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Abstract

The quantum computer is expected to solve problems that the classical com-
puter cannot find the answer to in a realistic time. While the development of
quantum computers is accelerating, the near-term quantum computer (NISQ) that
we will obtain in the next few decades is far from ideal; the number of qubits is
small, and noise significantly affects the computational results.

This thesis aims to propose algorithms maximizing the functionality of NISQ
and assess their feasibility. First, we propose the faster amplitude estimation (FAE)
algorithm as an efficient quantum amplitude estimation algorithm (QAE) in NISQ.
QAE is the algorithm to estimate the amplitude of a quantum state with good
accuracy. Various quantum algorithms utilize QAE as their submodule. However,
a well-known QAE algorithm using phase estimation is not executable in NISQ due
to many noisy two-qubit gates. Recently proposed QAE algorithms successfully
reduce the number of two-qubit gates, but the computational complexity upper
bound is not given or loose. FAE proposed in this thesis both achieve the significant
reduction of the number of two-qubit gates and the tight upper bound of the
computational complexity.

Second, we propose the algorithm called the quantum semi-supervised genera-
tive adversarial network (qSGAN), which is the variant of the variational quantum
algorithm (VQA). VQA is the most promising algorithm for solving real-world
problems utilizing NISQ. VQA is the method to train a quantum circuit that gen-
erates a quantum state minimizing the expectation value of an observable. There
are wide applications of VQA, such as the minimum eigenvalue problem of a Hamil-
tonian. Quantum generative adversarial network (QGAN) is a variant of VQA,
which is proposed as the quantum counterpart of the classical machine learning
algorithm called generative adversarial network (GAN). Even though GAN is suc-
cessfully applied to the semi-supervised learning problems, there were no methods
to apply QGAN to the semi-supervised learning problems. In this thesis, we pro-
pose qSGAN, the first application of QGAN to semi-supervised learning problems.
We also demonstrate the performance of the algorithm.

Finally, we discuss the scalability issue of VQA. In VQA, we train the quantum
circuit by updating the parameters embedded in the quantum circuit; if we find
the optimal parameters, we obtain the optimal quantum circuit. We usually fix the
structure of the quantum circuit; the structure often used is the so-called hardware
efficient ansatz (HEA), which has enough expressive power to generate an arbitrary
quantum state. However, it is recently shown that VQA with HEA suffers from the
scalability issue called the barren plateau phenomenon; namely, as the number of
qubits in HEA increases, the training of HEA becomes exponentially harder. The
theoretically guaranteed solution to the issue is changing the quantum circuit’s
structure from HEA to the alternating layered ansatz (ALT). Still, even though
VQA with ALT successfully avoids the barren plateau phenomenon under a specific
condition, ALT may not have the expressive power that HEA has. If ALT cannot
generate a wide variety of the quantum state, we cannot use it in VQA. In this
thesis, with a proper definition of the expressibility found in literature, we show
that ALT has almost the same expressive power as HEA. As a result, we show that
VQA with ALT is a promising architecture that can avoid scalability issues and
find solutions to various problems with NISQ.
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Chapter 1

Introduction

Richard Feynman once shared the idea of a quantum computer that works according to the
principles of quantum mechanics in 1982 [1]. Forty years later, we are now within reach of a
quantum computer that applies to real-world problems. A decade ago, quantum computing was
a secret art of a few researchers. In the past decade, the industry has been racing to develop
quantum computers, including big companies like IBM, Google, and Microsoft and startups like
IonQ and Rigetti.

A quantum computer is a device to perform calculations by sequentially changing the state
of quantum bits (qubits). A quantum state represents the state of each qubit with two binary
bases, |0〉 and |1〉. A quantum state with n qubits are represented by a quantum state in Hilbert
space with 2n bases: |i1, i2, ..., in〉 (ij = ±1). Each unitary operation called a quantum gate
corresponds to each computational process; the sequence of the quantum gates is said to be
the quantum circuit. We perform quantum computation by transforming a quantum state by
a quantum circuit. In the case of a classical computer, the scale of the computation increases
linearly with each additional bit. In contrast, in the case of a quantum computer, the size of the
Hilbert space, which corresponds to the scale of the computation, increases exponentially as the
number of qubits increases. By taking advantage of the characteristics, rich range of applications
of quantum computers has been proposed, e.g., algorithms for prime factoring (Shor’s algorithm
[2]) quantum chemistry [3–6], finance [7–9], and machine learning [10–15].

However, quantum computers developed in the next few decades are predicted to be far from
the ideal quantum computer. The biggest problems are the small number of qubits and the
considerable noise. First, the number of qubits available for the computation may be increased
only up to O(10) ∼ O(100) in decades, which spoils superiority over the classical computer; for
example, the prime factoring problem which Shor’s algorithm with O(100) qubits can solve, is also
solved by classical computers in realistic time. Another issue is the significant noise. Currently,
the error rate of a quantum gate that operates on two qubits is as substantial as O(10−3). In
other words, if the number of the quantum gates to be operated is O(1000), the calculation results
will be wholly unreliable, which makes the execution of most quantum algorithms impossible.
Even though the above problems will be gradually improved, they are still predicted to remain
significant limitations. The near-term noisy quantum computer with O(10) ∼ O(100) qubits
available for the computation is called a noisy intermediate-scale quantum computer (NISQ)
[16].

Researchers in the quantum computing community have been actively studying how to utilize
NISQ rather than waiting for the development of the ideal quantum computers for decades. The
most promising direction for maximizing the functionality of NISQ is reducing the number of
quantum gates to solve problems.

An important example of significantly reducing the number of gates is the quantum amplitude
estimation algorithm (QAE). QAE is the algorithm to estimate the amplitude of a quantum
state with good accuracy; namely, the goal of the algorithm is estimating the value of ξ in the
following equation: |Ψ〉 ≡ A|0〉⊗n|0〉 = ξ|Ψ̃1〉|1〉 +

√
1− ξ2|Ψ̃0〉|0〉, where |Φ0〉 and |Φ1〉 are n-

qubit states, ξ ∈ [0, 1], and A is an quantum operator. Various quantum algorithms include
QAE as its submodule. For example, the quantum Monte Carlo integration [17] embeds the
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integration result into ξ, and we need to extract the value of ξ from the quantum state. In
practical applications, executing A is often costly, thus reducing the number of calling A while
estimating ξ with required accuracy is the heart of the problem. There is a well-known approach
to estimate ξ by using the phase estimation algorithm [18, 19]. By the quantum algorithm
using the phase estimation, the estimation error scales as O(1/Nshot), where Nshot is the number
of calling A. However, the phase estimation requires many two-qubit gates, which are noisy
and intractable in the near-term devices. The attempt to reduce the number of gates is firstly
made by the literature [20]. Literature [20] shows that the number of gates is reduced in their
proposed algorithm using the maximum likelihood estimation. However, the theoretical proof
of the error scaling O(1/Nshot) is not given while they give some numerical evidence for it. As
subsequent works, [21] give algorithms where the error scaling is theoretically proven. Among
these works, the theoretical upper bounds of the error in [21] is larger than 106/Nshot, while in
the faster amplitude estimation (FAE) [22], which is the contribution of the author of this thesis,
the constant factor is improved as O(103/Nshot). The detail of the FAE algorithm is described
in this thesis.

Another important example of quantum algorithms realizable with fewer gates is the vari-
ational quantum algorithm (VQA) [23, 24]. In VQA, we usually use the quantum circuit with
a specific structure where parameters are embedded; the structure often used is the so-called
hardware efficient ansatz (HEA) [25], which has enough expressive power to generate an arbi-
trary quantum state. Given the parameters θ and the unitary operation corresponding to the
quantum circuit as U(θ), the goal of VQA is finding the optimal parameters θ∗ so that the gen-
erated state by the quantum circuit |φ(θ∗)〉 = U(θ∗)|φ0〉 with |φ0〉 as an initial state independent
of the parameters, minimizes the expectation value of an observable H: 〈φ(θ∗)|H|φ(θ∗)〉. For
example, if the problem we want to solve is finding the lowest eigenstate of a Hamiltonian, then
H is the Hamiltonian and |φ(θ∗)〉 is the lowest eigenstate. We iteratively update the parameters;
for each iteration we compute the expectation value C(θ) = 〈φ0|U†(θ)HU(θ)|φ0〉 by a quantum
computer and compute the new parameters, which is embedded into the quantum circuit in the
next iteration, by a classical computer. The algorithm is expected to be realized with a small
number of quantum gates since a classical computer assists the calculation, and therefore, is
suitable for NISQ.

Various variants of VQA have also been proposed recently. One promising variant is the
quantum generative adversarial network (QGAN) [26–40], which is the counterpart of the gen-
erative adversarial network (GAN) [41]. GAN is a classical machine learning algorithm with
many applications [42, 43]. In general, GAN consists of two adversarial components, typically
a generator (generating fake data) and a discriminator (discriminating real or fake data), and
their adversarial training yield an outperforming system over the one trained solely. In original
GAN, the generator and the discriminator are typically implemented by the deep neural net-
work, but in QGAN, the generator and/or the discriminator are implemented by the quantum
system. GAN is most successfully applied to semi-supervised learning [44–51] (SSL). The first
work combining QGAN and SSL is done by the author of the thesis in [52], which proposes the
algorithm named the quantum semi-supervised adversarial network (qSGAN). We will describe
the detail of qSGAN in this thesis.

Even though VQA and its variants are arguably the most important quantum algorithms
realizable in NISQ, it is shown that VQA with HEA has a severe issue called barren plateau
phenomenon [53]. Normally, parameters θ are updated to the direction of the gradient vector
{∂C(θ)/∂θj}. However, the literature [53] shows that the norm of the gradient becomes exponen-
tially small: O(1/2n) with n as the number of qubits. As a result, we need O(2n) measurements of
|φ(θ)〉 for updating the parameters to the proper direction, which is intractable when n ≥ O(100).
As a solution to the barren plateau phenomenon, the literature [54] proposes the method utilizing
the quantum circuit called alternating layered ansatz (ALT) instead of HEA. ALT is a quantum
circuit U(θ) that has a specific structure different from HEA. The structure is the key to avoiding
the barren plateau issue; by using the detail of the structure, it is theoretically shown that the
barren plateau issue is avoided when using ALT under a specific condition. However, there is
one fatal caveat in the method. Specifically, due to the restricted structure of ALT, it is unclear
whether or not ALT has sufficient expressive power (expressibility) for generating a rich class of
states, which contains the optimal state minimizing C(θ). If it does not have enough expressive

9



power, we cannot adopt the method proposed in [54] as the solution for the barren plateau issue
or the scalability issue. Conversely, analyzing the expressibility of ALT is critical to assessing
the scalability of VQA. In [55], the author of this thesis analyzes the expressibility of ALT and
other ansatzes by utilizing the expressibility measure [56]. The method and the results of the
expressibility analysis are described in this thesis.

The goal of this thesis is to develop algorithms maximizing the functionality of NISQ and
assess their feasibility. More precisely, we summarize the contribution of this thesis as follows.

• The author of the thesis proposes the quantum amplitude estimation algorithm named
the faster amplitude estimation (FAE), whose state-of-the-art performance is theoretically
guaranteed (Chapter 4).

• The author of the thesis proposes a variant of the variational quantum algorithm called
the quantum semi-supervised generative adversarial network (qSGAN) for solving the semi-
supervised learning task, which is one of the most important tasks in machine learning
(Chapter 5).

• The author of the thesis analyzes the expressibility of ALTs through theoretical and nu-
merical analysis. The results show that a particular class of ALTs has sufficient expressive
power to generate arbitrary quantum states. Furthermore, it is shown that there exists a
class of ALTs that can both provide sufficient expressive power and solve the barren plateau
phenomenon (Chapter 6).

Additionally, we review the basics of quantum computation and NISQ comprehensively. We hope
this thesis is also helpful for those unfamiliar with quantum computation and NISQ.

The rest of this thesis is structured as follows. In Chapter 2, we review the basics of quantum
computation. We review the feature of NISQ in Chapter 3. VQA and the issues of VQA, including
the barren plateau phenomenon, are also discussed in the same chapter. We show the QAE
algorithm tailored for NISQ in Chapter 4. The variant of the variational quantum algorithm for
the semi-supervised learning tasks is discussed in Chapter 5. In Chapter 6, the possible solutions
for the barren plateau issue, including the one using ALT, are introduced and, we analyze the
expressibility of ALT in the same section. Finally, we conclude this thesis and show outlooks in
Chapter 7.
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Chapter 2

Quantum computation

In this chapter, we introduce the basics of quantum computation. We assume the knowledge of
quantum mechanics in this thesis. We review the building block of quantum computation, such
as the quantum bit and the quantum gate. Next, we briefly review how to include the effect
of noise in the quantum computation framework, which is inevitable for understanding the next
chapter. Finally, we show some essential quantum algorithms. For a more detailed review of the
quantum computation, please see the literature [19].

2.1 Building-blocks of the quantum computation

2.1.1 Quantum bit (qubit)

In the classical computation, the information is stored in bits that take the value of either 0 or
1. To the contrary, in the quantum computation, the information is stored in the quantum bits
named qubits. Each qubit retains information in a quantum state, whose basis are |0〉 and |1〉.
Namely, the quantum state that corresponds to a state of a qubit can be written as

|φ〉 = α|0〉+ β|1〉, (2.1)

where α, β ∈ C and |α|2 + |β|2 = 1.
The computation process is done by using multiple qubits. Given the number of qubits as

n, when each qubit is independently operated, the n-qubit state is written in the form of

|φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉 = (α1|0〉+ β1|1〉)⊗ (α2|0〉+ β2|1〉)⊗ · · · ⊗ (αn|0〉+ βn|1〉), (2.2)

where αj , βj ∈ C(∀j), |αj |2 + |β2
j | = 1(∀j), and ⊗ denotes the symbol for the tensor product.

In general, the computational process includes the interactions between qubits, and the n-qubit
quantum state cannot be written in the form of n tensor products; the general n-qubit state is
written as

|φ〉 =

1∑
i1=0

1∑
i2=0

· · ·
1∑

in=0

αi1i2,···in |i1〉 ⊗ |i2〉 ⊗ |in〉, (2.3)

where αi1i2,···in ∈ C and
∑1
i1=0

∑1
i2=0 · · ·

∑1
in=0 |αi1i2,···in |2 = 1. In the following we simplify the

notation ‘|i1〉⊗ |i2〉⊗ |in〉’ to |i1i2 · · · in〉. The basis {|i1i2, · · · in〉} is said to be the computational
basis. Even though we can arbitrarily choose the basis for expanding |φ〉, the computational basis
is special because, as we see later, measurements in quantum computation are performed in the
computational basis.

