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Abstract

Estimating motion from image sensors is a fundamental problem in computer vision and
robotics. Event cameras are novel bio-inspired sensors that provide a signal suitable for es-
timating motion because their pixels naturally respond to intensity changes, which are pro-
duced by moving patterns on the image plane. This working principle of visual data acquisi-
tion in the form of asynchronous per-pixel intensity differences offers advantages such as low
latency, high dynamic range, and data efficiency, which contribute to overcoming challeng-
ing scenarios for conventional frame-based cameras. Motion estimation as a fitting problem
can be categorized according to the hypothesis of the scene, such as globally uniform flow (2
degrees of freedom (DOFs)), homographic-based flow (8 DOFs), or optical flow (the high-
est number of DOFs). However, state-of-the-art methods of event-based motion estimation
have several challenges: (7) typical objective functions have undesired global/local optima for
complex ego-motion and optical flow estimation scenarios, (77) event-based optical flow has
not considered the space-time nature of events, and (777) many existing optical flow meth-
ods are not biologically plausible. This thesis rethinks the nature of event data, improves the
well-posedness of various motion estimation problems, and proposes a new optical flow es-
timation approach. Furthermore, it demonstrates a novel application of event-based motion
estimation in imaging sciences.

The thesis is organized as follows: Chapter 1 gives an overview of the motion estimation
problems considered using an event camera, summarizing the contributions of this work.
Chapter 2 reviews the working principle of an event camera and existing methods in motion
estimation that use only events or a combination of events and frames (i.e., images). Chapter
3 focuses on low-DOF ego-motion estimation from events alone and proposes improvements
to the Contrast Maximization (CMax) framework. The goal of this chapter is to extend it
to higher, more complex motion estimation problems by mitigating event collapse without
trading off speed. Chapter 4 focuses on high-DOF optical flow estimation and proposes a
principled method to estimate optical flow by extending CMax. It also extends frame-based
optical flow to event-based, space-time optical flow to handle occlusions better. Chapter s
proposes a new optical flow estimation method, which achieves fast runtime upon sacrific-
ing accuracy. The proposed method stems from neuroscience and is biologically plausible.



Chapter 6 demonstrates an application to estimate the convection of heated air (motion of air
density), using schlieren imaging techniques. Here, a new method using events and frames
to estimate complex motion is proposed, by extending the linearized event generation model.
Chapter 7 summarizes the results of this work and discusses future work.

This thesis deepens the understanding of various motion estimation tasks using CMax,
rethinks the space-time nature of the data in event-based optical flow, highlights the speed-
accuracy trade-off in existing optical flow estimation methods, and pioneers another stack of
applications using event-based motion estimation in imaging sciences.
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An example of optimization-based optical flow estimation. Data from Fig. 8
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Introduction

WHAT IS MOTION AND HOW CAN WE ESTIMATE IT? This is a fundamental research ques-
tion in computer vision and robotics. Throughout the thesis, I tackle this problem using an
event camera, which is a novel bio-inspired vision sensor. This chapter starts by defining the
motion estimation problem using vision sensors, in Sec. 1.1. Secondly, Sec. 1.2 introduces
event cameras and the challenges in event-based motion estimation. Then, the contributions
and structure of this thesis are summarized in Sec. 1.3. Finally, after providing the list of
publications in Sec. 1.4, Sec. 1.5 concludes the chapter.

1.1 MoTIiOoN ESTIMATION

Estimating the motion of the world within short time intervals is a challenging task for com-
puters and robots. Animals perceive their motion and the motion of their surroundings in-
stantly and precisely to survive, communicate, or migrate. We humans also recognize mo-
tion, heavily relying on vision (i.e., eyes). Analogously, for decades researchers have developed
computer systems that recognize motion using visual sensors (i.c., cameras). The application
of vision-based motion estimation varies widely across fields, such as tracking, simultaneous-
localization and mapping (SLAM), controlling autonomous robots, scene prediction, video
synthesis, sports analysis, or augmented reality.

Motion estimation can be defined as a fitting problem. A fitting problem needs (7) in-



put data, (27) function(s), and (77) parameter(s) to fit. For example, for traditional CMOS-
or CCD-based imaging sensors, which are frame-based cameras, the input data is an image
(frame) or a sequence of frames (video). The fitting function comes from modeling the
world. Since we do not know the best functions that universally and efficiently represent
any motion in the world, we need to make some assumptions to define the fitting function,
which involves modeling (i.e., approximation) of reality. For example, if we model the world
as flat and stationary, the fitting function becomes a homography transformation due to the
ego-motion. If one wants to describe as complex motions as possible in an image plane, the
fitting function can be the per-pixel displacement in the image plane, called optical flow. The
motion hypothesis, in this case, is that each pixel displacement is linear; optical flow between
two consecutive frames is a function of the pixel location, but not of time. The choice of the
motion hypothesis affects the complexity of the problem, such as the number of parameters
(degrees of freedom: DOFs). It is also closely related to the downstream application (i.e., why
does one estimate motion?) and to the problem’s difficulty (i.e., how can the problem be
solved more easily while remaining useful?).

Finally, an estimation method seeks the best parameters for the input data and the func-
tion. One approach to finding them is by solving an optimization problem, where the ob-
jective function plays an important role. For example, the reprojection error that measures
distances between the points in two images can be used to estimate the homography transfor-
mation between two consecutive frames. For better convergence of the optimization solver, it
is important to design the objective function so that it has a good landscape (i.e., convexity)
and few local sub-optima, ideally, a single global optimum that reflects reality. The com-
bination of the motion hypothesis and objective function affects the well-posedness of the
problem, which determines the stability of the convergence, the dependency on the initial
conditions, and the proneness to overfitting. Another estimation method is learning-based,
such as deep neural networks (DNN). Although the training in the learning-based methods
also involves the optimization process, the parameters to be optimized are not the motion pa-
rameters themselves, but the weights and biases of the network that will be used to output the
motion parameters. This design difference makes them more data-driven, since the network
architecture partly encapsulates the design of the fitting function and the training process
automates finding the best function by exploiting the statistical correlation in the input data.

This thesis tackles the various motion estimation problems from an event camera (Fig. 1.1).
Specifically, the problem settings of interest are as follows: (7) the input data considered are
events ot events and a frame, (i7) the motion hypotheses considered are egomotion from 1 DOF
to & DOFs and optical flow, and (777) the estimation methods considered are optimization-
based and learning-based. The downstream applications, limitations due to the approxima-
tion of each motion hypothesis, accuracy, and computational complexity are partly discussed
in each chapter and will be revisited in the final discussion.
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Figure 1.1: Motion estimation from an event camera. In this example, input data is a stream of events from an event cam-
era (see also: Fig. 2.1), the motion model is optical flow (discussed in Chapters 4 and 5), and the estimation method is
optimization-based. The color denotes the flow direction and magnitude (see the color wheel). This is an example of the
results from Chapter 4.

Here, we formulate the problems as purely visual ones, which do not require input from
additional sources such as an inertial measurement unit (IMU) or a light detection and rang-
ing (LiDAR) sensor. Also, we limit the scope of the motion estimation problem such that it
takes input data only from nearby timestamps (short time intervals): motion estimation in
longer time intervals, such as tracking and global bundle adjustment (e.g., SLAM), are future
directions in which this work could be extended.

1.2 MoTIioN AND EVENT CAMERAS

LEvent cameras are novel bio-inspired vision sensors that respond to per-pixel intensity changes.
Assuming constant illumination, the intensity change is caused by the relative motion of
edges in image space, and therefore events naturally provide a signal suitable for motion esti-
mation. Compared with frame-based cameras, event cameras offer advantages, such as high
dynamic range (HDR), data and power efficiency, high temporal resolution (on the order
of us), and minimal motion blur. These advantages make them useful for accurate motion
estimation even in difficult real-world scenarios for frame-based cameras. Another aspect is
the analogy of its data-acquisition principles to the animal retina, which attracts researchers
not only from computer science but from robotics and neuroscience communities.
Contrast maximization (CMax)*** is an optimization-based framework that provides
state-of-the-art results on motion-related tasks, such as rotational motion estimation*’, fea-
ture flow estimation and tracking, 3D reconstruction, and optical flow estimation. The main



idea of CMax and similar event alignment frameworks is to find the motion and/or scene pa-
rameters to maximize an objective function (e.g., contrast) that measures the alignment of
corresponding events caused by the same scene edge. However, the contrast functions in the
CMax have undesired solutions (global optimum or local optima) where events accumulate
into too few pixels in some cases, such as optical flow and some low-DOF ego-motion estima-
tion. Prior works have largely ignored the issue or proposed workarounds without analyzing
the phenomenon in detail. Since CMax is at the heart of many state-of-the-art methods, it
is important to understand this phenomenon and propose new methods that extend CMax
for broader, complex motion hypotheses. We analyze this phenomenon, which we call event
collapse, show that it occurs according to the well-posedness of the problem, and propose
solutions that improve the well-posedness of motion estimation from events alone.

Another challenge in event-based motion estimation is its new data modality. The asyn-
chronous and sparse events from these cameras happen, by nature, in space-time, which is not
compatible with traditional computer vision algorithms designed for images. Optical flow is
no longer obtained by analyzing the intensities of images captured at two nearby timestamps,
but by analyzing the space-time stream of events. This leads us to rethink visual process-
ing and demands new algorithms that are suitable for event-based optical flow. Specifically,
we focus on rethinking optical flow in event-based vision such that the space-time nature of
events is taken into account. We propose space-time flow, which is a function of space-time
and is constant along the streamlines of the flow itself, thus handling occlusions better.

Furthermore, we explore a more biologically-plausible optical flow estimation method for
the event-based optical flow. Most existing optical flow estimation methods for events are
batch-based, taking input data as a packet of events on a fixed time interval (e.g., 10-100
ms) or with a fixed number (e.g., 30k—1M). While they generally achieve good estimation
accuracy, these packet-based methods require some waiting time before the processing (in-
ference) starts: they trade off the high-speed advantages of event data for accuracy. On the
other hand, event-by-event methods process every event incrementally as it occurs (without
waiting time), aiming to leverage the camera’s low-latency advantage. As a counterpart of
the other (batch-based) approaches, we propose an event-by-event sparse optical flow estima-
tion method, stemming insights from neuroscience, and demonstrate its capability for fast
execution (> 1o kHz rate) on standard CPUs.

Finally, we explore another stack of applications in imaging sciences that utilize event-based
motion estimation: the motion of air density. Schlieren imaging is an optical technique to
observe the flow of transparent media, such as air or water, without any particle seeding.
However, conventional frame-based schlieren techniques require both high spatial and tem-
poral resolution cameras, which impose bright illumination and expensive computation lim-
itations. Event cameras can overcome such limitations of frame-based imaging techniques
due to their bio-inspired sensing principles. We pioneer a novel technique for perceiving air



convection (i.e., motion) using events and frames, which leverages the advantages of event
cameras.

To summarize, in this work we focus on motion estimation problems within short time
intervals using a single event camera and hope to challenge the following research questions:

* How can we extend CMax for broader types of motion hypotheses by improving the
objective function?

* How can we take space-time nature of events into account to rethink event-based op-
tical flow?

* What is a more biologically-plausible solution for event-based optical flow?

* How can we utilize event-based motion estimation in imaging science, in order to
leverage its advantages?

On the other hand, events could be also triggered by illumination changes, such as flick-
ering lights and noise, which do not carry information of moving objects in the scene or
ego-motion. Although this is another interesting challenge, we limit the scope of this work
by excluding these non-constant illumination situations. Note that there are also other chal-
lenges that are out of the scope of this thesis, such as the integration with embedded hardware
and achieving power-efficient systems during motion estimation.

1.3 CONTRIBUTIONS

The contributions of this thesis are summarized as follows:

* We provide the first detailed analysis of event collapse that occurs at specific motion
estimation problems in the CMax due to undesired optima of the objective functions
(Chapter 3). The well-posedness of the motion hypothesis is discussed for low-DOF
motions (1 to 8 DOFs).

* We propose three regularizers to improve the well-posedness in the low-DOF motion
estimation problems (Chapter 3). The proposed regularizers are the only effective ap-
proach to date to mitigate event collapse in these settings, one of which even does not
sacrifice the runtime of the original CMax framework.

* We propose a multi-reference warp and focus loss to drastically improve optical flow
accuracy by discouraging event collapse (Chapter 4). By extending the CMax, the pro-
posed method achieves state-of-the-art accuracy in event-based optical flow.



Table 1.1: The problem settings in each chapter of the thesis.

Chapter Input data Estimation method Motion hypothesis

3 events optimization low DOF, ego-motion
4 events optimization and learning high DOF, optical flow
5 events optimization (event-by-event) high DOF, optical flow
6 (imaging application) events and a frame optimization high DOF, optical flow

* We propose a principled time-aware flow to comply with the space-time nature of
events, which handles occlusions better (Chapter 4). The space-time flow is formu-
lated as a transport problem via partial differential equations (PDEs).

* We show a multi-scale approach on the raw events to improve the convergence to the
solution and avoid getting trapped in local optima in event-based optical flow (Chap-

ter 4).

* We propose a biologically-plausible method to estimate optical flow based in an event-
by-event manner, leveraging knowledge from neuroscience. The proposed method
achieves the fastest runtime in optical flow benchmarks (Chapter s).

* We demonstrate a novel imaging application of event cameras with schlieren tech-
niques (Chapter 6). We develop a theory to connect events and heat convection in
air, then estimate the temporal change of air density using an event camera.

* We provide a new dataset with high-quality frames and events for event-based background-
oriented schlieren (Chapter 6).

A thorough evaluation on the de-facto standard benchmarks and datasets is conducted
in each problem setting. Also, the runtime and accuracy among the proposed methods are
compared for low-DOF motion estimation (Chapter 3) and optical-flow estimation (Chap-
ter 5). Finally, most parts of the thesis provide publicly available implementations (codes) for
the future of the event-vision community.

This thesis consists of the following chapters (Tab. 1.1):

* Chapter 1 defines the scope of the thesis and the research questions.

. Chapter 2 reviews and summarizes existing work on motion estimation using an event
camera.

* Chapter 3 focuses on low-DOF estimation problems using only events. Here, the mo-
tion hypotheses are limited to up to 8 DOFs due to the camera ego-motion. We analyze

6



event collapse in detail and propose a new method with new regularizers that effec-
tively and/or efhiciently improve the accuracy. The estimation methods are optimization-
based ones.

* Chapter 4 focuses on the high-DOF estimation problem (optical flow) using only
events. We propose a principled method to estimate optical flow by extending Con-
trast Maximization. The estimation methods are both optimization-based (CMax)

and learning-based (DNN).

¢ Chapter 5 also focuses on optical flow estimation using events, by proposing an in-
cremental approach. The proposed method performs event-by-event estimation, thus
achieving high throughput (runtime per event).

* Chapter 6 shows a novel application of event-based motion estimation: sensing air
convection. In contrast to the previous chapters, here the task is estimating the motion
of air density using schlieren techniques. The input data is the combination of events
and a frame. We estimate the spatio-temporal derivatives of air density via optical flow
estimation. The estimation method is based on optimization, where we extend the
linearized event generation model.

* Chapter 7 summarizes the work, discusses the limitations, and provides an outlook.

1.4 PUBLICATION LIST
The publication list of the author and the corresponding chapters in the thesis are as follows:

* Shiba, S., Aoki, Y., & Gallego, G. (2022). Event Collapse in Contrast Maximization
Frameworks. Sensors, 22(14):5190, doi: 10.3390/s22145190 (Chapter 3)

* Shiba, S., Aoki, Y., & Gallego, G. (2023). A Fast Geometric Regularizer to Mitigate
Event Collapse in the Contrast Maximization Framework. Advanced Intelligent Sys-
tems, 2200251, doi: 10.1002/aisy.202200251 (Chapter 3)

* Shiba, S., Aoki, Y., & Gallego, G. (2022). Secrets of Event-based Optical Flow. In Eur.
Conf. Comput. Vis. (ECCV), Tel Aviv, Israel, doi: 10.1007/978-3-031-19797-0_36
(Chapter 4)

o ZIEARH, H AR, & Gallego, Guillermo. (2022). 1 XY M A A T & H\W\W
FATT 4N 70 —HEBELIEMN?. In Y a VEMOERNHY —
2 ay 7 (F VT4 ). (Chapter 4)



* Shiba, S., Klose, Y., Aoki, Y., & Gallego, G. (#nder review). Secrets of Event-based
Optical Flow, Depth and Ego-motion Estimation by Contrast Maximization. (Chap-

ter 4)

* Shiba, S., Aoki, Y., & Gallego, G. (2023). Fast Event-based Optical Flow Estimation
by Triplet Matching. JEEE Signal Processing Letters, vol. 29, pp. 2712-2716, 2022,
doi: 10.1109/LSP.2023.3234800. (Chapter s)

* Shiba, S.,Hamann, F., Aoki, Y., & Gallego, G. (#nder review). Event-based Background-
Oriented Schlieren. (Chapter 6)
I (SS) was the sole first author and main contributor to developing the idea, imple-
mentation, and paper writing. FH and I equally contributed to data acquisition and

experiments.

1.3 SUMMARY

In this chapter, we define the scope of the thesis as motion estimation within short time in-
tervals using a single event camera. The input data in this work are (7) events only (Chap-
ters 3 to §) or (77) events and a frame (Chapter 6). The motion hypothesis of interest are (z)
low-DOF ego-motion (up to 8 DOFs) (Chapter 3) and (z7) high-DOF optical flow (Chap-
ters 4 to 6). To solve motion estimation problems, optimization-based (Chapters 3, 4 and 6),
learning-based methods (Chapter 4), and an incremental method (Chapter s) are used. As
an application of the optical flow estimation, we demonstrate the capability of sensing air
convection (Chapter 6).

We hope this thesis expands the understanding of event data and deepens event-based mo-
tion estimation by tackling its new data modality and challenges. We also hope this work
fosters future research and applications for event-based motion estimation.



Review

This chapter provides a comprehensive review of event-based motion estimation. First, I
summarize the principles of event cameras and their applications in Sec. 2.1. Next, Sec. 2.2 re-
views various methods to estimate ego-motion (pose), including the Contrast Maximization
framework. Section 2.3 covers optical flow estimation methods. Then, prior work utilizing
both events and frames is reviewed in Sec. 2.4. Finally, Sec. 2.5 concludes the chapter.

2.1 EVENT CAMERAS

Event cameras, or event-based cameras, are novel bio-inspired vision sensors that have the
potential to overcome challenging scenarios for traditional frame-based cameras®®'*+'>151,
They respond to intensity changes in the image plane asynchronously, achieving fast and efhi-
cient data acquisition (Fig. 2.1). Each pixel of the camera triggers an “event” ¢; = (X, , pr)
as soon as its logarithmic intensity L changes from one at the previous event by a certain
threshold C > 0:

L(X/e, l‘k) — L(Xk, t, — At/e) = Dk C, (Z.I)

wherex;, = (x, y/e)T is the pixel location, # is the timestamp, p, € {+1, —1} is the sign of the
intensity change, and #; — A#; is the time of the previous event at the same pixel x;. Compared
with conventional frame-based cameras, which synchronously record absolute intensities at
afixed frame rate, event cameras achieve higher temporal resolution and lower latency (in the
order of microseconds), higher dynamic range (about 140 dB), and more efficiency in data
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(a) Event camera (b) Frame Camera

Figure 2.1: Comparison between the outputs of an event camera and a frame-based camera. In the scene, a person is playing
football. In this scenario the event camera is stationary, thus intensity changes happen only at the pixels of the moving
parts (around the football and the human body). The other regions of the image plane (e.g., the door and the wall) are static
with respect to the camera, and thus do not trigger events. An event camera (a) outputs asynchronous stream data at only
pixels with changes. A frame-based camera (b) outputs a sequence of images at all pixels (synchronously), regardless of
the scene dynamics. Here, the camera used is the DAVIS346 158 (346 X 260 px).

and power consumption.

Due to these advantages, the applications of event cameras are widely spread from basic
computer vision tasks to applications such as robotics and imaging sciences. Classical com-
puter vision tasks include recognition and classification*>%%""% | detection $29*°*, feature

trackingzz,86,149,176 11,114,10,16,6,153,2

34, optical flow estimation , image (absolute intensity) re-

construction7®®13%118173 - and superresolution 90,101,168,37 Figure 2.2 shows such an image
reconstruction, formulated a linear inverse problem given events and optical flow'7>. They
are also used in three-dimensional computer vision, such as depth estimation (3D recon-
struction) "*#-18°7¢ | visual odometry*7"%%, and Simultaneous Localization and Mapping
(SLAM)79:81129-135 Moreover, there are relatively modern computer vision tasks that utilize
the high temporal resolution of event cameras, such as image deblurring®*7® and frame inter-
polation“‘"é‘*. Recently they have been used in broad applications such as collision avoid-
ance*"?, structured light 3D scanning'*®, particle image velocimetry?'®7, eye tracking?,
surveillance and monitoring***, and autonomous drones?"**3*. They are also applied to
tasks that require high dynamic range, such as star tracking* and HDR image reconstruc-

100,181,130
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Figure 2.2: Example of intensity reconstruction. If optical flow is given, the intensity reconstruction can be formulated as a
linear inverse problem. Data from Fig. 1 of }”3.

2.2 MoTioN EsTIMATION FROM EVENTS: EGO-MOTION

Since events are caused by the relative motion of edges in image space, motion estimation
from event data is an extensive research area in event-based vision. The motion estimation
problems are divided into two categories upon an important assumption: if only the camera
is moving (and the scene is static), or there might be other moving objects in the scene. This
section (Sec. 2.2) describes the first case (ego-motion estimation), and the following section
(Sec. 2.3) covers the second case (optical flow estimation). With the static scene assumption,
the “ideal” solution of the motion estimation has 6 + N, DOFs (N, denotes the number
of pixels), where the estimation parameters are the pose change (i.e., velocity) and the scene
depth. Due to its complexity, many prior works have posed extra assumptions on the scene
or have limited the scope of the problem settings for fewer DOFs as approximations.

The ego-motion estimation problems can be further categorized according to their com-
plexity (degrees of freedom): feature flow (2 DOFs), rotational motion (3 DOFs), planar
motion (3 DOFs), similarity transformation (4 DOFs), Affine transformation (6 DOFs),
and homography transformation (8 DOFs). For example, the 3-DOF camera rotational mo-
tion estimation assumes constant angular velocity (¢ = w, 3 DOFs) during short time inter-
vals2@10413247:93 Kim et al.” propose to estimate the rotational motion of the camera using
Kalman filters, by simultaneously estimating the mosaic image (panorama intensity image).
This is extended to estimate the 6-DOF camera pose and the scene depth in®”.

Contrast maximization (CMax) and related event-alignment methods have been used to
estimate the motion of various complexity with the current state-of-the-art accuracy >,
This optimization-based method iteratively performs transforming (warping) events and com-
puting an objective function from events (Fig. 2.3). The goal is to find the warping (transfor-
mation) parameters ¢ that achieve motion compensation (i.e., alignment of events triggered
at different times and pixels), hence revealing the edge structure that caused the events.

Figure 2.4 shows examples for the 2-DOF feature flow (6 = v. e.g.,*) and 3-DOF angular

II
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Figure 2.3: An overview of the Contrast Maximization framework

Event
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Figure 2.4: Examples of Contrast Maximization for 2-DOF feature flow and 3-DOF rotational motions. After convergence,
CMax provides the motion parameters and the sharp image of warped events (IWE).

velocity (0 = w. e.g.,*”*°) estimation using CMax. Standard optimization algorithms (gradi-
ent ascent, sampling, etc.) can be used to maximize the event-alignment objective functions.
Upon convergence, the method provides the best transformation parameters and the trans-
formed events, i.c., a motion-compensated image of warped events (IWE). Several objective
functions for measuring event alignment have been proposed to measure the goodness of fit
between the events and the model*>'5#, which are interpreted as the visual contrast (sharp-
ness) of the IWE.

