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Abstract

Platform-based product development (PPD) is a cost-efficient approach to achieve mass
customization. Through PPD, manufacturers can develop various products to meet diverse customer
preferences and requirements while maintaining production efficiency without compromising cost,
quality, and delivery. One important problem in PPD is product platform configuration (PPC), which
aims to identify and configure modules, components, or design variables on the product platform that
can be shared across a product family. Two pertinent problems are: (1) how many and which type of
product platform should be developed for a product family; (2) which product platform will be
assigned to develop the product. The PPC decisions are endogenously linked to supply chain-related
activities and will affect all the stages and sectors throughout the supply chain. Studying PPC problem
from a supply chain management perspective is significant for manufacturers implementing the PPD
approach. In this study, a modular platform configuration model is targeted, and various optimization
methods are applied to determine the optimal platform configuration decision. More specifically, the
following aspects will be targeted in this study.

In chapter 3, we study a modular platform configuration model. Modular design is recognized
as the most important underlying architecture to support the product family design and product
platform design. Two types of modular design approaches can be found, i.e., module selection and
module integration. The platform configuration based on more module selections provides a broader
solution space of possible platform configurations to meet the customer requirements exactly.
However, it will increase the complexity of production process due to the proliferation of module
types and part numbers. Module integration in the platform configuration facilitates the platform

commonality to gain economic benefits. Traditional platform research focuses more on platform



configuration based on module selection without considering the module integration simultaneously.
A new model is developed to determine the optimal platform configuration for a product family while
considering both module selection and integration. A hybrid-search method (HSM) combining
simulated annealing (SA) and variable neighbourhood search (VNS) is developed to solve the
proposed model.

In chapter 4, we examine the optimal platform configuration decision considering platform
design strategy and supplier selection. Different types of platform design strategies can be found to
satisfy product requirements, i.e., matching-designed, over-designed, under-designed, and hybrid-
designed platforms. The matching-designed platform has a higher platform development cost and a
lower customization cost while the over-designed or under-designed platform contributes different
performances in these two types of costs. Traditional research balances the cost trade-off within the
design domain, and few studies include the relative procurement cost from suppliers. Involving the
supplier selection problem at the earliest design stage has proven beneficial to companies. However,
little attention has been paid to integrating supplier selection into the PPC problem. In this chapter,
we propose a non-linear mixed-integer programming model to determine the optimal platform
configuration decision while considering platform design strategy and supplier selection. A cost
model including development cost, sourcing cost and customization cost is developed to illustrate
the cost trade-off between platform development and customization. A solution method applying the
linearization method with Gurobi solver is proposed to solve this model.

In chapter 5, we study the platform configuration problem considering demand uncertainty.
Demand uncertainty is a huge challenge for supply chain management and product platform
configuration. Generally, the development of product platform is ahead of new product introduction
(NPI), which makes it difficult to forecast demand. Most existing research on platform configuration
assumes that the demand is deterministic so that the problem can be easily dealt with. However, when

considering the uncertain demand, the platform configuration decision may be changed, and the
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optimization problem will become more complex. How to determine the optimal PPC decision under
demand uncertainty is highly important for manufacturers to develop product platform. This research
gap will be filled in chapter 5. The platform configuration problem under demand uncertainty is
formulated as a two-stage stochastic programming model, including the platform configuration stage
and platform customization stage. A cost model including the development cost of platform,
production cost and material cost for two stages, customization cost, and penalty cost of excessive
platforms is developed. A linear programming embedded genetic algorithm is developed to solve the
proposed model. The proposed algorithm searches the binary variables for platform configuration by
using GA and determines the integer variables by solving a linear programming subproblem using

Gurobi solver. Numerical experiments are conducted to illustrate the proposed model and algorithm.

Keywords: platform-based product development, product platform configuration, supply chain cost

model, mass customization, modular design, platform commonality, demand uncertainty, stochastic

programming
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Chapter 1 Introduction

1.1 Background and motivation

The diversity of customer preferences and requirements enables manufacturers to offer a larger
product variety. Product variety can be defined as the different number of products for a particular
class (EIMaraghy et al., 2013). Accordingly, manufacturers today are no longer focused on a single
product or service but offer a wide range of products with different functions, features, requirements,
and specifications. The increasing product variety can offer the potential to expand the market and
increase sales volume and revenue (EIMaraghy et al., 2013). However, the proliferation of product
variety is not always beneficial for a company. The complexity from product design to production,
inventory, selling, and services increases as more products and more parts numbers, which enables
the relative supply chain to become inefficient and incur substantial cost within the company
(Simpson, 2004). Therefore, one imperative challenge today is to fulfill increasingly diverse
customer needs while achieving internal efficiencies in designing, manufacturing, and delivering
those products.

To manage this challenge in product variety management, mass customization has gained
increasing attention in the past decades. Mass customization emerges in the early 1990s with the goal
of satisfying increased product variety with near-mass production efficiency (EIMaraghy et al., 2013;
Pirmoradi et al., 2014). As one of the effective tools to implement mass customization, platform-
based product development (hereafter abbreviated as PPD) is proposed to develop different products
for a product family based on common platform (AlGeddawy and ElMaraghy, 2013; Wang et al.,
2022). A product family refers to a group of similar products that are derived from a common platform

and possess specific features and functions to meet customer requirements (Meyer and Lehnerd, 1997;



Jiao et al., 2007). A product platform is a set of sub-systems and interfaces that form a common
structure from which a stream of derivative products can be efficiently produced and developed
(Meyer and Lehnerd, 1997; Jiao et al., 2007).

Many manufacturers, such as Toyota, Volkswagen, Philips, Airbus, Ford, IBM, and LG, have
adopted the PPD approach to produce their various products (Wang et al., 2022). Through PPD,
manufacturers can bless multiple benefits including reduced development time and improved ability
to upgrade products (Simpson, 2004), increased efficiency and reduced cost in manufacturing (Liu
et al., 2010; Ben-Arieh et al., 2009), improved product quality, and reduced waste (Pirmoradi et al.,
2014). For example, Toyota leverages Toyota New Global Architecture (TNGA) platform to produce
various models, such as the medium-sized (e.g., Corolla), the large (e.g., Crown and Lexus LS), and
the compact vehicles (Corporation, 2021). The Volkswagen Group uses the Modular Transverse
Matrix (MQB) platform to produce various vehicle models (ElIMaraghy et al., 2013).

The key point in PPD is product platform configuration (hereafter abbreviated as PPC). Product
platform configuration aims to identify and configure modules, parts, components, or design
variables on the product platform that can be shared across multiple products within a product family.
Two types of product platform configuration have been widely discussed in the existing research,
namely module-based platform configuration and scale-based platform configuration (Simpson,
2004; Jiao et al., 2007). A module-based platform configuration consists of functional modules that
can be added, substituted, or removed to derive unique products while a scale-based platform uses
the scaling variables to stretch or shrink design parameters so as to satisfy product requirements
(Simpson, 2004). Regardless of whether the platform is modular and scalable, the main problem in
the PPC relies on the selection of modules and design variables and the realization of platform
commonality.

Existing research on PPC ranges from an engineering design perspective to a product

management perspective. The PPC problem in the engineering design domain aims to identify and



evaluate the platform commonality by constituting the shared modules and design variables. For
example, various commonality matrixes are developed to assess the similarity of modules in the
product architecture. Classification and group technology are introduced in the design and
manufacturing process. Research on PPC from a product management perspective treats the PPC
problem as an optimization problem. Through searching the possible combinations of modules or
design variables, the optimal platform configuration can be obtained under different evaluation
criteria such as quality, cost, and utility.

Meanwhile, successful supply chain management is critical to forming the competitive
advantage of manufacturers. The PPC decision will affect all the stages and sectors throughout the
supply chain, e.g., new product development, procurement, production, manufacturing, inventory
management, and distribution. It is generally known that approximately 80% of manufacturing costs
are determined during the design phase (Mikkola, 2007). Studying PPC problems focused on supply
chain management is highly important for implementing the PPD approach.

Two pertinent problems are targeted in this study: (1) how many and which type of product
platform should be developed for a product family; (2) which product platform should be assigned
to develop the products within a product family. The first problem is to determine the platform
configuration by selecting modules, components, and elements to be shared. The second problem is
related to the platform design strategy and customization, i.e., a platform should be configured as
under-designed, over-designed or matching-designed regarding its dedicated product. We solve these
two problems by proposing mathematical optimization models while considering supply chain-

related costs.

1.2 Research scope

Research on PPD and PPC covers a wide range of areas, including engineering design, business

model-oriented, marketing-driven, customer satisfaction, and supply chain domains. We identify the



research scope of this study from four perspectives, i.e., platform configuration type, targeted domain,
associated design idea, and targeted product family type.

Firstly, two types of product platform configurations have been widely discussed in the existing
research, namely module-based platform configuration and scale-based platform configuration
(Simpson, 2004; Jiao et al., 2007). A module-based platform configuration consists of functional
modules that can be added, substituted, or removed to derive unique products. A scale-based platform
uses the scalable variables to stretch or shrink design parameters so as to satisfy different product
requirements. The module-based platform configuration is to be examined in this study because of
the targeted mass customization scenario. As one of the main enablers of mass customization,
modular design has been widely used in academia and industry. With modularity, a complex product
can be decomposed into independent modules or parts, which makes it possible to fulfill various
functions and product variety through different combinations of modules and module options.
Moreover, the optimization problem of platform configuration can be formulated as a 0-1
combinatorial optimization model through modelling the module selection.

Secondly, product platform configuration affects the entire spectrum of product realization from
customer analysis, function identification, production, manufacturing, logistics and selling. Besides
the product design considerations, our study focuses more on the area of supply chain management
(SCM) and product lifecycle management (PLM). The purpose of this study is to configure the
product platform based on the requirements and constraints of different processes in the supply chain
and product lifecycle. For example, the cost related to the production and inventory will be included
in our study, e.g., procurement cost, inventory cost, and ordering cost.

Thirdly, this study also supports the design idea related to design for variety (DFV) and variety
reduction program (VRP). The DFV and VRP aim to reduce the internal variety and complexity so
as to reduce the total supply chain cost. In this study, we mainly analyze how the economic benefits

of platform and module commonality can be realized through the risk-pooling in the process of



development, procurement, manufacturing, and inventory.

Finally, a broad range of modular products and platform products can be targeted as an
illustration in this study, e.g., consumer electronic products, computers, and printers, vehicles, as
defined by Jacobs and Chase (2018). As a typical modular product, the motherboard design of
personal computer product family will be introduced to illustrate the proposed model and solution
method. The motherboard can be regarded as the platform conception of PC and the components of
PC can be understood as modules, e.g., processor, RAM, wireless network card, and speaker. The
proposed model and method are going to support the best platform configuration decision for case

studies.

1.3 Research objective and plan

The objective of this study is to determine the optimal platform configuration decision focused
on supply chain management. The specific objective and research plan are presented as follows.

(1) To evaluate the overall performance of platform approach, a supply chain cost model is
developed. Several cost items throughout the supply chain are included, i.e., development cost,
procurement cost, ordering cost, inventory cost, shortage cost and salvage cost. Through quantifying
the total supply chain cost model, the impact of PPC on the major supply chain activities, e.g.,
sourcing, production, and manufacturing will be examined. The specific supply chain cost model will
be described in chapter 3.

(2) Modular design plays an important role in platform configuration and product family design.
The platform configuration based on more module selections can provide a broader solution space of
platform selection to meet the customer requirements for a niche market exactly. However, it also
increases system complexity and brings negative effects on the production process due to the
proliferation of module types and part numbers. Module integration in the platform configuration

facilitates the platform commonality to gain economic benefits. How to balance module selection



and integration in the platform configuration will be studied with the goal of minimizing the total
supply chain cost in chapter 3. The notion of integration in this research refers to replacing a lower
specification module with one that has a higher specification. Therefore, the term integration is
different from the term “integral” which appears in product development comparing it with “modular”
based product development in Japanese research papers.

(3) Another key issue for PPC is platform design strategy when leveraging product platforms to
develop multiple products within a product family. Different types of design strategies can be found,
i.e., matching-design, under-design, over-design, and hybrid-design. The different platform design
strategies contribute different impacts on the cost items. For example, a product platform can be
configured as a matching-designed platform that exactly complies with product requirements. It may
require more platforms to be developed for one product family, thus incurring a higher platform
development cost. On the other hand, product platform can be configured as under-designed or over-
designed platform, thereby reducing the number of platforms. However, additional platform
customization will be needed to update the required functions when deriving a high-end product from
an under-designed platform. When deriving a low-end product from an over-designed platform, some
functions on the platform may be wasted. Considering different platform design strategies with
customization will affect PPC decisions. Furthermore, involving the supplier selection problem at
the earliest design stage has proven beneficial to companies. However, little attention has been paid
to the PPC problem. To fill this gap, the supplier selection problem will be integrated into the platform
configuration model to investigate the impact of outsourcing decision. This problem will be studied
in chapter 4.

(4) The demand uncertainty is a great challenge for supply chain management and platform
configuration. It is difficult to forecast demand of each platform type during several months ahead of
the new product introduction (NPI). However, the platform development always takes a long time. A

platform configuration decision under demand uncertainty is imperative for implementing the PPD.



This problem will be studied in chapter 5. A two-stage stochastic programming model is proposed to
handle the platform configuration problem under demand uncertainty.

(5) Research method

The platform configuration optimization is a combinatorial optimization problem. For a small-
scale problem, we may find an optimal solution to satisfy the given customer requirements. However,
it is hard to be solved directly through existing software when the problem is large-scale. An efficient
solution method is crucial for solving PPC problems. Three different solution methods are developed
in this study, including a hybrid methodology combining simulated annealing (SA) and variable
neighborhood search (VNS) in chapter 3, a linearization method in chapter 4 and a linear

programming embedded genetic algorithm (GA) in chapter 5.

1.4 Thesis structure

This thesis is organized as follows.

Chapter 2 systematically reviews the relevant research on the PPD, PPC, product family design
and their relevant supply chain issues and identifies the research gap.

In chapter 3, a supply chain cost model is developed as the evaluation criteria to assess the
overall platform performance. A new model for product platform configuration considering module
selection and module integration is proposed. A hybrid algorithm combining simulated annealing
(SA) and variable neighborhood search (VNS) is developed to solve the proposed model.

In chapter 4, we examine the different platform design strategies while considering platform
customization and supplier selection. Four different platform design strategies are identified, i.e.,
matching-design, under-design, over-design, and hybrid-design. Some linearization methods are
applied to transform the proposed nonlinear mixed-integer programming model into linear ones.

In chapter 5, we propose a two-stage stochastic programming model for platform configuration

to study the optimal PPC decision under demand uncertainty. The impact of different demand



distributions on PPC decision is also investigated. A linear programming embedded genetic algorithm
(GA) is developed to solve the proposed model.

Finally, we summarize the conclusions and present the limitations and future work in chapter 6.



Chapter 2 Literature review

Platform-based product development has been recognized as a cost-efficient way to offer the
required product variety without increasing costs and time-to-market (Simpson et al., 2014; Andersen
etal., 2022; Wang et al., 2022). Various methods and tools have been developed to help manufacturers
implement the PPD approach. Jiao et al. (2007) divided the PPD approach into three stages: (1)
translating identified customer needs (CN) into functional requirements (FR) based on a product
portfolio; (2) mapping those functional requirements (FR) into proper design variables (DV) based
on the shared product platform; and (3) enabling the design variables to correspond to the process
variables and logistic variables.

Although our study focuses more on supply chain management, design-related research, e.g.,
engineering design of module and product architecture, is also inextricably linked. The relevant
design specifications and requirements are the prerequisites for product platform configuration.
Therefore, three literature streams will be reviewed, namely (1) product platform configuration, (2)
product portfolio and product family design, and (3) supply chain issues for PPD and product family

design.

2.1 Basic conceptions

In this section, the relevant conceptions including mass customization, modularity, product

platform, product family design, and supply chain management are introduced.

2.1.1 Mass customization

Mass customization emerges in the early 1990s in response to increasing product variety. Mass

customization means providing customized goods and services that best meet individual customer



needs with near mass production efficiency (Pine, 1993; ElMaraghy et al., 2013; Pirmoradi et al.,
2014; Fogliatto et al., 2012). The purpose of MC is to achieve the economy of scope at a cost
approaching that of economy of scale by delaying product differentiation and capitalizing on
commonality and similarity between variants within a product family (ElIMaraghy et al., 2013). The
key feature of mass customization is to integrate the product varieties derived from individual

customer needs and the efficiency of mass production (Tseng and Jiao, 2001).

2.1.2 Modularity

Modular design and product modularity have been regarded as effective approaches to achieve
mass customization. A module is a physical or conceptual grouping of components that correspond
to particular function (Jiao et al., 2007), while its structural elements are strongly interconnected and
weakly connected to elements in other units or modules (AlGeddawy and ElMaraghy, 2013).
Modular design allows the rapid development of new products by using alternate modules or module
instances. Common modules can be shared across different products within a product family, thus
achieving commonality and reducing costs. The main work on modular design focuses on how to
group the partition of functional carriers or components into one module and standardize the interface
(Bonvoisin et al., 2016; Liu et al., 2010). For example, the quality function deployment (QFD)
method and design structure matrix (DSM) are the common tools for forming and illustrating product

modules (Pirmoradi et al., 2014).

2.1.3 Product platform

Product platform is defined diversely ranging from being general and abstract to being industry
and product specific (Jiao et al., 2007). Two types of product platform are widely discussed in the
existing literature. The first one refers to a product platform as a physical conception, i.e., a collection

of elements shared by multiple products (Ericsson and Erixon, 1999). The other one defines a product
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platform as a common structure that contains a set of subsystems and interfaces. A stream of
derivative products can be efficiently developed based on the product platform (Meyer and Lehnerd,

1997).

2.1.4 Product family design

A product family is a set of similar products that are derived from a common platform with
differentiated features to meet particular customer requirements (Jiao et al., 2007). Each individual
product within a product family can be defined as a product variant or instance. A product family
targets a certain market segment, and each product variant corresponds to a specific customer need
in the market segment. All product variants within a product family will share common platforms,
modules, and components to achieve commonality. Product portfolio is the most important problem
in product family design, which aims to find the best combination of product variants to respond to
diverse customer needs.

From the marketing and sales perspective, the functional structure of product family is
represented by product lines and product portfolios and thus is characterized by various sets of
functional features for different customer groups. The product family from the engineering view is
embodied by different product technologies and associated manufacturability, and thereby is

characterized by various design parameters, components, and assembly structures.

2.1.5 Supply chain management

Supply chain management (SCM) deals with the coordination and integration of various
businesses involved in the realization of products throughout the supply chain (EIMaraghy et al.,
2013). SCM encompasses the integrated planning and execution of processes required to manage the
movement of materials, information, and financial capital. It contains various supply chain activities

such as design, planning, sourcing, production, inventory management, logistics, and customer
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service. The goal of SCM is to deliver the right products to the right place at the right time, with the
right quantity and quality while optimizing the total cost. Various supply chain issues, e.g., sourcing,
procurement, assembly, manufacturing, and distribution, will have an important impact on the

product platform development (Pirmoradi et al., 2014).

2.2 Product platform configuration

Product platform configuration aims to identify and configure the shared modules or design
variables on the product platform to satisfy customer requirements. Various methodologies from an
engineering design perspective and product management perspective are applied to configure product

platforms for a product family.