In the classical case, n bits can store at most n binary data. Remarkably, n-qubits can store
2n complex numbers in the amplitudes of the quantum state. Thus, ideally, even one hundred
qubits quantum state store O(2100) = O(1030) bit data, which is intractable by any classical
devices. There are various ways of implementing qubits. For example, ion trap qubits [57], and
superconducting qubits [58] have been actively studied and developed.
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2.1.2 Quantum gate

Normally, the quantum state of qubits is prepared as |0〉⊗n (n tensor products of |0〉). From the
state, all the transformations other than the measurements are ideally done by unitary operators;
given a quantum state that we want to build as |φ〉, the state is built by using a unitary operator
U as

|φ〉 = U |0〉⊗n. (2.4)

By measuring |φ〉, we obtain computational results.
The unitary operation is built by single-qubit gates and two-qubit gates. A single-qubit

gate is a unitary operation that operates on a single-qubit. Suppose that we write an arbitrary

single-qubit quantum state α|0〉+ β|1〉 in a vector form

(
α
β

)
, where the first row corresponds to

the basis |0〉 and the second row corresponds to the basis |1〉. One of the example of single-qubit
gates is the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
. (2.5)

The Hadamard gate H transforms an arbitrary single-qubit state as(
α
β

)
→
(

1 1
1 −1

)(
α
β

)
=

1√
2

(
α+ β
α− β

)
. (2.6)

In the quantum state form,

H(α|0〉+ β|1〉) =
(
|0〉 |1〉

) 1√
2

(
1 1
1 −1

)(
α
β

)
=

1√
2

(α+ β)|0〉+
1√
2

(α− β)|1〉. (2.7)

As another example, the X gate is defined by

X =

(
0 1
1 0

)
, (2.8)

which transforms an arbitrary single-qubit quantum state as(
α
β

)
→
(

0 1
1 0

)(
α
β

)
=

(
β
α

)
. (2.9)

In the quantum state form,

X(α|0〉+ β|1〉) =
(
|0〉 |1〉

)(0 1
1 0

)(
α
β

)
= β|0〉+ α|1〉. (2.10)

Since the X gate invert the bit value, it is called the NOT gate.
The two-qubit gate is a unitary operation that operates on a control-qubit and a target-qubit.

If the state of the control qubit is |0〉, no operations are performed to the target-qubit, while
if that is |1〉, an operation is operated to the target qubit. Suppose that we write an arbitrary

two-qubit state as


α00

α01

α10

α11

, where αx denotes the coefficient for the basis |x〉. One of the example

of two-qubit gates is controlled-not (CNOT) gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.11)

which transforms an arbitrary state as
α00

α01

α10

α11

→


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



α00

α01

α10

α11

 =


α00

α01

α11

α10

 . (2.12)
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Figure 2.1: Examples of quantum gates.

In the quantum state form,

CNOT(α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉) =


|00〉
|01〉
|10〉
|11〉




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



α00

α01

α10

α11

 (2.13)

= α00|00〉+ α01|01〉+ α10|11〉+ α11|10〉. (2.14)

We see that |10〉 becomes |11〉 and |11〉 becomes |10〉, while |00〉 and |01〉 are unchanged. Similarly,
with G as an arbitrary single-qubit operation, controlled-G gate transforms the target-qubit by G
when the control qubit is |1〉 while no operations are operated to the target-qubit if the control-
qubit is |0〉. In Fig. 2.1, we show representative examples of the quantum gates with their matrix
forms.

Quantum circuit

The sequence of the above-defined quantum gates is called a ‘quantum circuit.’ Quantum circuits
are often visualized in the following manner. Suppose that the number of qubits is n, we write
vertically aligned n-horizontal lines; each line corresponds to each qubit. We write quantum
gates from left to right in the order of the operation. Operations that can be simultaneously
executable can be lined up vertically. Each gate is written as in the images in Fig. 2.1. Each
single-qubit gate is appended in the line (qubit) where it performs. Each controlled-G gate is
written over the two lines where it performs; a dot is depicted in the control bit, the G is shown
in the target bit, and the vertical line is displayed between the control qubit and the target qubit.
As an example, we visualize the following operations in three qubits in Fig. 2.2:

1. Operate H gate to the first qubit.

2. Operate Y gate to the second qubit.
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Figure 2.2: An example of the quantum circuit.

Figure 2.3: A decomposition of the Toffoli gate.

3. Operate CNOT gate to the first and the third qubits with the first qubit as the controlled
qubit.

Universal quantum gates

The other unitary operations are built from the single-qubit and the two-qubit gates. For exam-
ple, the controlled-NOT operation with two control qubits, which performs NOT to the target
qubit only if the state of control qubits are |11〉, can be built as shown in Fig. 2.3; the three-qubit
operation is called the Toffoli gate. Similarly, controlled operations with multiple control qubits
can be built from single-qubit and two-qubit gates.

The swap operation is also an important operation implementable with multiple gates. The
swap operation Swap(i, j) swaps the i-th qubit and the j-th qubit in the sense that each basis
state |k1k2 · · · ki · · · kj · · · kn〉 is transformed as

Swap(i, j)|k1k2 · · · ki · · · kj · · · kn〉 = |k1k2 · · · kj · · · ki · · · kn〉. (2.15)

The swap gate is implementable by using three CNOT gates, which is shown in Fig. 2.4.
Beyond those operations, it is well-known that certain combinations of the single-qubit and

the two-qubit gates can approximate any unitary operations to arbitrary accuracy. If combina-
tions of a set of gates can approximate any unitary operations to arbitrary precision, the gate set is
said to be an universal quantum gates. One example of the universal gate set is {CNOT,H,S,T}
[19].

Note that even though the limited gate set can be universal, it generally requires an expo-
nential number of gates to implement an arbitrary unitary operation. Thus, for reducing the
number of gates, we do not need to restrict ourselves to use only the universal gate set; instead,
we use various gates such as the ones listed in Fig. 2.1 to implement desired unitary operations.

2.1.3 Measurement

We need measurements to extract the final result of the computation since we cannot efficiently
extract the quantum state itself. Recall that in quantum mechanics, the measurements are
described by using the positive operator-valued measure (POVM). POVM is a set of positive
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Figure 2.4: The implementation of the swap gate.

semi-definite operator {Ej}Jj=1 that satisfies

J∑
j=1

Ej = I. (2.16)

Each index j corresponds to each measurement outcome. Given ρ as the density matrix corre-
sponds to the final state, the probability that j-th outcome is obtained is given by Tr(ρEj). Since

Ej is positive semi-definite, there exists an operator Mj =
√
Ej , namely, Mj =

∑
k

√
λjk|ek〉〈ek|

with {λkj } and {|ek〉} as eigenvalues and eigenvectors of Ej . By using Mj , we can write the state
after observing j-th outcome as

ρj =
MjρM

†
j

Tr(ρEj)
. (2.17)

For example, in a two-qubit system, let us define the following POVM:

E1 = |00〉〈00|
E2 = |01〉〈01|
E3 = |10〉〈10|+ |11〉〈11|,

(2.18)

then
M1 = E1,M2 = E2,M3 = E3. (2.19)

If the quantum state is 1√
2
(|00〉+ |11〉), the corresponding density matrix is given by

ρ =
1

2
(|00〉+ |11〉)(〈00|+ 〈11|), (2.20)

and therefore, the probabilities that the measurement outcomes corresponding to E1, E2, E3 are

Tr(E1ρ) =
1

2
, Tr(E2ρ) = 0, Tr(E3ρ) =

1

2
(2.21)

respectively. Also, the density matrix after E1 is measured, is given by

ρ1 =
1
2 |00〉〈00|

1
2

= |00〉〈00|, (2.22)

and similarly, the density matrix after E3 is measured is

ρ3 =
1
2 |11〉〈11|

1
2

= |11〉〈11|. (2.23)

In the quantum computation, measurements are performed in the computational basis, where the
POVM is given by {|i1i2 · · · in〉〈i1i2 · · · in|} (i1, i2 · · · = 0 or 1). Still, it should be noted that the
measurement regarding the other POVMs is possible by rotating the final state ρ. The quantum
circuit corresponding to the computational basis measurement of a qubit is drawn as in Fig. 2.5.
In Fig. 2.5, the Hadamard gate is firstly operated to one qubit, and then the state is measured
on the computational basis.
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Figure 2.5: Computational measurement

2.2 Noisy quantum operations

Up to this point, we have proceeded with our discussion by implicitly assuming that no noise
is introduced into the calculation results. However, the calculation is subject to noise in reality,
which distorts the computational results. In the presence of noise, quantum state transitions
would be performed by quantum operations rather than unitary transformations. In general, the
quantum operation E is the function that maps density matrix ρ as:

ρ′ = E(ρ). (2.24)

In noiseless case, the map E is
E(ρ) = UρU†, (2.25)

with an unitary operator U .
Normally, we assume that noise affects quantum states after each quantum gate is operated

to the state. Namely, given the unitary quantum operation and the noise quantum operation
corresponding to k-th gate as Uk and Ek, the quantum operation for performing K gates to the
initial state ρin can be written as

E(ρin) = EK ◦ UK ◦ · · · E2 ◦ U2 ◦ E1 ◦ U1(ρ), (2.26)

where A ◦B denotes the composition function of A and B. Note that given an unitary operator
corresponding to k-th gate as Uk, the unitary quantum operation Uk can be written as

Uk(ρ) = UkρU
†
k . (2.27)

Operator-sum representation

There is various ways to represent the function E , one of which is the operator-sum representation.
In the operator sum representation, the map is expanded as

E(ρ) =
∑
j=0

KjρK
†
j . (2.28)

As long as the map does not change the trace of the density matrix, we obtain

Tr

∑
j=0

KjρK
†
j

 = 1, (2.29)

for all density matrix ρ. Therefore, ∑
j=0

KjK
†
j = I. (2.30)

It is well known that this representation can describe a wide variety of noise properties.

Examples of noisy quantum operations

Phase flip

The phase flip is the quantum operation that can be written as

K0 =
√

1− p
(

1 0
0 1

)
, K1 =

√
p

(
1 0
0 −1

)
, (2.31)
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in the operator-sum representation with p as a real number satisfying 0 ≤ p < 1. For example,
given an arbitrary single-qubit pure state as |ψ〉 = α|0〉 + β|1〉, the noise quantum operation to
the quantum state is

E(|ψ〉〈ψ|) = (1− p)|ψ〉〈ψ|+ p|ψ′〉〈ψ′|, (2.32)

where
|ψ′〉 = α|0〉 − β|1〉. (2.33)

Therefore, the phase flip quantum operation flips the sign of the amplitude regarding the quantum
state |1〉 with the probability p.

Amplitude damping

The amplitude dumping is the quantum operation with the operator-sum representation:

K0 =

(
1 0
0
√

1− p

)
, K1 =

(
0
√
p

0 0

)
. (2.34)

The effect of the noise quantum operation to an arbitrary single-qubit state is

E(|ψ〉〈ψ|) =

(
1 0
0
√

1− p

)(
|α|2 αβ∗

α∗β |β|2
)(

1 0
0
√

1− p

)
+

(
0
√
p

0 0

)(
|α|2 αβ∗

α∗β |β|2
)(

0 0√
p 0

)
=

(
|α|2 + p|β|2

√
1− p αβ∗√

1− p α∗β (1− p)|β|2
)
.

(2.35)

Depolarization

The depolarization is the quantum operation with the operator-sum representation:

K0 =

√
1− 3p

4
I,K1 =

√
pX,K2 =

√
pY,K3 =

√
pZ. (2.36)

The resulting quantum operation is written as

E(ρ) = (1− p)ρ+
p

2
I. (2.37)

.

Fault torrent quantum computation

Even if each p in the above examples is small, the effect of noise increases as the number of gates
increase, which makes the computational results unreliable. For the reliable computation, device
developers are trying to reduce the effect of noise in each gate.

However, to obtain reliable computational results, we do not need to reduce the noise to
exact zero because there is a technique called the fault torrent computation. In the fault torrent
computation, information that can be expressed by one qubit is redundantly embedded into
multiple qubits. Even when some errors occur during the computation, the error-correcting
function corrects the quantum state, and as a result, reliable quantum computation is possible.
For more detail, please see a recent review [59].

2.3 Quantum algorithms

Now let us review a quantum algorithm for demonstrating the power of quantum computation.
The quantum algorithm we review here is the quantum phase estimation [18, 19], which is the
essential quantum algorithm that has various applications such as prime factoring. The quantum
phase estimation requires the quantum Fourier transform (QFT) [19] as its submodule. Thus,
we first review QFT and next review the quantum phase estimation in the following.
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2.3.1 Quantum Fourier transform

The Fourier transform is a useful mathematical tool for classical computing. The quantum
counterpart of the transform is said to be the quantum Fourier transform (QFT). Specifically,
QFT is the unitary opertion UQFT that transforms an arbitrary computational basis state |j〉 as

UQFT|j〉 =
1√
N

N−1∑
k=0

e2πikj/N |k〉, (2.38)

where N = 2n with n as the number of qubits. The indices j and k are the decimal representation
of binary bits; for example |4〉 ≡ |100〉 in three-qubit state. If we build the transformation UQFT,
we can transform an arbitrary n-qubit state |ψ〉 =

∑
j αj |j〉 as

UQFT|ψ〉 =
1√
N

N−1∑
j=0

αjUQFT|j〉

=

N−1∑
k=0

yk|k〉,

(2.39)

where

yk =

N−1∑
j=0

e2πikjαj . (2.40)

We can easily check that the inverse operation of UQFT works as follows:

U†QFT|k〉 =
1√
N

N−1∑
`=0

e−2πik`/N |`〉. (2.41)

Implementation

As a preparation, we write the binary representations of |j〉 and |k〉 as |j1j2 · · · jn〉 and |k1k2 · · · kn〉
respectively. The important building blocks for the Fourier transform is the following phase shift
gate

Rk ≡ P (2πi/2k) =

(
1 0

0 e2πi/2k

)
. (2.42)

Let us also write the controlled-Rk operation as CRk(x, y), where x is the index for the controlled
qubit, and y is the index for the target qubit.

The process of QFT is separated into n-stages. Let us write |ψ(s)〉 as the quantum state
after s stage, where |ψ(0)〉 = |j〉. In s-th stage, the quantum state is transformed as

|ψ(s)〉 = Ufs |ψ(s− 1)〉, (2.43)

where

Ufs =

(
n−s+1∏
k=2

CRk(s+ k − 1, s)

)
(Is−1 ⊗H ⊗ In−s−1) (2.44)

For example, in the first stage,

|ψ(1)〉 = CRn(n, 1) · · ·CR3(3, 1)CR2(2, 1)(H ⊗ In−1)|ψ(0)〉. (2.45)

With this definition of the operation in each stage, the following theorem holds:

Theorem 1. Suppose that the transformation at n-th stage is given by (2.43), and |ψ(0)〉 = |j〉.
Then for 1 ≤ s ≤ n,

|ψ(s)〉 =
1√
2n

(
s∏

a=1

(
|0〉+ e2πi0.jaja+1···jn |1〉

))
|js+1 · · · jn〉, (2.46)
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where the product is defined by

s∏
a=1

(
|0〉+ e2πi0.jaja+1···jn |1〉

)
=
(
|0〉+ e2πi0.j1j2···jn |1〉

) (
|0〉+ e2πi0.j2···jn |1〉

)
· · ·⊗

(
|0〉+ e2πi0.jsjs+1···jn |1〉

)
.