Applying CMax to more complex (higher DOFs) motions is yet to be explored and in-

vestigated. Peng et al.*»™*" analyze the convexity of some contrast functions (from'5*) and

I2
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Figure 2.5: Dispersion minimization framework. Data from Fig. 1 of 133,

propose a branch-and-bound strategy to limit the search space of the homography transfor-
mation (8 DOFs) for a better convergence, although it needs to provide the initial search
space. Stoffregen et al.>* propose the expectation-maximization algorithm to estimate mul-
tiple clusters with 2 DOFs (i.e., motion segmentation) using CMax, however, the convergence
heavily depends on the initial conditions (especially for the maximization step). As the com-
plexity (e.g., DOF of the motion parameter ¢) increases, the problem becomes more difficult
to solve (i.e., converge), which tends to need limiting the search space, relying on good initial
conditions, or choosing the optimization algorithm carefully.

Similarly to CMax, Nunes and Demiris**»'"> formulate the event alignment problem via
dispersion minimization (DMin) (Fig. 2.5). The dispersion (e.g., entropy) measures pairwise
distances between feature points (e.g., warped events, which can be either in two- or three-
dimensional coordinates). By doing so, they demonstrate the 6-DOF estimation capability if
the GT depth information is externally provided. Notice that the essential difference between
DMin and CMax lies in the calculation of the event alignment: DMin requires the pairwise
distance calculation that takes O(/N?) without any approximation (XN, denotes the number
of events), while CMax successfully reduces the complexity to O(N, + N,) by using IWEs as
an intermediate representation to measure the alignment.

In contrast to the optimization-based methods, learning-based ego-motion estimation from
eventsis relatively unexplored. Gehrigetal.>* propose a spiking neural network (SNN) model
that estimates the angular velocity (i.e., 3 DOFs) in a supervised manner (Fig. 2.6). However,
it requires precise ground truth signals, which they address by using simulation datasets. An-
other supervised learning for the 6-DOF ego-motion is proposed in***
Long-Short Term Memory (LSTM) network.

, where they apply a
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Figure 2.6: Supervised learning of angular velocity using Spiking Neural Network. Data from Fig. 1 of °*.

Frame Event Estimation GT

Figure 2.7: Unsupervised learning of depth and ego-motion. Data from Fig. 6 of 1%,

Learning-based approaches have also tackled the “ideal” case of the problem, which is the
simultaneous estimation of the pose with the scene depth. Ye et al.”7° and Zhu et al. "* pro-
pose a joint estimation based on unsupervised learning. They both convert event stream into
image- or tensor-representation as the input to the DNN. Then, Ye et al.'7° use the photo-
metric loss by warping the input image representation with the estimated ego-motion and
depth. Zhu et al.”® propose the average timestamp loss (the sum of squares of the average
timestamp at each pixel) as a proxy function for the contrast functions in CMax (Fig. 2.7).
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Figure 2.8: An example of optimization-based optical flow estimation. Data from Fig. 10 of *°.

However, they report the overfit of the network when the original contrast functions are
used, which is one of the problems that we challenge in this work (Chapter 4).

2.3 MoTIioN EsTiMaTION FROM EVENTS: OrTICAL FLOW ESTIMATION

Optical flow is pixel displacements between two images within a short time interval such that
the displacements do not change during the interval (i.e., linear). It has generally higher DOFs
(e.g., 2I\,) than that of the pose. Indeed, the previous section can be seen as the particulariza-
tion of optical flow estimation when the scene is static. Although it can represent complex
motion even with independently moving objects, event-based optical flow is a challenging
task due to its high complexity.

Prior optimization-based work has proposed adaptations of frame-based approaches (block
matching96, Lucas-Kanade '), filter-banks*'+¢, spatio-temporal plane-fitting*®’, and time
surface matching'®. For example, Benosman et al.”® formulate the flow as the inverse of
spatial derivatives of co-occurring event timestamps (Fig. 2.8). Brosch et al.’® propose the
spatio-temporal filter-bank approach that is inspired by the motion detection mechanism
from biology (Fig. 2.9). Notice that these methods estimate sparse optical flow (optical flow
is estimated where at least one event exists). Bardow et al.® propose a simultaneous estima-
tion of dense optical flow (flow over the entire image plane) and image intensity (Fig. 2.10).
These relatively early works have been tested on rather simple scenes, as opposed to the more
complex real-world scenes and publicly-available benchmarks.

Recently, there have been more learning-based approaches 7918256348765 largely inspired
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Figure 2.9: An example of optimization-based optical flow estimation. Data from Fig. 8 of 1.

Optical flow

Intensity
reconstruction

Scene

Figure 2.10: An example of optimization-based optical flow estimation.Optical flow is simultaneously solved with image re-
construction. Data from Fig. 6 of ®.

by frame-based optical flow architectures 134160 Non-spiking—based approaches need to ad-
ditionally adapt the input signal, converting the events into a tensor representation (event
frames, time surfaces, voxel grids, etc.5>™®). These learning-based methods can be classified
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Figure 2.11: An example of supervised optical flow estimation. Data from Fig. 4 of Gehrig et al.>. Supervised learning relies
on the ground truth (GT) flow. Notice the sparsity of the GT flow, which we will discuss in Chapter 4.

into supervised, semi-supervised, or unsupervised. In terms of architecture, the three most
common ones are U-Net'7?, FireNet **© and RAFT5°.

Supervised methods train DNNs in simulation and/or real-data 55>, For example, Gehrig
etal.s® adapted the RAFT architecture'®, which is one of the state-of-the-art architectures
in frame-based optical flow estimation (Fig. 2.11). The supervised learning requires accurate
ground truth flow that matches the space-time resolution of event cameras. While this is no
problem in simulation, it incurs a performance gap when trained models are used to predict
flow on real data™s5. Besides, real-world datasets have issues in providing accurate ground
truth flow. Although it will not be visible during the evaluation with the ground truth,
supervised-learning methods might not be able to learn pixels without GT, such as indepen-
dently moving objects and out of LiDAR’s field of view (see the last column of Fig. 2.11).
This also indicates that we need proxy metrics for the flow evaluation that do not depend on
the GT, as we discuss in Chapter 4.

Semi-supervised methods use the grayscale images from a co-located camera (e.g., DAVIS %)
as a supervisory signal: images are warped using the flow predicted by the DNN and their
photometric consistency is used as loss function7*¥3+. While such a supervisory signal
is easier to obtain than real-world ground truth flow, it may sufter from the limitations of
frame-based cameras (e.g., low dynamic range and motion blur), consequently affecting the
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Figure 2.12: An example of self-supervised optical flow estimation. Data from Fig. 3 and Fig. 4 of Zhu et al. 178,

trained DNNSs. These approaches were pioneered by EV-FlowNet'7?, which is based on the
U-Net architecture (Fig. 2.12).

Unsupervised methods rely solely on event data. Their loss function consists of an event
alignment error using the flow predicted by the DNN #118¢517° Zhy et al. '® extend EV-
FlowNet'7? to the unsupervised setting using the average timestamp loss function. This ap-
proach has been used and improved in'"*¢5. Tian et al."®" use the same loss function with
a transformer-based network architecture. Paredes-Vallés et al.'*® also propose FireFlowNet,
a lightweight DNN producing competitive results, and jointly solve the image reconstruc-
tion and flow estimation (Fig. 2.13). Although these work produce competitive results with
semi-supervised methods, the loss functions that have been used (average timestamp "*° and
normalized average timestamp ®*) are unstable and difficult to interpret as the contrast func-
tions.

2.4 MoTION ESTIMATION FROM EVENTS AND FRAMES

Thanks to cameras that output both events and frames with co-located pixels (e.g., DAVIS *5%),
it has been possible to utilize the information of both data modalities to estimate motion
from a single camera. In the literature, the following problem settings have been tackled:
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Figure 2.13: An example of unsupervised optical flow estimation. Data from Fig. 1 of Paredes-Vallés et al. 18

() feature-based tracking's*%95354, (i7) single-object—based tracking®'7"¢¢, and (77) rigid-

body structure from motion'77*. The resulting problems differ not only in increasing com-
plexity butalso in purpose: for example, object-based tracking is concerned with determining
bounding boxes, while feature-based tracking aims at a sub-pixel precision marking of key-
points to enable SLAM applications.

Gehrig et al. propose Event-based Lucas-Kanade tracking that utilizes the linearized event
generation model (LEGM) 55+, It extracts features from frames®>S and subsequently tracks
them asynchronously using events (Fig. 2.14). The LEGM states that, the brightness incre-
ment (the per-pixel sum of the event polarities) is caused by the gradients of frames moving
with image velocity. It has been extended toward more complex (rigid-body) motion in'77*.
However, estimating further complex motion (e.g., optical flow) using the LEGM is yet to
be explored, which we challenge in Chapter 6.

2.5 CONCLUSION

In this chapter, we review the various motion estimation problems using an event camera.
Ego-motion estimation problems assume the static scene, where the “ideal” parameteriza-
tion becomes 6 + N,. Simplified problem settings of the low-DOF motion estimation, such
as feature flow and rotational motion, can be estimated using the event alignment methods
such as the Contrast Maximization framework (Sec. 2.2). Optical flow estimation can han-
dle independently moving objects in the scene with larger complexity. Various optical flow
estimation methods have been proposed, from optimization-based ones for the sparse flow
to supervised-learning ones for the dense flow (Sec. 2.3). Finally, motion estimation methods
combining events and frames have been reviewed (Sec. 2.4).
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Low-DoF Motion Estimation

3.1 INTRODUCTION

Event cameras®>'5**' offer potential advantages over standard cameras to tackle difficult sce-
narios (high speed, high dynamic range, low power). However, new algorithms are needed
to deal with the unconventional type of data they produce (per-pixel asynchronous bright-
ness changes, called events) and unlock their advantages*’. Contrast maximization (CMax)
is an event processing framework that provides state-of-the-art results on several tasks, such
as rotational motion estimation**, feature flow estimation and tracking 176,177,140, 154,29 ego-
motion estimation*®+>'*' 3D reconstruction 46,128 optical flow estimation '8%:120:65:14
tion segmentation®®'5>'7+17:97  guided ﬁltering36, and image reconstruction'”?. The main
idea of CMax and similar event alignment frameworks "> is to find the motion and/or scene
parameters that align corresponding events (i.e., events that are triggered by the same scene
edge), thus achieving motion compensation. The framework simultaneously estimates the
motion parameters and the correspondences between events (data association). However, in
some cases CMax optimization converges to an undesired solution where events accumulate
into too few pixels, a phenomenon called event collapse (Fig. 3.1). Since CMax s at the heart of

, Mo-

many state-of-the-art event-based motion estimation methods, it is important to understand
the above limitation and propose ways to overcome it. Prior works have largely ignored the
issue or proposed workarounds without analyzing the phenomenon in detail. A more thor-
ough discussion of the phenomenon is overdue, which is the goal of this chapter.
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Figure 3.1: Event Collapse: Left: Landscape of the image variance loss as a function of the warp parameter /. Right: The
IWEs at the different hz marked in the landspace: A. Original events (identity warp), accumulated over a small Az (polarity
is not used). C. Image of warped events (IWE) showing event collapse due to maximization of the objective function. B.
Desired IWE solution using our proposed regularizer: sharper than (A) while avoiding event collapse (C).

Contrarily to the expectation that event collapse occurs when the event transformation

becomes sufficiently complex‘8°’

'3, we show that it may occur even in the simplest case of
one degree-of-freedom (DOF) motion. Drawing inspiration from differential geometry and
electrostatics we propose principled metrics to quantify event collapse and discourage it by
incorporating penalty terms in the event alignment objective function. While event collapse
depends on many factors, our strategy aims at modifying the objective’s landscape to improve
the well-posedness of the problem and be able to use well-known, standard optimization
algorithms.

In summary, the contributions of this chapter are:

1. A study of the event collapse phenomenon in regards to event warping and objective
functions (Secs. 3.3.1 and 3.6).

2. Three principled metrics of event collapse (one based on flow divergence and two
based on area-element deformations) and their use as regularizers to mitigate the above-
mentioned phenomenon (Secs. 3.2.3, 3.4 and 3.5).

3. Experiments on publicly available datasets that demonstrate, in comparison with other
strategies, the effectiveness of the proposed regularizers (Sec. 3.6).

To the best of our knowledge, this is the first work that focuses on the paramount phe-
nomenon of event collapse, which may arise in state-of-the-art event-alignment methods.
Our experiments show that the proposed metrics mitigate event collapse while they do not
harm well-posed warps or trade-off the algorithm runtime.
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Figure 3.2: Proposed modification of the Contrast Maximization (CMax) framework in#**° to also account for the degree
of regularity (collapsing behavior) of the warp. Events are colored in red/blue according to their polarity.

3.2 CONTRAST MAXIMIZATION

In this section, first, we revise how event cameras work (Sec. 3.2.1) and the CMax framework
(Sec. 3.2.2). Then, Sec. 3.3.1 builds our intuition on event collapse by analyzing a simple
example. Section 3.4 presents our proposed metrics for event collapse, based on 1-DOF and
2-DOF warps. Section 3.5 specifies them for higher DOFs, and Sec. 3.2.3 presents the regu-
larized objective function.

3.2.1 How EVENT CAMERAS WORK

Event cameras, such as the Dynamic Vision Sensor (DVS)?"5¢*', are bio-inspired sensors
that capture pixel-wise zntensity changes, called events, instead of intensity images. An event
e = (g, 2, pr) is triggered as soon as the logarithmic intensity L at a pixel exceeds a contrast
sensitivity C > 0,

L(X/e, Z/e) — L(X/e, t, — At/e) :P/e C, (3.1)

where x; = (x, yk)T, t (with ps resolution) and polarity p € {41, —1} are the spatio-
temporal coordinates and sign of the intensity change, respectively, and #, — A# is the time
of the previous event at the same pixel x;. Hence, each pixel has its own sampling rate, which
depends on the visual input.

3.2.2 MATHEMATICAL DESCRIPTION OF THE CMAX FRAMEWORK

The CMax framework* transforms events in a set £ = {¢; },, geometrically

. v ~
e = (Xp, oy ) flk = (X/,wtref?p/e)? (3.2)
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according to a motion model W, producing a set of warped events £’ = {¢,}2*,. The warp
X, = W(xy,;0) transports each event along the point trajectory that passes through it
(Fig. 3.2, left), until #.¢ is reached. The point trajectories are parametrized by ¢, which con-
tains the motion and/or scene unknowns. Then, an objective function*>'5* measures the
alignment of the warped events £’. Many objective functions are given in terms of the count
of events along the point trajectories, which is called the image of warped events (IWE):

166 =3 b d(x — x(6)). (3.3)

Each IWE pixel x sums the values of the warped events x), that fall within it: 4, = py if polarity
is used or &, = 1if polarity is not used. The Dirac delta d'is in practice replaced by a smooth
approximation''®, such as a Gaussian, 3(x — x) ~ N (x; ¢, ¢*) with ¢ = 1 pixel. A popular
objective function G(9) is the visual contrast of the INE (3.3), given by the variance

110

G(9) = Var(](x; 6)) = ﬁ /Q([(X; 9) _1“1>2dx7 (3.4)

with mean ¢, = Ilﬁ\ J 1(x; 6)dx and image domain Q. Hence, the alignment of the trans-
formed events £’ (i.e., the candidate “corresponding events”, triggered by the same scene
edge) is measured by the strength of the edges of the IWE. Finally, an optimization algorithm
iterates the above steps until the best parameters are found:

g = arg max G(9). (3.5)

3.2.3 AUGMENTED OBJECTIVE FUNCTION

We propose to augment previous objective functions (e.g., (3.5)) with penalties obtained
from the above developed metrics for event collapse:

g = argmﬁin](@) = argmﬁin (—G(9) + AR(9)) . (3.6)

We may interpret G(6) (e.g., contrast or focus score*S) as the data fidelity term and R() as
the regularizer, or, in Bayesian terms, the likelihood and the prior, respectively.
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3.3 EVENT COLLAPSE

3.3.1 SIMPLEST ExXAMPLE OF EVENT CorLAaPSE: 1 DOF

To analyze event collapse in the simplest case, let us consider an approximation to a transla-
tional motion of the camera along its optical axis Z (1-DOF warp). In theory, translational
motions require also the knowledge of the scene depth. Here, inspired by the 4-DOF in-
plane warp in®® that approximates a 6-DOF camera motion, we consider a simplified warp
that does not require knowledge of the scene depth. In terms of data, let us consider events
from one of the driving sequences of the standard MVSEC dataset'”® (Fig. 3.1).
For further simplicity, let us normalize the timestamps of £ to the unitintervalz € [#, 2y ] —

¢ € [0, 1], and assume a coordinate frame at the center of the image plane, then the warp W
is given by

x, = (1 —#b,) x, (3.7)

where § = h,. Hence, events are transformed along the radial direction from the image
center, acting as a virtual focus of expansion (FOE) (cf. the true FOE is given by the data).
Letting the scaling factor in (3.7) be s; = 1 — #h,, we observe the following: (7) s; cannot
be negative since it would imply that at least one event has flipped the side on which it lies
with respect to the image center. (z7) if s, > 1 the warped event gets away from the image
center (“expansion” or “zoom-in”). (i77) if s; € [0,1) the warped event gets closer to the
image center (“contraction” or “zoom-out”). The equivalent conditions in terms of 4, are:
() b, < 1,(27) b, < 01is an expansion, (772) 0 < b, < 1isa contraction.

Intuitively, event collapse occurs if the contraction is large (0 < s, < 1) (see Fig. 3.1C,
Fig. 3.3a). This phenomenon is not specific of the image variance; other objective functions
lead to the same result. As we see, the objective function has a local maximum at the desired
motion parameters (Fig. 3.1B). The optimization over the entire parameter space converges
to a global optimum that explains the event collapse.

3.3.2 DiIscussioN

The above example shows that event collapse is enabled (or disabled) by the type of warp. If
the warp does not enable event collapse (contraction or accumulation of flow vectors can-
not happen due to the geometric properties of the warp), as in the case of feature flow (2
DOFs) 753 (Fig. 3.3b) or rotational motion flow (3 DOFs)+%* (Fig. 3.3¢), then the opti-
mization problem is well posed and multiple objective functions can be designed to achieve
event alignment*>'5*. However, the disadvantage is that the type of warps that satisfy this
condition may not be rich enough to describe complex scene motions.

On the other hand, if the warp allows for event collapse, more complex scenarios can be
described by such a broader class of motion hypotheses, but the optimization framework
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Figure 3.3: Point trajectories (streamlines) defined on x — y — ¢ image space by various warps.

Figure 3.4: Divergence of different vector fields, V - v = O,v, + 5yv},. From left to right: contraction (“sink”, leading to
event collapse), expansion (“source”), and incompressible fields. Image adapted from khanacademy.org

designed for non-event-collapsing scenarios (where the local maximum is assumed to be the
global maximum) may not hold anymore. Optimizing the objective function may lead to
an undesired solution with a larger value than the desired one. This depends on multiple
elements: the landscape of the objective function (which depends on the data, the warp
parametrization and the shape of the objective function), and the initialization and search
strategy of the optimization algorithm used to explore such a landscape. The challenge in
this situation is to overcome the issue of multiple local maxima and make the problem better
posed. Our approach consists of characterizing event collapse via novel metrics and including
them in the objective function as weak constraints (penalties) to yield a better landscape.

3.4 PROPOSED REGULARIZERS

3.4.1 DIVERGENCE OF THE EVENT TRANSFORMATION FLOW

Inspired by physics, we may think of the flow vectors given by the event transformation
& — &' asan electrostatic field, whose sources and sinks correspond to the location of electric
charges (Fig. 3.4). Sources and sinks are mathematically described by the divergence opera-
tor V-. Therefore, the divergence of the flow field is a natural choice to characterize event

26



collapse.
The warp W is defined over the space-time coordinates of the events, hence its time deriva-
tive defines a flow field over space-time:

. OW(x,10)

d ot

. (3.8)
For the warp in (3.7), we obtain f = —h,x, which gives V - £ = —h,V - x = =25,.

Hence, (3.7) defines a constant divergence flow, and imposing a penalty on the degree of

concentration of the flow field accounts to directly penalizing the value of the parameter 5,.
Computing the divergence at each event gives the set

D<€> (9) = {V : fk 2];17 (3'9)

from which we can compute statistical scores (mean, median, min, etc.):

Rp(E,0) = % Z V. (mean) (3.10)

¢ k=1

To have a 2D visual representation (“feature map”) of collapse, we build an image (like the
IWE) by taking some statistic of the values V - f, that warp to each pixel, such as the “average
divergence per pixel”:

LSV R dx— X)), (3.11)

e\ X 3

where N,(x) = >, d(x — x},) is the number of warped events at pixel x (the IWE). Then we
aggregate further into a score, such as the mean:

Rprwe(€,6) = ﬁ/ DIWE(x; &, §)dx. (3.12)
Q

In practice we focus on the collapsing part by computing a trimmed mean: the mean of the
DIWE pixels smaller than a margin « (—0.2 in the experiments). Such a margin does not
penalize small, admissible deformations.

3.4.2 AREA-BASED DEFORMATION OF THE EVENT TRANSFORMATION

Besides vector calculus, we may also use tools from difterential geometry to characterize event
collapse. Building on, the point trajectories define the streamlines of the transformation
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Figure 3.5: Area deformation of various warps. An area of dA pix2 at (xk, t/e) and is warped to ¢, giving an area dA’ =
| det(Jg)|dA pix* at (X}, tier), where Jp = J(ex) = J(xi,%;6) (see (3.13)). From left to right, increasing area
amplification factor | det(J)| € [0, c0).

flow, and we may measure how they concentrate or disperse based on how the area element
deforms along them. That is, we consider a small area element d4 = dxdy attached to each
point along the trajectory and measure how much it deforms when transported to the refer-
ence time: d4' = | det(J)| dA4, with Jacobian

oW (x,;0)

J(x,26) = 5
X

(3.13)
(see Fig. 3.5). The determinant of the Jacobian is the amplification factor: | det(J)| > 1if
the area expands, and | det(J)| < 1if the area shrinks.

For the warp in (3.7), we have the Jacobian J = (1 — #b,)1d, and so det(J) = (1 — #h,)*.
Interestingly, the area deformation around event e;, J(¢;) = J(x, %; 6), is directly related to
the scaling factor s;: det(J(e)) = 5.

Computing the amplification factors at each event gives the set

A(E,6) = {| det(3(e))|}, (3.14)

from which we can compute statistical scores. For example,

RA(E,6) = ]iv S| det(3(e)) (mean) (3.15)
¢ k=1

gives an average score: R4 > 1 for expansion, and R4 < 1 for contraction.
We build a deformation map (or image of warped areas (IWA)) by taking some statistic of
the values | det(J(e))| that warp to each pixel, such as the “average amplification per pixel”:
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WA (x)

N,

Z | det(I(ex))| — 1) 3(x — x}). (3.16)
N k=1
This assumes that if no events warp to a pixel x,, then M(xp) = 0, and there is no defor-
mation (IWA(x,) = 1). Then, we summarize the deformation map into a score, such as the
mean:

R (€,0) = |/IWAX E,09)dx. (3.17)

To concentrate on the collapsing part, we compute a trimmed mean: the mean of the IWA
pixels smaller than a margin « (0.8 in the experiments). The margin approves small, admissi-
ble deformations.

3.4.3 RATE OF CHANGE OF AREA DEFORMATION

The complexity of the previous two regularizers is O(N, + N, ) because (3.9) and (3.14) de-
pend linearly on the number of events /V,, and the resulting average images ((3.11) and (3.16))
have IV, pixels. This extra complexity makes the whole CMax pipeline more than twice slower
than the original (unregularized) CMax framework, whose complexity is also O(N, 4+ N,) *¢
Not only the computational complexity is a burden, but also the fact that (3.14) are measured
relative to a single reference time. For example, A(E, 6) (3.14) increases as #;, increases, since
it measures the area deformation from #, to t,, = ;. This scaling problem is undesirable be-
cause (7) events far from #,.¢ contribute more to R than events closer to ., and (77) this effect
could be amplified depending on the temporal distribution of the events.