2.2.1 PPC in engineering design domain

The PPC problem from the engineering design perspective aims to determine the engineering
technical configuration for the module, platform, and product architecture. The main concern is the
realization of commonality. Various design methods, e.g., commonality matrixes, classification, and
group technology, are developed to assess the similarity of modules and components in the
architecture design.

Chen and Wang (2008) proposed a method to design a product platform through clustering
analysis and information theoretic approach. Askhgj and Mortensen (2020) applied a DNA method
(deciding the number of architectures) to determine the total number of product architectures. Their
method consists of four stages, i.e., market segmentation, mapping new generation with an existing
architecture strategy, architecture changes, and the new architecture strategy. Colombo et al. (2020)
developed a value analysis method to rank alternative platform configurations according to customer
preferences. A case study based on the Google ARA Spiral-2 modular smartphone concept was

presented. Otto et al. (2016) introduced a generic platform design approach with 13 steps, including
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market segment definition, market attack plan, customer need gathering, system requirement
definition, functional requirement definition, etc., for developing a modular product platform within
the development process. Zhao et al. (2022) developed a module clustering approach to form the
product platform taking into account the design structure and the relationship between product
architecture and manufacturing process. Okpoti et al. (2019) presented an agent-based collaborative
design model and proposed a decentralized coordination mechanism to facilitate the design variables
for product platforms in a product family. Galizia et al. (2020) proposed a decision support system
(DSS) to design and select product platforms in high-variety manufacturing. A median joining
phylogenetic network was applied to design the platforms and a phylogenetic tree decomposition was

used for platform selection with the analysis of platform variety and customization in the DSS.

2.2.2 PPC in product management domain

Another research stream from the product management perspective treats the platform
configuration problem as a combinatorial optimization problem while focusing on production and
manufacturing. The product platform can be configured through different combinations of modules
and components. Qu et al. (2011) developed a two-stage platform development approach for mass
customization using a genetic algorithm. The common components can be identified according to the
structure commonality in the first stage while a parametric optimization can be conducted in the
second stage. Ben-Arieh et al. (2009) formulated a mixed integer programming model to configure
multiple modular platforms for a given product family while minimizing overall production cost. The
products in a product family can be derived by assembling and disassembling components on the
product platforms. A genetic algorithm was developed to solve their proposed model. Hanafy and
ElMaraghy (2015) further considered the assembly sequence constraints in the multiple platform
configuration model based on Ben-Arieh’s model. They solved their model by using the commercial

solver CPLEX and illustrated a case study of touch screen tablet family. EIMaraghy and Moussa
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(2019) expanded the platform design by utilizing additive and subtractive manufacturing conception
and developed a genetic algorithm-based model to design the optimal or near-optimal platform for a
large set of products and features (Moussa and EIMaraghy, 2020). Moreover, Moussa and EIMaraghy
(2021) proposed a multiple-platform design model that utilizes additive and subtractive
manufacturing to customize products from platforms. A genetic algorithm was developed and applied
to case studies of guiding bushings and gear shafts to demonstrate this model.

Most of the above studies assumed a deterministic product demand, while a few studies
considered uncertainty and allowed more complex cost structures. For example, Van den Broeke et
al. (2015) formulated a supply chain cost model for product-platform assignment decision, including
the development cost, purchasing cost, inventory cost, and transformation cost while considering the
demand uncertainty. A simulated annealing algorithm was proposed to determine the number of
platforms and from which platform the product is derived. Furthermore, Van den Broeke et al. (2017)
formulated two fathoming rules to improve the algorithm efficiency and illustrate the applicability in
the branch-and-bound algorithm, simulated annealing algorithm, and genetic algorithm. Song and Ni
(2019) formulated a fuzzy programming model to design a product platform with a modularity
strategy under fuzzy environment. In their model, the cost savings of designing a modular platform,
the demand quantity of products, the parameters representing economies of scale, and product quality
improvement were characterized as fuzzy variables. An efficient algorithm combining fuzzy

simulation and simulated annealing was proposed to solve the model.

2.3 Product portfolio and product family design

The platform configuration problem aims to find the optimal mix of platforms with modules or
design variables, while the product portfolio problem seeks the right mix of product attributes to offer
to the market (Van den Broeke et al., 2017; Jiao and Zhang, 2005). Mapping customer needs to

functional requirements is essential for generating the product portfolio. The customer-perceived
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utility of products has often been used as an objective to maximize customer satisfaction.

Jiao and Zhang (2005) proposed a shared-surplus model to address the product portfolio
planning problem. Customer preferences, choice probabilities, and platform-based product costing
were considered in this model. A heuristic genetic algorithm was developed for solving the product
portfolio planning problem effectively (Jiao et al., 2007). Sadeghi et al. (2010) introduced a simulated
annealing algorithm to compare with the genetic algorithm proposed by Jiao et al. (2007). They found
that the SA algorithm is more efficient than GA in solving product portfolio problems. Goswami et
al. (2016) formulated an integrated Bayesian-Game theoretic approach for multi-attributed product
portfolio planning. The function-based cost estimating framework and multi-linear regression
methodology were applied to estimate the manufacturing cost and product premiums for different
product portfolios. Fujita and Yoshida (2004) proposed a method combining the genetic algorithm
and nonlinear mixed-integer programming method to simultaneously optimize module selection and
module attribute parameters. Zhang et al. (2008) developed a mixed-integer programming model to
determine the optimal product portfolio that considers the module selection. Du et al. (2014) proposed
a bi-level mixed nonlinear programming model to optimize the module selections and scalable
module parameters for product family design. The upper-level optimization seeks an optimal
configuration of modules and module attributes by maximizing customer-perceived utility, while
lower-level optimization entails parametric optimization by maximizing the design parameters of
each selected module. Zhang et al. (2020) proposed a progressing modelling method for feature-
centered product family development. This model synthesized the product family information to
support features-based knowledge modelling, hybrid innovation and time-dependent holistic product
development.

Moreover, Yang et al. (2018) proposed a stochastic programming model to determine the
optimal component selections and combinations for product architecture while handling uncertainty

in component replenishment lead time. Li et al. (2018) formulated a stochastic mixed-integer
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programming model to deal with product architecture problems with uncertain demand and uncertain
supply. The model further considered four different carbon emission regulations to investigate the

impact of carbon emission on the product architecture.

2.4 Supply chain issues in PPD and product family design

Some recent studies consider the relevant supply chain decisions, e.g., sourcing, manufacturing,
assembly, and distribution decision in the product design decision. For example, Salvador et al. (2002)
explored the impact of manufacturing characteristics on the modularity decisions for product family
design. Huang et al. (2005) proposed a mathematical model to consider the material requirement
planning and supplier selection problem in product design. Zhang et al. (2008) developed a mixed-
integer programming model to simultaneously optimize the modular product design and the supplier
selection decision. Furthermore, Zhang et al. (2010) studied the impact of different supply chain
coordination schemes on product and supply chain configuration decision. Three coordination
schemes were considered, including non-interactive suppliers, non-cooperative suppliers, and
coordinative suppliers. Luo et al. (2011) formulated a linear programming model to integrate modular
product family design and the supplier selection problem while considering customer purchasing
behavior, supplier availability and related costs. Fujita et al. (2013) proposed a mixed integer
programming model to handle a concurrent design problem of module commonality strategies under
a given product architecture. Nepel et al. (2012) studied the product family design strategy and the
supply chain design by employing a multi-objective programming model with the goal of minimizing
costs and maximizing supply chain compatibility. Tan et al. (2022) proposed a concurrent
optimization approach to integrate the manufacturing process and supplier selection into the
personalized product architecture design problem. The objective is to maximize the potential profit
of a product family based on a profit formulation that incorporates customer preference, process

resource, supplier, and manufacturing cost.
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Moreover, some studies apply the game theory model to deal with the joint optimization
problems. Huang et al. (2007) proposed a three-move dynamic game theoretic approach to optimize
the product configuration and supply chain. In the first move, the manufacturer takes its leading role
to make decisions on product configuration and supplier selection. The concerned suppliers then
make the second move to optimize their decisions including price discounts and their ordering
policies. The manufacturer finishes the game by taking the last move to make their ordering decisions.
Yang et al. (2015) formulated a leader-follower Stackelberg game model to jointly configure the
modular product family design and distribution decisions. The upper-level optimization problem was
to optimize the module selections and product variants while the lower-level one is to determine the
distribution decisions. Du et al. (2014) applied a bi-level mixed nonlinear programming model to
determine the module selection and parameter scaling in the product family design. The upper-level
optimization seeks an optimal configuration of modules and module attributes by maximizing the
customer-perceived utility and the lower-level one determines scaling design parameters by
maximizing the module design parameters. Wang et al. (2016) formulated a nonlinear mixed integer
bilevel programming model to deal with the product family architecture and supply chain
configuration. The upper-level optimization problem aims to determine the optimal selection of base
modules and compound modules in product family architecture, while the lower-level optimization
problem deals with the relevant supply chain decisions, including supplier selection, manufacturer
decision, assembly decision, and distribution center decision.

Recently, some studies have considered the relevant supply chain issues in PPC. Hanafy and
ElMaraghy (2017) proposed a modular product platform configuration model to consider assembly
line planning with the goals of minimizing assembly station quantity and cycle time. The model can
efficiently design assembly line and platform configuration simultaneously. Miao et al. (2017) also
formulated a bilevel nonlinear programming model to coordinate the platform configuration and

product line planning. Xiong et al. (2018) proposed a Stackelberg game model to integrate modular
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product platform and supply chain postponement decision. The upper-level optimization problem
identifies the basic module and compound module by maximizing customer-perceived utilities and
postponement utilities of product families, whereas the lower-level optimization problem selects the
most appropriate postponement service providers with minimizing the total supply chain cost.
Moussa and ElMaraghy (2022) formulated a non-linear model to design the optimal platform
configurations while focusing on platform inventory management. The remaining inventory of
platforms held in each production period could be utilized in the subsequent production periods in

this model.

2.5 Optimization method

Various models and approaches have been developed to determine the optimal product platform
configuration and product family design. Table 2.1 summarizes the main methods and approaches
used in the prevailing studies. These relevant studies are categorized according to research domains,
including product portfolio planning (PPP), product family design (PFD), product architecture design
(PAD), product platform configuration (PPC) and product platform assignment (PPA). As shown in
Table 2.1, combinatorial optimization is widely used to determine the optimal product portfolio.
Stackelberg game theory is generally applied to deal with the joint optimization problem of PFD,
PAD, and its related supply chain issues. Furthermore, most existing research assumes that the
demand is deterministic so that the problems can be easily solved. Only a few studies consider
demand uncertainty through stochastic programming or fuzzy optimization approach.

Searching for all possible combinations of modules, components, and design variables to
configure multiple product platforms for a product family is a complicated combinational
optimization problem. Heuristic algorithm has been frequently used to solve the problems. The
genetic algorithm (GA) (e.g., Ben-Arieh et al., 2009; Yang et al., 2015) and simulated annealing

algorithm (SA) (e.g., Sadeghi et al., 2011; Van den Broeke et al., 2015) are two major heuristics
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algorithms. Some other solution methods are also applied sometime, e.g., branch and bound (B&B)
(e.g., Hanafy and ElMaraghy, 2017; Van den Broeke et al., 2017), bilevel programming (B&P) (e.g.,
Du et al., 2014) or other commercial software CPLEX (e.g., Hanafy and EIMaraghy, 2015, 2017).
Finally, a variety of product family including electronic products such as notebook computer
(Graves and Willems, 2005), modular phone (Hanafy and ElMaraghy, 2017), television receiver
circuits (Fujita, 2004), printed circuit board of medical screen (Van den Broeke et al., 2015, 2017),
touchscreen tablet (Hanafy and ElMaraghy, 2015); industrial products such as an electric motor (Du
et al., 2014), cordless drill (Ben-Arieh et al., 2009), power transformer (Yang et al., 2015); complex
system such as aircraft (Fujita, 2004), automotive climate control system (Nepal et al., 2012) are

introduced to demonstrate the platform configuration and product family design.
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Table 2.1 Summary of optimization methods for platform configuration, product portfolio and product family design

Consider Solution algorithm
dRs;e;rgh Reference Methodology Séllfzig unIzer?;?l?y? Case study
decisions? GA SA  Other

Jiao and Zhang (2005) Combinatorial optimization N N X Notebook computer

PPP Jiao et al. (2007) Combinatorial optimization N N X Notebook computer
Sadeghi et al. (2011) Combinatorial optimization N N Notebook computer
Fujita (2004) N N X fLtig\;friii)ﬂerselfeni\?er:lrdcircuits
Fujita et al. (2013) Y N X Numerical case

PFD Du et al. (2014) Stackelberg game N N BP Electric motor
Yang et al. (2015) Stackelberg game Y N X Power transformer
Wang et al. (2016) Stackelberg game Y N X Power transformer
Zhang et al. (2008) Y N X EA Numerical case
Zhang et al. (2010) Game theory Y N 1A Numerical case
Tan et al. (2022) Mixed integer programming Y N X Bicycle

PAD Yang et al. (2018) Stochastic programming Y Y LRA; CPLEX  Computer
Lietal. (2018) Stochastic programming Y Y BD; CPLEX Zglzrzrég;nes and power
Nepal etl. (2012) Drogramming Y Y GP climatecontrol sysem
Quetal. (2011) Y N X Motor product
Ben-Arieh et al. (2009) Non-linear programming N N X Cordless drill
Hanafy and EIMaraghy (2015) Non-linear programming N N CPLEX Touchscreen tablet
Hanafy and EIMaraghy (2017)  Mixed integer programming Y N CPLEX; B&B Modular phone

PPC Moussa and ElMaraghy (2021) N N X Guiding bushing, gear shaft
Miao et al. (2017) Bilevel mixed 0-1 nonlinear Y N X Automotive
ElMaraghy and Moussa (2019) Mixed integer programming N N X Guiding bushing
Moussa and ElMaraghy (2022) Holistic non-linear Y N GUROBI Gear shaft
Xiong et al. (2018) Stackelberg game Y N X Laser printer

[\
S



Van den Broeke et al. (2015) N Y X Printed circuit board
Van den Broeke et al. (2017) N Y X X B&B Printed circuit board

PPA

Note: PPP, product portfolio planning; PFD, product family design; PAD, product architecture design; PPC, product platform configuration; PPA,
product platform assignment.
GA, genetic algorithm; SA, simulated annealing; BP, bilevel programming; EA, enumerative algorithm; IA, iterative algorithm; LRA, lagrangian

relaxation algorithm; BD, benders decomposition; B&B, branch and bound; GP, goal programming
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2.6 Research gap

The research gap is stated in this section.

Firstly, the extant literature on PPD has identified many of the above-mentioned economic
benefits of PPD from statistical analysis, conceptual models, and industry surveys. However,
quantifying the economic benefits of PPD from a supply chain management perspective is important
for strategic decision-making. Some cost models have been developed in the existing research
including the single or several following cost items, e.g., development cost, purchasing cost,
production cost, and inventory cost. A comprehensive cost model throughout the entire supply chain
is still required. Using a more comprehensive cost model as the evaluation criterion can help to better
evaluate the overall performance of PPD. A supply chain cost model including the development,
purchasing, ordering, inventory, shortage, and salvage costs will be developed in chapter 3.

Secondly, modular design is recognized as the most important underlying architecture to support
product family design and product platform design. Two types of module design approaches can be
found, i.e., module selection and module integration. The module selection provides a broader
possible of platform types and product variety while module integration facilitates the platform and
module commonality to gain economic benefits. Excessive module types and quantities can incur
uneconomical consequences and bring negative impacts on supply chain management. While over-
pursuing the module integration can reap the benefits of commonality to some extent, it also
accompanies some negative effects, such as reduced product differentiation and additional cost for
excessive commonality. Traditional platform research either focuses on forming the product platform
through module selections and combinations or clustering modules through the hierarchical
decomposition of product functional requirements and manufacturing processes. To the best of our
knowledge, little research considers the product platform configuration problems associated with the

questions of module selection and integration. This problem will be targeted in chapter 3.
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Thirdly, the platform configuration model is a combinatorial optimization problem. For a given
set of modules or design variables, we may find an optimal combination of modules or design
variables to satisfy customer preferences. However, when considering the platform design strategy,
i.e., platform-product assignment decisions, the platform configuration will be changed. Moreover,
many studies have considered SCM-related issues in product architecture and product family design.
However, little attention has been paid to integrating SCM-related issues and PPC problems.
Integrating the PPC and related supply chain issues is another research content in this study.

Finally, demand uncertainty is a huge challenge for manufacturers to manage the supply chain
and platform configuration. Generally, the development of product platform is ahead of new product
introduction (NPI), which is difficult to forecast the demand. Most of the existing research on
platform configuration assumes that the demand is deterministic so that the problem can be easily
dealt with. However, when considering the uncertain demand, the decision of platform configuration
will be changed, and the optimization problem will become more complex. Formulating a flexible
platform configuration model will be particularly important for platform-based product development.

This research gap will be filled in chapter 5.

23



Chapter 3 Product platform configuration

decision in NPD with module options

3.1 Introduction

Modular platform-based product development is a successful way to offer the required product
variety while reducing the internal complexity. Various manufacturers, including automotive,
consumer electronics, computers, and aircraft, have implemented the modular PPD approach to
produce their products. Platform-based product development and modular design bless multiple
benefits (Andersen et al., 2022), such as reduced development time and improved ability to upgrade
products (Simpson, 2004), increased efficiency and reduced cost in manufacturing (Liu et al., 2010;
Ben-Arieh et al., 2009), improved product quality and reduced waste (Pirmoradi et al., 2014). With
modularity, it is possible to fulfill various functions and product variety through different
combinations of modules.

Two types of modular design in product platform configuration can be found, i.e., module
selection and module integration. The module selection allows product platform to be configured by
choosing modules from a given module set. The module integration allows product platform to be
configured with one common module to support a wider range of product requirements.

Introducing more modules in the platform configuration can provide more choices in the
combinations between platforms and modules so as to satisfy the wider customer needs (Mikkola,

2007; Otto et al., 2016). However, too many modules may also increase complexity, development

*Partial content of this chapter has been published on the International Journal of Production Research.
Wang, T., Wang, J., Jin, G., & Matsukawa, H. (2022). Product platform configuration decision in NPD with
uncertain demands and module options. International Journal of Production Research, 1-20.

24



costs, and manufacturing costs (Ripperda and Krause, 2017) and make demand forecast inaccurate
(Wan et al., 2012). Increasing modules may also cause the proliferation of parts and associated costs
such as parts procurement costs, module assembling costs, stocking costs, and aftercare costs (Fisher
and Ittner, 1999; Salvador et al., 2002; AlGeddawy and ElMaraghy, 2013).

To mitigate these negative effects, the module integration approach is introduced by using one
common module to satisfy the customer demand with the higher and lower specifications. Using
module integration helps to improve the platform and module commonality, which enables the
manufacturers to achieve the risk-pooling benefits in the process of development, procurement,
manufacturing, and inventory (Huang et al., 2005). The fewer modules and platforms produce the
lower product development cost, manufacturing cost, and inventory cost (Fisher and Ittner, 1999;
Zhang et al., 2010; Agrawal et al., 2013). However, using higher specification modules for those
customer needs with lower specifications will incur additional overdesign and procurement costs as
well as offset the product variety (Krishnan and Gupta, 2001; Wan et al., 2012). Therefore, the
important challenge in the product platform configuration problem is how to balance these two types
of platform configuration. This challenge was targeted in this chapter.