(2.47)

In the theorem, we follow the convention in [19] that writes a number
∑n
a=1 2−aja as its binary

representation 0.j1j2 · · · jn. For example 0.11 in binary representation denotes 1/2 + 1/4 = 3/4
in decimal and 0.101 denotes 1/2 + 1/8 = 5/8 in decimal.

Proof. We inductively prove the theorem. First, we prove the theorem in case of s = 1. The
Hadamard gate operates to the initial state |ψ(0)〉 as

H|ψ(0)〉 = (H|j1〉)|j2 · · · jn〉 =
1√
2

(
|0〉+ e2πi0.j1 |1〉

)
|j2 · · · jn〉. (2.48)

Then, the operations of CRk(k, 1) recursively add the phase to |1〉 state in the first qubit as

CR2(2, 1)(H|j1〉)|j2 · · · jn〉 =
1√
2

(
|0〉+ e2πi0.j1e2πij2/2

2

|1〉
)
|j2 · · · jn〉

=
1√
2

(
|0〉+ e2πi0.j1j2 |1〉

)
|j2 · · · jn〉,

CR3(3, 1)CR2(2, 1)(H|j1〉)|j2 · · · jn〉 =
1√
2

(
|0〉+ e2πi0.j1j2e2πij3/2

3

|1〉
)
|j2 · · · jn〉

=
1√
2

(
|0〉+ e2πi0.j1j2j3 |1〉

)
|j2 · · · jn〉,

...

|ψ(1)〉 = CRn(n, 1) · · ·CR2(2, 1)(H|j1〉)|j2 · · · jn〉 =
1√
2

(
|0〉+ e2πi0.j1j2···jn |1〉

)
|j2 · · · jn〉,

(2.49)

which concludes the proof of the case when s = 1.
From the induction hypothesis, (2.46) holds for s = t (t < n). Then, the operation of the

Hadamard gate to the t+ 1-th qubit of |ψ(s)〉 can be written as

Is ⊗H ⊗ In−1−s|ψ(s)〉 = |φ(t)〉(H|jt+1〉)|jt+2 · · · jn〉,
= |φ(t)〉(|0〉+ e2πi0.jt+1 |1〉)|jt+2 · · · jn〉,

(2.50)

where

|φ(t)〉 ≡ 1√
2t

t∏
a=1

(
|0〉+ e2πi0.jaja+1···jn |1〉

)
. (2.51)

Similar as (2.49), CRk(k, t+ 1) recursively append the phase to |1〉 state in the t+ 1-th qubit as

CR2(2, t+ 1)(H|jt+1〉)|jt+2 · · · jn〉 =
1√
2
|φ(t)〉

(
|0〉+ e2πi0.jt+1e2πijt+2/2

2

|1〉
)
|jt+2 · · · jn〉

=
1√
2
|φ(t)〉

(
|0〉+ e2πi0.jt+1jt+2 |1〉

)
|jt+2 · · · jn〉,

CR3(3, t+ 1)CR2(2, t+ 1)(H|j1〉)|jt+2 · · · jn〉 =
1√
2
|φ(t)〉

(
|0〉+ e2πi0.jt+1jt+2e2πijt+3/2

3

|1〉
)
|jt+2 · · · jn〉

=
1√
2
|φ(t)〉

(
|0〉+ e2πi0.jt+1jt+2jt+3 |1〉

)
|jt+2 · · · jn〉,

...

CRn(n, t+ 1) · · ·CR2(2, t+ 1)(H|j1〉)|j2 · · · jn〉 =
1√
2
|φ(t)〉

(
|0〉+ e2πi0.jt+1jt+2···jn |1〉

)
|jt+2 · · · jn〉.

(2.52)

Thus, Eq. (2.46) holds for s = t+ 1, which concludes the proof of the theorem.
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Figure 2.6: The quantum circuit for UQFT when the number of qubits is five.

As a result of the n-stage operations, we obtain

|ψ(n)〉 =
1√
2n

(
|0〉+ e2πi0.j1j2···jn |1〉

) (
|0〉+ e2πi0.j2···jn |1〉

)
· · ·
(
|0〉+ e2πi0.jn |1〉

)
. (2.53)

Given an operation that swaps j-th qubit with n− j-th qubit for all j(< n/2) as SWAP ,

|ψ′(n)〉 = SWAP |ψ(n)〉 =
1√
2n

(
|0〉+ e2πi0.jn |1〉

)
· · ·
(
|0〉+ e2πi0.j2···jn |1〉

) (
|0〉+ e2πi0.j1j2···jn |1〉

)
.

(2.54)
The coefficient of the basis |k〉 = |k1k2 · · · kn〉 in |ψ′(n)〉 is given by

〈k1k2 · · · kn|ψ′(n)〉 =
1√
2n
eiγ ,

γ = 2πi (k10.jn + k20.jn−1jn + k30.jn−2jn−1jn + · · · kn0.j1)

=
2πi

N

[
k12n−1jn + k2(2n−1jn−1 + 2n−2jn) + · · · kn(2n−1j1 + 2n−2j2 + · · ·+ jn)

]
=

2πi

N

n−1∑
a=0

(
2ajn−ak − 2n

a∑
b=1

ka−b+12b−1

)

=
2πijk

N
+ 2πiN1,

(2.55)

with N1 as an integer. Thus, |ψ′(n)〉 is the quantum Fourier transform of the basis |j〉 given in
(2.38), and

UQFT = (SWAP )UfnU
f
n−1 · · ·U

f
1 . (2.56)

In Fig. 2.6, we show the quantum circuit for implementing UQFT when the number of qubits is
five.

2.3.2 Quantum phase estimation

Given an unitary operator as U and its eigenstate as |u〉, the following holds

U |u〉 = e2πiγ |u〉 (2.57)

in general, where γ is a phase that takes a real number (0 ≤ γ < 1). The quantum phase
estimation is an algorithm to obtain the value of the phase γ. First, we assume that we can
prepare the eigenstate |u〉, and later we relax the condition. We also assume that Controlled-U2j

(j = 0, 1, · · · , n) operation is implementable.
In the phase estimation, we prepare the following state as

|φ(0)〉 = (H⊗q|0〉⊗n)|u〉 =
1√
2q

(|0〉+ |1〉)⊗q |u〉. (2.58)
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There are two stages for the phase estimation: the first stage is the sequencial operations of the
controlled-U2j gates, and the second stage is the operation U†QFT. Suppose that we write the

controlled-U2j operation as CUj(x), where x is the index of the control qubit and U2j is operated

to the last w qubits with w as the number of qubits in |u〉. Conversely, CUj(x) operates U2j to
the last w qubits only if the x-th qubit is |1〉. Then, the output of the first stage |φ(1)〉 is written
as

|φ(1)〉 = CUq−1(1) · · ·CU2(q − 2)CU1(q − 1)CU0(q)|φ(0)〉. (2.59)

Each controlled-U2j operation sequentially append phases to the first n-qubits as follows:

CU0(q)|φ(0)〉

=
1√
2q

(|0〉+ |1〉)⊗q−1(|0〉|u〉+ |1〉U20

|u〉)

=
1√
2q

(|0〉+ |1〉)⊗q−1(|0〉+ e2πi20γ |1〉)|u〉

CU1(q − 1)CU0(q)|φ(0)〉

=
1√
2q

(|0〉+ |1〉)⊗q−2(|0〉+ e2πi21γ |1〉)(|0〉+ e2πi20γ |1〉)|u〉

...

CUq−1(1) · · ·CU2(q − 2)CU1(q − 1)CU0(q)|φ(0)〉

=
1√
2q

(|0〉+ e2πi2q−1γ |1〉)(|0〉+ e2πi2q−2γ |1〉) · · · (|0〉+ e2πi20γ |1〉)|u〉

=
1√
2q

2q−1∑
k=0

e2πikγ |k〉|u〉.

(2.60)

The second stage is the operation of U†QFT to the first q-qubits. By utilizing (2.41), we obtain

|φ(2)〉 = U†QFT ⊗ Iw|φ(1)〉 =
1√
2q

2q−1∑
k=0

e2πikγ(U†QFT|k〉)|u〉

=
1

2q

2q−1∑
k=0

2q−1∑
`=0

e2πik(γ−`/2q)|`〉|u〉.

(2.61)

If γ = Nγ/2
q with some integer 0 ≤ Nγ < N ,

N−1∑
k=0

e2πik(γ−`/2q) = 2qδNγ`, (2.62)

and therefore,

|φ(2)〉 =

2q−1∑
`=0

δNγ`|`〉|u〉 = |Nγ〉|u〉. (2.63)

Thus, the measurement result of the first n-qubit always returns Nγ , which gives γ. Note that
even when γ cannot be written in the form of Nγ/2

q, it is known that we obtain the nearest
integer to 2qγ with high probability. The quantum circuit for the phase estimation in case that
q = 5 is written in Fig. 2.7.

The number of gates required for implementing the quantum phase estimation is O(2q) as
long as we need to implement U2q as the 2q repetition of the operation U . In some algorithms,
such as the prime factoring, U2q is implementable by utilizing O(q3) gates [2]. In this case, the
total number of gates for implementing the quantum phase estimation is also O(q3) since for

implementing U†QFT, only O(q2) gates are needed.
In the above, we assume that we can prepare the eigenstate of U as |u〉. Even without the

assumption, the same approach estimates the phases of an arbitrary initial state. Suppose that
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Figure 2.7: The quantum circuit for the quantum phase estimation when q = 5.

the set of the eigenstates of U is given by {|φj〉}, and the corresponding eigenvalues are given by
{γj}. If we prepare |φ〉 as the initial state, it can be expanded as

|φ〉 =

2w∑
j=1

xj |φj〉. (2.64)

Given the unitary operation for the phase estimation as UPE,

UPE|0〉⊗n|φ〉 =

2w∑
j=1

xj |Nγj〉|φj〉, (2.65)

here we assume that 2qγj is an integer. Thus, by the computational measurement of the first
n-qubits, we obtain the value of γj and its eigenstate |φj〉 with the probability |xj |2.

Finding the ground state energy of a Hamiltonian

One of the application of the phase estimation is finding the ground state of a given Hamiltonian
H. More precisely, the problem is finding the following |φ0〉 and E0:

H|φ0〉 = E0|φ0〉, (2.66)

where E0 is the minimum eigenvalue of H. The problem can be rewritten in the following form:

eiHt|φ0〉 = eiE0t|φ0〉. (2.67)

Thus, if we can prepare |φ0〉 and implement eiHt by the quantum circuit efficiently, we can solve
the problem by using the quantum phase estimation. In reality, we need careful treatment for
the initial state preparation and the implementation of eiHt.

As for the initial state preparation, if we prepare a state |0〉⊗q|φ〉 = |0〉⊗q
∑2w

j=0 xj |φj〉,
then the probability that we obtain the eigenstate with the minimum energy as a result of the
measurement is |x0|2 after the phase estimation. Thus, for getting the target state with high
probability, we need to prepare the state |φ〉 that has enough overlap with |φ0〉, which depends
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on the problems; for example, in quantum chemistry, the adiabatic state preparation is a method
to prepare a good initial state [60].

An important technique to efficiently implement eiHt is the one using the Lie-Trotter-Suzuki
decomposition [61]. Hamiltonians we often have interests, such as the ones in the quantum
chemistry, can be written in the form of

H =

M∑
j=1

hj , (2.68)

where eihjt is implementable with polynomial number of qubits (see [62]). The first order of the
Lie-Trotter-Suzuki decomposition of eiHt is

eiHt =

 M∏
j=1

eihjt/S

S

+O(t2/S), (2.69)

where we can arbitrary choose S; the first term in the right hand side is implementable by using
polynomial number of circuits. If we choose S as S = ε/t2, then the approximation error becomes
O(ε). We implement the first term of (2.69) instead of eiHt.

Other algorithms utilizing the phase estimation

We saw the power of the quantum phase estimation above. There are other critical applications
of utilizing phase estimation.

One of the essential algorithms is the Shor’s algorithm [2] for prime factoring. By taking
advantage of the feature that CUj(·) in the prime factoring is implementable with O(j3) gates, the
computational complexity of the quantum algorithm is exponentially smaller than the classical
counterpart. Also, Harrow-Hassidim-Lloyd (HHL) algorithm [63] effectively uses phase estimation
to solve linear equations.
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Chapter 3

Noisy intermediate-scale quantum
computers and variational
quantum algorithms

In the previous chapter, we reviewed some powerful quantum algorithms that outperform each
classical counterpart. To execute those algorithms, we need ideal quantum computers that have
O(1000) qubits available for the computation, few noise, long coherence time, and the error
correction functions. However, such ideal quantum computers will not be available for several
decades due to the difficulty of the development. In fact, current quantum computers are far from
the ideal devices; they have O(10) ∼ O(100) available qubits, much noise, short coherence time,
and no error correction functions. Such non-ideal quantum devices are called noisy intermediate-
scale quantum computers (NISQ) [16].

Researchers in the quantum computing community have been actively studying how to utilize
NISQ rather than waiting for the development of the ideal quantum computers for decades. The
key points of maximizing the functionality of NISQ are two-fold: (i) efficiently mitigating the
errors from the computational results and (ii) solving problems with a small number of gates.
The former is essential for making the final computational results reliable, while the latter is
essential for reducing the noise. These two key points are targeted in many recent proposals for
NISQ utilization.

Based on the above, we review the researches regarding NISQ utilization in this chapter. In
Section 3.1, we will first see the limitation of NISQ. Then in Section 3.2, we review the method
called error mitigation for mitigating the noise, which corresponds to the key point (i). Note
that Section 3.2 does not directly relate with the rest of this thesis, but we add the section
for completeness. In Section 3.3, we review the variational quantum algorithm (VQA) realizing
quantum computation processes with fewer gates, which corresponds to the key point (ii). Even
though VQA is arguably the most important NISQ algorithm, there exist critical scalability issues
in VQA. We discuss the issues in Section 3.4. Possible solutions to the issues are discussed in
Chapter 6.

3.1 Limitation of the near-term devices

Various types of quantum computers are now being actively developed. One of the most promis-
ing quantum computers is one with superconducting qubits; companies such as IBM, Google,
Microsoft, etc., are now working on developing superconducting quantum computers. As we note
above, the devices are far from the ideal device, and there are many limitations of the current
devices. In the following, we see those limitations with the example of superconducting qubits.
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Figure 3.1: An example of the qubit connectivity in superconducting quantum computers. Each number in
the figure corresponds to the label of each qubit, and the black bars between each pair of qubits show that
two-qubit operations are executable in the pair.

3.1.1 Limited number of qubits

The apparent limitation of NISQ is the number of qubits. Currently, the number of qubits
available for computation in quantum computers is O(10), and may go to O(100) in the near
future. The limited number of qubits result in the two consequences.

First, the execution of many important quantum algorithms such as factorization does not
have a quantum advantage over classical algorithms. Even if there is exponential speed-up, the
classical computational complexity is at most O(2n), where n is the number of qubits; if n is
small, O(2n) can be easily simulated by classical devices.

Second, the quantum error correction can not be used if the number of qubits is limited.
The error correction protocol requires several qubits per one logical qubit for adding redundancy.
Even if O(100) qubits are available in a device, only O(10) qubits are used for the computation
if we use the error correction, which makes the first point even worse; therefore, the execution of
the quantum error correction is unrealistic in NISQ.

