according to rust. However, this step computes the product with the base

color c, so the rust color is ignored when c is a dark color, each of whose components is close

to 0. Therefore, the second step computes the weighted linear sum with rustColor so that the

rust color appears in any base color, where rustIntensity is a weight of rustColor and controls

the color intensity of rust, as shown in Fig. 7.7. The value of rustIntensity was set to 0.2. In

addition, a darkened color can be obtained by computing the linear interpolation with blackColor

according to the value of dust. Although chalking causes a color change in reality, the method of

this change varies with the materials used, and it is difficult to describe using a general model, so

the proposed method does not deal with the color change from chalking.

If the reflection ratio of the initial state r of the stained surface ref is computed as:

ref ← r * (1 - chalk);

ref ← ref * (1 - rust * rustIntensity);

ref ← ref * (1 - dust);

(7.1)

When each value of chalk, rust, and dust is increased, the reflection decreases. Note that the

reflection ratio means the material parameters Metallic and Smoothness in Surface Shader of

Unity 2019.4.14f1, and both were computed according to Eq. (7.1) with the initial values of 0.2

and 0.8, respectively. For details on Metallic and Smoothness, please refer to the official Unity

document [95].

Chapter 7 Stain Expression ────────────────────────────── 64

Fig. 7.7 Sensitivity analysis of the coloring intensity of rust rustIntensity. If rustIntensity

is high, the base color is not reflected well, and the rust color is deeply drawn. Note that when

rustIntensity = 0, the mixed color is computed only by multiplication, so rust does not appear

at all in the black base color. Using this method, rustIntensity = 0.2 was adopted

Chapter 8

Interactive Control

Chapter 8 Interactive Control ───────────────────────────── 66

This chapter presents methods for achieving interactive control to improve the directability of

the weathering simulation. Section 8.1 introduces the time reversal of the simulation, whereas

Sec. 8.2 describes GPU parallelization to allow for real time rendering and Sec. 8.3 describes how

to display the progress of weathering. Finally, Sec. 8.4 explains the method to control the degree

of weathering.

8.1 Pseudo Time Reversal

This section describes methods for the pseudo time reversal of the weathering processes mentioned

thus far. In general, simulations include irreversible manipulations, and they cannot restore states

completely unless properties are saved for each frame. While this method is no exception, as the

basic parameters vary linearly with time, as shown in Eq. (6.1), it is easy to approximate the

state in the previous step. In the time reversal of weathering simulation, the time variations of

mechanical parameters according to Eq. (6.1) can be reversed by assigning a negative value to the

time step dT.

Time reversal has two advantages over complete history preservation, one of which is to

save the spatial complexity. For example, if a model with 83,139 vertices and 166,408 polygons,

as shown in Fig. 8.1, is weathered using the proposed method and the parameter values required

to restart the simulation are saved for each frame, the spatial computation required per frame is

36 MB, and it takes 61 GB of memory to store 1 minute of states at a frame ratio of 30 frames per

second (fps). In contrast, time reversal requires only 36 MB of the initial state. To rewind to a

certain state in the past, it is necessary to estimate sequentially the state of the previous step, which

requires more spatial computation than directly restoring the data to a certain state. However,

this is not a major problem because it is possible to return to a previous state at a high speed by

increasing the absolute value of the time step, and the images presented at each step can be used

as a reference for the user to consider how far to reserve. The other advantage is partial recovery

of the model. Because saved data of a certain state reference the entire model, the partial recovery

must combine two states at different time points, as shown in Fig. 8.1 (c). However, topological

discrepancies may arise on the border of the two states. Conversely, time reversal allows partial

recovery, because it repairs the model with an algorithm that preserves phase correctness.

However, because the time reversal of weathering requires the initial state, that is, the

model before weathering, the proposed method does not allow the presumption of the initial state

from a weathered model. In addition, note that especially, many assumptions and mathematic

models must be introduced for the time reversal, which never occurs in reality.

Chapter 8 Interactive Control ───────────────────────────── 67

(a) Before weathering (b) After weathering

(c) Weathered model partially restored

Fig. 8.1 Partial recovery by history preservation. The numbers of vertices and polygons in

the model are 83,139 and 166,408, respectively. Topological inconsistencies may occur at the

boundary

8.1.1 Stretch of Bent Films

To reverse manipulate the bend simulation mentioned in Chap. 5, the process where bent films

stretch and return to their initial states is presented. This stretch simulation is also thanks to

PBD-2, which, because it ignores inertia, namely, the model shape depends only on the geometric

constraints, it does not require any special time manipulation, and pseudo time reversal can be

realized by updating the constraints properly.

As can be seen from the update formula for Offset in Eq. (6.2), as lifting and contraction

forces approach 0, Offset also approaches its initial value Offset0. In the time reversal, lifting and

contraction forces are decreased, and bent films return to their initial states without any special

measures.

Chapter 8 Interactive Control ───────────────────────────── 68

8.1.2 Fracture Repair

This subsection details the repair manipulation, which means the process of reversing the fracture

simulation presented in Chap. 6. The repair manipulations corresponding to the three stages of

fractures mentioned in Secs. 6.3, 6.4, and 6.5, are referred to as bonding, binding, and attaching,

respectively. In addition, repairing requires a prerequisite: dT < 0.

If a vertex V satisfies the following three conditions, V is bonded to the base:

• It is separated but not torn: V.Stat == 1;

• The adhesion force is more than the sum of the lifting force from the surrounding half-edges:

V.Bond >
∑

E∈Es E.Lifing (Es is a set of E such that E.Prev.Vert == V);

• The current position is close enough: ∥V.Pos - V.Pos0∥ < epsilon;

where epsilon is the maximum distance of two vertices considered at the same location, and its

value was set to 0.01. The second condition is derived by reverting the inequality sign for the

separation condition on the forces. Note that the adhesion force at the separated vertex V should

be 0 by rights, so V.Bond is interpreted as the predicted value of the adhesion force exerted when

the vertex bonds. Therefore, the second condition ensures the vertex does not separate as soon as

it bonds, and whether it actually bonds is determined by the third condition. Thus, if the vertex

V bonds, the following process should be performed to reset the parameters, except for the degree

of stains, to their initial values:

• Set V.Stat to 0;

• Inactivate V in PBD-2;

• Substitute V.Pos0 for V.Pos;

There are standard and special conditions for binding, and they are corresponded to con-

ditions for tearing. As requirements common to both, the state E.Stat of a half-edge E must be 1

or 3. If E.Pair is abbreviated to Ep, the standard condition for binding E is defined as follows:

[ST-1] Each end of E is the end of a crack:

E.Vert.Stat == 2 and Ep.Vert.Stat == 2;

[ST-2] Binding forces are stronger than contraction forces:

E.Face.Contraction + Ep.Face.Contraction < E.Binding + Ep.Binding;

The standard condition of tearing is for generating a new crack, so its reversal is for removing a

crack. As such, [ST-2] denotes the condition for maintaining binding, so it does not consider the

effects of stress concentration.

Chapter 8 Interactive Control ───────────────────────────── 69

Fig. 8.2 An example of the difficulty in determining the area that should be bound due to the

disappearance of crack ends

In contrast, the special condition for binding is described as follows:

[SP-1] The starting point of E is a crack end or E is an edge where a crack end has disappeared:

E.Vert.Stat == 2 or E.Stat == 3;

[SP-2] Binding forces are stronger than contraction forces, including effects of stress concentration:

(1 + s * kT / sqrt(E.Length)) * (E.Face.Contraction + Ep.Face.Contraction)

< E.Binding + Ep.Binding;

[SP-3] Either pair of ends of E or Ep are close to each other:

∥E.Vert.Pos - Ep.Next.Vert.Pos∥ < epsilon

or ∥E.Next.Vert.Pos - Ep.Vert.Pos∥ < epsilon;

As in the case of bonding, [SP-2] indicates the condition, ensuring the edge does not tear right after

binding, and s, kT, and sqrt(E.Length) denote the same parameters as in the special condition

for tearing. However, kT is computed assuming the crack end is Ep.Vert and the crack direction

is E.Vert.Direction. In addition, epsilon in [SP-3], which indicates the geometric condition,

denotes the same parameter as in the case of bonding. Thus, if the starting point of the half-edge

is a crack end in [SP-1], that is, the pair of half-edges shares the vertex, [SP-3] is necessarily met.

The reason [SP-1] includes E.Stat == 3 is provided below. The stress concentration occurs

at a crack end, so [SP-2] must consider its effect. If E.Vert is a crack end, the crack end after

binding can be predicted as Ep.Vert. However, if crack ends disappear, as mentioned in Sec. 6.4,

it is difficult to determine edges to be bound without any exception processing. Figure 8.2 shows

a simple example where a crack extends circumferentially from a defect and its ends are connected.

In this example, the edge that connected the crack ends should be bound first, but this edge does

not satisfy the condition that either end is a crack end. If this condition is removed, the edge is

certainly bound, but each edge on the circumference is bound at once, which differs significantly

from the time reversal of the crack-extending process. Therefore, exception processing for setting

E.Stat to a special value of 3 is required so the edge in the area where a crack has disappeared

can be preferentially bound.

Chapter 8 Interactive Control ───────────────────────────── 70

Fig. 8.3 An example in which the number of cracks near the junction of cracks does not match

the maximum Stat value. If edges tear in the order of the black numbers, the Stat values are

incremented, as indicated in white numbers. Finally, their maximum value is 5, whereas the

number of cracks is 6

Algorithm 8.1 gives the process of binding the half-edge E, and Fig. 8.4 shows cases of

binding that correspond to the tearing patterns shown in Fig. 6.6. The pair Ep is also bound at the

same time, but the bend and length constraints are activated only on either E or Ep. The statuses

E.Stat and Ep.Stat are changed, and then E.Vert and several parameters are set to elements

around E.Vert. In principle, E.Vert.Stat is set to the number of vertices, including E.Vert that,

which has the same value of Orig, with E.Vert. Except at the model edges, this number is equal

to the number of nearby vertices, including E.Vert, or of cracks around E.Vert. Although the

number matches the maximum value of Stat at nearby vertices in all examples shown above, it

is not generally equal to the maximum Stat value when many cracks are generated, as shown

in Fig. 8.3, and it is necessary to count the number by searching around the vertex. However,

because Stat at the vertex on the edge of the model cannot be 2, in Pattern B (Fig. 8.4 (b)),

the Stat is set to 1 after binding, though the number of vertices before binding is 2. The vertex

V1 in Algorithm 8.1 indicates a vertex that is duplicated during tearing but no longer requires

the binding process. By overwriting all topological data pointed to V1 with V0, V1 appears to be

merged into V0. V1 is not referenced but remains as data, and the memory is reused by overwriting

these data when tearing occurs, even if in a different place. Therefore, it is ensured that the number

of vertices remaining as data will not exceed that of half-edges.