Intuitively, motion fields are well-posed or not (i.e., collapse-enabled) by design of the
problem, regardless of the event data. Hence, an ideal regularizer should not depend on the
events, but solely on the warp parameters (Fig. 3.6, blue line). The main idea of the third
proposed regularizer is to aggregate differential deformations rather than relative ones. Fig-
ure 3.7 shows the geometric interpretation: R is obtained as the integral of the rate-of-change
of the area element deformation along the space-time point trajectories (x(z), ¢) defined by
the motion.

Again, for simplicity, consider the 1-DOF motion estimation (3.7). Assuming an area el-
ement attached to each point of the motion trajectory ¥(¢) = (x(2), z) (Fig. 3.7), the change
of area (i.e., area deformation) from ¢ to # + At is given by:

() - () o

|Jt7t+Az‘| =
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Figure 3.6: Overview of the efficient regularization. The proposed regularizer (blue line) solely relies on motion parameters
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Figure 3.7: Rate of change of area deformation. The warp W defines point trajectories y(t
image domain. We define the regularizer R based on differential area deformation along

is given by the derivative of the Jacobian J; ;1 a;.

) = (x(2), £) in the space-time
;/(t). The rate of change of area

The Taylor series expansion of (3.18) at Az = 0 is

d | J t,z‘—i—At’

Al’ X
e |, + (3.19)

|Jt,t+At| =1+

Since the first term is always 1 (i.e., is trivial), we focus on the second term, which conveys the
meaning of “speed” of area deformation. The derivative of (3.18) at Az = 0 conveys the rate

of change or differential amplification factor of the area:

d’ Jt,t-i—Az“ _ sz

dit |,_, 1—th, (3.20)
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Figure 3.8: Regularizer R for the 1-DOF warp, (3.21).

Finally, the total rate of change of the deformation along the observation time window is

! d|'~]t z+At|
R= [ —/=2d
/0 dAt

The regularizer (3.21) is plotted in Fig. 3.8. It solely depends on & = 5, and has com-
putational complexity O(1). In addition, it is developed from geometric principles, and it
is interpretable: b, = 0 (identity warp) gives R = 0; b, € (0,1) (contraction; collapsing
warp) gives large R > 0; and b, < 0 (expansion warp) gives R < 0. Moreover, notice that
R behaves like a barrier function, approaching infinity (i.e., large penalty) for values close
to b, = 1 (maximum allowed contraction before events flip side with respect to the image

dr "2 —210g 1 - by). (3.21)
Ar=0

center).

3.5  HiGHER-DOF Warr MODELS

3.5.1 FEATURE FLow

Event-based feature tracking is often described by the warp W(x, 4 60) = x + (¢ — twr)6,
which assumes constant image velocity § = (v, v,) " (2 DOFs) over short time intervals for
all pixels. The 2-DOF translational motion (feature flow) in image space is a well-posed warp,
since collapse never happens because the motion lines are parallel. As expected, the flow for
this warp coincides with the image velocity, f = &, which is independent of the space-time
coordinates (x, ¢).
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Divergence. The flow is incompressible (V - f = 0): the streamlines given by the feature
flow do not concentrate or disperse; they are parallel.

Area deformation. Regarding the area deformation, the Jacobian J = 9J(x + (r —
tef)0)/0x = Id is the identity matrix. Hence | det(J)| = 1, that is, translations on the
image plane do not change the area of the pixels around a point.

Rate of change of area deformation. The rate of change of the deformation is R =

Lda| _
0 dAr 0.
In-plane translation warps, such as the above 2-DOF warp, are well-posed and serve as

reference to design the regularizers that measure event collapse. Itis sensible for well-designed
regularizers to penalize warps whose characteristics deviate from those of the reference warp:
zero divergence and unit area amplification factor.

3.5.2 RoTATIONAL MOTION

As previous sections show, the proposed metrics designed for the zoom in/out warp produce
the expected characterization of the 2-DOF feature flow (zero divergence and unit area ampli-
fication), which is a well-posed warp. Hence, if they were added as penalties into the objective
function they would not modify the energy landscape. We now consider their influence on
rotational motions, which are also well-posed warps. In particular, we consider the prob-
lem of estimating the angular velocity of a predominantly rotating event camera by means
of CMax, which is a popular research topic #2233 Using calibrated and homogeneous
coordinates, the warp is given by

x" ~ R(w) X", (3.22)

where § = w = (wy, w,,w3) " is the angular velocity, ¢ € [0, A¢], and R is parametrized using
exponential coordinates (Rodrigues rotation formula”°%+%).

Divergence. Itis well known that the flow is f = B(x) w, where B(x) is the rotational part
of the feature sensitivity matrix*”. Hence

V - f = 3(xw; — yay). (3.23)
Area deformation. Letting r; be the third row of R, and using (32)-(34) in**,
det(3) = (1] )" (3.24)

Rotations around the Z axis clearly present no deformation, regardless of the amount of
rotation, and this is captured by the proposed metrics because: (7) the divergence is zero, thus
the flow is incompressible, and (77) det(J) = 1sincer; = (0,0,1)" and x” = (x,7,1)".
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For other, arbitrary rotations, there are deformations, but these are mild if the rotation angle
At||w|| is small.
Rate of change of area deformation. The incremental rotation between ¢ and # + At
yields
X" (¢ + At) ~ R(wAr) X" (z). (3.25)

Hence, the area element at x(#) deforms according to:

det (%) = (r3T (a)At)xh(t)) -, (3.26)

wherer; is the third row of R(wA¢) (see Sec. A.3). The derivative of (3.26) at Az = 0 is given
by:
d | J t7t+At|

— 2T A
A =3x"" (t)w"es. (3.27)

Ar=0

Finally, the integral of (3.27) over the point trajectory (parametrized by the initial point
dt

x(0)) is given by:
! d‘Jt,t+At|
Rxo) = /0 dAt |,y
(3.28)

1 1
= 3wx/ y(t)dr — 3a)y/ x(2)dk.
0 0

The integrals in (3.28) have units of absement. To obtain the regularizer R, we threshold

Rx(0) at —0.2, which allows small amounts of natural deformation caused by rotation. Sim-
ilar to (3.21), (3.28) does not depend on the events. However, in contrast to (3.21), (3.28) is
spatially varying, providing an aggregated deformation map: it is smaller in the center of the
image and larger (in absolute value) in the periphery. The computational complexity of R is
O(N,), which can be further reduced if only a subset of the pixels is used.

Although 3-DOF rotations involve small deformations, their values (3.27) are considerably
smaller than those of collapse-enabled warps like (3.7), and R does not affect the accuracy of
the angular velocity estimation (as Sec. 3.6.3 will show). Also, pure rotations around the Z
axisw = (0,0, ®,) " do not change the area, as expected, resultingin R = 0.

3.5.3 PLANAR MoTION

Planar motion is the term used to describe the motion of a ground robot that can translate
and rotate freely on a flat ground. If such a robot is equipped with a camera pointing upwards
or downwards, the resulting motion induced on the image plane, parallel to the ground plane,
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is an isometry (Euclidean transformation). This motion model is a subset of the parametric
ones in*°, and it has been used for CMax in">""*3. For short time intervals, planar motion
may be parametrized by 3 DOFs: linear velocity (2 DOFs) and angular velocity (1 DOF). As
shown in Appendix A, the planar motion is a well-posed warp. The resulting motion curves
on the image plane do not lead to event collapse.

3.5.4 SIMILARITY TRANSFORMATION

The 1-DOF zoom in/out warp in Sec. 3.3.1 is a particular case of the 4-DOF warp in?>'"3,
which is an in-plane approximation to the motion induced by a freely moving camera (6
DOFs). The scaling parameter b, of the similarity transformation controls the amount of
zoom in/out, i.e., the amount of contraction/expansion of the warp. Hence, we use (3.21) to
penalize the amount of contraction. A mathematical justification is given in Appendix A.

3.6 EXPERIMENTS

We evaluate our method on publicly-available datasets, whose details are described in Sec. 3.6.1.
First, Sec. 3.6.2 shows that the proposed regularizers improves the objective function land-
scapes, reducing the undesired optima that enable collapse. For this purpose we use driving
datasets (MVSEC 7%, DSEC55). Next, Sec. 3.6.3 shows that the regularizers do not harm
well-posed warps. To this end, we use the ECD dataset’®. Then, Sec. 3.6.4 compare and
discuss the runtimes among the proposed and existing approaches. Section 3.6.5 conducts a
sensitivity analysis of the regularizers. Finally, Secs. 3.6.6 and 3.6.7 demonstrate applications

of the proposed approaches.

3.6.1 EVALUATION DATASETS AND METRICS

Datasets. The MVSEC dataset'”® is a widely-used dataset for various vision tasks, such as
optical flow estimation 18510965146
car (outdoors), and comprise events, grayscale frames and IMU data from a mDAVIS346
(346 x 260 pixels), as well as camera poses and LiDAR data. Ground truth optical flow is
computed as the motion field 7, given the camera velocity and the depth of the scene (from

the LiIDAR). We select several excerpts from the outdoor_dayr sequence with a forward mo-

. Its sequences are recorded on a drone (indoors) or on a
158

tion. This motion is reasonably well approximated by collapse-enabled warps such as (3.7).
In total, we evaluate on 3.2 million events spanning 10s.

The DSEC dataset’’ is a more recent driving dataset with a higher resolution event cam-
era (Prophesee Gens, 640 x 480 pixels). Ground truth optical flow is also computed as the
motion field using the scene depth from a LIDAR 5¢. We evaluate on the zurich_city_11 se-
quence, using in total 380 million events spanning 40's.
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The ECD dataset ' is the de-facto standard to assess event camera ego-motion #7-177:135:63:129,103,175
Each sequence provides events, frames, a calibration file, and IMU data (at 1kHz) from a
DAVIS240C camera ' (240 x 180 pixels), as well as ground truth camera poses from a motion
capture system (at 200Hz). For rotational motion estimation (3 DOFs), we use the natural-
looking boxes_rotation and dynamic_rotation sequences. We evaluate on 43 million events
(10's) of the box sequence, and on 15 million events (11 s) of the dynamic sequence.

The driving datasets (MVSEC, DSEC) and the selected sequences in the ECD dataset have
different type of motions: forward (which enables event collapse) vs. rotational (which does
not suffer from event collapse). Each sequence serves a different test purpose, as discussed in
the next sections.

Metrics. The metrics used to assess optical flow accuracy (MVSEC and DSEC datasets)
are the Average Endpoint Error (AEE) and the percentage of pixels with AEE greater than N
pixels (denoted by “NPE”, for N = {3,10,20}). Both are measured over pixels with valid
ground-truth values. We also use the FWL metric 5’ to assess event alignment by means of
the IWE sharpness (the FWL is the IWE variance relative to that of the identity warp).

Following previous works #1133 rotational motion accuracy is assessed as the RMS er-
ror of angular velocity estimation. Angular velocity w is assumed constant over a window
of events, estimated and compared with the ground truth at the midpoint of the window.
Additionally, we use the FWL metric to gauge event alignment'*5.

The event time windows are as follows: the events in the time spanned by d¢ = 4 frames
in MVSEC (standard in'#5%%), sook events for DSEC, and 30k events for ECD®. The
regularizer weights for divergence (14;,) and deformation (A4ef)are as follows: Ag, = 2 and
Agef = S for MVSEC, Agiy = S0 and A4¢ = 100 for DSEC, and Ag, = S and Ags = 10
for ECD experiments. Also the weights for the rate of the change (A1) are Ayee = 0.2 for
MVSEC, and A,,.. = 1.0 for DSEC.

3.6.2 EFFECT OF THE REGULARIZERS ON COLLAPSE-ENABLED WARPS

Tables 3.1 and 3.2 report the results on the MVSEC and DSEC benchmarks, respectively, us-
ing two different loss functions G: the IWE variance (3.4) and the squared magnitude of the
IWE gradient, abbreviated “Gradient Magnitude”+. For MVSEC, we report the accuracy
within the time interval of d¢ = 4 grayscale frame (at ~ 45Hz). The optimization algorithm
is the Tree-structured Parzen Estimator (TPE) sampler ** for both experiments, with number
of sampling points equal to 300 (1 DOF) and 600 (4 DOFs). The tables quantitatively cap-
ture the collapse phenomenon suffered by the original CMax framework * and the whitening
technique'">. Their high FWL values indicate that contrast is maximized, however, the AEE
and NPE values are exceedingly high (e.g., > 80 pixels, 20PE > 80%), indicating that the
estimated flow is unrealistic.
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Table 3.1: Results on MVSEC dataset®’”?. The proposed regularizers are in bold. “RCAD” denotes the rate of change of
area deformation. The best values per column per group are in bold, and second best are underlined. An asterisk in FWL
indicates event collapse occurred.

Variance Gradient Magnitude
AEE] 3PE] 10PE| 20PE| FWL{T AEE| 3PE] 10PE| 20PE] FWL1

Ground truth low - - - - 1.05 - - - - 1.05

Identity warp 4.85 60.59 10.38 0.31 1.00 4.85 60.59 10.38 0.31 1.00

No regularizer 89.34 97.30  95.42  92.39 *1.90  85.77  93.96 86.24  83.45 *1.87

. Whitening'*? 89.58 97.18 96.77  93.76 *1.90 81.10 90.86 89.04 86.20 *1.85

© Divergence '+ 4.00  46.02 2.77 0.05 1.12 2.87  32.68 2.52 0.03 1.17

—. Deformation s 4.47 $52.60 5.16 0.13 1.08 3.97 4879 3.21 0.07 1.09

Div. + Def.'# 3.30  33.09 2.61 0.48 1.20 2.85  32.34 2.44 0.03 1.17

RCAD'# 3.17  36.65 4.01 0.10 1.16 3.02  34.47 3.40 0.07 1.17

No regularizer 90.22  90.22  96.94  93.86 *2.05  91.26  99.49  95.06  91.46 *2.01

. Whitening'*3 90.82  99.11  98.04  95.04 *2.04 88.38 98.87 92.41  88.66 *2.00

© Divergence ' 7.25 81.75 18.53 0.69 1.09 5.37  66.18 10.81 0.28 1.14

+ Deformation ' 8.13 87.46  18.53 1.09 1.03 5.25  64.79 13.18 0.37 I.15

Div. + Def.'# 5.14  65.61 10.75 0.38 1.16 5.41  66.01 13.19 0.54 1.14

RCAD'# 4.36  58.63 6.56 0.16 115 4.30  54.27 5.61 0.31 1.17
Table 3.2: Results on DSEC dataset>®. Same notation as Tab. 3.1.

Variance Gradient Magnitude
AEE] 3PE] 10PE| 20PE| FWL{T AEE| 3PE] 10PE| 20PE] FWL?

Ground truth low - - - - 1.09 - - - - 1.09

Identity warp 5.84  60.45 16.65 3.40 1.00 5.84  60.45 16.65 3.40 1.00

No regularizer 156.13 99.88 99.33 98.18 *2.58 156.08 99.93 99.40 98.11 *2.58

. Whitening " 156.18  99.95  99.51  98.26 *2.58 156.82  99.88  99.38  98.33 *2.58

Q Divergence'# 12.49 69.86  20.78 6.66 1.43 5.47  63.48 14.66 1.35 1.34

. Deformation ™ 9.01  68.96 18.86 4.77 1.40 5.79 64.02  16.11 2.75 1.36

Div. + Def.™# 6.06 68.48 17.08 2.27 1.36 5.53  64.09 15.06 1.37 1.35

RCAD*# 5.8 57.19 14.73 3.05 1.34 5.31 $4.85 14.17 3.10 1.20

No regularizer 157.54  99.97  99.64  98.67 *2.64 157.34  99.94  99.53  98.44 *2.62

. Whitening'*? 157.73  99.97  99.66  98.71 *2.60 156.12  99.91 99.26  97.93 *2.61

© Divergence ' 14.35 90.84  41.62 10.82 1.35 10.43  91.38  41.63 9.43 1.21

+ Deformation '+ 15.12 94.96  62.59  22.62 1.25 10.01 90.15 39.45 8.67 1.25

Div. + Def. ™ 10.06 90.65 40.61 8.58 1.26 10.39 91.02  4I1.81 9.40 1.23

RCAD I1.§1  91.50  42.29 11.05 1.30 9.55 88.94 35.96 774 1.31

By contrast, our regularizers (“Divergence”, “Deformation”, and “RCAD”, which de-
notes Rate of change of area deformation) work well to mitigate the collapse, as observed in
smaller AEE and NPE values. Compared with the values of no regularizer or whitening'"?,
our regularizers achieve more than 90% improvement for AEE on average. The AEE values
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are high for optical flow standards (4 — 8 pixin MVSEC vs. 0.5 — 1 pixel **°, or 10 — 20 pix
in DSECvs.2 — 5 pixié), however, this is due to the fact that the warps used have very few
DOFs (< 4) compared to the considerably higher DOFs (2N,) of optical flow estimation al-
gorithms. The same reason explains the high 3PE values (standard in**): using an end-point
error threshold of 3 pix to consider that the flow is correctly estimated does not convey the
intended goal of inlier/outlier classification for the low-DOF warps used. This is the reason
why Tabs. 3.1 and 3.2 also report 10PE, 20PE metrics, and the values for the identity warp
(zero flow). As expected, for the range of AEE values in the tables, the 10PE and 20PE figures
demonstrate the large difference between methods suffering from collapse (20PE>80%) and
those that do not (20PE<1.1% for MVSEC and <22.6% for DSEC).

The FWL values of our regularizers are moderately high (> 1), indicating that event align-
ment is better than that of the identity warp. However, since the FWL depends on the num-
ber of events '3, it is not easy to establish a global threshold to classify each method as suffer-
ing from collapse or not. The AEE, 10PE and 20PE are better for such a classification.

The collapse results are more visible in Fig. 3.9, where we used Divergence (3.9) and Defor-
mation (3.5). Without a regularizer the events collapse in the MVSEC an DSEC sequences.
Our regularizers successfully mitigate the event collapse, having a remarkable impact on the
estimated motion.

The qualitative results for the RCAD (3.20) are shown in Fig. 3.10. Notice that the area
deformation map (3.4) shows collapse ozly at pixels with warped events, while the RCAD
regularizer provides dense maps (even in pixels with no events, corresponding to homoge-
neous brightness regions) because it is purely geometric, based on the motion parameters.
All of the three proposed regularizers successfully mitigate event collapse, however, the com-
putational complexity is different, which we investigate in Sec. 3.6.4.

3.6.3 EFFECT OF THE REGULARIZERS ON WELL-POSED WARPS

Table 3.3 shows the results on the ECD dataset for a well-posed warp (3-DOF rotational mo-
tion, in the benchmark). We use the variance loss and the Adam optimizer®? with 100 itera-
tions. All values in the table (RMS error and FWL, with and without regularization) are very
similar, indicating that: (7) our regularizers do not affect the motion estimation algorithm,
(#7) results without regularization are good due to the well-posed warp. This is qualitatively
shown in the bottom part of Fig. 3.9. The fluctuations of the divergence and deformation
values away from those of the identity warp (0 and 1, respectively) are at least one order of
magnitude smaller than the collapse-enabled warps (e.g., 0.2 vs. 2).
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Figure 3.9: Proposed regularizers and collapse analysis. The scene motion is approximated by 1-DOF warp (zoom in/out)
for MVSEC *® and DSEC>® sequences, and 3-DOF warp (rotation) for boxes and dynamic ECD sequences 105 (q) Original
events. (b) Best warp without regularization. Event collapse happens for 1-DOF warp. (c) Best warp with regularization.

(d) Divergence map ((3.11) is zero-based). (e) Deformation map ((3.16), centered at 1). Our regularizers successfully
penalize event collapse and do not damage non-collapsing scenarios.
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Figure 3.10: Qualitative comparison between Deformation and Rate of change of area deformation (“RCAD’). (a) Original events.
(b)-(d) Results without regularization: 1-DOF motion results (MVSEC *”® and DSEC *°) are trapped in global optima of event
collapse, as shown in the IWEs (b). The regularizers in such collapse cases (c)-(d) are very large compared with the well-
posed warp cases (boxes_rot and dynamic_rot rows). (e) Results with the proposed regularizer: it mitigates collapse for
MVSEC and DSEC scenes while it does not harm the ECD scenes. Best viewed in the electronic version.

Table 3.3: Results on ECD dataset 1°.

boxes_rot dynamic_rot

RMS| FWL1 RMS| FWL1

Ground truth pose - 1.559 - 1.414
No regularizer 8.858 1.562 4.823 1.420
Deformation "+ 8.664 1.561 4.822  1.420
Div. + Def.'+ 6.885 1.562 4.822 1.420
RCAD '+ 6.877 1.562 4.822 I.420

3.6.4 RUNTIME COMPARISON

Table 3.4 reports the runtime comparison of the methods, notably with respect to the original
CMax (“No regularizer”). We use Python (3.9.12) on a CPU (Mac M1 2020, 8 Cores), and
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Table 3.4: Comparison of runtime in milliseconds, averaged over 400 trials. MVSEC: 30k events. DSEC: 500k events.

MVSEC DSEC
Var. Grad. Var. Grad.
No regularizer 7.3 7.9 1113 112.9
Whitening'*? 8.2 8.4 205.5 206.9

Deformation'  20.2  21.1  304.4 307.6
Div. + Def.'# 32.4 31.6 §05.0 506.I
RCAD'+# 7-4 8.0 I11.4 1I13.§

average the runtime over 400 trials. The whitening technique '’ is slower than the original
CMax (“No regularizer”). The runtime difference is due to an extra SVD step on the events,
which is more noticeable (2 x slower) in the DSEC dataset than in MVSEC because it uses
more events. The “Deformation” regularizer in'# is also two to three times slower than the
original CMax. When both regularizers are combined (“Div. + Def.”), the runtime becomes
even larger. Finally, the RCAD approach has almost the same runtime as the original CMax,
since its complexity is O(1), thus it is two to four times faster than competing methods.

Figure 3.11 visualizes the accuracy and runtime of the methods (on DSEC data). Run-
time is reported relative to the “No regularizer” case. It clearly shows that the rate-of-change
regularizer is the only effective approach against event collapse that does not compromise the
speed of the CMax framework.

3.6.5 SENSITIVITY ANALYSIS

The landscapes of loss functions as well as sensitivity analysis of A are shown in Fig. 3.12,
for the MVSEC experiments. Without regularizer (1 = 0), all objective functions tested
(variance, gradient magnitude, and average timestamp '*°) suffer from event collapse, which
is the undesired global minimum of (3.6). Reaching the desired local optimum depends on
the optimizing algorithm and its initialization (e.g., starting gradient descent close enough to
the local optimum). Our regularizers (Divergence and Deformation) change the landscape:
the previously undesired global minimum becomes local, and the desired minimum becomes
the new global one as A increases.

Specifically, the larger the weight A, the smaller the effect of the undesired minimum (at
b, = 1). However, this is true only within some reasonable range: a too large 1 discards the
data-fidelity part G in (3.6), which is unwanted because it would remove the desired local
optimum (near b, ~ 0). Minimizing (3.6) with only the regularizer is not sensible.

Observe that for completeness, we include the average timestamp loss in the last column.
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Figure 3.11: Runtime comparison for the DSEC experiment. Runtime is relative to that of the original CMax (“No regu-
larizer”). The rate of change of area deformation (denoted as “Ours”) regularizer has desirable properties: small AEE and
runtime.

However, this loss also suffers from an undesired optimum in the expansion region (b, ~
—1). Our regularizers could be modified to also remove this undesired optimum, but investi-
gating this particular loss, which was proposed as an alternative to the original contrast loss,
is outside the scope of this work.

3.6.6 APPLICATION TO MOTION SEGMENTATION

While most of the results on standard datasets comprise stationary scenes, we have also pro-
vided results on a dynamic scene (from dataset’). Since the time spanned by each set of
events processed is small, the scene motion is also small (even for complicated objects like
the person in the bottom row of Fig. 3.9), hence often a single warp fits the scene reason-
ably well. In some scenarios, a single warp may not be enough to fit the event data because
there are distinctive motions in the scene of equal importance. Our proposed regularizers
can be extended to such more complex scene motions. To this end, we demonstrate it with
an example in Fig. 3.13.