3.1.2 Noise

In NISQ, errors in computations and the decoherence affect the computational results in the
noise. Since the noise cannot be corrected by the quantum error correction protocol mentioned
above, the effect of noise is directly reflected in the computational results.

Regarding the gate error, two-qubit gates are severer than single-qubit gates; the error rate
of the two-qubit gate is as large as O(10−3) [64–66] while that of single-qubit gate is O(10−4)
[67]. Consequently, the computational result after O(100) operations of CNOT gates can not be
trusted at all. In addition, the measurement operations also append sizable errors, which is also
a significant source of the error in the computational results.

We also need to care about the coherence time. The duration that a qubit maintains its
quantum state is called the coherence time; qubits decohere by interacting with their environment
and losing information about the original state. Since qubits gradually decohere, as the time
for computation becomes longer, the decoherence affects more badly the computational results.
Thus, the effect of decoherence also limits the number of gate operations.

3.1.3 Qubit connectivity

In NISQ, two-qubit operations are only executable in limited pairs of the qubits. If two-qubit
operations are executable in a pair of qubits, the pair is said to have the connection, and the
set of the pairs is called the qubit connectivity. In Fig. 3.1, we show an example of the qubit
connectivity in superconducting quantum computers. Each number in the figure corresponds
to the label of each qubit. The black bars between each pair of qubits show that two-qubit
operations are executable in the pair.

The limited connections between the qubits increase the number of two-qubit gates. For
example, suppose that the qubit connectivity is given by Fig. 3.1 and an algorithm requires a
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Figure 3.2: CNOT operation between q1 and q4 when the qubit connectivity is given by Fig. 3.1.

CNOT gate between the qubit with label 1 (q1) and the qubit with label 4 (q4), where q1 is the
control and q4 is the target. Since we can not directly execute the CNOT gate between these
qubits, we need to construct an equivalent operation in another way, which is done by utilizing
the qubits with label 2 (q2) sand label 3 (q3). The resulting circuit is drawn in Fig. 3.2. We see
that we use two-qubit operations only between pairs of connected qubits. Notably, the number
of CNOT gates becomes eight times larger than when there is a connection between q1 and q4. In
this way, the number of two-qubit gates considerably increases in NISQ, where the connections
are limited.

3.2 Error mitigation

Here we review some of the protocols to mitigate the error from the computational results. Most
error mitigation protocol aims to remove the effect of noise on the expectation value of observables
rather than recovering the ideal quantum state. Namely given an ideal final state not affected by
noise as ρideal, and an observable as O, the goal of the error mitigation is recovering the following
property Tr(ρidealO) from the measurement results in a noisy environment.

3.2.1 Measurement error mitigation

One of the important source of errors is appended in the measurement. Given a set of POVM
operators as {Ek}NPk=1 with NP as the number of POVM elements, the probability that the k-th
element is observed is written as

pk = Tr(Ekρ), (3.1)

where ρ is the state to be measured. We assume that the probabilities p = {pk}NPk=1 are distorted
by noise as

p′ = Xp, (3.2)

where X is an invertible matrix corresponding to the effect of noise and p′ is the probability
distribution distorted by the noise [68]. If X = INP , then there is no noise in the measurement;
to the contrary, large off-diagonal elements correspond to the case where the effect of noise in
the measurement is large.

To obtain the ideal probability distribution p from distorted probability distribution p′, we
need to know the vector p. In fact, the matrix X is obtained by the quantum detector tomography
(QDT) under the assumption that the noise in the measurement of a qubit does not affect the
noise in the measurement of another qubit [68]. Once X is obtained, we may compute p by

p = X−1p′. (3.3)

The vector p might be unphysical, e.g., some elements of p are negative. In such case, p is
obtained by

p = arg min
pt∈QP

[p′ −Xpt] , (3.4)

where QP is the set of physical probability distribution with NP elements.

26



3.2.2 Zero noise extrapolation

There are several ways to mitigate the noise in the computational process. As one of the most
powerful tools, extrapolation error mitigation techniques are proposed. Here we review some of
such methods.

Richardson extrapolations

Let us assume that a quantum gate is distorted after the execution of p-th gate by the following
noise channel:

Ep = (1− ε(p))I + ε(p)Np, (3.5)

where I is the identity map, Np is p-th noisy map, and ε(p) is the p-th noise parameter. Also,
we assume that ε(p) takes the same value ε for all p. Then, given the expectation value of an
observable O when the noise parameter is ε as 〈O〉ε, the expectation value can be expanded to
Taylor series as

〈O〉ε = 〈O〉0 +

∞∑
k=1

Okε
k. (3.6)

In the Richardson extrapolation [69, 70], it is assumed that the noise parameter can be am-
plified without changing the noise channel N (ρ). There are several ways for error amplification.
One example is appending the extra gates that ideally do not change the computational results;
for example, two consequent CNOT gates to a certain pair of qubits do not change the com-
putational result ideally, but the extra noise is appended. Another example is the re-scaling of
the physical Hamiltonian for gate operations; namely, by slowing down the process of executing
quantum gates, the noise for each gate is amplified.

Suppose that we measure the observable in different noise parameters: ε = ε0 < ε1 < · · · <
εK . Then until the K-th order, we obtain

〈O〉εj = 〈O〉0 +

K∑
k=1

okε
k
j +O(εK+1), (3.7)

where {ok}Kk=1 ∈ R. In the matrix equation form,
1 ε0 ε20 · · · εK0
1 ε1 ε21 · · · εK1
...

...
...

. . .
...

1 εK ε2K · · · εKK



〈O〉0 +O(εK+1)

o1

...
oK

 =


〈O〉ε0
〈O〉ε1

...
〈O〉εK

 . (3.8)

By solving the equation, we obtain the ideal expectation value as

〈O〉0 =

K∑
k=1

αk〈O〉εk +O(εK+1), (3.9)

where {αk}Kk=1 ∈ R. Note that each αk increases exponentially as K becomes larger; therefore if
the number of measurements for estimating 〈O〉εk is fixed, the estimation error of 〈O〉0 increases
exponentially with the value of K. Thus, we need to set K to a small value.

Exponential extrapolations

Suppose that the noise channel after the p-th gate is written by

Ep = (1− ε)I + εNp (3.10)

as in the Richardson extrapolation case. In Richardson extrapolation, we implicitly assume that
the Talor expansion until K-th order well approximate the relationship between 〈O〉ε and 〈O〉0.
However, when the number of gates is large while ε is small, the Talor expansion does not capture
the relationship effectively, as we see in the following.
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Suppose that p-th noiseless gate operation is given by Up, then given the number of gate as
NG, the whole noisy gate operations is written by

E ≡ ENG ◦ UNG ◦ · · · ◦ E2 ◦ U2 ◦ E1 ◦ U1. (3.11)

Using (3.10), it holds that

E =

NG∑
k=0

εk(1− ε)NG−k
nk∑
q=1

Wk
q , (3.12)

where nk =

(
NG
k

)
and {Wk

j }
nk
j=1 are all the elements of the set Sk defined by

Sk =

W|W =

NG∏
j=1

XjUj ,Xj = I or Ej , the number of j that satisfies Xj = I is k

 . (3.13)

Then, by setting Wk =
∑nk
q=1W

k
q /nk, we obtain

E =

NG∑
k=0

(
NG
k

)
εk(1− ε)NG−kWk. (3.14)

In the limit that NG is large while NGε < 1, the Poisson limit theorem tells that(
NG
k

)
εk(1− ε)NG−k ' e−NGε (NGε)

k

k!
, (3.15)

and therefore

E ' e−NGε
NG∑
k=0

(NGε)
k

k!
Wk. (3.16)

Approximating the sum up to the first order of NGε, we obtain

E ' e−NGε(W0 +NGεW1 +O((NGε)
2)). (3.17)

Then the expectation value of the observable O when the error parameter is ε is computed as

〈O〉ε = e−NGε
(
〈O〉0 +NGεTr(OW1(ρ)) +O((NGε)

2))
)
, (3.18)

where ρ is the input state. If we can amplify the noise parameter to aε (a > 1),

〈O〉aε = e−NGaε
(
〈O〉0 +NGaεTr(OW1(ρ)) +O((NGε)

2))
)
. (3.19)

Combining (3.18) with (3.19), we obtain

〈O〉0 =
a〈O〉εeNGε − 〈O〉aεeNGaε

a− 1
+O((NGε)

2). (3.20)

The error mitigation protocol using this formula is called the exponential extrapolation [71, 72].
Note that the merit of expanding E as (3.17) is that we can include all order of e−NGε, while

the Taylor series expansion of E , which is utilized in the Richardson extrapolation only includes
the first order of e−NGε as

E ' W0 + (−NGW0 +NGW1)ε+O((NGε)
2). (3.21)

Thus, in case that we can use the approximation (3.16), it is more preferable to use the exponential
extrapolation than the Richardson extrapolation.
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3.3 Variational quantum algorithms

This section reviews the variational quantum algorithm (VQA) proposed to obtain the quantum
advantage in NISQ [23, 24]. VQA is the method to solve tasks by expressing them in the form
of the cost function minimization problems using parameterized quantum circuits. VQA is now
utilized in various problems, and they share some of the concepts. The variants of VQA are
also actively studied. One of the most promising variants is the quantum generative adversarial
network (QGAN).

In this chapter, we firstly review the basic concepts shared with almost all VQA applications
in Section 3.3.1. In Section 3.3.2 we review the applications of VQA. In Section 3.3.3, we review
QGAN, which is a promissing variant of VQA.

3.3.1 Basic concepts

The building blocks of VQA are the parameterized quantum circuit (PQC), the cost function,
and the optimizer. In the following, we firstly review those components one by one, and next,
we see how those components are combined in VQA.

Parameterized quantum circuit

PQC is a circuit where some of the gates are parameterized by θ; we write the circuit as U(θ).
How we embed parameters into the circuit depends on tasks. PQC with a specific structure is
called ansatz. There are two types of ansatz used in VQA. One type is the problem agnostic
ansatz, where prior knowledge is not reflected in the structure of the ansatz. Another type is
the ansatz tailored for specific problems, e.g., the unitary coupled-cluster ansatz [73]. Since the
problem agnostic ansatz is now actively examined due to its broad applicability, we focus on it
in the subsequent section. The most typical ansatz among the problem agnostic ansatz is the
hardware efficient ansatz, which we show the detail in the following.

Hardware efficient ansatz

The hardware efficient ansatz [25] consists of multiple layers of single-qubit rotation gates
and the entangler that entangles all qubits. Concretely suppose that the number of layers is L
and the unitary operator corresponding to the `-th layer is U`(θ

`), then the unitary operator
corresponding to the hardware efficient ansatz is given by

U(θ) =

L∏
`=1

U`(θ
`), (3.22)

where U`(θ
`) can be decomposed as

U`(θ
`) = WV (θ`), (3.23)

with V (θ`) corresponding to the single-qubit gates and W corresponding to the entangler. In
the single-qubit gate, the j-th parameter is embedded as exp(iθjσj), where σj is one of the Pauli
operators. In many of the settings V (θ`) is the tensor product of the single-qubit rotation gates;

V (θ`) = exp(iθ`1σ
`
1)⊗ exp(iθ`2σ

`
2)⊗ · · · ⊗ exp(iθ`nσ

`
n), (3.24)

where θ`j is the j-th parameter in the `-th layer and σ`j is again one of the Pauli operators. We
show an example of the structure of the hardware efficient ansatz in Fig. 3.3, which is depicted
by using [74]. As we see in the figure, we do not use any knowledge to build the structure of the
hardware efficient ansatz.

Note that the hardware efficient ansatz characteristics that each entangler only entangles
neighboring qubits is suitable for the execution in current superconducting quantum computers
where the connection between qubits is limited as in Fig. 3.1. On the contrary, we need many long-
range interactions between qubits in general to implement ansatz tailored for problems; namely,
we need many two-qubit operations between qubits not directly connected, which requires an
unignorable amount of swap gates.
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Figure 3.3: The structure of the hardware efficient ansatz when the number of qubits is six and the number
of layers is six.

Cost function

The cost function in VQA is the function to be minimized, which is often computed by

C(θ) = Tr(ρU(θ)†OU(θ)) (3.25)

with an Hermitian observable O and an input state ρ. We update the parameters in the direction
that C(θ) decreases, and after enough iterations we obtain the optimal parameter θ∗.

The cost function is chosen so that minimization of the cost function corresponds to the
solution to the target problem. For example, if the problem we want to solve is finding the
minimum energy of a Hamiltonian H, the observable and the input state is chosen to be O = H
and ρ = (|0〉〈0|)⊗n, where n is the number of qubits. The minimum energy obtained as the
solution of VQA is C(θ∗) = Tr(ρU(θ)†OU(θ)).

Optimizer

To find the optimal parameters θ∗ we iteratively update the parameters θ as θ(0) → θ(1) →
· · · → θ(T ), where θ(k) are the parameters at the k-th iteration step and T is the final iteration
step. The component to find the parameters θ(t + 1) from θ(t) is called the optimizer. The
gradient-based optimizers are used in many of the problems.

The gradient-based optimizers utilize the gradient vector of the cost function, which is given
by {∂C(θ)/∂θj}Pj=1 where P is the number of parameters. The gradient vector can be computed
by using the following parameter shift rule [75]:

∂C(θ)

∂θj
= C(θ(j+))− C(θ(j−)), (3.26)

where the elements of θ(j±) are given by

θ
(j±)
k =

{
θk (k 6= j)

θk ± π/2 (k = j)
(3.27)

under the condition that the j-th parameter θj is embedded into the quantum circuit as exp(−iθjΣ/2)
with Σ as the Hermitian operator satisfying Σ2 = I. In the rest of this thesis, we assume that the
condition for the parameter-shift rule is satisfied because ansatz we have interests, such as the
hardware efficient ansatz, satisfy the condition. In the practical situation we can not exactly esti-
mate the value of the gradient, but by using the O(M) measurements of C(θ(j+)) and C(θ(j−)),
we can estimate the value of the gradient within O(1/

√
M) error with high probability.

The most important gradient-based optimizer is the stochastic gradient descendent (SGD)
where each parameter is updated by the following rule:

θ(t+ 1)j = θ(t)j − η
∂C(θ)

∂θj

∣∣∣∣
θ=θ(t))

, (3.28)
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Figure 3.4: The overview of the VQA when using the gradient descent optimizer.

where η is called learning rate that we can freely choose. There are also many variants of the
SVD optimizer; for example, Adam [76], which is originally proposed for the classical machine
learning, is one of the SGD optimizer.

Combining the above-discussed components, we can write down the process of VQA. Initially,
we determine the ansatz and the cost function, so the minimization of the cost corresponds to
the problem’s solution. Then we initialize the parameters in the ansatz; there are various ways
of initialization, such as random initialization. The optimizer updates the parameters according
to its rule. For example, suppose we use a gradient-based optimizer. In that case, the gradient
vector of the cost function is computed, and the parameters are updated for the direction of the
gradient vector as in (3.28). The update of the parameters is repeated until convergence. The
parameters, the value of the cost function, and the value of the quantum state generated by the
circuit at the final iteration are the output of VQA. In Fig. 3.4 we show the overview of VQA
when using the gradient descent optimizer.