Chapter 8 Interactive Control ───────────────────────────── 71

Algorithm 8.1 Binding a half-edge E

Require: A half-edge E satisfies the condition for binding, geometric data, and constraints data

Ensure: Bind half-edges E and E.Pair

1: Ep ← E.Pair;

2: E.Stat←0;

3: Ep.Stat←0;

4: Activate length and bend constraint on either E or Ep

5: if E.Vert.Stat > 2 then

6: Vs ← array with all vertices V such that V.Orig == E.Vert.Orig as elements;

7: newStat ← the number of elements in Vs;

8: if newStat is 2 and E.Vert.OnEdge is 1 then

9: newStat ← 1;

10: end if

11: for all V in Vs do

12: V.Stat ← newStat;

13: end for

14: if E.Vert.Orig in E.Vert then

15: V0 ← E.Vert;

16: V1 ← Ep.Next.Vert;

17: else

18: V0 ← Ep.Next.Vert;

19: V1 ← E.Vert;

20: end if

21: Overwrite all data references to V1 with V0;

22: if newStat is 2 then

23: Update V0.Direction;

24: end if

25: else

26: E.Vert.Stat ← 1;

27: end if

28: Swap E with Ep and then perform the if-else state again;

Chapter 8 Interactive Control ───────────────────────────── 72

(a) Pattern A (b) Pattern B

(c) Pattern C-1: Open (d) Pattern C-2: Branch or merge

(e) Pattern C-3: Merge on the model edge

Fig. 8.4 Examples of binding corresponding to tearing patterns. The Stat value is basically

set to the number of surrounding vertices before binding but forced to be 1 only in Pattern B

Attached is a manipulation to revive a stripped face, which always occurs immediately

after binding, so by merging these two processes together, they can be considered for extending

coating films. When a half-edge E has been bound and the face E.Pair.Face is abbreviated to F,

F is attached if F.Stat is 1.

The stripped face F remains as data but is hidden, and a piece of the coating film appears

to be added by setting F.Stat to 0 for redisplay. Moreover, E.Pair.Prev.Vert is activated in

PBD-2, and length constraints corresponding to E.Pair.Next and E.Pair.Prev are activated.

8.1.3 Stain Removal

This subsection explains the reversal of reversing chalking, rust run-off, and dust accumulation.

Note that properties that must be reconsidered regarding the computation method are member

variants V.Chalk, V.Rust, and V.Dust of each vertex V, whereas the rendering method presented in

Sec. 7.4 is used as is. Moreover, the increasing speeds of V.Chalk and V.Dust are almost constant,

regardless of the simulation progress, that is, V.Chalk and V.Dust vary linearly with time, so the

time reversal of chalking and dust accumulation are automatically achieved only by setting the

time step dT to a negative value.

Chapter 8 Interactive Control ───────────────────────────── 73

In contrast, rust run-off requires some exceptional manipulations. As described in Sec. 7.2,

when weathering progresses, the more rust located above a vertex, the more rust will flow into

the vertex, and the more rust a vertex has, the more rust will flow downward from the vertex.

However, if dT is a negative value, the more rust located above a vertex, the less rust will flow into

the vertex, and the more rust the vertex has, the less rust will flow downward from the vertex.

As a result, the two kinds of points appear alternately, and horizontal stripes linger, as shown in

Fig. 8.5: the point where the rust flow is stopped and the point where rust is completely absorbed

by the former points. Therefore, the time reversal of rust run-off requires a different algorithm.

The rust propagation algorithm for the time reversal is shown in Algorithm 8.2, which

includes three changes from the original. The first is to solve the above problem by swapping V and

S on lines 13 and 18, respectively, which is almost the same as reversing the gravity direction. The

second is to cancel the threshold of the rust amount amoThr. To return to the initial state where

each Rust value is 0, the setting that does not allow Rust values to fall below the threshold must

be removed. The conditions regarding amoThr on lines 2 and 17 and such factors as amoThr on lines

13 and 18 have been removed. However, the flow speed is increased by removing the factors, so (1

- amoThr) has been multiplied to compensate for the increase on line 26. The third is to add a

process on lines 23–25 so flowRust becomes 0 when V.RustBuf is below amoThr and flowRust is

below 0. This process prevents the rust amount from increasing at vertices having no rust before

the time reversal.

8.2 GPU Parallelization

This section describes the parallelization of the simulation processes through GPU implementation

to achieve a fast execution speed that allows for interactive control. Note that this thesis focuses

only on the theoretical process, while actual GPU parallelization requires technical attention, such

as using structure instead of class, and uint type instead of bool type.

Most processes in the proposed method are performed for each element of the vertex list

Verts, half-edge list Edges, face list Faces, length constraint list LengthConstraints, or bend

constraint list BendConstraints. If a process is performed for each element E of a list Elements

and updates only parameters of E, the process can be parallelized by assigning a thread to each

element. Figure 8.6 shows an outline of parallelization per vertex V. For example, Algorithm 7.1

is the process of updating the amount of rust, performed through two parallelized processes. The

first, which substitutes V.Rust into V.RustBuf, is self-contained only with vertex data, so it can

be parallelized. Conversely, the second process computes the change in rust amount at each vertex

V and it references other vertices. However, this process does not change the parameters of other

vertices, so it can also be parallelized.

Chapter 8 Interactive Control ───────────────────────────── 74

Algorithm 8.2 Condensation of rust

Require: Vertex list Verts, gravity direction vector gravity, the time step dT, and the control

parameters for rust run-off dirThr1, dirThr2, amoThr, rustRatio, and speedRu

Ensure: Update V.Rust of each element V in Verts

1: for all V in Verts do

2: V.RustBuf ← V.Rust;

3: end for

4: for all V in Verts do

5: if V.Source is true then

6: continue;

7: end if

8: flowDir ← gravity projected onto the plane perpendicular to V.Nor and normalized;

9: for all S in set of vertices connected to V do

10: pathDir ← normalized vector of V.Pos - S.Pos;

11: flowRust ← 0;

12: if flowDir · pathDir < dirThr2 then

13: flowRust ← (flowDir · pathDir - dirThr1) * V.RustBuf;

14: if flowDir · pathDir ≥ dirThr1 then

15: flowRust ← flowRust * rustRatio;

16: end if

17: else if -flowDir · pathDir ≥ dirThr2 then

18: flowRust ← (- flowDir · pathDir + dirThr1) * S.RustBuf;

19: if -flowDir · pathDir ≥ dirThr1 then

20: flowRust ← flowRust * rustRatio;

21: end if

22: end if

23: if thenV.RustBuf < amoThr and flowRust < 0

24: flowRust ← 0;

25: end if

26: V.Rust←V.Rust + flowRust * dT * speedRu * (1 - amoThr);

27: end for

28: end for

Chapter 8 Interactive Control ───────────────────────────── 75

(a) Outline of rust run-off

(b) Failure of the time reversal (c) Outline of the time reversal of rust run-off

Fig. 8.5 Outline of normal rust run-off (a), time reversal using the same algorithm as with

normal rust run-off (b), and its outline (c). In the time reversal scenario, the difference among

rust amounts at vertices grows, and points at which rust stops and at which there is no rust

appear alternately

Fig. 8.6 Parallelization per vertex, where the process updates only a one vertex parameter.

The parameter of the i-th vertex in the n-th step is denoted as vni , and it is updated to vn+1
i by

the parallelization process

Chapter 8 Interactive Control ───────────────────────────── 76

Fig. 8.7 Parallelization per length constraint, where the process updates the assumed displace-

ments of the target vertices. Letting the value of Verts[i].Delta in n-th step be ∆pn
i , and it

is updated to ∆pn+1
i by the parallelization process

Although most of the processes in the proposed method can be parallelized in the same

way, two processes need measures. The first is the process to update the assumed displacement

Delta according to constraints in PBD-2, the parallelization of which is illustrated in Fig. 8.7.

This process is parallelized for each constraint, but the parameters of the vertices must be updated,

so multiple threads may write the same parameter simultaneously, that is, conflicts could arise.

Figure 8.8(a) shows an example of conflict. Each thread accesses the buffer that stores parameter

values to retrieve a value, updates the value, and accesses the buffer to write the updated value.

Suppose that while thread A accesses the buffer twice, thread B retrieves the same value and B

writes the updated value after A, so B does not reflect the update by A, which is discarded. To

avoid the conflict, Delta is updated using an atomic operation, as shown in Fig. 8.8(b). If a thread

performs an atomic operation, it is ensured that other threads will not access the same value until

the thread finishes writing the updated value to the buffer, so any update is not discarded.

The second process requiring measure for parallelization is the topological manipulation

of tearing and binding, which is a process in which each half-edge updates the parameters at its

ends and duplicates or merges vertices depending on the situation. This process is too complex to

perform by atomic operation, which supports only a simple calculation, such as addition. Therefore,

the number of topological manipulations a vertex can undertake in a single step are limited to

one, and subsequent manipulations are postponed to the next or a latter step. If the topological

information at V1 is changed, the topological manipulation of V2 such that V2.Orig matches

V1.Orig is also prohibited. To realize the management of topological manipulations, an array

locked of uint type whose number of elements is equal to that of half-edges is set, and whether

each vertex is topologically manipulated is saved in locked. Each element in locked is initialized

to 0 at every step, and the condition that locked[E.Vert.Orig] == 0 and locked[E.Vert.Orig]

== 0 is added to both the tearing and binding conditions corresponding to half-edge E. If E is torn

Chapter 8 Interactive Control ───────────────────────────── 77

(a) When a conflict arises (b) When a conflict is avoided by atomic operations

Fig. 8.8 Conflicts due to parallelization and atomic operations

or bound, locked[E.Vert.Orig] and locked[E.Pair.Vert.Orig] are increased by 1. Note that

these comparisons to 0 and increments by 1 must be performed together using atomic operations

to prevent other threads from interrupting the process, from comparison to increment.

8.3 Visualization of Degradation Level

The distribution of parameter values is pseudo color-coded to check the progress of weathering

using information other than the realistic appearance. Three display modes are set to focus on

separation, tearing, and stains, and the models visualized using these modes are shown in Fig. 8.9.

In the separation mode, to visualize the areas likely to be separated, the color at each

vertex is varied according to the difference between its adhesion force and the sum of the lifting

force the vertex receives. As shown in the legend of Fig. 8.9(b), the separated areas are displayed

in red, and the areas that take time to separate are set to be blue. Note that if the difference

between the adhesion and lifting force is over 100, the areas are shown in pure blue.

Next, the tearing mode visualizes areas likely to be torn by coloring the model, according

to the difference between the binding force of an edge and the sum of contraction forces the edge

receives. Thus, the color is computed for each vertex, and the mean of the difference in the values

of the edges connected to the vertex is linked to the vertex color. The method to link mechanical

value and color is almost the same as that in separation mode, but in tearing mode, the areas

where the difference is over 250 are shown in pure blue.

Finally, the degree of stains is displayed by setting Chalk, Rust, and Dust to G, R, and B

components of the vertex color, respectively. All values are initially 0, so the model is displayed in

black. As the simulation progresses, the model gradually turns blue-green, displaying rust in red.