Specifically, we use the MVSEC dataset, in a clip where the scene consists of two motions:
the ego-motion (forward motion of the recording vehicle) and the motion of a car driving in
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Figure 3.12: Cost function landscapes over the warp parameter 4, for: (a) Image variance*¢, (b) Gradient Magnitude **, and
(c) Mean Square of Average Timestamplgo. Data from MVSEC 8 with dominant forward motion. The legend weights
denote 4 in (3.6).

the opposite direction in a nearby lane (an independently moving object - IMO). We model
the scene using the combination of two warps. Intuitively, the 1-DOF warp (3.7) describes
the ego-motion, while the feature flow (2 DOFs) describes the IMO. Then, we apply the con-
trast maximization approach (augmented with our regularizing terms) and the expectation-

maximization scheme in *5*

to segment the scene, to determine which events belong to each
motion. The results in Fig. 3.13 clearly show the effectiveness of our regularizer, even for
such a commonplace and complex scene. Without regularizers, (7) event collapse appears in
the ego-motion cluster of events and (77) a considerable portion of the events that correspond
to ego-motion are assigned to the second cluster (2-DOF warp), thus causing a segmentation
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=1.0

(a) IWE with segmentation (b) Divergence map

Figure 3.13: Application to Motion Segmentation. (a) Output IWE, whose colors (red and blue) represent different clusters
of events (segmented according to motion). (b) Divergence map. The range of divergence values is larger in the presence
of event collapse than in its absence. Our regularizer (divergence in this example) mitigates the event collapse for this
complex motion, even with an independently moving object (IMO) in the scene.

failure. Our regularization approach mitigates event collapse (bottom row of Fig. 3.13) and
provides the correct segmentation: the 1-DOF warp fits the ego-motion and the feature flow
(2-DOF warp) fits the IMO.

3.6.7 APPLICATION: TIME-TO-CONTACT

The parametrization of collapse-enabled warps has useful implications toward future appli-
cation on intelligent vehicles, such as advanced driver-assistance system (ADAS). Let us in-
troduce another interpretation of the parameter /.. For a freely moving camera with linear
and angular velocities V and w, respectively, the apparent velocity v(x) on the image plane of
a3D point X = (x,,Z(x))" (at depth Z(x) with respect to the camera) can be computed
using the 2 X 6 feature sensitivity matrix*7:

(70w~ H\ [V
V(X)— 0 1 9 1 5 ) (32’9)
7o 20 +y —xy  x/\w
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Figure 3.14: Application of estimating Time to Contact. The parametrization with 4, in the 1-DOF warp can be used to
approximate the TTC for the dominant depth of the scene represented by the events (e.g., the trees).

which can be used to warp events:
X, = x;, — v(X)t. (3.30)

Assuming a vehicle with body-frame velocity v,, i.e., V.= (0,0,2,)", @ = (0,0,0)",
the motion field (3.29) becomes v(x) = (v,/Z(x)) x, and substituting in (3.30) gives x, =
(1—v,/Z(x))t;. Comparing this expression to (3.7), and assuming Z(x) is spatially invariant,

we identify
vZ

7
i.e., the parameter b, is inverse of the time-to-contact or time-to-collision (TTC)*".

Figure 3.14 shows two examples of TTC from the MVSEC dataset. It is remarkable that
this 1-DOF warp model can be related to the popular concept in ADAS, and our regularizer
plays an important role toward real-time computation of TTC given its runtime. Also note
that (3.31) establishes a relation between TTC, vehicle speed and scene depth, and that the
TTC can be used to estimate the scene depth given the vehicle speed, or vice versa, the vehicle
speed given the scene depth. We hope this connection helps future implementation of event-

by = (3.31)

camera application in collision avoidance systems.

3.7 CONCLUSION

We have analyzed the event collapse phenomenon of the CMax framework and proposed
three collapse metrics: divergence, area-based deformation, and rate of change of the defor-
mation. Our experimental results on publicly available datasets demonstrate that the pro-
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posed regularizers metrics mitigate the phenomenon for collapse-enabled warps while they
do not harm well-posed warps. To the best of our knowledge, our regularizers are the only
effective solution compared to the unregularized CMax framework and whitening. The pro-
posed regularized CMax achieves, on average, more than 90% improvement on optical flow
endpointerror calculation (AEE) on collapse-enabled warps. Furthermore, the runtime com-
parison demonstrate that the rate of change of area deformation does not trade-off the run-
time of the original CMax framework, resulting in 2 to 4 times faster than other methods.

This is the first work that focuses on the paramount phenomenon of event collapse. No
prior work has analyzed this phenomenon in such detail or proposed new regularizers with-
out additional data or reparameterizing the search space™>""™»™*. As we analyzed various
warps from 1 DOF to 4 DOFs, we hope that the ideas presented here inspire further research
to tackle more complex warp models. For more complex warps, like those used in dense op-
tical low estimation %%, the divergence, area-based deformation, or rate of change of area
deformation could be approximated using finite difference formulas.

In this chapter, we focused on the low-DOF ego-motion estimation problems. We ana-
lyzed event collapse in the Contrast Maximization framework and proposed new regulariz-
ers that effectively and/or efficiently improve the landscape (well-posedness) of the problem,
which has resulted in the extension of CMax to tackle more complex motions.

45



Optical Flow Estimation

4.1 INTRODUCTION

Event cameras are novel bio-inspired vision sensors that naturally respond to motion of edges
in image space with high dynamic range (HDR) and minimal blur at high temporal resolu-
tion (on the order of ps)'*>*°. These advantages provide a rich signal for accurate motion
estimation in difficult real-world scenarios for frame-based cameras. However such a signal
is, by nature, asynchronous and sparse, which is not compatible with traditional computer
vision algorithms. This poses the challenge of rethinking visual processing****: motion pat-
terns (i.e., optical flow) are no longer obtained by analyzing the intensities of images captured
at regular intervals, but by analyzing the stream of events (per-pixel brightness changes) pro-
duced by the event camera.

Multiple methods have been proposed for event-based optical flow estimation. They can
be broadly categorized in two: (7) model-based methods, which investigate the principles
and characteristics of event data that enable optical flow estimation, and (77) learning-based
methods, which exploit correlations in the data and/or apply the above-mentioned princi-
ples to compute optical flow. One of the challenges of event-based optical flow is the lack of
ground truth flow in real-world datasets (at ps resolution and HDR)#?, which makes it dif-
ficult to evaluate and compare the methods properly, and to train supervised learning-based
ones. Ground truth (GT) in de facto standard datasets'7®55 is given by the motion field'*>
using additional depth sensors and camera information. However, such data is limited by
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Figure 4.1: Two test sequences (interlaken_00_b, thun_01_a) from the DSEC dataset®>. Our optical flow estimation
method produces sharp images of warped events (IWE) despite the scene complexity, the large pixel displacement and
the high dynamic range. The examples utilize 500k events on an event camera with 640 X 480 pixels.

the field-of-view (FOV) and resolution (spatial and temporal) of the depth sensor, which do
not match those of event cameras. Hence, it is paramount to develop interpretable optical
flow methods that exploit the characteristics of event data, and that do not need expensive-
to-collect and error-prone ground truth.

Among prior work, Contrast Maximization (CM)*** isa powerful framework that allows
us to tackle multiple motion estimation problems (rotational motion**¢3, homographic
motion #3121 feature flow estimation 747714154 motion segmentation ?>"3* 7117 and
also reconstruction*>'**'73). It maximizes an objective function (e.g., contrast) that mea-
sures the alignment of events caused by the same scene edge. The intuitive interpretation
is to estimate the motion by recovering the sharp (motion-compensated) image of edge pat-
terns that caused the events. Preliminary work on applying CM to estimate optical flow has
reported a problem of overfitting to the data, producing undesired flows that warp events
to few pixels or lines"*° (i.e., event collapse’#5). This issue has been tackled by changing the
objective function, from contrast to the energy of an average timestamp image **>**%5, but
this loss is not straightforward to interpret and makes training difficult to converge*.

Given the state-of-the-art performance of CM in low-DOF motion problems and its issues
in more complex motions (dense flow), we think prior work may have rushed to use CM in
unsupervised learning of complex motions. There is a gap in understanding how CM can be
sensibly extended to estimate dense optical flow accurately. In this paper we fill this gap and
learn a few “secrets” that are also applicable to overcome the issues of previous approaches.

We propose to extend CM for dense optical flow estimation via a tile-based approach cov-
ering the image plane. We present several distinctive contributions:

180
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1. A maulti-reference focus loss function to improve accuracy and discourage overfitting
(Sec. 4.2.2).

2. A principled time-aware flow to better handle occlusions, formulating event-based op-
tical flow as a transport problem via differential equations (Sec. 4.2.3).

3. A multi-scale approach on the raw events to improve convergence to the solution and
avoid getting trapped in local optima (Sec. 4.2.4).

The results of our experimental evaluation are surprising: the above design choices are key
to our simple, model-based tile-based method (Fig. 4.1) achieving the best accuracy among all
state-of-the-art methods, including supervised-learning ones, on the de facto benchmark of
MVSEC indoor sequences'7?. Since our method is interpretable and produces better event
alignment than the ground truth flow, both qualitatively and quantitatively, the experiments
also expose the limitations of the current “ground truth”. Finally, experiments demonstrate
that the above key choices are transferable to unsupervised learning methods, thus guiding
future design and understanding of more proficient Artificial Neural Networks (ANNs) for
event-based optical flow estimation.

Because of the above, we believe that the proposed design choices deserve to be called “se-
crets” 57, To the best of our knowledge, they are novel in the context of event-based optical
flow estimation, e.g., no prior work considers constant flow along its characteristic lines, de-
signs the multi-reference focus loss to tackle overfitting, or has explicitly defined multi-scale
(i.e., multi-resolution) contrast maximization on the raw events.

4.2 METHOD

4.2.1 EVENT CAMERAS AND CONTRAST MAXIMIZATION

Event cameras have independent pixels that operate continuously and generate “events” ¢, =
(Xt 2k, pr) whenever the logarithmic brightness at the pixel increases or decreases by a pre-
defined amount, called contrast sensitivity. Each event ¢, contains the pixel-time coordi-
nates (X, ) of the brightness change and its polarity p, = {+1, —1}. Events occur asyn-
chronously and sparsely on the pixel lattice, with a variable rate that depends on the scene
dynamics.

The CM framework* assumes events & = {¢; }2°, are generated by moving edges, and
transforms them geometrically according to a motion model W, producing a set of warped
events &, = {e,/e},lf;l at a reference time #,.¢:

e = (i tes ) > €, = (X, teety P1)- (4.1)
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The warp x;, = W(xy, #;; 0) transports each event from # to #. along the motion curve
that passes through it. The vector ¢ parametrizes the motion curves. Transformed events are
aggregated on an image of warped events (IWE):
. N,

I(x; Et’ref, 0) = = 0(x—x), (4.2)
where each pixel x sums the number of warped events x), that fall within it. The Dirac delta 9
is approximated by a Gaussian, d(x —u) =~ N(x; &, £1d) with¢ = 1 pixel. Next, an objective
function f{9) is built from the transformed events, such as the contrast of the IWE (4.2, given
by the variance

Var(](x; 6))) = ﬁ fQ<]<X; 6) - /“])zdxv (4-3)

with mean g, = ﬁ Jo 1(x; 8)dx. The objective function measures the goodness of fit be-
tween the events and the candidate motion curves (warp). Finally, an optimization algorithm
iterates the above steps until convergence. The goalis to find the motion parameters that max-
imize the alignment of events caused by the same scene edge. Event alignment is measured by
the strength of the edges of the IWE, which is directly related to image contrast®’.

Dense optical flow. In the task of interest, the warp used is %%

X, = X + (6 — ter) V(x2), (4-4)

where § = {v(x) }xeq is a flow field on the image plane at a set time, e.g., Zf.

4.2.2 MULTI-REFERENCE Focus OBJECTIVE FUNCTION

Zhu et al."® report that the contrast objective (variance) overfits to the events. This is in
part because the warp (4.4) can describe very complex flow fields, which can push the events
to accumulate in few pixels '+>. To mitigate overfitting, we reduce the complexity of the flow
field by dividing the image plane into a tile of non-overlapping patches, defining a flow vector
at the center of each patch and interpolating the flow on all other pixels (we show the tiles in
Sec. 4.2.4).

However, this is not enough. Additionally, we discover that warps that produce sharp
IWEs at any reference time z,.¢ have a regularizing effect on the flow field, discouraging over-
fitcting. This is illustrated in Fig. 4.2. In practice we compute the multi-reference focus loss
using 3 reference times: # (min), zng = (# + #x,)/2 (midpoint) and #y, (max). The flow
field is defined only at one reference time.

Furthermore, we measure event alignment using the magnitude of the IWE gradient be-
cause: (7) it has top accuracy performance among the objectives in*5, (z7) it is sensitive to the
arrangement (i.e., permutation) of the IWE pixel values, whereas the variance of the IWE
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Figure 4.2: Multi-reference focus loss. Assume an edge moves from left to right. Flow estimation with single reference time
(#1) can overfit to the data, warping all events into a single pixel, which results in a maximum contrast (at #1). However,
the same flow would produce low contrast (i.e., a blurry image) if events were warped to time #y;,. Instead, we favor flow
fields that produce high contrast (i.e., sharp images) at any reference time (here, #¢ = #; and fef = £p,). See results in
Fig. 4.7.

(4.3) is not, (777) it converges more easily than other objectives we tested, (7v) it differs from
the Flow Warp Loss (FWL) '35, which is defined using the variance (4.3) and will be used for
evaluation.

Finally, letting the (squared) gradient magnitude of the IWE be

G(6: 1) = &y Jo IV (s )| i, (+5)

the proposed multi-reference focus objective function becomes the average of the G functions
of the IWEs at multiple reference times:

f8) = (G(6;1) + 2G(8; twia) + G(8; 1)) / 4G(0; —), (4-6)

normalized by the value of the G function with zero flow (identity warp). The normalization
in (4.6) provides the same interpretation as the FWL: f < 1 implies the flow is worse than
the zero flow baseline, whereas £ > 1 means that the flow produces sharper IWEs than the
baseline.

Remark: Warping to two reference times (min and max) was proposed in**, but with
important differences: (7) it was done for the average timestamp loss, hence it did not consider
the effect on contrast or focus functions*, and (77) it had a completely different motivation:
to lessen a back-propagation scaling problem, so that the gradients of the loss would not favor
events far from Z,.s.

4.2.3 TIME-AWARE FLOw

State-of-the-art event-based optical flow approaches are based on frame-based ones, and so
they use the warp (4.4), which defines the flow v(x) as a function of x (i.e., a pixel displace-
ment between two given frames). However, this does not take into account the space-time
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Figure 4.3: Time-aware Flow. Traditional flow (4.4), inherited from frame-based approaches, assumes per-pixel constant
flow V(x) = const, which cannot handle occlusions properly. The proposed space-time flow assumes constancy along
streamlines, v(x(t), z‘) = const, which allows us to handle occlusions more accurately. (See results in Fig. 4.8)

nature of events, which is the basis of the CM approach, because not all events at a pixel x
are triggered at the same timestamp #;. They do not need to be warped with the same veloc-
ity v(xo). Figure 4.3 illustrates this with an occlusion example taken from the slider_depth
sequence . Instead of v(x), the event-based flow should be a function of space-time, v(x, z),
i.e, time-aware, and each event ¢; should be warped according to the flow defined at (xy, ).
Let us propose a more principled warp than (4.4).

To define a space-time flow v(x, #) that is compatible with the propagation of events along
motion curves, we are inspired by the method of characteristics®®. Just like the brightness
constancy assumption states that brightness is constant along the true motion curves in im-
age space, we assume the flow is constant along its streamlines: v(x(z), #) = const (Fig. 4.3).
Differentiating in time and applying the chain rule gives a system of partial differential equa-
tions (PDEs):

Ovdx Ov

mdr o 0, (4.7)
where, as usual, v. = dx/dt is the flow. The boundary condition is given by the flow at
say £ = 0: v(x,0) = v°(x). This system of PDEs essentially states how to propagate (i.e.,
transport) a given flow v (x), from the boundary # = 0 to the rest of space x and time #. The
PDEs have advection terms and others that resemble those of the inviscid Burgers’ equation **
since the flow is transporting itself. We parametrize the flow at# = 7,,,,4 (boundary condition),
and then propagate it to the volume that encloses the current set of events €. We develop two
explicit methods to solve the PDEs, one with upwind differences and one with a conservative
scheme adapted to Burgers’ terms '#'. Each event e, is then warped according to a flow v given
by the solution of the PDEs at (x, #):

X/k =x; + (Z‘k — t,ef) \AI(X/e, fk). (4.8)
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Figure 4.4: Multi-scale Approach using tiles (rectangles) and raw events.

4.2.4 MULTI-SCALE APPROACH

Inspired by classical estimation methods, we combine our tile-based approach with a multi-
scale strategy. The goal is to improve the convergence of the optimizer in terms of speed and
robustness (i.c., avoiding local optima).

Some learning-based works798118
the use of a U-Net architecture. However, they work on discretized event representations
(voxel grid, etc.) to be compatible with CNNS. In contrast, our tile-based approach works
directly on raw events, without discarding or quantizing the temporal information in the
eventstream. While some prior work outside the context of optical flow has considered multi-

also have a multi-scale component, inherited from

resolution on raw events*°, there is no agreement on the best way to perform multi-resolution
due to the sparse and asynchronous nature of events.

Our multi-scale CM approach is illustrated in Fig. 4.4. For an event set &;, we apply the
tile-based CM in a coarse-to-fine manner (e.g., Ny = 5 scales). There are 2/~ x 2/~ tiles at
the /-th scale. We use bilinear interpolation to upscale between any two scales. If there is a
subsequent set &1, the flow estimated from &; is used to initialize the flow for £,1. This is
done by downsampling the finest flow to coarser scales. The coarsest scale initializes the flow
for &; 1. For finer scales, initialization is computed as the average of the upsampled flow from
the coarser scale of &, | and the same-scale flow from &,.

Composite Objective. To encourage additional smoothness of the flow, even in regions
with few events, we include a flow regularizer R(8). The flow is obtained as the solution to
the problem with the composite objective:

g = arg mgn(l/ﬂﬁ) + AR(9)), (4.9)

where, A > 0 is the regularizer weight, and we use the total variation (T'V)"** as regularizer.
We choose 1/f instead of simply —f because it is convenient for ANN training, as we will

apply in Sec 4.3.7.
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4.3 EXPERIMENTS

4.3.1 DATASETS, METRICS AND HYPER-PARAMETERS

We evaluate our method on sequences from the MVSEC dataset 7%'7%, which is the de facto
dataset used by prior works to benchmark optical flow. It provides events, grayscale frames,
IMU data, camera poses, and scene depth from a LIDAR *7®. The dataset was extended in '7?
to provide ground truth optical flow, computed as the motion field *¢> given the camera ve-
locity and the depth of the scene. The event camera has 346 x 260 pixel resolution™s®. In
total, we evaluate on 63.5 million events spanning 265 seconds.

We also evaluate on a recent dataset that provides ground truth flow: DSEC5°. It consists
of sequences recorded with Prophesee Gen3 event cameras, of higher resolution (640 x 480
pixels), mounted on a car. Optical flow is also computed as the motion field, with the scene
depth from a LiDAR. In total, we evaluate on 3 billion events spanning the 208 seconds of
the test sequences.

The metrics used to assess optical flow accuracy are the average endpoint error (AEE) and
the percentage of pixels with AEE greater than 3 pixels (denoted by “% Out”), both are mea-
sured over pixels with valid ground-truth and at least one event in the evaluation intervals.
We also use the FWL metric (the IWE variance relative to that of the identity warp) to assess
event alignment 55,

In all experiments our method uses Ny = S resolution scales, A = 0.0025 in (4.9), and the
Newton-CG optimization algorithm with a maximum of 20 iterations/scale. The flow at #,i4
is transported to each side via the upwind or Burgers’ PDE solver (using s bins for MVSEC,
40 for DSEC), and used for event warping (4.8) (see Suppl. Mat.). In the optimization, we
use 30k events for MVSEC indoor sequences, 40k events for outdoors, and 1.5M events for
DSEC.

4.3.2 REsuLTs oN MVSEC

Table 4.1 reports the results on the MVSEC benchmark. The different methods (rows) are
compared on three indoor sequences and one outdoor sequence (columns). This is because
many learning-based methods train on the other outdoor sequence, which is therefore not
used for testing. Following Zhu etal., outdoor_days is tested only on specified 8oo frames 7.
The top part of Tab. 4.1 reports the flow corresponding to a time interval of d¢ = 1 grayscale
frame (at = 45Hz, i.e., 22.2ms), and the bottom part corresponds to dr = 4 frames (89ms).

Our methods provide the best results among all methods in all indoor sequences and are
the best among the unsupervised and model-based methods in the outdoor sequence. The
errors for dt = 4 are about four times larger than those for d¢ = 1, which is sensible given the
ratio of time interval sizes. We observe no significant differences between the three versions
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Table 4.1: Results on MVSEC dataset”?. Methods are sorted according to how much data they need: supervised learning
(SL) requires ground truth flow; semi-supervised learning (SSL) uses grayscale images for supervision; unsupervised learn-

ing (USL) uses only events; and model-based (MB) needs no training data. Bold is the best among all methods; underlined

| 109

is second best. Nagata et a evaluate on shorter time intervals; for comparison, we scale the errors to dt = 1.

indoor_flyingr indoor_flying2 indoor_flying3 outdoor_day:

dr=1 AEE] %Out| AEE] %Out] AEE| %Out] AEE] %Out|
EV-FlowNet-EST5> 0.97  0.91 1.38 820 1.43 G6.47 - -
5 EV-FlowNet+ 55 0.6 1.00 0.66 1.00 0.59 1.00 0.68 0.99
E-RAFTs¢ - - - - - - 0.24 1.70
EV-FlowNet (original)'’  1.03 2.20 1.72 15.10 1.§3 I1.90 0.49  0.20
£ Spike-FlowNet*” 0.84 - 1.28 - I.1I - 0.49 -
Ziluo et al. 3+ 0.7 0.I0  0.79 1.60 0.72 I1.30 0.42  0.00
EV-FlowNet % 0.s8 o000 1.02 400 087 3.00 0.32 0.00
= EV-FlowNet (retrained) '™ 0.79 120 1.40 1090 1.18 7.40 0.92  5.40
= FireFlowNet'"® 0.97 260 1.67 15.30 1.43 II 1.06 6.60
ConvGRU-EV-FlowNet® o0.60 o.51 1.17 806 0.93 5.64 0.47 0.25
Nagata et al.*® 0.62 - 0.93 - 0.84 - 0.77 -
Akolkar et al.” I.52 - 1.59 - 1.89 - 2.75 -
/M Brebion et al.™s 0.2 0.I0 0.98 5.50 0.71  2.I0 0.53  0.20
Ours (w/o time aware) 0.42 009 0.60 0.59 0.0 029 0.30 O.II
Ours (Upwind) 0.42 o0.10 ©0.60 0.59 0.50 0.28 0.30 0.10
Ours (Burgers’) 0.42 o0.10 ©0.60 0.59 0.50 ©0.28 0.30 0.10
dt =4
EV-FlowNet (original)'7®  2.25 2470  4.05 45.30  3.45 39.70 1.23  7.30
£ Spike-FlowNet*” 2.24 - 3.83 - 3.18 - 1.09 -
Ziluo et al.?* 1.77 1470 2.52 26.10 2.23 22.10 0.99  3.90
=1 EV-FlowNet " 2.18 24.20 3.85 46.80 3.18 47.80 130 9.70
2 ConvGRU-EV-FlowNet® 2.16 21.51 3.90 40.72  3.00 29.60 1.69 12.50
Ours (w/o time aware) 1.68 1279 2.49 26.31 2.06 18.93 1.25 9.19
S Ours (Upwind) 1.69 12.83 2.49 26.37 2.06 19.02 1.25  9.23
Ours (Burgers’) 1.69 1295 2.49 26.35 2.06 19.03 1.25 9.21
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Figure 4.5: MVSEC comparison (dt = 4) of our method and two state-of-the-art baselines: ConvGRU-EV-FlowNet (UsL)®>
and EV-FlowNet (SSL)*”?. For each sequence, the upper row shows the flow masked by the input events, and the lower
row shows the IWE using the flow. Our method produces the sharpest motion-compensated IWEs. Note that learning-
based methods crop input events to center 256 X 256 pixels, whereas our method does not. Black points in ground truth
(GT) flow maps indicate the absence of LIDAR measurements. The optical flow color wheel is in Fig. 4.1.
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of the method tested (warp models, see also Sec. 4.3.5), which can be attributed to the fact
that the MVSEC dataset does not comprise large pixel displacements or occlusions.

