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Abstract  

Platform-based product development (PPD) is a cost-efficient approach to achieve mass 

customization. Through PPD, manufacturers can develop various products to meet diverse customer 

preferences and requirements while maintaining production efficiency without compromising cost, 

quality, and delivery. One important problem in PPD is product platform configuration (PPC), which 

aims to identify and configure modules, components, or design variables on the product platform that 

can be shared across a product family. Two pertinent problems are: (1) how many and which type of 

product platform should be developed for a product family; (2) which product platform will be 

assigned to develop the product. The PPC decisions are endogenously linked to supply chain-related 

activities and will affect all the stages and sectors throughout the supply chain. Studying PPC problem 

from a supply chain management perspective is significant for manufacturers implementing the PPD 

approach. In this study, a modular platform configuration model is targeted, and various optimization 

methods are applied to determine the optimal platform configuration decision. More specifically, the 

following aspects will be targeted in this study.  

In chapter 3, we study a modular platform configuration model. Modular design is recognized 

as the most important underlying architecture to support the product family design and product 

platform design. Two types of modular design approaches can be found, i.e., module selection and 

module integration. The platform configuration based on more module selections provides a broader 

solution space of possible platform configurations to meet the customer requirements exactly. 

However, it will increase the complexity of production process due to the proliferation of module 

types and part numbers. Module integration in the platform configuration facilitates the platform 

commonality to gain economic benefits. Traditional platform research focuses more on platform 
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configuration based on module selection without considering the module integration simultaneously. 

A new model is developed to determine the optimal platform configuration for a product family while 

considering both module selection and integration. A hybrid-search method (HSM) combining 

simulated annealing (SA) and variable neighbourhood search (VNS) is developed to solve the 

proposed model. 

In chapter 4, we examine the optimal platform configuration decision considering platform 

design strategy and supplier selection. Different types of platform design strategies can be found to 

satisfy product requirements, i.e., matching-designed, over-designed, under-designed, and hybrid-

designed platforms. The matching-designed platform has a higher platform development cost and a 

lower customization cost while the over-designed or under-designed platform contributes different 

performances in these two types of costs. Traditional research balances the cost trade-off within the 

design domain, and few studies include the relative procurement cost from suppliers. Involving the 

supplier selection problem at the earliest design stage has proven beneficial to companies. However, 

little attention has been paid to integrating supplier selection into the PPC problem. In this chapter, 

we propose a non-linear mixed-integer programming model to determine the optimal platform 

configuration decision while considering platform design strategy and supplier selection. A cost 

model including development cost, sourcing cost and customization cost is developed to illustrate 

the cost trade-off between platform development and customization. A solution method applying the 

linearization method with Gurobi solver is proposed to solve this model. 

In chapter 5, we study the platform configuration problem considering demand uncertainty. 

Demand uncertainty is a huge challenge for supply chain management and product platform 

configuration. Generally, the development of product platform is ahead of new product introduction 

(NPI), which makes it difficult to forecast demand. Most existing research on platform configuration 

assumes that the demand is deterministic so that the problem can be easily dealt with. However, when 

considering the uncertain demand, the platform configuration decision may be changed, and the 
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optimization problem will become more complex. How to determine the optimal PPC decision under 

demand uncertainty is highly important for manufacturers to develop product platform. This research 

gap will be filled in chapter 5. The platform configuration problem under demand uncertainty is 

formulated as a two-stage stochastic programming model, including the platform configuration stage 

and platform customization stage. A cost model including the development cost of platform, 

production cost and material cost for two stages, customization cost, and penalty cost of excessive 

platforms is developed. A linear programming embedded genetic algorithm is developed to solve the 

proposed model. The proposed algorithm searches the binary variables for platform configuration by 

using GA and determines the integer variables by solving a linear programming subproblem using 

Gurobi solver. Numerical experiments are conducted to illustrate the proposed model and algorithm. 

 

Keywords: platform-based product development, product platform configuration, supply chain cost 

model, mass customization, modular design, platform commonality, demand uncertainty, stochastic 

programming 
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Chapter 1  Introduction 

1.1 Background and motivation 

The diversity of customer preferences and requirements enables manufacturers to offer a larger 

product variety. Product variety can be defined as the different number of products for a particular 

class (ElMaraghy et al., 2013). Accordingly, manufacturers today are no longer focused on a single 

product or service but offer a wide range of products with different functions, features, requirements, 

and specifications. The increasing product variety can offer the potential to expand the market and 

increase sales volume and revenue (ElMaraghy et al., 2013). However, the proliferation of product 

variety is not always beneficial for a company. The complexity from product design to production, 

inventory, selling, and services increases as more products and more parts numbers, which enables 

the relative supply chain to become inefficient and incur substantial cost within the company 

(Simpson, 2004). Therefore, one imperative challenge today is to fulfill increasingly diverse 

customer needs while achieving internal efficiencies in designing, manufacturing, and delivering 

those products. 

To manage this challenge in product variety management, mass customization has gained 

increasing attention in the past decades. Mass customization emerges in the early 1990s with the goal 

of satisfying increased product variety with near-mass production efficiency (ElMaraghy et al., 2013; 

Pirmoradi et al., 2014). As one of the effective tools to implement mass customization, platform-

based product development (hereafter abbreviated as PPD) is proposed to develop different products 

for a product family based on common platform (AlGeddawy and ElMaraghy, 2013; Wang et al., 

2022). A product family refers to a group of similar products that are derived from a common platform 

and possess specific features and functions to meet customer requirements (Meyer and Lehnerd, 1997; 
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Jiao et al., 2007). A product platform is a set of sub-systems and interfaces that form a common 

structure from which a stream of derivative products can be efficiently produced and developed 

(Meyer and Lehnerd, 1997; Jiao et al., 2007). 

Many manufacturers, such as Toyota, Volkswagen, Philips, Airbus, Ford, IBM, and LG, have 

adopted the PPD approach to produce their various products (Wang et al., 2022). Through PPD, 

manufacturers can bless multiple benefits including reduced development time and improved ability 

to upgrade products (Simpson, 2004), increased efficiency and reduced cost in manufacturing (Liu 

et al., 2010; Ben-Arieh et al., 2009), improved product quality, and reduced waste (Pirmoradi et al., 

2014). For example, Toyota leverages Toyota New Global Architecture (TNGA) platform to produce 

various models, such as the medium-sized (e.g., Corolla), the large (e.g., Crown and Lexus LS), and 

the compact vehicles (Corporation, 2021). The Volkswagen Group uses the Modular Transverse 

Matrix (MQB) platform to produce various vehicle models (ElMaraghy et al., 2013). 

The key point in PPD is product platform configuration (hereafter abbreviated as PPC). Product 

platform configuration aims to identify and configure modules, parts, components, or design 

variables on the product platform that can be shared across multiple products within a product family. 

Two types of product platform configuration have been widely discussed in the existing research, 

namely module-based platform configuration and scale-based platform configuration (Simpson, 

2004; Jiao et al., 2007). A module-based platform configuration consists of functional modules that 

can be added, substituted, or removed to derive unique products while a scale-based platform uses 

the scaling variables to stretch or shrink design parameters so as to satisfy product requirements 

(Simpson, 2004). Regardless of whether the platform is modular and scalable, the main problem in 

the PPC relies on the selection of modules and design variables and the realization of platform 

commonality.  

Existing research on PPC ranges from an engineering design perspective to a product 

management perspective. The PPC problem in the engineering design domain aims to identify and 
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evaluate the platform commonality by constituting the shared modules and design variables. For 

example, various commonality matrixes are developed to assess the similarity of modules in the 

product architecture. Classification and group technology are introduced in the design and 

manufacturing process. Research on PPC from a product management perspective treats the PPC 

problem as an optimization problem. Through searching the possible combinations of modules or 

design variables, the optimal platform configuration can be obtained under different evaluation 

criteria such as quality, cost, and utility. 

Meanwhile, successful supply chain management is critical to forming the competitive 

advantage of manufacturers. The PPC decision will affect all the stages and sectors throughout the 

supply chain, e.g., new product development, procurement, production, manufacturing, inventory 

management, and distribution. It is generally known that approximately 80% of manufacturing costs 

are determined during the design phase (Mikkola, 2007). Studying PPC problems focused on supply 

chain management is highly important for implementing the PPD approach.  

Two pertinent problems are targeted in this study: (1) how many and which type of product 

platform should be developed for a product family; (2) which product platform should be assigned 

to develop the products within a product family. The first problem is to determine the platform 

configuration by selecting modules, components, and elements to be shared. The second problem is 

related to the platform design strategy and customization, i.e., a platform should be configured as 

under-designed, over-designed or matching-designed regarding its dedicated product. We solve these 

two problems by proposing mathematical optimization models while considering supply chain-

related costs. 

1.2 Research scope 

Research on PPD and PPC covers a wide range of areas, including engineering design, business 

model-oriented, marketing-driven, customer satisfaction, and supply chain domains. We identify the 
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research scope of this study from four perspectives, i.e., platform configuration type, targeted domain, 

associated design idea, and targeted product family type. 

Firstly, two types of product platform configurations have been widely discussed in the existing 

research, namely module-based platform configuration and scale-based platform configuration 

(Simpson, 2004; Jiao et al., 2007). A module-based platform configuration consists of functional 

modules that can be added, substituted, or removed to derive unique products. A scale-based platform 

uses the scalable variables to stretch or shrink design parameters so as to satisfy different product 

requirements. The module-based platform configuration is to be examined in this study because of 

the targeted mass customization scenario. As one of the main enablers of mass customization, 

modular design has been widely used in academia and industry. With modularity, a complex product 

can be decomposed into independent modules or parts, which makes it possible to fulfill various 

functions and product variety through different combinations of modules and module options. 

Moreover, the optimization problem of platform configuration can be formulated as a 0-1 

combinatorial optimization model through modelling the module selection.  

Secondly, product platform configuration affects the entire spectrum of product realization from 

customer analysis, function identification, production, manufacturing, logistics and selling. Besides 

the product design considerations, our study focuses more on the area of supply chain management 

(SCM) and product lifecycle management (PLM). The purpose of this study is to configure the 

product platform based on the requirements and constraints of different processes in the supply chain 

and product lifecycle. For example, the cost related to the production and inventory will be included 

in our study, e.g., procurement cost, inventory cost, and ordering cost. 

Thirdly, this study also supports the design idea related to design for variety (DFV) and variety 

reduction program (VRP). The DFV and VRP aim to reduce the internal variety and complexity so 

as to reduce the total supply chain cost. In this study, we mainly analyze how the economic benefits 

of platform and module commonality can be realized through the risk-pooling in the process of 



5 

development, procurement, manufacturing, and inventory.  

Finally, a broad range of modular products and platform products can be targeted as an 

illustration in this study, e.g., consumer electronic products, computers, and printers, vehicles, as 

defined by Jacobs and Chase (2018). As a typical modular product, the motherboard design of 

personal computer product family will be introduced to illustrate the proposed model and solution 

method. The motherboard can be regarded as the platform conception of PC and the components of 

PC can be understood as modules, e.g., processor, RAM, wireless network card, and speaker. The 

proposed model and method are going to support the best platform configuration decision for case 

studies. 

1.3 Research objective and plan 

The objective of this study is to determine the optimal platform configuration decision focused 

on supply chain management. The specific objective and research plan are presented as follows. 

(1) To evaluate the overall performance of platform approach, a supply chain cost model is 

developed. Several cost items throughout the supply chain are included, i.e., development cost, 

procurement cost, ordering cost, inventory cost, shortage cost and salvage cost. Through quantifying 

the total supply chain cost model, the impact of PPC on the major supply chain activities, e.g., 

sourcing, production, and manufacturing will be examined. The specific supply chain cost model will 

be described in chapter 3. 

(2) Modular design plays an important role in platform configuration and product family design. 

The platform configuration based on more module selections can provide a broader solution space of 

platform selection to meet the customer requirements for a niche market exactly. However, it also 

increases system complexity and brings negative effects on the production process due to the 

proliferation of module types and part numbers. Module integration in the platform configuration 

facilitates the platform commonality to gain economic benefits. How to balance module selection 
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and integration in the platform configuration will be studied with the goal of minimizing the total 

supply chain cost in chapter 3. The notion of integration in this research refers to replacing a lower 

specification module with one that has a higher specification. Therefore, the term integration is 

different from the term “integral” which appears in product development comparing it with “modular” 

based product development in Japanese research papers. 

(3) Another key issue for PPC is platform design strategy when leveraging product platforms to 

develop multiple products within a product family. Different types of design strategies can be found, 

i.e., matching-design, under-design, over-design, and hybrid-design. The different platform design 

strategies contribute different impacts on the cost items. For example, a product platform can be 

configured as a matching-designed platform that exactly complies with product requirements. It may 

require more platforms to be developed for one product family, thus incurring a higher platform 

development cost. On the other hand, product platform can be configured as under-designed or over-

designed platform, thereby reducing the number of platforms. However, additional platform 

customization will be needed to update the required functions when deriving a high-end product from 

an under-designed platform. When deriving a low-end product from an over-designed platform, some 

functions on the platform may be wasted. Considering different platform design strategies with 

customization will affect PPC decisions. Furthermore, involving the supplier selection problem at 

the earliest design stage has proven beneficial to companies. However, little attention has been paid 

to the PPC problem. To fill this gap, the supplier selection problem will be integrated into the platform 

configuration model to investigate the impact of outsourcing decision. This problem will be studied 

in chapter 4. 

(4) The demand uncertainty is a great challenge for supply chain management and platform 

configuration. It is difficult to forecast demand of each platform type during several months ahead of 

the new product introduction (NPI). However, the platform development always takes a long time. A 

platform configuration decision under demand uncertainty is imperative for implementing the PPD. 
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This problem will be studied in chapter 5. A two-stage stochastic programming model is proposed to 

handle the platform configuration problem under demand uncertainty. 

(5) Research method 

    The platform configuration optimization is a combinatorial optimization problem. For a small-

scale problem, we may find an optimal solution to satisfy the given customer requirements. However, 

it is hard to be solved directly through existing software when the problem is large-scale. An efficient 

solution method is crucial for solving PPC problems. Three different solution methods are developed 

in this study, including a hybrid methodology combining simulated annealing (SA) and variable 

neighborhood search (VNS) in chapter 3, a linearization method in chapter 4 and a linear 

programming embedded genetic algorithm (GA) in chapter 5.  

1.4 Thesis structure  

This thesis is organized as follows.  

Chapter 2 systematically reviews the relevant research on the PPD, PPC, product family design 

and their relevant supply chain issues and identifies the research gap.  

In chapter 3, a supply chain cost model is developed as the evaluation criteria to assess the 

overall platform performance. A new model for product platform configuration considering module 

selection and module integration is proposed. A hybrid algorithm combining simulated annealing 

(SA) and variable neighborhood search (VNS) is developed to solve the proposed model. 

In chapter 4, we examine the different platform design strategies while considering platform 

customization and supplier selection. Four different platform design strategies are identified, i.e., 

matching-design, under-design, over-design, and hybrid-design. Some linearization methods are 

applied to transform the proposed nonlinear mixed-integer programming model into linear ones. 

In chapter 5, we propose a two-stage stochastic programming model for platform configuration 

to study the optimal PPC decision under demand uncertainty. The impact of different demand 
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distributions on PPC decision is also investigated. A linear programming embedded genetic algorithm 

(GA) is developed to solve the proposed model.  

Finally, we summarize the conclusions and present the limitations and future work in chapter 6. 
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Chapter 2  Literature review 

Platform-based product development has been recognized as a cost-efficient way to offer the 

required product variety without increasing costs and time-to-market (Simpson et al., 2014; Andersen 

et al., 2022; Wang et al., 2022). Various methods and tools have been developed to help manufacturers 

implement the PPD approach. Jiao et al. (2007) divided the PPD approach into three stages: (1) 

translating identified customer needs (CN) into functional requirements (FR) based on a product 

portfolio; (2) mapping those functional requirements (FR) into proper design variables (DV) based 

on the shared product platform; and (3) enabling the design variables to correspond to the process 

variables and logistic variables.  

Although our study focuses more on supply chain management, design-related research, e.g., 

engineering design of module and product architecture, is also inextricably linked. The relevant 

design specifications and requirements are the prerequisites for product platform configuration. 

Therefore, three literature streams will be reviewed, namely (1) product platform configuration, (2) 

product portfolio and product family design, and (3) supply chain issues for PPD and product family 

design.  

2.1 Basic conceptions 

In this section, the relevant conceptions including mass customization, modularity, product 

platform, product family design, and supply chain management are introduced.  

2.1.1 Mass customization 

Mass customization emerges in the early 1990s in response to increasing product variety. Mass 

customization means providing customized goods and services that best meet individual customer 
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needs with near mass production efficiency (Pine, 1993; ElMaraghy et al., 2013; Pirmoradi et al., 

2014; Fogliatto et al., 2012). The purpose of MC is to achieve the economy of scope at a cost 

approaching that of economy of scale by delaying product differentiation and capitalizing on 

commonality and similarity between variants within a product family (ElMaraghy et al., 2013). The 

key feature of mass customization is to integrate the product varieties derived from individual 

customer needs and the efficiency of mass production (Tseng and Jiao, 2001). 

2.1.2 Modularity 

Modular design and product modularity have been regarded as effective approaches to achieve 

mass customization. A module is a physical or conceptual grouping of components that correspond 

to particular function (Jiao et al., 2007), while its structural elements are strongly interconnected and 

weakly connected to elements in other units or modules (AlGeddawy and ElMaraghy, 2013). 

Modular design allows the rapid development of new products by using alternate modules or module 

instances. Common modules can be shared across different products within a product family, thus 

achieving commonality and reducing costs. The main work on modular design focuses on how to 

group the partition of functional carriers or components into one module and standardize the interface 

(Bonvoisin et al., 2016; Liu et al., 2010). For example, the quality function deployment (QFD) 

method and design structure matrix (DSM) are the common tools for forming and illustrating product 

modules (Pirmoradi et al., 2014).  

2.1.3 Product platform 

Product platform is defined diversely ranging from being general and abstract to being industry 

and product specific (Jiao et al., 2007). Two types of product platform are widely discussed in the 

existing literature. The first one refers to a product platform as a physical conception, i.e., a collection 

of elements shared by multiple products (Ericsson and Erixon, 1999). The other one defines a product 
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platform as a common structure that contains a set of subsystems and interfaces. A stream of 

derivative products can be efficiently developed based on the product platform (Meyer and Lehnerd, 

1997). 

2.1.4 Product family design 

A product family is a set of similar products that are derived from a common platform with 

differentiated features to meet particular customer requirements (Jiao et al., 2007). Each individual 

product within a product family can be defined as a product variant or instance. A product family 

targets a certain market segment, and each product variant corresponds to a specific customer need 

in the market segment. All product variants within a product family will share common platforms, 

modules, and components to achieve commonality. Product portfolio is the most important problem 

in product family design, which aims to find the best combination of product variants to respond to 

diverse customer needs.  

From the marketing and sales perspective, the functional structure of product family is 

represented by product lines and product portfolios and thus is characterized by various sets of 

functional features for different customer groups. The product family from the engineering view is 

embodied by different product technologies and associated manufacturability, and thereby is 

characterized by various design parameters, components, and assembly structures. 

2.1.5 Supply chain management 

Supply chain management (SCM) deals with the coordination and integration of various 

businesses involved in the realization of products throughout the supply chain (ElMaraghy et al., 

2013). SCM encompasses the integrated planning and execution of processes required to manage the 

movement of materials, information, and financial capital. It contains various supply chain activities 

such as design, planning, sourcing, production, inventory management, logistics, and customer 
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service. The goal of SCM is to deliver the right products to the right place at the right time, with the 

right quantity and quality while optimizing the total cost. Various supply chain issues, e.g., sourcing, 

procurement, assembly, manufacturing, and distribution, will have an important impact on the 

product platform development (Pirmoradi et al., 2014). 

2.2 Product platform configuration 

Product platform configuration aims to identify and configure the shared modules or design 

variables on the product platform to satisfy customer requirements. Various methodologies from an 

engineering design perspective and product management perspective are applied to configure product 

platforms for a product family. 

2.2.1 PPC in engineering design domain 

The PPC problem from the engineering design perspective aims to determine the engineering 

technical configuration for the module, platform, and product architecture. The main concern is the 

realization of commonality. Various design methods, e.g., commonality matrixes, classification, and 

group technology, are developed to assess the similarity of modules and components in the 

architecture design. 

Chen and Wang (2008) proposed a method to design a product platform through clustering 

analysis and information theoretic approach. Askhøj and Mortensen (2020) applied a DNA method 

(deciding the number of architectures) to determine the total number of product architectures. Their 

method consists of four stages, i.e., market segmentation, mapping new generation with an existing 

architecture strategy, architecture changes, and the new architecture strategy. Colombo et al. (2020) 

developed a value analysis method to rank alternative platform configurations according to customer 

preferences. A case study based on the Google ARA Spiral-2 modular smartphone concept was 

presented. Otto et al. (2016) introduced a generic platform design approach with 13 steps, including 
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market segment definition, market attack plan, customer need gathering, system requirement 

definition, functional requirement definition, etc., for developing a modular product platform within 

the development process. Zhao et al. (2022) developed a module clustering approach to form the 

product platform taking into account the design structure and the relationship between product 

architecture and manufacturing process. Okpoti et al. (2019) presented an agent-based collaborative 

design model and proposed a decentralized coordination mechanism to facilitate the design variables 

for product platforms in a product family. Galizia et al. (2020) proposed a decision support system 

(DSS) to design and select product platforms in high-variety manufacturing. A median joining 

phylogenetic network was applied to design the platforms and a phylogenetic tree decomposition was 

used for platform selection with the analysis of platform variety and customization in the DSS. 

2.2.2 PPC in product management domain 

Another research stream from the product management perspective treats the platform 

configuration problem as a combinatorial optimization problem while focusing on production and 

manufacturing. The product platform can be configured through different combinations of modules 

and components. Qu et al. (2011) developed a two-stage platform development approach for mass 

customization using a genetic algorithm. The common components can be identified according to the 

structure commonality in the first stage while a parametric optimization can be conducted in the 

second stage. Ben-Arieh et al. (2009) formulated a mixed integer programming model to configure 

multiple modular platforms for a given product family while minimizing overall production cost. The 

products in a product family can be derived by assembling and disassembling components on the 

product platforms. A genetic algorithm was developed to solve their proposed model. Hanafy and 

ElMaraghy (2015) further considered the assembly sequence constraints in the multiple platform 

configuration model based on Ben-Arieh’s model. They solved their model by using the commercial 

solver CPLEX and illustrated a case study of touch screen tablet family. ElMaraghy and Moussa 
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(2019) expanded the platform design by utilizing additive and subtractive manufacturing conception 

and developed a genetic algorithm-based model to design the optimal or near-optimal platform for a 

large set of products and features (Moussa and ElMaraghy, 2020). Moreover, Moussa and ElMaraghy 

(2021) proposed a multiple-platform design model that utilizes additive and subtractive 

manufacturing to customize products from platforms. A genetic algorithm was developed and applied 

to case studies of guiding bushings and gear shafts to demonstrate this model. 

Most of the above studies assumed a deterministic product demand, while a few studies 

considered uncertainty and allowed more complex cost structures. For example, Van den Broeke et 

al. (2015) formulated a supply chain cost model for product-platform assignment decision, including 

the development cost, purchasing cost, inventory cost, and transformation cost while considering the 

demand uncertainty. A simulated annealing algorithm was proposed to determine the number of 

platforms and from which platform the product is derived. Furthermore, Van den Broeke et al. (2017) 

formulated two fathoming rules to improve the algorithm efficiency and illustrate the applicability in 

the branch-and-bound algorithm, simulated annealing algorithm, and genetic algorithm. Song and Ni 

(2019) formulated a fuzzy programming model to design a product platform with a modularity 

strategy under fuzzy environment. In their model, the cost savings of designing a modular platform, 

the demand quantity of products, the parameters representing economies of scale, and product quality 

improvement were characterized as fuzzy variables. An efficient algorithm combining fuzzy 

simulation and simulated annealing was proposed to solve the model. 