Chapter 8 Interactive Control ───────────────────────────── 78

Fig. 8.9 Pseudo color-coding visualization of parameter values. The upper and lower row

display the initial state and the state of weathering to some extent, respectively. Each column

shows, from left to right, the normal appearance, ease of separation, ease of tearing, and degree

of stains. Note that the model is initially shown in black to visualize stains

8.4 Simulation Control

To determine the target of interactive control, the intersections of the polygon mesh and a ray

from the camera position to the pointer on the screen are found; thus, let P be the closest to the

camera among the intersections. If the distance between P and a vertex V is less than range, V is

determined as the target. In addition, if the distance between a half-edge E’ midpoint (E.Vert.Pos

+ E.Vert.Next) / 2 and P is less than range, E is the target. Note that range can be varied

by external control in the range of [0.01, 10]. Four types of control modes are set: weathering,

maintaining, washing, and repairing.

Chapter 8 Interactive Control ───────────────────────────── 79

8.4.1 Weathering Mode

In weathering mode, V.Bond and E.Binding are set to approach 0, as follows:

V.Bond ← V.Bond - V.Bond * rateCtrl;

E.Binding ← E.Binding - E.Binding * rateCtrl;

where rateCtrl denotes the sensitivity of the interactive control, and the value was set to rateCtrl

= 0.05. In this mode, the designated areas become easy to fracture.

8.4.2 Maintaining Mode

In maintaining mode, V.Bond and E.Binding are increased using the following updating expres-

sions:

V.Bond ← V.Bond + (V.Lifting + exBond - V.Bond) * rateCtrl;

E.Binding ← E.Binding + (exBinding - E.Binding) * rateCtrl;

where exBond and exBinding denote the maximum value of the adhesion force and binding force,

and the values were set to exBond = 200 and exBinding = 2,000, respectively. In addition,

V.Lifting denotes the sum of the lifting forces the vertex V receives. The areas designated in

maintaining mode are less likely to fracture, but if they have already done so, the fracture state is

maintained.

8.4.3 Washing Mode

In washing mode, V.Chalk, V.Rust, and V.Dust are set to approach 0 as follows:

V.Chalk ← V.Chalk - V.Chalk * rateCtrl;

V.Rust ← V.Rust - V.Rust * rateCtrl;

V.Dust ← V.Dust - V.Dust * rateCtrl;

This manipulation removes the stains that are set to the vertices.

8.4.4 Repairing Mode

Repairing mode performs the repairs mentioned in Sec. 8.1, in addition to manipulation, in the

maintaining and washing modes. Although the prerequisites of repair include dT < 0, the repairing

operation exceptionally needs not satisfy this condition.

Chapter 9

Results and Discussions

Chapter 9 Results and Discussions ─────────────────────────── 81

This chapter provides the simulation results and discussions using the method proposed in this

thesis, which was implemented on a gaming laptop with an Intel i9-10980 2.40 GHz CPU, 32.0 GB

RAM, and an NVIDIA GeForce RTX 2080 GPU. Unity 2019.4.14f1 was used as an integrated

development environment, and CPU and GPU implementation parts are coded in C# and HLSL,

respectively. Section 9.1 shows the results of an automatic weathering simulation and Sec. 9.2

the effects of the external input. Meanwhile, Sec. 9.3 compares the simulation results to peeled

coating films in reality, Sec. 9.4 mentions the execution time of the weathering simulation, and

Sec. 9.5 shows a specific scene in which an object is weathered using the proposed method. Finally,

Sec. 9.6 discusses the applicability and limitations of the proposed method.

9.1 Progress and Reversal of Weathering

Figure 9.1 shows the result of weathering a coating film on a curved surface using the proposed

method. As the simulation time progresses, cracks are generated, from which the coating film

warps. In addition, rust flows from pealed areas along the surface, causing the entire model to

darken and lose its gloss.

Another result of applying the proposed method to an oil pump model is shown in Fig. 9.2,

where pseudo time reversal was performed after weathering. By reversing the direction of the time

progress, the weathered model can be returned to its initial state. Note that because this simula-

tion does not record the history of previous states, the weathering process cannot be completely

reversed. Especially, the binding condition is comparatively difficult to satisfy, so cracks often

remain when stain removal is finished.

9.2 Weathering Control by External Input

Figure 9.3 shows a weathering process with an external input. By setting the control mode to

weathering or maintaining and designating some areas on the model, the timing when fractures

Fig. 9.1 A result of weathering a coated curved plate. As time progresses, cracks and bends are generated

Chapter 9 Results and Discussions ─────────────────────────── 82

Fig. 9.2 Progress and reversal of the simulation. Weathering is progressed from 1○ to 4○ and

then reversed from 4○ to 7○. The pseudo time reversal cannot completely reproduce the reverse

process of weathering, but it can gradually return the model to its initial state

occur can be controlled on a part-by-part basis within the model. Moreover, the separation and

tearing modes visualize the areas likely to fracture.

Next, a machine part model that was weathered and partially repaired is displayed in

Fig. 9.4, for which manipulation with the repairing mode repaired fractures and removed stains.

Even around the boundary between weathered and repaired areas, no discrepancy arose among

the topological data, and proper cracks were generated.

9.3 Reproduction of Real Peeled Films

The variations in peeling patterns caused by changing control parameters are shown in comparison

to snapshots of peeled coating films. Note that simulations in this section were automatically

performed without designating peeled areas to avoid draw realistic patterns intentionally.

Figure 9.5 compares the simulation result to a snapshot of a coated vertical pole. On the

coating films shown in Fig. 9.5(b), cracks are not noticeable, peeled areas appear in small clusters,

and there are few bends. Thus, to reproduce this texture, parameters were set to s = 0.10, h =

0.10, and curl = 0.00, and the result in Fig. 9.5(a) was obtained.

Conversely, Fig. 9.6 compares the simulation result to a snapshot of a coated car stop

fence. In the snapshot shown in Fig. 9.6(c), peering areas are scattered with few cracks, and coat-

ing films around peeled areas are slightly curved. Considering these factors, parameters were set

to s = 0.00, h = 0.00, and curl = 0.01. Because the snapshot in Fig. 9.6(c) was taken under

a roof, the fence is less dirty than in the simulation result shown in Fig. 9.6(a). Figure 9.6(b)

shows the intentionally washed version of the automatically weathered model in Fig. 9.6(a).

Chapter 9 Results and Discussions ─────────────────────────── 83

Fig. 9.3 Designation of areas for weathering and maintaining by interactive control. The lower

row visualizes the progress of weathering using the tearing mode, whereas red and blue areas

indicate the promotion and prevention of weathering, respectively

Fig. 9.4 Repair of a weathered model by interactive control. The controlled model (bottom)

is the version whose lower part is the repaired weathered model (top)

Chapter 9 Results and Discussions ─────────────────────────── 84

(a) Weathered pole model (b) Coated pole in reality

Fig. 9.5 Comparison between the simulation result (a) and a snapshot (b) of a coated iron

pole in reality. The simulation was performed with the settings s = 0.10, h = 0.10, and curl

= 0.00 and without interactive control

(a) Weathered fence model (b) Model with (a) washed (c) Coated fence in reality

Fig. 9.6 Comparison between the simulation result (a) and (b) and a snapshot (c) of a coated

car stop fence in reality. The simulation was performed with the settings s = 0.00, h = 0.00,

and curl = 0.01 and without interactive control. (a) is the full automatic simulation result,

while (b) was washed by an interactive control to resemble the texture of (c)

Chapter 9 Results and Discussions ─────────────────────────── 85

(a) Weathered wall model (b) Coated iron wall in reality

Fig. 9.7 Comparison between the simulation result (a) and a snapshot (b) of a coated iron

wall in reality. The simulation was performed with the settings s = 1.00, h = 0.50, and curl

= 0.02 and without interactive control

Figure 9.7 shows an additional example of a coated iron wall. In the real coated film

shown in Fig. 9.7(b), many fine cracks are generated, and pieces of the film are lifting around the

cracks. The result in Fig. 9.7(a) was obtained by a simulation with large parameter values: s =

1.00, h = 0.50, and curl = 0.02, and it reproduces the variation in crack density.

Furthermore, it is possible to apply weathering to another model with a similar texture

to the original by a simulation with the same parameter values. Figure 9.8 shows the simulation

results of weathering other models with the same parameter values of the above three cases. In each

case, the texture of the original is reproduced in the different model. Note that texture mapping is

not used, but the simulation is re-performed on another model, so it is possible to apply weathering

considering the geometry of the model without distortion caused by UV mapping.

9.4 Temporal Complexity Analysis

Concerning the three types of models weathered automatically, as shown in Fig. 9.9, simulation

statistics are summarized in Table 9.1. Step numbers depend on the number of polygons, but the

execution time of a single step amounts to less than 30 milliseconds, even if the model has 105

polygons. This implies the possibility of real time animation and interactive control. Furthermore,

Table 9.2 shows the computation time required for each part of the simulation. For every model,

the fracture simulation takes up most of the processing time, where the time required for mesh

generation and other categories is less than 20 % of the full amount. This is because local processing

only requires reference to data around cracked edges and peeled triangular faces. In addition,

proportion of items in the mesh generation and other categories is high, presumably because it

takes much time to transfer data between the GPU and CPU.

Chapter 9 Results and Discussions ─────────────────────────── 86

(a) Armadillo model (b) Vase model (c) Machine part model

Fig. 9.8 Results of reproducing the textures of objects on other models. (a), (b), and (c)

reproduce the textures of objects shown in Fig. 9.5(b), Fig. 9.6(c), and Fig. 9.7(b). Because

these simulations do not use texture mapping, no distortion caused by UV mapping arises, and

the texture can be transferred considering the geometry of the target model

Table 9.1 Simulation statistics of the three models in Fig. 9.9

Flat plane Double torus Stanford Bunny

Number of steps 1,000 1,000 1,000

Number of polygons 68,159 67,482 84,758

Pre-computation time 0.603 s 0.545 s 0.703 s

Simulation time 24.7 s 25.03 s 28.4 s

Computation time per frame 24.7 ms 25.03 ms 28.4 ms

9.5 Application to Specific Scene

Figure 9.10 shows a weathered object embedded within a specific scene provided by the model

Destroyed City FREE for Unity by Profi Developers. In many realistic scenes, in which most

other objects are more or less aged, weathering harmonizes an object with its environment, and it

reinforces the reality of said object.

As an example that needs designation of weathered areas, Fig. 9.11 shows a case of weath-

ering playground equipment that biases people’s tactile saliency. The handle and seating area,

which people frequently touch, were designated to be degraded easily and designated areas cracked

and peeled, while the entire model was darkened by weathering.

Chapter 9 Results and Discussions ─────────────────────────── 87

Fig. 9.9 Results of automatic weathering simulations whose net execution time was measured.