Qualitative results are shown in Fig. 4.5, where we compare our method against the state
of the art. Our method provides sharper IWEs than the baselines, without overfitting, and
the estimated flow resembles the ground truth one.

Ground truth (GT) is not available on the entire image plane (see Fig. 4.5), such as in pix-
els not covered by the LIDAR’s range, FOV, or spatial sampling. Additionally, there may be
interpolation issues in the GT, since the LIDAR works at 20 Hz and the GT flow is given
at frame rate (45 Hz). In the outdoor sequences, the GT from the LiDAR and the camera
motion cannot provide correct flow for independently moving objects (IMOs). These issues
of the GT are noticeable in the IWEs: they are not as sharp as expected. In contrast, the IWEs
produced by our method are sharp. Taking now into account the GT quality on the compar-
ison Table 4.1, it is remarkable that our method outperforms the state-of-the-art baselines on
the indoor sequences, where GT has the best quality (with more points in the valid LIDAR
range and no IMOs).

4.3.3 REesurts oN DSEC

Table 4.2 gives quantitative results on all the DSEC Optical Flow benchmark. No GT flow
is available for these sequences. Currently only the method that proposed the benchmark
reports values’®. As expected, this supervised learning method is better than ours in terms
of flow accuracy because (7) it has additional training information (GT labels), and (77) it is
trained using the same type of GT signal used in the evaluation. Nevertheless, our method
provides competitive results and is better in terms of FWL, which exposes similar GT qual-
ity issues as those of MVSEC: pixels without GT (LiDAR’s FOV and IMOs). Qualitative
results are shown in Fig. 4.6. Our method provides sharp IWEs, even for IMOs (car) and
the road close to the camera. The FWL is computed using the same rooms intervals used for
the accuracy benchmark calculation. Since the FWL is sensitive to the number of events, the
previous convention is consistent with the benchmark.

We observe that the evaluation intervals (10oms) are large for optical flow standards. In
the benchmark, 80% of the GT flow has up to 22px displacement, which means that 20%
of the GT flow is larger than 22px (on VGA resolution). The apparent motion during such
intervals is sufficiently large that it breaks the classical assumption of scene points flowing in
linear trajectories.

4.3.4 EFFECT OF THE MULTI-REFERENCE Focus Loss

The effect of the proposed multi-reference focus loss is shown in Fig. 4.7. The single-reference
focus loss function can easily overfit to the only reference time, pushing all events into a small
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Table 4.2: Results on the DSEC optical flow benchmark 56,

All interlaken_oo_b interlaken_o1_a thun_o1_a

AEE | %Out| FWL1 AEE | %Out| FWL1 AEE] %Out| FWL1 AEE] %Out| FWL1

E-RAFT® o079 268 129 1.39 6.19 1.32  0.90  3.9I 1.42 0.65 1.87 1.20
Ours 3.47 30.86 1.37 574 38.93 1.50 3.74 31.37 .51 212 17.68 1.24

thun_or_b zurich_city_12_a zurich_city_14_c zurich_city_15_a

AEE | %Out| FWL1 AEE| %Out| FWL1 AEE] %Out| FWL1 AEE] %Out| FWL1

E-RAFTS® o0.58  1.52 1.18  0.61 1.06 I.12  0.71 1.91 1.47 0.59 130 1.34
Ours 2.48 23.56 1.24 3.86 43.96 1.I14 272 30.53 1.50 235 20.99 1.41
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(a) Events (b) IWE (Ours) (c) Fl;)w (Ours) (d) IWE (SL)s¢ (e) Flow (SL) 6

Figure 4.6: DSEC results on the interlaken_00_b test sequence (no GT available). Since GT is missing at IMOs and points
outside the LIDAR’s FOV, the supervised method > may provide inaccurate predictions around IMOs and road points close
to the camera, whereas our method produces sharp edges. For visualization, we use 1M events.

region of the image at #; while producing blurry IWEs at other times (;q and zy;,). Instead,
our proposed multi-reference focus loss discourages such overfitting, as the loss favors flow
fields which produce sharp IWEs at any reference time. The difference is also noticeable in
the flow: the flow from the single-reference loss is irregular, with a lot of spatial variability in
terms of directions (many colors, often in opposite directions of the color wheel). In contrast,
the flow from the multi-reference loss is considerably more regular.

4.3.5 EFFECT OF THE TIME-AWARE FLOW

To assess the effect of the proposed time-aware warp (4.8), we conducted experiments on
MVSEC, DSEC and ECD ' datasets. Accuracy results are already reported in Tabs. 4.1
and 4.2. We now report values of the FWL metric in Tab. 4.3. For MVSEC, dr = lisa
very short time interval, with small motion and therefore few events, hence the sharpness of
the IWE with or without motion compensation are about the same (FWL ~ 1). Instead,
dt = 4 provides more events, and larger FWL values (1.1-1.3), which means that the con-
trast of the motion-compensated IWE is better than that of the zero flow baseline. All three
methods provide sharper INEs than ground truth. The advantages of the time-aware warp
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Figure 4.7: Effect of the multi-reference focus loss.

Table 4.3: FWL (IWE sharpness) results on MVSEC, DSEC, and ECD. Higher is better.

MVSEC (dr = 4) ECD DSEC
indoorr indoorz indoors outdoorr slider_depth thun_oo_a zurich_city_o7_a
Ground truth 1.09 1.20 I.12 1.07 - 1.01 1.04
Ours: w/o time aware  1.17 1.30 1.23 1.1 1.88 1.39 1.57
Ours: Upwind 1.17 1.30 1.23 I.11 1.92 1.40 1.60
Ours: Burgers’ 1.17 1.30 1.23 111 1.93 1.42 1.63

(4.8) over (4.4) to produce better INEs (higher FWL) are most noticeable on sequences like
slider_depth **> and DSEC (see Fig. 4.8) because of the occlusions and larger motions. No-
tice that FWL differences below o.1 are significant'*5, demonstrating the efficacy of time-
awareness.

4.3.6  EFFECT OF THE MULTI-SCALE APPROACH

The effect of the proposed multi-scale approach (Fig. 4.4) is shown in Fig. 4.9. This experi-
ment compares the results of using multi-scale approaches (in a coarse-to-fine fashion) versus
using a single (finest) scale. With a single scale, the optimizer gets stuck in a local extremal,
yielding an irregular flow field (see the optical flow rows), which may produce a blurry IWE
(e.g., outdoor_dayr scene). With three scales (finest tile and two downsampled ones), the
flow becomes less irregular than with one single scale, but there may be regions with few
events where the flow is difficult to estimate. With five scales the flow becomes smoother,
more coherent over the whole image domain, while still being able to produce sharp IWEs.
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Figure 4.8: Time-aware flow. Comparison between 3 versions of our method: Burgers’, upwind, and no time-aware (4.4).
At occlusions (dartboard in slider_depth *°® and garage door in DSEC >°), upwind and Burgers’ produce sharper IWEs. Due
to the smoothness of the flow conferred by the tile-based approach, some small regions are still blurry.

4.3.7  ArprLiCcATION TO DEEP NEURAL NETWORKS (DNN)

The proposed secrets are not only applicable to model-based methods, butalso to unsupervised-
learning methods. We train EV-FlowNet'7? in an unsupervised manner, using (4.9) as data-
fidelity term and a Charbonnier loss ' as the regularizer. Since the time-aware flow does not
have a significant influence on the MVSEC benchmark (Tab. 4.1), we do not port it to the
learning-based setting. We convert 40k events into the voxel-grid representation'® with s
time bins. The network is trained for so epochs with a learning rate of 0.001 with Adam
optimizer and with 0.8 learning rate decay. To ensure generalization, we train our network
on indoor sequences and test on the outdoor_day1 sequence.

Table 4.4 shows the quantitative comparison with unsupervised-learning methods. Our
model achieves the second best accuracy, following *°, and the best sharpness (FWL) among
the existing methods. Notice that"*® was trained on the outdoor_day2 sequence, which is
a similar driving sequence to the test one, while the other methods were trained on drone
data’’. Hence "*° might be overfitting to the driving data, while ours is not, by the choice of
training data.

Additional qualitative results of our unsupervised learning setting are shown in Fig. 4.10.
We compare our method with the state-of-the-art unsupervised learning®. Our results re-
semble the GT flow. See Tab. 4.4 for the quantitative result.
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Figure 4.9: Effect of the multi-scale approach. For each sequence, the top row shows the estimated flow, the middle row
shows the estimated flow masked by the events, and the bottom row shows the IWEs.
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Table 4.4: Results of unsupervised learning on MVSEC'’s outdoor_day1 sequence.

dr=1 dt =4
AEE| %Out] FWLT AEE] %Out] FWL1

EV-FlowNet ' 0.32  0.00 - 1.30  9.70 -
EV-FlowNet (retrained)"*® 0.92 5.40 - - - -
ConvGRU-EV-FlowNet s 0.47 0.25 0.94 1.69 12.50 0.94
Our EV-FlowNet using (4.9) 0.36  0.09  0.96 1.49 1172  LII

(a) Input events (b)GT (c) Our EVFlowNet with (4.9) (d) USL®s

Figure 4.10: Result of our DNN on the MVSEC outdoor sequence. Our DNN (EV-FlowNet architecture) trained with (4.9)
produces better result than the state-of-the-art unsupervised learning method ®°. For a quantitative comparison, see Table
4.4,

4.3.8 SENSITIVITY ANALYSIS
THE CHOICE OF LOSS FUNCTION.

Table 4.5 shows the results on the MVSEC benchmark for different loss functions. We com-
pare the (squared) gradient magnitude, image variance, average timestamp '*°, and normal-
ized average timestamp®. The gradient magnitude and image variance losses produce the
best accuracy compared with the two average timestamp losses. Quantitatively, the image
variance loss gives competitive results with respect to the gradient magnitude. However,
for the reasons described in Sec. 4.2.2, and because the image variance sometimes overfits,
we use gradient magnitude. Both average timestamp losses are trapped in the global optima
which pushes all events out of the image plane, hence, the provide very large errors (marked
as “> 997 in Tab. 4.5). This effect is visualized in Fig. 4.11.
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Table 4.5: Sensitivity analysis on the choice of loss function (MVSEC, dt = 4). The contrast and gradient magnitude
functions provide notably better results than the losses based on average timestamps.

indoor_flyingr  indoor_flying2 indoor_flyings  outdoor_dayr
AEE| %Out] AEE] %Out| AEE] %Out] AEE] %Out]

Gradient magnitude* 1.68 12.79 2.49 26.31 2.06 18.93 1.25 9.19
Image variance®” 1.70 II1.2§ 2.18 21.91 1.93 15.84 1.82 15.89
Avg. timestamp '*° >99 >99 >99 >99 >99 >99 >99 >99

Norm. avg. tirnestalmp65 >99 >99 >99 >99 >99 >99 >99 >99

(e) Norm. avg.
timestamp %5

180

(a) Input events (b) Gradient Magnitude (c) Variance (d) Avg. timestamp

Figure 4.11: IWEs for different loss functions. Average timestamp losses overfit to undesired global optima, which pushes
most events out of the image plane.

Remark: Maximization of (4.6) does not suffer from the problem mentioned in® that
affects the average timestamp loss function, namely that the optimal flow warps all events
outside the image so as to minimize the loss (undesired global optima shown in Fig. 4.11d-
4.11¢). If most events were warped outside of the image, then (4.6) would be smaller than
the identity warp, which contradicts maximization.

THE REGULARIZER WEIGHT.

Table 4.6 shows the sensitivity analysis on the regularizer weight 1 in (4.9). 4 = 0.0025
provides the best accuracy in the outdoor sequence, while A = 0.025 provides slightly better
accuracy in the indoor sequences. Comparing their accuracy differences, we use the former
because it has a higher accuracy gain.

4.3.9 LIMITATIONS

Like previous unsupervised works %, our method is based on the brightness constancy
assumption. Hence, it struggles to estimate flow from events that are not due to motion,
such as those caused by flickering lights. SL and SSL methods may forego this assumption,
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Table 4.6: Sensitivity analysis on the regularizer weight (MVSEC data, dt = 4).

indoor_flyingx indoor_flying> indoor_flying3 outdoor_day1
AEE] %Out] AEE] %Out] AEE] %Out] AEE] %Out]

A =0.0025 1.68 12.79 2.49 26.31 2.06 18.93 1.25 9.19
A =0.025 1.52 9.07 2.39 26.26 1.94 18.44 1.86 17.11
A=0.25 1.89 16.54 3.19 36.95 2.91 30.85 2.57 27.86

but they require high quality supervisory signal, which is challenging due to the HDR and
high speed of event cameras.

Like other optical flow methods, our approach can suffer from the aperture problem.
The flow could still collapse (events may be warped to too few pixels) if tiles become smaller
(higher DOFs), or without proper regularization or initialization. Optical flow is also diffi-
cult to estimate in regions with few events, such as homogeneous brightness regions and re-
gions with small apparent motion. Regularization fills in the homogeneous regions, whereas
recurrent connections (like in RNNs) could help with small apparent motion.

4.4 CONCLUSION

We have extended the CM framework to estimate dense optical flow, proposing principled
solutions to overcome problems of overfitting, occlusions and convergence without perform-
ing event voxelization. The comprehensive experiments show that our method achieves the
best accuracy among all methods in the MVSEC indoor benchmark, and among the unsu-
pervised and model-based methods in the outdoor sequence. It is also competitive in the
DSEC optical flow benchmark. Moreover, our method delivers the sharpest IWEs and ex-
poses the limitations of the benchmark data. Finally, we show how our method can be ported
to the unsupervised setting, producing remarkable results. We hope our work unlocks future
optical flow research on stable and interpretable methods.



Event-by-event Optical Flow Estimation

5.1 FAST CORRELATION-BASED FLOW ESTIMATION

Event cameras®"*" have led to rethinking visual processing for various computer vision tasks
because their operating principle and output data are fundamentally different from those
of conventional, frame-based cameras. These bio-inspired sensors naturally respond to the
scene dynamics and offer advantages, such as low latency, high dynamic range (HDR) and
data efficiency, which need to be unlocked with new algorithms*. Neuromorphic principles
have been a major source of inspiration for such novel algorithms and hardware, especially in
motion estimation tasks %%,

Event-based optical flow estimation methods can be broadly classified as packet-based or
event-by-event—based depending on how events are processed and update the estimator’s out-
put. Packet-based methods process a batch of events (e.g., events in a fixed time window,
say 10—100 ms, or a fixed number of events, typically 30k—1M), hence they require some
waiting time before processing (inference) starts*>'**4¢%¢_ They trade off the high-speed ad-
vantages of event data for accuracy. Prior work has proposed adaptations of classical frame-
based methods (block matching96, Lucas-Kanade "), spatio-temporal plane-fitting ", time-
surface matching**?, and contrast-maximization methods 17646146 While the above methods
are model-based (optimization) methods, Artificial Neural Networks (ANN) 79180563487
are also batch-based, and are inspired by frame-based ANN architectures 160,77 thus requir-
ing data conversion into a tensor representation, such as voxel grids. ANNs achieve current
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Figure 5.1: Runtime vs. accuracy comparison for various event-based optical flow estimation methods. Results are on

outdoor data of the MVSEC benchmark *? (see also Tab. 5.2). Accuracy is measured based on Average Endpoint Error

(AEE). The numbers in the diagram indicate the reference numbers within 147,

state-of-the-art accuracy for optical flow estimation and high speed '+, but require power-
hungry GPUs and lack interpretability.

On the other hand, event-by-event methods process every event incrementally as it occurs
(without waiting time), aiming to leverage the camera’s low-latency advantage'®**. Many
event-by-event methods, such as Spiking Neural Networks (SNNGs), are inspired by the brain
(i.e., neuromorphic), since the neural circuits of visual processing are thought to be event-
driven. While previous work propose SNN architectures , they comprise low-level
physiological parameters of neurons (e.g., membrane potentials) that are difficult to inter-
pret, validate and adjust to improve the estimation accuracy. Indeed, insects and mammals
have different low-level underlying mechanisms, while they have similar algorithmic steps to
transform light into motion**. Hence, it is important to find abstracted logical operations

114,120,65

of motion estimation, rather than to mimic the entire physiological properties of neurons.
From a practical point of view, most event-by-event methods have been tested on simple
scenes, as opposed to the more complex real-world scenes and publicly-available benchmarks
of batch-based methods*?”. This may be attributed to the use of tailored hardware®*, strong
assumptions of the scene, limited problem settings*® or the difficulty in defining event-by-
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event benchmarks on real data with us resolution. Hence, it is important to explore event-
by-event motion estimation algorithms that can solve complex, real-world problems.

This work leverages insights from neuroscience, especially from the classical Barlow-Levick
model®, and proposes a novel optical flow estimation scheme based on triplet matching. In
contrast to previous batch-based methods, it requires only three events for estimation, which
opens the door to future real-time incremental motion estimation methods. Compared to
previous event-by-event approaches, itis tested on publicly-available optical flow benchmarks
to demonstrate its capability to handle real-world scenes with comparable results. Addition-
ally, itis based on logical operations, which enables a simple and efficient data structure imple-
mentation and execution on standard CPUs. In summary, our contributions are twofold: (7)
we present a novel event-by-event algorithm for optical flow estimation, theoretically derived
from neuroscience insights, and (77) we practically demonstrate that it achieves comparable
results as prior work while only requiring a CPU and being faster than optimization-based
algorithms (Fig. 5.1).

The signal processing in this work materializes the ideas in current neuroscience models,
shedding light on what the strong and weak scenarios are, in order to improve the models.

5.2 METHODOLOGY

5.2.1 EVENT CAMERA

Event cameras acquire visual data in the form of asynchronous per-pixel brightness differ-
ences called “events”®“*. An event ¢, = (;, Xy, pi) is triggered as soon as the logarithmic
brightness at the pixel x; = (x, yk)—r exceeds a preset threshold. Here, # is the timestamp of
the event with ps resolution, and polarity p, € {+1, —1} is the sign of the brightness change
(i.e., increase vs. decrease, respectively).

5.2.2 TRIPLET MATCHING

Theidea of the triplet matching comes from neuroscience models by Hassenstein-Reichardt
and Barlow-Levick®. These correlator models estimate motion by computing pairwise neural
activities (e.g., spikes) in space and time**. Especially,** suggests that triplet correlations (the
product of pairwise correlations for three spikes in space-time) improve motion estimation
accuracy. Here, we introduce the idea of the triplet-matching method as logical operations
in space-time coordinates. We build an incremental (event-by-event) estimation algorithm,
and extend it into batch mode for testing because benchmarks are specified on a batch basis.
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Figure 5.2: Triplet matchig algorithm. Triplet-matching algorithm seeks spatially and temporally neighboring events in an
event-by-event manner, and provides event-based flow f;. Note this is an example of batch estimation given the input
events.

Algorithm 1 Triplet matching algorithm

Input: ¢, HET
Output: HE £,
1: Find event neighborhood A in (s.1).
2: fori € H,do
Search for triplet candidates (5.2).
Collect triplet 7= (%, 7, )
end for
: Calculate f;, +— {7} in (5.3)
: Update H* + H*', H,

DX AR PR

INCREMENTAL ESTIMATION

It consists of two main steps: search and update (Algorithm 1). Events are split by polarity,
following the idea of ON- and OFF- circuits in the brain**. The search step finds triplets
of events that are aligned (i.e., correlated) in space-time assuming a constant velocity model
(Fig. 5.2). One of the events in the triplet is the incoming event, and the other two events
are searched for within its space-time neighborhoods of size dy, d;. The search has two steps:
first the set of all potential 2nd events is determined; then the set of all potential 3rd events
(compatible with the previous two in the triplet) refines the search. In the update step, every
triplet of events is characterized by a different velocity. The velocity (low) f;, for the incoming
event ¢ is computed as the average of the velocities of all triplets. Later, for benchmarking
purposes, the flow is voxelized (quantized on a space-time grid) and smoothed.

In the search step, since event data are sorted by timestamp #, we use index maps to make
the search efficient, with complexity O(N, log NN,). The index map H,, of an event ¢; consists
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of the indices of its space-time neighbors:
H={ilty,—7—d, <t <t —rand ||x, — x;|| < d,}. (5.1)

Parameters d, and dy decide the maximum admissible velocity of the flow, and zis a refractory
period, which limits the search space by assuming neighboring events in the moving edge do
not exist at the same timestamp. d, can also be interpreted as the delay in the Barlow-Levick
model. For each new event ¢;, we build a set of index maps H* = {H;}*_, and output a set
of event triplets { 7} = {(e, ¢, ¢;) }. To find the triplet match we look for event indices 7 that
have roughly constant velocity with the event pairs (e, ¢;) where 7 € Hj:
Jei = {] EH |t;,—7—d, < 6 < t;— 7and x; — X = X} — X} (5.2)
The update step calculates the flow f; and updates the index map H*. H* is obtained by
adding new A, to H*~! and removing old index maps (we keep the latest 20000 index maps
per polarity). The flow f is obtained as the weighted average

. WV
f, = LIV .
13 ZT’”T (S 3)

where vi = (x; — x;)/(¢; — ;) is the velocity of each triplet. Since (5.3) gives accurate flow if
the triplet is caused by the same scene edge, we use the weight w7 to estimate the probability
that the triplet belongs to the same edge. Assuming constant velocity, if ¢; is produced by the
same edge that generates ¢; and ¢;, the expected timestamp of ¢; is given by Z‘] = t; — 0, where
0 = t; — t,;. Therefore, to account for errors in the timestamps between 2‘1 and ¢, we set the
weight wr = N(¢; 4, 8°), where V is the Gaussian density function.

BatcH EstiMATION

We extend the incremental (event-by-event) estimator to batch mode because current bench-
marks are batch-based. For a set of events & = {¢, }1,, we create the index maps H'¥ first,
which takes O(IN? log N,). Then the flow is calculated looping over each event using Algo-
rithm 1. The overall computational complexity is O(N? log IN,).

For benchmarking with ground truth, the event-wise flow is converted into a voxel-wise
flow, which also enhances space-time coherence. We quantize the time coordinates of f; into
bins, and take the average of the {f; } that lie in each voxel. We also apply a non-zero average
filter (take average of only non-zero values) with kernel size 3 x 3 for spatial smoothing.

The computational complexity of both approaches is summarized in Tab. s5.1. For com-
parison, we also report those of optimization-based methods: Contrast Maximization (CMax)
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and time-surface matching'®. The latter methods require additional complexity for the
number of iterations Nj, which is inefficient. We report runtime comparisons in Sec. 5.3.3.

Algorithm 2 Triplet matching: Batch

Input: &
Output: f, HNe
1: fork =1to N, do
SearchH; ={i |ty —7—d, < t;, <, — rand ||x; — x;|| < ds}
end for
fork = 2toN,do
Calculate £, H* using Algorithm 1 with ¢, cH!
end for
return f, H*

N ok wn

Table 5.1: Complexity of algorithms, for batch estimation and event-by-event estimation.