We consider a modular platform configuration framework in which a set of module types with
module options is offered to configure the product platform for an external product family. A module
type is a unit to serve an identifiable product function, while multiple module options within a module
type represent the differentiation of functions. The combination of modules and module options leads
to product differentiation. This is similar to the assumption in other studies (Chakravarty and
Balakrishnan, 2001; Zhang et al., 2008; Zhang et al., 2010). The concept of module type with module
options is similar to the notion of selective module with module instances (Xiong et al., 2018) and
that of replaceable component set with components (Gupta and Krishnan, 1999). Important of this
assumption is that we pay a higher procurement cost for the higher specification module option, but

the production and assembly cost is the same for the higher and lower module options. The higher
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specification module option is allowed to satisfy the customer demand with the lower options in order
to implement module integration.

The pertinent questions are:

(1) which product platforms should be developed, and how many quantities should be produced
(the product platform configuration problem),

(2) which module options should be selected, and how many quantities should be procured (the
module configuration problem).

To deal with the trade-off between the benefits of product platform commonality and the
associated costs, we propose an optimization model for product platform configuration while
including the cost items throughout the supply chain, i.e., development cost, procurement cost, setup
cost for ordering, inventory cost, shortage cost, and salvage cost. A hybrid-search method (HSM)
combining simulated annealing (SA) and variable neighbourhood search (VNS) is developed to solve
the proposed model. The accuracy and efficiency of the proposed algorithm are evaluated by
comparing it with an explicit enumeration algorithm. Moreover, a real case study on motherboard
design of personal computer product families was presented to illustrate the proposed model and
solution method. Results of the case study indicate that the proposed model and algorithm can
effectively support the decision-making of product platform configuration for mass customization

products.

3.2 Problem description and assumptions

3.2.1 Nomenclature

Table 3.1 presents the description of symbols used in the model.
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Table 3.1 List of symbols

Symbol Description

[ Index of product platform (or product variant), i = 1,2,---,1
j Index of module, j = 1,2,--,]
k Index of module option, k = 1,2, K;
Nj Design parameters depends on the specification of the module option m;y,
Lty The procurement lead time of module option
DTjk The monthly production quantity of module option m;y,
d; Monthly demand of the product F;
dj Monthly demand of module option m;y,
Ujke The annual demand of module option m;y,
o; The monthly demand standard deviation of the product F;
Tjk The monthly standard deviation of module option m;,
Ujlic The standard deviation of module option over a replenishment lead time
Pii* The correlation coefficient of the product F; and product F;:
djk Order quantity of module option m;;
G(2) Expected shortage per replenishment cycle
dejk Fixed design and procurement cost of module option m;;
PCjk Unit procurement price of module option myj,
hej Unit inventory holding cost of module option m;
SCjk Unit shortage cost of module option m;,
Availability parameter for selecting specification of the module option my; for
tijk platform P;
A Fixed setup cost for ordering one batch
a Coefficient of fixed development cost
B Coefficient of variable procurement cost
z Safety factor
sl Service level
b Fixed delay factor of procurement lead time
life Product lifetime
Y Capital discount rate to calculate the Net Present Value of PPD cost
Yk Decision variable, takes value 1 if module option m;; is used

Decision variable, indicate whether module option m;;, is used in product

Xijk platform P;

3.2.2 Problem description and assumptions

As shown in Figure 3.1, we assume that a product family has multiple products Fj, (i =

1,2,---,1) with different functional requirements to satisfy customer needs. Module m;, (j =
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1,2,-+-,]) is a unit with standard interface that provides an identifiable product function and is
developed or designed by mechanical engineers and electronic engineers using various techniques,
for example, group technology. Two types of modules are involved, i.e., common modules and variant
modules. Each variant module has multiple options myy, (k = 1,2,---,K;) with different cost-
relevant design parameters Nj, to represent different function. For example, memory size of 8M,
16M, and 32M are the options for one specific memory module in cellular phone design. The common
module only has one module option. In other words, a variant module with one option can be seen as
a common module. For the sake of simplicity, we assume that a product F; is derived from product
platform P; and that platforms with the same module and the associated options are merged into one
platform later. We allow platform P; to be configured as any possible platform according to the
selection of modules and the associated options. The number of product platforms P; and P+ (i #
i*) are two different platforms, however, we set P; = P;«(i # i*) later when two platforms have
completely the same modules and the same associated options.

Different product platforms can select different module options to satisfy different product
specifications. However, it may require a greater numbers of module options to be developed with
higher development cost. In opposite, if we develop a single higher specification module option to
meet the high-end and low-end customer demand associated with different product platforms, it will
bring the higher procurement cost but the lower other costs. There may exist one balance point on the
total PPD cost when determining the optimal product platform configuration. Furthermore, we
simplify the description of functional requirements of products (number of product families or
product brands) to directly map to the requirements for modules with module options. We also assume
that all module options are given, and the maximum option number is K;, for module m;. The highest
requirement of the option level for each module m; in a set of product platforms is denoted by H;

which satisfies the inequality function H; < K;.

Assumption 1: We sort modules m; by increasing value of Nj (Njix < Njgy4qy). Value of
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Njj consists of development cost, procurement cost, and so on. This assumption is widely used in
previous studies (e.g., Zhang et al., 2008; Van den Broeke et al., 2017). We further assume that the
module development cost dcj, of module m; with option m;, is proportional to the Ny, i.e.,
dcj = a * Njy, and the procurement cost pcj, of the module m; with option mj, equal to B *
Nj., where @ and B are positive coefficients related to the development cost and procurement cost.

Assumption 2: A product platform P; with higher specification module option can be used for
product F; with lower specification module option. The higher specification module option could be
used to product platform without sacrificing product quality, however product platform cost increases.
In the proposed optimization model, we define an availability parameter t;j. The t;j is binary
variable and satisfies the inequality condition, t;;; = ¢;jx, which indicates that module option m;y
or higher specifications m;; (I > k) can be used to product platform P; for deriving product F;.
For example, if we have two products F; and F, where the product F; requires module options
mqq, Myq, M3, and the product F, requires module options m,3,m,5, msq, then we have ty5; =
1,t5,, = 1 for module m,, consequently ty,, = ti53 = ty;3 =1 and t,;; = 0.

Assumption 3: We can purchase all module options from outside. Economic order quantity
(EOQ) is applied for procurement using average demand. Demand is uncertain and follows normal
distribution. Procurement lead time of module m; with option k, [t (q jk), includes production
time in the suppliers and a fixed time delay b representing transportation time (Glock and Ries,
2013). In this study, we assume that one module option m;;, is purchased from one supplier. Dual

sourcing or supply chain risk management is out of scope of this study.

qjk
ltjk(qjk) = ﬁ +b (31)
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Figure 3.1 Product platform configuration problem with module options
3.3 Model formulation

Two decision variables are used in the proposed model.

(1) x;jx: takes value 1, if module option myy, is used to product platform P;, otherwise 0.

(2) yjk: takes value 1, if module option mj;, used to any product platforms, otherwise takes
value 0.

Since each product platform must select one module option m;; at most for any module m;, it

leads to the following constraint.

K

injk =1 (@(=12-,j=12,-,]) (3.2)

k=1

~.
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The availability constraint can be written as follows, utilizing the availability parameter t;jy.

This constraint ensures one module option is selected at most, allowing a higher specification to
replace a lower specification.

Kj

Z tij " Xijk =1 (@=212,-,;j=1.2,-,]) (3:3)
k=1

The selected number of module options will not exceed the number of available module options.
Therefore, we have

Hi<K (=12-,)) (3.4)

In our model, we assume that demand quantity of products F; and F;« have correlation, and the

correlation coefficient is denoted using the symbol p; ;«(i,i* € I;i # i*). Assuming that the monthly

demand for product follows a normal distribution, i.e., y; ~ N(d;,07) for i =1,2,-,1, the

monthly demand of the module option dj, = Y oix jk * d; 1s normally distributed and the variance

can be given as below function.

I I

2 _ 2 . .. ]

O'jk—Z(xijk o + Z Xijie " Xixjke " 2" Pijis * Of * Of3) (3.5)
i=1 ir=it1

Further, we introduce t number of segments on ordering quantity pq; and set multiple
increasing base procurement costs pcjtk which represents linear quantity discount. This segment

essentially represents a piecewise linear approximation of the nonlinear discount function.

pciic + 11 (Wi —pq1) if 0 < upy < pgy
peu(uy) ={ POkt 72(W —Paz) 1f P4y < < P (3.6)
pef + (W —pqe) if Pqi-1 < wi < pqy
In equation (3.6), 1, represents slope when the ordered quantity is located between pq;_; and pgq;.

Setting the different value of pcfk and r;, we may present concave discount function as well as

convex discount function.
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The objective function of this paper is to minimize the total operation cost C; consisting of six
cost terms.

(1) Fixed development cost of module option, C,;.(x), depending on the module options
selection.

(2) Procurement cost considering quantity discount, Cy.(x).

(3) Setup cost for ordering C,.(x).
(4) Inventory cost C;.(x) consisting of holding inventory cost and safety inventory cost.

(5) Shortage cost Cs.(x) which depends on the anticipated number of replenishment cycles per
year (uj k /qjk) and the Expected Shortage Per Cycle Replenishment (ESPCR). The ESPCR further

depends on the standard deviation of demand over lead time aj’;( and the loss function G(z) = 0]-';{ .

{fu(2) —z-[1—=E,(2)]}, where f,(z) isstandard p.d.fand F,(z) is the standard c.d.f of demands
(Van den Broeke et al., 2015; Silver et al., 2016, pp 262).

(6) Salvage cost C,.(x) which represents the leftover items that will not be used further at the
end of the product lifetime, mainly the waste of safety stock in our model.

Since the PPD problem always has long time horizons (normally more than one year), the capital
discount rate must be included when we add up the total cost from an inventory policy (Hillier and
Lieberman, 2005, pp.837). We introduce the capital discount rate y to calculate the Net Present
Value (NPV) of total cost. The development cost in a PPD problem usually occurs only once and the
other costs are yearly recurring over the expected product lifetime and are discounted using capital
discount rate (y).

We formulate the proposed model as below.

Minimize
Ct(x) = Cdc(x) + Cpc(x) + Coc(x) + Cic(x) + Csc(x) + Cbc(x) (37)
J K
Cac(x) = Z z dcjk " Yjk (3.8)
j=1k=1
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life 1 J Kj
Coel) = ) i [ ) (6(i) (3.9)
t=1 J=1k=1
lif ] Kj
Cac ) Z ) o ST (3.10)
oc\X) = PR ZZ ' .
t=1 a+7) =1 k=1 ji
life 1 J Kj b
Cik " 4jk
Cel) = ) D, ) G he 2 of) (311
t=1 J=1k=1
life J Kj
1 - G(Z) " SCig " Ujg
Coe(x) = Z a7y ZZ( m ) (3.12)
t=1 j=1k=1 Jk
] K
Cpe(x) = Z z PCjk " Z " O (3.13)
j=1k=1
Subject to
djk .
ltpe(qj) = ﬁ +b  (j=12-ik=12,,K) 3.1)
Kj
injk =1 (l = 1121""1;]. = 1121""]) (32)
k=1
Kj
Z tijxije =1 (@@ =12,-,Lj=12,-,]) (3.3)
k=1
Hi<K; (=12--])) (3.4)

I I
2 _ . g2 . .. 2. 52
O = E (Xiji - of + § Xije * Xi*jk " 2 Py " Of * OF)
i=1

i*=i+1
G=12-,;k=12-,K) (3.5)
1
injk >y (i=12-,;k=12-K) (3.14)
i=1
1
zxijk <M-yp (j=12Jik=12K) (3.15)
i=1
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I
W = 12 ( Xijk * di> G=12- k= 1,2,"',1(]') (3.16)
=

l

2 'A'u]'k
q]k = _— (] = 1,2'...’];k = 1'2’...’1(1.) (3_17)
thk

gij = ’ltjk - O (j =12,J;k = 1,2’...’1(],) (3.18)
X €400} (i=12,0j =12, )ik = 1,2,,K;) (3.21)

Constraint (3.2) specifies that only one module option m;;, for any module m; can be selected
by a product platform. Constraint (3.3) is an availability constraint that ensures assumption 2.
Constraint (3.4) ensures that the number of module options used in the product platforms does not
exceed the number of module options available at the design level. Constraints (3.14) and (3.15)

confine the derivative decision variable y;,, where M is a sufficiently large positive number.
Equations (3.1), (3.16), and (3.17) refer to the value of parameters [tj, uj;, and qj,. The monthly

demand variance oﬁc and the standard deviation of module option over the replenishment lead time

Uij are defined in equations (3.5) and (3.18). Equation (3.19) gives the loss function used to calculate

the expected shortage. Constraints (3.20) and (3.21) restrict binary decision variables.

3.4 Algorithm development

The PPD problem can be understood as a large-scale combinatorial optimization problem. Since
the problem is NP-hard, exact algorithms such as explicit enumeration can be very time-consuming
for large-scale problems. To solve it within a reasonable time duration, heuristic algorithms like the

simulated annealing algorithm (SA) are recognised as an efficient way (Sadeghi et al., 2011; Van den
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Broeke et al., 2015, 2017). In this paper, we develop a new HSM based on simulated annealing and
variable neighbourhood search. The core idea of the HSM is to find a local optimum quickly using
the SA algorithm and find a global optimum by using variable neighbourhood, acceptance function,
and global time varying parameters, which enables escaping from the local optimum. The proposed
HSM algorithm includes three steps.

Step 1: Initialization. Set parameter values of the SA algorithm, such as the initial temperature,
the number of iterations and steps, and so on. Set the initial product platform configuration decision
with a binary variable and assign it t0 Xy rens. Define a set of neighbourhood structures N¥(s =
1,2, , Smax) and denote the set of solutions within the neighbourhood N° with N¥(x). The radius
of the neighbourhood 7y is applied to control the neighbourhood size when searching for solutions
around the current point, where 7y = |x — x°| = Xy, j x(|xx — xisjk |). We use a simple difference
of the binary variable of current solution x and next feasible solution x° to calculate the radius. We
may use geometric distance here; however, it takes time for calculation.

Step 2: Local search. We apply the basic simulated annealing algorithm to find a local minimum
solution Xj,.q; from N¥(x). In each local search, we first start with an initial local minimum
solution x;,.41, Which equals the current global minimum solution X ,;rens. S€cond, a new feasible
solution x*® is created from N°(x) by generating random numbers corresponding to the solution
matrix's element positions according to the different radius 7y and inverting the 0-1 values of these
positions. Third, compare the objective value (cost(x*®)) associated with the new feasible solution
x5 to the local minimum value (cost(X;y¢cq1)). Whenever the cost(x®) isless than cost(x;ycq;) OF
the acceptable probability is over a random number between 0 and 1, the new feasible solution x°
replaces the local minimum solution Xj,.,; . Otherwise, the local minimum solution remains
unchanged (X;oca1 = Xiocar)- The procedure stops whenever the SA algorithm condition either reaches
the total iteration limit or improves saturated. Acceptance function and global time varying parameter

will generate a new solution escaping from the local optimum.
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Step 3: Neighbourhood change. Compare the global minimum (cost(Xyrrent)) With the local
minimum (cost(X;,cq;)) obtained from N°(x) with local search SA algorithm. If the cost(x;pcar)
is less than cost(Xcyrrent), then Xjocq replaces Xyrren: and neighbourhood NS returns to N1
for the next local search. Otherwise, the current solution remains unchanged (X.yrrent = Xcurrent)
and the search explores the next neighbourhood NS*! unless s > s,,,4,. Note that we returnto N2
whenever cost(Xjpcq1) 18 less than cost(Xcyrrent)-

The method repeats step 2 and step 3 until the stopping condition is met and the current solution
Xeurrent 18 the global optimal solution to this problem. The pseudo-code of the proposed algorithm

is briefly described in Figure 3.2.
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Begin
Input: Set neighbourhood structures N¥(s = 1,2, **, Spax)
Set the parameters of SA algorithm, such as initial temperatures, temperature schedule, iteration
number at each temperature interval, and so on.
Set the initial platform configuration decision and assign it to X yrent
For s =1 to sS4 Do
Local search by SA:
X1ocal = Xcurrent
Repeat:
Repeat:
Generate a new feasible solution x° from N°(x) based on xj5cq;
If cost(x®) < cost(Xipcar)
Then x50 = x°
Else:
Choose a random probability uniformly in the range (0,1)

If exp (—(_deTlmC)) >p

Then x;pcq = x°
Else:
Xlocal = Xliocal
Until reach iteration number at each temperature interval
Decrease T according to temperature schedule
Until stopping condition is met
If COSt(xlocal) < COSt(xcurrent)
Then Xcyrrent = Xiocal
s=1
Otherwise
s=s+1
Xcurrent = Xcurrent
Until s > Spay
Output: best solution found X rent

Figure 3.2 Pseudo-code of the proposed algorithm
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3.5 Numerical experiments

3.5.1 Parameter setting

A real case study on the motherboard design of personal computer product families was
introduced to illustrate the proposed models and solution methods. The case study comes from a
survey of two famous PC companies A and B. For the reason of confidentiality of company
information, we assumed the parameter settings according to the case study. The motherboards are
regarded as the product platforms of PC, and the components of PCs were understood as modules,
e.g., processor, RAM, wireless network card, hotkeys, speakers. For example, there are three options
for RAM module, i.e., 8GB, 16GB, and 32GB. Deciding on the number of motherboard types is a big
challenge for case companies. It is difficult to forecast the demands of each type of motherboard
during six months ahead of new product introduction (NPI). However, the development lead time of
motherboard is usually longer than six months. The proposed model and method are going to support
the problem solution in the case companies. Note that this study focuses on commercial goods for
mass customization rather than on investment goods with high value and low volume.

A personal computer product family consists of eight products with different requirements, as
enumerated in the right part of Table 3.2. The other parameters, such as the design parameters of
module option (Nj;) and monthly production quantities, are also shown in Table 3.2. Four demand
scenarios are prepared for the numerical examination as shown in Table 3.3. In scenario 1, we assume
all expected demand and standard deviation are the same. In scenario 2, we divided products into 4
groups, and each group has a different expected demand and standard deviation. Scenario 3 is
essentially the same as scenario 2, while product groups are sorted in the inversing order. In scenario

4, we set expected demand randomly using uniform distribution [120, 600] and set standard deviation
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randomly using uniform distribution [10, 80] (see Table 3.3). The other parameters are presented in

Table 3.4.
Table 3.2 The description of module and module option and the initial composition of products
Module
option
Module (No.) Module option description | Njx | prje |F1 F2 F3 F4 F5 F6 F7 F8
m, mqyq (1) Electrical mechanical 4 14000l X X X X X X X X
component
my; (2) Processor 1 10 X X
my, (3) Processor 2 16 X X
m, 3000
myz (4) Processor 3 30 X X
my, (5) Processor 4 38 X X
ms my; (6) Controlled Rectifier 3 14000 X X X X X X X X
my My (7) Hotkeys 25 14000 X X X X X X X X
msgy (8) Wireless network card 1 10 X X X X
ms 4000
msg, (9) Wireless network card 2 13 X X X X
me; (10) Speaker 1 20 X X X X
mg 3000
me, (11) Speaker 2 25 X X X X
my (12) RAM 1 64 X X
my m,, (13) RAM 2 80 | 2500 X X X
m,3 (14) RAM 3 95 X X X
mgy (15) HDD 1 38 X X X X
mg 3600
mg, (16) HDD 2 47 X X X X
my moy (17) Battery 6 [4000 X X X X X X X X
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Table 3.3 Product demand distribution

Demafld F1 F2 F3 F4 F5 F6 F7 F8
scenarios
Scenario 1 | N(300,352) N(300,35%) N(300,35%) N(300,352) N(300,35%) N(300,35%) N(300,35%)  N(300,35%)
Scenario 2 | N(120,20) N(240,30) N(360,40%) N(480,50%) N(120,20%) N(240,30%) N(360,40>)  N(480,507)
Scenario 3 | N(480,50%) N(360,40%) N(240,30%) N(120,20%) N(480,50%) N(360,40%) N(240,30%)  N(120,20%)
Scenario 4 | N(148,222) N(260,322) N(302,322) N(480,26%) N(159,122) N(297,76)) N(530,38%)  N(224,42?)
Table 3.4 Cost items and other input parameters
No. Parameter Symbol Value

1 Capital discount rate y 10%

2 Product lifetime life 2 years

3 Development coefficient a 3000

4 Procurement cost coefficient B 1

5 Setup cost for ordering one batch A 200

6 Fixed delay factor b 0.1

7 Unit inventory holding cost hej 30%-unit procurement cost

8 Unit shortage cost SCjk Unit procurement cost

9 Services level sl 95%

0 Unit procurement cost under tt" pct, Common module pc fk = PCjk

line segment ! Variable module pcfk =pcjy—(t—1)
0 <wuj <5000 =0
5000 < uj, < 10000: 7, = —0.0002
11 Quantity discount slope T

10000 < uj, <20000: 13 =—0.0001
20000 < uj: n, =—0.00001

To manifest the benefits of PPD, we compare the results with independent product development.