See the obtained statistics in Table 9.1 and Table 9.2

Table 9.2 Ratio of time required for each simulation part

Flat plane Double torus Stanford bunny

Parameter updating 0.39 % 0.45 % 1.77 %

Bend simulation 0.23 % 0.23 % 0.20 %

Fracture simulation 60.92 % 60.84 % 52.79 %

Stain expression 0.02 % 0.02 % 0.02 %

Mesh generation 25.99 % 25.83 % 23.36 %

Others 12.35 % 12.63 % 21.86 %

Chapter 9 Results and Discussions ─────────────────────────── 88

(a) 0th step (b) 400th step

(c) 800th step (d) 1,000th step

(e) 1,200th step (f) 1,600th step

Fig. 9.10 Weathering of a signboard model in a devastated city scene. Weathering integrates

the object into the scene

Chapter 9 Results and Discussions ─────────────────────────── 89

(a) Visualization of degradation (b) Before weathering (c) After weathering

Fig. 9.11 Weathering of playground equipment. The areas people frequently touch are desig-

nated by an external input for easy degradation

(a) Object uniformly weathered (b) Placing a parasol to block sunlight (c) Repairing the blocked areas

Fig. 9.12 Example of partial recovery. If an object is uniformly weathered (a) and a parasol is

placed to block some of the sunlight hitting the object (b), repairing only the blocked area (c)

renders the parasol’s appearance to reflect as if it were placed before (a)

Moreover, Fig. 9.12 shows an example of intended manipulation of time series for partial

recovery. Figure 9.12(a) shows an object that is uniformly weathered, while in Fig. 9.12(b), a

parasol was placed to block some of the sunlight hitting it. The parasol was certainly placed after

(a), but restoring only the blocked areas made the image appear as if the degradation in the blocked

areas was suppressed by the parasol, as shown in Fig. 9.12 (c). In this situation, the parasol is

interpreted as if it were placed before (a), thus reversing the time sequence.

9.6 Discussions

This section refers to future research to be conducted in order of feasibility, as indicated in

Fig. 9.13, with some experimental examples. Finally, the limitations of the proposed method

are described.

Chapter 9 Results and Discussions ─────────────────────────── 90

Fig. 9.13 Technology map of the weathering method. Colored items are discussed in Sec. 9.6

9.6.1 Corrosion of Metallic Base

Although there are various factors of aged degradation in reality and their complex interactions,

the proposed method assumed the results could be summarized as linear variations in several

fundamental parameter values, as shown in Fig. 9.14. Therefore, many factors could not be dealt

with adequately in this study. In particular, base corrosion is one of the most important factors,

as it interacts with the degradation of coating films. Weathering simulation that considers both

coating films and metal bases may be achieved by combining with related works to deal with

metal [45][46][62].

Figure 9.15 shows a result of an experimental simulation in which base corrosion is simply

modeled. In the corroded areas, the base is set to expand as it lifts the coating films, and its color

is set to change from silver to dark brown. In addition, the adhesion force of coating films on the

corroded base is set to weaken rapidly. The introduction of base corrosion reproduced the variation

in base degradation, as observed through the cracks, the bumpiness of the paint film due to rust

formation, and the pattern of peeling, which appears in clusters.

In addition, yet another important topic related to metallic corrosion is galvanic corrosion,

which is a phenomenon where the deterioration of one side is accelerated at contact points of

dissimilar metals. Galvanic corrosion is not an uncommon phenomenon, because metal objects

generally consist of multiple parts, and the screws and bolts that connect them are often made of

different materials than the parts themselves, as shown in Fig. 9.16.

Chapter 9 Results and Discussions ─────────────────────────── 91

Fig. 9.14 Modeling concept of the proposed method. Aged degradation is caused by complex

interactions among various factors in reality (left), whereas the proposed method assumes the

interactions can be summarized as variations in several parameters (right)

Fig. 9.15 Weathering of coating films considering base corrosion. The base is unchanged in

the upper row, while a prepared texture is gradually applied to exposed base areas in the middle

and bottom rows, and the coating film is hidden in the bottom row

Chapter 9 Results and Discussions ─────────────────────────── 92

Fig. 9.16 Snapshot of actual galvanic corrosion. The screw has a lower ionization tendency

than the body, so it retains its metallic luster, but the body corrosion is accelerated near the

screw

9.6.2 Dependence of Crack Generation on Mesh Shape

The problem with crack generation using mesh is that the shape of a crack changes depending on

how the mesh is structured, even if the model has the same form; thus, consistent results cannot

be obtained. The underlying cause is the difficulty in analyzing real crack generation, and the

realism of the crack shape is greatly compromised at the analytical modeling stage by continuum

theory, as depicted in Fig. 9.17. Section 3.1 stated that the effect of the stress concentration was

maximal in the direction of crack growth, but according to the results of this analysis, the crack

should travel in a straight line without any bending.

However, real cracks have zigzag shapes, due to the effects of microstructural disorder

in the order of tens of micrometers. In other words, while continuum theory is insufficient to

explain detailed crack shapes, it is also difficult to construct mathematical models that cover the

microstructure of materials or to perform simulations at the microstructure level.

In visual simulations, macroscopic mathematical models have been used to represent plau-

sible cracks by actively incorporating discretization errors and randomness. For example, Hirota

et al. [37] used a regular hexagonal lattice to prevent cracks from running straight, and Paquette et

al. [79] used a square lattice as a base, but randomized the distance and direction of crack propaga-

tion to reproduce zigzag crack shapes. The need for discretization errors and randomness in crack

generation also applies to the case of using re-meshing. Pfaff et al. [81] determined a method of

re-meshing by considering the stress distribution, but in this case, a straight crack propagation is

avoided because the stresses are discretely assigned to each polygon, which should be continuously

distributed in reality.

Chapter 9 Results and Discussions ─────────────────────────── 93

Fig. 9.17 Mathematical modeling and discretization flow in crack generation using mesh.

Restricting crack extension to polygon boundaries results in a plausible appearance, whereas in

the continuum model, the crack is considered to go straight through

The problem with the proposed method is that the shape of the crack changes when the

mesh resolution is increased to maintain the plausible appearance of the crack, even from a close

viewpoint. Two ways to deal with this problem can be proposed: use of the discretization error

and the introduction of randomness. First, in the method using a discretization error, a mesh

for simulation and a finer mesh for rendering are prepared, and the geometric elements of the

two meshes are mapped to each other in advance. As mentioned above, simulation on a mesh

introduces discretization errors, and fine errors are added when mapping the simulation result to

the mesh for rendering. This method provides consistent results because the simulation itself is

performed on the dedicated mesh, and the resolution of the fine mesh can be set independently

of the simulation. Figure 9.18 shows the results of the mesh mapping, where it can be seen that

the fine contours of the cracks are represented while maintaining the general shape. This method

requires pre-computation for the preparation and mapping of the fine mesh, and the execution

time per frame was about 4 times longer in this case.

Alternatively, in the method introducing randomness, each triangular polygon is divided

radially from the center, and fine contours are expressed by randomly moving vertices along the

torn edges. The result of refinement by quartering each edge by length is shown in Fig. 9.19.

In addition to reproducing a plausible crack shape, this method does not require another mesh

input or pre-computation, and the running time doubles. This method is expected to be more

efficient, as it dynamically changes the number of edge segments depending on the viewpoint and

to generates a mesh that does not lose detail, regardless of how close one gets.

Chapter 9 Results and Discussions ─────────────────────────── 94

Fig. 9.18 High-resolution rendering by mesh mapping. The simulation mesh is drawn as is in

the left column, while the mesh is projected to the fine mesh before rendering in the right column

so that fine contours can be expressed while maintaining the general crack shape. The middle

column superimposes the wireframes of the simulation mesh and rendering mesh in green and

gray, respectively

Fig. 9.19 High-resolution rendering by mesh subdivision. The torn edges are randomly dis-

torted to express fine contours

Chapter 9 Results and Discussions ─────────────────────────── 95

9.6.3 Application to XR Systems

Because the proposed method provides an interactive simulation of mesh deformation, it is suitable

for application to XR systems, which display CG as if they were really in front of users. In addition,

one of the main purposes of weathering is to improve the realism of virtual objects, as it seems

especially compatible with augmented reality (AR), which displays CG objects on real images

rather than being completed in the virtual world. In other words, weathering is expected to have

the effect of harmonizing CG objects with real scenes in AR systems.

Figures 9.20 and 9.21 show composite photographs with CG objects, whereas in

Fig. 9.20, it is reasonable that the weathered object (b) looks more natural than the non-

weathered one (c), because CG is overlaid on the originally weathered pulley. However, in the case

where the original pole is not very weathered, as shown in Fig. 9.21 (a), the weathered object (c)

does not differ clearly from the non-weathered one (b). Therefore, the moderate weathering of

CG objects improves affinity to real images, as well as improves realism, and it is expected to

achieve a natural composition of CG and reality.

9.6.4 Acceleration of Deterioration and Transport of Stains by Water

Besides base corrosion, another factor not adequately addressed in this research is the effect of

water, where even though the proposed method focused on its mechanical effects, such as water

flow that conveys dust, the chemical effects might have a greater influence in some cases. The

moisture accelerates not only the chemical deterioration of coating films but also base corrosion,

which is mainly caused by electrochemical effects. Furthermore, if such biological factors such as

moss growth are also considered, moisture can be assumed to have a significant impact on them.

In addition, mechanical effects should also be considered, such as outflow to another model,

dropping, and puddling in pits. The water flow was assumed to transport only rust, but in fact, it

also washes away pigments caused by chalking and accumulated dust. Such complex situations are

expected to be reproduced by the application of a fluid simulation, but special efforts are required

to maintain quasi-reversibility.

9.6.5 Mapping to Physical Time

Aged deterioration in the real world is a phenomenon that takes years to progress, and it is

difficult to measure the changes in physical properties that occur during aging. In other words, it

is impossible to construct a mathematical model that maps changes in parameter values associated

with aging to physical time. Therefore, in this research, time in the simulation is treated as logical

time, which differs intrinsically different from physical time. Further, the proposed method cannot

be used to predict the future, including how many cracks will appear in a specific number of years.

Chapter 9 Results and Discussions ─────────────────────────── 96

(a) Real photograph (b) Weathered CG on the photograph (c) Non-weathered CG on the photo-

graph

Fig. 9.20 A scene of a weathered pulley. (a) is a real photograph, (b) is overlaid with a

weathered CG, and (c) is overlaid with a non-weathered CG. The virtual objects were manually

overlaid with fine-tuning

(a) Real photograph (b) Weathered CG on the photograph (c) Non-weathered CG on the photo-

graph

Fig. 9.21 A scene of a non-weathered pole. (a) is a real photograph, (b) is overlaid with a

weathered CG, and (c) is overlaid with a non-weathered CG. The virtual objects were manually

overlaid with fine-tuning

Chapter 9 Results and Discussions ─────────────────────────── 97

In contrast, the results obtained from the simulation based on logical time are interpreted

by the viewer as imitations of real deterioration and are unconsciously mapped to physical time,

making applications to the real world possible. For example, if an interpretation by a skilled

coating inspector was treated as the correct answer, it could be used as a pseudo case study for

training purposes to determine whether a new inspector could provide the same interpretation or

to augment machine learning data to estimate the degree of deterioration.