Batch Event-by-event
CMax* O(Niwe(N, + N,)) _
Nagataetal.’® O(Nie(N, + N,)) -
Ours O(N?*log N,) O(N, log N,)

5.3 EXPERIMENTS

5.3.1 DATASETS AND EVALUATION METRICS

The MVSEC dataset'7® is a standard dataset for optical flow estimation **>5¢¢514¢. The data
consists of event camera, LiDAR, and camera poses. The event camera (mDAVIS346 cam-
era’s®) provides events, grayscale frames and IMU data (346 x 260 pix). The ground truth
optical flow is provided as the motion field from the camera velocity and the depth of the
scene'7?. The sequences are indoors with a drone and outdoors with a car, and we evaluate
on 63.5 million events spanning 265 seconds from both outdoor and indoor sequences.

We measure optical flow accuracy to evaluate our method. The metrics are the Average
Endpoint Error (AEE) and the percentage of pixels with AEE greater than 3 pixels (% Out).
The time intervals for evaluation are Az = 1 grayscale frame (at ~ 45Hz, i.e., 22.2ms) and
At = 4 frames (89ms). Flow accuracy is evaluated only in pixels with valid ground truth. All
experiments use dy = V2 pix, d, = 100ms and 7 = 3ms.
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Table 5.2: Results on MVSEC dataset”?. Methods are presented as unsupervised learning-based (USL) or model-based
(MB). For brevity, EV-FlowNet is abbreviated as EVFN. Nagata et al. 109 evaluate on shorter time intervals; for comparison,
we scale the errors to Ar = 1.

outdoor_dayr  indoor_flyingr indoor_flyinga

Ar=1 AEE| %Out| AEE] %Out] AEE] %Outl]
EVFN 0.32 0.00 0.58 0.00 1.02 4.00
_, EVEN (retrain)*'® 0.92 5.40 0.79 1.20 1.40 10.90
s FireFlowNet '8 1.06 660 097 260 1.67 15.30

ConvGRU-EVEN®  o0.47 0.25 0.60 0.51 1.17 8.06
MultiCM-EVEN'#* 036  0.09 - - - -

Nagata et al.’® 0.77 - 0.62 - 0.93 -
- Akolkar et al.” 2.75 - I.52 - 1.59 -
= Brebionetal. 0.53 0.20 0.52 o.10 0.98 5.50
MultiCM *#¢ 0.30 0.10 0.42 0.10 0.60 0.59
Ours 0.94 3.08 1.0§ 2.90 1.68  13.44
At =4
e EVFN % 1.30 9.70 2.18  24.20 3.85  46.80
g ConvGRU-EVEN®  1.69 12.50 2.16  21.51 3.90  40.72
MultiCM-EVFEN™® 149 11.72 - - - -
@ MultiCM ™#° 1.25 9.21 1.69 12.95 2.49 26.35
= Ours 3.60  49.04 4.06  53.88 6.39 71.82

We also show qualitative results on the DSEC dataset®s and the ECD dataset'®. Both
datasets are widely used for motion estimation*'77¢1°»14¢ Each sequence of the DSEC
dataset consists of events from Prophesee Gen3 event cameras (640 x 480 pixels) and ground
truth optical flow (at 10 Hz) with the scene depth from a LIDAR. Each sequence of the ECD
dataset provides events, frames, calibration, and IMU data (at 1 kHz) from a DAVIS240C
(240 x 180 pix)*?, as well as ground truth camera poses (at 0.2 kHz).

5.3.2 OprTICcAL FLOW ESTIMATION ACCURACY

Table 5.2 comprises flow estimation accuracy results on the MVSEC benchmark. The top
part of the table reports results for Az = 1, and the bottom partreports Az = 4. The methods
in the table are categorized as unsupervised learning-based (USL), i.e., using a Deep Neural
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Figure 5.3: Optical flow results on MVSEC data.

Network (DNN) on grid-converted events, and model-based (MB). Results for Az = 1 are
thorough, with our method in the middle accuracy range among all methods. Results for
At = 4 are not as complete because the literature does not report them (especially most
model-based methods). While a thorough comparison for Az = 4 is difficult, our error is
roughly four times bigger than for Az = 1, which makes sense, and it is consistently 2.5
3 times bigger than that of the most accurate method'# for both Az = {1,4}. The fact
that for longer time intervals batch-based methods (A = 4) achieve higher accuracy than
our method may be attributed to the fact that our method is event-by-event, so it does not
leverage long-term temporal smoothing, which would improve robustness to noise.

Figure 5.3 shows qualitative results. As it is noticeable, the events displaced using the es-
timated flow produce sharp images of warped events (IWEs*®). The Flow Warp Loss 55 mea-
sures the sharpness of the IWE qualitatively: 1.154 for outdoor_dayr,1.157 forindoor_{flyingr,
and 1.248 for indoor_{flying2, where FWL larger than 1 indicates sharper than the identity
warp baseline (i.e., zero flow). The figure also shows the estimated flow; notice that our

71



method produces a flow vector for each event (Fig. 5.2), whereas it is common to display
the flow for every pixel (image-based legacy). Hence, Fig. 5.3 shows a 2D collapsed version
of the estimated space-time optical flow field, for visual comparison with the ground truth.
The flow is most reliably estimated in regions where events happen, i.e., scene edges. Further
spatial and temporal smoothness could be enhanced if needed: for example, homogeneous
brightness regions between edges could be filled in by some prior, such as a regularizer or
in-painting algorithm.

5.3.3 RUNTIME COMPARISON

The proposed method runs in an event-by-event manner and hence trades oft accuracy for
speed, compared with batch-based methods. We showed computational complexity compar-
ison in Tab. s.1. Now, we conduct the runtime comparison among several previous work.
We use Python (3.9.12) on CPUs (Mac M1 2020, 8 Cores). We process 300k events incre-
mentally and average the resulting runtimes. The results are shown in Fig. 5.1. Our method
achieves the fastest runtime among compared methods: 0.0934 milliseconds (>10 kHz).
Note that many methods in the literature, such as the second '™ and third ™ fastest ones,
use GPUs, while ours can run natively on CPUs. These fast and lightweight characteristics
of the proposed method are important for future robotics applications of event cameras on
resource-constrained platforms.

5.3.4 EFFECT OF PIXEL QUANTIZATION

Alimitation of the proposed method is the quantization of the flow direction since the search
for the second event in the triplet is limited to the 8 neighboring pixels of the current event.
To illustrate it, we conduct experiments on the dynamic_translation sequence from the ECD
dataset'. Figure 5.4 shows the distribution of v over all events (assuming a planar trans-
lation model, i.e., constant velocity over all pixels). Similar to the SNN proposed in''#, v is
constrained to eight cardinal directions. However, in contrast to'*#, which quantizes both
the direction and magnitude of the flow, our method can estimate a continuum of magni-
tudes. The distributions are spread around a main direction and its two neighboring ones,
which is due to the small aperture (5 X 5 pix) used for each triplet.

5.3.5 RESULTS ON HIGHER SPATIAL RESOLUTION

For completeness, we also show qualitative results on DSEC, with a higher-resolution (640 x
480 pixels) event camera in Fig. 5.s. Similarly to Fig. 5.3, the estimated flow is shown asa 2D
collapsed version of the estimated space-time optical flow field. The estimated flow (Fig. 5.5¢)
resembles the ground truth and provides a sharp IWE (Fig. 5.5b). These results demonstrate
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Figure 5.4: Effect of pixel quantization on ECD data. In the top row the motion is dominantly horizontal, whereas in the
bottom row it is vertical, as can be seen by the thickness of the edges (left) and the velocity distributions (right).

that the proposed method works on a recent high-resolution event camera. In this example,
the same parameters (e.g., dy in (5.1)) generalize to cameras with different resolutions, which
have different sizes of the receptive field (space in the visual space) per pixel. However, due to
the smaller pixel size, it sometimes suffers from the aperture problem (e.g., the “30” on the
road). One might need to consider increasing the recursive search (5.2), such as a quadruple
(the pairs of four events) and so on.

5.4 CONCLUSION

We proposed a novel event-based optical flow estimation scheme based on triplet matching
that runs in an event-by-event manner. The proposed method was biologically plausible for
event-based optical flow since it leverages knowledge from neuroscience. The experiments
demonstrated thatit is considerably fast (> 10 kHz) on standard CPUs while providing com-
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(a) Input events (b) IWE

(c) Estimated flow (d) Ground truth flow

Figure 5.5: Optical flow results on DSEC data.

parable results as prior batch-based algorithms. We hope that our work opens the door to
real-time, realistic, incremental motion estimation methods and event-camera applications
on resource-constrained devices.
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Estimating Motion of Air Convection

6.1 INTRODUCTION

Sensing the flow of transparent media, such as air or water, is important for various applica-
tions from aerodynamics to gas leakage detection. Optical imaging is a useful tool to exam-
ine such transparent media because it can capture the media with high detail in space-time
remotely. Among existing methods, schlieren imaging is a simple but efficient optical tool
for seeing the “invisible” '#**#3: inhomogeneities in transparent media that are not necessarily
perceived by the naked eye. It requires simple recording settings: lenses, cameras, and mirrors
or background patterns to image how light rays deviate due to refractive index variations in
the media. While it was initially conceived as a visualization technique, recent developments
in schlieren and shadowgraphy fields have extended the usage to velocimetry "'+, How-
ever, it requires a high-speed camera with a large spatial resolution to analyze the velocity of
the flow, such as convection. This is not only a constraint for real-world applications but
also a limitation of the methodology because: (7) achieving high shutter speeds requires un-
naturally bright illumination, which is not always practical, (77) transmitting and processing
the large amount of redundant data acquired involves high bandwidth, storage, and power-
hungry components, and (77z) regardless of the large power consumption, the trade-oft be-
tween speed and spatial resolution limits accuracy in estimating the flow velocity.
Eventcameras®"*' are novel bio-inspired sensors that respond to pixel-wise intensity changes,

which are not always visible to conventional frame-based cameras. They ofter advantages
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Figure 6.1: In background-oriented schlieren imaging local density gradient variations between a camera and a background
pattern lead to tiny perceived changes on the image plane. We show how to combine events and frames to calculate
optical flow of the schlieren scene and how to leverage the advantages of event cameras to visualize gas streams such as
the human breath.

such as high speed, high dynamic range (HDR ), low power consumption, and data efficiency
(temporal redundancy suppression)**, which makes them potential candidates to overcome
the limitations of traditional (i.e., frame-based) schlieren techniques. However, despite these
potential capabilities, the application of event cameras to imaging applications is yet to be
explored and developed.

This chapter presents a novel technique, event-based background-oriented schlieren (BOS),
for sensing air convection with event cameras and proposes a novel method to estimate the
temporal derivative of air density from events and frames (Fig. 6.1). Throughout the chapter,
we tackle the following challenges of event-based BOS: (7) Theory. There is no established
mathematical theory for event-based schlieren techniques. (77) Data. Event cameras sense
only increments of schlieren as opposed to the larger differences with respect to a reference
in frame-based BOS. (z77) Methodology. The origin of events in BOS (flickering because they
happen only at the edges of the background pattern) and large amounts of noise are novel and
difficult for previous work in event-based vision. (7v) Evaluation. The true ground truth of
the air density is not easy to obtain, hence we need some proxy ground truth and baselines.

First, we develop a theoretical connection between the schlieren and events, showing that
event cameras can sense the inhomogeneities of transparent media in a more direct way (as
flickering events) compared to frame-based cameras. Such direct sensing of schlieren through
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event data enables us to observe air convection at high speed more precisely and under chal-
lenging lighting conditions. Second, we propose a novel method that extends the linearized
event generation model with physically-inspired parameterization to estimate the temporal
density fluctuation due to the schlieren. Third, to evaluate the estimated density change,
whose real-world ground truth is not easy to obtain, we establish the evaluation method us-
ing optical flow, by revealing the theoretical connection between the temporal density change
and optical flow (i.e., pixel displacement). Using a co-located frame-based camera enables us
to benchmark different methods of estimating temporal density change as a computer vision
problem. The experimental results show that: (7) our proposed method recovers the flow
that corresponds to the temporal change of density gradient by comparing with the standard
frame-based methods and other baseline methods, (77) flickering-like events are a more direct
measurement of such schlieren, (277) event cameras record the density inhomogeneities even
in poor lighting conditions, which state-of-the-art frame-based algorithms cannot provide,
and (7v) the high temporal resolution of event cameras enables slow-motion schlieren analy-
sis.
The main technical contributions of this chapter are:

* A novel method for computation of schlieren combining events and frames (Secs. 6.3
and 6.4). The proposed method is rigorously obtained and well connected with the
physical model of the sensors involved via the linearized event generation model.

* The first schlieren event-frames dataset (Sec. 6.5). We publicly provide recordings of
several schlieren scenes by means of events and frames, at high resolution (1 Mpixel),
accurately synchronized and calibrated using an in-house acquisition system.

* A thorough comparison with baseline methods despite the lack of truly ground truth
data in this type of turbulent fluid dynamics phenomena (Sec. 6.6).

To the best of our knowledge, this is the first work showing the potential advantages of
event cameras for schlieren imaging applications.

6.2 RELATED WORK

6.2.1 BACKGROUND-ORIENTED SCHLIEREN

Schlieren photography was invented in 1864 to study the flow of air around objects mov-
ing at supersonic speed *+*. In contrast to other imaging and velocimetry techniques such as
particle image velocimetry 723, it does not require any particle seeding in the media of inter-
est. Among different schlieren-imaging techniques (see Tab. 6.1), BOS is a relatively recent
technique since it utilizes digital image processing***. In BOS (Fig. 6.2), an object of interest
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Table 6.1: Comparison of various schlieren imaging techniques and the physical quantities they measure.

Method Observation
2
Shadowgraphy7'3’126 %
b) . 84,126 a-/o
Toepler’s schlieren photography *# I
0
Laser speckle photography **¢ a—ﬁ
X
Frame-based BOS '2° a—ﬁ
ox
9
Event-based BOS (this work) 81‘50)(

with density variations (e.g., the hot air stream from a burning candle) is placed between the
camera and a constant (non-moving) background pattern. The schlieren generates complex
deformation to the background pattern, which is observed by cameras as the apparent motion
of the background pattern with respect to a reference image (without density variations) '*>.
Different methods have been proposed to compute the displacement vector field of the ap-
parent motion, such as using cross-correlation 6o, optical flow#, or wavelet-based analysis**°.
As equally important as the data processing method is the data acquisition setup. Best prac-
tices for parameter settings, such as the distance from the camera to the background and the
media, are provided in '+,

BOS has been used to image various transparent media, such as shock waves from explo-
sions"*°, turbulent flows*#*, and shock waves underwater®. Also, the background pattern
of BOS can be extended to natural images 7 which allows us to image the flow with large
field-of-view (FOV). In7°, BOS is utilized to visualize supersonic jets in flight, by leveraging
the natural vegetation of the terrain seen from above as the constant background pattern.
The large FOV is one of the unique characteristics of BOS unlike other schlieren techniques,
which enables measuring natural outdoor scenes'#?. Notwithstanding, BOS can be used as
input to other analysis tools, such as Dynamic Mode Decomposition (DMD) to reveal the
main frequency modes of variation of the signal in space and time'®?, which ultimately in-
form about the physical parameters of the turbulent flow. Recently, some works have ex-
tended BOS from an imaging technique to a quantitative method, e.g.,"®> measures the den-
sity of axisymmetric supersonic flow. In'#*, a method is proposed to extract velocity data
from flows. For this application, Kymography works better than classical image correlation,
and the self-similarity of round turbulent jet velocity appears in the schlieren results.

78



Image plane

Density Background
Gradient Pattern

Figure 6.2: Background-Oriented Schlieren (BOS) setup.

6.2.2 EVENT CAMERAS

Event cameras are a relatively new technology compared to BOS imaging with standard frame-
based cameras. Since the 2008 seminal work®", they have been slowly commercialized and ex-
plored in computer vision and robotics for various applications. Event cameras naturally re-
spond to motion in the scene at high speed and HDR in a data-efficient manner, hence large
progress has been made in motion-related tasks, such as optical flow estimation 1795146
ego-motion estimation *''»2148 S AM #12917771 | or video deblurring and frame interpo-
lation 17>1645°,

Only recently, the larger spatial resolution of event cameras and higher fill factor of their
pixels#"*5¢ has enabled fine-detail applications that were not possible with older models. Some
works have explored event cameras for detecting small changes in the scene. These include

, particle-image velocimetry"®?, and time-resolved 3D fluid flow re-

vibration monitoring '**

construction via collimated illumination **”. These works open another stack of event camera
applications in the field of fluid dynamics. Event-based BOS aims at pushing the limits, by
imaging and quantifying flow fields without any particle seeding.

6.3 EVENT-BASED SCHLIEREN

6.3.1  PRINCIPLES OF FRAME-BASED BOS

In frame-based BOS the schlieren object S (e.g., a gas with varying density) produces an
apparent displacement of the background pattern, which is measured with respect to the
initial state (i.e., the image acquired in the absence of density gradient). The displacement
Ax = (Ax,Ay) " is directly related to the small deflection angle ¢ = (¢, ¢,) " (Fig. 6.2) via
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the distance from lens to S (Z), the distance from S to the background (Zp), and the focal

length of the lens f‘26:
Zp
Ax ~ — e .
X f(ZD+ZA_f)g (6.1)

On the other hand, for the refractive index 7, the angle ¢ is the result of aggregating the
spatial gradient 07/ 0x along the length Z of the schlieren object .S on the optical axis:

1 [ 0On Z On
E — ; &dz == E&, (62)

where the ambient-air refractive index is given as 7. Finally, # is related to the density p
of the gas (schlieren object) via the Gladstone-Dale relation, » = Gp + 1, with constant
G =223 x10"*m’/kg"°.

In short, the spatial gradient of the density dp/Ox within a gas causing schlieren can be
directly quantified by measuring the pixel displacement Ax:

0
Axx L (6.3)
Ox
as summarized in Tab. 6.1. Here, the displacement is measured against the initial state (the
background pattern), hence the corresponding density-gradient field is the change with re-
spect to the initial (also called “reference”) state.

6.3.2 PriNcCIPLES OF EVENT-BASED BOS

One of the main differences between frame-based BOS and event-based BOS is that event
cameras only sense temporal changes in the scene, while the former measures the displace-
ment between a reference frame and the current frame (Fig. 6.3). Hence, the key challenge is
how we can relate events (the asynchronous intensity changes between two timestamps #; and
t,) to the density p. Since events are very noisy 62,43 accumulating the differences between far
away timestamps to estimate the same displacement as frame-based BOS (6.3) leads to high
noise levels **™*, which makes it difficult to estimate this displacement with events.

In order to establish the theoretical connection between schlieren and events, let us first ex-
tend the previous frame-based BOS theory to compute the displacement between two nearby
timestamps. Given frames at timestamps #y, £,, their displacements from a reference frame at
Lt (6.1) are AX(tef, 1) and AX(z,f, £). The optical flow v(x) = 0x/0¢ between consecutive
frames for small At = £, — 4 is

Ax(treﬂ t2) - Ax<tref7 tl)

v(x) = A : (6.4)
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Figure 6.3: Frame-based BOS and event-based BOS.

From the frame-based BOS theory, the displacement at each timestamp can be related to
the density gradient as follows (6.3):

Ip,
Ox’

I,
Ox

AX(l'ref, tl) (0

(6.5)
Ax(trefa l'2> X

Plugging (6.5) into (6.4), using finite-difference approximations and Schwarz’s theorem,
gives:

1 aﬂ;z 6’Jotl
Vi) o 5 (o~ )
1 0
= Az Ox (/012 _Jotl) (6.6)

Q

= %5 (Schwarz’s thm)
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Industry
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(a) Recording system (b) Events and frame

Figure 6.4: (a) Actual synchronized data recording system, combining an event camera and a frame-based camera via a
beamsplitter (Sec. 6.5.1). (b) Data: events (red and blue, colored according to polarity) during a short time window overlaid
on a grayscale frame (a 100 X 100 pixel region for better visualization).

That s, the optical flow between two nearby timestamps is related to the temporal deriva-
tive of the density gradient (see the last row of Tab. 6.1). Since events are the measurements be-
tween such nearby timestamps, the key question is how can optical flow (i.e., spatio-temporal
derivative of the density) be estimated from event data.

6.4 EsTiMATION METHOD

One of the main challenges of event-based BOS is its data modality: events generated by
schlieren objects are sparse, happening only at the edges of the background pattern (Fig. 6.4b)
and in a flickering form. Previous event-based optical flow estimation methods 414717965
often assume a continuous, nonﬂz’c/eerz’ng apparent motion of the visual patterns on the image
plane (e.g., Chapters 4 and s5). Also, events triggered during the short time interval needed
to capture fine details of the complex motion patterns are few compared to those in scenes
from typical optical flow benchmarks*7®55. Consequently, prior methods fail to produce
accurate flow since they are not tailored to the schlieren scenario, as we show in Sec. 6.6.2.
Due to these challenges, we propose a method that combines events and knowledge of the
background pattern (e.g., frames) to estimate the flow. The proposed method extends the
linearized event generation model (LEGM) 51711671 wwhich has been used for modeling as
complex motion as a rigid-body motion. In this work, we extend the LEGM towards further
complex motion: optical flow. The overall pipeline is described in Fig. 6.s.
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Figure 6.5: Block diagram of the objective Ey., in (6.11). On the top branch, events are integrated in time using (6.8)

p

and smoothed with a Gaussian kernel (¢ = 2 pix) to produce the measured brightness increment image A L. The bottom
branch shows how to compute the predicted brightness increment Az from the frame and the unknowns of the problem:
the translation field p and the Poisson parameters of the flow, q. The optical flow v and p are pseudo-colored (color wheel
is included). Same data as Fig. 6.4.

6.4.1 EVENT GENERATION MODEL

An event ¢, = (X, #, pi) conveys that the logarithmic brightness L at pixel x; changes by a
specified contrast sensitivity C°+3:

AL(X/e, t/e) = L(Xk, l’/e) — L(X/e, I, — Al’k) :]J/e C, (67)

where polarity p, € {+1, —1} is the sign of the brightness change, and Az is the time since
the last event at pixel x;. Given a set of events £ = {e/e},]ev;l, summing their polarities pixel-
wise produces a brightness increment image:

AL(x) = ZkaQ(x — X), (6.8)
k

where the Kronecker d'selects the pixel x;. The LEGM states that, assuming brightness con-
stancy during a small Az = #5, — #;, the increment (6.7) is caused by brightness gradients VL
moving with image velocity v#*:

AL(x) =~ —VL(x) - Ax = —VL(x) - v(x)Ar. (6.9)

6.4.2 OPTIMIZATION OBJECTIVE

We cast the problem of estimating the displacement (6.6) as an optimization one, where we
minimize the mismatch between the event data (in the form of (6.8)) and its prediction AL
via (6.9) exploiting the knowledge of the background pattern from a frame L. This idea is
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summarized in Fig. 6.s.

To allow for the fact that Z may not be perfectly aligned with the corresponding events,
we augment the model (6.9) with a translation warp L(W(x; p)), where W(x;p) = x + p,
and p denotes a small per-pixel translation.

Our composite objective (i.e., loss) function implies a joint optimization over the flow and
alignment parameters:

E(v,p) = Equua(v, P; €) 4 Ereg (v, p; E). (6.10)

The data-fidelity term measures the goodness of fit between the event data £ and its pre-
diction with our model:
AL AL
—(x) — N
|AL||, ALl

) (6.11)

.

data — ‘

where y is the L' norm (robust norm). Since Cin (6.8) is unknown, we compute the differ-
ence between normalized brightness increments (norms are over the pixel domain Q).

The regularizer penalizes the non-smoothness of the flow v and the magnitude of the per-
pixel translation p:

Erg. = Ai|w(x) VV(q(x)) [l + A2[[p()]]1- (6.12)

The flow regularizer (first term in (6.12)) is explained in Sec. 6.4.4, after the flow parame-
terization is introduced. For the second term, the magnitude of p is given by its L' norm over
the pixel domain. In the experiments, we set 1; = 0.5and 1, = 0.1.