The independent approach is a particular case in which the products in a product family are developed

independently without considering the combination of module selection and integration. In our case,

all 9 modules and 17 module options are developed to satisfy 8 products. The PPD approach combines

module s

election and integration so as to choose cost-efficient product platforms satisfying all
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specifications of the 8 products and their demands. The solution algorithm is coded using Python and

runs on a PC with intel CPU, 1.80 GHz, and 8 GB of RAM DDR.

3.5.2 Experiments on the proposed algorithm

To demonstrate the accuracy and effectiveness of the proposed algorithm, we performed an
explicit enumeration algorithm to compare it with the proposed Hybrid-Search Method (HSM). The
explicit enumeration algorithm can provide an accuracy solution. However, it is very time-consuming
when dealing with large-scale problems. Therefore, we use a small-scale problem in this research
first. For the large-scale problem, we did not find an existing algorithm for benchmark, while we
failed to get a solution using commercial software such as LINDO and etcetera. Furthermore, we are
interested in the idea of a PPD model supported by module selection and integration, not the speed
of the solution algorithm.

The comparative results of the two algorithms are reported in Table 3.5. We tested three different
problem instances, varying the number of products, the number of modules, and the number of
module options. The possible number of platforms is the number of product platforms configured
without any constraints.

As shown in Table 3.5, we can see that the proposed HSM algorithm can provide a practically
near-optimal solution and provide optimal solutions in most cases. For small-scale problems, the
explicit enumeration algorithm finds the optimal solution faster, but it becomes time-consuming for

large-scale problems.
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Table 3.5 Comparative result of explicit enumeration algorithm and proposed algorithm
Proposed algorithm
(Initial temperature = 30000; Temperature update factor = 0.98)

Iteration max at one | Iteration max at one | Iteration max at one

Possible temperature= 200 temperature = 300 temperature = 400
platform Neighborhood Neighborhood Neighborhood
Problem | configuration | Enumeration algorithm number=1 number = 2 number =3
instance | for a product Cost gap Cost gap Cost gap
(1,3,k) family Time(s) | Optimal cost | Time(s) (%) Time(s) (%) Time(s) (%)
4-3-7 20736 2.68 3240405.05 4.48 0.00% 9.09 0.00% 14.04 0.00%
5-4-9 7962624 57.86 5687995.63 1191 0.00% 18.86 0.00% 25.72 0.00%

6-5-11 12230590464 | 746.48 | 8169260.74 | 12.59 0.18% 32.15 0.00% 42.12 0.00%
8-5-11 2.81793E+13 | 3480.95 | 11684133.44 | 4108 0.95% 104.21 0.00% 128.50 0.00%
10-4-9 6.34034E+13 | 6153.19 | 12279936.52 | 4579 1.57% 167.26 0.00% 208.70 0.00%

3.5.3 Experimental results of case study

Table 3.6 shows the comparison results of operation cost contents for different product
development approaches under different scenarios. The platform-based approach has a lower total
operation cost than independent product development. More specifically, the platform-based
approach leads to lower development cost, lower setup cost for ordering, lower inventory holding
cost, lower safety inventory cost, and lower salvage cost while it increases total procurement cost and
shortage cost.

The module integration may select higher specification module options in platform
configuration so that to reduce the total number of module options, which leads to a lower
development cost. Meanwhile, demand aggregation driven by module integration leads to a higher
volume of module options, enabling economies of scale and volume discounts. In this paper we
consider setup cost and inventory cost, therefore the high volume may reduce ordering times when
purchasing modules from suppliers. Similarly, smaller number of modules and high volume will
reduce demand deviation (sum of demand deviation is larger than the total demand deviation), and
the reduction may lead to lower safety inventory costs and salvage costs. We sometimes call it the

benefits of risk-pooling. On the other hand, module integration in the PPD approach accompanies
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small additional costs due to over-design enabling product platforms sever for the products with the

higher and lower specification module options, which increases the procurement cost and shortage

cost.
Table 3.6 Results of operation cost contents
Setup cost Holding Safety
Development Procurement for inventory  inventory  Shortage Salvage
Scenario Solution Total cost cost cost ordering cost cost cost cost

Independent 11970696.26 1503000.00 10223594.18 94287.15 94287.15 16282.10  12390.56 26855.12

S1 PPD 11942714.17 1221000.00 10492455.27 87423.13 87423.13  15518.67  13448.23  25445.74
Independent 12577223.20 1503000.00 10825253.62 9417049 9417049  17388.38  14517.11  28723.11

S2 PPD 12448096.39 1161000.00 11059300.22 84446.68  84446.68  16484.44 1541733  27001.03
Independent 11294443.67 1503000.00 9554463.26 91402.83 91402.83  16053.36  11828.03  26293.37

S3 PPD 11272765.28 1413000.00 9626599.40 89588.45 89588.45  15943.98  11978.24  26066.77
Independent 12410826.86 1503000.00 10657588.23 94397.34  94397.34  17874.01  14017.94  29551.98

S4 PPD 12306928.84 1251000.00 10820793.50 8743226 8743226  17200.15  14861.65  28209.02

We then illustrate the result of product platform configurations for the externally given product
family under each scenario in Table 3.7, in which the circle number represents the higher specification
module option used to the platforms than product requirements. The optimal platform strategy
configures 7 product platforms and selects 15 module options for a product family with 8 products in
scenario 1, 5 product platforms with 13 module options in scenario 2, 7 product platforms with 16
module options in scenario 3, and 6 product platforms with 14 module options in scenario 4.

More specifically, under scenario 1, product platforms P; and P, use higher specification
module option No.13 (i.e.,m,,) instead of option No.12 (i.e., m,;) of products F; and F,.
Product platforms P; and P, choose higher specification module option No.5 (i.e., m,,) in place
of option No.4 (i.e., m,3) while other selection of module options remains unchanged. Two module
options No.4 and 12 (i.e., m,3 and m,;) are not used to the platform configuration under scenario
1, which reduces the total number of module options to 15. Meanwhile, products F, and Fg are
derived from one product platform since platforms P, and Pg have the same module options, which

results in the total number of product platforms being 7.
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Similarly, four module options No.2,4,8,12 (i.e., my;, my3, Mgy, M5, ) are not used to the
product platform under scenario 2. Product F; and F, are derived from one platform (P; = P,),
product Fz and Fg are derived from one platform (Ps = Pg), and product F; and Fg are derived
from the same platform (P, = Pg). The optimal product platform configurations developed 5 product
platforms to serve the external product family. Under scenario 3, two product platforms (i.e.,
platforms P, and Pg) have the same selection of module options while only one module option No.4
(i.e., m,3) is not used to the platform configuration. Three module options No.2,8,12 (i.e.,
m,q, Mgy, M) are replaced while 6 product platforms are configured to derive the product family
under scenario 4. The specific platform configuration and the decision of module selection and
integration under scenarios 2, 3, and 4 are shown in Table 3.7.

Table 3.7 Result of platform configurations for a product family

Initial product

Platform requirements S1 S2 S3 S4
Pl [1,2,6,7.8,10,12,15,17] [1,2,6,7,8,10,3),1517] [1,8,67,@,10,3,15,17]  [1,2,6,7,8,10,12,15,17] [1,3,6,7,©,10,3),15,17]
P2 [1,3,6,7,8,10,12,15,17] [13,67,8,10),1517]  [1.3,6,7.0,10,),15,17] [1,3,6,7,8,10,12,15,17] [1,3,6,7,,10,03),15,17]
P3 [1,4,6,7,9,10,13,16,17] [1.8,6,7,9,10,13,16,17]  [1,6,6,7,9,10,13,16,17] [1,8,6,7,9,10,13,16,17]  [1,4,6,7,9,10,13,16,17]
P4 [1,5,6,7,9,10,14,16,17] [1,5,6,7,9,10,14,16,17] [1,5,6,7,9,10,14,16,17] [1,5,6,7,9,10,14,16,17] [1,5,6,7,9,10,14,16,17]
P5 [1,2,6,7,8,11,13,15,17] [1,2,6,7,8,11,13,15,17] [1,8,6,7,9,11,13,15,17] [1,2,6,7,8,11,13,15,17] [1,8,6,7,@,11,13,15,17]
P6 [1,3,6,7,8,11,13,15,17] [1,3,6,7,8,11,13,15,17] [1,3,6,7,,11,13,15,17] [1,3,6,7,8,11,13,15,17] [1,3,6,7,,11,13,15,17]
P7 [1,4,6,7,9,11,14,16,17] [1.5,6,79,11,14,16,17]  [1,0,6,7,9,11,14,16,17] [1,5,6,7,9,11,14,16,17]  [1,4,6,7,9,11,14,16,17]
P8 [1,5,6,7,9,11,14,16,17] [1,5,6,7,9,11,14,16,17] [1,5,6,7,9,11,14,16,17] [1,5,6,7,9,11,14,16,17] [1,5,6,7,9,11,14,16,17]
Number of module options 17 15 13 16 14
Number of platforms 8 7 5 7 6

Moreover, module integration is not always beneficial for a company. In Figure 3.3, we visualize

how the total cost varies with the number of module options. The reduction in module option numbers
increases the module integration level. We use the triangles in Figure 3.3 to mark the optimal platform
decisions in each scenario and use the small numbers on the cost curves to represent the number of
configured product platforms. We find that as the number of module options decreases, the total cost
may decrease at the beginning, and then increase after reaching the minimum. Meanwhile, using only
9 or 10 module options to configure 1 or 2 product platforms contributes to the highest cost. The

increased cost of using high specification modules in platforms to meet the low-end products may be
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compensated by a reduced cost from module integration. The presented U-shaped cost curves reveal
a trade-off relationship between module selection and integration in the PPD.

In addition, compared with using 11 module options, the total cost increases significantly when
using 10 module options under scenarios 1, 2 and 4. While a larger cost increment is incurred when
using 11 module options instead of 12 module options under scenario 3. There is a threshold in the
change of cost increment when integrating modules. After the threshold, if reducing one module
option, there may cause much more cost increment than the operations before the threshold. One
reason may be that the reduced cost in development, setup, inventory, and salvage from the module
integration is far less than the increased additional over-design cost. Meanwhile, the cost increment
differs only slightly within a certain range. For example, there are approximate total costs when the
number of module options used in the PPD is 14, 15, or 16 under scenario 1. Using more module
selections does not significantly increase the total cost. Regarding the change in total cost, it is
possible to provide more module selection and avoid significantly increased cost during module

integration before thresholds.
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Figure 3.3 The operation cost varying with the number of module options
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3.6 Sensitivity and robust result analysis

3.6.1 Sensitivity analysis

A sensitivity analysis of various input parameters was conducted to measure their effect on
platform configuration decision. All input parameters were compared to those in scenario 4, shown
in Table 3.3 and Table 3.4. The results of sensitivity analysis are plotted in Figures 3.4-3.8.

As shown in Figure 3.4, the higher unit development cost of modules tends to favour higher
module integration and use fewer module selections. Compared to scenario 4 with a development
cost parameter a equal to 3000, a lower development cost parameter, i.e., &« = 2100, results in
more module options being used. The number of module options is 15 while 14 module options are
used in scenario 4. A higher development cost parameter, @ = 3900, reduces the number of module
options to 12, while 5 product platforms are configured instead of 6 in scenario 4. Increasing
development cost leads to fewer module selections and higher module integration in order to achieve

the benefit of platform commonality.
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The effect of product lifetime on platform configuration is analysed. As shown in Figure 3.5, a
longer product lifetime tends to provide more module selection while reducing module integration
and increasing the number of product platforms. For example, when the product lifetime increases
from 1 year to 2 years, 14 module options are used to configure 6 product platforms instead of 10
module options and 2 product platforms. When the product lifetime becomes longer, i.e., from 2 years
to 3 years, the number of module options increases from 14 to 15 while the number of product
platforms remains at 6. The reason may be that the increasing development cost incurred by
introducing more module selection can be compensated by the recurring procurement cost, ordering

cost, and inventory cost over a longer product lifetime.
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Figure 3.5 The impact of product lifetime
In the case of larger product demand, the number of product platforms and module options tends
to be larger. As shown in Figure 3.6, compared to scenario 4 with 6 product platforms and 14 module
options, 16 module options are used to configure 8 product platforms due to a 50% increment in

demand mean value and standard deviation. With a 50% reduction in demand mean value and
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standard deviation, the number of platforms reduces from 6 to 2, while the number of module options
decreases from 14 to 10. The increasing demand brings more significant economies of scale, resulting

in lower development costs and enabling more module selection.
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Figure 3.6 The impact of demand
The quantity discounts impacting on procurement cost was analysed. As shown in Figure 3.7, a
higher quantity discount tends to more module selection. For example, if the quantity discount slope
is increased by twice, the number of module options may increase from 14 to 15. In the case of a
larger quantity discount slope (i.e., four times), the number of module options increases to 16.
However, the larger quantity discount does not affect the platform configuration decision, where the

number of platforms remains 6.
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Figure 3.7 The impact of quantity discount
The results of other input parameters, such as service level, inventory holding rate, and unit
ordering cost, are shown in Figure 3.8. In our case, we did not find a significant effect of these

parameters on the platform configuration decision.
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3.6.2 Robustness of results with respect to demand change

We test the robustness of our results with respect to varying demand. Figure 3.3 shows the
different optimal decisions on module integration and platform configuration in four kinds of demand
scenarios. Their respective optimal solutions were marked with triangles in the figures. Although
there are different optimal decisions in different scenarios, these decisions may not change so greatly.
It means that the module options to configure product platforms in different demand scenarios are
slightly different in total cost. For example, the optimal solution is 15 module options in scenario 1.
For scenario 2, the total cost of using 15 module options to configure 6 platforms is only 0.14%
different compared to its optimal solution. Similarly, the cost gap between the solution with 15
module options and the optimal solution is 0.29% for scenario 3, and 0.06% for scenario 4. The cost
gap is calculated by applying the total cost of the optimal solution under each demand scenario in
Table 3.6 as a baseline. Since these four scenarios stand for four typical ones, it may suggest that the
solutions from the proposed model may have robust performance in different scenarios.

We further examine the robustness of results on the module integration with the increasing and
decreasing mean value and standard deviation under the same demand scenario, as shown in Figure
3.6. Compared to the respective optimal solutions, using 14 module options in the lower demand with
half demand mean value and standard deviation has a 1.91% gap in the total cost, while the cost gap
between it and the higher demand with 1.5 times of mean value and standard deviation is different by
0.16%. It suggests that developing 14 module options to configure platforms may provide a robust

solution to cope with demand fluctuations.

3.7 Conclusions

In this chapter, a new model was proposed to determine the optimal platform configuration for

the given product family while considering module selection and integration. More module selection
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can provide the special module to meet specific customer demands, whereas module integration may
use a single common module to satisfy multiple customer demands. When satisfying the high-end
and low-end demands with one higher specification module, it would waste some functions of the
module, but facilitate product platform commonality to gain scale economic benefits. By developing
the model on the total operation cost of module acquisition, we obtained the optimal decision of
platform configuration with module options while balancing module selection and integration. To
solve our model, a HSM that combines SA algorithm and VNS was developed. The proposed model
was evaluated through numerical examination, in which our algorithm can generate good solutions
for different scenarios of parameter setting.

The economic performance of the PPD approach is examined. The numerical study shows that
the total cost first decreases and then increases after reaching a minimum as the module integration
increases. The changes in the total cost may be caused by the balance between different types of costs.
More module integration can facilitate the platform commonality and reduce costs in development,
setup, inventory, and salvage. However, integrating modules will bring higher over-design costs and
higher procurement costs. Therefore, manufacturers must not over-pursue module integration in order
to obtain the platform commonality benefits. Further analysis found that there is a threshold in the
change of cost increment as more module integration occurs. One reduced module option can incur a
larger cost increment after the threshold than before it. This finding provides insights into how to
manage the trade-offs between module selection and integration in the PPD. Manufacturers need to
identify the cost change threshold and avoid the module integration with a larger cost increment. In
addition, more module selection can be offered to customers when the cost increase is acceptable.
This finding can support the PPD approach to satisfy the diversity of customer needs.

The sensitive analysis shows that serval input parameters noticeably affect the platforms and
module decisions. The increasing demand and the longer product lifetimes favour more product

platforms and encourage module selections instead of module integration. The higher development
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cost will reduce the number of product platforms and encourage module integration while restricting
the module selection.

Finally, our study reveals the robustness of our results under the different demand scenarios and
the same demand scenario with varying mean value and standard deviation. By using our model, we
may find a robust solution for module integration and platform configuration to cope with demand

fluctuations.
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Chapter 4 Optimal platform configuration
decision considering platform design strategy and

supplier selection

4.1 Introduction

As one of the effective tools to implement mass customization, platform-based product
development (PPD) has received increasing attention from academia and industry. Manufacturers
implement the PPD approach to produce various products while obtaining benefits such as reduced
development time and system complexity, reduced development cost and production costs, and
improved ability to upgrade products (Simpson, 2004). The key in the PPD is product platform
configuration (PPC). Two critical research problems in the PPC are: (1) how many and which type of
product platform should be developed for a product family; (2) which product platform will be
assigned to derive the product within a product family.

A product platform can be configured as a matching-designed platform that exactly complies
with different product requirements. It may require more platforms to be developed for one product
family, thus incurring a higher platform development cost. On the other hand, a platform can be
configured as an under-designed or over-designed platform. When deriving a high-end product based

on an under-designed platform, additional platform customization will be needed to update the

*Partial content of this chapter has been published on the Journal of Advanced Mechanical Design, Systems, and
Manufacturing.
Wang, T., Wang, J., & Matsukawa, H. (2022). Integrating optimal configuration of product platform and supplier
selection in mass customization. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 16(5), 1-
15
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required platform functions. When deriving a low-end product based on an over-designed platform,
some functions on the platforms may be wasted. How to configure a set of proper product platforms
for a product family is a crucial problem in the PPD.