9.6.6 Application to Restoration Simulation

Although this research realized the pseudo time reversal of weathering, the initial model is required

as the input, that is, it is impossible to presume the original state by assigning a weathered model

as input. However, such virtual repairing of damaged objects is an extremely significant component

of computational archaeology. If machine learning was applied to this task, the proposed method

might be used to augment training data.

In contrast, not presuming the original state but rather simulating restoration work has

industrial value. In the current situation of many deteriorated coated objects, industrial interest is

in predictions of the future, such as how the deterioration will be repaired and how it will proceed

after the restoration, rather than the past history of how the deterioration has been proceeded. In

fact, as shown in Figure 9.22, because real weathered coated objects cannot be returned to their

initial state through restoration work, the progress of deterioration after restoration depends on

the state before restoration. Therefore, the simulation of restoration by coating new paint on a

weathered object is a possible application of this research.

9.6.7 Application to Other Materials

The proposed method focused on coating films on metallic objects using Stoney’s law [90], but it

may be possible to apply similar theories to bases made of other materials. Figure 9.23 shows

a simulation result in which the model is regarded as an oil painting, another example of objects

with noticeable peeling effects. Because the patterns of cracks in rust preventive coating films

and oil painting are highly similar, the proposed method expresses plausible deterioration of oil

painting only by removing rust run-off stains. It is expected that the proposed method can be

applied to coating films on the bases of such materials as wood and concrete by considering the

specific degradation factors of each.

Chapter 9 Results and Discussions ─────────────────────────── 98

(a) Weathered coated plate

(October 30, 2018)

(b) Coated plate just after restoration

(November 17, 2018)

(c) Coated plate weathered again

(May 8, 2023)

Fig. 9.22 A coated plate that is restored once but then weathered again. The subject is the

backside of the signboard of Hiyoshi Shrine, which is adjacent to Keio University Yagami Campus.

In the restoration work, warped coating films were removed and then paint was coated, but over

time, the restored area deteriorated again

Fig. 9.23 Weathering simulation of oil painting. The effects of rust run-off stains are turned

off and a model that imitates a canvas is placed behind the painting model

Chapter 9 Results and Discussions ─────────────────────────── 99

9.6.8 Limitations of the Proposed Method

This subsection summarizes the limitations of the proposed method, the first of which is its assump-

tion that some typical parameter values change linearly with time as a result of various degradation

factors. Therefore, the bias in the degree of degradation caused by each degradation factor, such as

base corrosion, weather, light, heat, and people contact, is not automatically reproduced and must

be specified by an external input. In addition, the factors that change the texture of the coating

are limited to three: chalking, rust, and dust. As such, this method must be combined with other

methods to represent changes in appearance caused by surface wear, light-initiated fading, moss

growth, and other factors.

This method is a visual simulation that aims to reproduce plausible appearances, and it

is performed according to a logical time. Therefore, although the generated images can impress

the viewer with degradation, they cannot be used to predict the future by presenting physically

precise information.

Finally, the input simulation mesh must be re-meshed in advance, and consistent results

cannot be obtained if the resolution of the simulation mesh is changed. To reproduce the detailed

shapes of cracks, it is necessary to prepare a high-resolution mesh for rendering that differs from a

mesh used for simulation or to subdivide the mesh for simulation and to move vertices randomly.

Chapter 10

Conclusion

Chapter 10 Conclusion ──────────────────────────────── 101

In this thesis research, an interactive weathering method for rust preventive coating films

was proposed by expressing the complex phenomenon of aged degradation with simple mathe-

matic models. By moving the vertices of a polygon mesh representing coating films according

to position-based dynamics, this method efficiently expressed a thin-film bend, which requires

complex computations to be reproduced by physical simulation. Fracturing was represented by

manipulating the topology of the mesh while considering force balance, and various crack patterns

were generated by setting simple properties related to the stress concentration as control parame-

ters. The stains caused by external effects on the coating film were also expressed by controlling

the vertex color in consideration of the geometry of the mesh model. Moreover, by defining reverse

manipulations for these deformation and staining processes, the pseudo time reversal of weather-

ing was achieved, which is difficult for conventional visual simulation methods. These processes

were accelerated by parallel computation, and the parameter values could be varied in response to

external inputs to achieve an interactive weathering simulation.

The proposed method enabled the simulation of realistic patterns of cracks and peeled

areas. In addition, the time reversal of weathering improved the directability of the simulation

to achieve both the advantages of automatically generating complex patterns in simulation and of

intuitive and free manipulation in manual modeling.

In conclusion, this research has provided compelling evidence that weathering plays a

crucial role in enhancing the realism of virtual objects. Moreover, it has brought to light the

significance of incorporating comprehensive modeling techniques that account for both surface

texture alterations and geometric deformations when weathering coating films. By recognizing

these critical factors, even greater levels of authenticity and immersion can be expected to be

achieved in virtual environments.

Publications

Main Publications

[MP-1] Akinori Ishitobi, Masanori Nakayama, and Issei Fujishiro: “Visual simulation of crack and

bend generation in deteriorated films coated on metal objects―combination of static fracture

and position-based deformation,” to appear in The Visual Computer, vol. 39, Special Issue of

CG International 2023, Springer-Verlag.

[MP-2] Akinori Ishitobi, Masanori Nakayama, and Issei Fujishiro: “Visual simulation of weathering

coated metallic objects,” The Visual Computer, Springer-Verlag, vol. 36, no. 10–12 (Special

Issue of CG International 2020), pp. 2383–2393, September 30, 2020 (online first on August 8,

2020) [DOI: 10.1007/s00371-020-01947-w].

Reference Publications

[RP-1] Akinori Ishitobi, Masanori Nakayama, and Issei Fujishiro: “Crack generation and bend of

coated films due to aged deterioration—Visual simulation of a quasi-static process by combi-

nation of fracture judgement and bend simulation—,” Visual Computing 2022, October 2022,

VC Paper Award (2nd prize), CGVI Best Presentation Award, CGVI Student Presentation

Award, IPSJ Yamashita SIG Research Award. [refereed, in Japanese]

[RP-2] Akinori Ishitobi, Masanori Nakayama, and Issei Fujishiro: “Visual simulation of weathering

coated metallic objects,” in Visual Computing 2020, December 2020. [invited talk, in Japanese]

[RP-3] Akinori Ishitobi, Masanori Nakayama, and Issei Fujishiro: “A deformation method for sim-

ulating coating degradation while taking mechanical behavior into account,” 2019 International

Conference on Cyberworlds (CW), Kyoto, Japan, October 2019 [DOI: 10.1109/CW.2019.00066].

102

References

[1] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or, “Only a matter of style: Age transforma-

tion using a style-based regression model,” ACM Transactions on Graphics, vol. 40, no. 4,

pp. 45:1–45:12, July 2021. DOI: 10.1145/3450626.3459805

[2] Arthur E. Balbão and Marcelo Walter, “A biologically inspired hair aging model,” ACM

Transactions on Graphics, vol. 41, no. 6, pp. 223:1–223:9, November 2022. DOI: 10.1145/

3550454.3555444

[3] David Baraff and Andrew Witkin, “Dynamic simulation of non-penetrating flexible bodies,”

ACM SIGGRAPH Computer Graphics, vol. 26, no. 2, pp. 303–308, July 1992. DOI: 10.

1145/142920.134084

[4] Jernej Barbič, Funshing Sin, and Eitan Grinspun, “Interactive editing of deformable sim-

ulations,” ACM Transactions on Graphics, vol. 31, no. 4, pp. 70:1–70:8, July 2012. DOI:

10.1145/2185520.2185566

[5] Rachele Bellini, Yanir Kleiman, and Daniel Cohen-Or, “Time-varying weathering in texture

space,” ACM Transactions on Graphics, vol. 35, no. 4, pp. 141:1–141:11, July 2016. DOI:

10.1145/2897824.2925891

[6] Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber, “Position-based simulation

of continuous materials,” Computers & Graphics, vol. 44, pp. 1–10, November 2014. DOI:

10.1016/j.cag.2014.07.004

[7] Jan Bender, Matthias Müller, and Miles Macklin, “A survey on position based dynamics,

2017,” in Proceedings of the European Association for Computer Graphics: Tutorials (EG

’17), pp. 6:1–6:31, April 2017. DOI: 10.2312/egt.20171034

[8] Carles Bosch, Pierre-Yves Laffont, Holly Rushmeier, Julie Dorsey, and George Drettakis,

“Image-guided weathering: A new approach applied to flow phenomena,” ACM Transactions

on Graphics, vol. 30, no. 3, pp. 20:1–20:13, May 2011. DOI: 10.1145/1966394.1966399

[9] Carles Bosch and Gustavo Patow, “Controllable image-based transfer of flow phenomena,”

Computer Graphics Forum, vol. 38, no. 1, pp. 274–285, July 2018. DOI: 10.1111/cgf.13530

[10] Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly, “Projective

dynamics: Fusing constraint projections for fast simulation,” ACM Transactions on Graphics,

vol. 33, no. 4, pp. 154:1–154:11, July 2014. DOI: 10.1145/2601097.2601116

[11] Ivaylo Boyadzhiev, Kavita Bala, Sylvain Paris, and Edward Adelson, “Band-sifting decom-

103

https://doi.org/10.1145/3450626.3459805
https://doi.org/10.1145/3550454.3555444
https://doi.org/10.1145/3550454.3555444
https://doi.org/10.1145/142920.134084
https://doi.org/10.1145/142920.134084
https://doi.org/10.1145/2185520.2185566
https://doi.org/10.1145/2897824.2925891
https://doi.org/10.1016/j.cag.2014.07.004
https://doi.org/10.2312/egt.20171034
https://doi.org/10.1145/1966394.1966399
https://doi.org/10.1111/cgf.13530
https://doi.org/10.1145/2601097.2601116

position for image-based material editing,” ACM Transactions on Graphics, vol. 34, no. 5,

pp. 163:1–163:16, November 2015. DOI: 10.1145/2809796

[12] Richard Bukowski and Carlo Séquin, “Interactive simulation of fire in virtual building envi-

ronments,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interac-

tive Techniques (SIGGRAPH ’97), pp. 35–44, August 1997. DOI: 10.1145/258734.258757