2.3 Product portfolio and product family design 

The platform configuration problem aims to find the optimal mix of platforms with modules or 

design variables, while the product portfolio problem seeks the right mix of product attributes to offer 

to the market (Van den Broeke et al., 2017; Jiao and Zhang, 2005). Mapping customer needs to 

functional requirements is essential for generating the product portfolio. The customer-perceived 
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utility of products has often been used as an objective to maximize customer satisfaction. 

Jiao and Zhang (2005) proposed a shared-surplus model to address the product portfolio 

planning problem. Customer preferences, choice probabilities, and platform-based product costing 

were considered in this model. A heuristic genetic algorithm was developed for solving the product 

portfolio planning problem effectively (Jiao et al., 2007). Sadeghi et al. (2010) introduced a simulated 

annealing algorithm to compare with the genetic algorithm proposed by Jiao et al. (2007). They found 

that the SA algorithm is more efficient than GA in solving product portfolio problems. Goswami et 

al. (2016) formulated an integrated Bayesian-Game theoretic approach for multi-attributed product 

portfolio planning. The function-based cost estimating framework and multi-linear regression 

methodology were applied to estimate the manufacturing cost and product premiums for different 

product portfolios. Fujita and Yoshida (2004) proposed a method combining the genetic algorithm 

and nonlinear mixed-integer programming method to simultaneously optimize module selection and 

module attribute parameters. Zhang et al. (2008) developed a mixed-integer programming model to 

determine the optimal product portfolio that considers the module selection. Du et al. (2014) proposed 

a bi-level mixed nonlinear programming model to optimize the module selections and scalable 

module parameters for product family design. The upper-level optimization seeks an optimal 

configuration of modules and module attributes by maximizing customer-perceived utility, while 

lower-level optimization entails parametric optimization by maximizing the design parameters of 

each selected module. Zhang et al. (2020) proposed a progressing modelling method for feature-

centered product family development. This model synthesized the product family information to 

support features-based knowledge modelling, hybrid innovation and time-dependent holistic product 

development. 

Moreover, Yang et al. (2018) proposed a stochastic programming model to determine the 

optimal component selections and combinations for product architecture while handling uncertainty 

in component replenishment lead time. Li et al. (2018) formulated a stochastic mixed-integer 
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programming model to deal with product architecture problems with uncertain demand and uncertain 

supply. The model further considered four different carbon emission regulations to investigate the 

impact of carbon emission on the product architecture. 

2.4 Supply chain issues in PPD and product family design 

Some recent studies consider the relevant supply chain decisions, e.g., sourcing, manufacturing, 

assembly, and distribution decision in the product design decision. For example, Salvador et al. (2002) 

explored the impact of manufacturing characteristics on the modularity decisions for product family 

design. Huang et al. (2005) proposed a mathematical model to consider the material requirement 

planning and supplier selection problem in product design. Zhang et al. (2008) developed a mixed-

integer programming model to simultaneously optimize the modular product design and the supplier 

selection decision. Furthermore, Zhang et al. (2010) studied the impact of different supply chain 

coordination schemes on product and supply chain configuration decision. Three coordination 

schemes were considered, including non-interactive suppliers, non-cooperative suppliers, and 

coordinative suppliers. Luo et al. (2011) formulated a linear programming model to integrate modular 

product family design and the supplier selection problem while considering customer purchasing 

behavior, supplier availability and related costs. Fujita et al. (2013) proposed a mixed integer 

programming model to handle a concurrent design problem of module commonality strategies under 

a given product architecture. Nepel et al. (2012) studied the product family design strategy and the 

supply chain design by employing a multi-objective programming model with the goal of minimizing 

costs and maximizing supply chain compatibility. Tan et al. (2022) proposed a concurrent 

optimization approach to integrate the manufacturing process and supplier selection into the 

personalized product architecture design problem. The objective is to maximize the potential profit 

of a product family based on a profit formulation that incorporates customer preference, process 

resource, supplier, and manufacturing cost.  
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Moreover, some studies apply the game theory model to deal with the joint optimization 

problems. Huang et al. (2007) proposed a three-move dynamic game theoretic approach to optimize 

the product configuration and supply chain. In the first move, the manufacturer takes its leading role 

to make decisions on product configuration and supplier selection. The concerned suppliers then 

make the second move to optimize their decisions including price discounts and their ordering 

policies. The manufacturer finishes the game by taking the last move to make their ordering decisions. 

Yang et al. (2015) formulated a leader-follower Stackelberg game model to jointly configure the 

modular product family design and distribution decisions. The upper-level optimization problem was 

to optimize the module selections and product variants while the lower-level one is to determine the 

distribution decisions. Du et al. (2014) applied a bi-level mixed nonlinear programming model to 

determine the module selection and parameter scaling in the product family design. The upper-level 

optimization seeks an optimal configuration of modules and module attributes by maximizing the 

customer-perceived utility and the lower-level one determines scaling design parameters by 

maximizing the module design parameters. Wang et al. (2016) formulated a nonlinear mixed integer 

bilevel programming model to deal with the product family architecture and supply chain 

configuration. The upper-level optimization problem aims to determine the optimal selection of base 

modules and compound modules in product family architecture, while the lower-level optimization 

problem deals with the relevant supply chain decisions, including supplier selection, manufacturer 

decision, assembly decision, and distribution center decision.  

Recently, some studies have considered the relevant supply chain issues in PPC. Hanafy and 

ElMaraghy (2017) proposed a modular product platform configuration model to consider assembly 

line planning with the goals of minimizing assembly station quantity and cycle time. The model can 

efficiently design assembly line and platform configuration simultaneously. Miao et al. (2017) also 

formulated a bilevel nonlinear programming model to coordinate the platform configuration and 

product line planning. Xiong et al. (2018) proposed a Stackelberg game model to integrate modular 
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product platform and supply chain postponement decision. The upper-level optimization problem 

identifies the basic module and compound module by maximizing customer-perceived utilities and 

postponement utilities of product families, whereas the lower-level optimization problem selects the 

most appropriate postponement service providers with minimizing the total supply chain cost. 

Moussa and ElMaraghy (2022) formulated a non-linear model to design the optimal platform 

configurations while focusing on platform inventory management. The remaining inventory of 

platforms held in each production period could be utilized in the subsequent production periods in 

this model. 

2.5 Optimization method 

Various models and approaches have been developed to determine the optimal product platform 

configuration and product family design. Table 2.1 summarizes the main methods and approaches 

used in the prevailing studies. These relevant studies are categorized according to research domains, 

including product portfolio planning (PPP), product family design (PFD), product architecture design 

(PAD), product platform configuration (PPC) and product platform assignment (PPA). As shown in 

Table 2.1, combinatorial optimization is widely used to determine the optimal product portfolio. 

Stackelberg game theory is generally applied to deal with the joint optimization problem of PFD, 

PAD, and its related supply chain issues. Furthermore, most existing research assumes that the 

demand is deterministic so that the problems can be easily solved. Only a few studies consider 

demand uncertainty through stochastic programming or fuzzy optimization approach. 

Searching for all possible combinations of modules, components, and design variables to 

configure multiple product platforms for a product family is a complicated combinational 

optimization problem. Heuristic algorithm has been frequently used to solve the problems. The 

genetic algorithm (GA) (e.g., Ben-Arieh et al., 2009; Yang et al., 2015) and simulated annealing 

algorithm (SA) (e.g., Sadeghi et al., 2011; Van den Broeke et al., 2015) are two major heuristics 
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algorithms. Some other solution methods are also applied sometime, e.g., branch and bound (B&B) 

(e.g., Hanafy and ElMaraghy, 2017; Van den Broeke et al., 2017), bilevel programming (B&P) (e.g., 

Du et al., 2014) or other commercial software CPLEX (e.g., Hanafy and ElMaraghy, 2015, 2017). 

Finally, a variety of product family including electronic products such as notebook computer 

(Graves and Willems, 2005), modular phone (Hanafy and ElMaraghy, 2017), television receiver 

circuits (Fujita, 2004), printed circuit board of medical screen (Van den Broeke et al., 2015, 2017), 

touchscreen tablet (Hanafy and ElMaraghy, 2015); industrial products such as an electric motor (Du 

et al., 2014), cordless drill (Ben-Arieh et al., 2009), power transformer (Yang et al., 2015); complex 

system such as aircraft (Fujita, 2004), automotive climate control system (Nepal et al., 2012) are 

introduced to demonstrate the platform configuration and product family design. 
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Table 2.1 Summary of optimization methods for platform configuration, product portfolio and product family design 

Research 

domain 
Reference  Methodology 

Consider 

supply 

chain 

decisions? 

Demand 

uncertainty? 

Solution algorithm 

Case study 

GA SA Other 

PPP 

Jiao and Zhang (2005) Combinatorial optimization N N X     Notebook computer 

Jiao et al. (2007) Combinatorial optimization N N X     Notebook computer 

Sadeghi et al. (2011) Combinatorial optimization N N   X   Notebook computer 

PFD 

Fujita (2004)   N N   X   
Aircraft design and 

television receiver circuits  

Fujita et al. (2013)   Y N X     Numerical case 

Du et al. (2014) Stackelberg game N N     BP Electric motor 

Yang et al. (2015) Stackelberg game Y N X     Power transformer 

Wang et al. (2016) Stackelberg game Y N X     Power transformer 

PAD 

Zhang et al. (2008)   Y N X   EA Numerical case 

Zhang et al. (2010) Game theory Y N     IA Numerical case 

Tan et al. (2022) Mixed integer programming Y N X     Bicycle 

Yang et al. (2018) Stochastic programming Y Y     LRA; CPLEX Computer 

Li et al. (2018) Stochastic programming Y Y     BD; CPLEX 
Ship engines and power 

generator 

Nepal et al. (2012) 
Weighted goal 

programming 
Y Y     GP  

Bulldozer and automotive 

climate control system 

PPC 

Qu et al. (2011)   Y N X     Motor product 

Ben-Arieh et al. (2009) Non-linear programming N N X     Cordless drill 

Hanafy and ElMaraghy (2015) Non-linear programming N N     CPLEX Touchscreen tablet 

Hanafy and ElMaraghy (2017) Mixed integer programming Y N     CPLEX; B&B Modular phone 

Moussa and ElMaraghy (2021)   N N X     Guiding bushing, gear shaft 

Miao et al. (2017) Bilevel mixed 0-1 nonlinear  Y N X     Automotive 

ElMaraghy and Moussa (2019) Mixed integer programming N N X     Guiding bushing 

Moussa and ElMaraghy (2022) Holistic non-linear Y N     GUROBI Gear shaft 

Xiong et al. (2018) Stackelberg game Y N X     Laser printer 
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PPA 
Van den Broeke et al. (2015)   N Y   X   Printed circuit board  

Van den Broeke et al. (2017)   N Y X X B&B Printed circuit board 

 

Note: PPP, product portfolio planning; PFD, product family design; PAD, product architecture design; PPC, product platform configuration; PPA, 

product platform assignment. 

GA, genetic algorithm; SA, simulated annealing; BP, bilevel programming; EA, enumerative algorithm; IA, iterative algorithm; LRA, lagrangian 

relaxation algorithm; BD, benders decomposition; B&B, branch and bound; GP, goal programming
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2.6 Research gap 

The research gap is stated in this section.  

Firstly, the extant literature on PPD has identified many of the above-mentioned economic 

benefits of PPD from statistical analysis, conceptual models, and industry surveys. However, 

quantifying the economic benefits of PPD from a supply chain management perspective is important 

for strategic decision-making. Some cost models have been developed in the existing research 

including the single or several following cost items, e.g., development cost, purchasing cost, 

production cost, and inventory cost. A comprehensive cost model throughout the entire supply chain 

is still required. Using a more comprehensive cost model as the evaluation criterion can help to better 

evaluate the overall performance of PPD. A supply chain cost model including the development, 

purchasing, ordering, inventory, shortage, and salvage costs will be developed in chapter 3. 

Secondly, modular design is recognized as the most important underlying architecture to support 

product family design and product platform design. Two types of module design approaches can be 

found, i.e., module selection and module integration. The module selection provides a broader 

possible of platform types and product variety while module integration facilitates the platform and 

module commonality to gain economic benefits. Excessive module types and quantities can incur 

uneconomical consequences and bring negative impacts on supply chain management. While over-

pursuing the module integration can reap the benefits of commonality to some extent, it also 

accompanies some negative effects, such as reduced product differentiation and additional cost for 

excessive commonality. Traditional platform research either focuses on forming the product platform 

through module selections and combinations or clustering modules through the hierarchical 

decomposition of product functional requirements and manufacturing processes. To the best of our 

knowledge, little research considers the product platform configuration problems associated with the 

questions of module selection and integration. This problem will be targeted in chapter 3. 
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Thirdly, the platform configuration model is a combinatorial optimization problem. For a given 

set of modules or design variables, we may find an optimal combination of modules or design 

variables to satisfy customer preferences. However, when considering the platform design strategy, 

i.e., platform-product assignment decisions, the platform configuration will be changed. Moreover, 

many studies have considered SCM-related issues in product architecture and product family design. 

However, little attention has been paid to integrating SCM-related issues and PPC problems. 

Integrating the PPC and related supply chain issues is another research content in this study.  

Finally, demand uncertainty is a huge challenge for manufacturers to manage the supply chain 

and platform configuration. Generally, the development of product platform is ahead of new product 

introduction (NPI), which is difficult to forecast the demand. Most of the existing research on 

platform configuration assumes that the demand is deterministic so that the problem can be easily 

dealt with. However, when considering the uncertain demand, the decision of platform configuration 

will be changed, and the optimization problem will become more complex. Formulating a flexible 

platform configuration model will be particularly important for platform-based product development. 

This research gap will be filled in chapter 5.  

 



*Partial content of this chapter has been published on the International Journal of Production Research. 

Wang, T., Wang, J., Jin, G., & Matsukawa, H. (2022). Product platform configuration decision in NPD with 

uncertain demands and module options. International Journal of Production Research, 1-20. 

24 

Chapter 3  Product platform configuration 

decision in NPD with module options 

3.1 Introduction  

Modular platform-based product development is a successful way to offer the required product 

variety while reducing the internal complexity. Various manufacturers, including automotive, 

consumer electronics, computers, and aircraft, have implemented the modular PPD approach to 

produce their products. Platform-based product development and modular design bless multiple 

benefits (Andersen et al., 2022), such as reduced development time and improved ability to upgrade 

products (Simpson, 2004), increased efficiency and reduced cost in manufacturing (Liu et al., 2010; 

Ben-Arieh et al., 2009), improved product quality and reduced waste (Pirmoradi et al., 2014). With 

modularity, it is possible to fulfill various functions and product variety through different 

combinations of modules.  

Two types of modular design in product platform configuration can be found, i.e., module 

selection and module integration. The module selection allows product platform to be configured by 

choosing modules from a given module set. The module integration allows product platform to be 

configured with one common module to support a wider range of product requirements. 

Introducing more modules in the platform configuration can provide more choices in the 

combinations between platforms and modules so as to satisfy the wider customer needs (Mikkola, 

2007; Otto et al., 2016). However, too many modules may also increase complexity, development 
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costs, and manufacturing costs (Ripperda and Krause, 2017) and make demand forecast inaccurate 

(Wan et al., 2012). Increasing modules may also cause the proliferation of parts and associated costs 

such as parts procurement costs, module assembling costs, stocking costs, and aftercare costs (Fisher 

and Ittner, 1999; Salvador et al., 2002; AlGeddawy and ElMaraghy, 2013). 

To mitigate these negative effects, the module integration approach is introduced by using one 

common module to satisfy the customer demand with the higher and lower specifications. Using 

module integration helps to improve the platform and module commonality, which enables the 

manufacturers to achieve the risk-pooling benefits in the process of development, procurement, 

manufacturing, and inventory (Huang et al., 2005). The fewer modules and platforms produce the 

lower product development cost, manufacturing cost, and inventory cost (Fisher and Ittner, 1999; 

Zhang et al., 2010; Agrawal et al., 2013). However, using higher specification modules for those 

customer needs with lower specifications will incur additional overdesign and procurement costs as 

well as offset the product variety (Krishnan and Gupta, 2001; Wan et al., 2012). Therefore, the 

important challenge in the product platform configuration problem is how to balance these two types 

of platform configuration. This challenge was targeted in this chapter. 

We consider a modular platform configuration framework in which a set of module types with 

module options is offered to configure the product platform for an external product family. A module 

type is a unit to serve an identifiable product function, while multiple module options within a module 

type represent the differentiation of functions. The combination of modules and module options leads 

to product differentiation. This is similar to the assumption in other studies (Chakravarty and 

Balakrishnan, 2001; Zhang et al., 2008; Zhang et al., 2010). The concept of module type with module 

options is similar to the notion of selective module with module instances (Xiong et al., 2018) and 

that of replaceable component set with components (Gupta and Krishnan, 1999). Important of this 

assumption is that we pay a higher procurement cost for the higher specification module option, but 

the production and assembly cost is the same for the higher and lower module options. The higher 
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specification module option is allowed to satisfy the customer demand with the lower options in order 

to implement module integration.  

The pertinent questions are: 

(1) which product platforms should be developed, and how many quantities should be produced 

(the product platform configuration problem),  

(2) which module options should be selected, and how many quantities should be procured (the 

module configuration problem).   

To deal with the trade-off between the benefits of product platform commonality and the 

associated costs, we propose an optimization model for product platform configuration while 

including the cost items throughout the supply chain, i.e., development cost, procurement cost, setup 

cost for ordering, inventory cost, shortage cost, and salvage cost. A hybrid-search method (HSM) 

combining simulated annealing (SA) and variable neighbourhood search (VNS) is developed to solve 

the proposed model. The accuracy and efficiency of the proposed algorithm are evaluated by 

comparing it with an explicit enumeration algorithm. Moreover, a real case study on motherboard 

design of personal computer product families was presented to illustrate the proposed model and 

solution method. Results of the case study indicate that the proposed model and algorithm can 

effectively support the decision-making of product platform configuration for mass customization 

products.  

3.2 Problem description and assumptions 

3.2.1 Nomenclature 

Table 3.1 presents the description of symbols used in the model. 
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Table 3.1 List of symbols 

Symbol Description 

𝑖 Index of product platform (or product variant), 𝑖 = 1,2,⋯ , 𝐼 

𝑗 Index of module, 𝑗 = 1,2,⋯ , 𝐽 

𝑘 Index of module option, 𝑘 = 1,2,⋯ , 𝐾𝑗 

𝑁𝑗𝑘 Design parameters depends on the specification of the module option 𝑚𝑗𝑘 

𝑙𝑡𝑗𝑘 The procurement lead time of module option 𝑚𝑗𝑘 

𝑝𝑟𝑗𝑘 The monthly production quantity of module option 𝑚𝑗𝑘 

𝑑𝑖 Monthly demand of the product 𝐹𝑖 

𝑑𝑗𝑘 Monthly demand of module option 𝑚𝑗𝑘 

𝑢𝑗𝑘 The annual demand of module option 𝑚𝑗𝑘 

𝜎𝑖 The monthly demand standard deviation of the product 𝐹𝑖 

𝜎𝑗𝑘 The monthly standard deviation of module option 𝑚𝑗𝑘 

𝜎𝑗𝑘
𝐿  The standard deviation of module option over a replenishment lead time 

𝜌𝑖,𝑖∗ The correlation coefficient of the product 𝐹𝑖 and product 𝐹𝑖∗  

𝑞𝑗𝑘 Order quantity of module option 𝑚𝑗𝑘 

𝐺(𝑧) Expected shortage per replenishment cycle 

𝑑𝑐𝑗𝑘 Fixed design and procurement cost of module option 𝑚𝑗𝑘 

𝑝𝑐𝑗𝑘 Unit procurement price of module option 𝑚𝑗𝑘 

ℎ𝑐𝑗𝑘 Unit inventory holding cost of module option 𝑚𝑗𝑘 

𝑠𝑐𝑗𝑘 Unit shortage cost of module option 𝑚𝑗𝑘 

𝑡𝑖𝑗𝑘 

Availability parameter for selecting specification of the module option 𝑚𝑗𝑘 for 

platform 𝑃𝑖 

𝐴 Fixed setup cost for ordering one batch 

𝛼 Coefficient of fixed development cost 

𝛽 Coefficient of variable procurement cost 

𝑧 Safety factor 

𝑠𝑙 Service level 

𝑏 Fixed delay factor of procurement lead time 

𝑙𝑖𝑓𝑒 Product lifetime 

𝛾 Capital discount rate to calculate the Net Present Value of PPD cost 

𝑦𝑗𝑘 Decision variable, takes value 1 if module option 𝑚𝑗𝑘 is used 

𝑥𝑖𝑗𝑘 

Decision variable, indicate whether module option 𝑚𝑗𝑘  is used in product 

platform 𝑃𝑖 

 

3.2.2 Problem description and assumptions 

As shown in Figure 3.1, we assume that a product family has multiple products 𝐹𝑖, (𝑖 =

1,2,⋯ , 𝐼)  with different functional requirements to satisfy customer needs. Module 𝑚𝑗 , (𝑗 =
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1,2,⋯ , 𝐽)  is a unit with standard interface that provides an identifiable product function and is 

developed or designed by mechanical engineers and electronic engineers using various techniques, 

for example, group technology. Two types of modules are involved, i.e., common modules and variant 

modules. Each variant module has multiple options 𝑚𝑗𝑘 , (𝑘 = 1,2,⋯ , 𝐾𝑗)  with different cost-

relevant design parameters 𝑁𝑗𝑘 to represent different function. For example, memory size of 8M, 

16M, and 32M are the options for one specific memory module in cellular phone design. The common 

module only has one module option. In other words, a variant module with one option can be seen as 

a common module. For the sake of simplicity, we assume that a product 𝐹𝑖 is derived from product 

platform 𝑃𝑖 and that platforms with the same module and the associated options are merged into one 

platform later. We allow platform 𝑃𝑖  to be configured as any possible platform according to the 

selection of modules and the associated options. The number of product platforms 𝑃𝑖 and 𝑃𝑖∗  (𝑖 ≠

𝑖∗) are two different platforms, however, we set 𝑃𝑖 = 𝑃𝑖∗(𝑖 ≠ 𝑖∗) later when two platforms have 

completely the same modules and the same associated options.  

Different product platforms can select different module options to satisfy different product 

specifications. However, it may require a greater numbers of module options to be developed with 

higher development cost. In opposite, if we develop a single higher specification module option to 

meet the high-end and low-end customer demand associated with different product platforms, it will 

bring the higher procurement cost but the lower other costs. There may exist one balance point on the 

total PPD cost when determining the optimal product platform configuration. Furthermore, we 

simplify the description of functional requirements of products (number of product families or 

product brands) to directly map to the requirements for modules with module options. We also assume 

that all module options are given, and the maximum option number is 𝐾𝑗, for module 𝑚𝑗. The highest 

requirement of the option level for each module 𝑚𝑗 in a set of product platforms is denoted by 𝐻𝑗 

which satisfies the inequality function 𝐻𝑗 ≤ 𝐾𝑗 . 

Assumption 1: We sort modules 𝑚𝑗  by increasing value of 𝑁𝑗𝑘 (𝑁𝑗𝑘 ≤ 𝑁𝑗(𝑘+1)) . Value of 
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𝑁𝑗𝑘  consists of development cost, procurement cost, and so on. This assumption is widely used in 

previous studies (e.g., Zhang et al., 2008; Van den Broeke et al., 2017). We further assume that the 

module development cost 𝑑𝑐𝑗𝑘  of module 𝑚𝑗  with option 𝑚𝑗𝑘  is proportional to the 𝑁𝑗𝑘 , i.e.,  

𝑑𝑐𝑗𝑘 = 𝛼 ∗ 𝑁𝑗𝑘, and the procurement cost 𝑝𝑐𝑗𝑘 of the module 𝑚𝑗 with option 𝑚𝑗𝑘 equal to 𝛽 ∗

𝑁𝑗𝑘, where 𝛼 and 𝛽 are positive coefficients related to the development cost and procurement cost. 