After fixed the platform configuration, the modules are usually procured from suppliers.
Different suppliers may provide different prices for modules. The relevant procurement decision can
affect the design and development of product platform (Pirmoradi et al., 2014). Early involvement of
suppliers at the design stage can improve the consistency between product design and manufacturing
or supply process, so as to increase product profitability, reduce lead time, and improve quality (Zhang
et al., 2009; Tan et al., 2022). Involving the supplier selection into the platform configuration will
better facilitate the implementation of the PPD approach.

In this chapter, we develop a mathematical model to configure multiple platforms for a product
family and the relevant supplier selection decision. A set of modules with multiple module options
are offered to support different product functional requirements. The combination of module options
from different modules supports the possible platform configurations.

The pertinent questions are targeted as follows.

(1) How many product platforms should be developed for one product family and what module
options would be selected to constitute the product platforms (Platform configuration problem)?

(2) Which supplier should be selected for the procurement of module options (Supplier selection
problem)?

To deal with the cost trade-off between platform development and customization in PPD, we
quantify the total cost including the development cost of platforms, the sourcing cost including the
procurement cost of module options, the ordering cost and inventory cost of module options based
on classical Economic Order Quantity (EOQ) model, and the production customization cost to derive
products from platforms. The proposed model is formulated as a nonlinear mixed-integer

programming model. Several linearization methods are applied to linearize this model and a solution
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method based on the commercial solver Gurobi is developed to solve this model.

4.2 Problem description and assumptions

4.2.1 Nomenclature

Table 4.1 presents the description of symbols used in the model.

Table 4.1 List of symbols

Notation Definition

The index of product variants F, (v = 1,2, ...,V) in a product family
i The index of product platform P; (i = 1,2,..., I)

Ji The index of module m; (j = 1,2, ..., )

k The index of module option my, (k = 1,2, ..., Kj)

s The index of supplier Sg (s =1,2,...,5)

Njx The design parameter of module option m;y,

dc; Variable development cost of product platform P;

dcyix Fixed development cost of product platform

PCjks Unit purchasing cost of module option m;; purchased from supplier Sg
Rjks Unit inventory holding cost module option m;; purchased from supplier S
Qjks Order quantity of module option m;;, purchased from supplier S,

U, Annual demand of product variant F,

d; Annual demand of product platform P;

djk Annual demand of module option m;y,

a Coefficient of variable development cost

B Coefficient of purchasing cost

A Fixed setup cost for ordering one batch

Unit customization cost related to assembly, disassembly, testing and so on
f The product requirement for module option m;,

Tvjk Binary variable, takes value 1 if platform P; is under-designed for module m; when
Ovij deriving product F,
SSR Set of selection rules (m;y, m;r;) which represents that selection of module option
my, requires module option m;r,r in the same configuration
SIR Set of incor-npatible rules (m;y, m;«+) which represents that module c?ption mjy, and
module option m;«,+ cannot be used together in the same configuration
o Binary decision variable to indicate whether product F, is derived from product
vt platform P;
w; Derivative binary variable to indicate whether product platform P; is developed
o Binary decision variable to indicate whether module option m;; is used in product
Lk platform P;
Yk Derivative binary variable to indicate whether module option m;;, is used
s Decision variable, the number of module option my;, that is purchased from supplier

Ss
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4.2.2 Problem description

A product family has multiple products F, (v =1,2,..,V) with different functional
requirements. Amodule m; (j = 1,2,...,]) is a unit that serves an identifiable product function and
is developed by engineers using various design methods. Two types of modules can be found, i.e., a
variant module and a common module. Each variant module has multiple options my (k =
1,2, ,K]) with different cost-relevant design parameters Nj to represent different functional
levels. A common module only has one module option and may be required by each product. For
example, a personal computer product has a memory module to provide the storage function of
computation data which has two module options, i.e., 8GB and 16GB memory sticks. The number of
possible platform configurations depends on the combination of products, modules, and module
options. For example, a product with four modules and three module options for each module may
have 3* = 81 possible platform configurations. A product family consisting of five products may
produce (3H% + (3H% + (3M5 + (3%)° + (3*)° = 1.74339 x 101° possible  platform
configurations.

In the platform-based product development, each product F, ina product family is derived from
one product platform. A matching platform has the same quantity of module options compared to the
module option quantity required by products. In contrast, a non-matching platform can be configured
as an under-designed or over-designed platform, which has the module options that respectively lower
specification or higher specification than the product requirements. For example, a product family
contains three products with the respective requirements. Product F; requires module option m;4,
m,q, product F, requires module options m,,, m,, and product F; requires module options
myq, My,. If we configure a platform P; with module options m,,, m,;, then platform P; is
over-designed for module m; when deriving product F;. This is because that product F; has a

lower specification module option m,; than module option m,, used on platform P;. Likewise, it
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is an under-designed platform for module m, when deriving product F,. Similarly, platform P; is
over-designed for module m; and is under-designed for module m, when deriving product Fj,
which we defined it as a hybrid platform.

Components of all modules and module options will be purchased from outside suppliers. A set
of suppliers Ss (s = 1,2,..,S5) is offered to illustrate the supplier selection problem. We assume that
each supplier Sg can only provide one kind of module, namely j*, and it can produce serval module
options for this module, depending on its capability. The supplier selection process during platform

configuration decision for a product family is illustrated as the following Figure 4.1.

Product Product family
platform design
| A=
(7] =]
(P ]~ [7]
— |
=d =]
7 . I 5
| | l .
| Supplier selection | Platform configuration ] PIL‘L[UFm‘PrUdUCl
decision assignment
Legend: (C Dmodute () Module option () Product platform configuration type

Qllppilnl' EI] Product in product family

Figure 4.1 Module-based product platform configuration model considering supplier selection

4.2.3 Assumptions

Assumption 1: we sort different module options m;;, for module m; in an increasing value of
design parameter Nj, (Nji < Nj(x41))- The value of Ny is corresponding to the different functional
levels and is further assumed to be related to the costs of module options. This assumption is widely
used in the previous studies (Chakravarty and Balakrishnan, 2001). The variable development cost

dcj, of module option mj;, used on the platform equal to a - N and the unit procurement cost
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pcjr of module option mj, equal to B - Nj.. A product platform with a higher specification of
module option may have a higher development cost and higher procurement cost.

Assumption 2: We assume that the customization is only incurred when a product is derived
from an under-designed platform. In the case of a matching or over-designed platform, there is no
customization. In other words, we assume that the higher specification module option could be used
for product platform without sacrificing product quality. However, the procurement cost of module
option will increase if the low-end product is derived from an over-designed platform. We use the

design parameter to calculate the performance gap for a particular module m; between product F,

and platform P; as follows.

Kj Kj
max| 0, Z Tyjk * Njx — Z Xijk * Njk Vv,i,j (4.1)
k=1 k=1

Furthermore, we define a binary variable §,,;;, which takes value 1 if the platform P; is under-
designed for module m; when deriving product F,. The larger the performance gap, the more
customization is required to derive the product from this platform.

For illustration, we present a simple example to show the calculation of the performance gap.
Suppose a module m; has three module option m,4, m;,, m;3 with respectively design parameters
Ny; = 15,N;, = 21,N;3 = 27. Module m, contains two module options with respectively design
parameters N,; = 20, N,, = 28. Product F; requires module options m,3; and m,;. When
product F; is derived from platform P, with module options m4, m,,, then the performance gap
for module m; equal to max(0,27 — 15) = 12 and the performance gap for module m, equal to
max(0,20 — 28) = 0. In this case, platform P, is under-designed for module m; and is over-
designed for module m, when deriving product F;.

Assumption 3: We assume that we have module suppliers outside therefore we can purchase all
module options we need. The economic order quantity (EOQ) model is applier for procurement by

the manufacturer. It is widely acknowledged that the EOQ model is a good representation of a firm
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action and is widely used in many firms for determining their inventory levels. Due to the complexity

of our model, we do not consider a more complex inventory policy in our model.

4.3 Model formulation

In order to determine the optimal product platform configuration, a binary decision variable x; i
is used to show whether to select module option myy. It equals to 1 if the module option my; is

selected on the platform P;, or O if not selected. The assignment decision between product and
platform is denoted by a binary decision variable e,;. It equals to 1 if product F, is derived from
platform P;, or 0 otherwise. A derivative variable w; is used to determine whether the product
platform P; is developed or not. Moreover, the supplier selection decision is denoted by the variable
djks, which determines the number of module option mj;, purchased from supplier S;.

The objective function of the proposed model is to minimize the total cost, including the
development cost of product platforms Cj, the souring cost of module option Cs, and the production
customization cost for deriving product from platform C.. The development cost of product platforms
contains two parts, the variable development cost associated to the selection of module options on the
product platform and the fixed development cost depending on the number of product platforms
developed. The sourcing cost of module option further includes the procurement cost, the ordering
cost and inventory cost based on the EOQ model. The total customization cost to transform platform
into product depends on the performance gap for all under-designed module options and the product
demand. A unit customization cost f = 0 is included to represent the impact of the performance gap
on the customization cost.

The proposed platform configuration model is thus formulated as follows.

Minimize C; = C; + C5 + C,
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Cd = Z dCi " Wi + Z dcfix * Wi (4‘2)

=1 =1
s 0 K
A'd'k th -q.k
Cs = Z z (PCjks * djks +— =y SZ =) (4.3)
s=1j5=1k=1 jks
v 1 ] Kj Kj *
Ce= D > Dlew-{ D TojeNje= D xige Ny | 1wy~ ] (44)
v=1i=1 j=1 k=1 k=1
Subject to
I
Z e =1 (w=12..,V) (4.5)
=1
4
1, Z €eyi >0
w; = v=1 (4.6)
O, Z eyi = 0
v=1
Kj
Z Xje=w; (=12,.,5j=12,..]) (4.7)
k=1
xijp<w; (i=12,..,j=12,..,;k=12,.,K) (4.8)
I
1, z xijk >0
Vjx = = (4.9)
0, Z xijk =0
i=1
4
d;, = Z ey *uU, (i=12..1) (4.10)
v=1
VoI VoI v oI
dj = z Xijk * €pi " Up + ervjk “Opij " €pi " Uy — Z Opij * €y Uy * Xjjk
v=1i=1 v=11i=1 v=11i=1
(G=12.,k=12..,K)) (4.11)
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S
dj = Z dies (=12, ]k =12, .., K) (4.12)
s=1

2xAx jks
Qjks = Tho (s=12,..,5) (4.13)
jks
xiji < X (E=1,2,...,1;j,j'k, k' € SSR) (4.14)
xijk + xij*k* =1 (l = 1,2, ...,I;j,j*k,k* € SIR) (415)

Equation (4.5) assigns each product to one product platform. Equation (4.6) sets the value of w;.
Equation (4.7) specifies only one module option m;;, for any module m; can be selected by each
product platform when the platform P; is existed. Equation (4.8) ensures that no module option m;y,
will be selected on the platform P; if this platform is not existed. Equation (4.9) determines value of
variable yj, . Equation (4.10) calculates the number of product platform P;. Equation (4.11)
calculates the number of module option m;y. It has three parts, the number of module option used to

the platform P;, the number of module option used to upgrade the under-designed module option and
the number of module options replaced on the under-designed platform due to the customization.

Equation (4.12) ensures the number of module option djj, should be satisfied by purchasing from all
its available suppliers. Equation (4.13) gives out the optimal order quantity of module option m;

purchased from supplier S. Equation (4.14) represents the selection rules between module options

whereas Eq. (4.15) ensures the incompatible rules.

4.4 Model linearization and solution method

Since the proposed model is a nonlinear mixed-integer programming, we applied some

linearization method to transform the nonlinear objective and nonlinear constraints into linear ones.

Firstly, the objective function Eq.(4.4) contains a non-linear formulation of (ZIk(’: 1 Twji * Nj —

K; ) ) ) . .
I x;: - N;)T and it can be transferred to a normal mixed-integer programming formulation b
k=1"ijk jk ger prog g Y
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defining a continuous variable z,;; and a binary variable 6,,;; . Equations (4.16) - (4.20) are defined

as follows to remove the form ¢(.)*’

K;j K;j
Zyij 2 z Tyjk " Njk — z Xijk * Njk
K K
J J
Zyij < Z Tyjic " Njke — Z Xijk * Njie + Oyij - bigM
k=1 k=1

Zvij < (1 - Hvij) . blgM
Zvij = 0

6,ij € {0,1}

(4.16)

(4.17)

(4.18)
(4.19)

(4.20)

Secondly, the Eq. (4.6) and (4.9) are replaced by Eq. (4.21) - (4.22) and Eq. (4.23) - (4.24),

respectively.

|4
§ €yi = w;
v=1

|4
Z €evi < w; - blgM

v=1

1

Z Xijk = Yk

i=1
I
Z Xijk < YVik blgM

i=1

(4.21)

(4.22)

(4.23)

(4.24)

Thirdly, the Eq. (4.11) is nonlinear constraint because it contains the form x;j; - e,; and &y;; -

eyi. We define gy = X;jk - € and Eq. (4.25) - (4.28) are employed as follows.

Xijk 2 Gvijk
Gvijk = €y + X — 1
evi = Gvijk

Ivijk € {0,1}
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Likewise, we define hy;; = &8,;; * €,; and the linearization result is as below.

8vij = hyij
hm] = ey t+ 6vij -1
eyi = Ny

h,i; € {0,1}

Similarly, we define l,;;x = hy;j - X% and linearization result is as below.

hm} = lvljk
loije 2 hyij + Xije — 1
Xijk = lyijk

Lyijr € {0,1}

(4.29)
(4.30)
(4.31)

(4.32)

(4.33)
(4.34)
(4.35)

(4.36)

Then the proposed nonlinear mixed integer programming model in section 3.3.2 can be

transferred to the following mixed-integer liner programming model.

Minimize C; = C,; + Cs + C,.

I 1
Cd ZZdCi'Wi+ZdCfl’x'Wi
i=1 i=1

s 7
A . d hc . .
Cs — z Z (PCjks . djks + jks + ]ksz QJks)
ijs

Subject to

Equations (4.5), (4.7), (4.8), (4.10) - (4.15), and (4.16) - (4.36).

(4.2)

(4.3)

(4.37)

The proposed model is implemented using python language and solved using Gurobi 9.5.0. A

windows PC with intel CPU 1.8GHz and 8GB RAM is used. Numerical experiments will be

conducted to illustrate the applicability of the proposed model and the eftectiveness of the Gurobi-

based solution method under different parameter settings.
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4.5 Numerical experiments

4.5.1 Parameter setting

The proposed model and solution method are applied to a case study of motherboard design for
the personal computer product family. The motherboards can be regarded as the product platforms of
PC, and the components of PCs can be understood as modules, e.g., processor, RAM, wireless
network card, hotkeys, speakers. For example, there are three options for RAM module, i.e., 8GB,
16GB, and 32GB. In this case study, we only present the variant modules and do not discuss the
common modules since each product requires a common module. The case company wants to know
how many and which type of motherboards should be developed for a given product family and which
suppliers should be selected.

For the reason of confidentiality of company information, we assumed the parameter settings
according to the case study. The case study considers 8 products, 4 modules with 11 module options,
and 8 suppliers. The requirements of products are given, and the descriptions of functional
requirements are simplified to the selection of modules and module options, as enumerated in the
right part of Table 4.2. Three demand scenarios are prepared for the numerical examination, as shown
in Table 4.3. In scenario 1, we set all product demand to be the same while we provide different
demand for each product in scenario 2 and 3. Leadtime of the supplier is assumed to be the same for
all suppliers, as well as other factors except cost. The objective in our model includes cost only,

therefore we could not raise other issues for the supplier selection.
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Table 4.2 The description of modules with module option and the initial product requirements

Module
Module option Design
Module | option | No. | description | parameters | VI V2 V3 V4 V5 V6 V7 V8
mqq 1 Processor 1 10 X X
mys 2 Processor 2 14 X X
m mqs 3 Processor 3 18 X X
Myy 4 Processor 4 22 X X
My 5 RAM 1 15 X X
m, My, 6 RAM 2 21 X X X
Mys 7 RAM 3 27 X X X
May 8 SDD 1 20 X X X X
ma May 9 SDD 2 28 X X X X
myq 10 Speaker 1 25 X X X X
m My, 11 Speaker 2 35 X X X X
Table 4.3 The different demand scenarios of products
Total
Scenario demand V1 V2 V3 V4 V5 N V7 V8

Scenario 1 80000 10000 10000 10000 10000 10000 10000 10000 10000
Scenario 2 80000 5600 7200 15200 8000 13600 7200 19200 4000
Scenario 3 80000 15200 10400 18400 3200 4800 8800 7200 12000

All module options are available for purchase from 8 suppliers. The module options offered by
each supplier are shown in Table 4.4. We assume that suppliers S; and S¢ have higher production
capacity because they can offer all the module options for module m; and module m,, respectively.
Furthermore, we assume that the unit purchasing price for the same module option from supplier S;
is 0.5% higher than the price charged by supplier S; and S,. Similarity, supplier S has a higher
purchasing price compared to supplier S, and Ss. The higher purchasing price can be compensated
by the reduced inventory cost and ordering cost due to the risk pooling incurred by centralized
purchasing. Other input parameters are presented in Table 4.5.

Table 4.4 Module options offered by each supplier

Supplier S1 S2 S3 S4 S5 S6 S7 S8
Module myq,M3, myq,M33,
option My, My | My3,Myy | My3,Myys | Mpq,Mp5 | Myy,Mp3 M3 M31,M3p | Myy,My)
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Table 4.5 Other input parameters used for the model

Parameters Description Value
a Coefficient of variable development cost 4000
B Coefficient of procurement cost 1
A Ordering cost 500
f Unit customization cost 1
dcsix Fixed cost of platform development 20000
hejy, Inventory holding cost 30%*pcji
life Product lifetime 2 years
SSR Set of selection rules Myg, M3o
SIR Set of incompatible rules mqq, My3

4.5.2 Experimental results

Table 4.6 presents the optimal total cost and platform configuration for different demand
scenarios. As shown in Table 4.6, the optimal platform configuration is to develop 3 platforms for
scenario 1 while developing 4 product platforms for scenario 2 and 3. In the first demand scenario,
products F; and F, are derived from platform Pg with the module option No.2,6,8,10 (i.e., m,,
My,, Mgy, Myq), products F3, Fz, Fg and F, are derived from platform P, with the module
option No.3,6,8,11 (i.e., my3, my,, Mz, Myq), and products F, and Fg are derived from
platform P; with No.4,7,9,10 (i.e., mqy, My3, M3y, Myq).

Specifically, platform Pg is over-designed for module m; when deriving product F; while it
is under-designed when deriving product F,. Compared to the product requirements, platform Pg
has a higher specification module option No.2 (m;,) than the module option No.l (m;;) needed by
product F;, which enables platform Pg to be over-designed for product F;. When deriving product
F,, platform Pg is under-designed for module ms. The platform Pg configure a module option
No.8 (m3;), however, the product F, requires a higher specification module option No.9 (ms,).
Some additional customizations will be incurred to upgrade the under-designed module option No.8
to No.9, which will bring the additional customization cost. Similarly, platform P, is over-designed

for product F; and F5 while it is under-designed for product F,. In particular, when deriving
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product Fg, the platform P, becomes a hybrid-designed platform since it is over-designed for
module m, and under-designed for module m;. Platform P; with module option No.4,7,9,10 is
matching-designed for product F, while it is under-designed for module m, when deriving product
Fg from it. Specific platform configurations and the assignment decision between products and
platforms for scenario 2 and 3 can be found in the Table 4.6.