Note that classical devices execute the computation of finding the new parameters. In con-
trast, quantum computers compute the cost function or the gradient vector. It should also be
noted that we can choose the number of gates in the ansatz; if the number of gates is small, then
the noise can be reduced, which is why VQA is expected to be executable in NISQ.

3.3.2 Applications

Variational quantum eigensolver

The variational quantum eigensolver (VQE) is an algorithm to find the minimum eigenvalue and
corresponding eigenstate of a Hamiltonian. More precisely, given a Hamiltonian as H the goal of
VQE is finding the solution that satisfies

H|φ〉 = E0|φ〉, (3.29)

where E0 is the minimum eigenvalue of the Hamiltonian and |φ〉 is the corresponding eigenstate.
Note that finding such a solution is especially important in the quantum chemistry [3–6], where H
is the molecule’s Hamiltonian. As we can see, if the dimension of the Hilbert space is exponentially
large, the problem is difficult to be solved by any classical devices.

It can be easily checked that by using the phase estimation algorithm, which we discussed in
Section 2.3.2, we efficiently find the solution. However, the phase estimation algorithm requires
the inverse Fourier transform, which requires many controlled operations and is intractable in
NISQ.
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To find the solution by NISQ, VQE is proposed as a method that does not use phase es-
timation. In the algorithm, the cost function C(θ) is given by the expectation value of the
Hamiltonian; namely

C(θ) = Tr(ρU†(θ)HU(θ)), (3.30)

where U(θ) is the unitary operator corresponding to PQC and ρ is a pure input state: ρ =
|Φin〉〈Φin|. Then given the optimal parameters as θ∗, the minimum eigenvalue is given by C(θ∗)
and the corresponding eigenstate is given by U(θ∗)|Φin〉. From the parameter-shift rule (3.26),
we can compute the gradient vector as

∂C(θ)

∂θj
= Tr(ρU†(θ(j+))HU(θ(j+)))− Tr(ρU†(θ(j−))HU(θ(j−))). (3.31)

The update of the parameters is often performed by using the gradient descendant with this
gradient formula.

Quantum circuit learning

The variational quantum algorithm is also used for machine learning problems. As one of the
essential variational quantum algorithms in machine learning, we review the quantum circuit
learning (QCL)[77] in the following. Before going into the detail of QCL, let us review the
supervised machine learning problem settings.

Supervised learning

Supervised learning is one of the most important machine learning tasks, whose goal is
building a functional approximator or a classifier from a labeled training dataset. There are
various real-world supervised learning applications, such as image processing, object recognition,
and natural language processing.

In supervised machine learning, the training dataset denoted by {xk,yk}Mk=1 is given, where
xk and yk are the k-th input vector and the label vector respectively, and M is the number of
the training data. The supervised learning is the task to find the function that correctly maps an
input vector to an label vector. More precisely suppose that the training dataset is sampled from
the unknown data distribution D, then the supervised learning is the task to find the function f
that minimizes the following value

C(f) ≡ E(x,y)∼D[L(f(x),y)], (3.32)

where L(f(x)),y) is a distance measure between f(x) and y; therefore as f(x) predicts the label
vector correctly, the cost becomes small. An example of the distance measure is the following,
which is called as the mean squared error (MSE) given by

L(f(x),y) = ||f(x)− y||22, (3.33)

where || · ||2 is the L2-norm.
Normally we limit the function space to a parameterized function space F = {g|g = fmodel

θ ,θ ∈
RP }, where P is the number of parameters and fmodel

θ is a function whose dimension of the input
and output are same as the input vector and the label vector of the training dataset respectively.
The choice of the function form of fmodel

θ corresponds to the choice of the model, e.g. if we use
a neural network with a certain structure as the model, the function form of fmodel

θ , and hence
the function space F is determined. Then the problem of minimizing (3.32) is converted to the
problem of minimizing the following value

E(x,y)∼D[L(fmodel
θ (x),y)]. (3.34)

However, we can not directly obtain the solution of (3.34) because the distribution D is unknown.
Thus, we approximate the expectation value by using the given training dataset as

E(x,y)∼D[L(fmodel
θ (x)),y)] ≈ L(θ) ≡ 1

M

M∑
k=1

L(fmodel
θ (xk),yk). (3.35)
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Figure 3.5: The overview of the structure of fmodel
θ , when the model is DNN. The blue nodes correspond to

the input layer, and the red nodes correspond to the output layer.

We can update parameters by using an optimizer such as the gradient descendant (3.28) so that
(3.35) is minimized. The function L(θ) is called as the cost function.

As an example of fmodel
θ let us briefly introduce the deep neural network (DNN), which is

currently the most successful machine learning model. In DNN, the model function fmodel
θ is

constructed by a network of L layers. Let n` be the number of nodes (width) of the `-th layer
(` = 1 and ` = L correspond to the input and output layers, respectively). Then the input xj is
converted layer by layer to the output fmodel

θ (xj) in the following manner:

α(1)(xj) = xj ,

α(`)(xj) = σ(`)(α̃(`)(xj)),

α̃(`+1)(xj) =
1
√
n`
W (`)α(`)(xj) + ξb(`),

fmodel
θ (xj) = α(L)(xj),

(3.36)

where W (`) ∈ Rnl×nl−1 is trainable weight matrix and b(`) ∈ Rnl is trainable bias vector, and σ(`)

is the activation function in the `-th layer. The choices of each W (`), b(`) and σ(`) determine the
function structure of each DNN. We illustrate the overview of the structure of DNN in Fig. 3.5.

Note that the minimization of L(θ) may lead to the phenomenon called overfitting. For
example, suppose that the dimensions of both the input vector and the label vector is one, and
the training data is sampled from the following distribution D; the input x distributes under the
uniform distribution between 0 and 3π and the corresponding label y distributes as

y = sin(2x/3) + ε, (3.37)

where ε is sampled from the centerd Gaussian distribution with the standard deviation equals
to 0.2. Then obviously (3.34) is minimzed if and only if fmodel

θ (x) ∼ sin(2x/3) in x ∈ [0, 3π].
On the contrary there are many functions that minimize (3.35) including non-smooth function;
in Fig. 3.6 we show one of fmodel

θ (x) when (3.35) is almost minimized where M = 15 and L is
MSE. We see that although fmodel

θ (x) goes through most of the training data, it is not close to
sin(2x/3) at all, and therefore fmodel

θ (x) does not correctly predict the label unless the input x
coincides with one of the training data. For avoiding this issue, the regularization term Ω(θ),
which makes fmodel

θ (x) smooth, is often added to L(θ) as

LΩ(θ) ≡ L(θ) + Ω(θ) (3.38)

and LΩ is minimized instead of L(θ). One example of the regularization term is Ω(θ) = λ||θ||22
with a positive real value λ; in this case the value of LΩ become large if the norm of the parameter

33



Figure 3.6: An example of overfitting in a supervised machine learning problem.

vector is large, and therefore the norm of the parameter vector tends to become small as a result
of the optimization. Note that even though the strategy to use the regularization term works in
some cases, it is often difficult to design the term properly.

The algorithm of the quantum circuit learning

QCL is an algorithm using the quantum circuit for the supervised learning problem. In QCL,
the function fmodel

θ is defined by

fmodel
θ (x) ≡ Tr(ρxU(θ)†OU(θ)), (3.39)

whereO is an Hermite observable and ρx = U(x)|0〉⊗n〈0|⊗nU(x)† with U(x) as a unitary operator
that encodes an input vector x. The choice of the encoding circuit U(x) is arbitrary; one of the
choice is

U(x) = eiσzx1 ⊗ eiσzx2 ⊗ · · · ⊗ eiσzxn . (3.40)

In QCL, we can compute the cost function by (3.35) and the gradient vector by

∂L(θ)

∂θj
=

1

M

M∑
k=1

∂L(f,yk)

∂f

∣∣∣∣
f=fmodel

θ (xk)

∂Tr(ρxkU(θ)†OU(θ))

∂θj

=
1

M

M∑
k=1

∂L(f,yk)

∂f

∣∣∣∣
f=fmodel

θ (xk)

(
Tr(ρxkU(θ(j+))†OU(θ(j+)))− Tr(ρxkU(θ(j−))†OU(θ(j−)))

)
,

(3.41)
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where in the last line, we use the parameter-shift rule shown in (3.26). Using the gradient de-
scendant algorithm with this gradient vector, we update the parameters so that the cost function
is minimized.

In [77], it is claimed that the possible quantum advantage of QCL over classical algorithms is
that the model function of QCL (3.39) has a potential power to represent more complex functions
than its classical counterpart. On the contrary, subsequent studies [78] have shown that the
conditions under which the quantum advantage is achieved in QCL are stringent; namely, this
topic is an area of active discussion, and further research is needed in this regard.

Also, the possibility of overfitting is discussed in [77]. Concretely, it is inferred that QCL
is less likely to overfit compared to the classical counterpart because the model function (3.39)
is built by the unitary operator and the unitary constraint corresponds to the regularization
term. Even though no counterexamples have been shown so far, theoretical evidence is needed
for verifying this conjecture.

3.3.3 Quantum generative adversarial network

In this subsection, we review the quantum generative adversarial network (QGAN), which is
the variant of the variational quantum algorithm, and the quantum counterpart of the generative
adversarial network (GAN) [41] in classical machine learning. We first review the GAN algorithm,
and next, we show the detail of QGAN algorithms.

Generative adversarial network (GAN)

GAN is originally proposed as an algorithm to train generative models. A generative model
is a sampler trained by a dataset. What a generative model generates as a sampler depends on
the dataset; for example, a generative model becomes an image generator if trained by an image
dataset and becomes a text generator if it is trained by a document dataset. Normally the goal of
the training of the generative model is that the samples generated by the model become similar
to the training dataset. The generative model has various real-world applications such as the
image synthesis [79–86], the text generation [87–90], and the object recognition [91–93].

The most successful algorithm for training the generative model is GAN. GAN consists of two
adversarial components: a generator and a discriminator. The goal of the training is to obtain
a good generator as the generative model that generates samples similar to the training dataset.
The generator takes a set of random seeds as its input and transforms them into samples called
fake data. The discriminator receives either the fake data or the training data (real data) and
classifies them as ‘fake’ or ‘real’ exclusively. The discriminator is trained so that the true data is
classified as ‘real’ and the fake data is classified as ‘fake’. In contrast, the generator is trained so
that the fake data generated by the generator is classified as ‘real’ by the discriminator. Namely,
the generator is trained to fool the discriminator, and the discriminator is trained to identify
fakes. Surprisingly we obtain a good generator as a result of this adversarial training.

The training of GAN is formulated as follows. We denote the function corresponding to the
generator as G(z) and that corresponding to the discriminator as D(x), where x corresponds to
the fake/real data and z corresponds to random numbers. A random number is necessary because
if the generator does not take any random inputs, the generator’s output is always the same; by
taking the random numbers as its input, the generator can generate a wide variety of samples.
The dimension of G(z) is the same as the training data. The discriminator D(x) takes the value
between zero and one; zero means that the classification result is ‘fake,’ and one means that
that is ‘real.’ The generator and the discriminator implicitly have trainable parameters θ and θ′

respectively. Still, we do not show them for simplicity. The generator and the discriminator tend
to be implemented by deep neural networks. We denote the training dataset by X = {xjdata}Mj=1

and the corresponding random numbers as {zj}Mj=1.
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The cost function for the generator and its gradient is given by

LG(θ) = −
∫
dz logD (G(z)) p(z) = −Ez∼p(z)[logD(G(z))], (3.42)

∂LG(θ)

∂θk
= −

∫
dz

1

D (G(z))

∂D (g)

∂g

∣∣∣∣
g=G(z)

∂G(z)

∂θk
p(z), (3.43)

where p(z) is the distribution of the random numbers that we can freely choose, e.g., the Gaussian
distribution. In the practical training, we can not exactly compute the expectation value and
therefore we approximate the value by using M samples {xjfake}Mj=1 and random numbers {zj}Mj=1

as

LG(θ) ' − 1

M

M∑
j=1

logD(xjfake), (3.44)

∂LG
∂θk

' − 1

M

M∑
j=1

1

D
(
xjfake

) D (g)

∂g

∣∣∣∣
g=xjfake

∂G(z)

∂θk

∣∣∣∣
z=zj

. (3.45)

The cost function and the gradient vector for the discriminator is given by

LD(θ′) = −1

2

∫
dz [log(1−D(G(z))] p(z)− 1

2

∫
dx logD(x)q(x) (3.46)

= −1

2

(
Ez∼p(z)[log(1−D(G(z))] + Ex∼q(x)[logD(x)]

)
, (3.47)

∂LD(θ′)

∂θ′k
=

1

2

∫
dz

1

1−D(G(z))

∂D(G(z))

∂θ′k
p(z)− 1

2

∫
dx

1

D(x)

∂D(x)

∂θ′k
q(x) (3.48)

=
1

2
Ez∼p(z)

[
1

1−D(G(z))

∂D(G(z))

∂θ′k

]
− 1

2
Ex∼q(x)

[
1

D(x)

∂D(x)

∂θ′k

]
, (3.49)

where q(x) is unknown data distribution. The expectation values are also approximated by the
sum as follows:

LD(θ′) ' − 1

2M

M∑
j=1

[
log
(

1−D(xjfake)
)

+ logD(xjdata)
]
, (3.50)

∂LD(θ′)

∂θ′k
' 1

2M

M∑
j=1

(
1

1−D(xjfake)

∂D(xjfake)

∂θ′k
− 1

D(xjdata)

∂D(xjdata)

∂θ′k

)
. (3.51)

It should be noted that the gradient of G(·) and D(·) are efficiently computable by using the
technique called the back propagation as long as we implement the generator and the discriminator
by DNN discussed around the equation (3.36).

The training is the repetition of the following two steps: (1) updating the parameters θ by
the gradient descendant with the gradient vector in (3.45), and (2) updating the parameters θ′

by the gradient descendant with the gradient vector in (3.51). As a result of the training, we
obtain the generator as the good generative model for generating samples similar to the dataset
X; namely, the distribution of the probability that the generator generates a sample x becomes
close to q(x). The overview of the architecture of GAN is shown in Fig. 3.7.

Quantum generative adversarial network (QGAN)

QGAN is the algorithm whose generator and/or the discriminator are implemented by quan-
tum circuits. Among various QGAN models, we review QGAN for training the data loading
circuit (QGANDL) [29].

Loading data into the amplitudes of a quantum state, which is called as amplitude encod-
ing, is an important submodule for various algorithms. However, exactly loading data into the
amplitudes of a quantum state requires exponential number of quantum gates [94–100], which
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Figure 3.7: The overview of the generative adversarial network (GAN).

is intractable in NISQ when the number of qubits is large. Methods for realizing the amplitude
encoding with fewer gates are highly demanded.