Assumption 2: A product platform 𝑃𝑖 with higher specification module option can be used for 

product 𝐹𝑖 with lower specification module option. The higher specification module option could be 

used to product platform without sacrificing product quality, however product platform cost increases. 

In the proposed optimization model, we define an availability parameter 𝑡𝑖𝑗𝑘. The 𝑡𝑖𝑗𝑘 is binary 

variable and satisfies the inequality condition, 𝑡𝑖𝑗𝑙 ≥ 𝑡𝑖𝑗𝑘, which indicates that module option 𝑚𝑗𝑘 

or higher specifications 𝑚𝑗𝑙  (𝑙 > 𝑘) can be used to product platform 𝑃𝑖 for deriving product 𝐹𝑖. 

For example, if we have two products 𝐹1 and 𝐹2 where the product 𝐹1 requires module options 

𝑚11, 𝑚21, 𝑚32 and the product 𝐹2 requires module options 𝑚13, 𝑚22, 𝑚31, then we have 𝑡121 =

1, 𝑡222 = 1 for module 𝑚2, consequently 𝑡122 = 𝑡123 = 𝑡223 = 1 and 𝑡221 = 0.   

Assumption 3: We can purchase all module options from outside. Economic order quantity 

(EOQ) is applied for procurement using average demand. Demand is uncertain and follows normal 

distribution. Procurement lead time of module 𝑚𝑗 with option 𝑘, 𝑙𝑡𝑗𝑘(𝑞𝑗𝑘), includes production 

time in the suppliers and a fixed time delay 𝑏 representing transportation time (Glock and Ries, 

2013). In this study, we assume that one module option 𝑚𝑗𝑘 is purchased from one supplier. Dual 

sourcing or supply chain risk management is out of scope of this study.  

𝑙𝑡𝑗𝑘(𝑞𝑗𝑘) =
𝑞𝑗𝑘

𝑝𝑟𝑗𝑘
+ 𝑏 (3.1) 
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Figure 3.1 Product platform configuration problem with module options 
 

3.3 Model formulation 

Two decision variables are used in the proposed model.   

(1) 𝑥𝑖𝑗𝑘: takes value 1, if module option 𝑚𝑗𝑘 is used to product platform 𝑃𝑖, otherwise 0. 

(2) 𝑦𝑗𝑘: takes value 1, if module option 𝑚𝑗𝑘 used to any product platforms, otherwise takes 

value 0. 

Since each product platform must select one module option 𝑚𝑗𝑘 at most for any module 𝑚𝑗, it 

leads to the following constraint. 

∑𝑥𝑖𝑗𝑘 = 1      (𝑖 = 1,2,⋯ , 𝐼; 𝑗 = 1,2,⋯ , 𝐽)

𝐾𝑗

𝑘=1

(3.2) 
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The availability constraint can be written as follows, utilizing the availability parameter 𝑡𝑖𝑗𝑘.  

This constraint ensures one module option is selected at most, allowing a higher specification to 

replace a lower specification. 

∑𝑡𝑖𝑗𝑘 ∙ 𝑥𝑖𝑗𝑘 = 1      (𝑖 = 1,2,⋯ , 𝐼; 𝑗 = 1,2,⋯ , 𝐽)

𝐾𝑗

𝑘=1

(3.3) 

The selected number of module options will not exceed the number of available module options. 

Therefore, we have 

𝐻𝑗 ≤ 𝐾𝑗       (𝑗 = 1,2,⋯ , 𝐽) (3.4) 

In our model, we assume that demand quantity of products 𝐹𝑖 and 𝐹𝑖∗ have correlation, and the 

correlation coefficient is denoted using the symbol 𝜌𝑖,𝑖∗(𝑖, 𝑖
∗ ∈ 𝐼; 𝑖 ≠ 𝑖∗). Assuming that the monthly 

demand for product follows a normal distribution, i.e., 𝜇𝑖 ∼ 𝑁(𝑑𝑖, 𝜎𝑖
2)  for 𝑖 = 1,2,⋯ , 𝐼 , the 

monthly demand of the module option 𝑑𝑗𝑘 = ∑ 𝑥𝑖𝑗𝑘 ∙ 𝑑𝑖
𝐼
𝑖=1  is normally distributed and the variance 

can be given as below function. 

𝜎𝑗𝑘
2 =∑(𝑥𝑖𝑗𝑘 ∙ 𝜎𝑖

2 + ∑ 𝑥𝑖𝑗𝑘 ∙ 𝑥𝑖∗𝑗𝑘 ∙ 2 ∙ 𝜌𝑖,𝑖∗ ∙ 𝜎𝑖
2 ∙ 𝜎𝑖∗

2 )

𝐼

𝑖∗=𝑖+1

𝐼

𝑖=1

(3.5) 

Further, we introduce 𝑡  number of segments on ordering quantity 𝑝𝑞𝑡  and set multiple 

increasing base procurement costs 𝑝𝑐𝑗𝑘
𝑡  which represents linear quantity discount. This segment 

essentially represents a piecewise linear approximation of the nonlinear discount function. 

𝑝𝑐𝑗𝑘(𝑢𝑗𝑘) =

{
 
 

 
 𝑝𝑐𝑗𝑘

1 + 𝑟1(𝑢𝑗𝑘 − 𝑝𝑞1)    𝑖𝑓 0 ≤ 𝑢𝑗𝑘 ≤ 𝑝𝑞1

    𝑝𝑐𝑗𝑘
2 + 𝑟2(𝑢𝑗𝑘 − 𝑝𝑞2)    𝑖𝑓 𝑝𝑞1 < 𝑢𝑗𝑘 ≤ 𝑝𝑞2

⋮
      𝑝𝑐𝑗𝑘

𝑡 + 𝑟𝑡(𝑢𝑗𝑘 − 𝑝𝑞𝑡)    𝑖𝑓 𝑝𝑞𝑡−1 < 𝑢𝑗𝑘 ≤ 𝑝𝑞𝑡

(3.6) 

In equation (3.6), 𝑟𝑡 represents slope when the ordered quantity is located between 𝑝𝑞𝑡−1 and 𝑝𝑞𝑡. 

Setting the different value of 𝑝𝑐𝑗𝑘
𝑡  and 𝑟𝑡 , we may present concave discount function as well as 

convex discount function. 
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The objective function of this paper is to minimize the total operation cost 𝐶𝑡 consisting of six 

cost terms.   

(1) Fixed development cost of module option, 𝐶𝑑𝑐(𝑥) , depending on the module options 

selection.   

(2) Procurement cost considering quantity discount, 𝐶𝑝𝑐(𝑥).   

(3) Setup cost for ordering 𝐶𝑜𝑐(𝑥). 

(4) Inventory cost 𝐶𝑖𝑐(𝑥) consisting of holding inventory cost and safety inventory cost.   

(5) Shortage cost 𝐶𝑠𝑐(𝑥) which depends on the anticipated number of replenishment cycles per 

year (
𝑢𝑗𝑘

𝑞𝑗𝑘⁄ ) and the Expected Shortage Per Cycle Replenishment (ESPCR). The ESPCR further 

depends on the standard deviation of demand over lead time 𝜎𝑗𝑘
𝐿  and the loss function 𝐺(𝑧) = 𝜎𝑗𝑘

𝐿 ∙

{𝑓𝑢(𝑧) − 𝑧 ∙ [1 − 𝐹𝑢(𝑧)]}, where 𝑓𝑢(𝑧) is standard p.d.f and 𝐹𝑢(𝑧) is the standard c.d.f of demands 

(Van den Broeke et al., 2015; Silver et al., 2016, pp 262). 

(6) Salvage cost 𝐶𝑏𝑐(𝑥) which represents the leftover items that will not be used further at the 

end of the product lifetime, mainly the waste of safety stock in our model. 

Since the PPD problem always has long time horizons (normally more than one year), the capital 

discount rate must be included when we add up the total cost from an inventory policy (Hillier and 

Lieberman, 2005, pp.837). We introduce the capital discount rate 𝛾 to calculate the Net Present 

Value (NPV) of total cost. The development cost in a PPD problem usually occurs only once and the 

other costs are yearly recurring over the expected product lifetime and are discounted using capital 

discount rate (𝛾). 

We formulate the proposed model as below. 

Minimize  

𝐶𝑡(𝑥) = 𝐶𝑑𝑐(𝑥) + 𝐶𝑝𝑐(𝑥) + 𝐶𝑜𝑐(𝑥) + 𝐶𝑖𝑐(𝑥) + 𝐶𝑠𝑐(𝑥) + 𝐶𝑏𝑐(𝑥) (3.7) 

𝐶𝑑𝑐(𝑥) =∑∑𝑑𝑐𝑗𝑘 ∙ 𝑦𝑗𝑘

𝐾𝑗

𝑘=1

𝐽

𝑗=1

(3.8) 
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𝐶𝑝𝑐(𝑥) =∑
1

(1 + 𝛾)𝑡
[∑∑(𝑝𝑐𝑗𝑘(𝑢𝑗𝑘) ∙ 𝑢𝑗𝑘]

𝐾𝑗

𝑘=1

𝐽

𝑗=1

𝑙𝑖𝑓𝑒

𝑡=1

(3.9) 

𝐶𝑜𝑐(𝑥) =∑
1

(1 + 𝛾)𝑡
(∑∑

𝐴 ∙ 𝑢𝑗𝑘

𝑞𝑗𝑘

𝐾𝑗

𝑘=1

)

𝐽

𝑗=1

𝑙𝑖𝑓𝑒

𝑡=1

(3.10) 

𝐶𝑖𝑐(𝑥) =∑
1

(1 + 𝛾)𝑡
[∑∑(

ℎ𝑐𝑗𝑘 ∙ 𝑞𝑗𝑘

2

𝐾𝑗

𝑘=1

+ ℎ𝑐𝑗𝑘 ∙ 𝑧 ∙ 𝜎𝑗𝑘
𝐿 )

𝐽

𝑗=1

𝑙𝑖𝑓𝑒

𝑡=1

(3.11) 

𝐶𝑠𝑐(𝑥) =∑
1

(1 + 𝛾)𝑡
[∑∑(

𝐺(𝑧) ∙ 𝑠𝑐𝑗𝑘 ∙ 𝑢𝑗𝑘

𝑞𝑗𝑘

𝐾𝑗

𝑘=1

)

𝐽

𝑗=1

]

𝑙𝑖𝑓𝑒

𝑡=1

(3.12) 

𝐶𝑏𝑐(𝑥) =∑∑𝑝𝑐𝑗𝑘 ∙ 𝑧 ∙ 𝜎𝑗𝑘
𝐿

𝐾𝑗

𝑘=1

𝐽

𝑗=1

(3.13) 

Subject to 

𝑙𝑡𝑗𝑘(𝑞𝑗𝑘) =
𝑞𝑗𝑘

𝑝𝑟𝑗𝑘
+ 𝑏      (𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗) (3.1) 

∑𝑥𝑖𝑗𝑘 = 1      (𝑖 = 1,2,⋯ , 𝐼; 𝑗 = 1,2,⋯ , 𝐽)

𝐾𝑗

𝑘=1

(3.2) 

∑𝑡𝑖𝑗𝑘 ∙ 𝑥𝑖𝑗𝑘 = 1      (𝑖 = 1,2,⋯ , 𝐼; 𝑗 = 1,2,⋯ , 𝐽)

𝐾𝑗

𝑘=1

(3.3) 

𝐻𝑗 ≤ 𝐾𝑗       (𝑗 = 1,2,⋯ , 𝐽) (3.4) 

𝜎𝑗𝑘
2 =∑(𝑥𝑖𝑗𝑘 ∙ 𝜎𝑖

2 + ∑ 𝑥𝑖𝑗𝑘 ∙ 𝑥𝑖∗𝑗𝑘 ∙ 2 ∙ 𝜌𝑖,𝑖∗ ∙ 𝜎𝑖
2 ∙ 𝜎𝑖∗

2)

𝐼

𝑖∗=𝑖+1

𝐼

𝑖=1

  

 (𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗) (3.5) 

∑𝑥𝑖𝑗𝑘 ≥ 𝑦𝑗𝑘       (𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗)

𝐼

𝑖=1

(3.14) 

∑𝑥𝑖𝑗𝑘 ≤ 𝑀 ∙ 𝑦𝑗𝑘      (𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗)

𝐼

𝑖=1

(3.15) 
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𝑢𝑗𝑘 = 12 ∙ (∑𝑥𝑖𝑗𝑘 ∙ 𝑑𝑖

𝐼

𝑖=1

)       (𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗) (3.16) 

𝑞𝑗𝑘 = √
2 ∙ 𝐴 ∙ 𝑢𝑗𝑘

ℎ𝑐𝑗𝑘
      (𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗) (3.17) 

𝜎𝑗𝑘
𝐿 = √𝑙𝑡𝑗𝑘 ∙ 𝜎𝑗𝑘       (𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗) (3.18) 

𝐺(𝑧) = 𝜎𝑗𝑘
𝐿 ∙ {𝑓𝑢(𝑧) − 𝑧 ∙ [1 − 𝐹𝑢(𝑧)]}    (𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗) (3.19) 

𝑦𝑗𝑘 ∈ {0,1}      (𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗) (3.20) 

𝑥𝑖𝑗𝑘 ∈ {0,1}      (𝑖 = 1,2,⋯ , 𝐼; 𝑗 = 1,2,⋯ , 𝐽; 𝑘 = 1,2,⋯ , 𝐾𝑗) (3.21) 

Constraint (3.2) specifies that only one module option 𝑚𝑗𝑘 for any module 𝑚𝑗 can be selected 

by a product platform. Constraint (3.3) is an availability constraint that ensures assumption 2. 

Constraint (3.4) ensures that the number of module options used in the product platforms does not 

exceed the number of module options available at the design level. Constraints (3.14) and (3.15) 

confine the derivative decision variable 𝑦𝑗𝑘 , where M is a sufficiently large positive number. 

Equations (3.1), (3.16), and (3.17) refer to the value of parameters 𝑙𝑡𝑗𝑘, 𝑢𝑗𝑘, and 𝑞𝑗𝑘. The monthly 

demand variance 𝜎𝑗𝑘
2  and the standard deviation of module option over the replenishment lead time 

𝜎𝑗𝑘
𝐿  are defined in equations (3.5) and (3.18). Equation (3.19) gives the loss function used to calculate 

the expected shortage. Constraints (3.20) and (3.21) restrict binary decision variables. 

3.4 Algorithm development 

The PPD problem can be understood as a large-scale combinatorial optimization problem. Since 

the problem is NP-hard, exact algorithms such as explicit enumeration can be very time-consuming 

for large-scale problems. To solve it within a reasonable time duration, heuristic algorithms like the 

simulated annealing algorithm (SA) are recognised as an efficient way (Sadeghi et al., 2011; Van den 
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Broeke et al., 2015, 2017). In this paper, we develop a new HSM based on simulated annealing and 

variable neighbourhood search. The core idea of the HSM is to find a local optimum quickly using 

the SA algorithm and find a global optimum by using variable neighbourhood, acceptance function, 

and global time varying parameters, which enables escaping from the local optimum. The proposed 

HSM algorithm includes three steps. 

Step 1: Initialization. Set parameter values of the SA algorithm, such as the initial temperature, 

the number of iterations and steps, and so on. Set the initial product platform configuration decision 

with a binary variable and assign it to 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡. Define a set of neighbourhood structures 𝑁𝑠( 𝑠 =

1,2,⋯ , 𝑠𝑚𝑎𝑥) and denote the set of solutions within the neighbourhood 𝑁𝑠 with 𝑁𝑠(𝑥). The radius 

of the neighbourhood 𝑟𝑠 is applied to control the neighbourhood size when searching for solutions 

around the current point, where 𝑟𝑠 = |𝑥 − 𝑥𝑠| = ∑ (|𝑥𝑖𝑗𝑘 − 𝑥𝑖𝑗𝑘
𝑠

∀𝑖,𝑗,𝑘 |). We use a simple difference 

of the binary variable of current solution 𝑥 and next feasible solution 𝑥𝑠 to calculate the radius. We 

may use geometric distance here; however, it takes time for calculation.  

Step 2: Local search. We apply the basic simulated annealing algorithm to find a local minimum 

solution 𝑥𝑙𝑜𝑐𝑎𝑙  from 𝑁𝑠(𝑥) . In each local search, we first start with an initial local minimum 

solution 𝑥𝑙𝑜𝑐𝑎𝑙, which equals the current global minimum solution 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡. Second, a new feasible 

solution 𝑥𝑠 is created from 𝑁𝑠(𝑥) by generating random numbers corresponding to the solution 

matrix's element positions according to the different radius 𝑟𝑠 and inverting the 0-1 values of these 

positions. Third, compare the objective value (𝑐𝑜𝑠𝑡(𝑥𝑠)) associated with the new feasible solution 

𝑥𝑠 to the local minimum value (𝑐𝑜𝑠𝑡(𝑥𝑙𝑜𝑐𝑎𝑙)). Whenever the 𝑐𝑜𝑠𝑡(𝑥𝑠) is less than 𝑐𝑜𝑠𝑡(𝑥𝑙𝑜𝑐𝑎𝑙) or 

the acceptable probability is over a random number between 0 and 1, the new feasible solution 𝑥𝑠 

replaces the local minimum solution 𝑥𝑙𝑜𝑐𝑎𝑙 . Otherwise, the local minimum solution remains 

unchanged (𝑥𝑙𝑜𝑐𝑎𝑙 = 𝑥𝑙𝑜𝑐𝑎𝑙). The procedure stops whenever the SA algorithm condition either reaches 

the total iteration limit or improves saturated. Acceptance function and global time varying parameter 

will generate a new solution escaping from the local optimum.  
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Step 3: Neighbourhood change. Compare the global minimum (𝑐𝑜𝑠𝑡(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡)) with the local 

minimum (𝑐𝑜𝑠𝑡(𝑥𝑙𝑜𝑐𝑎𝑙)) obtained from 𝑁𝑠(𝑥) with local search SA algorithm. If the 𝑐𝑜𝑠𝑡(𝑥𝑙𝑜𝑐𝑎𝑙) 

is less than 𝑐𝑜𝑠𝑡(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡), then 𝑥𝑙𝑜𝑐𝑎𝑙 replaces 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and neighbourhood 𝑁𝑠  returns to 𝑁1 

for the next local search. Otherwise, the current solution remains unchanged (𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

and the search explores the next neighbourhood  𝑁𝑠+1 unless 𝑠 > 𝑠𝑚𝑎𝑥. Note that we return to 𝑁1 

whenever 𝑐𝑜𝑠𝑡(𝑥𝑙𝑜𝑐𝑎𝑙) is less than 𝑐𝑜𝑠𝑡(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡).  

The method repeats step 2 and step 3 until the stopping condition is met and the current solution 

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the global optimal solution to this problem. The pseudo-code of the proposed algorithm 

is briefly described in Figure 3.2. 
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Figure 3.2 Pseudo-code of the proposed algorithm 

 

Begin 

Input: Set neighbourhood structures 𝑁𝑠(𝑠 = 1,2,⋯ , 𝑠𝑚𝑎𝑥)  

Set the parameters of SA algorithm, such as initial temperatures, temperature schedule, iteration 

number at each temperature interval, and so on. 

Set the initial platform configuration decision and assign it to 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

For 𝑠 = 1 to 𝑠𝑚𝑎𝑥 Do 

Local search by SA: 

 𝑥𝑙𝑜𝑐𝑎𝑙 = 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

Repeat: 

Repeat: 

Generate a new feasible solution 𝑥𝑠 from 𝑁𝑠(𝑥) based on 𝑥𝑙𝑜𝑐𝑎𝑙 

             If 𝑐𝑜𝑠𝑡(𝑥𝑠) ≤ 𝑐𝑜𝑠𝑡(𝑥𝑙𝑜𝑐𝑎𝑙)  

                     Then 𝑥𝑙𝑜𝑐𝑎𝑙 = 𝑥
𝑠  

             Else: 

                     Choose a random probability uniformly in the range (0,1) 

                     If exp(
(−𝑑𝑒𝑙𝑡𝑎𝐶)

𝑇
) > 𝑝 

               Then 𝑥𝑙𝑜𝑐𝑎𝑙 = 𝑥
𝑠 

                     Else: 

               𝑥𝑙𝑜𝑐𝑎𝑙 = 𝑥𝑙𝑜𝑐𝑎𝑙 

Until reach iteration number at each temperature interval 

Decrease T according to temperature schedule 

Until stopping condition is met 

If  𝑐𝑜𝑠𝑡(𝑥𝑙𝑜𝑐𝑎𝑙) ≤ 𝑐𝑜𝑠𝑡(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡)  

Then 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑥𝑙𝑜𝑐𝑎𝑙 

 𝑠 = 1 

Otherwise 

𝑠 = 𝑠 + 1      

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

Until 𝑠 > 𝑠𝑚𝑎𝑥 

Output: best solution found 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 
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3.5 Numerical experiments  

3.5.1 Parameter setting 

A real case study on the motherboard design of personal computer product families was 

introduced to illustrate the proposed models and solution methods. The case study comes from a 

survey of two famous PC companies A and B. For the reason of confidentiality of company 

information, we assumed the parameter settings according to the case study. The motherboards are 

regarded as the product platforms of PC, and the components of PCs were understood as modules, 

e.g., processor, RAM, wireless network card, hotkeys, speakers. For example, there are three options 

for RAM module, i.e., 8GB, 16GB, and 32GB. Deciding on the number of motherboard types is a big 

challenge for case companies. It is difficult to forecast the demands of each type of motherboard 

during six months ahead of new product introduction (NPI). However, the development lead time of 

motherboard is usually longer than six months. The proposed model and method are going to support 

the problem solution in the case companies. Note that this study focuses on commercial goods for 

mass customization rather than on investment goods with high value and low volume.  

A personal computer product family consists of eight products with different requirements, as 

enumerated in the right part of Table 3.2. The other parameters, such as the design parameters of 

module option (𝑁𝑗𝑘) and monthly production quantities, are also shown in Table 3.2. Four demand 

scenarios are prepared for the numerical examination as shown in Table 3.3. In scenario 1, we assume 

all expected demand and standard deviation are the same. In scenario 2, we divided products into 4 

groups, and each group has a different expected demand and standard deviation. Scenario 3 is 

essentially the same as scenario 2, while product groups are sorted in the inversing order. In scenario 

4, we set expected demand randomly using uniform distribution [120, 600] and set standard deviation 
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randomly using uniform distribution [10, 80] (see Table 3.3). The other parameters are presented in 

Table 3.4.  