Moreover, the demand variation will affect the platform configuration and its design decision
when deriving products from platforms. The optimal number of platforms developed in scenario 2
and scenario 3 is 4. However, the platform configuration for each platform in scenario 2 and 3 are
totally different. For example, scenario 2 has a high-end platform P; with module option No.
4,7,9,10, however, scenario 3 configure a similar high-end platform P, with module option No.
4,7,9,11.

Meanwhile, the design decision that determines whether the platform is matching or
nonmatching also varies with the demand variation. For instance, in scenario 2, product F; with the
module option No.1,5,8,10 (i.e., myy, my1, M31, Myy) is derived from an over-designed platform
P, with module option No.2,6,8,10 (i.e., my,, Mm,,, M3y, My ). However, product F; is derived
from its matching designed platform Pg with module option No.1,5,8,10 in scenario 3. Similarly,
product F, is derived from a hybrid platform in scenario 2, however, it is derived from matching
designed platform in scenario 3. This results in 8 products being derived from 1 over-designed, 1
hybrid-designed, 3 matching-designed and 3 under-designed platforms in scenario 2, indicated as
“10,1H,3M and 3U”. In scenario 3, 8 products are derived from 10, 4M and 3U platforms.

In addition, maximizing the platform commonality does not produce a cost-efficient solution.
Figure 4.2 shows how the total cost changed as the number of platforms is developed. As shown in
Figure 4.2, developing one platform for three demand scenarios accompanies a higher total cost. The
platform commonality can be achieved in two ways in our paper, including configuring an under-

designed platform to customize products or configuring an over-designed platform. Our results
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examine that both ways are not economical because deriving products from the under-designed
platform incurs additional customization costs while using over-designed platform will bring
additional material costs.

The supplier decisions under different demand scenarios are shown in Figure 4.3-4.5. In the
scenario 2 and 3, all four module options (i.e., my1, My, My3, My,) of module m, are purchased
from supplier S; even purchasing from supplier s; has a 0.5% higher purchasing price than the
price purchasing from supplier S; and S,. This is because the risk pooling incurred by centralized
purchasing can reduce the ordering cost and inventory cost. However, module option mq, is
purchased from supplier S; and module options m;; and m,, are purchased from supplier S, in
scenario 1. The reduced number of module options in scenario 1 alleviates the benefits of the
centralized procurement, and the increased quantity of higher specification module options makes a
greater incremental purchasing cost when purchasing from supplier S;. For example, the number of

module option m43 is 40000 in scenario 1 compared to 34400 in scenario 2 and 25600 in scenario

3.
Table 4.6 Results of platform configuration for different demand scenarios
Scenario Scenario 1 Scenario 2 Scenario 3
C; 17198836.22 17040431.75 16588925.92
.Cost Cq 1139999.994 1543999.995 1480000
fems 15378836.22 14965231.76 14526525.92
C, 680000 531200 582400
CPU time(s) 225s 178s 185s
Product Assignment Platform Assignment Platform Assignment Platform
requirement ag(eic(iisis(;ﬁn configuration aggc(ii:is(;in configuration aggc(ilgis(;ﬁn configuration
Fy[1-5-8-10] | e(1,8)-Over | P;[4-7-9-10] | e(1,2)-Over P,[4-7-9-10] | e(1,8)-Match | P,[2-5-9-10]
F,[2-5-9-10] | e(2,8)-Under e(2,2)-Hybrid | P,[2-6-8-10] | e(2,1)-Match | P,[3-6-8-10]
F3[3-6-8-10] | e(3,7) -Over e(3,2)-Under e(3,2)-Match
F4[4-7-9-10] | e(4,1)-Match e(4,1)-March e(4,7)-Over
F5[1-6-8-11] | e(5,7)-Over e(5,7)-Match e(5,8)-Under
Fs[2-6-9-11] | e(6,7)-Hybrid e(6,7)-Under Pg[3-7-8-11] | e(6,1)-Under
F;[3-7-8-11] | e(7,7)-Under | P,[3-6-8-11] e(7,6)-Match P;[1-6-8-11] | e(7,2)-Under | P,[4-7-9-11]
Fg[4-7-9-11] | e(8,1)-Under | Pg[2-5-8-10] e(8,1)-Under e(8,7)-Match | Pg[1-5-8-10]
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Figure 4.2 The total cost varies with the number of platforms under three demand scenarios

Supplier selection in demand scenario 1
50000

50000

40000 - 4000040000

30000 3000030000

20000 4 2000020000

purchase quantity

10000

ny Ny Ny
~P &.;.‘D L},,:P g,?-\ &c‘?\ LQ‘?\ '}q,’.\‘ '}o,’.\‘ y"? y\’?
s(module option, supplier)

Figure 4.3 Supplier selection decision and purchase quantity of module option in demand scenario 1
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Supplier selection in demand scenario 3
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Figure 4.5 Supplier selection decision and purchase quantity of module option in demand scenario 3

4.6 Sensitivity analysis

To measure the impact of various parameters on the optimal platform configuration, sensitivity

analyses of the cost parameters, product demand and product lifetime are conducted.

4.6.1 Cost sensitivity analysis

Firstly, we investigate the impact of cost parameters including coefficient of variable
development cost a and the unit customization cost f. Figure 4.6 illustrates how the optimal
platform configuration varies with different cost parameter a and f. In the Figure 4.6, 15 cost
scenarios were tested by combining 5 parameters a from 1000 to 5000 and 3 parameters f from 1
to 3, indicated by the symbols cs,f. For example, the cost scenario cs,; represents a cost scenario
with @ = 2000 and f = 1. Other parameter settings are the same as demand scenario 2. In Figure
4.6, the current situation c¢s,q is the optimal platform configuration discussed in section 4.5.2, in
which 8 products are derived from 4 platforms with the design decisions represented by 10,1H,3M,

and 3U.
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As we can see in Figure 4.6, the number of product platforms will decrease with an increased
variable development cost a. For example, the number of platforms is 7 in scenario c¢s;; while it
decreases to 2 in scenario css; as the variable development parameter a increases from 1000 to
5000. Likewise, as a increases, the number of platforms decreases from 7 in scenario c¢s;, to 3 in
scenario cSsp, and from 8 in scenario c¢S;3 to 3 in scenario cSs3. In the case of the higher
development cost, the company tends to develop fewer product platforms.

Moreover, the optimal number of platforms is likely to increase when the customization cost is
higher. For example, the number of platforms increases from 7 in scenario cs;; to 8 inscenario cS;3
as the unit customization cost f increase from 1 to 3. Similarly, the number of platforms increases
from 4 in scenario cs,; to 5 in scenario cS;3 and from 2 in scenario c¢Sg; to 3 in scenario CSss.
The additional customization is to be avoided by deriving products from their own matching or over-
designed platforms when the customization cost is higher.

In addition, the number of products derived from their matching designed platform will decrease
as the development cost increase. For example, 8 products are derived from 7 matching designed
platforms in scenario cs;4. The number of products derived from matching designed platforms is 5
in scenario c¢s,; and csz; while it is 3 in scenario c¢s,; and 1 in scenario c¢sSs;. The same trend
can be found in the other scenarios. For example, in the case of customization cost equal to 2, the
number of products deriving from matching platform decrease from 7 in scenario c¢s;, to 2 in
scenario CSs,.

On the other hand, deriving products from the over-designed platforms become more frequent
as the development cost increases. For example, no product is derived from the over-designed
platform in the case of low development cost (i.e., scenario ¢s;;, €Sy and cs;3), while 4 products
are derived from the over-designed platforms in scenario css; and 6 products are derived from the
over-designed platforms in scenario css, and csg3. Our analysis of the results indicates that over-

design is more prevalent in the presence of high development cost and high customization cost. In
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contrast, the matching design of platforms is more suitable for low development cost and high

customization cost, such as scenarios c¢s;3 and cS;,.

f A
CS]3 CSB CS}3 C843 C553
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Figure 4.6 Optimal platform configuration decision with varying development cost and

customization cost

4.6.2 Demand sensitivity analysis

A sensitivity analysis on demand is conducted to illustrate the impact of demand. The demand
rates for different products and unit customization cost are set to be the same as those in scenario 2.
For example, the demand of product F; is 5600 in scenario 2, which contributes a demand rate equal
to 7%. Thus, the demand of product F; is 4200 when the total demand is 60000 and it is 8400 when
the total demand is 10000. As shown in Figure 4.7, an increased total demand will configure more
product platforms for a product family. For example, 2 platforms are configured to derive 8 products
when the total demand is 60000, while 4 platforms are configured in the case of total demand equal
to 80000 and 5 platforms are offered when the total demand is 10000. Meanwhile, when demand is
high, manufacturers tend to derive products from their matching designed platforms. For instance, 8
products are derived from 10, 5M, and 2U platforms when the total demand is 100000. In contrast,

8 products are derived from 10, 3M, 1H, and 3U platforms in the case of low total demand equal to

72



80000 and from 40, 1H, 1M, and 2U platforms in the case of lower total demand equal to 60000.
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Figure 4.7 The impact of varying product demand on platform configuration decision

4.6.3 Product lifetime sensitivity analysis

The impact of product lifetime on platform configuration is analyzed. As shown in Figure 4.8,
with a longer product lifetime, the number of platforms increases. For example, compared to 4
platforms configured with 2 years product lifetime, the number of platforms is 5 in the case of 3 years
and 6 in the case of 4 years. Moreover, as the product lifetime increases, the number of products
derived from the matching designed platforms also increases. When the product lifetime is 4 years, 8
products are derived from 6M and 2U platforms while it is 10, 5M, and 2U in the case of 3 years and
10, 3M, 1H, and 3U in the case of 2 years. The longer product lifetime enables the high development
cost associated with developing more matching designed platform relatively low in terms of total

costs.
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Figure 4.8 The impact of varying product lifetime on platform configuration decision

4.7. Conclusions

In this chapter, we studied a platform configuration problem while considering platform design
strategy and supplier selection. The proposed model was formulated as a non-linear mixed-integer
programming model. A cost model including the development cost, sourcing cost and customization
cost was developed to illustrate the cost trade-off between platform development and customization.
The proposed model was linearized and solved by commercial solver Gurobi. By minimizing the total
cost, the optimal number and platform configuration decision for a given product family was
obtained, as well as its relevant supplier selection. Numerical experiments show that the proposed
model can be effectively applied to a joint optimization problem of platform configuration and
supplier selection. Moreover, the proposed solving algorithm applying the linearization method and
Gurobi solver can effectively generate optimal solutions for different parameter settings.

The results of numerical experiments show that the optimal combination of supplier and optimal
number of platforms are depending on the given parameters, such as various cost parameters included
in the model, product demand, and product lifetime. The cost sensitivity analyses show that the

optimal number of product platforms will decrease as the variable development cost increases, while
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the number of platforms is likely to increase as the customization cost increases. Moreover, the model
can give guidance to what extent the platform should be matching-designed, under-designed or over-
designed with regard to the products derived from them. As the development cost increases, few
products are derived from their matching-designed platforms, while more products are derived from
the over-designed platforms. The over-designed platform is more prevalent in the presence of high
development cost and high customization cost. In contrast, the matching designed platforms is more
suitable for low development cost and high customization cost.

In addition, the increasing total demand drives the model to develop more platforms and tends
to derive products from their matching designed platforms. Likewise, the more platforms will be
developed for a product family and the more matching-designed platforms will be configured with a

longer the product lifetime.
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Chapter S A stochastic programming approach
for product platform configuration under demand

uncertainty

5.1 Introduction

Platform-based product development (PPD) is an effective way to achieve mass customization.
Through PPD approach, various products within a product family can be effectively developed based
on the product platform. One important problem in PPD is product platform configuration (PPC).
Two critical research problems in PPC are: (1) how many and which type of product platform should
be developed for a product family; (2) which product platform will be assigned to derive the product
within a product family.

Different types of platform design strategies can be found, i.e., matching-designed, under-
designed, and over-designed. A matching-designed platform configures the same module options that
exactly match the product requirements while the under-designed platform or the over-designed
platform has module options with lower specification or higher specification than the product
requirements. Forming the different types of platforms contributes a different impact on the platform-
related costs. For example, developing a matching-designed platform for each product within a
product family requires more product platforms, which results in a higher total development cost.
However, the platform customization is not required. On the other hand, developing an under-

designed platform contributes a lower development cost and a higher customization cost while
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developing an over-designed platform brings a higher development cost and a lower customization
cost. How to weigh the different platform design strategies is a crucial problem when configuring the
product platforms.

In addition, demand uncertainty is a huge challenge in supply chain management. Customer
demand is always uncertain and unpredictable. Due to demand uncertainty, all the sectors of supply
chain may experience negative effects, which makes an inefficient supply chain and reduces revenue.
For example, a larger backlog of products may be incurred if overproduction. Conversely, it may also
cause a loss of market share due to stock-outs.

The PPC decision is endogenously linked to supply chain-related activities, e.g., procurement,
manufacturing, inventory, and transportation. The risks and uncertainty associated with supply chain
have a significant impact on PPC decision. Generally, the development of product platform is ahead
of the new product introduction (NPI), which is difficult to forecast the demand. How to determine
the optimal PPC decision under demand uncertainty is highly important.

In this chapter, a new platform configuration model is proposed to handle demand uncertainty.
The proposed model is formulated as a two-stage stochastic programming model while every possible
random demand is represented by a scenario with an associated probability. A linear programming
embedded genetic algorithm is developed to solve the model. The proposed algorithm deals with the
binary variables for platform configuration by using a genetic algorithm (GA) and determines the
integer variables by solving a linear programing subproblem through Gurobi solver. Numerical

experiments are conducted to illustrate the proposed model and algorithm.

5.2 Problem description and assumptions

5.2.1 Nomenclature

Table 5.1 illustrates the description of symbols used in the model.

77



Table 5.1 List of symbols

Notation Definition

v The index of product variants F, (v = 1,2, ...,V) in a product family

i The index of product platform P; (i = 1,2,..., I)

j The index of module m; (j = 1,2, ..., J)

k The index of module option my, (k = 1,2, ..., K;)

S The index of scenario s (s = 1,2, ...,5)

Njj The design parameter of module option m;;

dc; Variable development cost of product platform P;

dcgiy Fixed development cost of product platform

pcim P Material cost of product platform through pre-production in first stage

ppimp Production cost of product platform through pre-production in first stage

pcft Material cost of product platform through post-production in second stage

ppim P Production cost of product platform through post-production in second stage

a Coefficient of variable development cost

B Coefficient of material cost of module option for first stage

y Coefficient of material cost of module option for second stage

T Coefticient of penalty cost

f Unit customization cost related to derive unsatisfied platform to product

b; Penalty cost of excessive product platform P;

Tyjk The product requirement for module option m;

S Binary variable, takes value 1 if platform P; is under-designed for module m; when

vy deriving product F,

SSR Set of sel.ection rules (m{-k,mjrkr) v&{hich represents that s.election of module option
m;y, requires module option mjrr in the same configuration

SIR Set of incor'npatible rules (mjy, m;«~) which represents that module c?ption mj, and
module option m;«,+ cannot be used together in the same configuration

prob? Probability of scenario s

o Binary decision variable to indicate whether product F, is derived from product

vt platform P;

w; Derivative binary variable to indicate whether product platform P; is developed

X Binary decision variable to indicate whether module option m;; is used in product
platform P;

0, The quantity of pre-production product platform P; before the confirmation of
product demand

3 The quantity of post-production platform P; under demand scenario s after the

confirmation of product demand

5.2.2 Problem description

As shown in Figure 5.1, the product platform is configured by selecting a set of modules and

module options. A module m; ( =1,2,...,]) is a unit that serves an identifiable product function

and is developed in prior. Two types of modules can be found, i.e., a variant module and a common
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module. Each variant module has multiple options m;, (k = 1,2, ..., K;) with different cost-relevant
design parameters Nj, to represent different functional levels. A common module only has one
module option and is required by each product. The combinations of modules and module options
enable the possible product platform configurations.

A product family has multiple products F, (v =1,2,..,V) with different functional
requirements, which represented by the selection of modules and module options. Through PPD, each
product within a product family can be derived from one product platform. Four scenarios of platform
design strategies can be found, i.e., matching-design, over-design, under-design, and hybrid-design.
A matching-designed platform has the same selection of module options compared to the dedicated
product requirements. In contrast, a non-matching designed platform can be configured as an under-
designed or over-designed platform, which has lower specification or higher specification module
options than the product requirements. A hybrid-designed platform contains both lower and higher
specification module options compared to the product requirements. For example, a product family
contains three products with the respective requirements. Product F; requires module option my,
m,q, product F, requires module options m,,, m,, and product F; requires module options
mqq1, Myy. If we configure a platform P; with module options m,,, m,;, then platform P; is
over-designed for module m; when deriving product F;. This is because product F; has a lower
specification module option m;; than module option m;, used on platform P;. Likewise, it is an
under-designed platform for module m, when deriving product F,. Similarly, platform P, is over-
designed for module m; and is under-designed for module m, when deriving product F;, which

we defined it as a hybrid-designed platform.
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Figure 5.1 Product platform configuration with modules and module options for product family

One of the most important benefits of PPD is the economies of scale gained through the mass
production of shared modules, components, and parts. Thus, two stages can be identified in the PPD,
i.e., the platform configuration stage and the platform customization stage. The platform
configuration stage determines the number of platforms and the module selection on the platforms as
well as product-platform assignment decision. The platform customization stage enables unsatisfied
platforms to be upgraded to meet the requirements of dedicated products when receiving the customer
order.

The platform configuration stage is ahead of the realization of real demand. In order to respond
quickly to the market, a pre-production strategy of product platform is applied in this study to pre-
produce the platforms and purchase all the related modules, components, and parts in advance. We
assume that the pre-production strategy of platforms allows the manufacturers to produce the
platforms at a lower cost and receive purchase discount from the suppliers due to pre-procuring. The
two stages under demand uncertainty are illustrated in Figure 5.2.

Step 1. Configure product platforms by selecting modules and module options according to the
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given product requirements.

Step 2. Determine the quantity of pre-production platforms and purchasing relevant modules and
components.

Step 3. If the product demand cannot be satisfied by the pre-production platforms, the
manufacturer needs to produce additional platforms through post-production mode.

Step 4. The under-satisfied function should be customized to satisfy the dedicated product
requirements.

Determine quantities for pre-

. . production platforms Customize platform to satisfy
Given product requirements product requirements

| | I
!

Configure platforms by Post-production platforms
selecting modules and module

options

The first stage (platform configuration stage) The second stage (customization stage) after
before the confirmation of product demand the confirmation of product demand

Figure 5.2 Two-stage platform configuration process under demand uncertainty

5.2.3 Assumptions

For formulating the mathematical model, the following assumptions will be introduced.

Assumption 1: the different module options m;;, for module m; are sorted in an increasing
value of design parameter Nj, (Nji < Njq41))- The value of Ny is corresponding to the different

functional levels and is further assumed to be related to the costs of module options. Therefore, the

variable development cost of module option mj, used on the platform equal to a * Nj;. The unit
material cost of module option m;, for first stage equals to S+ Ny while the unit material cost of
module option for second stage is y - Nj;. The penalty cost of module option m;; equals to T - Nj.

A product platform with a higher specification of module option may have a higher development cost,
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higher material cost and higher penalty cost of excessive production.

Assumption 2: we assume that the customization is only incurred when a product is derived from
an under-designed platform. In the case of a matching-designed or over-designed platform, there is
no customization. In other words, we assume that the higher specification module option could be
used for product platform without sacrificing product quality. However, the procurement cost of
module option will increase if the low-end product is derived from an over-designed platform. The

design parameter is used to calculate the performance gap for a particular module m; between

product F, and platform P; as follows.