[13] Yao-Xun Chang and Zen-Chung Shih, “The synthesis of rust in seawater,” The Visual Com-

puter, vol. 19, no. 1, pp. 50–66, March 2003. DOI: 10.1007/s00371-002-0172-0

[14] Hsiao-Yu Chen, Arnav Sastry, Wim M. van Rees, and Etienne Vouga, “Physical simulation

of environmentally induced thin shell deformation,” ACM Transactions on Graphics, vol. 37,

no. 4, pp. 146:1–146:13, July 2018. DOI: 10.1145/3197517.3201395

[15] Wei Chen, Fei Zhu, Jing Zhao, Sheng Li, and Guoping Wang, “Peridynamics-based fracture

animation for elastoplastic solids,” Computer Graphics Forum, vol. 37, no. 1, pp. 112–124,

June 2018. DOI: 10.1111/cgf.13236

[16] Yanyun Chen, Lin Xia, Tien-Tsin Wong, Xin Tong, Hujun Bao, Baining Guo, and Heung-

Yeung Shum, “Visual simulation of weathering by γ-ton tracing,” ACM Transactions on

Graphics, vol. 24, no. 3, pp. 1127–1133, July 2005. DOI: 10.1145/1073204.1073321

[17] Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K. Hauser, Ken Gold-

berg, Jonathan R. Shewchuk, and James F. O’Brien, “Interactive simulation of surgical needle

insertion and steering,” ACM Transactions on Graphics, vol. 28, no. 3, pp. 88:1–88:10, July

2009. DOI: 10.1145/1531326.1531394

[18] Kwang-Jin Choi and Hyeong-Seok Ko, “Stable but responsive cloth,” ACM Transactions on

Graphics, vol. 21, no. 3, pp. 604–611, July 2002. DOI: 10.1145/566654.566624

[19] Jonathan M. Cohen, Sarah Tariq, and Simon Green, “Interactive fluid-particle simulation

using translating eulerian grids,” in Proceedings of the 2010 ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games (I3D ’10), pp. 15–22, February 2010. DOI: 10.1145/

1730804.1730807

[20] Qing Dai and Xubo Yang, “Interactive smoke simulation and rendering on the GPU,” in

Proceedings of the 12th ACM SIGGRAPH International Conference on Virtual Reality Con-

tinuum and Its Applications in Industry (VRCAI ’13), pp. 177–182, November 2013. DOI:

10.1145/2534329.2534358

[21] Brett Desbenoit, Eric Galin, and Samir Akkouche, “Simulating and modeling lichen growth,”

Computer Graphics Forum, vol. 23, no. 3, pp. 341–350, August 2004. DOI: 10.1111/j.

1467-8659.2004.00765.x

[22] ——, “Modeling cracks and fractures,” The Visual Computer, vol. 21, no. 8, pp. 717–726,

August 2005. DOI: 10.1007/s00371-005-0317-z

[23] Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin Legakis, and Hans Køhling Peder-

sen, “Modeling and rendering of weathered stone,” in Proceedings of the 26th Annual Con-

104

https://doi.org/10.1145/2809796
https://doi.org/10.1145/258734.258757
https://doi.org/10.1007/s00371-002-0172-0
https://doi.org/10.1145/3197517.3201395
https://doi.org/10.1111/cgf.13236
https://doi.org/10.1145/1073204.1073321
https://doi.org/10.1145/1531326.1531394
https://doi.org/10.1145/566654.566624
https://doi.org/10.1145/1730804.1730807
https://doi.org/10.1145/1730804.1730807
https://doi.org/10.1145/2534329.2534358
https://doi.org/10.1111/j.1467-8659.2004.00765.x
https://doi.org/10.1111/j.1467-8659.2004.00765.x
https://doi.org/10.1007/s00371-005-0317-z

ference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99), pp. 225–234,

July 1999. DOI: 10.1145/311535.311560

[24] Julie Dorsey and Pat Hanrahan, “Modeling and rendering of metallic patinas,” in Proceed-

ings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIG-

GRAPH ’96), pp. 387–396, August 1996. DOI: 10.1145/237170.237278

[25] Julie Dorsey, Hans Køhling Pedersen, and Pat Hanrahan, “Flow and changes in appear-

ance,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH ’96), pp. 411–420, August 1996. DOI: 10.1145/237170.237280

[26] Yuki Endo, Yoshihiro Kanamori, Jun Mitani, and Yukio Fukui, “An interactive de-

sign system for water flow stains on outdoor images,” in Proceedings of Smart Graph-

ics: 10th International Symposium on Smart Graphics, pp. 160–171, June 2010. DOI:

10.1007/978-3-642-13544-6_16

[27] ——, “Image editing for weathering effects with geometric details,” in Proceedings of Com-

puter Graphics International 2011, pp. S24:1–S24:4, July 2011.

[28] Pavol Federl and Przemyslaw Prusinkiewicz, “Finite element model of fracture formation

on growing surfaces,” in Computational Science—ICCS 2004, pp. 138–145, June 2004. DOI:

10.1007/978-3-540-24687-9_18

[29] Dhana Frerichs, Andrew Vidler, and Christos Gatzidis, “A survey on object deformation and

decomposition in computer graphics,” Computers & Graphics, vol. 52, pp. 18–32, November

2015. DOI: 10.1016/j.cag.2015.06.004

[30] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: theory and appli-

cation to non-spherical stars,” Monthly Notices of the Royal Astronomical Society, vol. 181,

no. 3, pp. 375–389, December 1977. DOI: 10.1093/mnras/181.3.375

[31] Stéphane. Gobron and Norishige Chiba, “Simulation of peeling using 3D-surface cellular au-

tomata,” in Proceedings of Ninth Pacific Conference on Computer Graphics and Applications,

pp. 338–347, October 2001. DOI: 10.1109/PCCGA.2001.962890

[32] MPI Group, “Fitz’s atlas of coating defects 2,” Anti-Corrosion Methods and Materials,

vol. 59, no. 3, May 2012. DOI: 10.1108/acmm.2012.12859cab.016

[33] Jinwei Gu, Chien-I Tu, Ravi Ramamoorthi, Peter Belhumeur, Wojciech Matusik, and

Shree Nayar, “Time-varying surface appearance: Acquisition, modeling and rendering,” in

ACM SIGGRAPH 2006 Papers (SIGGRAPH ’06), pp. 762–771, July 2006. DOI: 10.1145/

1179352.1141952

[34] Geoffrey Guingo, Frédéric Larue, Basile Sauvage, Nicolas Lutz, Jean-Michel Dischler, and

Marie-Paule Cani, “Content-aware texture deformation with dynamic control,” Computers

& Graphics, vol. 91, pp. 95–107, October 2020. DOI: 10.1016/j.cag.2020.07.006

[35] Tobias Günther, Kai Rohmer, and Thorsten Grosch, “GPU-accelerated interactive material

aging,” in Proceedings of Vision, Modeling and Visualization, pp. 63–70, November 2012.

105

https://doi.org/10.1145/311535.311560
https://doi.org/10.1145/237170.237278
https://doi.org/10.1145/237170.237280
https://doi.org/10.1007/978-3-642-13544-6_16
https://doi.org/10.1007/978-3-540-24687-9_18
https://doi.org/10.1016/j.cag.2015.06.004
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1109/PCCGA.2001.962890
https://doi.org/10.1108/acmm.2012.12859cab.016
https://doi.org/10.1145/1179352.1141952
https://doi.org/10.1145/1179352.1141952
https://doi.org/10.1016/j.cag.2020.07.006

DOI: 10.2312/PE/VMV/VMV12/063-070

[36] Francis H Harlow, “The particle-in-cell method for numerical solution of problems

in fluid dynamics,” March 1962. URL: https://www.osti.gov/biblio/4769185. DOI:

10.2172/4769185

[37] Koichi Hirota, Yasuyuki Tanoue, and Toyohisa Kaneko, “Generation of crack patterns with

a physical model,” The Visual Computer, vol. 14, no. 3, pp. 126–137, July 1998. DOI: 10.

1007/s003710050128

[38] ——, “Simulation of three-dimensional cracks,” The Visual Computer, vol. 16, pp. 371–378,

November 2000. DOI: 10.1007/s003710000069

[39] Rama Hoetzlein and Tobias Höllerer, “Interactive water streams with sphere scan conver-

sion,” in Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (I3D

’09), pp. 107–114, February 2009. DOI: 10.1145/1507149.1507166

[40] Siu-Chi Hsu and Tien-Tsin Wong, “Simulating dust accumulation,” IEEE Computer Graph-

ics and Applications, vol. 15, no. 1, pp. 18–22, January 1995. DOI: 10.1109/38.364957

[41] Jin Huang, Jiong Chen, Weiwei Xu, and Hujun Bao, “A survey on fast simulation of elastic

objects,” Frontiers of Computer Science, vol. 13, no. 3, pp. 443–459, June 2019. DOI: 10.

1007/s11704-018-8081-1

[42] Satoshi Iizuka, Yuki Endo, Yoshihiro Kanamori, and Jun Mitani, “Single image weathering

via exemplar propagation,” Computer Graphics Forum, vol. 35, no. 2, pp. 501–509, May

2016. DOI: 10.1111/cgf.12850

[43] Geoffrey Irving, Craig Schroeder, and Ronald Fedkiw, “Volume conserving finite element

simulations of deformable models,” ACM Transactions on Graphics, vol. 26, no. 3, pp. 13:1–

13:6, July 2007. DOI: 10.1145/1276377.1276394

[44] Tomokazu Ishikawa, Yusuke Kameda, Masanori Kakimoto, Ichiro Matsuda, and Susumu

Itoh, “Rust simulation based on chemical reaction processes,” IIEEJ Transactions on Image

Electronics and Visual Computing, vol. 6, no. 2, pp. 82–88, December 2018. DOI: 10.11371/

tievciieej.6.2_82

[45] Nisha Jain, Prem Kalra, and Subodh Kumar, “Simulation and rendering of pitting corro-

sion,” in Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image

Processing (ICVGIP ’14), pp. 38:1–38:8, December 2014. DOI: 10.1145/2683483.2683521

[46] Nisha Jain, Prem Kalra, Rohit Ranjan, and Subodh Kumar, “User guided generation

of corroded objects,” in Proceedings of the Tenth Indian Conference on Computer Vi-

sion, Graphics and Image Processing (ICVGIP ’16), pp. 89:1–89:8, December 2016. DOI:

10.1145/3009977.3010031

[47] Doug L. James and Dinesh K. Pai, “Multiresolution Green’s function methods for interactive

simulation of large-scale elastostatic objects,” ACM Transactions on Graphics, vol. 22, no. 1,

pp. 47–82, January 2003. DOI: 10.1145/588272.588278

106

https://doi.org/10.2312/PE/VMV/VMV12/063-070
https://www.osti.gov/biblio/4769185
https://doi.org/10.2172/4769185
https://doi.org/10.1007/s003710050128
https://doi.org/10.1007/s003710050128
https://doi.org/10.1007/s003710000069
https://doi.org/10.1145/1507149.1507166
https://doi.org/10.1109/38.364957
https://doi.org/10.1007/s11704-018-8081-1
https://doi.org/10.1007/s11704-018-8081-1
https://doi.org/10.1111/cgf.12850
https://doi.org/10.1145/1276377.1276394
https://doi.org/10.11371/tievciieej.6.2_82
https://doi.org/10.11371/tievciieej.6.2_82
https://doi.org/10.1145/2683483.2683521
https://doi.org/10.1145/3009977.3010031
https://doi.org/10.1145/588272.588278

[48] SoHyeon Jeong, Tae-Hyeong Kim, and Chang-Hun Kim, “Shrinkage, wrinkling and ablation

of burning cloth and paper,” The Visual Computer, vol. 27, no. 6, pp. 417–427, June 2011.