Table 3.2 The description of module and module option and the initial composition of products 

Module 

Module 

option 

(No.) Module option description 𝑁𝑗𝑘 𝑝𝑟𝑗𝑘 F1 F2 F3 F4 F5 F6 F7 F8 

𝑚1 
𝑚11 (1) Electrical mechanical 

component 
4 4000 X X X X X X X X 

𝑚2 

𝑚21 (2) Processor 1 10 

3000 

X    X     

𝑚22 (3) Processor 2 16 
 

X 
   

X 
 

  

𝑚23 (4) Processor 3 30 
  

X 
   

X   

𝑚24 (5) Processor 4 38    X    X 

𝑚3 𝑚31 (6) Controlled Rectifier 3 4000 X X X X X X X X 

𝑚4 𝑚41 (7) Hotkeys 2.5 4000 X X X X X X X X 

𝑚5 

𝑚51 (8) Wireless network card 1 10 

4000 

X X   X X   

𝑚52 (9) Wireless network card 2 13   X X   X X 

𝑚6 

𝑚61 (10) Speaker 1 20 

3000 

X X X X     

𝑚62 (11) Speaker 2 25     X X X X 

𝑚7 

𝑚71 (12) RAM 1 64 

2500 

X X       

𝑚72 (13) RAM 2 80 
  

X 
 

X X 
  

𝑚73 (14) RAM 3 95    X   X X 

𝑚8 

𝑚81 (15) HDD 1 38 

3600 

X X   X X   

𝑚82 (16) HDD 2 47   X X   X X 

𝑚9 𝑚91 (17) Battery 6 4000 X X X X X X X X 
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Table 3.3 Product demand distribution 

Demand 

scenarios 
F1 F2 F3 F4 F5 F6 F7 F8 

Scenario 1 N(300,352) N(300,352) N(300,352) N(300,352) N(300,352) N(300,352) N(300,352) N(300,352) 

Scenario 2 N(120,202) N(240,302) N(360,402) N(480,502) N(120,202) N(240,302) N(360,402) N(480,502) 

Scenario 3 N(480,502) N(360,402) N(240,302) N(120,202) N(480,502) N(360,402) N(240,302) N(120,202) 

Scenario 4 N(148,222) N(260,322) N(302,322) N(480,262) N(159,122) N(297,762) N(530,382) N(224,422) 

 

Table 3.4 Cost items and other input parameters 
No. Parameter Symbol Value 

1 Capital discount rate 𝛾 10% 

2 Product lifetime 𝑙𝑖𝑓𝑒 2 years 

3 Development coefficient 𝛼 3000 

4 Procurement cost coefficient 𝛽 1 

5 Setup cost for ordering one batch 𝐴 200 

6 Fixed delay factor 𝑏 0.1 

7 Unit inventory holding cost ℎ𝑐𝑗𝑘 30%-unit procurement cost 

8 Unit shortage cost 𝑠𝑐𝑗𝑘 Unit procurement cost 

9 Services level 𝑠𝑙 95% 

10 
Unit procurement cost under 𝑡𝑡ℎ 

line segment 
𝑝𝑐𝑗𝑘

𝑡  
Common module 𝑝𝑐𝑗𝑘

𝑡 = 𝑝𝑐𝑗𝑘 

Variable module 𝑝𝑐𝑗𝑘
𝑡 = 𝑝𝑐𝑗𝑘 − (𝑡 − 1) 

11 Quantity discount slope 𝑟𝑡 

0 < 𝑢𝑗𝑘 ≤ 5000:     𝑟1 = 0 

5000 < 𝑢𝑗𝑘 ≤ 10000:     𝑟2 = −0.0002 

10000 < 𝑢𝑗𝑘 ≤ 20000:     𝑟3 = −0.0001 

20000 < 𝑢𝑗𝑘:     𝑟4 = −0.00001 

 

To manifest the benefits of PPD, we compare the results with independent product development. 

The independent approach is a particular case in which the products in a product family are developed 

independently without considering the combination of module selection and integration. In our case, 

all 9 modules and 17 module options are developed to satisfy 8 products. The PPD approach combines 

module selection and integration so as to choose cost-efficient product platforms satisfying all 
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specifications of the 8 products and their demands. The solution algorithm is coded using Python and 

runs on a PC with intel CPU, 1.80 GHz, and 8 GB of RAM DDR.   

3.5.2 Experiments on the proposed algorithm 

To demonstrate the accuracy and effectiveness of the proposed algorithm, we performed an 

explicit enumeration algorithm to compare it with the proposed Hybrid-Search Method (HSM). The 

explicit enumeration algorithm can provide an accuracy solution. However, it is very time-consuming 

when dealing with large-scale problems. Therefore, we use a small-scale problem in this research 

first. For the large-scale problem, we did not find an existing algorithm for benchmark, while we 

failed to get a solution using commercial software such as LINDO and etcetera. Furthermore, we are 

interested in the idea of a PPD model supported by module selection and integration, not the speed 

of the solution algorithm.   

The comparative results of the two algorithms are reported in Table 3.5. We tested three different 

problem instances, varying the number of products, the number of modules, and the number of 

module options. The possible number of platforms is the number of product platforms configured 

without any constraints. 

As shown in Table 3.5, we can see that the proposed HSM algorithm can provide a practically 

near-optimal solution and provide optimal solutions in most cases. For small-scale problems, the 

explicit enumeration algorithm finds the optimal solution faster, but it becomes time-consuming for 

large-scale problems. 
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Table 3.5 Comparative result of explicit enumeration algorithm and proposed algorithm 

Problem 

instance 

(i,j,k) 

Possible 

platform 

configuration 

for a product 

family 

Enumeration algorithm 

Proposed algorithm 

(Initial temperature = 30000; Temperature update factor = 0.98) 

Iteration max at one 

temperature= 200 

Neighborhood 

number=1 

Iteration max at one 

temperature = 300 

Neighborhood 

number = 2 

Iteration max at one 

temperature = 400 

Neighborhood 

number = 3 

Time(s) Optimal cost Time(s) 

Cost gap 

(%) Time(s) 

Cost gap 

(%) Time(s) 

Cost gap 

(%) 

4-3-7 20736 2.68  3240405.05  4.48  0.00% 9.09  0.00% 14.04  0.00% 

5-4-9 7962624 57.86  5687995.63  11.91  0.00% 18.86  0.00% 25.72  0.00% 

6-5-11 12230590464 746.48  8169260.74  12.59  0.18% 32.15  0.00% 42.12  0.00% 

8-5-11 2.81793E+13 3480.95  11684133.44  41.08  0.95% 104.21  0.00% 128.50  0.00% 

10-4-9 6.34034E+13 6153.19  12279936.52  45.79  1.57% 167.26  0.00% 208.70  0.00% 

 

3.5.3 Experimental results of case study 

Table 3.6 shows the comparison results of operation cost contents for different product 

development approaches under different scenarios. The platform-based approach has a lower total 

operation cost than independent product development. More specifically, the platform-based 

approach leads to lower development cost, lower setup cost for ordering, lower inventory holding 

cost, lower safety inventory cost, and lower salvage cost while it increases total procurement cost and 

shortage cost. 

The module integration may select higher specification module options in platform 

configuration so that to reduce the total number of module options, which leads to a lower 

development cost. Meanwhile, demand aggregation driven by module integration leads to a higher 

volume of module options, enabling economies of scale and volume discounts. In this paper we 

consider setup cost and inventory cost, therefore the high volume may reduce ordering times when 

purchasing modules from suppliers. Similarly, smaller number of modules and high volume will 

reduce demand deviation (sum of demand deviation is larger than the total demand deviation), and 

the reduction may lead to lower safety inventory costs and salvage costs. We sometimes call it the 

benefits of risk-pooling. On the other hand, module integration in the PPD approach accompanies 
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small additional costs due to over-design enabling product platforms sever for the products with the 

higher and lower specification module options, which increases the procurement cost and shortage 

cost. 

Table 3.6 Results of operation cost contents 

Scenario Solution Total cost 

Development 

cost 

Procurement 

cost 

Setup cost 

for 

ordering 

 Holding 

inventory 

cost 

Safety 

inventory 

cost 

Shortage 

cost 

Salvage 

cost 

S1 

Independent 11970696.26  1503000.00  10223594.18  94287.15  94287.15  16282.10  12390.56  26855.12  

PPD 11942714.17  1221000.00  10492455.27  87423.13  87423.13  15518.67  13448.23  25445.74  

S2 

Independent 12577223.20  1503000.00  10825253.62  94170.49  94170.49  17388.38  14517.11  28723.11  

PPD 12448096.39  1161000.00  11059300.22  84446.68  84446.68  16484.44  15417.33  27001.03  

S3 

Independent 11294443.67  1503000.00  9554463.26  91402.83  91402.83  16053.36  11828.03  26293.37  

PPD 11272765.28  1413000.00  9626599.40  89588.45  89588.45  15943.98  11978.24  26066.77  

S4 

Independent 12410826.86  1503000.00  10657588.23  94397.34  94397.34  17874.01  14017.94  29551.98  

PPD 12306928.84  1251000.00  10820793.50  87432.26  87432.26  17200.15  14861.65  28209.02  

 

We then illustrate the result of product platform configurations for the externally given product 

family under each scenario in Table 3.7, in which the circle number represents the higher specification 

module option used to the platforms than product requirements. The optimal platform strategy 

configures 7 product platforms and selects 15 module options for a product family with 8 products in 

scenario 1, 5 product platforms with 13 module options in scenario 2, 7 product platforms with 16 

module options in scenario 3, and 6 product platforms with 14 module options in scenario 4. 

More specifically, under scenario 1, product platforms 𝑃1  and 𝑃2  use higher specification 

module option No.13 (i.e.,𝑚72 ) instead of option No.12 (i.e., 𝑚71 ) of products 𝐹1  and 𝐹2 .  

Product platforms 𝑃3 and 𝑃7 choose higher specification module option No.5 (i.e., 𝑚24) in place 

of option No.4 (i.e., 𝑚23) while other selection of module options remains unchanged. Two module 

options No.4 and 12 (i.e., 𝑚23 and 𝑚71) are not used to the platform configuration under scenario 

1, which reduces the total number of module options to 15. Meanwhile, products 𝐹7 and 𝐹8 are 

derived from one product platform since platforms 𝑃7 and 𝑃8 have the same module options, which 

results in the total number of product platforms being 7. 
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Similarly, four module options No.2,4,8,12 (i.e., 𝑚21, 𝑚23, 𝑚51, 𝑚71 ) are not used to the 

product platform under scenario 2. Product 𝐹1 and 𝐹2 are derived from one platform (𝑃1 = 𝑃2), 

product 𝐹5 and 𝐹6 are derived from one platform (𝑃5 = 𝑃6), and product 𝐹7 and 𝐹8 are derived 

from the same platform (𝑃7 = 𝑃8). The optimal product platform configurations developed 5 product 

platforms to serve the external product family. Under scenario 3, two product platforms (i.e., 

platforms 𝑃7 and 𝑃8) have the same selection of module options while only one module option No.4 

(i.e., 𝑚23 ) is not used to the platform configuration. Three module options No.2,8,12 (i.e., 

𝑚21, 𝑚51, 𝑚71) are replaced while 6 product platforms are configured to derive the product family 

under scenario 4. The specific platform configuration and the decision of module selection and 

integration under scenarios 2, 3, and 4 are shown in Table 3.7. 

Table 3.7 Result of platform configurations for a product family 

Platform 

Initial product 

requirements S1 S2 S3 S4 

P1 [1,2,6,7,8,10,12,15,17] [1,2,6,7,8,10,⑬,15,17] [1,③,6,7,⑨,10,⑬,15,17] [1,2,6,7,8,10,12,15,17] [1,3,6,7,⑨,10,⑬,15,17] 

P2 [1,3,6,7,8,10,12,15,17] [1,3,6,7,8,10,⑬,15,17] [1,3,6,7,⑨,10,⑬,15,17] [1,3,6,7,8,10,12,15,17] [1,3,6,7,⑨,10,⑬,15,17] 

P3 [1,4,6,7,9,10,13,16,17] [1,⑤,6,7,9,10,13,16,17] [1,⑤,6,7,9,10,13,16,17] [1,⑤,6,7,9,10,13,16,17] [1,4,6,7,9,10,13,16,17] 

P4 [1,5,6,7,9,10,14,16,17] [1,5,6,7,9,10,14,16,17] [1,5,6,7,9,10,14,16,17] [1,5,6,7,9,10,14,16,17] [1,5,6,7,9,10,14,16,17] 

P5 [1,2,6,7,8,11,13,15,17] [1,2,6,7,8,11,13,15,17] [1,③,6,7,9,11,13,15,17] [1,2,6,7,8,11,13,15,17] [1,③,6,7,⑨,11,13,15,17] 

P6 [1,3,6,7,8,11,13,15,17] [1,3,6,7,8,11,13,15,17] [1,3,6,7,⑨,11,13,15,17] [1,3,6,7,8,11,13,15,17] [1,3,6,7,⑨,11,13,15,17] 

P7 [1,4,6,7,9,11,14,16,17] [1,⑤,6,7,9,11,14,16,17] [1,⑤,6,7,9,11,14,16,17] [1,⑤,6,7,9,11,14,16,17] [1,4,6,7,9,11,14,16,17] 

P8 [1,5,6,7,9,11,14,16,17] [1,5,6,7,9,11,14,16,17] [1,5,6,7,9,11,14,16,17] [1,5,6,7,9,11,14,16,17] [1,5,6,7,9,11,14,16,17] 

Number of module options 17 15 13 16 14 

Number of platforms 8 7 5 7 6 

 

Moreover, module integration is not always beneficial for a company. In Figure 3.3, we visualize 

how the total cost varies with the number of module options. The reduction in module option numbers 

increases the module integration level. We use the triangles in Figure 3.3 to mark the optimal platform 

decisions in each scenario and use the small numbers on the cost curves to represent the number of 

configured product platforms. We find that as the number of module options decreases, the total cost 

may decrease at the beginning, and then increase after reaching the minimum. Meanwhile, using only 

9 or 10 module options to configure 1 or 2 product platforms contributes to the highest cost. The 

increased cost of using high specification modules in platforms to meet the low-end products may be 
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compensated by a reduced cost from module integration. The presented U-shaped cost curves reveal 

a trade-off relationship between module selection and integration in the PPD.   

In addition, compared with using 11 module options, the total cost increases significantly when 

using 10 module options under scenarios 1, 2 and 4. While a larger cost increment is incurred when 

using 11 module options instead of 12 module options under scenario 3. There is a threshold in the 

change of cost increment when integrating modules. After the threshold, if reducing one module 

option, there may cause much more cost increment than the operations before the threshold. One 

reason may be that the reduced cost in development, setup, inventory, and salvage from the module 

integration is far less than the increased additional over-design cost. Meanwhile, the cost increment 

differs only slightly within a certain range. For example, there are approximate total costs when the 

number of module options used in the PPD is 14, 15, or 16 under scenario 1. Using more module 

selections does not significantly increase the total cost. Regarding the change in total cost, it is 

possible to provide more module selection and avoid significantly increased cost during module 

integration before thresholds. 

 

Figure 3.3 The operation cost varying with the number of module options 
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3.6 Sensitivity and robust result analysis 

3.6.1 Sensitivity analysis 

A sensitivity analysis of various input parameters was conducted to measure their effect on 

platform configuration decision. All input parameters were compared to those in scenario 4, shown 

in Table 3.3 and Table 3.4. The results of sensitivity analysis are plotted in Figures 3.4-3.8. 

As shown in Figure 3.4, the higher unit development cost of modules tends to favour higher 

module integration and use fewer module selections. Compared to scenario 4 with a development 

cost parameter 𝛼 equal to 3000, a lower development cost parameter, i.e., 𝛼 = 2100, results in 

more module options being used. The number of module options is 15 while 14 module options are 

used in scenario 4. A higher development cost parameter, 𝛼 = 3900, reduces the number of module 

options to 12, while 5 product platforms are configured instead of 6 in scenario 4. Increasing 

development cost leads to fewer module selections and higher module integration in order to achieve 

the benefit of platform commonality. 

 

Figure 3.4 The impact of development cost 
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The effect of product lifetime on platform configuration is analysed. As shown in Figure 3.5, a 

longer product lifetime tends to provide more module selection while reducing module integration 

and increasing the number of product platforms. For example, when the product lifetime increases 

from 1 year to 2 years, 14 module options are used to configure 6 product platforms instead of 10 

module options and 2 product platforms. When the product lifetime becomes longer, i.e., from 2 years 

to 3 years, the number of module options increases from 14 to 15 while the number of product 

platforms remains at 6. The reason may be that the increasing development cost incurred by 

introducing more module selection can be compensated by the recurring procurement cost, ordering 

cost, and inventory cost over a longer product lifetime. 

 

Figure 3.5 The impact of product lifetime 

In the case of larger product demand, the number of product platforms and module options tends 

to be larger. As shown in Figure 3.6, compared to scenario 4 with 6 product platforms and 14 module 

options, 16 module options are used to configure 8 product platforms due to a 50% increment in 

demand mean value and standard deviation. With a 50% reduction in demand mean value and 
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standard deviation, the number of platforms reduces from 6 to 2, while the number of module options 

decreases from 14 to 10. The increasing demand brings more significant economies of scale, resulting 

in lower development costs and enabling more module selection. 

 

Figure 3.6 The impact of demand 

The quantity discounts impacting on procurement cost was analysed. As shown in Figure 3.7, a 

higher quantity discount tends to more module selection. For example, if the quantity discount slope 

is increased by twice, the number of module options may increase from 14 to 15. In the case of a 

larger quantity discount slope (i.e., four times), the number of module options increases to 16. 

However, the larger quantity discount does not affect the platform configuration decision, where the 

number of platforms remains 6. 
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Figure 3.7 The impact of quantity discount 

The results of other input parameters, such as service level, inventory holding rate, and unit 

ordering cost, are shown in Figure 3.8. In our case, we did not find a significant effect of these 

parameters on the platform configuration decision. 

 

Figure 3.8 The impact of other input parameters 
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3.6.2 Robustness of results with respect to demand change 

We test the robustness of our results with respect to varying demand. Figure 3.3 shows the 

different optimal decisions on module integration and platform configuration in four kinds of demand 

scenarios. Their respective optimal solutions were marked with triangles in the figures. Although 

there are different optimal decisions in different scenarios, these decisions may not change so greatly. 

It means that the module options to configure product platforms in different demand scenarios are 

slightly different in total cost. For example, the optimal solution is 15 module options in scenario 1.  

For scenario 2, the total cost of using 15 module options to configure 6 platforms is only 0.14% 

different compared to its optimal solution. Similarly, the cost gap between the solution with 15 

module options and the optimal solution is 0.29% for scenario 3, and 0.06% for scenario 4. The cost 

gap is calculated by applying the total cost of the optimal solution under each demand scenario in 

Table 3.6 as a baseline. Since these four scenarios stand for four typical ones, it may suggest that the 

solutions from the proposed model may have robust performance in different scenarios.  

We further examine the robustness of results on the module integration with the increasing and 

decreasing mean value and standard deviation under the same demand scenario, as shown in Figure 

3.6. Compared to the respective optimal solutions, using 14 module options in the lower demand with 

half demand mean value and standard deviation has a 1.91% gap in the total cost, while the cost gap 

between it and the higher demand with 1.5 times of mean value and standard deviation is different by 

0.16%. It suggests that developing 14 module options to configure platforms may provide a robust 

solution to cope with demand fluctuations. 

3.7 Conclusions 

In this chapter, a new model was proposed to determine the optimal platform configuration for 

the given product family while considering module selection and integration. More module selection 
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can provide the special module to meet specific customer demands, whereas module integration may 

use a single common module to satisfy multiple customer demands. When satisfying the high-end 

and low-end demands with one higher specification module, it would waste some functions of the 

module, but facilitate product platform commonality to gain scale economic benefits. By developing 

the model on the total operation cost of module acquisition, we obtained the optimal decision of 

platform configuration with module options while balancing module selection and integration. To 

solve our model, a HSM that combines SA algorithm and VNS was developed. The proposed model 

was evaluated through numerical examination, in which our algorithm can generate good solutions 

for different scenarios of parameter setting. 

The economic performance of the PPD approach is examined. The numerical study shows that 

the total cost first decreases and then increases after reaching a minimum as the module integration 

increases. The changes in the total cost may be caused by the balance between different types of costs. 

More module integration can facilitate the platform commonality and reduce costs in development, 

setup, inventory, and salvage. However, integrating modules will bring higher over-design costs and 

higher procurement costs. Therefore, manufacturers must not over-pursue module integration in order 

to obtain the platform commonality benefits. Further analysis found that there is a threshold in the 

change of cost increment as more module integration occurs. One reduced module option can incur a 

larger cost increment after the threshold than before it. This finding provides insights into how to 

manage the trade-offs between module selection and integration in the PPD. Manufacturers need to 

identify the cost change threshold and avoid the module integration with a larger cost increment. In 

addition, more module selection can be offered to customers when the cost increase is acceptable. 

This finding can support the PPD approach to satisfy the diversity of customer needs.  

The sensitive analysis shows that serval input parameters noticeably affect the platforms and 

module decisions. The increasing demand and the longer product lifetimes favour more product 

platforms and encourage module selections instead of module integration. The higher development 
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cost will reduce the number of product platforms and encourage module integration while restricting 

the module selection.   

Finally, our study reveals the robustness of our results under the different demand scenarios and 

the same demand scenario with varying mean value and standard deviation. By using our model, we 

may find a robust solution for module integration and platform configuration to cope with demand 

fluctuations. 

 



*Partial content of this chapter has been published on the Journal of Advanced Mechanical Design, Systems, and 

Manufacturing.  
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Chapter 4  Optimal platform configuration 

decision considering platform design strategy and 

supplier selection 

4.1 Introduction 

As one of the effective tools to implement mass customization, platform-based product 

development (PPD) has received increasing attention from academia and industry. Manufacturers 

implement the PPD approach to produce various products while obtaining benefits such as reduced 

development time and system complexity, reduced development cost and production costs, and 

improved ability to upgrade products (Simpson, 2004). The key in the PPD is product platform 

configuration (PPC). Two critical research problems in the PPC are: (1) how many and which type of 

product platform should be developed for a product family; (2) which product platform will be 

assigned to derive the product within a product family. 

A product platform can be configured as a matching-designed platform that exactly complies 

with different product requirements. It may require more platforms to be developed for one product 

family, thus incurring a higher platform development cost. On the other hand, a platform can be 

configured as an under-designed or over-designed platform. When deriving a high-end product based 

on an under-designed platform, additional platform customization will be needed to update the 
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required platform functions. When deriving a low-end product based on an over-designed platform, 

some functions on the platforms may be wasted. How to configure a set of proper product platforms 

for a product family is a crucial problem in the PPD.  

After fixed the platform configuration, the modules are usually procured from suppliers. 

Different suppliers may provide different prices for modules. The relevant procurement decision can 

affect the design and development of product platform (Pirmoradi et al., 2014). Early involvement of 

suppliers at the design stage can improve the consistency between product design and manufacturing 

or supply process, so as to increase product profitability, reduce lead time, and improve quality (Zhang 

et al., 2009; Tan et al., 2022). Involving the supplier selection into the platform configuration will 

better facilitate the implementation of the PPD approach.  

In this chapter, we develop a mathematical model to configure multiple platforms for a product 

family and the relevant supplier selection decision. A set of modules with multiple module options 

are offered to support different product functional requirements. The combination of module options 

from different modules supports the possible platform configurations. 

The pertinent questions are targeted as follows. 

(1) How many product platforms should be developed for one product family and what module 

options would be selected to constitute the product platforms (Platform configuration problem)? 

(2) Which supplier should be selected for the procurement of module options (Supplier selection 

problem)? 

To deal with the cost trade-off between platform development and customization in PPD, we 

quantify the total cost including the development cost of platforms, the sourcing cost including the 

procurement cost of module options, the ordering cost and inventory cost of module options based 

on classical Economic Order Quantity (EOQ) model, and the production customization cost to derive 

products from platforms. The proposed model is formulated as a nonlinear mixed-integer 

programming model. Several linearization methods are applied to linearize this model and a solution 
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method based on the commercial solver Gurobi is developed to solve this model. 

4.2 Problem description and assumptions 

4.2.1 Nomenclature 

Table 4.1 presents the description of symbols used in the model. 