Kj Kj
max | 0, Z Tyjik * Njx — Z Xiji * Njk Yv,i,j (5.1)
k=1 k=1

Furthermore, we define a binary variable §,;;, which takes value 1 if the platform P; is under-

ij
designed for module m; when deriving product F,. The larger the performance gap, the more
customization is required to derive the product from this platform.

Assumption 3: the unit production cost and material cost of platforms in the platform
configuration stage is lower than those in the customization stage because of the mass production
mode and purchase discount obtained from suppliers.

Assumption 4: a penalty cost of excessive platforms is introduced to avoid producing excessive
platforms and incurring excessive inventory.

Assumption 5: all the product demand should be satisfied through pre-production and post-

production of platforms and no shortage is allowed.

5.3 Model formulation

The PPC problem under demand uncertainty can be formulated as a two-stage stochastic

programming model. In the first stage, the product platform configuration and the quantity of pre-
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production platforms will be determined before the confirmation of product demand. A binary

decision variable x;jj is used to indicate whether the module option m;;, is selected on the product

platform P;. It equals to 1 if the module option my, is selected on the platform P;. The assignment
decision between product and platform is denoted by a binary decision variable e,,;. It equals to 1 if
product F, is derived from platform P;, or 0 otherwise. A derivative variable w; is used to
determine whether the product platform P; is developed or not. A continuous variable @; is
proposed to determine the quantity of platforms through pre-production in the first stage.

In the second stage, when the demands for all products are realized, the model determines the
quantity of post-production platforms and excessive platforms under demand scenario s. If the
product demand cannot be satisfied by the quantity of pre-production platforms, then additional
platforms are required through post-production. A continuous variable ¢; is proposed to determine
the quantity of post-production platforms under scenario s and 7} is the quantity of excessive
platforms under scenario s.

The uncertainty of product demand is represented by a finite set of scenarios with a possible
probability associated with each scenario. Each scenario contains a set of product demand data
indicated by u® = [uf, u3, ..., u;]. The values of the second-stage variables depend on the value of
each set of stochastic product demand.

The objective function of this model is to minimize the total cost, including the development
cost of product platform C,, the material cost of pre-production platforms C,,? and production cost
C;,n Pof pre-production platform in the first stage, the material cost of post-production CS* and
production cost Cp* of post-production platform in second stage, the customization cost C. and the
penalty cost of excessive platform Cs. The development cost of platform contains two parts, the
variable development cost associated with the selection of module options on the platforms and the
fixed development cost depending on the number of platforms. The material cost and production cost

of platform mainly depend on the selection of module options on the platform. The total customization
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cost depends on the performance gap for all under-designed module options compared with product

requirements. A unit customization cost f is included to represent the impact of the performance gap

on the customization cost.

The proposed two-stage stochastic model for platform configuration is formulated as follows.

Minimize

Co=Ca+Cp” +C)" + C 4+ C5* + Co + C

s=1 i= s=1 i=1j=1k=1
S I
Gt = Z prob® <Z ppi* <pf>
s=1 i=1
s v 1 ] Kj Kj *
Cc= Z pT‘ObS{Z Z Z €yi Z Tvjk Njk Z Xijk N]k up - f}
s=1 v=11i=1J=1 k=1 k=1
N S 1 ] K
C, = Z prob’(b; xm}) = Zprobs ZZquk T Njj " m;
s=1 s=1 i=1j=1k=1

Subject to
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(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)



Vv
(1, Zevi>0
— v=1

0, Z ey = 0
v=1
Kj
injk =w; (i=12,...5j=12,..]) (5.12)
k=1
xijp<w; (i=12,..,j=12,..,;k=12.,K) (5.13)
Xije < Xijne (0= 1,2, .., 1;j,j'k, k' € SSR) (5.14)
xijk + xij*k* =1 (l =12, ...,I;j,j*k,k* € SIR) (515)
@; < w; - bigM (5.16)
@i < w;-bigM (5.17)
|4
7> B + @f — z ey S (i=12 .0, 5=12..5) (5.18)
v=1
%4
Qi+ ¢ = Z eyituy. (i=12,..,5=12,.,5) (5.19)
v=1

Equation (5.10) assigns each product to one product platform. Equation (5.11) sets the value of
w;. Constraint (5.12) specifies only one module option m;; for any module m; can be selected by
each product platform when the platform P; is developed. Equation (5.13) ensures that no module
option my;, will be selected on the platform P; if this platform is not developed. Constraint (5.14)
represents the selection rules between module options whereas constraint (5.15) ensures the
incompatible rules. Equation (5.16) states that no pre-production platform will be produced if this
platform is not developed while Equation (5.17) states that no post-production platform will be
produced if this platform is not developed. Equation (5.18) gives out the quantity of excessive
platforms. Constraint (5.19) ensures that the product demand under each scenario should be satisfied

by the sum of pre-production platforms and post-production platforms.
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5.4 Algorithm development

The product platform configuration problem is a larger-scale combinatorial optimization
problem. The exact algorithm can be very time-consuming for large-scale problems while the meta-
heuristic algorithm is more effective than the exact algorithm in solving such problem. Among the
most popular heuristic algorithm, genetic algorithm (GA) is widely used. Meanwhile, the proposed
two-stage stochastic model is a nonlinear mixed-integer programming model. With nonlinear terms
and integer variables, it is difficult to solve it by using GA alone. Therefore, a linear programming
embedded GA is developed. The proposed algorithm searches the binary variables for platform
configuration by using the GA and determines the integer variables by solving a linear programming
subproblem using the Gurobi solver.

In the following subsection, the genetic algorithm for platform configuration is introduced
including coding and decoding the chromosome to represent a feasible solution, fitness function, new
mutation and crossover method as well as solving a subproblem by using linearization methods and

Gurobi solver. Figure 5.3 illustrates the main procedure of the proposed algorithm.

86



Constraint preprocessing

Y

g?ﬂ?l"ﬂlLOl’l

Generate initial population }

Xijk
Usmgdgurom.su]ver Calculating fitness value
to determine
continuous variables i ¥ e
Cd » pr: Cpn: » C('us s Cpen
and cost item

Recording current best
chromosome and cost value

'

Roulette wheel selection

Y

Crossover and mutation

!

Get new population
member

Figure 5.3 The main procedure of proposed algorithm

5.4.1 Chromosomal encoding of a solution

The key point of GA is to encode the decision variable by using the chromosome, substring, and
gene. As shown in Figure 5.4, a platform configuration solution is encoded in a finite length string,
namely chromosome. Each chromosome consists of substrings that represent a single platform
configuration decision. Each substring comprises all the module options whilst each module option
is represented by a gene. Each gene has a binary value (0 or 1) to indicate if the module option is used
on the corresponding product platform. The gene takes value 1 if the module option represented by

this gene is used on the corresponding platform configuration. Otherwise, it takes the value 0.
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The length of chromosome is equal to the number of products within a product family. For
forming the chromosome, we deal with the decision variable e,; by assuming that a product F, is
derived from the platform P; where v = i. However, the platform with the same module and module
options are merged into one platform when we calculate the objective function. The length of the
substring is equal to the number of total module options. For example, a product family contains 5
products with 4 modules and 11 module options. The length of substring (single platform
configuration) equals 11 and the chromosome would contain 55 genes (5 platforms multiply 11

module options).

Chromosome

Xl]lc = [xllkl sx12k2 xl_}k ] | 1 |0 0 | 0 | 1 |O 0 | | | Subsring of chromosome

—

X111 Gene

Figure 5.4 Encoding scheme illustration
5.4.2 Initial population

The initial population contain a certain number of chromosomes which equals the predetermined
population size. Each chromosome is generated by randomly assigning the value (0 or 1) to each gene
in this chromosome. To ensure a feasible initial solution, a feasibility check mechanism is applied in
this process. The feasibility checks mainly deal with the platform configuration constraints, such as

constraint (5.10), constraint (5.14) and constraint (5.15).
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5.4.3 Fitness function

The fitness function is used to evaluate the fitness of each chromosome. The fitness function is

the total cost of platform configuration as described in section 5.3. To calculate the value of the fitness

function and the value of continuous variables, a linear programming subproblem is solved by using

some linearization method and Gurobi solver.

Firstly, the objective function Equation (5.8) contains a non-linear formulation of

K; K; . . .
(Zkilrvjk-Njk—Zkilek-Njk)“L and it can be transferred to a normal mixed-integer

programming formulation by defining a continuous variable z,;; and a binary variable 6,;; .

Equations (5.20) - (5.24) are defined as follows to remove the form <()*’.

Kj Kj
Zyij 2 Z Tojk " Njx = Z Xijk " Njk
k=1 k=1
Kj Kj
Zyij < Z Tyjic * Njke = Z Xijic * Njk + Oyij - DigM
k=1 k=1

Zvij < (1 - Hvij) ' blgM
Zvij >0
6yij € {0,1}

The objective function Equation (5.7) then can be formulated as follows.

Therefore, the fitness function is formulated as follows.
Minimize
Ce=Cq+CpP +CP +CR 4+ C5* + Co + C

Equations (5.3) -(5.7), Eq. (5.25), and Eq. (5.9)

(5.20)

(5.21)

(5.22)
(5.23)

(5.24)

(5.25)

The fitness value of each chromosome will be calculated within the population size for the entire
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generation until the genetic algorithm search stops, and an optimal or near-optimal solution is reached.

5.4.4 Selection

The selection in GA is to generate the next generation population (offspring) by selecting the
parent chromosome from the current population. In this model, the parent chromosome will be
selected by roulette wheel selection where all the chromosomes in the current population are placed
according to their fitness value on a roulette wheel. Since the objective function is to minimize the
total cost, the chromosome has a better performance if the total cost is lower. Thus, the selection area
of the wheel corresponding to each chromosome is the reciprocal of its fitness value. The chromosome
with a lower total cost (higher fitness) has a higher probability of being selected more times. Then, a
random number is generated to select one of the chromosomes to be the parent chromosome for

crossover and mutation.

5.4.5 Crossover

The crossover will be applied to generate the offspring by inheriting the gene information of the
two parent chromosomes. A specific crossover procedure is developed to deal with this specific
problem. As mentioned before, each chromosome consists of a set of substrings and each substring
contains genes that represent all the module options. Since the different modules have a different
number of module options, the crossover position can be specified according to the specific number
of module options for a module. For illustration, we present an example that considers 3 products
within a product family and 3 modules with 9 module options. Module m; has 4 module options,
module m, has 3 module options and module m; has 2 module options. Then a set of crossover
points is 4, 7,9, 13, 16, 18, 22, 25, and 27. A random number can be generated from this specific set

of possible crossover points. The offspring chromosome inherits the gene information of the father
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chromosome before the random number and the gene information of the mother chromosome after
the random number. Another offspring chromosome inherits the rest of gene information of the parent
chromosome. This specific crossover procedure ensures that the offspring platform configuration is

feasible for the module selection.

Parent Chromosome 1 flIOIOIOI1]0]01011?[---17;‘[0‘[110 (:IlIOIOIl‘]
i PR :] 4
v v v v

Parent Chromosome 2 [OIlIOIOI1]0]011{0[...{0[0[0[1 0[1[0[0[1]

Crossover [l

Offspring Chromosome 1 1|0|0|0|1|0|0|0|1I~-']'0]'0]'1]'01017117010I1]

Offspring Chromosome 2

Figure 5.5 Crossover

5.4.6 Mutation

The mutation plays a crucial role in searching the possible feasible solutions. It is crucial to the
convergence of the genetic algorithm. We use a 0-1 flip-flop mutation for gene mutation due to the
binary encoding gene in this model. The mutation procedure is achieved by generating three random
number a, b, and ¢ where a € [0,i], b € [0,j], and c € [0,k;]. The random number a is
generated from 0 to i to choose the mutation platform and the random number b is generated from
0to j to choose the mutation module. The number ¢ will be generated from 0 to k; and inverting
the 0-1 value of this position. The feasibility check will be also applied to ensure only one module
option for a specific module is used in a platform configuration. For example, Figure 5.6 presents a
case of 3 products and three modules with 9 module options. Generating a random number a = 2,
b =1 and c = 4, then the offspring chromosome changes the value of the red marked position from

0 to 1 and other gene values of this module are changed from 1 to 0.
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Figure 5.6 Mutation

5.4.7. Stopping criteria

The genetic search is repeated until pre-defined stopping conditions are reached. The stopping
condition considered in this proposed algorithm is reaching a pre-selected number of generations, or

the best solution remains unchanged for a certain number of successive generations.

5.5 Numerical experiments

5.5.1 Parameter setting

The proposed model and solution method are applied to a case study of motherboard design for
personal computer product family. The motherboards can be regarded as the product platforms of PC,
and the components of PC can be understood as modules, e.g., processor, RAM, wireless network
card, hotkeys, speakers. For example, there are three options for RAM module, i.e., 8 GB, 16 GB,
and 32 GB. In this case study, we only present the variant modules and do not discuss the common
modules since each product requires a common module.

A product family contains 5 products, 4 modules with 11 module options. The product
requirements are given, and the descriptions of functional requirements are simplified to the selection

of modules and module options, as enumerated in the right part of Table 5.2. The product demand
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follows the normal distribution. Three demand distribution cases with different mean values and
variances are prepared for the numerical examination, as shown in Table 5.3. The solution algorithm
is coded using Python and runs on a PC with Apple M1 and 16 GB RAM.

Table 5.2 The description of modules with module option and the initial product requirements

Module 1\(/)[;321116 No. M(?:slcl:lrip?gilon pa]?;rsgf‘tlérs R R B K K
mqq 1 Processor 1 2 X
mq, 2 Processor 2 4 X X
m mqs 3 Processor 3 7 X
Myg 4 Processor 4 9 X
My 5 RAM 1 6 X X
m, my, 6 RAM 2 11 X X
my3 7 RAM 3 16 X
msq 8 SDD 1 8 X X X
m May 9 SDD 2 15 X X
My 10 Speaker 1 12 X X
i my, 11 Speaker 2 17 X X X
Table 5.3 The different demand scenarios of products
diributon vatwe 1 F2 Fs Fa s
Demand case 1 10000 (9000,11000)  (9200,10800)  (9500,10500)  (9300,10700)  (9400,10600)
Demand case 2 15000 (14000,16000) (14200,15800) (14500,15500) (14300,15700) (14000,16000)
Demand case 3 20000 (19000,21000) (19200,20800) (19500,20500) (19400,20600) (19300,20700)
Table 5.4 Other input parameters used for the model
Parameters Description Value
a Coefficient of variable development cost 1000
B Coefficient of material cost of module option for first stage 1
y Coefficient of material cost of module option for second stage 1.05
T Coefficient of penalty cost 0.2
f Unit customization cost L.5
dcgix Fixed cost of platform development 20000
SSR Set of selection rules Myy, M3y
SIR Set of incompatible rules myq, My3
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5.5.2 Experiments on the efficiency of the proposed algorithm

To demonstrate the accuracy and efficiency of the proposed algorithm, we use 13 different
problem instances with different numbers of products, modules, module options and scenarios to
compare the result of the proposed algorithm and the optimal results solved by Gurobi solver directly.
The number of products within a product family, modules and module options and the number of
scenarios determine the problem size, which further affects the computation complexity.

The comparative results of the two solution methods are presented in Table 5.5. The possible
number of platform configurations is the number of product platforms configured without any
constraints. For ensuring the Gurobi solver can solve the problem instances directly, the experiments
just consider a problem instance with 6 products, 5 modules, 13 module options and 20 scenarios.
Important point is that the computation time of the Gurobi algorithm increases rapidly along with the
problem size, while the proposed algorithm increases linearly and slowly. Figure 5.7 shows the trend
of the rapid increase of Gurobi algorithm’s computation time. We argue that the proposed algorithm
can feedback feasible solution for practical big size problem, while the Gurobi algorithm cannot.

As shown in Table 5.5, the proposed linear programming embedded GA algorithm has a good
performance for obtaining the near-optimal solution in most cases. In addition, the computation time
has a substantial reduction. For a small-scale problem, the Gurobi solver can find the optimal solution

faster, but it becomes very time-consuming for large-scale problems.
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Table 5.5 Problem size and comparison result between proposed algorithm and Gurobi solver

Proposed algorithm
Number of Gurobi Population size=100 Population size=200
possible CPU CPU
Case id (I, platform CPU times Gap times Gap
JLK,S) configurations Obj. times (s) Ob;. (s) (%) Ob;. (s) (%)
4-3-9-20 331776 2036854.39 | 20.00 | 2037516.96 | 53.74 | 0.03% | 2037516.96 | 101.94 | 0.03%
4-3-9-30 331776 2032088.48 | 25.00 | 2032348.08 | 54.65 | 0.01% | 2032348.08 | 112.63 | 0.01%
4-4-11-20 160000 2996042.33 55.00 | 2996654.06 | 58.13 | 0.02% | 2996654.06 | 113.52 | 0.02%
4-4-11-30 810000 2986444.82 | 65.00 | 2987250.67 | 67.58 | 0.03% | 2987250.67 | 139.15 | 0.03%
5-3-9-20 7962624 2322782.15 | 220.00 | 232392891 | 70.93 | 0.05% | 2323928.91 | 140.68 | 0.05%
5-3-9-30 7962624 2314864.03 | 340.00 | 2315529.99 | 81.41 | 0.03% | 2315529.99 | 164.84 | 0.03%
5-4-11-20 2.55E+08 3554502.42 | 1320.00 | 3557456.40 | 77.16 | 0.08% | 3555784.10 | 158.14 | 0.04%
5-4-11-30 2.55E+08 3538885.34 | 1690.00 | 3539767.37 | 111.80 | 0.02% | 3539525.70 | 193.65 | 0.02%
5-5-13-20 8.15E+09 4489114.01 | 8650.00 | 4489114.01 | 117.12 | 0.00% | 4489114.01 | 191.11 | 0.00%
6-3-9-20 1.91E+08 2964406.98 | 2325.00 | 2965496.31 | 103.41 | 0.04% | 2965496.31 | 227.93 | 0.04%
6-4-11-20 1.22E+10 4318805.51 | 3840.00 | 4322572.98 | 155.35 | 0.09% | 4320161.87 | 243.46 | 0.03%
6-4-11-30 1.22E+10 4302602.98 | 5255.00 | 4303958.95 | 203.73 | 0.03% | 4303958.95 | 317.22 | 0.03%
6-5-13-20 7.83E+11 5429645.75 | 12445.00 | 5429645.75 | 166.81 | 0.00% | 5429645.75 | 293.71 | 0.00%
Computation time
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Figure 5.7 Rapid increase of computation time of Gurobi algorithm for different cases

The number of scenarios has a significant impact on the result of the stochastic platform

configuration model. To determine the appropriate number of scenarios for case study and sensitivity

analysis, we perform the experiments for different numbers of scenarios. The experiments will use a

case with 5 products, 4 modules and 11 module options because we need the result obtained by the
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Gurobi solver as a benchmark. 7 different scenarios (i.e., 10, 15, 20, 30, 40, 50, and 80) are used in
the comparative experiments. As shown in Table 5.6 and Figure 5.8, the Gurobi algorithm solves the
case with 20 scenarios in around 1400 seconds while it requires more than 6900 seconds to solve the
case with 80 scenarios. However, the total cost obtained by solving the case with 80 scenarios
improves by only 0.46% compared with the case with 20 scenarios. In the case of 10 scenarios, the
total cost has a 0.92% gap compared with the case with 80 scenarios. Therefore, the following
numerical experiments are based on a dataset of 20 scenarios.