DOI: 10.1007/s00371-011-0575-x

[49] SoHyeon Jeong, Si-Hyung Park, and Chang-Hun Kim, “Simulation of morphology changes in

drying leaves,” Computer Graphics Forum, vol. 32, no. 1, pp. 204–215, January 2013. DOI:

10.1111/cgf.12009

[50] Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle,

“The material point method for simulating continuum materials,” in ACM SIGGRAPH 2016

Courses (SIGGRAPH ’16), pp. 24:1–24:52, July 2016. DOI: 10.1145/2897826.2927348

[51] Shaohui Jiao, Youquan Liu, and Enhua Wu, “Time-varying simulation for image-based car-

pets,” in 2009 Fifth International Conference on Image and Graphics, pp. 571–576, Septem-

ber 2009. DOI: 10.1109/ICIG.2009.30

[52] Shaohui Jiao and Enhua Wu, “Simulation of weathering fur,” in Proceedings of the 8th

International Conference on Virtual Reality Continuum and its Applications in Industry

(VRCAI ’09), pp. 35–40, December 2009. DOI: 10.1145/1670252.1670262

[53] Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai, “Staggered projec-

tions for frictional contact in multibody systems,” ACM Transactions on Graphics, vol. 27,

no. 5, pp. 164:1–164:11, December 2008. DOI: 10.1145/1409060.1409117

[54] Micky Kelager, Sarah Niebe, and Kenny Erleben, “A triangle bending constraint model for

position-based dynamics,” in Proceedings of the Seventh Workshop in Virtual Reality Inter-

actions and Physical Simulation, pp. 31–37, November 2010. DOI: 10.2312/PE/vriphys/

vriphys10/031-037

[55] Bradley W. Kimmel, Gladimir V. G. Baranoski, T. F. Chen, Daniel Yim, and Erik Miranda,

“Spectral appearance changes induced by light exposure,” ACM Transactions on Graphics,

vol. 32, no. 1, pp. 10:1–10:13, February 2013. DOI: 10.1145/2421636.2421646

[56] Seiichi Koshizuka and Yoshiaki Oka, “Moving-particle semi-implicit method for fragmenta-

tion of incompressible fluid,” Nuclear Science and Engineering, vol. 123, no. 3, pp. 421–434,

July 1996. DOI: 10.13182/NSE96-A24205

[57] Julian Kratt, Marc Spicker, Alejandro Guayaquil, Marek Fiser, Sören Pirk, Oliver Deussen,

John C. Hart, and Bedrich Benes, “Woodification: User-controlled cambial growth model-

ing,” Computer Graphics Forum, vol. 34, no. 2, pp. 361–372, June 2015. DOI: 10.1111/cgf.

12566

[58] Jing Li, Tiantian Liu, Ladislav Kavan, and Baoquan Chen, “Interactive cutting and tearing

in projective dynamics with progressive cholesky updates,” ACM Transactions on Graphics,

vol. 40, no. 6, pp. 254:1–254:12, December 2021. DOI: 10.1145/3478513.3480505

[59] Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan, “Fast simulation

of mass-spring systems,” ACM Transactions on Graphics, vol. 32, no. 6, pp. 214:1–214:7,

107

https://doi.org/10.1007/s00371-011-0575-x
https://doi.org/10.1111/cgf.12009
https://doi.org/10.1145/2897826.2927348
https://doi.org/10.1109/ICIG.2009.30
https://doi.org/10.1145/1670252.1670262
https://doi.org/10.1145/1409060.1409117
https://doi.org/10.2312/PE/vriphys/vriphys10/031-037
https://doi.org/10.2312/PE/vriphys/vriphys10/031-037
https://doi.org/10.1145/2421636.2421646
https://doi.org/10.13182/NSE96-A24205
https://doi.org/10.1111/cgf.12566
https://doi.org/10.1111/cgf.12566
https://doi.org/10.1145/3478513.3480505

November 2013. DOI: 10.1145/2508363.2508406

[60] Jianye Lu, Athinodoros S. Georghiades, Andreas Glaser, Hongzhi Wu, Li-Yi Wei, Baining

Guo, Julie Dorsey, and Holly Rushmeier, “Context-aware textures,” ACM Transactions on

Graphics, vol. 26, no. 1, pp. 3:1–3:22, January 2007. DOI: 10.1145/1189762.1189765

[61] Miles Macklin and Matthias Müller, “Position based fluids,” ACM Transactions on Graphics,

vol. 32, no. 4, pp. 104:1–104:12, July 2013. DOI: 10.1145/2461912.2461984

[62] Stéphane Mérillou, Jean-Michel Dischler, and Djamchid Ghazanfarpour, “Corrosion: Simu-

lating and rendering,” in Proceedings of the Graphics Interface 2001 Conference, pp. 167–174,

June 2001. DOI: 10.20380/GI2001.20

[63] Stéphane Mérillou and Djamchid Ghazanfarpour, “A survey of aging and weathering phe-

nomena in computer graphics,” Computers & Graphics, vol. 32, no. 2, pp. 159–174, January

2008. DOI: 10.1016/j.cag.2008.01.003

[64] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr, “Discrete differential-

geometry operators for triangulated 2-manifolds,” in Visualization and Mathematics III, pp.

35–57, June 2003. DOI: 10.1007/978-3-662-05105-4_2

[65] Keisuke Mizutani, Yoshinori Dobashi, and Tsuyoshi Yamamoto, “Interactive control of

fire simulation based on computational fluid dynamics,” in Proceedings of the 11th

Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and

Applications—GRAPP, (VISIGRAPP 2016), pp. 242–247, January 2016. DOI: 10.5220/

0005746902400245

[66] Imanol Muñoz Pandiella, Carles Bosch, Nicolas Mérillou, Gustavo Patow, Stéphane Mérillou,

and Xavier Pueyo, “Urban weathering: Interactive rendering of polluted cities,” IEEE Trans-

actions on Visualization and Computer Graphics, vol. 24, no. 12, pp. 3239–3252, December

2018. DOI: 10.1109/TVCG.2018.2794526

[67] Lien Muguercia, Carles Bosch, and Gustavo Patow, “Fracture modeling in computer graph-

ics,” Computers & Graphics, vol. 45, pp. 86–100, December 2014. DOI: 10.1016/j.cag.

2014.08.006

[68] David E. Muller and Franco P. Preparata, “Finding the intersection of two convex poly-

hedra,” Theoretical Computer Science, vol. 7, no. 2, pp. 217–236, March 1978. DOI:

10.1016/0304-3975(78)90051-8

[69] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cutler, “Sta-

ble real-time deformations,” in Proceedings of the 2002 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation (SCA ’02), pp. 49–54, July 2002. DOI: 10.1145/545261.

545269

[70] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff, “Position based

dynamics,” Journal of Visual Communication and Image Representation, vol. 18, no. 2, pp.

109–118, April 2007. DOI: 10.1016/j.jvcir.2007.01.005

108

https://doi.org/10.1145/2508363.2508406
https://doi.org/10.1145/1189762.1189765
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.20380/GI2001.20
https://doi.org/10.1016/j.cag.2008.01.003
https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.5220/0005746902400245
https://doi.org/10.5220/0005746902400245
https://doi.org/10.1109/TVCG.2018.2794526
https://doi.org/10.1016/j.cag.2014.08.006
https://doi.org/10.1016/j.cag.2014.08.006
https://doi.org/10.1016/0304-3975(78)90051-8
https://doi.org/10.1145/545261.545269
https://doi.org/10.1145/545261.545269
https://doi.org/10.1016/j.jvcir.2007.01.005

[71] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson,

“Physically based deformable models in computer graphics,” Computer Graphics Forum,

vol. 25, no. 4, pp. 809–836, December 2006. DOI: 10.1111/j.1467-8659.2006.01000.x

[72] Jian Ni, Mei Yang, and Yingtao Jiang, “Virtual reality simulation of dust accumulation on the

surface of solar panel,” in 2017 International Conference on Computer Systems, Electronics

and Control (ICCSEC), pp. 425–430, December 2017. DOI: 10.1109/ICCSEC.2017.8446946

[73] Alan Norton, Greg Turk, Bob Bacon, John Gerth, and Paula Sweeney, “Animation of fracture

by physical modeling,” The Visual Computer, vol. 7, no. 4, pp. 210–219, July 1991. DOI:

10.1007/BF01900837

[74] Scott Nykl, Chad Mourning, and David M. Chelberg, “Interactive mesostructures with vol-

umetric collisions,” IEEE Transactions on Visualization and Computer Graphics, vol. 20,

no. 7, pp. 970–982, July 2014. DOI: 10.1109/TVCG.2014.2317700

[75] James F. O’Brien and Jessica K. Hodgins, “Graphical modeling and animation of brittle frac-

ture,” in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH ’99), pp. 137–146, August 1999. DOI: 10.1145/311535.311550

[76] Yuuji Ogasawara, Kazunobu Muraoka, and Norishige Chiba, “Visual simulation of moss

taking into account local environment on temperature and humidity,” The Journal of The

Society for Art and Science, vol. 2, pp. 31–39, January 2003. DOI: 10.3756/artsci.2.31

[77] Nao Ozawa and Issei Fujishiro, “A morphological approach to volume synthesis of weathered

stones,” Volume Graphics, pp. 367–378, March 2000. DOI: 10.1007/978-1-4471-0737-8_24

[78] Eric Paquette, Pierre Poulin, and George Drettakis, “Surface aging by impacts,” in Proceed-

ings of the Graphics Interface 2001 Conference, pp. 175–182, June 2001. DOI: 10.20380/

GI2001.21

[79] ——, “The simulation of paint cracking and peeling,” in Proceedings of the Graphics Interface

2002 Conference, pp. 59–68, May 2002. DOI: 10.20380/GI2002.08

[80] Ken Perlin, “Improving noise,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 681–682,

July 2002. DOI: 10.1145/566654.566636

[81] Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F. O’Brien, “Adaptive tearing

and cracking of thin sheets,” ACM Transactions on Graphics, vol. 33, no. 4, pp. 110:1–110:9,

July 2014. DOI: 10.1145/2601097.2601132

[82] Yuxing Qiu, Samuel Temple Reeve, Minchen Li, Yin Yang, Stuart Ryan Slattery, and Chen-

fanfu Jiang, “A sparse distributed gigascale resolution material point method,” ACM Trans-

actions on Graphics, vol. 42, no. 2, pp. 22:1–22:21, January 2023. DOI: 10.1145/3570160

[83] Cristian Romero, Dan Casas, Maurizio M. Chiaramonte, and Miguel A. Otaduy, “Contact-

centric deformation learning,” ACM Transactions on Graphics, vol. 41, no. 4, pp. 70:1–70:11,

July 2022. DOI: 10.1145/3528223.3530182

[84] Cristian Romero, Dan Casas, Jesús Pérez, and Miguel Otaduy, “Learning contact corrections

109

https://doi.org/10.1111/j.1467-8659.2006.01000.x
https://doi.org/10.1109/ICCSEC.2017.8446946
https://doi.org/10.1007/BF01900837
https://doi.org/10.1109/TVCG.2014.2317700
https://doi.org/10.1145/311535.311550
https://doi.org/10.3756/artsci.2.31
https://doi.org/10.1007/978-1-4471-0737-8_24
https://doi.org/10.20380/GI2001.21
https://doi.org/10.20380/GI2001.21
https://doi.org/10.20380/GI2002.08
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/2601097.2601132
https://doi.org/10.1145/3570160
https://doi.org/10.1145/3528223.3530182

for handle-based subspace dynamics,” ACM Transactions on Graphics, vol. 40, no. 4, pp.