Table 4.1 List of symbols 

Notation Definition 

𝑣  The index of product variants 𝐹𝑣 (𝑣 = 1,2,… , 𝑉) in a product family 

𝑖  The index of product platform 𝑃𝑖  (𝑖 = 1,2,… ,  𝐼) 

𝑗  The index of module 𝑚𝑗  (𝑗 = 1,2,… ,  𝐽) 

𝑘  The index of module option 𝑚𝑗𝑘 (𝑘 = 1,2,… ,  𝐾𝑗) 

𝑠  The index of supplier 𝑆𝑠 (𝑠 = 1,2,… , 𝑆) 

𝑁𝑗𝑘  The design parameter of module option 𝑚𝑗𝑘 

𝑑𝑐𝑖  Variable development cost of product platform 𝑃𝑖 

𝑑𝑐𝑓𝑖𝑥  Fixed development cost of product platform 

𝑝𝑐𝑗𝑘𝑠  

ℎ𝑗𝑘𝑠  

𝑞𝑗𝑘𝑠  

𝑢𝑣  

𝑑𝑖  

𝑑𝑗𝑘  

𝛼  

𝛽  

Unit purchasing cost of module option 𝑚𝑗𝑘 purchased from supplier 𝑆𝑠 

Unit inventory holding cost module option 𝑚𝑗𝑘 purchased from supplier 𝑆𝑠 

Order quantity of module option 𝑚𝑗𝑘 purchased from supplier 𝑆𝑠 

Annual demand of product variant 𝐹𝑣 

Annual demand of product platform 𝑃𝑖 
Annual demand of module option 𝑚𝑗𝑘 

Coefficient of variable development cost  

Coefficient of purchasing cost  

𝐴  Fixed setup cost for ordering one batch 

𝑓  

𝑟𝑣𝑗𝑘  

𝛿𝑣𝑖𝑗  

 

SSR 

Unit customization cost related to assembly, disassembly, testing and so on 

The product requirement for module option 𝑚𝑗𝑘 

Binary variable, takes value 1 if platform 𝑃𝑖 is under-designed for module 𝑚𝑗 when 

deriving product 𝐹𝑣 

Set of selection rules (𝑚𝑗𝑘 ,𝑚𝑗′𝑘′) which represents that selection of module option 

𝑚𝑗𝑘 requires module option 𝑚𝑗′𝑘′ in the same configuration 

SIR 
Set of incompatible rules (𝑚𝑗𝑘 ,𝑚𝑗∗𝑘∗) which represents that module option 𝑚𝑗𝑘 and 

module option 𝑚𝑗∗𝑘∗ cannot be used together in the same configuration 

𝑒𝑣𝑖  
Binary decision variable to indicate whether product 𝐹𝑣  is derived from product 

platform 𝑃𝑖 

𝑤𝑖  Derivative binary variable to indicate whether product platform 𝑃𝑖 is developed 

𝑥𝑖𝑗𝑘  
Binary decision variable to indicate whether module option 𝑚𝑗𝑘 is used in product 

platform 𝑃𝑖  

𝑦𝑗𝑘  Derivative binary variable to indicate whether module option 𝑚𝑗𝑘 is used 

𝑑𝑗𝑘𝑠  
Decision variable, the number of module option 𝑚𝑗𝑘 that is purchased from supplier 

𝑆𝑠 
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4.2.2 Problem description 

A product family has multiple products 𝐹𝑣   (𝑣 = 1,2, . . , 𝑉) with different functional 

requirements. A module 𝑚𝑗   (𝑗 = 1,2, … , 𝐽) is a unit that serves an identifiable product function and 

is developed by engineers using various design methods. Two types of modules can be found, i.e., a 

variant module and a common module. Each variant module has multiple options 𝑚𝑗𝑘 (𝑘 =

1,2, … , 𝐾𝑗)  with different cost-relevant design parameters 𝑁𝑗𝑘  to represent different functional 

levels. A common module only has one module option and may be required by each product. For 

example, a personal computer product has a memory module to provide the storage function of 

computation data which has two module options, i.e., 8GB and 16GB memory sticks. The number of 

possible platform configurations depends on the combination of products, modules, and module 

options. For example, a product with four modules and three module options for each module may 

have 34 = 81 possible platform configurations. A product family consisting of five products may 

produce (34)5 + (34)5 + (34)5 + (34)5 + (34)5 = 1.74339 × 1010  possible platform 

configurations. 

In the platform-based product development, each product 𝐹𝑣 in a product family is derived from 

one product platform. A matching platform has the same quantity of module options compared to the 

module option quantity required by products. In contrast, a non-matching platform can be configured 

as an under-designed or over-designed platform, which has the module options that respectively lower 

specification or higher specification than the product requirements. For example, a product family 

contains three products with the respective requirements. Product 𝐹1 requires module option 𝑚11, 

𝑚21 , product 𝐹2  requires module options 𝑚12 , 𝑚22  and product 𝐹3  requires module options 

𝑚11 , 𝑚22 . If we configure a platform 𝑃1  with module options 𝑚12 , 𝑚21 , then platform 𝑃1  is 

over-designed for module 𝑚1  when deriving product 𝐹1 . This is because that product 𝐹1  has a 

lower specification module option 𝑚11 than module option 𝑚12 used on platform 𝑃1. Likewise, it 
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is an under-designed platform for module 𝑚2 when deriving product 𝐹2. Similarly, platform 𝑃1 is 

over-designed for module 𝑚1  and is under-designed for module 𝑚2  when deriving product 𝐹3 , 

which we defined it as a hybrid platform. 

Components of all modules and module options will be purchased from outside suppliers. A set 

of suppliers 𝑆𝑆 (𝑠 = 1,2, . . , 𝑆) is offered to illustrate the supplier selection problem. We assume that 

each supplier 𝑆𝑆 can only provide one kind of module, namely 𝑗𝑠, and it can produce serval module 

options for this module, depending on its capability. The supplier selection process during platform 

configuration decision for a product family is illustrated as the following Figure 4.1. 

 

Figure 4.1 Module-based product platform configuration model considering supplier selection 

4.2.3 Assumptions 

Assumption 1: we sort different module options 𝑚𝑗𝑘 for module 𝑚𝑗 in an increasing value of 

design parameter 𝑁𝑗𝑘 (𝑁𝑗𝑘 ≤ 𝑁𝑗(𝑘+1)). The value of 𝑁𝑗𝑘 is corresponding to the different functional 

levels and is further assumed to be related to the costs of module options. This assumption is widely 

used in the previous studies (Chakravarty and Balakrishnan, 2001). The variable development cost 

𝑑𝑐𝑗𝑘 of module option 𝑚𝑗𝑘 used on the platform equal to 𝛼 ∙ 𝑁𝑗𝑘 and the unit procurement cost 
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𝑝𝑐𝑗𝑘  of module option 𝑚𝑗𝑘  equal to 𝛽 ∙ 𝑁𝑗𝑘 . A product platform with a higher specification of 

module option may have a higher development cost and higher procurement cost.  

Assumption 2: We assume that the customization is only incurred when a product is derived 

from an under-designed platform. In the case of a matching or over-designed platform, there is no 

customization. In other words, we assume that the higher specification module option could be used 

for product platform without sacrificing product quality. However, the procurement cost of module 

option will increase if the low-end product is derived from an over-designed platform. We use the 

design parameter to calculate the performance gap for a particular module 𝑚𝑗 between product 𝐹𝑣 

and platform 𝑃𝑖 as follows.  

max(0,  ∑𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 −∑𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘

𝐾𝑗

𝑘=1

𝐾𝑗

𝑘=1

)          ∀𝑣, 𝑖, 𝑗 (4.1) 

Furthermore, we define a binary variable 𝛿𝑣𝑖𝑗, which takes value 1 if the platform 𝑃𝑖 is under-

designed for module 𝑚𝑗  when deriving product 𝐹𝑣 . The larger the performance gap, the more 

customization is required to derive the product from this platform.  

For illustration, we present a simple example to show the calculation of the performance gap. 

Suppose a module 𝑚1 has three module option 𝑚11, 𝑚12,𝑚13 with respectively design parameters 

𝑁11 = 15,𝑁12 = 21,𝑁13 = 27. Module 𝑚2 contains two module options with respectively design 

parameters 𝑁21 = 20,𝑁22 = 28 . Product 𝐹1  requires module options 𝑚13  and 𝑚21 . When 

product 𝐹1 is derived from platform 𝑃2 with module options 𝑚11, 𝑚22, then the performance gap 

for module 𝑚1 equal to max(0, 27 − 15) = 12 and the performance gap for module 𝑚2 equal to 

max(0, 20 − 28) = 0 . In this case, platform 𝑃2  is under-designed for module 𝑚1  and is over-

designed for module 𝑚2 when deriving product 𝐹1.  

Assumption 3: We assume that we have module suppliers outside therefore we can purchase all 

module options we need. The economic order quantity (EOQ) model is applier for procurement by 

the manufacturer. It is widely acknowledged that the EOQ model is a good representation of a firm 
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action and is widely used in many firms for determining their inventory levels. Due to the complexity 

of our model, we do not consider a more complex inventory policy in our model.  

4.3 Model formulation 

In order to determine the optimal product platform configuration, a binary decision variable 𝑥𝑖𝑗𝑘 

is used to show whether to select module option 𝑚𝑗𝑘. It equals to 1 if the module option 𝑚𝑗𝑘 is 

selected on the platform 𝑃𝑖 , or 0 if not selected. The assignment decision between product and 

platform is denoted by a binary decision variable 𝑒𝑣𝑖. It equals to 1 if product 𝐹𝑣 is derived from 

platform 𝑃𝑖 , or 0 otherwise. A derivative variable 𝑤𝑖  is used to determine whether the product 

platform 𝑃𝑖 is developed or not. Moreover, the supplier selection decision is denoted by the variable 

𝑑𝑗𝑘𝑠, which determines the number of module option 𝑚𝑗𝑘 purchased from supplier 𝑆𝑠. 

The objective function of the proposed model is to minimize the total cost, including the 

development cost of product platforms 𝐶𝑑, the souring cost of module option 𝐶𝑠, and the production 

customization cost for deriving product from platform 𝐶𝑐. The development cost of product platforms 

contains two parts, the variable development cost associated to the selection of module options on the 

product platform and the fixed development cost depending on the number of product platforms 

developed. The sourcing cost of module option further includes the procurement cost, the ordering 

cost and inventory cost based on the EOQ model. The total customization cost to transform platform 

into product depends on the performance gap for all under-designed module options and the product 

demand. A unit customization cost 𝑓 ≥ 0 is included to represent the impact of the performance gap 

on the customization cost. 

The proposed platform configuration model is thus formulated as follows. 

Minimize 𝐶𝑡 = 𝐶𝑑 + 𝐶𝑠 + 𝐶𝑐  
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𝐶𝑑 =∑𝑑𝑐𝑖 ∙ 𝑤𝑖

𝐼

𝑖=1

+∑𝑑𝑐𝑓𝑖𝑥 ∙ 𝑤𝑖

𝐼

𝑖=1

(4.2) 

𝐶𝑠 =∑∑∑(𝑝𝑐𝑗𝑘𝑠 ∙ 𝑑𝑗𝑘𝑠 +
𝐴 ∙ 𝑑𝑗𝑘𝑠

𝑞𝑗𝑘𝑠
+
ℎ𝑐𝑗𝑘𝑠 ∙ 𝑞𝑗𝑘𝑠

2

𝐾𝑗

𝑘=1

𝐽𝑠

𝑗𝑠=1

)

𝑆

𝑠=1

(4.3) 

𝐶𝑐 =∑∑∑[𝑒𝑣𝑖 ∙ (∑𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 −∑𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘

𝐾𝑗

𝑘=1

𝐾𝑗

𝑘=1

)

+
𝐽

𝑗=1

∙ 𝑢𝑣 ∙ 𝑓]

𝐼

𝑖=1

𝑉

𝑣=1

(4.4) 

Subject to 

∑𝑒𝑣𝑖 = 1  (𝑣 = 1,2, … , 𝑉)

𝐼

𝑖=1

(4.5) 

𝑤𝑖 =

{
 
 

 
 1, ∑𝑒𝑣𝑖 > 0

𝑉

𝑣=1

0, ∑𝑒𝑣𝑖 = 0

𝑉

𝑣=1

 

  (4.6) 

∑𝑥𝑖𝑗𝑘 = 𝑤𝑖   (𝑖 = 1,2, … , 𝐼; 𝑗 = 1,2, … , 𝐽)

𝐾𝑗

𝑘=1

(4.7) 

𝑥𝑖𝑗𝑘 ≤ 𝑤𝑖   (𝑖 = 1,2, … , 𝐼; 𝑗 = 1,2, … , 𝐽; 𝑘 = 1,2, … , 𝐾𝑗) (4.8) 

𝑦𝑗𝑘 =

{
 
 

 
 1, ∑𝑥𝑖𝑗𝑘 > 0

𝐼

𝑖=1

0, ∑𝑥𝑖𝑗𝑘 = 0

𝐼

𝑖=1

 

 (4.9) 

𝑑𝑖 =∑𝑒𝑣𝑖 ∗ 𝑢𝑣

𝑉

𝑣=1

   (𝑖 = 1,2, … , 𝐼) (4.10) 

𝑑𝑗𝑘 =∑∑𝑥𝑖𝑗𝑘 ∙ 𝑒𝑣𝑖 ∙ 𝑢𝑣

𝐼

𝑖=1

𝑉

𝑣=1

+  ∑∑𝑟𝑣𝑗𝑘 ∙ 𝛿𝑣𝑖𝑗 ∙ 𝑒𝑣𝑖 ∙ 𝑢𝑣

𝐼

𝑖=1

𝑉

𝑣=1

−∑∑𝛿𝑣𝑖𝑗 ∙ 𝑒𝑣𝑖 ∙ 𝑢𝑣 ∙ 𝑥𝑖𝑗𝑘

𝐼

𝑖=1

𝑉

𝑣=1

         

 (𝑗 = 1,2, … , 𝐼; 𝑘 = 1,2, … , 𝐾𝑗) (4.11) 
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𝑑𝑗𝑘 =∑𝑑𝑗𝑘𝑠

𝑆

𝑠=1

 (𝑗 = 1,2, … , 𝐽; 𝑘 = 1,2, … , 𝐾𝑗) (4.12) 

𝑞𝑗𝑘𝑠 = √
2 ∗ 𝐴 ∗ 𝑑𝑗𝑘𝑠

ℎ𝑗𝑘𝑠
    (𝑠 = 1,2, … , 𝑆) (4.13) 

𝑥𝑖𝑗𝑘 ≤ 𝑥𝑖𝑗′𝑘′  (𝑖 = 1,2, … , 𝐼; 𝑗, 𝑗
′𝑘, 𝑘′ ∈ 𝑆𝑆𝑅) (4.14) 

𝑥𝑖𝑗𝑘 + 𝑥𝑖𝑗∗𝑘∗ = 1 (𝑖 = 1,2, … , 𝐼; 𝑗, 𝑗
∗𝑘, 𝑘∗ ∈ 𝑆𝐼𝑅) (4.15) 

Equation (4.5) assigns each product to one product platform. Equation (4.6) sets the value of 𝑤𝑖. 

Equation (4.7) specifies only one module option 𝑚𝑗𝑘 for any module 𝑚𝑗 can be selected by each 

product platform when the platform 𝑃𝑖 is existed. Equation (4.8) ensures that no module option 𝑚𝑗𝑘 

will be selected on the platform 𝑃𝑖 if this platform is not existed. Equation (4.9) determines value of 

variable 𝑦𝑗𝑘 . Equation (4.10) calculates the number of product platform 𝑃𝑖 . Equation (4.11) 

calculates the number of module option 𝑚𝑗𝑘. It has three parts, the number of module option used to 

the platform 𝑃𝑖, the number of module option used to upgrade the under-designed module option and 

the number of module options replaced on the under-designed platform due to the customization. 

Equation (4.12) ensures the number of module option 𝑑𝑗𝑘 should be satisfied by purchasing from all 

its available suppliers. Equation (4.13) gives out the optimal order quantity of module option 𝑚𝑗𝑘 

purchased from supplier 𝑆𝑠. Equation (4.14) represents the selection rules between module options 

whereas Eq. (4.15) ensures the incompatible rules. 

4.4 Model linearization and solution method 

Since the proposed model is a nonlinear mixed-integer programming, we applied some 

linearization method to transform the nonlinear objective and nonlinear constraints into linear ones. 

Firstly, the objective function Eq.(4.4) contains a non-linear formulation of (∑ 𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 −
𝐾𝑗
𝑘=1

∑ 𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘
𝐾𝑗
𝑘=1 )+ and it can be transferred to a normal mixed-integer programming formulation by 
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defining a continuous variable 𝑧𝑣𝑖𝑗 and a binary variable 𝜃𝑣𝑖𝑗  . Equations (4.16) - (4.20) are defined 

as follows to remove the form ‘(. )+’ 

𝑧𝑣𝑖𝑗 ≥∑𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 −∑𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘

𝐾𝑗

𝑘=1

𝐾𝑗

𝑘=1

 (4.16) 

𝑧𝑣𝑖𝑗 ≤∑𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 −∑𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘

𝐾𝑗

𝑘=1

𝐾𝑗

𝑘=1

+ 𝜃𝑣𝑖𝑗 ∙ 𝑏𝑖𝑔𝑀 (4.17) 

𝑧𝑣𝑖𝑗 ≤  (1 − 𝜃𝑣𝑖𝑗) ∙ 𝑏𝑖𝑔𝑀 (4.18) 

𝑧𝑣𝑖𝑗 ≥ 0 (4.19) 

𝜃𝑣𝑖𝑗 ∈ {0,1} (4.20) 

Secondly, the Eq. (4.6) and (4.9) are replaced by Eq. (4.21) - (4.22) and Eq. (4.23) - (4.24), 

respectively. 

∑𝑒𝑣𝑖

𝑉

𝑣=1

≥ 𝑤𝑖 (4.21) 

∑𝑒𝑣𝑖

𝑉

𝑣=1

≤ 𝑤𝑖 ∙ 𝑏𝑖𝑔𝑀 (4.22) 

∑𝑥𝑖𝑗𝑘

𝐼

𝑖=1

≥ 𝑦𝑗𝑘 (4.23) 

∑𝑥𝑖𝑗𝑘

𝐼

𝑖=1

≤ 𝑦𝑗𝑘 ∙ 𝑏𝑖𝑔𝑀 (4.24) 

Thirdly, the Eq. (4.11) is nonlinear constraint because it contains the form 𝑥𝑖𝑗𝑘 ∙ 𝑒𝑣𝑖 and 𝛿𝑣𝑖𝑗 ∙

𝑒𝑣𝑖. We define 𝑔𝑣𝑖𝑗𝑘 = 𝑥𝑖𝑗𝑘 ∙ 𝑒𝑣𝑖 and Eq. (4.25) - (4.28) are employed as follows. 

𝑥𝑖𝑗𝑘 ≥ 𝑔𝑣𝑖𝑗𝑘 (4.25) 

𝑔𝑣𝑖𝑗𝑘 ≥ 𝑒𝑣𝑖 + 𝑥𝑖𝑗𝑘 − 1 (4.26) 

𝑒𝑣𝑖 ≥ 𝑔𝑣𝑖𝑗𝑘 (4.27) 

𝑔𝑣𝑖𝑗𝑘 ∈ {0,1} (4.28) 
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Likewise, we define ℎ𝑣𝑖𝑗 = 𝛿𝑣𝑖𝑗 ∙ 𝑒𝑣𝑖 and the linearization result is as below. 

𝛿𝑣𝑖𝑗 ≥ ℎ𝑣𝑖𝑗 (4.29) 

ℎ𝑣𝑖𝑗 ≥ 𝑒𝑣𝑖 + 𝛿𝑣𝑖𝑗 − 1 (4.30) 

𝑒𝑣𝑖 ≥ ℎ𝑣𝑖𝑗 (4.31) 

ℎ𝑣𝑖𝑗 ∈ {0,1} (4.32) 

Similarly, we define 𝑙𝑣𝑖𝑗𝑘 = ℎ𝑣𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘 and linearization result is as below. 

ℎ𝑣𝑖𝑗 ≥ 𝑙𝑣𝑖𝑗𝑘 (4.33) 

𝑙𝑣𝑖𝑗𝑘 ≥ ℎ𝑣𝑖𝑗 + 𝑥𝑖𝑗𝑘 − 1 (4.34) 

𝑥𝑖𝑗𝑘 ≥ 𝑙𝑣𝑖𝑗𝑘 (4.35) 

𝑙𝑣𝑖𝑗𝑘 ∈ {0,1} (4.36) 

Then the proposed nonlinear mixed integer programming model in section 3.3.2 can be 

transferred to the following mixed-integer liner programming model. 

Minimize 𝐶𝑡 = 𝐶𝑑 + 𝐶𝑠 + 𝐶𝑐                                                       

𝐶𝑑 =∑𝑑𝑐𝑖 ∙ 𝑤𝑖

𝐼

𝑖=1

+∑𝑑𝑐𝑓𝑖𝑥 ∙ 𝑤𝑖

𝐼

𝑖=1

(4.2) 

𝐶𝑠 =∑∑∑(𝑝𝑐𝑗𝑘𝑠 ∙ 𝑑𝑗𝑘𝑠 +
𝐴 ∙ 𝑑𝑗𝑘𝑠

𝑞𝑗𝑘𝑠
+
ℎ𝑐𝑗𝑘𝑠 ∙ 𝑞𝑗𝑘𝑠

2

𝐾𝑗

𝑘=1

𝐽𝑠

𝑗𝑠=1

)

𝑆

𝑠=1

(4.3) 

𝐶𝑐 =∑∑∑𝑒𝑣𝑖 ∙ 𝑧𝑣𝑖𝑗

𝐽

𝑗=1

∙ 𝑢𝑣 ∙ 𝑓

𝐼

𝑖=1

𝑉

𝑣=1

 (4.37) 

Subject to  

Equations (4.5), (4.7), (4.8), (4.10) - (4.15), and (4.16) - (4.36). 

The proposed model is implemented using python language and solved using Gurobi 9.5.0. A 

windows PC with intel CPU 1.8GHz and 8GB RAM is used. Numerical experiments will be 

conducted to illustrate the applicability of the proposed model and the effectiveness of the Gurobi-

based solution method under different parameter settings. 
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4.5 Numerical experiments 

4.5.1 Parameter setting 

The proposed model and solution method are applied to a case study of motherboard design for 

the personal computer product family. The motherboards can be regarded as the product platforms of 

PC, and the components of PCs can be understood as modules, e.g., processor, RAM, wireless 

network card, hotkeys, speakers. For example, there are three options for RAM module, i.e., 8GB, 

16GB, and 32GB. In this case study, we only present the variant modules and do not discuss the 

common modules since each product requires a common module. The case company wants to know 

how many and which type of motherboards should be developed for a given product family and which 

suppliers should be selected.  

For the reason of confidentiality of company information, we assumed the parameter settings 

according to the case study. The case study considers 8 products, 4 modules with 11 module options, 

and 8 suppliers. The requirements of products are given, and the descriptions of functional 

requirements are simplified to the selection of modules and module options, as enumerated in the 

right part of Table 4.2. Three demand scenarios are prepared for the numerical examination, as shown 

in Table 4.3. In scenario 1, we set all product demand to be the same while we provide different 

demand for each product in scenario 2 and 3. Leadtime of the supplier is assumed to be the same for 

all suppliers, as well as other factors except cost. The objective in our model includes cost only, 

therefore we could not raise other issues for the supplier selection. 

 

 

 

 



65 

Table 4.2 The description of modules with module option and the initial product requirements 

Module  

Module 

option No. 

Module 

option 

description 

Design 

parameters V1 V2 V3 V4 V5 V6 V7 V8 

𝑚1 

𝑚11 1 Processor 1 10 X       X       

𝑚12 2 Processor 2 14  X    X   

𝑚13 3 Processor 3 18   X    X  

𝑚14 4 Processor 4 22       X       X 

𝑚2 

𝑚21 5 RAM 1 15 X X             

𝑚22 6 RAM 2 21   X  X X   

𝑚23 7 RAM 3 27       X     X X 

𝑚3 
𝑚31 8 SDD 1 20 X   X   X   X   

𝑚32 9 SDD 2 28   X   X   X   X 

𝑚4 
𝑚41 10 Speaker 1 25 X X X X         

𝑚42 11 Speaker 2 35         X X X X 

 

Table 4.3 The different demand scenarios of products 

Scenario 

Total 

demand V1 V2 V3 V4 V5 V6 V7 V8 

Scenario 1 80000 10000 10000 10000 10000 10000 10000 10000 10000 

Scenario 2 80000 5600 7200 15200 8000 13600 7200 19200 4000 

Scenario 3 80000 15200 10400 18400 3200 4800 8800 7200 12000 

 

All module options are available for purchase from 8 suppliers. The module options offered by 

each supplier are shown in Table 4.4. We assume that suppliers 𝑆3 and 𝑆6 have higher production 

capacity because they can offer all the module options for module 𝑚1 and module 𝑚2, respectively. 