The literature [29] proposes a QGANDL to approximately load the underlying probabil-
ity distribution of the training data into the amplitudes of a quantum state with fewer gates.
More precisely, given the discretized underlying probability distribution as q(r), the goal of the
algorithm is generating the following state:

|ψ〉 '
∑
r

√
q(r)eiαr |r〉, (3.52)

where each |r〉 is the computational basis, and each αr can be any real number, namely controlling
each αr is beyond the scope of the algorithm. In other words, the goal of the algorithm is
approximately building a state where the probability of measuring the state |r〉 is q(r). Note
that if |ψ〉 is loaded, it is applicable to practical problems such as the Monte Carlo integration.

QGANDL is proposed as an algorithm to achieve the goal by using GAN formulation, where
the generator is implemented by a quantum circuit and the discriminator is implemented by a
classical machine learning model such as a deep neural network. More precisely, M outputs of the
generator {xjfake}Mj=1 are obtained by measuring a state U(θ)|0〉⊗n in the computational basis,
where U(θ) is a PQC. When generating one output, the probability that the output equals to r
is given by

pG(θ, r) = Tr
(
ρ0U(θ)†|r〉〈r|U(θ)†

)
, (3.53)

where ρ0 = |0〉⊗n〈0|⊗n. The discriminator is the same as the one in the classical counterpart.
It should be noted that, unlike the classical case, the generator need not take random numbers
as its input because the randomness is already included in the quantum generator; namely, the
computational measurement of the quantum state returns a different result for each measurement.

Suppose that the training data is given by X = {xdata
j}Mj=1 as in the discussion about

GAN. The function for the discriminator is D(x), and the generator is G, where the input of
the generator is omitted. Then the cost function and the gradient vector for the discriminator
in QGANDL are same as (3.50) and (3.51). Also the cost function for the generator is given by
(3.44). To the contrary, the gradient vector of the generator in QGANDL is different from the
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formula (3.45). Concretely the gradient is given by

∂LG(θ)

∂θk
= − ∂

∂θk

(∫
dr log(D(r))pG(θ, r)

)
(3.54)

= −
∫
dr log(D(r))

∂pG(θ, r)

∂θk
, (3.55)

= −
∫
dr log(D(r))

(
pG(θ(k+), r)− pG(θ(k−), r)

)
, (3.56)

= −Er∼pG(θ(k+),r) [log(D(r))] + Er∼pG(θ(k−),r) [log(D(r))] , (3.57)

where in the third line, we use the parameter shift rule (3.26). Each expectation value Er∼pG(θ(k±),r)[·]
can be approximately computed by M samples generated by measuring the quantum circuit
U(θ(j±))|0〉⊗n in the computational basis. Let us denote the j-th sample obtained from measur-

ing U(θ(k±))|0〉⊗n as x
j(k±)
fake , then

∂LG(θ)

∂θk
' 1

M

M∑
j=1

(
− log(D(x

j(k+)
fake )) + log(D(x

j(k−)
fake ))

)
. (3.58)

The procedure to train the generator and the discriminator using the gradient vectors is the
same as that in the classical counterpart. As a result of the adversarial training, the samples
generated by the generator becomes close to the underlying distribution q(r). Namely, given the
state generated by PQC as |ψ〉, the following holds

|〈ψ|r〉|2 ' q(r), (3.59)

which is the goal (3.52).
Recall that QGANDL only loads the probability distribution, and the phases αr is uncontrol-

lable. On the contrary, the algorithm in [101], which is a contribution of the author of this thesis,
proposes a method to load any real vectors into the amplitudes of a quantum state without using
QGAN formalism.

In classical machine learning, we can find the most successful application of GAN in the
semi-supervised learning tasks [44–46]. Even in the quantum setting, the quantum generative
adversarial network can be applied to the semi-supervised learning tasks by utilizing the algorithm
proposed by the author of this thesis. We describe the algorithm in Chapter 5.

3.4 Critical issues of the variational quantum algorithms

As seen in Section 3.3, VQA and its variants are suitable for the execution in NISQ, and there
are many promising applications. However, to apply VQA to practical problems, we need to
overcome several critical issues. Of particular important issue is the so-called barren plateau
issue, which is pointed initially out by Ref. [102]. In Section 3.4.1, we firstly review the barren
plateau issue, and the other issues are briefly discussed in Section 3.4.2. We discuss the possible
solutions to the barren plateau issue in Chapter 6.

3.4.1 Barren plateau issue

In VQA, we need to update parameters in PQC so that the cost function is likely to decrease. In
many of the problems of VQA, the new parameters are found by utilizing the gradient descent
algorithm that we discuss in Section 3.3. Reference [102] theoretically shows that as the number
of qubits n increases, the norm of the gradient becomes exponentially small when PQC is deep,
and we randomly choose θ, which is called the barren plateau issue. More precisely, given the
input state as ρ, the observable as O, the unitary operator corresponding to PQC as Uθ, and the
cost function as C(θ) ≡ Tr(ρU†θOUθ),〈

∂C

∂θj

〉
≡
∫
dµ(Uθ)

∂C

∂θj
= 0,

〈(
∂C

∂θj

)2
〉
≡
∫
dµ(Uθ)

(
∂C

∂θj

)2

= O

(
1

2n

)
, (3.60)
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Figure 3.8: A cartoon of the cost function landscape with the cost function C(θ) corresponding to Equa-
tion (3.60).

where dµ(Uθ) is the measure of the probability of the unitary operator when randomly choosing
θ. The deriviation of (3.60) is shown at the end of this section. The formulas imply that the
landscape of the cost function is almost everywhere flat as we show in Fig. 3.8.

The reasons why (3.60) is fatal in VQA are two-fold. First, we need an exponential number
of measurements to correctly estimate the sign of ∂C/∂θj for each j and each point. Thus to up-
date the parameters to proper directions, O(2n) measurements are needed, which is intractable
in practical problems with O(100) qubits (recall 2100 ∼ O(1030)). Second, we need an expo-
nential number of iterations to obtain the optimal parameters since the distance between the
initial parameters and the optimal parameters are O(1) on average, while in each iteration, the
parameters are updated only by O(1/2n) as long as we choose the learning rate as O(1).

It should be noted that in [103], it is shown that the presence of noise makes the barren
plateau issue severer, which is unfavorable for VQA that is expected to work in noisy devices.
Also, it is shown in [104] that even if we use the gradient-free method, e.g., Nelder-Mead, Powell,
and COBYLA, for the optimization, the barren plateau issue is unavoidable. That is because the
gradient-free techniques need to find new points where the cost function becomes smaller as in
the case of the gradient descendant, but for finding the points where the cost decrease by O(1)
value, O(2n) trials are necessary since the cost function landscape is flat in almost everywhere.

As we see in the above discussion, the barren plateau issue is so severe that it may kill all of
the variational quantum algorithms, including the ones stated in Section 3.3. Thus many pieces
of research are tackling this issue, some of which provide possible solutions. We will discuss those
solutions in Chapter 6.

Derivation of the equations (3.60)

Before concluding this subsection let us show the detail derivation of (3.60). The equations (3.60)
are theoretically proven under the assumption that the distribution of the unitary matrices corre-
sponding to the PQC is unitary 2-design [105]. The unitary 2-design is the random distribution
that resembles the Haar distribution, the random distribution in the Haar measure. Namely,
when the distribution of the unitary operators is unitary 2-design, the following element-wise
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integration formulae hold:∫
2design

dUUabU
∗
cd =

∫
Haar

dUUabU
∗
cd =

δabδcd
N

, (3.61)∫
2design

dUUabU
∗
cdUefU

∗
gh =

∫
Haar

UabU
∗
cdUefU

∗
gh =

1

N2 − 1
(δacδbdδegδfh + δagδbhδceδdf )

− 1

N(N2 − 1)
(δacδbhδegδfd + δahδbdδecδfg),

(3.62)

where
∫

2design
dU is the integration over the unitary 2-design,

∫
Haar

dU is integration over the Haar
distribution, and N is the dimension of the unitary matrix. The assumption seems to be valid
because as the PQC becomes deeper, the distribution of the unitary operator corresponding
to PQC becomes more random and closer to unitary 2-design when randomly choosing the
parameters [102]. These formulae are used to prove (3.60).

The gradient of the cost function can be written as

∂C

∂θj
=

(
Tr

(
ρ
∂U†θ
∂θj
OUθ

)
− Tr

(
ρU†θO

∂Uθ
∂θj

))
. (3.63)

Since each parameter is embedded as exp(iΣjθj) where Σj is an Hermitian operator, we can write

Uθ = Ũ+ exp(iΣjθj)Ũ− (3.64)

by using a parameterized circuit Ũ+ and Ũ−. Then its derivative becomes

∂Uθ
∂θj

= iŨ+Σj exp(iΣjθj)Ũ− = iU+ΣjU−, (3.65)

where in the last equality we write U+ ≡ Ũ+ and U− ≡ exp(iΣjθj)Ũ−. By substituting (3.65) to
(3.63), we obtain

∂C

∂θj
= −i

(
Tr
(
ρU†−ΣjU

†
+OU+U−

)
− Tr

(
ρU†−U

†
+OU+ΣjU−

))
(3.66)

We can prove the first formula in (3.60) when U+ or U− is 2-design. When U+ is 2-design,
the first term becomes∫

2design

dU+Tr
(
ρU†−ΣjU

†
+OU+U−

)
=
∑
b,c,d,e

∫
2design

dU+

[
U−ρU

†
−Σj

]
eb
U†+bcOcdU+de

=
1

2n

∑
b,c,d,e

δbeδcd

[
U−ρU

†
−Σj

]
eb
Ocd

=
1

2n
Tr(O)Tr

(
U−ρU

†
−Σj

)
,

(3.67)

where in the second equality we use (3.61). Similarly,∫
2design

dU+Tr
(
ρU†−U

†
+OU+ΣjU−

)
=

1

2n
Tr(O)Tr

(
ρU†−ΣjU−

)
. (3.68)

Thus from (3.66), ∫
dµ(Uθ)

∂C

∂θj
=

∫
dU−

∫
2design

dU+
∂C

∂θj
= 0. (3.69)

When U− is 2-design the first term in (3.66),∫
2design

dU+Tr
(
ρU†−ΣjU

†
+OU+U−

)
=

∑
b,c,d,e,f

ρfbU
†
−bcΣjcd

[
U†+OU+

]
de
U−ef

=
1

2n

∑
b,c,d,e,f

δbfδceρfbΣjcd

[
U†+OU+

]
de

=
1

2n
Tr
[
ΣjU

†
+OU+

]
,

(3.70)
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where in the second equality, we use (3.62). Similarly,∫
2design

dU+Tr
(
ρU†−U

†
+OU+ΣjU−

)
=

1

2n
Tr
[
ΣjU

†
+OU+

]
, (3.71)

and therefore, ∫
dµ(Uθ)

∂C

∂θj
=

∫
dU+

∫
2design

dU−
∂C

∂θj
= 0. (3.72)

Thus we successfully derive the first formula in (3.60).
The second formula in (3.60) can also be derived when U+ or U− is 2-design. From (3.66)

we obtain (
∂C

∂θj

)2

= −
(

Tr
(
ρU†−ΣjU

†
+OU+U−

)
− Tr

(
ρU†−U

†
+OU+ΣjU−

))2

. (3.73)

For the case that the distribution of U+ is 2-design, the following term can be transformed as∫
2design

dU+

(
Tr
(
ρU†−ΣjU

†
+OU+U−

))2

=
∑
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†
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× 1

22n − 1

[
(δb1e1δc1d1δb2e2δc2d2 + δb1e2δc1d2δb2e1δc2d1)− 1

2n
(δb1e1δc1d2δb2e2δc2d1 + δb1e2δc1d1δb2e1δc2d2)

]
=

1

22n − 1

{
(Tr(O))
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(
1
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+ Tr(O2)
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[(
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+O

(
1

2n

))}
,

(3.74)

where in the second equality we use (3.62). Similarly,∫
2design

dU+

(
Tr
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U†−U

†
+OU+ΣjU−

))2

=
1

22n − 1
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(Tr(O))
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(
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(3.75)

The cross term can be transformed as∫
2design

dU+Tr
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†
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(3.76)
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where in the third line we use (3.62). Thus,∫
dU−

∫
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dU+

(
∂C

∂θj

)2

=
2Tr(O2)

22n − 1
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23n
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1
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(3.77)

where in the last line, we use Tr(O2) ≤ O(2n), Tr(O)2 ≤ O(22n), Tr
(
ρ2U†−Σ2

jU−

)
≤ O(1), and

Tr

[(
ρU†−ΣjU−

)2
]
≤ O(1).

For the case that the distribution of U− is 2-design, the following term can be transformed
as∫
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Similary,∫
2design

dU−〈Φ|U†−U
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The cross term can be transformed as∫
2design
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Figure 3.9: A cartoon of the local minima in one dimensional parameter space.

where in the second equality we use (3.62). Thus,∫
dU+

∫
2design

dU−

(
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∂θj

)2

=
2

22n − 1

∫
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,

(3.81)

where in the last line, we use Tr(O2U†+Σ2
jU+) ≤ O(2n), Tr

((
ΣjU

†
+OU+

)2
)
≤ O(22n), and

Tr
(
ρ2
)
≤ 1.

3.4.2 Other issues in VQA

There are two issues other than the barren plateau issue that we need a careful treatment of
when executing VQA. We discuss the two issues in the following.

The first issue, which is related to the barren plateau issue, is that the landscape of the cost
function in VQA may have many local minima. A local minimum is a point that the gradient
vector is zero while the value of the cost function is not minimized; the cartoon of the local
minima is shown in Fig. 3.9. As long as we use the gradient descendant, the existence of the
local minima is troublesome because once the optimization is trapped by the local minima, we
need to restart the optimization; therefore, the more the number of local minima is, the more
trials are necessary to find the global minimum that minimizes the cost function. Employing
several established classical optimizers [106] or using optimization strategy [107] tailored for
VQA might be a solution for the local minima issue in some cases, but none of which is currently
the comprehensive solution.

The second issue is that the depth of the circuit tends to become larger for reducing the
value of cost function below a certain specified value [108], which is an important issue because a
deep circuit leads to much noise (recall that one of the most important motivations to introduce
VQA is that VQA can be executed with a shallow circuit). There are various attempts to reduce
the circuit depth in the previous literature [109–112]. Also, Refs. [113, 114] provide methods to
split a large quantum circuit into several small quantum circuits. However, none of them is the
perfect solution to this depth issue.

Note that even though the local minima issue and the depth issue are severe, those issues may
be less critical than the barren plateau issue for certain algorithms. For example in the quantum
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machine learning, which we discussed in Section 3.3, does not require the perfect optimization;
namely, we do not need to completely minimize the cost function as long as the resulting quantum
machine learning model performs well. Thus, in such cases, it may be acceptable that the
optimization is trapped by local minima and/or the circuit depth is not enough deep to reduce
the cost value to near zero.