Table 5.6 Comparative result for different number of scenarios

Gurobi Proposed algorithm (population size = 1000)
Gap % Gap % Gap %
number CPU  (compare CPU  (compare (compare
Case id of times  with 80 times with with 80
(LLILK) | scenarios Ob;. (s)  scenarios) Ob;. (s) Gurobi) scenarios)
5-4-11 10 3562155.30 730 0.92% | 3562197.02 498.11 0.00% 0.89%
5-4-11 15 3553168.02 965 0.66% | 3553889.66 646.23 0.02% 0.65%
5-4-11 20 3545975.00 1470 0.46% | 3546255.56 794.47 0.01% 0.44%
5-4-11 30 3538885.34 1690 0.26% 3539525.70  854.49 0.02% 0.25%
5-4-11 40 3537433.90 2495 0.22% 353774399 1125.76  0.01% 0.20%
5-4-11 50 3532291.38 3825 0.07% 3532804.41 1526.05 0.01% 0.06%
5-4-11 80 3529812.59 6970 0.00% | 3530796.22 1836.00  0.03% 0.00%

Computation time
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Figure 5.8 Rapid increase of computation time of Gurobi algorithm for different scenarios
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5.5.3 Experiments on the case study

The optimal platform configuration decision for different demand case is presented in Table 5.7.
As shown in Table 5.7, the optimal platform configuration is to develop 3 platforms for demand case
1 while developing 4 platforms for case 2 and 5 platforms for case 3. Specifically, in the demand case
1, product F; is developed from platform P, with the module option No.1,5,8,10 (i.e., my;, myq,
Mgy, Myq), products F, and Fs are developed from platform Ps; with module option No.2,5,8,11
(i.e., myy, Mmyy, M3y, My, ), products F; and F; are developed from platform P, with
No0.2,6,9,10 (i.e., myy, Myy, M3y, Myq).

Another important decision is the platform design decision, i.e., what type of platforms will be
developed. As shown in Table 5.7, product F;, F,, F3 are derived from their respective matching-
designed platform. The platforms have the same module option compared with the product
requirements. Product F, is developed from the under-designed platform Ps; and product Fs is
developed from the under-designed platform P,. Compared to the product requirements, platform Pg
has a lower specification module option No.2 (m;,) and No.5 (m,;) than the module option No.3
(m43) and No.6 (m,,) needed by product F,, which enables platform P; to be under-designed for
product F,. Some additional customizations will be incurred to upgrade the under-designed module
option No.2 and No.5 to option No.3 and No.6, which will bring the additional customization cost.
Similarly, platform P, is under-designed for module m;, m,, m, when deriving product Fg. The
platform P, has a module option No.2 (m;,), No.6 (m,,), and No.10 (m,,), however, the product
F5 requires a higher specification module option No.4 (m,4), No.7 (m5,3), and No.11 (1my,).

Moreover, as the demand quantity increases (i.e., a larger mean value), the number of platforms
increases. As shown in Table 5.7, the optimal platform strategy configures 3 platforms in demand
case 1 with mean value of 10000. However, 4 platforms will be developed in demand case 2 with

mean value of 15000 and 5 platforms are developed in demand case 3 with mean value of 20000.
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Table 5.7 Results of platform configuration for different demand cases

(]:Daesr:and Case 1 (Mean value=10000) Case 2 (Mean value = 15000) Case 3 (Mean value = 20000)
C; 2439739.07 3547328.52 4622176.52
Cy 165000 250000 305000
(o 1743138.48 2846247 3998173.59
c,’ 95467.73 140845.95 194904.73
Cit 84575.24 143844.72 115494.69
(0 7046.99 9600.76 8524.48
C. 344399.85 156699.32 0
Cs 110.78 90.77 79.03
quantity quantity quantity
Assignment of pre- Assignment of pre- Assignment of pre-
Product and design Platform assembly | and design Platform assembly | and design Platform assembly
requirement decision configuration | platform decision configuration | platform decision configuration | platform
F1[1,5,8,10] | e(1,2)-match e(1,2)-match | P1[2,6,9,10] 14514.48 | e(1,1)-match | P1[1,5,8,10] 19604.99
F2[2,5,8,11] | e(2,5)-match | P2[1,5,8,10] 9105.19 e(2,2)-under | P2[1,5,8,10] 28766.64 | e(2,2)-match | P2[2,58,11] 19218.04
F3[2,6,9,10] | e(3,4)-match e(3,1)-match | P3[4,7,9,11] 14257.11 | e(3,5)-match | P3[2,6,9,10] 19650.84
F4[3,6,8,11] | e(4,5)-under | P4[2,6,9,10] 19455.65 | e(4,5)-match e(4,4)-match | P4[3,6,8,11] 19407.68
F5[4,7,9,11] | e(5,4)-under | P5[2,58,11] 19173.02 | e(5,3)-match | P4[3,6,8,11] 14384.11 | e(5,3)-match | P5[4,7,9,11] 19570.81

5.5.4 Evaluation on the effectiveness of platform configuration stochastic

model

To compare the effectiveness of the formulated stochastic model with the deterministic platform
configuration model, the value of stochastic solution (VSS) and the expected value of perfect
information (EVPI) are calculated. For calculating the VSS and EVPI, three methods are required,
i.e., proposed stochastic model, deterministic model, and wait-and-see model. The deterministic
model is formulated by using the average value of demand generated by a stochastic model. The VSS
is the difference between the objective function value of the stochastic model and the expected value
solution (EEV), whereas the EVPI is calculated as the difference between the wait-and-see solution
(WSS) and the objective function value of stochastic programming (SP). Other parameter settings are
the same as demand case 2 with a mean value of 15000.

To calculate the VSS, we first calculate the EEV. The EEV will be calculated through two steps.
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In the first step, we use the average value of demand scenarios generated by the stochastic model to
obtain the first stage variables. The obtained first stage solutions are then used to calculate the second
stage variables and obtain the objective function value. The corresponding objective value is the EEV.
The value of EEV is not better than the objective value of stochastic model because the solution
obtained by the deterministic model using average data is not the optimal solution for the original
stochastic model. The gap between the EEV and SP is the VSS, equal to 34259.6, which implies the
cost of ignoring uncertainty when making decisions.

To calculate the EVPI, the value of WSS is calculated first. The WSS model is to solve the
stochastic model using single demand scenario for all the demand scenarios generated previously.
After solving 20 scenarios, the average value of their objective values is denoted by WSS. The gap
between the SP and WSS is the EVPI, which is equal to 31981.13 in this experiment. The EVPI
indicates how much the decision marker is willing to pay in order to know the exact information
about uncertainty.

Table 5.8 Comparative result of stochastic and deterministic solutions under demand uncertainty
Models Total cost

Stochastic programming (SP) 3547328.53
Expected value solution (EEV) | 3581588.13
Wait and see solutions (WSS) 3579309.66

Scenario Probability Total cost Scenario  Probability Total cost
1 0.05 3590440.68 11 0.02 3606752.74
2 0.01 3557659.09 12 0.03 3586547.56
3 0.08 3632868.39 13 0.05 3552657.33
4 0.08 3566738.09 14 0.04 3577035.71
5 0.05 3557765.44 15 0.06 3624308.03
6 0.03 3570648.94 16 0.11 3534909.11
7 0.05 3590303.79 17 0.1 3579299.91
8 0.06 3637916.21 18 0.04 3560934.11
9 0.02 3570119.36 19 0.05 3530489.26
10 0.01 3581850.56 20 0.06 3576460.84
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5.6 Sensitivity analysis

5.6.1 Cost sensitivity analysis

The impact of cost parameters including coefficient of variable development cost a and the
unit customization cost f is analyzed in this section. Meanwhile, the demand fluctuation is also
analyzed by setting different variances of demand distribution. Two different variances of demand
distribution are provided. Figure 5.9 illustrates how the optimal platform configuration varies with
different cost parameter a¢ and f with a demand distribution U (a, b) while Figure 5.10 shows the
results with a lager variance U (0.25a, b+0.75a). 12 cost scenarios were tested by combining 4
parameters a from 1000 to 4000 and 3 parameters f from 1.5 to 2.5, indicated by the symbols
CSqr- For example, the cost scenario cs,; represents a cost scenario with @ = 2000 and f = 1.
Other parameter settings are the same as demand case 2. The current situation c¢s;; in Figure 5.9 is
the optimal platform configuration discussed in section 5.5.3, in which 5 products are derived from 4
platforms with the design decisions represented by 4M and 1U.

The increased variable development cost a enables the model to configure less product
platforms. For example, as shown in Figure 5.9, the number of platforms is 4 in scenario c¢s;; while
it is 2 in scenario ¢S, as the variable development parameter a increases from 1000 to 4000.
Likewise, as a increases, the number of platforms decreases from 5 in scenario ¢Sy, to 2 in
scenario ¢Sy, and from 5 in scenario c¢S;3 to 2 in scenario cSu3. In the case of the larger demand
fluctuation, the same trend can be found. For example, as shown in Figure 5.10, the number of
platforms is 3 in scenario c¢s;1, however, it is 2 in scenario cS,; and cs3; while it is 1 in scenario
CS41-

Moreover, the optimal number of platforms is likely to increase as the customization cost

increases. For example, in the case of lower demand fluctuation shown in Figure 5.9, the number of
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platforms increases from 4 in scenario cs;; to 5 in scenario c¢S;3 as the unit customization cost f
increase from 1.5 to 2.5. Similarly, the number of platforms increases from 2 in scenario ¢s,; to 5
in scenario ¢S,z and from 2 in scenario cS3; to 4 in scenario csz3. In the case of larger demand
fluctuation, the number of platforms also increases as the customization cost increases. As shown in
Figure 5.10, 3 platforms are developed in the scenario cs;; while 5 platforms are developed in
scenario cS;, and cSq3.

In addition, the number of products derived from their matching designed platform will decrease
as the development cost increase. For example, as shown in Figure 5.9, 5 products are derived from
4 matching-designed platforms in scenario cs;;. The number of products derived from matching-
designed platforms is 2 in scenario ¢S,q, €S3q, and c¢S,q. The same trend can be found in a larger
demand fluctuation. As shown in Figure 5.10, the number of products derived from matching platform
decrease from 3 in scenario cSy; to 2 in scenario cS,; and cs3; while no matching-designed
platform is developed in scenario c¢S4;. On the other hand, deriving products from the over-designed
platforms become more frequent in the presence of high development cost and customization cost.
For example, as shown in Figure 5.9, no product is derived from the over-designed platform in the
case of low development cost (e.g., scenario ¢S1;, ¢S1, and c¢s;3), while 1 product is derived from
the over-designed platforms in scenario cs,, and 3 products are derived from the over-designed
platforms in scenario cs,3.

The under-designed platforms may be more prevalent under the larger demand fluctuation. For
example, in the scenario cs;4, 5 products are developed from 4M,1U platforms in Figure 5.9 while
5 products are developed from 3M,2U platforms in Figure 5.10. In scenario cs,q, the number of
under-designed platform is 3 in Figure 5.9 while it is 4 in Figure 5.10. Less platforms and more under-

designed platforms can be subsequently customized to cope with the greater fluctuation in demand.
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f A Stochastic model with U(a,b) and mean value = 15000
CSy3 CSy; CS3; CSy
2.5 5 Platforms 5 Platforms 4 Platforms 2 Platforms
(5M) (5M) (10 4m) (30 1M 1U)
CSp CSy CS3 (GAY:)
2 5 Platforms 5 Platforms 3 Platforms 2 Platforms
(5M) (5M) (102M 2U) (10 1M 3U)
CSi CSy CS3 CS4
13 4 Platforms 2 Platforms 2 Platforms 2 Platforms
(4M 1U) (2M 3U) (2M 3U) (2M 3U)
1000 2000 3000 4000

Figure 5.9 Optimal platform design decision with varying development and customization cost

under demand distribution U (a, b)

f y Stochastic model with U(0.25a,b+0.75a) and mean value = 15000
CSy CSy CS3 CSy
25 5 Platforms 5 Platforms 4 Platforms 2 Platforms
(5M) (5M) (104M) (30 1M 1U)
CSpy CSy CSxn CSyp
2 5 Platforms 4 Platforms 3 Platforms 2 Platforms
(5M) (4M 1U) (3M 20) (102m2u)
CSyy CSy CSs1 CSu
15 3 Platforms 2 Platforms 2 Platforms 1 Platforms
(3M20) (2M 3U) (2M3U) (104U)
1000 2000 3000 4000

Figure 5.10 Optimal platform design decision with varying development and customization cost

under demand distribution U (0.25a, b+0.75a)

5.6.2 Demand sensitivity analysis

Three demand cases with different mean values and variances are provided to illustrate the impact

of demand on the optimal platform configuration. As shown in Figure 5.11 — 5.13, we found that the

102



number of platforms increases as the demand quantity represented by the mean value increases. For
example, 3 platforms are configured to derive 5 products in Figure 5.11, while 4 platforms are
configured in Figure 5.12 and 5 platforms are offered in Figure 5.13.

Compared with the results under different demand variances, we found that the number of
platforms may decrease as demand uncertainty increases. As shown in Figure 5.11, 3 platforms are
developed in the case of a demand distribution U (a, b) while 2 platforms are developed when the
demand distribution follows U (0.25a, b+0.75a). The same trends can be found in Figure 5.12 and
Figure 5.13.

Furthermore, the under-designed platforms may be more prevalent when the demand uncertainty
is higher. As shown in Figure 5.11, 5 products are developed from 3M,2U platforms under a demand
distribution U (a, b) while 5 products are developed from 10,1M,3U platforms under a demand
distribution U (0.25a, b+0.75a). The same trends can be found in Figure 5.12 and 5.13. As shown in
Figure 5.12, the number of under-designed platform increase from 1 to 2 as the demand uncertainty
increases. Less platforms and more under-designed platforms are used to hedge the risk of demand

uncertainty.

1e6 Mean value of demand = 10000

—l- Stochastic solution with U(a,b)
—f— Stochastic solution with U(0.25%a, b+0.75*a)

Total costs

1 2 3 a 5
Number of platforms

Figure 5.11 The impact of demand fluctuation on platform configuration decision with demand

mean value 10000
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1e6 Mean value of demand = 15000

3.750 —l- Stochastic solution with U(a,b)
—— Stochastic solution with U{0.25%a, b+0.75%a)

3.725 4

3.700 A

3.675 4

3.650

Total costs

3.625

3.600 A

3.575 4

3.550 A

1 2 3 4 5
Number of platforms

Figure 5.12 The impact of demand fluctuation on platform configuration decision with demand

mean value 15000

1e6 Mean value of demand = 20000

—l Stochastic solution with U(a,b)

195 —— Stochastic solution with U(0.25%a, b+0.75%a)

4.90

4.85 4

4.80 1

Total costs

4751

4.70

4.65 4

1 2 3 4 5
Number of platforms

Figure 5.13 The impact of demand fluctuation on platform configuration decision with demand

mean value 20000
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5.7 Conclusions

In this section, we studied the platform configuration problem considering demand uncertainty.
The proposed model was formulated as a two-stage stochastic programming model. The demand
uncertainty was modelled using scenario-based stochastic programming where every possible random
situation was represented by a scenario with an associated probability. Two stages of the PPC problem
with uncertain demand were identified, i.e., the platform configuration stage and customization stage.
A cost model including the development cost of platform, production and material cost for two
different stages, customization cost, penalty cost of excessive platforms was developed. A linear
programming embedded genetic algorithm was developed to solve the proposed model.

Numerical experiments show that the optimal number of platforms increases as the demand
quantity increases while the optimal number of platforms decreases as the demand uncertainty
increases. Under-designed platforms may be more prevalent when the demand uncertainty is higher.

Moreover, a cost sensitivity analysis is conducted to illustrate the impact of development cost
and customization cost on the optimal platform configuration. The number of platforms will decrease
as the development cost increases while the number of platforms is likely increases as the
customization cost increases. Meanwhile, the number of products derived from their matching
designed platform will decrease as the development cost increase. However, deriving products from
over-designed platforms become more frequent in the presence of high development cost and

customization cost.
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Chapter 6 Conclusions and future work

6.1 Conclusions

Platform-based product development (PPD) is a cost-efficient approach to achieve mass
customization. In this study, the product platform configuration (PPC) problem is examined from a
supply chain management perspective. A modular platform configuration model is targeted and
various optimization methods are applied to obtain the optimal platform configuration decision. The
main conclusions are summarized as follows.

In chapter 3, a platform configuration model considering module selection and integration was
examined. The results show that PPD approach can reduce supply chain costs by applying module
integration in the platform configuration. However, over-pursuing module integration is not always
beneficial for a company, which will bring a higher cost sometimes. Manufacturers need to balance
module integration and module selection when designing product platforms. Moreover, sensitivity
analysis shows that several parameters noticeably affect the platform configuration decision. The
larger demand and the longer product lifetimes favor more product platforms and encourage module
selection instead of module integration. The higher development cost will reduce the number of
product platforms and encourage module integration while restricting the module selection.

In chapter 4, a platform configuration model considering platform design strategy and supplier
selection was proposed. The results show that the optimal number of product platforms will decrease
as the development cost increases, while the number of platforms increases as the customization cost
increases. Moreover, as the development cost increases, few products are derived from their

matching-designed platforms, while more products are derived from the over-designed platforms.
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The over-designed platform is more prevalent in the presence of high development cost and high
customization cost. In contrast, the matching-designed platform is more suitable for the case of low
development cost and high customization cost. In addition, the larger total demand and longer product
lifetime drive the model to develop more platforms and tend to derive products from their matching-
designed platforms.

In chapter 5, a stochastic programming model was proposed to handle the demand uncertainty
while considering platform customization. The results show that the number of platforms increases
as the demand quantity increases while the number of platforms decreases as the demand uncertainty
increases. Matching-designed platforms are less used in the case of greater demand fluctuation. In
contrast, under-designed platforms are more frequently used to hedge the risk of demand uncertainty.
In addition, the impact of development cost and customization cost on platform configuration
decision is similar under different demand uncertainty. The number of platforms decreases as the
development cost increases while the number of platforms increases as the customization cost
increases. Less products will be derived from their matching-designed platforms as the development
cost increases. However, deriving products from over-designed platforms becomes more frequent in

the presence of high development cost and customization cost.

6.2 Limitations and future work

The limitations and future works are presented as follows.

Firstly, the product requirements corresponding to the customer preferences are assumed to be
given. However, the customer needs for the product requirements, features, and functional levels are
changing, and we do not know once we receive orders. A flexible platform configuration model
considering the changing customer requirements is required.

Secondly, our proposed model focuses more on the internal activities within a manufacturer, such

as procurement, manufacturing, production, and inventory control. The suppliers and factories are
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located all over the world in a global supply chain environment. Investigating the platform
configuration problem from a global supply chain perspective is another interesting problem.

Thirdly, this study does not address the interactive mechanism of multiple departments. The
coordination mechanism of multiple departments is regarded to be the key point to supply chain
management. It will be meaningful to consider the impact of coordination mechanisms with external
suppliers or internal departments on the platform configuration problem.

Finally, our research considers only cost, all those other parameters that affect decision-making
on supplier selection does not be considered. Our model includes two types of costs, i.e., the
engineering cost and the SCM-related cost. However, the detail of the cost in practice may be different
from the proposed model. Detail costs and factors should be treated carefully to satisfy the purpose

of the decision-making on platform configuration.
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