131:1–131:12, July 2021. DOI: 10.1145/3450626.3459875

[85] Amir Rosenberger, Daniel Cohen-Or, and Dani Lischinski, “Layered shape synthesis: Auto-

matic generation of control maps for non-stationary textures,” ACM Transactions on Graph-

ics, vol. 28, no. 5, pp. 1–9, December 2009. DOI: 10.1145/1618452.1618453

[86] Andrew Selle, Michael Lentine, and Ronald Fedkiw, “A mass spring model for hair sim-

ulation,” ACM Transactions on Graphics, vol. 27, no. 3, pp. 1–11, August 2008. DOI:

10.1145/1360612.1360663

[87] Salman Shahidi, “Salt weathering of brick walls,” in Proceedings of the International Con-

ference on Computer Graphics Theory and Applications and International Conference on

Information Visualization Theory and Applications (VISIGRAPP 2012)—GRAPP, pp. 7–

15, February 2012. DOI: 10.5220/0003807600070015

[88] Stewart A. Silling, “Reformulation of elasticity theory for discontinuities and long-range

forces,” Journal of the Mechanics and Physics of Solids, vol. 48, no. 1, pp. 175–209, January

2000. DOI: 10.1016/S0022-5096(99)00029-0

[89] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle, “A

material point method for snow simulation,” ACM Transactions on Graphics, vol. 32, no. 4,

pp. 102:1–102:10, July 2013. DOI: 10.1145/2461912.2461948

[90] George Gerald Stoney, “The tension of metallic films deposited by electrolysis,” in Proceedings

of The Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 82, no. 553,

pp. 172–175, May 1909. DOI: 10.1098/rspa.1909.0021

[91] Yuchen Sun, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen, “A material point method

for nonlinearly magnetized materials,” ACM Transactions on Graphics, vol. 40, no. 6, pp.

205:1–205:13, December 2021. DOI: 10.1145/3478513.3480541

[92] Yuta Suzuki, Tomoaki Moriya, and Tokiichiro Takahashi, “A fast method of iron rust by cor-

rosion based on high resolution voxel models,” in Proceedings of International Workshop on

Advanced Image Technology 2019, pp. 117:1–117:6, March 2019. DOI: 10.1117/12.2521563

[93] Yuta Suzuki, Yuta Yamabe, Tomoaki Moriya, and Tokiichiro Takahashi, “A corrosion and

deformation simulation method of 3d iron objects based on voxel automaton,” in Proceedings

of International Workshop on Advanced Image Technology 2018, pp. 92:1–92:4, January 2018.

DOI: 10.1109/IWAIT.2018.8369703

[94] Ryoma Tanabe, Tomoaki Moriya, Yuki Morimoto, and Tokiichiro Takahashi, “A generation

method of rust aging texture considering rust spreading,” vol. 38, no. 16, pp. 95–98, January

2014. DOI: 10.11371/wiieej.13.05.0_94

[95] Unity Technologies, “Unity documents: Material parameters,” 2019, https://docs.unity3d.

com/2019.4/Documentation/Manual/StandardShaderMaterialParameters.html

[96] Demetri Terzopoulos and Kurt Fleischer, “Modeling inelastic deformation: Viscolelasticity,

110

https://doi.org/10.1145/3450626.3459875
https://doi.org/10.1145/1618452.1618453
https://doi.org/10.1145/1360612.1360663
https://doi.org/10.5220/0003807600070015
https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1145/2461912.2461948
https://doi.org/10.1098/rspa.1909.0021
https://doi.org/10.1145/3478513.3480541
https://doi.org/10.1117/12.2521563
https://doi.org/10.1109/IWAIT.2018.8369703
https://doi.org/10.11371/wiieej.13.05.0_94
https://docs.unity3d.com/2019.4/Documentation/Manual/StandardShaderMaterialParameters.html
https://docs.unity3d.com/2019.4/Documentation/Manual/StandardShaderMaterialParameters.html

plasticity, fracture,” SIGGRAPH Computer Graphics, vol. 22, no. 4, pp. 269–278, June 1988.

DOI: 10.1145/378456.378522

[97] M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, “Stiffness and deflection analysis

of complex structures,” Journal of the Aeronautical Sciences, vol. 23, no. 9, pp. 805–823,

September 1956. DOI: 10.2514/8.3664

[98] Gilles Valette, Stéphanie Prévost, and Laurent Lucas, “A generalized cracks simulation on

3D-meshes,” in Eurographics Workshop on Natural Phenomena, pp. 7–14, September 2006.

DOI: 10.2312/NPH/NPH06/007-014

[99] Adrien Verhulst, Jean-Marie Normand, Guillaume Moreau, and Gustavo Patow, “Deep

weathering effects,” Computers & Graphics, vol. 112, pp. 40–49, May 2023. DOI: 10.1016/

j.cag.2023.03.006

[100] Ondřej Št’ava, Bedřich Beneš, Matthew Brisbin, and Jaroslav Křivánek, “Interac-

tive terrain modeling using hydraulic erosion,” in Proceedings of the 2008 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation (SCA ’08), pp. 201–210, July

2008. DOI: 10.5555/1632592.1632622

[101] Jiaping Wang, Xin Tong, Stephen Lin, Minghao Pan, Chao Wang, Hujun Bao, Baining Guo,

and Heung-Yeung Shum, “Appearance manifolds for modeling time-variant appearance of

materials,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 754–761, July 2006. DOI:

10.1145/1141911.1141951

[102] Joshuah Wolper, Yunuo Chen, Minchen Li, Yu Fang, Ziyin Qu, Jiecong Lu, Meggie Cheng,

and Chenfanfu Jiang, “Anisompm: Animating anisotropic damage mechanics,” ACM Trans-

actions on Graphics, vol. 39, no. 4, pp. 37:1–37:16, August 2020. DOI: 10.1145/3386569.

3392428

[103] Tien-Tsin Wong, Wai-Yin Ng, and Pheng-Ann Heng, “A geometry dependent texture

generation framework for simulating surface imperfections,” in Proceedings of the Euro-

graphics Workshop on Rendering Techniques ’97, pp. 139–150, June 1997. DOI: 10.1007/

978-3-7091-6858-5_13

[104] Jun Wu, Rüdiger Westermann, and Christian Dick, “A survey of physically based simulation

of cuts in deformable bodies,” Computer Graphics Forum, vol. 34, no. 6, pp. 161–187, March

2015. DOI: 10.1111/cgf.12528

[105] Sheng Wu, Teng Miao, Boxiang Xiao, and Xinyu Guo, “A realistic modeling and real time

rendering method of fruit decay based on interactive design,” in 2017 International Con-

ference on Virtual Reality and Visualization (ICVRV), pp. 125–128, October 2017. DOI:

10.1109/ICVRV.2017.00033

[106] Su Xue, Julie Dorsey, and Holly Rushmeier, “Stone weathering in a photograph,” vol. 30,

no. 4, pp. 1189–1196, July 2011. DOI: 10.1111/j.1467-8659.2011.01977.x

[107] Su Xue, Jiaping Wang, Xin Tong, Qionghai Dai, and Baining Guo, “Image-based material

111

https://doi.org/10.1145/378456.378522
https://doi.org/10.2514/8.3664
https://doi.org/10.2312/NPH/NPH06/007-014
https://doi.org/10.1016/j.cag.2023.03.006
https://doi.org/10.1016/j.cag.2023.03.006
https://doi.org/10.5555/1632592.1632622
https://doi.org/10.1145/1141911.1141951
https://doi.org/10.1145/3386569.3392428
https://doi.org/10.1145/3386569.3392428
https://doi.org/10.1007/978-3-7091-6858-5_13
https://doi.org/10.1007/978-3-7091-6858-5_13
https://doi.org/10.1111/cgf.12528
https://doi.org/10.1109/ICVRV.2017.00033
https://doi.org/10.1111/j.1467-8659.2011.01977.x

weathering,” Computer Graphics Forum, vol. 27, pp. 617–626, April 2008. DOI: 10.1111/j.

1467-8659.2008.01159.x

[108] Xiao Yan, Yun-Tao Jiang, Chen-Feng Li, Ralph R. Martin, and Shi-Min Hu, “Multiphase

sph simulation for interactive fluids and solids,” ACM Transactions on Graphics, vol. 35,

no. 4, pp. 79:1–79:11, July 2016. DOI: 10.1145/2897824.2925897

112

https://doi.org/10.1111/j.1467-8659.2008.01159.x
https://doi.org/10.1111/j.1467-8659.2008.01159.x
https://doi.org/10.1145/2897824.2925897

	Introduction
	Visual Simulation
	Weathering of Coating Films
	Interactive CG
	Purpose of Thesis Work
	Contributions of Thesis Work
	Organization of Thesis

	Related Work
	Weathering Simulation
	Deformation Simulation
	Interactive Simulation
	Strengths of the Proposed Method

	Method Overview
	Real Coating Films
	Simulation Flow

	Data Structure
	Doubly Connected Edge List
	Attribute Parameters
	Control Parameters

	Bend Simulation
	Outline of Position-Based Deformation
	Length Constraint
	Angle Constraint
	Bend Constraint
	Position Update Algorithm

	Fracture Simulation
	Basic Model
	Initialization and Updating of Parameters
	Separation
	Tearing
	Stripping

	Stain Expression
	Chalking
	Rust Run-off
	Dust Accumulation
	Rendering Stains

	Interactive Control
	Pseudo Time Reversal
	GPU Parallelization
	Visualization of Degradation Level
	Simulation Control

	Results and Discussions
	Progress and Reversal of Weathering
	Weathering Control by External Input
	Reproduction of Real Peeled Films
	Temporal Complexity Analysis
	Application to Specific Scene
	Discussions

	Conclusion
	Publications
	References