On the contrary, the barren plateau issue is critical in every variational algorithms; solving
the issue is essential for the practicality of all variational algorithms. In Chapter 6, we focus on
the solution to the barren plateau issue.
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Chapter 4

Quantum amplitude estimation
algorithm tailored for NISQ

As we show in the previous chapter, there is significant noise in NISQ, and we need to reduce
the noise for building real-world applications. One approach is reducing the number of gates
required for the computation. As an important example of this direction, we discussed VQA in
Section 3.3. Still, there are other essential algorithms whose number of gates has been successfully
reduced recently. Among those algorithms, the quantum amplitude estimation algorithm (QAE)
we discuss in the following has been significantly improved regarding the gate count.

4.1 Quantum amplitude estimation

QAE is the algorithm to estimate the amplitude of a quantum state with good accuracy. Con-
cretely, QAE is the algorithm to estimate the value of ξ in the following equation:

|Ψ〉 ≡ A|0〉⊗n|0〉 = ξ|Ψ̃1〉|1〉+
√

1− ξ2|Ψ̃0〉|0〉, (4.1)

where |Ψ̃0〉 and |Ψ̃1〉 are n-qubit states, ξ ∈ [0, 1], and A is an quantum operator. QAE is
included as a submodule in various quantum algorithms; namely, A is a quantum algorithm
that embeds the computational result into the amplitude of the quantum state, and we need
QAE to extract the computational result. One such example of the quantum algorithm is the
quantum Monte Carlo integration [17], which embeds the integration result into ξ—in practical
applications, executing A is often costly, thus reducing the number of calling A while estimating
ξ with required accuracy is the heart of the problem.

Previous approaches to the QAE problem

A naive approach for solving the QAE problem is estimating ξ by measuring the n+ 1-th qubit
on the computational basis many times. Given the number of calling A (i.e., the number of
measurements) as Nshot, the estimation error of ξ is as large as O(1/

√
Nshot).

On the contrary, there is a more efficient approach to estimate ξ. Let us rewrite (4.1) as
|Ψ〉 = A|0〉⊗n|0〉 = sinφ|Ψ̃1〉|1〉 + cosφ|Ψ̃0〉|0〉. Then, we can define an amplitude amplification
operator G ≡ A(In+1− 2|0〉n+1〈0|n+1)A†(In+1− 2In⊗ |1〉〈1|) with In+1 as the identity operator
operates on n+ 1-qubits and |0〉n+1 as the n+ 1 tensor product of |0〉. The operator G operates
on |Ψ〉 as

Gm|Ψ〉 = sin((2m+ 1)φ)|Ψ̃1〉|1〉+ cos((2m+ 1)φ)|Ψ̃0〉|0〉. (4.2)

Namely, G rotates |Ψ〉 in the two dimensional space spanned by |Ψ̃0〉|0〉 and |Ψ̃1〉|1〉. We can
easily check that the eigenvalues of G are ±2iθ, and the corresponding eigenstates are |Ψ±〉 =
(|Ψ̃1〉|1〉 ± |Ψ̃0〉|0〉)/

√
2. Since |Ψ〉 = (|Ψ+〉+ |Ψ−〉)/

√
2.

G|Ψ〉 = e2iφ|Ψ+〉+ e−2iφ|Ψ−〉, (4.3)
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Thus, we transform the QAE problem to the one finding the eigenvalue of the operator G,
which can be solved by the phase estimation algorithm introduced in Section 2.3.2. By using
the phase estimation, we can estimate the value of the amplitude with the estimation error as
O(1/Nshot), which is the quadratic improvement from the naive approach. However, as we see
in Fig. 2.7 with setting U = G, we need many controlled-G operations for the phase estimation,
which require many noisy two-qubit gates, and intractable in the near-term devices. Quantum
amplitude estimation algorithms executable with much fewer two-qubit gates but achieves the
error scaling O(1/Nshot) is highly demanded.

Recently, several attempts to reduce the number of gates have been made, all of which
utilizes the amplitude amplification operator [20–22]. The first attempt is made by the literature
[20]. Literature [20] shows that by measuring sin2((2m + 1)θ) in (4.2) with various ms, we can
reconstruct the value of the amplitude by using the maximum likelihood estimation without using
the controlled-G gates. However, the theoretical proof of the error scaling O(1/Nshot) is not given
while they give some numerical evidence for it.

Subsequent works [21, 22] also utilize (4.2) and do not require the controlled-G gates. Due to
their detailed strategy to choose m, they successfully prove the error scaling O(1/Nshot). Among
these works, the theoretical upper bounds of the error in [21] is larger than 106/Nshot when
firstly proposed, while in [22] the constant factor is dramatically improved as O(103/Nshot). In
the following, we describe the faster amplitude estimation (FAE) algorithm proposed by the
author of this thesis in [22].

4.2 Preliminary

Before going into the detail of the FAE algorithm, let us prepare some operators and functions
utilized in the algorithm. The most important technique we introduce here is the amplitude
amplification operator.

Attenuation of ξ

In the algorithm of FAE, we use the assumption that ξ is less than or equals to 1/4. However,
it is not necessary to impose the condition on ξ since the amplitude can be attenuated by
appending an extra auxiliary qubit as follows:

|Ψ′〉 ≡ X |0〉|00〉 =
ξ

4
|Ψ̃1〉|11〉+

√
15ξ

4
|Ψ̃1〉|10〉+

√
1− ξ2

4
|Ψ̃0〉|01〉+

√
15(1− ξ2)

4
|Ψ̃0〉|00〉.

= sin θ|Ψ̃1〉|11〉+ cos θ|⊥〉, (4.4)

where sin θ ≡ ξ/4 and | ⊥〉 is a state orthogonal to |Ψ̃1〉|11〉, and X = A⊗R with R as a single
qubit rotational gate, which operates as:

R|0〉 =
1

4
|1〉+

√
15

4
|0〉. (4.5)

As expected, the amplitude is attenuated such that sin θ ∈ [0, 1/4], and without loss of generality,
we can assume

0 ≤ θ < 0.252. (4.6)

Thus, instead of estimating the value of ξ directly, FAE estimates the value of θ and converts it
to ξ. The condition (4.6) is utilized as the initial bound in FAE.

Amplitude amplification

FAE utilizes a variant of the amplitude amplification operator Q that amplifies the amplitude
whose last two qubits are both 1. Concretely, the operator Q is defined by

Q ≡ XU0X †U11, (4.7)

U0 = (In+2 − 2|0〉n+2〈0|n+2), (4.8)

U11 = (In+2 − 2In ⊗ |11〉〈11|), (4.9)
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Figure 4.1: The circuit for Q when the number of qubits is five.

where In is the identity operator that operates to an n-qubit state. We show an example of the
circuit for Q when the number of qubits is five in Fig. 4.1. The direct calculation shows

Qm|Ψ′〉 = sin(2m+ 1)θ|Ψ̃1〉n|11〉+ cos(2m+ 1)θ| ⊥〉. (4.10)

We get the estimates of cos(2(2m+ 1)θ) by measuring the state (4.10) for multiple m. Let us
define cm as

cm ≡ 1− 2
N11

Nshot
, (4.11)

where N11 is the number of the results of the measurements in which the last two qubits in (4.10)
are both one and Nshot is the total number of measurements of the state (4.10). The above
defined cm is a good estimate of cos(2(2m+ 1)θ); the estimation error of cm can be evaluated by
using the Chernoff bound for the Bernoulli distribution, i.e., given the confidence interval of cm
as [cmin

m , cmax
m ], the bounds of the interval are computed as

cmax
m = min

[
1, cm +

√
ln

(
2

δc

)
12

Nshot

]
, cmin

m = max

[
−1, cm −

√
ln

(
2

δc

)
12

Nshot

]
, (4.12)

where δc is the probability that the true value of cm (i.e. cos(2(2m+ 1)θ)) is out of the interval.

Other functions

For later purpose, let us also define following three functions: COS(m,Nshot), CHERNOFF(cm, Nshot, δc),
and atan(s, c). The function COS(m,Nshot) returns cm as a result of Nshot measurements of the
amplified state (4.10). The function CHERNOFF(cm, Nshot, δc) returns the confidence interval
[cmin
m , cmax

m ] of cm, which is computed from the parameters: cm, Nshot, and δc. The function
atan(s, c) is an extended arctangent function defined in the realm c, s ∈ [−1, 1] by

atan(s, c) =



arctan(s/c) (c > 0)

π/2 (c = 0, s > 0)

0 (c = 0, s = 0)

−π/2 (c = 0, s < 0)

π + arctan(s/c) (c < 0, s ≥ 0)

−π + arctan(s/c) (c < 0, s < 0).

(4.13)

Finally, we denote the number of calls of Q required for estimating θ by Norac. The goal of
FAE is estimating θ with required accuracy while reducing the number of Norac.
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4.3 Faster amplitude estimation algorithm

Now let us describe the algorithm of FAE. FAE is the method to estimate the amplitude by
utilizing the amplitude amplification operator effectively. Even though the previous works [20, 21]
also utilizes the amplitude amplification operator, the way of using the operator in FAE is different
from those in the previous works, which leads to the major difference in the algorithms.

Suppose that [θjmin, θ
j
max] as the confidence interval of θ in j-th iteration, the algorithm

updates the values of θjmax and θjmin so that the width θjmax − θjmin becomes smaller in each
iteration. Users of the algorithm can choose the total iteration count `; ` should be chosen so
that the final estimation result satisfies the required accuracy. As we see later, given an acceptable
error of the amplitude as ε, ε ∼ 1/2` holds. Therefore, it is suffice to take ` as ` ∼ log2(1/ε).

Algorithm 1 Faster Amplitude Estimation (δc and ` as the parameters)

1: #θjmin and θjmax: the confidence interval of θ in j-th iteration.
2: Set θ0

min to 0 and θ0
max to 0.252.

3: Set N1st
shot = 1944 ln

(
2
δc

)
and N2nd

shot = 972 ln
(

2
δc

)
.

4: Set FIRST STAGE to true.
5: Set j0 to `.
6: for j = 1 to ` do
7: if FIRST STAGE then
8: Set c2j−1 to COS(2j−1, N1st

shot).
9: Set cmin

2j−1 , cmax
2j−1 to CHERNOFF(c2j−1 , N1st

shot, δc).

10: Set θjmax = arccos(cmin
2j−1)/(2j+1 + 2) and θjmin = arccos(cmax

2j−1)/(2j+1 + 2).
11: if 2j+1θjmax ≥ 3π

8 and j < ` then
12: Set j0 to j.
13: Set ν = 2j0(θj0max + θj0min) # the estimate of 2j0+1θ
14: Set FIRST STAGE to false.
15: end if
16: else
17: Set c2j−1 to COS(2j−1, N2nd

shot).
18: Set s2j−1 to (c2j−1 cos ν −COS(2j−1 + 2j0−1, N2nd

shot))/ sin ν.
19: Set ρj = atan

(
s2j−1 , c2j−1

)
.

20: Set nj to [ 1
2π

(
(2j+1 + 2)θj−1

max − ρj + π/3
)
] where [x] is the largest integer which does not exceed x.

21: Set θjmin = (2πnj + ρj − π/3)/(2j+1 + 2) and θjmax = (2πnj + ρj + π/3)/(2j+1 + 2).
22: end if
23: end for
return (θ`min+θ`max)/2, estimate of θ where the probability that θ ∈ [θjmin, θ

j
max] is larger than 1−(2`−j0)δc.

There are two stages in the FAE algorithm; the estimation procedures are different in each
stage. At the beginning of the iteration (j = 1), the algorithm is in the first stage. The algorithm
may change into the second stage in later iterations if a condition is satisfied. The overview of
the algorithm is shown in Algorithm 11. We show the detail of each stage in the following.
There are a typical number of measurements for each stage: N1st

shot in the first stage and N2nd
shot in

the second stage.
Note that even though θ is not always inside the confidence interval: [θjmin, θ

j
max], the prob-

ability exponentially decreases as N1st
shot and N2nd

shot increases. Thus, for simplicity, only the case

where θ ∈ [θjmin, θ
j
max] holds for all js is discussed here. As we will see later, the probability that

θ ∈ [θjmin, θ
j
max] holds for all j is larger than 1− 2`δc.

1The source code of the algorithm is shown in https://github.com/quantum-algorithm/faster-amplitude-estimation.
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First Stage

The algorithm is in the first stage either (a) when j = 1 or (b) when j > 1 and all
2k+1θkmax(k = 1 . . . j − 1) satisfy 2k+1θkmax <

3π
8 . In this stage, θjmin, θ

j
max is gotten by inverting

cmin
2j−1 and cmax

2j−1 as

θjmax =
arccos(cmin

2j−1)

2j+1 + 2
, θjmin =

arccos(cmax
2j−1)

2j+1 + 2
. (4.14)

That is because (2j+1 + 2)θ < π is guaranteed as we see in the following discussion. In case
of j = 1, the bound (4.6) leads to (21+1 + 2)θ < 1.52 < π. In another case where j > 1 and
2k+1θkmax <

3π
8 for (k = 1 . . . j − 1), the following holds

(2j+1 + 2)θ < 2(2jθj−1
max) + 2θ < 3/4π + 0.504 < π. (4.15)

The algorithm changes into the second stage if 2j+1θjmax ≥ 3π/8. At the timing, the following
two values are memorized for the second stage; one is j0 defined as the last value of j in the first
stage and another is ν defined as

ν = 2j0+1 × θj0max + θj0min

2
. (4.16)

It should be noted that the above-defined ν is an estimate of 2j0+1θ whose confidence interval is
obtainable by using the Chernoff bound.

In case that 2j+1θjmax is less than 3π/8 for all j(< `), the algorithm finishes without going to
the second stage and the output of FAE is (θ`max + θ`min)/2; j0 is set to be j0 = `. In the case, the
error of the output is at most ∆θ ≡ (θ`max− θ`min)/2 = (arccos(cmin

2`−1)− arccos(cmax
2`−1))/(2`+2 + 4).

As a result, the error of the amplitude is bounded as

ε = 4 (sin(θ + ∆θ)− sin θ) < 4∆θ <
arccos(cmin

2`−1)− arccos(cmax
2`−1)

2`
(4.17)

as long as θ is inside the confidence interval for all j, whose probability is computed as (1−δc)` >
1− `δc(= 1− (2`− j0)δc).

Second Stage

In the second stage, (2j+1 +2)θ might be larger than π, and therefore, the value of (2j+1 +2)θ
can not be estimated only by inverting c2j−1 due to the ambiguity of arc-cosine function. However,
it is still possible to estimate the value of (2j+1 + 2)θ by utilizing the results of measurements in
the other angle: (2j+1 + 2j0+1 + 2)θ. Here, let us firstly show how to estimate (2j+1 + 2)θ|mod2π

and next let us show how to estimate (2j+1 + 2)θ without mod(2π) ambiguity.