6.4.3 PHYSICALLY-MOTIVATED PARAMETERIZATION

. . . . ; . o Op. .
Swapping the mixed derivatives (Schwarz’s theorem) in (6.6), the flow v ~ 5-=-isinterpreted

as the spatial gradient of %. Thus (6.6) admits two interpretations. (7) from left to right: once
estimated, the flow may be Poisson-integrated® to obtain %, (as the best L? fit to the estimated
flow7”*173). (7) from right to left: the flow may be obtained as the spatial (e.g., Sobel) gradient
of a precedent scalar field %. In contrast to most optical flow estimation methods, which
parametrize v(x) directly in terms of its x and y components, we go one step further and
exploit the above second interpretation of (6.6) to parametrize the flow by means of q = %,
which we call the Poisson parameters of the flow. This not only reduces the complexity of the
problem (number of variables being optimized), thus conferring robustness but also provides
astrong link with the physical meaning of the variables: according to (6.6), the resulting flow
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(a) Poisson images (b) Optical flow

Figure 6.6: Poisson parameters and flow.

actually represents the schlieren objects. Figure 6.6 shows examples of the Poisson parameters
q

Figure 6.5 summarizes the visual quantities involved in the calculation of (6.11). The can-
didate scalar parameter field q is converted (via the Sobel operator) into the vector flow field
v. The flow v and translation field p are used in the augmented model of (6.9) to gener-
ate a predicted (i.e., modeled) brightness increment image. On the other hand, events &£ are
summed in (6.8) and Gaussian-smoothed to produce a measured brightness increment im-
age. The difference between the measured and predicted brightness increments provides an
error signal that is used to drive the iterative refinement of the unknown variables p and q.

6.4.4 FLOW REGULARIZER

We penalize the non-smoothness of the flow using a weighted Total Variation (TV) (see
(6.12)). As illustrated in Fig. 6.4b, it is difficult to estimate accurate flow in regions with
very few events, which correspond to constant (e.g., zero) flow, hence we impose this prior
knowledge as a regularizer to encourage zero flow therein. Specifically, from the events £ we
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compute a Gaussian-smoothed histogram h(x; £) = >, N(x;x4,¢%) (with ¢ = S px) and
normalize it to the range [0, 1]. Then, we define weight function w(x) =1 — a/h(x; £)(x)
(large in ill-posed regions with very few events), with 2 = 0.95 in the experiments.

6.4.5 OPTIMIZATION

Multi-scale. Forimproved convergence, a coarse-to-fine patch-based approach is used for v, p
and the loss function (6.10). The coarsest patch size is 64 X 64 px and we use four resolution
levels in a pyramidal fashion, resulting in finest patches of 8 x 8 px. To reach pixel density
from the finest patches, we use bilinear interpolation.

Implementation. As an optimizer, we use Adam®? with 6oo iterations. The learning rate
is set to 0.05, with a decay of o.1. The initialization of the first frame at the coarsest scale is:
zero for p and v (when applicable) and random in [—1, 1] for the Poisson parameters q. We
found the latter to be better than also setting q to zero. Then, the initialization of the next
levels uses the optimization results from the previous scales (i.e., coarse-to-fine approach).

6.5 PHYSICAL SETUP AND DATA

6.5.1 RECORDING SETUP

Co-capture System. To achieve high-quality recordings of frames and events, we build our
own acquisition system. Although some devices exist that record colocated events and frames
(such as DAVIS>7'5%), their data quality (resolution, dynamic range, etc.) is limited and not
suitable for BOS applications. Our custom-built co-capture system consists of a frame cam-
era (Basler acA1300-200um, 1280 X 1024 px) and the latest generation event camera (Prophe-
see EVK3 Geng, 1280x 720 px*'), sharing the same optical axis by using a beamsplitter (Plate
Bs C-Mount VISsoR/50T). Both cameras are hardware-triggered for accurate synchroniza-
tion and are calibrated to achieve accurate pixel alignment, following*®”. Figure 6.4 shows
the camera system and an example of acquired data. Further details about the used recording
system can be found in .

Optical Setup. The field of view (FOV) of our cameras is limited by the beamsplitter
(= 15°), hence we set the distance between the cameras and the background to 3.3 m. We
use randomly-generated background patterns that cover the whole FOV, where black dots
(covering approximately 2 to 3 pixels in the image plane) are printed on white paper.

The data quality also depends on the distance between the camera and the schlieren object.
The schlieren are more visible (larger pixel displacement Ax) by keeping Z, small (object
closer to the camera). At the same time, the camera system has to be focused both on the
background pattern and the schlieren object, thus Z, cannotbe too small. We experimentally
found distance Zp = 1.6 m to be a good compromise between both opposing eftects. To
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Table 6.2: Parameters of the recorded sequences.

Sequence Convection Luminance Duration Eventrate
[1x] [s] [Mev/s]
Hot plate 1 Natural 4000 19.4 11.3
Hot plate 2 Natural 225 19.8 5.1
Hair dryer (OFF) 1 Natural 4000 13.5 5.1
Hair dryer (OFF) 2 Natural 4000 19.7 5.3
Hair dryer (OFF) 3 Natural 225 14.7 2.8
Crushed ice Natural 4000 17.4 5.0
Hair dryer (ON) Forced 4000 13.4 I5.0
Breathing 1 Forced 4000 12.8 4.0
Breathing 2 Forced 4000 13.0 3.7

control the scene brightness and achieve uniform illumination in the background, we use
LED panels (four Eurolite LED PLL-360). This illumination allows us to lower the aperture
to an f-number of 10, leading to a higher depth of field. Note that our beamsplitter setup
leads to a 50% split of the light reaching each camera of the acquisition system.

6.5.2 DATA ACQUIRED

We record multiple sequences with natural and non-natural (forced) air convection, which
are summarized in Tab. 6.2. For natural convection, we use heat sources, such as a hot plate, a
hair dryer (switched off), and ice. To demonstrate the HDR capabilities of event cameras, we
record the data in (7) bright conditions (=~ 4000 Ix) and (77) low-light conditions (~ 225 Ix).
The low-light condition is set to be darker than normal office lighting, which is a more natural
condition for real-world applications.

Each sequence is approximately 10 to 20 seconds long and consists of events, frames, and a
calibration parameter file. The recording starts with the scene in the absence of the schlieren
object, which is useful for frame-based BOS methods (reference frame). All sequences are
recorded at normal room temperature (= 24°C). For the forced convection sequence of the
running hair dryer, we set the event camera’s refractory period to its minimum possible value
to capture the fast dynamics of the airflow. In total, we record nine sequences, each of which
has up to 200M events.

Frames of sample sequences are shown in Fig. 6.7. Each frame is mapped from its original
resolution (1280x 1024 px) to the event-camera resolution (1280 X720 px) (see Sec. 6.5.1).

Since we cannot obtain real ground truth (GT), we use frame-based estimated flow as GT
flow (Fig. 6.7). The calculation of the flow is based on the classical Farnebick algorithm*°
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Figure 6.7: Sample frames from each sequence and the frame-based flow. Frames mapped into the event-camera image plane
are shown on the left. The estimated optical flow (inside the ROI) is shown on the right. For the low-light sequences, the
frame-based method fails to estimate reasonable flow. Nevertheless, we show them for completeness.

with four pyramidal scales at the frame rate (120 fps). We test different parameters and find
no significant difference on the quality of the results. Before settling for Farnebick’s algo-
rithm, we tested recent DNN-based state-of-the-art methods, such as’+75, and found that
they do not produce reasonable flow. Figure 6.8 shows the comparison of several frame-based
optical flow estimation methods: two state-of-the-art optical flow and video-frame interpola-
tion works”#75 and Farnebick’s method. Due to the large gap between the training datasets
of 775 and our dataset, these recent DNN-based methods fail to estimate reasonable flow.
Farnebick’s algorithm works robustly and better, because () the background pattern is par-
allel to the image plane, (77) the scene has no occlusions, (777) the background pattern has clear
and random edges that are useful to calculate the deformation between two frames. Since we
cannot determine the real GT, we do not explore a further analysis of frame-based estima-
tion methods, which we leave for future research, such as simulation. That s, to establish the
first event-based BOS problem settings we leverage the knowledge of established frame-based
BOS techniques. Note that the quantitative evaluation is only based on the well-illuminated
sequences since the frame-based flow degrades in dark scenes (see Sec. 6.6.6). We publish the
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dataset and the code to compute the GT.

..

(a) Farnebick’s+° (b) FlowFormer7+ (c) RIFE7S

Hot plate

Hair Dryer

Breath

Figure 6.8: Different frame-based optical flow methods.

6.6 EXPERIMENTAL EVALUATION

This section reports the performance of the proposed estimation method and its properties.
First, we explain the baseline methods and evaluation metrics (Sec. 6.6.1). Second, we bench-
mark the accuracy of all methods considered (Sec. 6.6.2). Third, we show the capabilities of
our method in low-light conditions (Sec. 6.6.3) and how it achieves high temporal resolu-
tion (1200 Hz “slow motion”) in Sec. 6.6.4, including a velocimetry application (Sec. 6.6.5).
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Table 6.3: Details of the benchmark. “ROI position” contains the coordinates of the top-left corner.

Sequence ROIsize [px] ROI position [px] Duration [s] Total events
Hot plate 1 640X720 [320, 0] I0to 14 51 900 802
Hot plate 2 (dark) 640x720 [420, 0] 12 t0 14 12912262
Hair dryer (OFF) 1 640%x 640 [320, 0] 4to7 13498 252
Hair dryer (OFF) 2 512X 640 [384, 0] 6to7 4089883
Hair dryer (dark) 512640 [384, 0] 5t07 3 460 579
Crushed ice SI2X 512 [384, 208] 8tor1r 5856 190
Hair dryer (ON)  1280X%200 [0, 260] 3.3 t0 4.3 17 860 129
Breathing 1 590X 600 [400, o] 4.361t0 5.5 2783 122
Breathing 2 640X 640 [447, o] 2.5 t0 3.5 1811889
Total - - 18.14 114173 108

Finally, we analyze the proposed method further, especially regarding the dependency on
frames (Secs. 6.6.6 and 6.6.7) and its sensitivity to hyper-parameters (Sec. 6.6.8).

6.6.1 EVALUATION METRICS AND BASELINE METHODS

Evaluation Metrics. We evaluate the proposed method in terms of optical flow v accuracy.
Two variants of the method are assessed: (7) using q as parameterization, from which we
obtain v afterwards via (6.6), and (77) using v directly.

The optical flow evaluation metrics are the average endpoint error (AEE), the percentage
of pixels with AEE > 1 px (denoted by “% Out”), and the angular error (AE). We select the
time interval (from 1 to 4 s) and region of interest (ROI) to remove objects, such as a hair
dryer and a face from the scene. All metrics are computed over pixels with at least one event
inside the ROI.

Table 6.3 reports the detailed duration, ROI, and the total number of events used for the
benchmark. The duration is selected such that the quality of schlieren is the best and most
stable. For the “Hair dryer (ON)” sequence, we limit the height of the ROI due to the ex-
tremely large number of events observed: otherwise, we set the ROI to have approximately
720X §12 PX.

Baselines. As baseline flow estimators we use the two self-implemented methods from
events because, to the best of our knowledge, there are no methods that estimate schlieren
flow from event camera data.

* The Multi-reference Contrast Maximization (MCM)'4¢ (Chapter 4) is a state-of-the-
art optical flow estimation algorithm from events alone. It is a model-based method,
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Table 6.4: Results of optical flow estimation.

Hair dryer (OFF) 1 Hair dryer (OFF) 2 Hot plate 1 Hair dryer (ON)
AEE| %Out| AE| AEE] %Out| AE| AEE] %Out] AE| AEE| %Out| AE]
MCM '+ 1.425 35.639 0.621 0.421 10.886 0.476 0.400 21.789  0.426 0.287 5.933  0.712
E2VID ! 1.055 39.068  0.677 1.091 37.734  0.670 1.092 32.12I  0.6I11  0.8I1I 25.997 0.587

Ours (Flow) 0.675 22.104 0.404 0.688 24.930 0.448 0.810 30289 0.544 ©0.310 6.756 0.258
Ours (Poisson)  0.383 9.319 0.299 0.395 10.174 0.337 0.487 12.215 0.421 0.21§ 0.924 0.202

Crushed ice Breathing 1 Breathing 2
MCM 1+ 1.090 96.964  0.823 1.769 49.552  0.853 2.056 78.690 0.973
E2VID ™! 1.249 §5.030  0.791 1.014 42.072 0.692  1.056 43.348  0.699

Ours (Flow) 0.587 21.815 0452 0.665 T11.872 0341 0.557 17.716 0.438
Ours (Poisson)  0.326  s.177 0.301 0.345 6.322 0.203 0.476 8.028 o0.410

hence there is no mismatch in the training dataset (due to our specific background

g g
pattern). We use the events between two consecutive frames (i.c., in a time span of
8.3 ms).

* Flow estimation from reconstructed intensity images: we use E2VID**' (a learning-
based approach) to compute grayscale images from events and then apply the same
(frame-based) optical estimator as the one for the GT. Images are reconstructed at 120
tps, i.e., the same frequency as the frames.

To the best of our knowledge, we found no methods with publicly-available implementa-
tion combining events and frames to estimate the optical flow, we, therefore, believe this is
a best-effort comparison. Also, notice that we do not train a Deep Neural Network (DNN)
model with the supervisory GT flow, as the purpose of the chapter is not a purely data-driven
approach, but to develop an interpretable model-based method, by deriving a connection be-
tween the physical parameters and the data.

6.6.2 OprtIicAL FLOW EVALUATION

Flow accuracy is reported in Tab. 6.4. We evaluate on illuminated sequences for valid GT
flows from frames (please see Sec. 6.6.3 for the dark sequences). Consistently for almost all
sequences, the proposed method (“Ours (Poisson)”) provides the best accuracy compared
with the baseline methods. Due to the nature of schlieren, the GT flow magnitude has nor-
mally subpixel values. Hence, we find that the angular error (AE) is a more reliable metric
for the purpose of this benchmark. The largest magnitude of the displacement (= 3 px) is
observed in the hotplate sequences. Still, it is remarkable that the proposed method achieves
AEE < 1 pixel. We acknowledge that the proposed method utilizes both event and frame

data, while the baselines use only event data as input. This is further discussed in Sec. 6.6.6.
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(b) GT (Flow from (c) MCM *4° (events (d) Flow from E2VID
frames) only) frames

(a) Input events (e) Ours

Figure 6.9: Qualitative comparison between different flow estimation methods.

»

Also, it is noticeable that the Poisson-parameterized estimation (“Ours (Poisson)”) results
in better accuracy than the flow-parameterized estimation (“Ours (Flow)”). This clearly states
the effectiveness of our physically-motivated parameterization. It provides not only a smaller
number of parameters, as discussed in Sec. 6.4, but also contributes with better accuracy.

Additionally, we observe that forced convection usually has a smaller displacement mag-
nitude than natural convection. This is because the optical flow v, which we evaluate on, is
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the temporal derivative of the density gradient. In the forced convection case (e.g., hair dryer
(ON)), the spatio-temporal changes of the air density at a pixel might be smaller than in the
natural, heat-induced schlieren, since the advection of the flow is dominant, which can be
seen as nearly constant.

Figure 6.9 shows qualitative results. Although the GT flow is based on a classical, general-
purpose estimation method, it provides remarkably reasonable flow. The baseline methods
(MCM and E2VID) fail to estimate reasonable flow from events. Especially, we find the
alignment-based method '#° fails to estimate schlieren flow. This is because most events are
generated at the edges of the background pattern, resulting in an uneven spatial distribu-
tion despite air is actually moving, and consequently, triggering more flickering events. The
E2VID-based method surprisingly reconstructs edge structures of the background pattern
(see also Sec. 6.6.7) in spite of this specific (flickering) event input and estimates comparable
flow. However, it fails to recover the fine structure of the flow. Finally, the flow estimated
by our method resembles the GT flow the most, and it even seems to capture more fine-scale
(high-frequency) structures.

6.6.3 HDR EXPERIMENT

So far we have established that the proposed method is able to recover the fine flow structure
of the schlieren object. However, schlieren based on events has another interesting aspect: as
shown on the left column of Fig. 6.9, the existence of schlieren is already visible in the event
data histogram. By contrast, the schlieren structure is not visible to the naked eye on the
raw frame data but only as the result of optical flow processing. The fact, that schlieren is
observable in a more direct way using events, allows us to leverage the advantages of the event
camera itself, such as HDR and high temporal resolution.

Figure 6.10 shows qualitative results of the frame-based and event-based schlieren imaging
under poor illumination. The frame-based schlieren method fails to estimate realistic flow
under such conditions, as it needs intense lighting sources, especially if high-speed cameras
are used. Due to the insufficient brightness, the quality of the frames collapses even after nor-
malization (i.e., using the entire grayscale range). On the other hand, the event data capture
the schlieren structure (Fig. 6.10, top right). Furthermore, the proposed algorithm com-
bining events and frames is surprisingly robust against such low-quality image inputs. Using
natural light (225 Ix) the result (Fig. 6.10, bottom right) shows the potential of event cameras
to push the limits for future BOS applications. We further discuss the effect of the amount
of illumination in Sec. 6.6.6.
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(a) Using normalized frames (b) Ours

Figure 6.10: Schlieren imaging under low illumination (HDR). (a) Frame-based methods suffer from the limited dynamic range
of the frames, resulting in unrealistic flows with artifacts despite using all grayscale range available for the frames (nor-
malization). (b) The proposed method produces a realistic flow, similar to the event data, which is visible due to the HDR
nature of events.
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Figure 6.11: Kymograms (space-time plots) for a 0.5 second excerpt of a hotplate sequence. (a) The frame-based schlieren
imaging is limited to the temporal resolution of the camera (120 Hz). (b) The event-based schlieren can recover higher
temporal resolution (e.g., 1200 Hz) thanks to its data property.

6.6.4 SUPER-SLOw MoOTION

Event-based BOS also enables us to see the schlieren at markedly higher temporal resolution
(i.e., slow motion) than conventional frames. To this end, we conduct a streak-schlieren anal-
ysis'#*. The streak analysis focuses on a single column of the schlieren image to see how it
evolves in time, by showing an x — ¢ diagram (kymogram) of the air convection. The frame-
based schlieren method uses for example Poisson images as schlieren images. For event-based
methods, schlieren images can be either Poisson images or simply event histograms. Fig-
ure 6.11 shows a comparison of kymograms obtained from frames at 120 Hz (the frame rate)
and obtained from events (10X higher rate, i.e., at 1200 Hz). Event-based BOS can provide
high temporal resolution kymograms due to the asynchronous nature of event data. Com-
pared with the frame-based analysis (Fig. 6.11a), the event-based one (Fig. 6.11b) shows thin-
ner lines of schlieren in space-time. The slow motion schlieren visualization is best viewed in
the supplementary video.

6.6.5 VELOCIMETRY

One can perform velocimetry by fitting curves to the kymograms*#4. Let us analyze the speed
of propagation of schlieren (0p/0¢ in the case of Poisson image) along one direction (e.g.,
vertical). Figure 6.11b shows an example on the hot plate sequence. By fitting a curve (line),
the flow propagates 166 pixels during approximately 68.8 milliseconds. The geometry of the
BOS setup (focal length £ = 25mm, distance to object Z,; = 1.7m, pixel size 4.86um) leads
to an approximate velocity of 0.805 m/s.
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6.6.6 DEPENDENCY ON FRAMES

The proposed method uses events and frames. Naturally, the question arises to which extent
the algorithm relies on which signal. To this end, we present the ablation study with different
brightness levels (see also Sec. 6.6.3). Figure 6.12 shows the qualitative results for both: the
frame-based method and our method (frame plus events), for different illumination levels
(measured with a Voltcraft MS-1300 light meter). As clearly shown, the frame-based flow
(column (b)) starts to deteriorate when the illumination is 1000 Ix or smaller. For better
performance, we even normalize the range of the frames used (the exposure time is fixed to
maintain the frame rate of 120 fps). However, this does not provide significantly better re-
sults that can compete with those of our method. By contrast, the following two points are
remarkable about our method: (7) schlieren is still visible at 110 Ix in the event histograms,
indicating the HDR capabilities of the noisy input data (column (c)), and (77) the estimated
flow (column (d)) still looks reasonable when the illumination is as low as 22 5 Ix, despite our
method using the naturally darker frame as an input (column (a)). Note that our method
does not work when the frame is completely black (less than so Ix). All the above indicates
that the proposed method requires frames, but it can overcome the limited dynamic range of
the frames due to the HDR advantages of event cameras.

6.6.7 TowARDS A FRAME-FREE METHOD

The proposed method utilizes the information from events and a frame, however, the quality
of the frame data does not need to be the best, as shown in the previous section. Hence, an
interesting challenge is to replace frame data with intensity reconstruction from events, such
that the proposed method could be extended to be frame-free. To this end, Figure 6.13 shows
the comparison of the different input frames. Instead of using an acquired frame as an input
to the proposed method, we reconstruct intensity images using E2VID ** and feed them as
input. Despite the large visual difference between the two different inputs, the output flow
and Poisson images seem to have similar structures. Although we do not further investigate
the quality of the intensity reconstruction, the results show future possible extensions toward
frame-free event-based BOS methods.

6.6.8 EFFECT OF THE REGULARIZERS AND THE TRANSLATION FIELD

Ablation. To assess the importance of the regularization and the translation field parameters
p, we conduct an ablation study. The top half of Tab. 6.5 reports the optical flow accuracy of
the proposed method, the one without regularization, and the one without the translation.
Thereisasignificantimprovement due to the regularizers: without regularizers, the estimated
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Figure 6.12: Ablation study for different lighting conditions. Flow (b) uses normalized frames as input, while our flow (d) uses
events (c) and original frames (a).



(a) Input (b) Output Poisson (c) Output Flow

Figure 6.13: Towards a frame-free method. The top row shows the originally proposed method with the frame-based
camera input. The bottom row shows an E2VID-reconstructed image as the alternative input. In spite of the large quality
difference between the two inputs (a), the output Poisson and flow images have some visual similarities (b,c).

q and p become not smooth anymore, which leads to irregular flow estimation. The effect of
p is relatively minor but still noticeable.

Sensitivity Analysis. We test different weights for each regularizer 4, 4, in (6.12). The
weights are set as follows: we fix one parameter (4; = 0.5), and vary 1, between 0.01 and
1.0; then we fix the other parameter (1, = 0.1) and vary 4; between 0.05 and 1.0. The
flow accuracy is reported in the bottom half of Tab. 6.5. We observe on-par accuracy when
A1 = 1.0 with respect to the base condition (the top row).

6.7 LIMITATIONS

The proposed BOS technique using events shows advantages over frame-based BOS in terms
of HDR capabilities and temporal resolution, lowering the demand for bright illumination
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Table 6.5: Results of the ablation study and the sensitivity analysis.

Hot plate Crushed Ice Dryer
AEE] %Out| AE] AEE] %Out] AE] AEE] %Out] AE]|

Ours (1; = 0.5,1, = 0.1) 0.487 12.215 0.421 0.326 §.I77 0.301 0.395 10.I174 0.337

w/o regularizers (ie, 1y = A, = 0) 3371 82.039 I.III 2499 76.325 1.0I7 1.233 48.626 0.756
w/o translation model (i.e, p = 0) o0.591 18.609 0.488 0368 7.791 0.313 0.394 10.896 0.324

A1 =0.05,1, =0.1 0.586 14.468 0.494 0.518 11.295 0.440 0.449 1I1.104 0.387
A1 =10,4,=0.1 0.482 10.462 0.416 0.390 3.849 0.349 0.378 7.274 0.330
A1 =0.5,1, =0.01 0.509 11.001 0.440 0.437 5.482 0.386 0.398 7.129 0.344
A1 =05,1, =10 0.517 11.598 0.443 0.429 §5.609 0.379 0.409 8.I112 0.350

and high-speed cameras. However, in other aspects, it inherits the limitations of frame-based
BOS. Optically, the estimated brightness gradient is a mean value integrated along the optical
axis, and the technique inherently has a trade-oft between the observed displacement and the
obtained sharpness of the gradient under investigation.