Furthermore, we assume that the unit purchasing price for the same module option from supplier 𝑆3 

is 0.5% higher than the price charged by supplier 𝑆1 and 𝑆2. Similarity, supplier 𝑆6 has a higher 

purchasing price compared to supplier 𝑆4 and 𝑆5. The higher purchasing price can be compensated 

by the reduced inventory cost and ordering cost due to the risk pooling incurred by centralized 

purchasing. Other input parameters are presented in Table 4.5. 

Table 4.4 Module options offered by each supplier 

Supplier S1 S2 S3 S4 S5 S6 S7 S8 

Module 

option 𝑚11,𝑚12 𝑚13,𝑚14 

𝑚11,𝑚12, 

𝑚13,𝑚14 𝑚21,𝑚22 𝑚22,𝑚23 

𝑚21,𝑚22, 

𝑚23 𝑚31,𝑚32 𝑚41,𝑚42 
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Table 4.5 Other input parameters used for the model 

Parameters Description  Value 

𝛼 Coefficient of variable development cost 4000 

𝛽 Coefficient of procurement cost 1 

𝐴 Ordering cost 500 

𝑓 Unit customization cost 1 

𝑑𝑐𝑓𝑖𝑥 Fixed cost of platform development 20000 

ℎ𝑐𝑗𝑘 Inventory holding cost 30%*𝑝𝑐𝑗𝑘 

𝑙𝑖𝑓𝑒 Product lifetime  2 years 

SSR Set of selection rules  𝑚14, 𝑚32 

SIR Set of incompatible rules 𝑚11, 𝑚23 

4.5.2 Experimental results 

Table 4.6 presents the optimal total cost and platform configuration for different demand 

scenarios. As shown in Table 4.6, the optimal platform configuration is to develop 3 platforms for 

scenario 1 while developing 4 product platforms for scenario 2 and 3. In the first demand scenario, 

products 𝐹1 and 𝐹2 are derived from platform 𝑃8 with the module option No.2,6,8,10 (i.e., 𝑚12, 

𝑚22 , 𝑚31 , 𝑚41 ), products 𝐹3 , 𝐹5 , 𝐹6  and 𝐹7  are derived from platform 𝑃7  with the module 

option No.3,6,8,11 (i.e., 𝑚13 , 𝑚22 , 𝑚31 , 𝑚41 ), and products 𝐹4  and 𝐹8  are derived from 

platform 𝑃1 with No.4,7,9,10 (i.e., 𝑚14, 𝑚23, 𝑚32, 𝑚41). 

Specifically, platform 𝑃8 is over-designed for module 𝑚1 when deriving product 𝐹1 while it 

is under-designed when deriving product 𝐹2. Compared to the product requirements, platform 𝑃8 

has a higher specification module option No.2 (𝑚12) than the module option No.1 (𝑚11) needed by 

product 𝐹1, which enables platform 𝑃8 to be over-designed for product 𝐹1. When deriving product 

𝐹2 , platform 𝑃8  is under-designed for module 𝑚3 . The platform 𝑃8  configure a module option 

No.8 (𝑚31 ), however, the product 𝐹2  requires a higher specification module option No.9 (𝑚32 ). 

Some additional customizations will be incurred to upgrade the under-designed module option No.8 

to No.9, which will bring the additional customization cost. Similarly, platform 𝑃7 is over-designed 

for product 𝐹3  and 𝐹5  while it is under-designed for product 𝐹7 . In particular, when deriving 
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product 𝐹6 , the platform 𝑃7  becomes a hybrid-designed platform since it is over-designed for 

module 𝑚2 and under-designed for module 𝑚3. Platform 𝑃1 with module option No.4,7,9,10 is 

matching-designed for product 𝐹4 while it is under-designed for module 𝑚4 when deriving product 

𝐹8  from it. Specific platform configurations and the assignment decision between products and 

platforms for scenario 2 and 3 can be found in the Table 4.6. 

Moreover, the demand variation will affect the platform configuration and its design decision 

when deriving products from platforms. The optimal number of platforms developed in scenario 2 

and scenario 3 is 4. However, the platform configuration for each platform in scenario 2 and 3 are 

totally different. For example, scenario 2 has a high-end platform 𝑃1  with module option No. 

4,7,9,10, however, scenario 3 configure a similar high-end platform 𝑃7  with module option No. 

4,7,9,11.  

Meanwhile, the design decision that determines whether the platform is matching or 

nonmatching also varies with the demand variation. For instance, in scenario 2, product 𝐹1 with the 

module option No.1,5,8,10 (i.e., 𝑚11, 𝑚21, 𝑚31, 𝑚41) is derived from an over-designed platform 

𝑃2 with module option No.2,6,8,10 (i.e., 𝑚12, 𝑚22, 𝑚31, 𝑚41). However, product 𝐹1 is derived 

from its matching designed platform 𝑃8 with module option No.1,5,8,10 in scenario 3. Similarly, 

product 𝐹2 is derived from a hybrid platform in scenario 2, however, it is derived from matching 

designed platform in scenario 3. This results in 8 products being derived from 1 over-designed, 1 

hybrid-designed, 3 matching-designed and 3 under-designed platforms in scenario 2, indicated as 

“1O,1H,3M and 3U”. In scenario 3, 8 products are derived from 1O, 4M and 3U platforms.  

In addition, maximizing the platform commonality does not produce a cost-efficient solution. 

Figure 4.2 shows how the total cost changed as the number of platforms is developed. As shown in 

Figure 4.2, developing one platform for three demand scenarios accompanies a higher total cost. The 

platform commonality can be achieved in two ways in our paper, including configuring an under-

designed platform to customize products or configuring an over-designed platform. Our results 
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examine that both ways are not economical because deriving products from the under-designed 

platform incurs additional customization costs while using over-designed platform will bring 

additional material costs. 

The supplier decisions under different demand scenarios are shown in Figure 4.3-4.5. In the 

scenario 2 and 3, all four module options (i.e., 𝑚11, 𝑚12, 𝑚13, 𝑚14) of module 𝑚1 are purchased 

from supplier 𝑆3 even purchasing from supplier 𝑠3 has a 0.5% higher purchasing price than the 

price purchasing from supplier 𝑆1 and 𝑆2. This is because the risk pooling incurred by centralized 

purchasing can reduce the ordering cost and inventory cost. However, module option 𝑚12  is 

purchased from supplier 𝑆1 and module options 𝑚13 and 𝑚14 are purchased from supplier 𝑆2 in 

scenario 1. The reduced number of module options in scenario 1 alleviates the benefits of the 

centralized procurement, and the increased quantity of higher specification module options makes a 

greater incremental purchasing cost when purchasing from supplier 𝑆3. For example, the number of 

module option 𝑚13 is 40000 in scenario 1 compared to 34400 in scenario 2 and 25600 in scenario 

3. 

Table 4.6 Results of platform configuration for different demand scenarios 

Scenario Scenario 1 Scenario 2 Scenario 3 

Cost 

items  

𝐶𝑡 17198836.22 17040431.75 16588925.92 

𝐶𝑑 1139999.994 1543999.995 1480000 

𝐶𝑠 15378836.22 14965231.76 14526525.92 

𝐶𝑐 680000 531200 582400 

CPU time(s) 225s  178s 185s 

Product 

requirement 

Assignment 

and design 

decision 

Platform 

configuration  

Assignment 

and design 

decision 

Platform 

configuration  

Assignment 

and design 

decision 

Platform 

configuration 

𝐹1[1-5-8-10] e(1,8)-Over 𝑃1[4-7-9-10] e(1,2)-Over 𝑃1[4-7-9-10] e(1,8)-Match 𝑃1[2-5-9-10] 

𝐹2[2-5-9-10] e(2,8)-Under   e(2,2)-Hybrid 𝑃2[2-6-8-10] e(2,1)-Match 𝑃2[3-6-8-10] 

𝐹3[3-6-8-10] e(3,7) -Over   e(3,2)-Under    e(3,2)-Match   

𝐹4[4-7-9-10] e(4,1)-Match · e(4,1)-March    e(4,7)-Over   

𝐹5[1-6-8-11] e(5,7)-Over   e(5,7)-Match    e(5,8)-Under   

𝐹6[2-6-9-11] e(6,7)-Hybrid   e(6,7)-Under 𝑃6[3-7-8-11] e(6,1)-Under   

𝐹7[3-7-8-11] e(7,7)-Under 𝑃7[3-6-8-11] e(7,6)-Match 𝑃7[1-6-8-11] e(7,2)-Under 𝑃7[4-7-9-11] 

𝐹8[4-7-9-11] e(8,1)-Under 𝑃8[2-5-8-10] e(8,1)-Under    e(8,7)-Match 𝑃8[1-5-8-10] 
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Figure 4.2 The total cost varies with the number of platforms under three demand scenarios 

 
Figure 4.3 Supplier selection decision and purchase quantity of module option in demand scenario 1 

 
Figure 4.4 Supplier selection decision and purchase quantity of module option in demand scenario 2 
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Figure 4.5 Supplier selection decision and purchase quantity of module option in demand scenario 3 

4.6 Sensitivity analysis 

To measure the impact of various parameters on the optimal platform configuration, sensitivity 

analyses of the cost parameters, product demand and product lifetime are conducted. 

4.6.1 Cost sensitivity analysis  

Firstly, we investigate the impact of cost parameters including coefficient of variable 

development cost 𝛼  and the unit customization cost 𝑓 . Figure 4.6 illustrates how the optimal 

platform configuration varies with different cost parameter 𝛼  and 𝑓 . In the Figure 4.6, 15 cost 

scenarios were tested by combining 5 parameters 𝛼 from 1000 to 5000 and 3 parameters 𝑓 from 1 

to 3, indicated by the symbols 𝑐𝑠𝛼𝑓. For example, the cost scenario 𝑐𝑠21 represents a cost scenario 

with 𝛼 = 2000 and 𝑓 = 1. Other parameter settings are the same as demand scenario 2. In Figure 

4.6, the current situation 𝑐𝑠41 is the optimal platform configuration discussed in section 4.5.2, in 

which 8 products are derived from 4 platforms with the design decisions represented by 1O,1H,3M, 

and 3U.  
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As we can see in Figure 4.6, the number of product platforms will decrease with an increased 

variable development cost 𝛼. For example, the number of platforms is 7 in scenario 𝑐𝑠11 while it 

decreases to 2 in scenario 𝑐𝑠51 as the variable development parameter 𝛼 increases from 1000 to 

5000. Likewise, as 𝛼 increases, the number of platforms decreases from 7 in scenario 𝑐𝑠12 to 3 in 

scenario 𝑐𝑠52  and from 8 in scenario 𝑐𝑠13  to 3 in scenario 𝑐𝑠53 . In the case of the higher 

development cost, the company tends to develop fewer product platforms. 

Moreover, the optimal number of platforms is likely to increase when the customization cost is 

higher. For example, the number of platforms increases from 7 in scenario 𝑐𝑠11 to 8 in scenario 𝑐𝑠13 

as the unit customization cost 𝑓 increase from 1 to 3. Similarly, the number of platforms increases 

from 4 in scenario 𝑐𝑠41 to 5 in scenario 𝑐𝑠43 and from 2 in scenario 𝑐𝑠51 to 3 in scenario 𝑐𝑠53. 

The additional customization is to be avoided by deriving products from their own matching or over-

designed platforms when the customization cost is higher. 

In addition, the number of products derived from their matching designed platform will decrease 

as the development cost increase. For example, 8 products are derived from 7 matching designed 

platforms in scenario 𝑐𝑠11. The number of products derived from matching designed platforms is 5 

in scenario 𝑐𝑠21 and 𝑐𝑠31 while it is 3 in scenario 𝑐𝑠41 and 1 in scenario 𝑐𝑠51. The same trend 

can be found in the other scenarios. For example, in the case of customization cost equal to 2, the 

number of products deriving from matching platform decrease from 7 in scenario 𝑐𝑠12  to 2 in 

scenario 𝑐𝑠52.  

On the other hand, deriving products from the over-designed platforms become more frequent 

as the development cost increases. For example, no product is derived from the over-designed 

platform in the case of low development cost (i.e., scenario 𝑐𝑠11, 𝑐𝑠12 and 𝑐𝑠13), while 4 products 

are derived from the over-designed platforms in scenario 𝑐𝑠51 and 6 products are derived from the 

over-designed platforms in scenario 𝑐𝑠52 and 𝑐𝑠53. Our analysis of the results indicates that over-

design is more prevalent in the presence of high development cost and high customization cost. In 
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contrast, the matching design of platforms is more suitable for low development cost and high 

customization cost, such as scenarios 𝑐𝑠13 and 𝑐𝑠12. 

 
Figure 4.6 Optimal platform configuration decision with varying development cost and 

customization cost 

4.6.2 Demand sensitivity analysis 

A sensitivity analysis on demand is conducted to illustrate the impact of demand. The demand 

rates for different products and unit customization cost are set to be the same as those in scenario 2. 

For example, the demand of product 𝐹1 is 5600 in scenario 2, which contributes a demand rate equal 

to 7%. Thus, the demand of product 𝐹1 is 4200 when the total demand is 60000 and it is 8400 when 

the total demand is 10000. As shown in Figure 4.7, an increased total demand will configure more 

product platforms for a product family. For example, 2 platforms are configured to derive 8 products 

when the total demand is 60000, while 4 platforms are configured in the case of total demand equal 

to 80000 and 5 platforms are offered when the total demand is 10000. Meanwhile, when demand is 

high, manufacturers tend to derive products from their matching designed platforms. For instance, 8 

products are derived from 1O, 5M, and 2U platforms when the total demand is 100000. In contrast, 

8 products are derived from 1O, 3M, 1H, and 3U platforms in the case of low total demand equal to 
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80000 and from 4O, 1H, 1M, and 2U platforms in the case of lower total demand equal to 60000. 

 
Figure 4.7 The impact of varying product demand on platform configuration decision 

4.6.3 Product lifetime sensitivity analysis 

The impact of product lifetime on platform configuration is analyzed. As shown in Figure 4.8, 

with a longer product lifetime, the number of platforms increases. For example, compared to 4 

platforms configured with 2 years product lifetime, the number of platforms is 5 in the case of 3 years 

and 6 in the case of 4 years. Moreover, as the product lifetime increases, the number of products 

derived from the matching designed platforms also increases. When the product lifetime is 4 years, 8 

products are derived from 6M and 2U platforms while it is 1O, 5M, and 2U in the case of 3 years and 

1O, 3M, 1H, and 3U in the case of 2 years. The longer product lifetime enables the high development 

cost associated with developing more matching designed platform relatively low in terms of total 

costs. 
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Figure 4.8 The impact of varying product lifetime on platform configuration decision 

4.7. Conclusions 

In this chapter, we studied a platform configuration problem while considering platform design 

strategy and supplier selection. The proposed model was formulated as a non-linear mixed-integer 

programming model. A cost model including the development cost, sourcing cost and customization 

cost was developed to illustrate the cost trade-off between platform development and customization. 

The proposed model was linearized and solved by commercial solver Gurobi. By minimizing the total 

cost, the optimal number and platform configuration decision for a given product family was 

obtained, as well as its relevant supplier selection. Numerical experiments show that the proposed 

model can be effectively applied to a joint optimization problem of platform configuration and 

supplier selection. Moreover, the proposed solving algorithm applying the linearization method and 

Gurobi solver can effectively generate optimal solutions for different parameter settings. 

The results of numerical experiments show that the optimal combination of supplier and optimal 

number of platforms are depending on the given parameters, such as various cost parameters included 

in the model, product demand, and product lifetime. The cost sensitivity analyses show that the 

optimal number of product platforms will decrease as the variable development cost increases, while 
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the number of platforms is likely to increase as the customization cost increases. Moreover, the model 

can give guidance to what extent the platform should be matching-designed, under-designed or over-

designed with regard to the products derived from them. As the development cost increases, few 

products are derived from their matching-designed platforms, while more products are derived from 

the over-designed platforms. The over-designed platform is more prevalent in the presence of high 

development cost and high customization cost. In contrast, the matching designed platforms is more 

suitable for low development cost and high customization cost. 

In addition, the increasing total demand drives the model to develop more platforms and tends 

to derive products from their matching designed platforms. Likewise, the more platforms will be 

developed for a product family and the more matching-designed platforms will be configured with a 

longer the product lifetime. 
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Chapter 5   A stochastic programming approach 

for product platform configuration under demand 

uncertainty 

5.1 Introduction 

Platform-based product development (PPD) is an effective way to achieve mass customization. 

Through PPD approach, various products within a product family can be effectively developed based 

on the product platform. One important problem in PPD is product platform configuration (PPC). 

Two critical research problems in PPC are: (1) how many and which type of product platform should 

be developed for a product family; (2) which product platform will be assigned to derive the product 

within a product family. 

Different types of platform design strategies can be found, i.e., matching-designed, under-

designed, and over-designed. A matching-designed platform configures the same module options that 

exactly match the product requirements while the under-designed platform or the over-designed 

platform has module options with lower specification or higher specification than the product 

requirements. Forming the different types of platforms contributes a different impact on the platform-

related costs. For example, developing a matching-designed platform for each product within a 

product family requires more product platforms, which results in a higher total development cost. 

However, the platform customization is not required. On the other hand, developing an under-

designed platform contributes a lower development cost and a higher customization cost while 
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developing an over-designed platform brings a higher development cost and a lower customization 

cost. How to weigh the different platform design strategies is a crucial problem when configuring the 

product platforms. 

In addition, demand uncertainty is a huge challenge in supply chain management. Customer 

demand is always uncertain and unpredictable. Due to demand uncertainty, all the sectors of supply 

chain may experience negative effects, which makes an inefficient supply chain and reduces revenue. 

For example, a larger backlog of products may be incurred if overproduction. Conversely, it may also 

cause a loss of market share due to stock-outs.  

The PPC decision is endogenously linked to supply chain-related activities, e.g., procurement, 

manufacturing, inventory, and transportation. The risks and uncertainty associated with supply chain 

have a significant impact on PPC decision. Generally, the development of product platform is ahead 

of the new product introduction (NPI), which is difficult to forecast the demand. How to determine 

the optimal PPC decision under demand uncertainty is highly important.  

In this chapter, a new platform configuration model is proposed to handle demand uncertainty. 

The proposed model is formulated as a two-stage stochastic programming model while every possible 

random demand is represented by a scenario with an associated probability. A linear programming 

embedded genetic algorithm is developed to solve the model. The proposed algorithm deals with the 

binary variables for platform configuration by using a genetic algorithm (GA) and determines the 

integer variables by solving a linear programing subproblem through Gurobi solver. Numerical 

experiments are conducted to illustrate the proposed model and algorithm.  

5.2 Problem description and assumptions 

5.2.1 Nomenclature 

Table 5.1 illustrates the description of symbols used in the model.  
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Table 5.1 List of symbols 

Notation Definition 

𝑣  The index of product variants 𝐹𝑣 (𝑣 = 1,2,… , 𝑉) in a product family 

𝑖  The index of product platform 𝑃𝑖  (𝑖 = 1,2,… ,  𝐼) 

𝑗  The index of module 𝑚𝑗  (𝑗 = 1,2,… ,  𝐽) 

𝑘  The index of module option 𝑚𝑗𝑘 (𝑘 = 1,2,… ,  𝐾𝑗) 

𝑠  The index of scenario 𝑠 (𝑠 = 1,2,… , 𝑆) 

𝑁𝑗𝑘  The design parameter of module option 𝑚𝑗𝑘 

𝑑𝑐𝑖  Variable development cost of product platform 𝑃𝑖 

𝑑𝑐𝑓𝑖𝑥  Fixed development cost of product platform 

𝑝𝑐𝑖
𝑚𝑝

  Material cost of product platform through pre-production in first stage 

𝑝𝑝𝑖
𝑚𝑝

  Production cost of product platform through pre-production in first stage 

𝑝𝑐𝑖
𝑐𝑢  Material cost of product platform through post-production in second stage 

𝑝𝑝𝑖
𝑚𝑝

  Production cost of product platform through post-production in second stage 

𝛼  Coefficient of variable development cost 

𝛽  Coefficient of material cost of module option for first stage 

𝛾  Coefficient of material cost of module option for second stage 

𝜏  Coefficient of penalty cost 

𝑓  Unit customization cost related to derive unsatisfied platform to product 

𝑏𝑖  Penalty cost of excessive product platform 𝑃𝑖 

𝑟𝑣𝑗𝑘  The product requirement for module option 𝑚𝑗𝑘 

𝛿𝑣𝑖𝑗  
Binary variable, takes value 1 if platform 𝑃𝑖 is under-designed for module 𝑚𝑗 when 

deriving product 𝐹𝑣 

SSR 
Set of selection rules (𝑚𝑗𝑘 ,𝑚𝑗′𝑘′) which represents that selection of module option 

𝑚𝑗𝑘 requires module option 𝑚𝑗′𝑘′ in the same configuration 

SIR 
Set of incompatible rules (𝑚𝑗𝑘 ,𝑚𝑗∗𝑘∗) which represents that module option 𝑚𝑗𝑘 and 

module option 𝑚𝑗∗𝑘∗ cannot be used together in the same configuration 

𝑝𝑟𝑜𝑏𝑠  Probability of scenario s 

𝑒𝑣𝑖  
Binary decision variable to indicate whether product 𝐹𝑣  is derived from product 

platform 𝑃𝑖 

𝑤𝑖  Derivative binary variable to indicate whether product platform 𝑃𝑖 is developed 

𝑥𝑖𝑗𝑘  
Binary decision variable to indicate whether module option 𝑚𝑗𝑘 is used in product 

platform 𝑃𝑖 

∅𝑖  
The quantity of pre-production product platform 𝑃𝑖  before the confirmation of 

product demand 

𝜑𝑖
𝑠  

The quantity of post-production platform 𝑃𝑖  under demand scenario s after the 

confirmation of product demand 

5.2.2 Problem description 

As shown in Figure 5.1, the product platform is configured by selecting a set of modules and 

module options. A module 𝑚𝑗  (𝑗 = 1,2, … , 𝐽) is a unit that serves an identifiable product function 

and is developed in prior. Two types of modules can be found, i.e., a variant module and a common 
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module. Each variant module has multiple options 𝑚𝑗𝑘  (𝑘 = 1,2, … , 𝐾𝑗) with different cost-relevant 

design parameters 𝑁𝑗𝑘  to represent different functional levels. A common module only has one 

module option and is required by each product. The combinations of modules and module options 

enable the possible product platform configurations. 

A product family has multiple products 𝐹𝑣  (𝑣 = 1,2, . . , 𝑉) with different functional 

requirements, which represented by the selection of modules and module options. Through PPD, each 

product within a product family can be derived from one product platform. Four scenarios of platform 

design strategies can be found, i.e., matching-design, over-design, under-design, and hybrid-design. 

A matching-designed platform has the same selection of module options compared to the dedicated 

product requirements. In contrast, a non-matching designed platform can be configured as an under-

designed or over-designed platform, which has lower specification or higher specification module 

options than the product requirements. A hybrid-designed platform contains both lower and higher 

specification module options compared to the product requirements. For example, a product family 

contains three products with the respective requirements. Product 𝐹1 requires module option 𝑚11, 

𝑚21 , product 𝐹2  requires module options 𝑚12 , 𝑚22  and product 𝐹3  requires module options 

𝑚11 , 𝑚22 . If we configure a platform 𝑃1  with module options 𝑚12 , 𝑚21 , then platform 𝑃1  is 

over-designed for module 𝑚1 when deriving product 𝐹1. This is because product 𝐹1 has a lower 

specification module option 𝑚11 than module option 𝑚12 used on platform 𝑃1. Likewise, it is an 

under-designed platform for module 𝑚2 when deriving product 𝐹2. Similarly, platform 𝑃1 is over-

designed for module 𝑚1 and is under-designed for module 𝑚2 when deriving product 𝐹3, which 

we defined it as a hybrid-designed platform. 
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Figure 5.1 Product platform configuration with modules and module options for product family 

One of the most important benefits of PPD is the economies of scale gained through the mass 

production of shared modules, components, and parts. Thus, two stages can be identified in the PPD, 

i.e., the platform configuration stage and the platform customization stage. The platform 

configuration stage determines the number of platforms and the module selection on the platforms as 

well as product-platform assignment decision. The platform customization stage enables unsatisfied 

platforms to be upgraded to meet the requirements of dedicated products when receiving the customer 

order. 