Additionally BOS is sensitive to vibrations, due to the underlying assumption that the
small perceived changes are only caused by refractive index variations. Specific to event cam-
eras is that the signal is noisy, and careful tuning of the camera’s biases is necessary. The
proposed method furthermore relies on a combination of events and frames, thus an accu-
rate spatio-temporal alignment of both data sources is required. The flow estimation method
does not run in real time. However, raw events visualized as histograms can be computed on-
line and resemble schlieren images. While the proposed multi-scale approach improves the
convergence of the optimization, it limits the spatial resolution of the flow, which is a similar
limitation as in frame-based BOS.

6.8 CONCLUSION

In this chapter, we have presented the first event-based BOS imaging and an algorithm to
estimate the temporal derivative of the air density gradient. The approach has been math-
ematically rigorously obtained and has a physically-motivated parametrization. Using the
frame-based method as GT the experiments evidenced that our approach outperforms all
other tested methods. We furthermore illustrated how the advantages of event cameras could
be leveraged for BOS applications, lowering the requirements for high illumination and vi-
sualizing the turbulent eddies at a significantly higher temporal resolution. We release the
code and dataset to the public and hope that this research opens up new possibilities for the
computer vision community.
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Conclusion

7.1 SUMMARY

This thesis focused on various motion estimation problems within short time intervals using
a single event camera. The research questions tackled were:

* How can we extend CMax for broader types of motion hypotheses by improving the
objective function?

* How can we take the space-time nature of events into account to rethink event-based
optical flow?

* What is a more biologically-plausible solution for event-based optical flow?

* How can we utilize event-based motion estimation in imaging science to leverage the
event camera advantages?

In Chapter 3, we focused on the low-DOF (ego-motion) estimation problems, up to 8
DOFs, and improved the well-posedness (the objective function landscapes) in the Contrast
Maximization framework. Here, the static scene was an approximation and hence its limi-
tation. In Chapter 4, we focused on the high-DOF (optical flow) estimation problem. We
presented a principled estimation method that effectively mitigates event collapse, handles
occlusions better, and is transferable to unsupervised-learning settings. As opposed to the
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previous two chapters, Chapter s proposed an event-by-event (incremental) method to es-
timate optical flow. The proposed triplet matching achieved high throughput (runtime per
event), stemming from neuroscience. As an application of the event-based optical flow es-
timation, Chapter 6 demonstrated the capability of sensing air convection. In contrast to
the previous chapters, here the task consisted of estimating the motion of air density using
schlieren techniques by combining the complementary information of events and a frame.
The extended linearized event generation model estimated the spatio-temporal derivatives of
air density via optical flow computation.

7.2 DiscussioNs AND FUTURE WORK

While the thesis has advanced knowledge in various topics, there are still pending problems
and new research questions to be answered.

Event collapse. Event collapse has been tackled by adding regularizers in the low-DOF
problems (Chapter 3) and by changing the data-fidelity part of the objective function in the
high-DOF problem (Chapter 4). Although we showed the proposed methods are effective
in the problem settings considered, event collapse could still appear in other scenarios. For
example, the regularizers from Chapter 3 have not been investigated for the static scene as-
sumption in its most complex form (“ideal” solution of the problem with 6-DOF ego-motion
and N,-DOF scene depth parameters). Also, the weight of the regularizer depends on the
scene, since the data-fidelity term of the optimization (e.g., contrast functions) depends on
the scene. To make the proposed regularizer even more effective, it would be desirable to
make the regularizer weight independent of the scene.

The multi-reference focus loss proposed in Chapter 4 is not a “silver bullet” for event col-
lapse. This is because the resulting landscape of the multi-reference objective function could
be dominated by one (steep) optimum from one reference time. Nevertheless, it is impor-
tant to further investigate the multi-reference idea, which essentially utilizes the property that
the event stream is asynchronous with a high temporal resolution. Also, combining the pro-
posed methods in Chapters 3 and 4 for optical flow estimation would be worth investigating,
by calculating numerical approximations of the regularizers.

Optical flow in event-based vision. The proposed space-time (time-aware) flow in Chap-
ter 4 extends the conventional frame-based optical flow that is a function of space. Recently,
there have also been some proposals that aim to leverage the space-time nature of events for
per-pixel motion estimation, such as’”'*?. The main difference between the space-time flow
in Chapter 4 and proposals’”'*® is the motion hypothesis and its underlying assumptions:
the space-time flow in Chapter 4 assumes that the flow is constant along its streamlines within
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short time intervals, which results in linear trajectories of the warp ((4.8) and Fig. 4.3). The
DOFs of the motion are still 2/N,, and the efficacy of the parameterization for occlusions is
shown in Sec. 4.3.5.

On the other hand, recent works’”'* propose non-linear trajectories (e.g., Bézier curves)
of the “optical flow”, which results in an increased number of DOFs (larger than 2/V,). The
complexity of the motion estimation problem (the DOFs of the motion hypothesis) has a
trade-oft with the proneness of overfitting. Although it can be shown that the point trajec-
tories in some low-DOF motion models are curves and not linear (e.g., 3-DOF rotational
motion, see Fig. 3.3 and Sec. A.3), the efficacy of non-linear trajectories is yet to be investi-
gated. We suspect that the choice of assuming non-linear trajectories in57**” stems from the
necessity of reporting good figures on the DSEC benchmark 5¢. However, note that while it is
called the “optical flow” benchmark, the ground truth is provided over time intervals of 100
ms at moderate vehicle speeds, which results in non-linear trajectories. This conflicts with
the classic definition of optical flow, which is the instantaneous velocity of the motion. The
velocity only defines a straight line tangent to the curve, as opposed to a more complex non-
linear trajectory. Therefore, one should reconsider the terminology of the motion-estimation
task, such as “instantaneous” (optical flow, or short-baseline) vs. “non-instantaneous” (i.e.,
“large baseline” in frame-based vision) or curved trajectory estimation. This difference would
also affect the definitions of the ground truth and evaluation metrics.

Accuracy and runtime. As shown in Chapters 4 and s, there is a clear trade-off between
accuracy and runtime in optical flow estimation. This partly comes from the design of the
algorithm: handling events by batch or event-by-event (incrementally). Typically accumu-
lating events over a certain time interval makes estimation more robust to noise and hence
achieves better accuracy, while event-by-event methods provide fast but less accurate estima-
tions. In the end, one needs to choose the trade-off (i.e., accumulation time for the method)
depending on the optical flow application.

Also, aknown limitation of the Contrast Maximization framework is that it requires some
pixel displacement (typically 3 to s pixels) of the edges causing the events to have a good
landscape of the objective function (optima at the desired motion parameters). Hence it is
not robustly working in some cases, such as (7) a scene that has various displacements (e.g.,
various depths) and (#7) a scene where a robot is not significantly moving: one can not ro-
bustly guarantee sufficient displacement in the scene by choosing a constant size of the event
batch. The triplet matching method (Chapter s), on the other hand, can be interpreted as
a method that asynchronously forces each edge to have a displacement of 3 pixels. In other
words, the triplet matching method tries to require the shortest pixel displacement and to
accumulate the displacements locally at every event, as opposed to the accumulation in the
CMax-based methods whose window is defined globally. From the application point of view,
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it will be important to tackle the challenge of these accumulation problems to try to improve
the accuracy-runtime trade-off.

Flickering event. One of the challenges in event-based background-oriented schlieren
(Chapter 6) was the flickering-form events from its specific recording settings. The previous
optical flow estimation methods (Chapters 4 and 5) do not handle the flickering events, hence
they fail to estimate realistic flow for such input data. In addition to the special recording
setup, indeed, flickering events may happen in non-constant illumination scenarios, where
the method in Chapter 4 deteriorates to some extent (e.g., night sequences in the DSEC
benchmark?s). It will be necessary to handle flickering events to produce more robust mo-
tion estimation from events.

Schlieren imaging. Chapter 6 demonstrated the great potential of event cameras in imag-
ing sciences, especially towards high-speed and high-dynamic range recordings. Although we
believe that schlieren imaging is an interesting application and will be another significant re-
search field for event cameras, the lack of ground truth for BOS settings is an important chal-
lenge. To the best of the author’s knowledge, there is no high-quality simulator that satisfies
the complex modeling of the fluid dynamics and the optical mechanism of event cameras.
The development of a simulator would enable further investigation and new methods, such
as learning-based event-based BOS.

This thesis expands the understanding of event data and deepens event-based motion es-

timation by tackling its new data modality and challenges. We hope this work fosters future
research and applications on event-based motion estimation.
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Warp Models

A.1  PRELIMINARIES
In homogeneous coordinates, a homographic warp W is given by*®
X!/ ~ B (1 0) x., (A1)
and the point trajectories of the warp are represented by
x’(¢) ~ H(z; 8) x"(0). (A.2)
Divergence. The flow is in Euclidean coordinates:

ox'
S A.
% (A.3)

The flow divergence is given by V - £.

Deformation. Using Result 1 in Appendix A of ™**, the determinant of the Jacobian J of
the transformation (from # to #;) in Euclidean coordinates is

det(H)

) = T

(A.4)
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where e; = (0,0,1) T, x(¢) = (x(¢),%(¢),1) T, and the Jacobian J = %—’:.

Rate of change of area deformation. The differential transformation from z to £ + Az is
given also by a homography H, ., a,:

(£ + Ar) ~ H(z + Az 9)H 7 (5;6) ' (). (A.s)

'

Ht,t+At

Using the same notation as (A.4), the determinant of the Jacobian J of the transformation
(from # to ¢ + At¢) in Euclidean coordinates is

det (Ht,t-l—At)
(e;—Ht,tJrAt Xh<t) )3 '

det (Jt,z—i-At) = (A.6)

The 8-DOF homography motion admits several particular cases, as discussed in the next
sections.

A2 3 DOFs. PLANARMOTION. EUCLIDEAN TRANSFORMATION ON THE IMAGE PLANE,
SE(2). ISOMETRY

The warp of the planer motion'*? is given by (A.1) with

. (Rlf{rw /A%

B (0;9) = (Mp7) ) (A7)
0 1

where v, wz comprise the 3 DOFs of a translation and an in-plane rotation. The in-plane

rotation is _
R(p) = (cos @ —sin gp) ' (AS)

sing  cos@

(o 2) =( ) (A9)

andR7'(p) = R(—p), we have

<X1/k> N <R(_()t7k'wz> —R(—l‘/elwz)(f/e")) (Xl/e> . (A.10)

Divergence. Since
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Hence, in Euclidean coordinates the warp is
X/k = R(—l'/ea)z) (Xk — l’/eV). (AI I)
The flow corresponding to (A.11) is:

a /
f= % =R’ (g + th> (x — tv)wz — R(—twz)v, (A.12)

whose divergence is

V- f= —20zsin(twy). (A.13)

Hence, for small angles |tw,| < 1, the divergence of the flow vanishes.

Deformation. Substituting (A.7) into (A.4),
det(J;) =1, (A.14)
since det(HY) = 1 and (e; H x}(2))® = L.

Rate of change of area deformation. Using (A.s) and (A.9), the differential transforma-
tion is given by

H., o = HE(e 4+ A1 6) (HY) 7N (159)

_ (R((t+ At)wy) (t+ Ar)v) (R(—ta)z) —R(—th)(tv))

0" 1 o7 {
- (R((t + Atwz)R(—twz) —R((+ AJoz)R(—twz) + (£ + At)V) (A.15)
0" 1
_ (R(Ath) —R(Atwy) + (¢ + At)v)
0r 1 .

Similarly to (A.14), we obtain det(J,1a,) = 1, since det(HE,, ,,) = 1 = (e HE 5, x"(1))>.

In short, this warp has the same determinant, rate of change of area deformation, and
approximate zero divergence as the 2-DOF feature flow warp (Sec. 3.5.1), which is well-posed.
Note, however, that the trajectories are not straight in space-time.

106



A.3 3 DOFs. CAMERA ROTATION, SO(3)

Using calibrated and homogeneous coordinates*7*, the warp of the 3-DOF rotational mo-
tion is given by (A.1) with
HO<Z'/€; (9) = R(Z’k&)) (AIG)

where § = w = (), w,,w3) " is the angular velocity, and R (3 X 3 rotation matrix in space)
is parametrized using exponential coordinates (Rodrigues rotation formula***+°).

Divergence. As shown in (3.23) in Sec. 3.5.2, the flow for the rotational motion is
V - f = 3(xwy — ya). (A.17)

Deformation. Substituting (A.16) into (A.4) and letting rIk be the third row of R(#w)
gives (3.24), the area deformation is

det(J;) = (r3,x;) >, (A.18)

since det(H?) = 1.

Connection between divergence and deformation. If the rotation angle #||w|| is small, us-
ing the first two terms of the exponential map we approximate R(#w) ~ Id + ()",
where the hat operator ”* in SO(3) represents the cross product matrix”. Then, rIka A
(—tpwa, o0y, I)T(x/e,yk, 1) =1+ (ypw1 — x4@2)t;.. Substituting this expression into (3.24)
and using the first two terms in Taylor’s expansion around z = 0 of (142) > &~ 1 —3z+ 62>
(convergent for |z| < 1) gives det(J;) ~ 1 + 3(xws — yp@1)t. Notably, the divergence
(3.23) and the approximate amplification factor depend linearly on 3(x@, — yw;). This
resemblance is seen in the divergence and deformation maps of the bottom rows in Fig. 3.9

(ECD dataset).

Rate of change of area deformation. Rotation matrices have unit determinant and sim-
plify (A.s) as: O, = R((z + A)w) R (tw) = exp(((t + At)w)") exp((—tw)") =
exp((Atw)") = R(wAt). This holds because the rotation axis w is unique. Hence (A.6)

becomes: )

det (Jz,t+At) - (e;R(wAt) Xb)3 )

(A.19)
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which is (3.26). Computing the derivative yields (3.27):

J —3x"" d
d| t7t+At| — 3X (t) - r3 (a)At)
dAt fy—o (1] (wAD)xP(r))" dAL Ar=0
=3x"T()w e, (A.20)

because

d
2 (whd) = ZRT (A
dAtr3(w 2 dAtR (wAt)es

d
~ d_At(Id — (wA2)")es (A.21)

== —a)/\e3
_ T
= (—a)},, w,,0) .
A.4 4 DOFs. IN-PLANE CAMERA MOTION APPROXIMATION

For completeness, we analyze the warp presented in??, although we do not particularize (A.1)
since it is an approximation. The warp given in®?, which is

X, =X, — (v + (b, + DR(p)xs — xk), (A.22)
has 4 DOFs: 6 = (v, ¢, h,)".
Divergence. The flow corresponding to (A.22) is given by

B ox’

f= i —(v+ (b + DR(p)x — x), (A.23)

whose divergence is:
V-f=—(h,+1)V- (R(p)x) + V - x (A.24)
=2—2(h,+1) cos(p). (A.2s)

Deformation. The Jacobian and its determinant are:

J, = % = (1+#)Id — (b, + 1)5R(p), (A.26)
k
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det(J;) = (1 +#)* — 2(1 + t)t4 (b, + 1) cos @ + £, (b, + 1)*. (A.27)

We skip the rate of change of area deformation since the homography is not given. As
particular cases of this warp, one can identify:

* 1-DOF Zoom in/out (v = 0, ¢ = 0). x, = (1 — 5b,)x;.
* 2-DOF translation (¢ = 0, b, = 0). x|, = x;, — V.

* 1-DOF “rotation” (v = 0, b, = 0). X, = x; — (R(@)X/e — X/e).
Using a couple of approximations of the exponential map in SO(2), we obtain

X, =X, — (R(gp) — Id)x/e (A.28)
Xy — t;@Axk if @ is small (A.29)
= (Id+ (—1p)")x (A:30)
~ R(—5.0)x; if @ is small. (A.31)

Hence, ¢ plays the role of a small angular velocity w around the camera’s optical axis
Z,i.e., in-plane rotation.

* 3-DOF planar motion (“isometry”) (b, = 0). Using the previous result, the warp
splits into translational and rotational components:

X, =X, — (V +R(p)x — x/e) (A.32)

(A31)
~ ' —1v + R(—1.0)x;. (A.33)

A.s 4 DOFs. SIMILARITY TRANSFORMATION ON THE IMAGE PLANE. SIM(2)

Another 4-DOF warp is proposed in 3. Its DOFs are the linear, angular and scaling velocities
on the image plane: § = (v, wz,s) . Letting 8, = 1 + #, the warp is given by (A.1) with

(e 9) = (AR ) (A34)

Using (A.9) gives
(;;1;6) N (ﬁk‘ R(O—Ttm) —B; R(—i‘sz)(t/eV)) (xlk) . (Ass)

109



Hence, in Euclidean coordinates the warp is

X, = IBI;IR(—L‘/ewZ) (x4, — 1v). (A.36)
Divergence. To compute the flow of (A.36), there are three time-dependent factors. Hence,
applying the product rule we obtain three terms, and substituting (A.43) (with ¢ = —twy)
gives:

98, " T
fi = <(%R(—tsz) +ﬂk_1szT(§ + f/e@z)) (xe — t1v) — B, 'R(—twz)v,  (A37)

where, by the chain rule,

818;1 —zaﬂ/e -2 S
- Pon T AT e s
Hence, the divergence of the flow is:
V-f:%V-<R(—ta))x>+ﬁlw V-(RT(7—[+tw)x> (A.39)
% o1, ¥ 07 )X , Wz 5 T hwz) % .
= B os(tn) + B w2 sin( ) (A.40)
= O cos(frwz) + f, wz2sin(—twz .40

The formulas for SE(2) are obtained from the above ones with s = 0 (i.e., 5, = 1).

Deformation. The Jacobian and its determinant are:

0x, _
J, = a—xi = 8, 'R(—twz), (A.41)
. 1
det(Jk) = ng = m (A.42,)

The following result will be useful to simplify equations. For a 2D rotation R(p(z)), it
holds that:

9R(p(2)) _RT<” ¢> 99 (A.43)

or 2 or’

Rate of change of area deformation. Using (A.s)itgivesH, .o, = H5(¢+Af 6) (HS) 71(# 6).
Similarities form a matrix Lie group, hence the inverse and the product of two similarities is



also a similarity. Since H, 4 a, is a similarity, its third row is e; H, ;4 4, = (0,0, 1), which makes
the denominator in (A.4) equal to one. Substituting in (A.4) produces

Josend] = |det(B( + Az 6) (87 (56))|
det (HS(z + Ar; 6)) ‘

det (H5(£; 6)) (A.44)

B (ﬂ(}tﬁf )>

Two intuitive remarks about (A.44): () it only depends on the scaling DOF (i.e., one out
of the four DOFs) since w, and v do not appear; and (77) it can be used to derive the 1-DOF
formula (3.18): the 1-DOF scaling transformation is modeled by H® with w, = 0,v = 0 and
B(t; h,) = (1 — th,)~". Substituting this choice of 8 in (A.44) makes it coincide with (3.18).

The 4-DOF transformation in° has a similar geometric meaning buta different parametriza-
tion. Hence, we use the above result and penalize collapse by means of the corresponding

scaling parameter in°.

A.6 6 DOFs. AFFINE TRANSFORMATION ON THE IMAGE PLANE

A planar affine transformation has 6 DOFs in 6. Letting

HA (£, 6) = (A(S;Tg) tlb > : (A.45)

using (A.9) gives

(Xf) N (A_l(gtTk;&) —A‘l(t/el; 5)(t/eb)) (Xlk) ‘ (A.46)

Hence, the warp in Euclidean coordinates is
X, = A (5 0)(x1 — 1b). (A.47)
Divergence. The flow corresponding to (A.47) is given by

_0x  OATV(r0)

f_Ei ot

(x — tb) — A7 (¢; 6)b, (A.48)



whose divergence is:

V.f=V. (W(x —b) — A7\ 6’)b> (A.49)
=V <W}(> (A.50)
- tr(%). (A1)

Deformation. Substituting (A.45) into (A.4), the area deformation is

det(J;) = det(H(z; 0)) = det(A(z; 6)), (A.52)

since e; H4 = (0, 0,1) and the denominator in (A.4) becomes one.

Rate of change of area deformation. Now the incremental change (A.s) gives H, ;1 , =
H(r+ At; 8) (HY)71(#; 6). Affinities also form a matrix Lie group, hence H, ;4 5, is an affinity.
Using (A.s2), following similar steps as those in (A.44) yields

[Jeorar = [det (B (e + Az; 6) (B) 7' (1,9)) |
~|det(ae +At€ ‘ (A.s53)

det

Notice that the 2 X 2 matrix A includes not only a scaling parameter but also a shear, which
affects the area deformation.



Solutions for Space-time Flow

B.1 TIME-AWARENESS: PDE SOLUTIONS

The proposed time-aware flow in Sec. 4.2.3 is given as the solution to (4.7). Letting the flow
bev = (v,, v},)T, the system of PDEs can be written as:

O O0u Ou
“ox "y T
Ov, dv, O,

Uxa +Uya—y + E

(B.1)

Upwind and Burgers’ schemes can be used to discretize and numerically solve the system of
PDEs3%™,

Discretization. Let v*(x, y) be the flow vector at discretized space- (e.g., pixel) and time-
indices (x, y, ), with discretization steps Ax, Ay, and Az, respectively, and let the forward
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(4) and backward (—) differences of a scalar field w (e.g., }; or v/}) be defined as

Dt = _ —(w(aﬁL Ax,y) — w(x,y)),
§2+ 1x o
D;_w = Oy - A_(w(xa)’ + A}’) - w(x,)/))7
and
Drw= 50 = 4 (uloy) - = Ax.y))
Ox Ax (B.3)
. Ow” 1 |
b=~ L iy )

We discretize in time using forward differences, %—lt” ~ (w(t+Ar) —w(zr))/At, toyield explicit
update schemes: w(z + Az) ~ w(t) + At%.

B.2 UpPwIND SCHEME

The first-order upwind scheme is an explicit scheme that updates the flow as follows, based
on the sign of the variables: it uses D v}; and D vy for o}, > 0 (D; v} and D v}y otherwise),
and D} v} and D} v for vy > 0 (D} v and D vy otherwise). The scheme s stable if the flow
satisfies Az max{|v,|/Ax + |v,|/Ay} < 1(CFL stability condition”*). For example, in case
that v > 0 and ¢j) > 0 at the current discretization time »:

= — At (v”D+v” + U”D+v”> :

n+1 7 7+, n 7+, 7 (B4)
T =) — At (U},D}, vy + 0D} vy> .

B.3 BURGERS’ SCHEME

The study of the inviscid Burgers’ equation provides a more conservative scheme solution,
especially at “shock” and “fan wave” cases™#'. In this explicit scheme, the product terms in

the same variable (which convey that the flow is transporting itself), »” D v and Z);D;— vy in
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(a) Original flow (b) Upwind scheme (c) Burgers’ scheme

Figure B.1: Comparison of the two flow propagation schemes. Original flow (a) has large shock and fan waves (the color
changes between orange and blue) to highlight the difference. The propagated flows with both schemes are shown in (b)
(c). Same color notation as Fig. 1.1.

(B.4), are replaced with U, and U, respectively, which are given by:

U= 5 (st (o) (200" + - B,

o {(vfj(x-i— Ax,y))z, if o (x + Ax,9) <0
X 0,

otherwise (B.s)
. (v (x— Ax,y))z, if o2 (x — Ax,y) > 0
T 0, otherwise

and

U %(sgn(v;’(x,y)) (¢ (=) + £, - By)’

I (v;(x,y—FAy))z, ifv}’f(x,y+Ay) <0
’ 0, otherwise (B.6)
2
g L BEy—2ay) ifuley—4ay) >0
! 0. otherwise

B.4 COMPARISON OF THE SCHEMES

Figure B.1 shows the comparison between the two schemes, especially for the “shock” and
“fan wave” cases. After some iterations of the propagation, the upwind scheme starts to pro-
duce artifacts around the shock and fan flows (the color boundary of orange and blue), while
the Burgers’ scheme provides more stable flows.
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