The platform configuration stage is ahead of the realization of real demand. In order to respond 

quickly to the market, a pre-production strategy of product platform is applied in this study to pre-

produce the platforms and purchase all the related modules, components, and parts in advance. We 

assume that the pre-production strategy of platforms allows the manufacturers to produce the 

platforms at a lower cost and receive purchase discount from the suppliers due to pre-procuring. The 

two stages under demand uncertainty are illustrated in Figure 5.2.  

Step 1. Configure product platforms by selecting modules and module options according to the 



81 

given product requirements. 

Step 2. Determine the quantity of pre-production platforms and purchasing relevant modules and 

components. 

Step 3. If the product demand cannot be satisfied by the pre-production platforms, the 

manufacturer needs to produce additional platforms through post-production mode. 

Step 4. The under-satisfied function should be customized to satisfy the dedicated product 

requirements.  

 

Figure 5.2 Two-stage platform configuration process under demand uncertainty 

5.2.3 Assumptions 

For formulating the mathematical model, the following assumptions will be introduced.  

Assumption 1: the different module options 𝑚𝑗𝑘 for module 𝑚𝑗 are sorted in an increasing 

value of design parameter 𝑁𝑗𝑘 (𝑁𝑗𝑘 ≤ 𝑁𝑗(𝑘+1)). The value of 𝑁𝑗𝑘 is corresponding to the different 

functional levels and is further assumed to be related to the costs of module options. Therefore, the 

variable development cost of module option 𝑚𝑗𝑘 used on the platform equal to 𝛼 ∙ 𝑁𝑗𝑘. The unit 

material cost of module option 𝑚𝑗𝑘 for first stage equals to 𝛽 ∙ 𝑁𝑗𝑘 while the unit material cost of 

module option for second stage is 𝛾 ∙ 𝑁𝑗𝑘. The penalty cost of module option 𝑚𝑗𝑘 equals to 𝜏 ∙ 𝑁𝑗𝑘. 

A product platform with a higher specification of module option may have a higher development cost, 
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higher material cost and higher penalty cost of excessive production.  

Assumption 2: we assume that the customization is only incurred when a product is derived from 

an under-designed platform. In the case of a matching-designed or over-designed platform, there is 

no customization. In other words, we assume that the higher specification module option could be 

used for product platform without sacrificing product quality. However, the procurement cost of 

module option will increase if the low-end product is derived from an over-designed platform. The 

design parameter is used to calculate the performance gap for a particular module 𝑚𝑗  between 

product 𝐹𝑣 and platform 𝑃𝑖 as follows.  

max(0,  ∑𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 −∑𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘

𝐾𝑗

𝑘=1

𝐾𝑗

𝑘=1

)          ∀𝑣, 𝑖, 𝑗 (5.1) 

Furthermore, we define a binary variable 𝛿𝑣𝑖𝑗, which takes value 1 if the platform 𝑃𝑖 is under-

designed for module 𝑚𝑗  when deriving product 𝐹𝑣 . The larger the performance gap, the more 

customization is required to derive the product from this platform.  

Assumption 3: the unit production cost and material cost of platforms in the platform 

configuration stage is lower than those in the customization stage because of the mass production 

mode and purchase discount obtained from suppliers.  

Assumption 4: a penalty cost of excessive platforms is introduced to avoid producing excessive 

platforms and incurring excessive inventory. 

Assumption 5: all the product demand should be satisfied through pre-production and post-

production of platforms and no shortage is allowed. 

5.3 Model formulation 

The PPC problem under demand uncertainty can be formulated as a two-stage stochastic 

programming model. In the first stage, the product platform configuration and the quantity of pre-
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production platforms will be determined before the confirmation of product demand. A binary 

decision variable 𝑥𝑖𝑗𝑘 is used to indicate whether the module option 𝑚𝑗𝑘 is selected on the product 

platform 𝑃𝑖. It equals to 1 if the module option 𝑚𝑗𝑘 is selected on the platform 𝑃𝑖. The assignment 

decision between product and platform is denoted by a binary decision variable 𝑒𝑣𝑖. It equals to 1 if 

product 𝐹𝑣  is derived from platform 𝑃𝑖 , or 0 otherwise. A derivative variable 𝑤𝑖  is used to 

determine whether the product platform 𝑃𝑖  is developed or not. A continuous variable ∅𝑖  is 

proposed to determine the quantity of platforms through pre-production in the first stage.  

In the second stage, when the demands for all products are realized, the model determines the 

quantity of post-production platforms and excessive platforms under demand scenario 𝑠 . If the 

product demand cannot be satisfied by the quantity of pre-production platforms, then additional 

platforms are required through post-production. A continuous variable 𝜑𝑖
𝑠 is proposed to determine 

the quantity of post-production platforms under scenario 𝑠  and 𝜋𝑖
𝑠  is the quantity of excessive 

platforms under scenario 𝑠. 

The uncertainty of product demand is represented by a finite set of scenarios with a possible 

probability associated with each scenario. Each scenario contains a set of product demand data 

indicated by 𝑢𝑠 = [𝑢1
𝑠, 𝑢2

𝑠 , … , 𝑢𝑣
𝑠]. The values of the second-stage variables depend on the value of 

each set of stochastic product demand. 

The objective function of this model is to minimize the total cost, including the development 

cost of product platform 𝐶𝑑, the material cost of pre-production platforms 𝐶𝑚
𝑚𝑝

 and production cost 

𝐶𝑝
𝑚𝑝

 of pre-production platform in the first stage, the material cost of post-production 𝐶𝑚
𝑐𝑢  and 

production cost 𝐶𝑝
𝑐𝑢 of post-production platform in second stage, the customization cost 𝐶𝑐 and the 

penalty cost of excessive platform 𝐶𝑠 . The development cost of platform contains two parts, the 

variable development cost associated with the selection of module options on the platforms and the 

fixed development cost depending on the number of platforms. The material cost and production cost 

of platform mainly depend on the selection of module options on the platform. The total customization 
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cost depends on the performance gap for all under-designed module options compared with product 

requirements. A unit customization cost 𝑓 is included to represent the impact of the performance gap 

on the customization cost. 

The proposed two-stage stochastic model for platform configuration is formulated as follows. 

Minimize 

𝐶𝑡 = 𝐶𝑑 + 𝐶𝑚
𝑚𝑝 + 𝐶𝑝

𝑚𝑝 + 𝐶𝑚
𝑐𝑢 + 𝐶𝑝

𝑐𝑢 + 𝐶𝑐 + 𝐶𝑠 (5.2) 

𝐶𝑑 =∑𝑑𝑐𝑖 ∙ 𝑤𝑖

𝐼

𝑖=1

+∑𝑑𝑐𝑓𝑖𝑥 ∙ 𝑤𝑖

𝐼

𝑖=1

(5.3) 

𝐶𝑚
𝑚𝑝 =∑𝑝𝑐𝑖

𝑚𝑝 ∙ ∅𝑖 =∑∑∑𝑥𝑖𝑗𝑘 ∙ 𝛽 ∙ 𝑁𝑗𝑘 ∙ ∅𝑖

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

𝐼

𝑖=1

(5.4) 

𝐶𝑝
𝑚𝑝 =∑𝑝𝑝𝑖

𝑚𝑝 ∙ ∅𝑖

𝐼

𝑖=1

(5.5) 

𝐶𝑚
𝑐𝑢 =∑𝑝𝑟𝑜𝑏𝑠 (∑𝑝𝑐𝑖

𝑐𝑢 ∙ 𝜑𝑖
𝑠

𝐼

𝑖=1

)

𝑆

𝑠=1

=∑𝑝𝑟𝑜𝑏𝑠 (∑∑∑𝑥𝑖𝑗𝑘 ∙ 𝛾 ∙ 𝑁𝑗𝑘 ∙ 𝜑𝑖
𝑠

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

)

𝑆

𝑠=1

(5.6) 

𝐶𝑝
𝑐𝑢 =∑𝑝𝑟𝑜𝑏𝑠 (∑𝑝𝑝𝑖

𝑐𝑢 ∙ 𝜑𝑖
𝑠

𝐼

𝑖=1

)

𝑆

𝑠=1

(5.7) 

𝐶𝑐 =∑𝑝𝑟𝑜𝑏𝑠{∑∑∑𝑒𝑣𝑖 (∑𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 −∑𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘

𝐾𝑗

𝑘=1

𝐾𝑗

𝑘=1

)

+

∙ 𝑢𝑣
𝑠 ∙ 𝑓}

𝐽

𝐽=1

𝐼

𝑖=1

𝑉

𝑣=1

𝑆

𝑠=1

(5.8) 

𝐶𝑠 =∑𝑝𝑟𝑜𝑏𝑠(𝑏𝑖 ∗ 𝜋𝑖
𝑠)

𝑆

𝑠=1

=∑𝑝𝑟𝑜𝑏𝑠 (∑∑∑𝑥𝑖𝑗𝑘 ∙ 𝜏 ∙ 𝑁𝑗𝑘 ∙

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

𝜋𝑖
𝑠)

𝑆

𝑠=1

(5.9) 

 

Subject to 

∑𝑒𝑣𝑖 = 1  (𝑣 = 1,2, … , 𝑉)

𝐼

𝑖=1

(5.10) 
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𝑤𝑖 =

{
 
 

 
 1, ∑𝑒𝑣𝑖 > 0

𝑉

𝑣=1

0, ∑𝑒𝑣𝑖 = 0

𝑉

𝑣=1

 

(5.11) 

∑𝑥𝑖𝑗𝑘 = 𝑤𝑖   (𝑖 = 1,2, … , 𝐼; 𝑗 = 1,2, … , 𝐽)

𝐾𝑗

𝑘=1

(5.12) 

𝑥𝑖𝑗𝑘 ≤ 𝑤𝑖   (𝑖 = 1,2, … , 𝐼; 𝑗 = 1,2, … , 𝐽; 𝑘 = 1,2, … , 𝐾𝑗) (5.13) 

𝑥𝑖𝑗𝑘 ≤ 𝑥𝑖𝑗′𝑘′  (𝑖 = 1,2, … , 𝐼; 𝑗, 𝑗
′𝑘, 𝑘′ ∈ 𝑆𝑆𝑅) (5.14) 

𝑥𝑖𝑗𝑘 + 𝑥𝑖𝑗∗𝑘∗ = 1 (𝑖 = 1,2, … , 𝐼; 𝑗, 𝑗
∗𝑘, 𝑘∗ ∈ 𝑆𝐼𝑅) (5.15) 

∅𝑖 ≤ 𝑤𝑖 ∙ 𝑏𝑖𝑔𝑀 (5.16) 

𝜑𝑖
𝑠 ≤ 𝑤𝑖 ∙ 𝑏𝑖𝑔𝑀 (5.17) 

𝜋𝑖
𝑠 ≥ 𝜙𝑖 + 𝜑𝑖

𝑠 −∑𝑒𝑣𝑖 ∙ 𝑢𝑣
𝑠

𝑉

𝑣=1

  (𝑖 = 1,2, … , 𝐼,  𝑠 = 1,2, … 𝑆) (5.18) 

∅𝑖 + 𝜑𝑖
𝑠 ≥∑𝑒𝑣𝑖 ∙ 𝑢𝑣

𝑠

𝑉

𝑣=1

.   (𝑖 = 1,2, … , 𝐼; 𝑠 = 1,2, . . , 𝑆) (5.19) 

Equation (5.10) assigns each product to one product platform. Equation (5.11) sets the value of 

𝑤𝑖. Constraint (5.12) specifies only one module option 𝑚𝑗𝑘 for any module 𝑚𝑗 can be selected by 

each product platform when the platform 𝑃𝑖 is developed. Equation (5.13) ensures that no module 

option 𝑚𝑗𝑘 will be selected on the platform 𝑃𝑖 if this platform is not developed. Constraint (5.14) 

represents the selection rules between module options whereas constraint (5.15) ensures the 

incompatible rules. Equation (5.16) states that no pre-production platform will be produced if this 

platform is not developed while Equation (5.17) states that no post-production platform will be 

produced if this platform is not developed. Equation (5.18) gives out the quantity of excessive 

platforms. Constraint (5.19) ensures that the product demand under each scenario should be satisfied 

by the sum of pre-production platforms and post-production platforms. 
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5.4 Algorithm development  

The product platform configuration problem is a larger-scale combinatorial optimization 

problem. The exact algorithm can be very time-consuming for large-scale problems while the meta-

heuristic algorithm is more effective than the exact algorithm in solving such problem. Among the 

most popular heuristic algorithm, genetic algorithm (GA) is widely used. Meanwhile, the proposed 

two-stage stochastic model is a nonlinear mixed-integer programming model. With nonlinear terms 

and integer variables, it is difficult to solve it by using GA alone. Therefore, a linear programming 

embedded GA is developed. The proposed algorithm searches the binary variables for platform 

configuration by using the GA and determines the integer variables by solving a linear programming 

subproblem using the Gurobi solver.  

In the following subsection, the genetic algorithm for platform configuration is introduced 

including coding and decoding the chromosome to represent a feasible solution, fitness function, new 

mutation and crossover method as well as solving a subproblem by using linearization methods and 

Gurobi solver. Figure 5.3 illustrates the main procedure of the proposed algorithm. 
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Figure 5.3 The main procedure of proposed algorithm 

5.4.1 Chromosomal encoding of a solution 

The key point of GA is to encode the decision variable by using the chromosome, substring, and 

gene. As shown in Figure 5.4, a platform configuration solution is encoded in a finite length string, 

namely chromosome. Each chromosome consists of substrings that represent a single platform 

configuration decision. Each substring comprises all the module options whilst each module option 

is represented by a gene. Each gene has a binary value (0 or 1) to indicate if the module option is used 

on the corresponding product platform. The gene takes value 1 if the module option represented by 

this gene is used on the corresponding platform configuration. Otherwise, it takes the value 0.  
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The length of chromosome is equal to the number of products within a product family. For 

forming the chromosome, we deal with the decision variable 𝑒𝑣𝑖 by assuming that a product 𝐹𝑣 is 

derived from the platform 𝑃𝑖 where 𝑣 = 𝑖. However, the platform with the same module and module 

options are merged into one platform when we calculate the objective function. The length of the 

substring is equal to the number of total module options. For example, a product family contains 5 

products with 4 modules and 11 module options. The length of substring (single platform 

configuration) equals 11 and the chromosome would contain 55 genes (5 platforms multiply 11 

module options). 

 
Figure 5.4 Encoding scheme illustration 

5.4.2 Initial population 

The initial population contain a certain number of chromosomes which equals the predetermined 

population size. Each chromosome is generated by randomly assigning the value (0 or 1) to each gene 

in this chromosome. To ensure a feasible initial solution, a feasibility check mechanism is applied in 

this process. The feasibility checks mainly deal with the platform configuration constraints, such as 

constraint (5.10), constraint (5.14) and constraint (5.15).  
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5.4.3 Fitness function 

The fitness function is used to evaluate the fitness of each chromosome. The fitness function is 

the total cost of platform configuration as described in section 5.3. To calculate the value of the fitness 

function and the value of continuous variables, a linear programming subproblem is solved by using 

some linearization method and Gurobi solver.  

Firstly, the objective function Equation (5.8) contains a non-linear formulation of 

(∑ 𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 − ∑ 𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘
𝐾𝑗
𝑘=1

𝐾𝑗
𝑘=1 )+  and it can be transferred to a normal mixed-integer 

programming formulation by defining a continuous variable 𝑧𝑣𝑖𝑗   and a binary variable 𝜃𝑣𝑖𝑗   . 

Equations (5.20) - (5.24) are defined as follows to remove the form ‘( )+’. 

𝑧𝑣𝑖𝑗 ≥∑𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 −∑𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘

𝐾𝑗

𝑘=1

𝐾𝑗

𝑘=1

 (5.20) 

𝑧𝑣𝑖𝑗 ≤∑𝑟𝑣𝑗𝑘 ∙ 𝑁𝑗𝑘 −∑𝑥𝑖𝑗𝑘 ∙ 𝑁𝑗𝑘

𝐾𝑗

𝑘=1

𝐾𝑗

𝑘=1

+ 𝜃𝑣𝑖𝑗 ∙ 𝑏𝑖𝑔𝑀  (5.21) 

𝑧𝑣𝑖𝑗 ≤  (1 − 𝜃𝑣𝑖𝑗) ∙ 𝑏𝑖𝑔𝑀 (5.22) 

𝑧𝑣𝑖𝑗 ≥ 0 (5.23) 

𝜃𝑣𝑖𝑗 ∈ {0,1} (5.24) 

The objective function Equation (5.7) then can be formulated as follows. 

𝐶𝑐 =∑𝑝𝑟𝑜𝑏𝑠{∑∑∑𝑒𝑣𝑖 ∙ 𝑧𝑣𝑖𝑗 ∙ 𝑢𝑣
𝑠 ∙ 𝑓}

𝐽

𝐽=1

𝐼

𝑖=1

𝑉

𝑣=1

𝑆

𝑠=1

(5.25) 

Therefore, the fitness function is formulated as follows. 

Minimize  

𝐶𝑡 = 𝐶𝑑 + 𝐶𝑚
𝑚𝑝 + 𝐶𝑝

𝑚𝑝 + 𝐶𝑚
𝑐𝑢 + 𝐶𝑝

𝑐𝑢 + 𝐶𝑐 + 𝐶𝑠 

Equations (5.3) -(5.7), Eq. (5.25), and Eq. (5.9) 

The fitness value of each chromosome will be calculated within the population size for the entire 
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generation until the genetic algorithm search stops, and an optimal or near-optimal solution is reached. 

5.4.4 Selection  

The selection in GA is to generate the next generation population (offspring) by selecting the 

parent chromosome from the current population. In this model, the parent chromosome will be 

selected by roulette wheel selection where all the chromosomes in the current population are placed 

according to their fitness value on a roulette wheel. Since the objective function is to minimize the 

total cost, the chromosome has a better performance if the total cost is lower. Thus, the selection area 

of the wheel corresponding to each chromosome is the reciprocal of its fitness value. The chromosome 

with a lower total cost (higher fitness) has a higher probability of being selected more times. Then, a 

random number is generated to select one of the chromosomes to be the parent chromosome for 

crossover and mutation. 

5.4.5 Crossover 

    The crossover will be applied to generate the offspring by inheriting the gene information of the 

two parent chromosomes. A specific crossover procedure is developed to deal with this specific 

problem. As mentioned before, each chromosome consists of a set of substrings and each substring 

contains genes that represent all the module options. Since the different modules have a different 

number of module options, the crossover position can be specified according to the specific number 

of module options for a module. For illustration, we present an example that considers 3 products 

within a product family and 3 modules with 9 module options. Module 𝑚1 has 4 module options, 

module 𝑚2 has 3 module options and module 𝑚3 has 2 module options. Then a set of crossover 

points is 4, 7, 9, 13, 16, 18, 22, 25, and 27. A random number can be generated from this specific set 

of possible crossover points. The offspring chromosome inherits the gene information of the father 
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chromosome before the random number and the gene information of the mother chromosome after 

the random number. Another offspring chromosome inherits the rest of gene information of the parent 

chromosome. This specific crossover procedure ensures that the offspring platform configuration is 

feasible for the module selection.  

 
Figure 5.5 Crossover 

5.4.6 Mutation 

The mutation plays a crucial role in searching the possible feasible solutions. It is crucial to the 

convergence of the genetic algorithm. We use a 0-1 flip-flop mutation for gene mutation due to the 

binary encoding gene in this model. The mutation procedure is achieved by generating three random 

number 𝑎 , 𝑏 , and 𝑐  where 𝑎 ∈ [0, 𝑖] , 𝑏 ∈ [0, 𝑗] , and 𝑐 ∈ [0, 𝑘𝑗] . The random number 𝑎  is 

generated from 0 to 𝑖 to choose the mutation platform and the random number 𝑏 is generated from 

0 to 𝑗 to choose the mutation module. The number 𝑐 will be generated from 0 to 𝑘𝑗 and inverting 

the 0-1 value of this position. The feasibility check will be also applied to ensure only one module 

option for a specific module is used in a platform configuration. For example, Figure 5.6 presents a 

case of 3 products and three modules with 9 module options. Generating a random number 𝑎 = 2, 

𝑏 = 1 and 𝑐 = 4, then the offspring chromosome changes the value of the red marked position from 

0 to 1 and other gene values of this module are changed from 1 to 0.  
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Figure 5.6 Mutation 

5.4.7. Stopping criteria 

The genetic search is repeated until pre-defined stopping conditions are reached. The stopping 

condition considered in this proposed algorithm is reaching a pre-selected number of generations, or 

the best solution remains unchanged for a certain number of successive generations. 

5.5 Numerical experiments 

5.5.1 Parameter setting 

The proposed model and solution method are applied to a case study of motherboard design for 

personal computer product family. The motherboards can be regarded as the product platforms of PC, 

and the components of PC can be understood as modules, e.g., processor, RAM, wireless network 

card, hotkeys, speakers. For example, there are three options for RAM module, i.e., 8 GB, 16 GB, 

and 32 GB. In this case study, we only present the variant modules and do not discuss the common 

modules since each product requires a common module.  

A product family contains 5 products, 4 modules with 11 module options. The product 

requirements are given, and the descriptions of functional requirements are simplified to the selection 

of modules and module options, as enumerated in the right part of Table 5.2. The product demand 
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follows the normal distribution. Three demand distribution cases with different mean values and 

variances are prepared for the numerical examination, as shown in Table 5.3. The solution algorithm 

is coded using Python and runs on a PC with Apple M1 and 16 GB RAM. 

Table 5.2 The description of modules with module option and the initial product requirements 

Module 
Module 

option 
No. 

Module option 

description 

Design 

parameters 
𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 

𝑚1 

𝑚11 1 Processor 1 2 X     

𝑚12 2 Processor 2 4  X X   

𝑚13 3 Processor 3 7    X  

𝑚14 4 Processor 4 9     X 

𝑚2 

𝑚21 5 RAM 1 6 X X    

𝑚22 6 RAM 2 11   X X  

𝑚23 7 RAM 3 16     X 

𝑚3 
𝑚31 8 SDD 1 8 X X  X  

𝑚32 9 SDD 2 15   X  X 

𝑚4 
𝑚41 10 Speaker 1 12 X  X   

𝑚42 11 Speaker 2 17  X  X X 

 

Table 5.3 The different demand scenarios of products 
Demand 

distribution 

Mean 

value 
𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 

Demand case 1 10000 (9000,11000) (9200,10800) (9500,10500) (9300,10700) (9400,10600) 

Demand case 2 15000 (14000,16000) (14200,15800) (14500,15500) (14300,15700) (14000,16000) 

Demand case 3 20000 (19000,21000) (19200,20800) (19500,20500) (19400,20600) (19300,20700) 

 

Table 5.4 Other input parameters used for the model 

Parameters Description  Value 

𝛼 Coefficient of variable development cost 1000 

𝛽 Coefficient of material cost of module option for first stage 1 

𝛾 Coefficient of material cost of module option for second stage 1.05 

𝜏 Coefficient of penalty cost 0.2 

𝑓 Unit customization cost 1.5 

𝑑𝑐𝑓𝑖𝑥 Fixed cost of platform development 20000 

SSR Set of selection rules 𝑚14, 𝑚32 

SIR Set of incompatible rules 𝑚11, 𝑚23 
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5.5.2 Experiments on the efficiency of the proposed algorithm 

To demonstrate the accuracy and efficiency of the proposed algorithm, we use 13 different 

problem instances with different numbers of products, modules, module options and scenarios to 

compare the result of the proposed algorithm and the optimal results solved by Gurobi solver directly. 

The number of products within a product family, modules and module options and the number of 

scenarios determine the problem size, which further affects the computation complexity.  

The comparative results of the two solution methods are presented in Table 5.5. The possible 

number of platform configurations is the number of product platforms configured without any 

constraints. For ensuring the Gurobi solver can solve the problem instances directly, the experiments 

just consider a problem instance with 6 products, 5 modules, 13 module options and 20 scenarios. 

Important point is that the computation time of the Gurobi algorithm increases rapidly along with the 

problem size, while the proposed algorithm increases linearly and slowly. Figure 5.7 shows the trend 

of the rapid increase of Gurobi algorithm’s computation time. We argue that the proposed algorithm 

can feedback feasible solution for practical big size problem, while the Gurobi algorithm cannot.  

As shown in Table 5.5, the proposed linear programming embedded GA algorithm has a good 

performance for obtaining the near-optimal solution in most cases. In addition, the computation time 

has a substantial reduction. For a small-scale problem, the Gurobi solver can find the optimal solution 

faster, but it becomes very time-consuming for large-scale problems.  
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Table 5.5 Problem size and comparison result between proposed algorithm and Gurobi solver 

Case id (I, 

J,K,S) 

Number of 

possible 

platform 

configurations 

Gurobi 

Proposed algorithm 

Population size=100 Population size=200 

Obj. 

CPU 

times (s) Obj. 

CPU 

times 

(s) 

Gap 

(%) Obj. 

CPU 

times 

(s) 

Gap 

(%) 

4-3-9-20 331776 2036854.39  20.00  2037516.96  53.74  0.03% 2037516.96  101.94  0.03% 

4-3-9-30 331776 2032088.48  25.00  2032348.08  54.65  0.01% 2032348.08  112.63  0.01% 

4-4-11-20 160000 2996042.33  55.00  2996654.06  58.13  0.02% 2996654.06  113.52  0.02% 

4-4-11-30 810000 2986444.82  65.00  2987250.67  67.58  0.03% 2987250.67  139.15  0.03% 

5-3-9-20 7962624 2322782.15  220.00  2323928.91  70.93  0.05% 2323928.91  140.68  0.05% 

5-3-9-30 7962624 2314864.03  340.00  2315529.99  81.41  0.03% 2315529.99  164.84  0.03% 

5-4-11-20 2.55E+08 3554502.42  1320.00  3557456.40  77.16  0.08% 3555784.10  158.14  0.04% 

5-4-11-30 2.55E+08 3538885.34  1690.00  3539767.37  111.80  0.02% 3539525.70  193.65  0.02% 

5-5-13-20 8.15E+09 4489114.01  8650.00  4489114.01  117.12  0.00% 4489114.01  191.11  0.00% 

6-3-9-20 1.91E+08 2964406.98  2325.00  2965496.31  103.41  0.04% 2965496.31  227.93  0.04% 

6-4-11-20 1.22E+10 4318805.51  3840.00  4322572.98  155.35  0.09% 4320161.87  243.46  0.03% 

6-4-11-30 1.22E+10 4302602.98  5255.00  4303958.95  203.73  0.03% 4303958.95  317.22  0.03% 

6-5-13-20 7.83E+11 5429645.75  12445.00  5429645.75  166.81  0.00% 5429645.75  293.71  0.00% 

 

 

Figure 5.7 Rapid increase of computation time of Gurobi algorithm for different cases 

The number of scenarios has a significant impact on the result of the stochastic platform 

configuration model. To determine the appropriate number of scenarios for case study and sensitivity 

analysis, we perform the experiments for different numbers of scenarios. The experiments will use a 

case with 5 products, 4 modules and 11 module options because we need the result obtained by the 
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Gurobi solver as a benchmark. 7 different scenarios (i.e., 10, 15, 20, 30, 40, 50, and 80) are used in 

the comparative experiments. As shown in Table 5.6 and Figure 5.8, the Gurobi algorithm solves the 

case with 20 scenarios in around 1400 seconds while it requires more than 6900 seconds to solve the 

case with 80 scenarios. However, the total cost obtained by solving the case with 80 scenarios 

improves by only 0.46% compared with the case with 20 scenarios. In the case of 10 scenarios, the 

total cost has a 0.92% gap compared with the case with 80 scenarios. Therefore, the following 

numerical experiments are based on a dataset of 20 scenarios. 

Table 5.6 Comparative result for different number of scenarios 

Case id 

(I,J,K) 

number 

of 

scenarios 

Gurobi Proposed algorithm (population size = 1000) 

Obj. 

CPU 

times 

(s) 

Gap %  

(compare 

with 80 

scenarios) Obj. 

CPU 

times 

(s) 

Gap % 

(compare 

with 

Gurobi) 

Gap %  

(compare 

with 80 

scenarios) 

5-4-11 10 3562155.30  730 0.92% 3562197.02  498.11  0.00% 0.89% 

5-4-11 15 3553168.02  965 0.66% 3553889.66  646.23  0.02% 0.65% 

5-4-11 20 3545975.00  1470 0.46% 3546255.56  794.47  0.01% 0.44% 

5-4-11 30 3538885.34  1690 0.26% 3539525.70  854.49  0.02% 0.25% 

5-4-11 40 3537433.90  2495 0.22% 3537743.99  1125.76  0.01% 0.20% 

5-4-11 50 3532291.38  3825 0.07% 3532804.41  1526.05  0.01% 0.06% 

5-4-11 80 3529812.59  6970 0.00% 3530796.22  1836.00  0.03% 0.00% 

 

 
Figure 5.8 Rapid increase of computation time of Gurobi algorithm for different scenarios 
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5.5.3 Experiments on the case study 

The optimal platform configuration decision for different demand case is presented in Table 5.7. 

As shown in Table 5.7, the optimal platform configuration is to develop 3 platforms for demand case 

1 while developing 4 platforms for case 2 and 5 platforms for case 3. Specifically, in the demand case 

1, product 𝐹1 is developed from platform 𝑃2 with the module option No.1,5,8,10 (i.e., 𝑚11, 𝑚21, 

𝑚31, 𝑚41), products 𝐹2 and 𝐹5 are developed from platform 𝑃5 with module option No.2,5,8,11 

(i.e., 𝑚12 , 𝑚21 , 𝑚31 , 𝑚42 ), products 𝐹3  and 𝐹5  are developed from platform 𝑃4  with 

No.2,6,9,10 (i.e., 𝑚12, 𝑚22, 𝑚32, 𝑚41). 

Another important decision is the platform design decision, i.e., what type of platforms will be 

developed. As shown in Table 5.7, product 𝐹1, 𝐹2, 𝐹3 are derived from their respective matching-

designed platform. The platforms have the same module option compared with the product 

requirements. Product 𝐹4  is developed from the under-designed platform 𝑃5  and product 𝐹5  is 

developed from the under-designed platform 𝑃4. Compared to the product requirements, platform 𝑃5 

has a lower specification module option No.2 (𝑚12) and No.5 (𝑚21) than the module option No.3 

(𝑚13) and No.6 (𝑚22) needed by product 𝐹4, which enables platform 𝑃5 to be under-designed for 

product 𝐹4. Some additional customizations will be incurred to upgrade the under-designed module 

option No.2 and No.5 to option No.3 and No.6, which will bring the additional customization cost. 

Similarly, platform 𝑃4 is under-designed for module 𝑚1, 𝑚2, 𝑚4 when deriving product 𝐹5. The 

platform 𝑃4 has a module option No.2 (𝑚12), No.6 (𝑚22), and No.10 (𝑚41), however, the product 

𝐹5 requires a higher specification module option No.4 (𝑚14), No.7 (𝑚23), and No.11 (𝑚42). 

Moreover, as the demand quantity increases (i.e., a larger mean value), the number of platforms 

increases. As shown in Table 5.7, the optimal platform strategy configures 3 platforms in demand 

case 1 with mean value of 10000. However, 4 platforms will be developed in demand case 2 with 

mean value of 15000 and 5 platforms are developed in demand case 3 with mean value of 20000.  
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Table 5.7 Results of platform configuration for different demand cases 
Demand 

case Case 1 (Mean value=10000) Case 2 (Mean value = 15000) Case 3 (Mean value = 20000) 

𝐶𝑡 2439739.07 3547328.52 4622176.52 

𝐶𝑑 165000 250000 305000 

𝐶𝑚
𝑚𝑝 1743138.48 2846247 3998173.59 

𝐶𝑝
𝑚𝑝

 95467.73 140845.95 194904.73 

𝐶𝑚
𝑐𝑢 84575.24 143844.72 115494.69 

𝐶𝑝
𝑐𝑢 7046.99 9600.76 8524.48 

𝐶𝑐 344399.85 156699.32 0 

𝐶𝑠 110.78 90.77 79.03 

Product 

requirement 

Assignment 

and design 

decision 

Platform 

configuration 

quantity 

of pre-

assembly 

platform 

Assignment 

and design 

decision 

Platform 

configuration 

quantity 

of pre-

assembly 

platform 

Assignment 

and design 

decision 

Platform 

configuration 

quantity 

of pre-

assembly 

platform 

F1[1,5,8,10] e(1,2)-match   e(1,2)-match P1[2,6,9,10] 14514.48 e(1,1)-match P1[1,5,8,10] 19604.99 

F2[2,5,8,11] e(2,5)-match P2[1,5,8,10] 9105.19 e(2,2)-under P2[1,5,8,10] 28766.64 e(2,2)-match P2[2,5,8,11] 19218.04 

F3[2,6,9,10] e(3,4)-match   e(3,1)-match P3[4,7,9,11] 14257.11 e(3,5)-match P3[2,6,9,10] 19650.84 

F4[3,6,8,11] e(4,5)-under P4[2,6,9,10] 19455.65 e(4,5)-match    e(4,4)-match P4[3,6,8,11] 19407.68 

F5[4,7,9,11] e(5,4)-under P5[2,5,8,11] 19173.02 e(5,3)-match P4[3,6,8,11] 14384.11 e(5,3)-match P5[4,7,9,11] 19570.81 

 

5.5.4 Evaluation on the effectiveness of platform configuration stochastic 

model 

To compare the effectiveness of the formulated stochastic model with the deterministic platform 

configuration model, the value of stochastic solution (VSS) and the expected value of perfect 

information (EVPI) are calculated. For calculating the VSS and EVPI, three methods are required, 

i.e., proposed stochastic model, deterministic model, and wait-and-see model. The deterministic 

model is formulated by using the average value of demand generated by a stochastic model. The VSS 

is the difference between the objective function value of the stochastic model and the expected value 

solution (EEV), whereas the EVPI is calculated as the difference between the wait-and-see solution 

(WSS) and the objective function value of stochastic programming (SP). Other parameter settings are 

the same as demand case 2 with a mean value of 15000. 

To calculate the VSS, we first calculate the EEV. The EEV will be calculated through two steps. 
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In the first step, we use the average value of demand scenarios generated by the stochastic model to 

obtain the first stage variables. The obtained first stage solutions are then used to calculate the second 

stage variables and obtain the objective function value. The corresponding objective value is the EEV. 

The value of EEV is not better than the objective value of stochastic model because the solution 

obtained by the deterministic model using average data is not the optimal solution for the original 

stochastic model. The gap between the EEV and SP is the VSS, equal to 34259.6, which implies the 

cost of ignoring uncertainty when making decisions. 

To calculate the EVPI, the value of WSS is calculated first. The WSS model is to solve the 

stochastic model using single demand scenario for all the demand scenarios generated previously. 

After solving 20 scenarios, the average value of their objective values is denoted by WSS. The gap 

between the SP and WSS is the EVPI, which is equal to 31981.13 in this experiment. The EVPI 

indicates how much the decision marker is willing to pay in order to know the exact information 

about uncertainty.  

Table 5.8 Comparative result of stochastic and deterministic solutions under demand uncertainty 

Models Total cost 

Stochastic programming (SP) 3547328.53 

Expected value solution (EEV) 3581588.13 

Wait and see solutions (WSS) 3579309.66 

Scenario  Probability Total cost Scenario  Probability Total cost 

1 0.05 3590440.68 11 0.02 3606752.74 

2 0.01 3557659.09 12 0.03 3586547.56 

3 0.08 3632868.39 13 0.05 3552657.33 

4 0.08 3566738.09 14 0.04 3577035.71 

5 0.05 3557765.44 15 0.06 3624308.03 

6 0.03 3570648.94 16 0.11 3534909.11 

7 0.05 3590303.79 17 0.1 3579299.91 

8 0.06 3637916.21 18 0.04 3560934.11 

9 0.02 3570119.36 19 0.05 3530489.26 

10 0.01 3581850.56 20 0.06 3576460.84 
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5.6 Sensitivity analysis 

5.6.1 Cost sensitivity analysis 

    The impact of cost parameters including coefficient of variable development cost 𝛼 and the 

unit customization cost 𝑓  is analyzed in this section. Meanwhile, the demand fluctuation is also 

analyzed by setting different variances of demand distribution. Two different variances of demand 

distribution are provided. Figure 5.9 illustrates how the optimal platform configuration varies with 

different cost parameter 𝛼 and 𝑓 with a demand distribution U (a, b) while Figure 5.10 shows the 

results with a lager variance U (0.25a, b+0.75a). 12 cost scenarios were tested by combining 4 

parameters 𝛼 from 1000 to 4000 and 3 parameters 𝑓 from 1.5 to 2.5, indicated by the symbols 

𝑐𝑠𝛼𝑓. For example, the cost scenario 𝑐𝑠21 represents a cost scenario with 𝛼 = 2000 and 𝑓 = 1. 

Other parameter settings are the same as demand case 2. The current situation 𝑐𝑠11 in Figure 5.9 is 

the optimal platform configuration discussed in section 5.5.3, in which 5 products are derived from 4 

platforms with the design decisions represented by 4M and 1U. 

The increased variable development cost 𝛼  enables the model to configure less product 

platforms. For example, as shown in Figure 5.9, the number of platforms is 4 in scenario 𝑐𝑠11 while 

it is 2 in scenario 𝑐𝑠41  as the variable development parameter 𝛼  increases from 1000 to 4000. 

Likewise, as 𝛼  increases, the number of platforms decreases from 5 in scenario 𝑐𝑠12  to 2 in 

scenario 𝑐𝑠42 and from 5 in scenario 𝑐𝑠13 to 2 in scenario 𝑐𝑠43. In the case of the larger demand 

fluctuation, the same trend can be found. For example, as shown in Figure 5.10, the number of 

platforms is 3 in scenario 𝑐𝑠11, however, it is 2 in scenario 𝑐𝑠21 and 𝑐𝑠31 while it is 1 in scenario 

𝑐𝑠41.  

Moreover, the optimal number of platforms is likely to increase as the customization cost 

increases. For example, in the case of lower demand fluctuation shown in Figure 5.9, the number of 
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platforms increases from 4 in scenario 𝑐𝑠11 to 5 in scenario 𝑐𝑠13 as the unit customization cost 𝑓 

increase from 1.5 to 2.5. Similarly, the number of platforms increases from 2 in scenario 𝑐𝑠21 to 5 

in scenario 𝑐𝑠23 and from 2 in scenario 𝑐𝑠31 to 4 in scenario 𝑐𝑠33. In the case of larger demand 

fluctuation, the number of platforms also increases as the customization cost increases. As shown in 

Figure 5.10, 3 platforms are developed in the scenario 𝑐𝑠11  while 5 platforms are developed in 

scenario 𝑐𝑠12 and 𝑐𝑠13. 

In addition, the number of products derived from their matching designed platform will decrease 

as the development cost increase. For example, as shown in Figure 5.9, 5 products are derived from 

4 matching-designed platforms in scenario 𝑐𝑠11. The number of products derived from matching-

designed platforms is 2 in scenario 𝑐𝑠21, 𝑐𝑠31, and 𝑐𝑠41. The same trend can be found in a larger 

demand fluctuation. As shown in Figure 5.10, the number of products derived from matching platform 

decrease from 3 in scenario 𝑐𝑠11  to 2 in scenario 𝑐𝑠21  and 𝑐𝑠31  while no matching-designed 

platform is developed in scenario 𝑐𝑠41. On the other hand, deriving products from the over-designed 

platforms become more frequent in the presence of high development cost and customization cost. 

For example, as shown in Figure 5.9, no product is derived from the over-designed platform in the 

case of low development cost (e.g., scenario 𝑐𝑠11, 𝑐𝑠12 and 𝑐𝑠13), while 1 product is derived from 

the over-designed platforms in scenario 𝑐𝑠42  and 3 products are derived from the over-designed 

platforms in scenario 𝑐𝑠43. 

The under-designed platforms may be more prevalent under the larger demand fluctuation. For 

example, in the scenario 𝑐𝑠11, 5 products are developed from 4M,1U platforms in Figure 5.9 while 

5 products are developed from 3M,2U platforms in Figure 5.10. In scenario 𝑐𝑠41, the number of 

under-designed platform is 3 in Figure 5.9 while it is 4 in Figure 5.10. Less platforms and more under-

designed platforms can be subsequently customized to cope with the greater fluctuation in demand. 
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Figure 5.9 Optimal platform design decision with varying development and customization cost 

under demand distribution U (a, b) 

 
Figure 5.10 Optimal platform design decision with varying development and customization cost 

under demand distribution U (0.25a, b+0.75a) 

5.6.2 Demand sensitivity analysis 

Three demand cases with different mean values and variances are provided to illustrate the impact 

of demand on the optimal platform configuration. As shown in Figure 5.11 – 5.13, we found that the 
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number of platforms increases as the demand quantity represented by the mean value increases. For 

example, 3 platforms are configured to derive 5 products in Figure 5.11, while 4 platforms are 

configured in Figure 5.12 and 5 platforms are offered in Figure 5.13. 

Compared with the results under different demand variances, we found that the number of 

platforms may decrease as demand uncertainty increases. As shown in Figure 5.11, 3 platforms are 

developed in the case of a demand distribution U (a, b) while 2 platforms are developed when the 

demand distribution follows U (0.25a, b+0.75a). The same trends can be found in Figure 5.12 and 

Figure 5.13. 

Furthermore, the under-designed platforms may be more prevalent when the demand uncertainty 

is higher. As shown in Figure 5.11, 5 products are developed from 3M,2U platforms under a demand 

distribution U (a, b) while 5 products are developed from 1O,1M,3U platforms under a demand 

distribution U (0.25a, b+0.75a). The same trends can be found in Figure 5.12 and 5.13. As shown in 

Figure 5.12, the number of under-designed platform increase from 1 to 2 as the demand uncertainty 

increases. Less platforms and more under-designed platforms are used to hedge the risk of demand 

uncertainty. 

 
 Figure 5.11 The impact of demand fluctuation on platform configuration decision with demand 

mean value 10000 
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Figure 5.12 The impact of demand fluctuation on platform configuration decision with demand 

mean value 15000 

 
Figure 5.13 The impact of demand fluctuation on platform configuration decision with demand 

mean value 20000 
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5.7 Conclusions 

In this section, we studied the platform configuration problem considering demand uncertainty. 

The proposed model was formulated as a two-stage stochastic programming model. The demand 

uncertainty was modelled using scenario-based stochastic programming where every possible random 

situation was represented by a scenario with an associated probability. Two stages of the PPC problem 

with uncertain demand were identified, i.e., the platform configuration stage and customization stage. 

A cost model including the development cost of platform, production and material cost for two 

different stages, customization cost, penalty cost of excessive platforms was developed. A linear 

programming embedded genetic algorithm was developed to solve the proposed model. 

Numerical experiments show that the optimal number of platforms increases as the demand 

quantity increases while the optimal number of platforms decreases as the demand uncertainty 

increases. Under-designed platforms may be more prevalent when the demand uncertainty is higher.  

    Moreover, a cost sensitivity analysis is conducted to illustrate the impact of development cost 

and customization cost on the optimal platform configuration. The number of platforms will decrease 

as the development cost increases while the number of platforms is likely increases as the 

customization cost increases. Meanwhile, the number of products derived from their matching 

designed platform will decrease as the development cost increase. However, deriving products from 

over-designed platforms become more frequent in the presence of high development cost and 

customization cost. 
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Chapter 6  Conclusions and future work 

6.1 Conclusions 

Platform-based product development (PPD) is a cost-efficient approach to achieve mass 

customization. In this study, the product platform configuration (PPC) problem is examined from a 

supply chain management perspective. A modular platform configuration model is targeted and 

various optimization methods are applied to obtain the optimal platform configuration decision. The 

main conclusions are summarized as follows. 

    In chapter 3, a platform configuration model considering module selection and integration was 

examined. The results show that PPD approach can reduce supply chain costs by applying module 

integration in the platform configuration. However, over-pursuing module integration is not always 

beneficial for a company, which will bring a higher cost sometimes. Manufacturers need to balance 

module integration and module selection when designing product platforms. Moreover, sensitivity 

analysis shows that several parameters noticeably affect the platform configuration decision. The 

larger demand and the longer product lifetimes favor more product platforms and encourage module 

selection instead of module integration. The higher development cost will reduce the number of 

product platforms and encourage module integration while restricting the module selection.   

In chapter 4, a platform configuration model considering platform design strategy and supplier 

selection was proposed. The results show that the optimal number of product platforms will decrease 

as the development cost increases, while the number of platforms increases as the customization cost 

increases. Moreover, as the development cost increases, few products are derived from their 

matching-designed platforms, while more products are derived from the over-designed platforms. 
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The over-designed platform is more prevalent in the presence of high development cost and high 

customization cost. In contrast, the matching-designed platform is more suitable for the case of low 

development cost and high customization cost. In addition, the larger total demand and longer product 

lifetime drive the model to develop more platforms and tend to derive products from their matching-

designed platforms. 

In chapter 5, a stochastic programming model was proposed to handle the demand uncertainty 

while considering platform customization. The results show that the number of platforms increases 

as the demand quantity increases while the number of platforms decreases as the demand uncertainty 

increases. Matching-designed platforms are less used in the case of greater demand fluctuation. In 

contrast, under-designed platforms are more frequently used to hedge the risk of demand uncertainty. 

In addition, the impact of development cost and customization cost on platform configuration 

decision is similar under different demand uncertainty. The number of platforms decreases as the 

development cost increases while the number of platforms increases as the customization cost 

increases. Less products will be derived from their matching-designed platforms as the development 

cost increases. However, deriving products from over-designed platforms becomes more frequent in 

the presence of high development cost and customization cost. 

6.2 Limitations and future work 

The limitations and future works are presented as follows. 

    Firstly, the product requirements corresponding to the customer preferences are assumed to be 

given. However, the customer needs for the product requirements, features, and functional levels are 

changing, and we do not know once we receive orders. A flexible platform configuration model 

considering the changing customer requirements is required. 

   Secondly, our proposed model focuses more on the internal activities within a manufacturer, such 

as procurement, manufacturing, production, and inventory control. The suppliers and factories are 
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located all over the world in a global supply chain environment. Investigating the platform 

configuration problem from a global supply chain perspective is another interesting problem. 

Thirdly, this study does not address the interactive mechanism of multiple departments. The 

coordination mechanism of multiple departments is regarded to be the key point to supply chain 

management. It will be meaningful to consider the impact of coordination mechanisms with external 

suppliers or internal departments on the platform configuration problem.  

Finally, our research considers only cost, all those other parameters that affect decision-making 

on supplier selection does not be considered. Our model includes two types of costs, i.e., the 

engineering cost and the SCM-related cost. However, the detail of the cost in practice may be different 

from the proposed model. Detail costs and factors should be treated carefully to satisfy the purpose 

of the decision-making on platform configuration. 
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