(i) The estimate of (2j+1 + 2)θ|mod2π

For estimating (2j+1+2)θ|mod2π, it is necessary to obtain not only the estimate of cos((2j+1+
2)θ) (i.e., c2j−1) but also the estimate of sin((2j+1 + 2)θ). We can not obtain the estimate of
sin((2j+1 + 2)θ) directly from measurement results, but it can be computed by the following
process. From the trigonometric addition formula,

cos((2j+1 + 2j0+1 + 2)θ) = cos((2j+1 + 2)θ) cos(2j0+1θ)− sin((2j+1 + 2)θ) sin(2j0+1θ). (4.18)

As long as sin(2j0+1θ) is non-zero,

sin((2j+1 + 2)θ) =
cos((2j+1 + 2)θ) cos(2j0+1θ)− cos((2j+1 + 2j0+1 + 2)θ)

sin(2j0+1θ)
. (4.19)

By replacing cos((2j+1 + 2)θ to c2j−1 , 2j0+1θ to ν and cos((2j+1 + 2j0+1 + 2)θ to c
2j−1+2j0+1 in

the right hand side of (4.19), we define s2j−1 by

s2j−1 =
c2j−1 cos ν − c

2j−1+2j0−1

sin ν
, (4.20)
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Figure 4.2: The overview of the definition of ∆ρj . Reprinted figure from [DOI: 10.26421/QIC20.13-14-2].
Copyright 2020 by the Rinton press. The author is permitted to redistribute the figure.

which becomes an estimate of sin((2j+1 + 2)θ). The estimation error of s2j−1 is determined by
the estimation errors of c2j−1 , c

2j−1+2j0−1 and ν, which is discussed in Appendix A.1. Straight-

forwardly, we get the estimate of (2j+1 + 2)θ|mod2π from s2j−1 and c2j−1 ; the ρj ∈ [−π, π] defined
by

ρj = atan (s2j−1 , c2j−1) (4.21)

is an estimate of (2j+1 + 2)θ|mod2π.
The confidence interval of ρj can be derived from those of c2j−1 , c

2j−1+2j0−1 and ν as in s2j−1 .
There are two types of the confidence interval. One is the connected confidence interval; there
is no discontinuities in the confidence interval, e.g., [−π/3, π/4]. The other is the disconnected
confidence interval; the confidence interval is separated into an interval containing −π and an in-
terval containing π, e.g., [−π,−2π/3] and [3π/4, π]. The discontinuity arises when the confidence
interval of c2j−1 contains −1 and that of s2j−1 contains 02. In the connected confidence interval
case, given interval as [a, b], let us define define ∆ρj = max(ρj − a, b− ρj). In the disconnected
confidence interval case, given intervals as [−π, c] and [d, π], let us define ∆ρj as

∆ρj =

{
max(2π + ρj − d, c− ρj) (if ρj ∈ [−π, c])
max(ρj − d, 2π + c− ρj) (if ρj ∈ [d, π])

‘. (4.22)

We show the conceptual image of the connected/disconnected intervals and that ∆ρj in Fig. 4.1.
We can interpret above defined ∆ρj as the estimation error of ρj in a sense that

2πnj + ρj −∆ρj ≤ (2j+1 + 2)θ ≤ 2πnj + ρj + ∆ρj (4.23)

2If both the confidence intervals of c
2j−1 and s

2j−1 contain 0, there is a discontinuity in the confidence interval of ρj at

ρj = ±π/2. However, as long as we set N1st
shot and N2nd

shot enoughly large as the upper bound value derived in Appendix A.1,
the estimation errors of c

2j−1 and s
2j−1 are suppressed so that either the confidence interval of c

2j−1 or that of s
2j−1 does

not contain 0 (recall that (c
2j−1 )2 + (s

2j−1 )2 ' 1 holds when errors are suppressed). Thus, we do not discuss this type of
discontinuity in the following argument.
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holds with an unknown integer nj if the true value of ρj (i.e. (2j+1 + 2)θ| mod 2π) is inside the
confidence interval.

(ii)The estimate of (2j+1 + 2)θ

Next we show how to estimate (2j+1 + 2)θ from ρj . By using (4.23) and the following
inequality,

(2j+1 + 2)θj−1
min ≤ (2j+1 + 2)θ ≤ (2j+1 + 2)θj−1

max, (4.24)

it holds that

(2j+1 + 2)θj−1
min − ρj −∆ρj ≤ 2πnj ≤ (2j+1 + 2)θj−1

max − ρj + ∆ρj . (4.25)

Thus, as long as

(2j+1 + 2)(θj−1
max − θ

j−1
min ) + 2∆ρj < 2π (4.26)

is satisfied, we can uniquely determine the integer nj as

nj =
1

2π
[(2j+1 + 2)θj−1

max − ρj + ∆ρj ], (4.27)

where the symbol [x] denotes the largest integer that does not exceed x. By using (4.24) and
(4.27), we can inductively show that if all ρk(k = j0+1 . . . j−1) are determined with the precision
of ∆ρk ≤ π/3 then the condition (4.26) is satisfied.

As we see above, (4.23) with nj in (4.27) gives the upper/lower bounds of (2j+1 + 2)θ, but
we do not need to evaluate ∆ρj inside the algorithm. Instead, in FAE, we set the upper/lower
bounds of θ at the j-th iteration as

θjmin =
2πnj + ρj − π/3

2j+1 + 2
, θjmax =

2πnj + ρj + π/3

2j+1 + 2
, (4.28)

and

nj =
1

2π
[(2j+1 + 2)θj−1

max − ρj + π/3], (4.29)

which are correct as far as ∆ρj ≤ π/3. In Appendix A.1, we show that for all j(> j0), the
conditions ∆ρj ≤ π/3 and (4.23) are satisfied with the probability larger than 1 − (2` − j0)δc
when at least we choose the

N1st
shot = 1944 ln

(
2

δc

)
, N2nd

shot = 972 ln

(
2

δc

)
. (4.30)

In the `-th iteration, the output of FAE is given by (θ`max + θ`min)/2. Then, the estimation
error of the output ∆θ is less than ∆θ = (θ`max − θ`min)/2 ≤ π/(3 · 2`+1). Thus, we estimate the
error of the amplitude as

ε = 4 (sin(θ + ∆θ)− sin θ) < 4∆θ <
π

3 · 2`−1
. (4.31)

The overview of FAE when ` = 5 and j0 = 3 is shown in Fig. 4.3.

Complexity upper bound

In Appendix A.1, we prove that the query complexity Norac with which the estimation error of
ξ is less than ε with the probability less than δ is bounded as

Norac <
4.1 · 103

ε
ln

(
4 log2(2π/3ε)

δ

)
. (4.32)
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Figure 4.3: The overview of FAE when ` = 5 and j0 = 3. Reprinted figure from [DOI: 10.26421/QIC20.13-
14-2]. Copyright 2020 by the Rinton press. The author is permitted to redistribute the figure.

The worst case is when the algorithm moves to the second stage at the first iteration (when
j = 1). We see that the upper bound of Norac achieves the scaling: Norac ∝ 1/ε (recall that the
dependency of the factor ln(log2(π/ε)) on ε is small, e.g., even if ε = 10−20, the factor is at most
6).

Here let us show a brief sketch of the proof regarding why the upper bound is proportional
to 1/ε. For ε to be suppressed as (4.31), it is suffice that the errors of all c2j−1s used in FAE

are less than 1/9
√

2, which is realized if Nshot ∼ O(1000 log (1/δ)) for each j. The number of

calling Q in each j is about 2j−1 for each measurement. Therefore, Norac ∼ Nshot

∑j=`
j=1 2j−1 =

Nshot2
` ∝ Nshot/ε as we expected.

Number of controlled gates

Given the estimation error as O(1/2`), the phase estimation algorithm needs the control-Q2`

operations, which requires many multi-Toffoli gates. On the contrary, the circuit in FAE includes

Q2` operation in the `-th step, and therefore the only controlled gate needed is the one included
in Q; in FAE, the number of controlled gates is dramatically reduced.

Still, the number of controlled gates in Q is harmful; particularly, even if the operator for a
quantum algorithm A is realizable with a shallow circuit, we need a multi-Toffoli gate for realizing
U0. Thus, reducing the number of controlled gates in Q is important future work.

4.4 Numerical Demonstration

Now let us demonstrate FAE by numerical experiments. The amplitudes estimated are chosen to
be ξ = 0.1, 0.2, 0.3, 0.4, and δc is taken as 0.01. The query complexity Norac and the estimation
error ε are computed with changing `; in each choice of (ξ, `), we execute 1000 trials of the
algorithm.
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Figure 4.4: The estimation error (green dot) is plotted so that 95% of the estimation errors in 1000 trials
are equals to or smaller than the plotted value. In the same figure, the value of j0 is shown. We write “First
Stage Only” instead of writing the value of j0 for the data points where the algorithm does not go to the
second stage. We fit the data points with log10(Norac) = − log10(ε) + b (blue lines) where we determine the
fitting parameter b by the least-squares. Reprinted figure from [DOI: 10.26421/QIC20.13-14-2]. Copyright
2020 by the Rinton press. The author is permitted to redistribute the figure.

We show the computation results in Fig. 4.4. The horizontal axis is the value of Norac and the
vertical axis is the estimation error ε. For each Norac, the estimation error (green dot) is plotted
so that 95% of the estimation errors in 1000 trials are equals to or smaller than the plotted value.
In the same figure, the value of j0 is shown. We write “First Stage Only” instead of writing
the value of j0 for the data points where the algorithm does not go to the second stage. We fit
the data points with log10(Norac) = − log10(ε) + b (blue lines) where we determine the fitting
parameter b is by the least-squares.

We summarize the notable points in the following:

• The scaling Norac ≤ C × 1/ε is almost achieved since almost all green dots are on the blue
lines.

• In case that the algorithm does not go to the second stage, the error tends to be below the
blue line, i.e., the required number of Norac is smaller for fixed 1/ε than that in the case
when the algorithm goes to the second stage.

• The larger ξ becomes, the smaller j0 becomes. The reason is that as ξ increases, 2j+1θmax ≥
3/8π is satisfied with smaller j.
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Chapter 5

Quantum semi-supervised
generative adversarial network as
an application of NISQ

In Section 3.3, we discuss the quantum generative adversarial network (QGAN) as a variant of the
variational quantum algorithm. In classical machine learning, GAN is most successfully applied to
the semi-supervised learning tasks [44–46]. Even in the quantum setting, the quantum generative
adversarial network can be used for semi-supervised learning (SSL) tasks. The quantum semi-
supervised generative adversarial network (qSGAN), proposed by the author of this thesis is the
first algorithm that successfully applies QGAN to semi-supervised problems. In this chapter, we
describe qSGAN, the algorithm for solving the SSL tasks in NISQ. In the following, we will first
discuss the basics of SSL, and next, we will discuss the detail of qSGAN.

SSL is one of the most important machine learning tasks that use a dataset containing both
labeled and unlabeled data as the training dataset. From those data, a model function fmodel

θ

is optimized as it correctly predicts the label of a new data. The merit of using the unlabeled
data is that the result of SSL is likely to become more robust than that of supervised learning.
For example, unlabeled data clarifies the underlying data distribution in classification cases. As
we demonstrate in Fig. 5.1, it contributes to getting a better decision boundary of the classifier,
which is the boundary between different classes. The nature of SSL that leverages unlabeled data
to obtain better performance is preferable, especially when getting labeled data is costly.

GAN is successfully applied to semi-supervised learning tasks. Originally the idea of using
GAN in SSL was proposed in Ref. [44] and since then various studies [45–51] have been proposed.
Same as the standard GAN discussed in Section 3.3.3, GAN in semi-supervised learning (SGAN)
contains a generator and a discriminator, yet the role of the discriminator in SGAN is different
from that in GAN. Namely, the discriminator not only classifies the input data as real or fake
but also estimates the label of the data; the goal of SGAN is training the discriminator so
that it becomes a good classifier, rather than training the generator. Notably, SGAN achieves
competitive results in various SSL tasks [44–51]. The reason GAN contributes to the classification
quality is that the samples generated by the generator complement the training data so that
the discriminator finds a better decision boundary [50]; thus the generator should have a rich
expressibility power for effectively complementing the training data.

5.1 Algorithm of qSGAN

Quantum circuits are expected to have more expressive power than the classical models; the
quantum supremacy experiment [115] takes advantage of the rich expressibility of the quantum
circuit. Thus, by changing the generator to the quantum generator in SGAN, we may obtain a
better classifier as a result of the training. In the following, we describe the algorithm of qSGAN
based on the original proposal [52], which is a contribution of the author of this thesis. Note
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Figure 5.1: The benefit of using unlabeled data in SSL. We show the classification problem with two labels:
red and blue. Depending on the label, labeled data is shown by red or blue circles. A gray circle shows
unlabeled data. Green curves show possible decision boundaries. The left figure is the case when not
using unlabeled data, and the right figure is when using unlabeled data. Without unlabeled data, the data
distribution is unclear, and it is not easy to obtain a good decision boundary of the classifier. The data
distribution becomes clearer with labeled data, and we get a better decision boundary.

that even though the idea of using the quantum generator is already proposed in QGAN, as we
see in Section 3.3, qSGAN is the first algorithm that applies the quantum generator to the SSL
problems.

Training data

Suppose that we can separate the labeled/unlabeled data into NB groups (we call each group
as a batch and NB as the number of batches). Also, suppose each batch contains `D labeled and
m− `D unlabeled data. We denote the set of labeled data in the a-th batch as

{(xa,jL , ya,j)}`Dj=1, (5.1)

where xa,jL and ya,j are the j-th labeled input vector and the j-th label vector in the a-th batch.

Also we denote the set of unlabeled data as {xa,jUL}
m−`D
j=1 , Let us summarize xL and xUL into a

single data vector as

xa,jdata =

{
xa,jL 1 ≤ i ≤ `D
xa,j−`UL `D + 1 ≤ i ≤ m

. (5.2)

The label data ya,j takes one of the values of {1, · · · , c}, where c is the number of classes.

Generator

The generator is built by PQC, which prepares the following quantum state |ψ〉 = U(θ)|0〉⊗n.
The circuit outputs m fake data {xjfake}mj=1 as a result of the computational basis measurements
of |ψ〉. The probability that r is measured is given by

pG(θ, r) = Tr
(
ρ0U(θ)†|r〉〈r|U(θ)

)
, (5.3)

which is same as QGANDL case (3.53).
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Discriminator/Classifier(D/C)

In the framework of qSGAN, the discriminator not only has the function D(x) that classifies
the input data x as real or fake, but also have additional function: the classifier C(x). The
value of D(x) represents the likelihood that the received x is included in the training dataset
as in the case of the standard GAN. The classifier C(x) is the vector whose dimension is c + 1;
the u-th (1 ≤ u ≤ c) element of C(x) represents the likelihood that x belongs to the u-th class
while the last element is the likelihood that x is a fake data. The C(x) and D(x) are built by a
double-headed classical neural network, meaning that with the notation of (3.36),

f(xj) = α(L−1)(xj), C(x) = σC
(
Wα(L−1)(xj) + bC

)
, D(xj) = σD

(
W ′α(L−1)(xj) + bD

)
,

(5.4)

where W ∈ R(c+1)×nL−1 and W ′ ∈ R1×nL−1 are trainable matrices, σC and σD is activation
functions; σC takes c+ 1 dimensional input and returns the same dimensional output while σD

takes 1 dimensional input and returns the same dimensional output. In the following, we denote
the discriminator having two functions C(x) and D(x) by D/C.

Training rule

In the training process of a-th batch, m real data are loaded from the dataset, and the
generator generates m fake data. Those two types of data are the inputs of D/C. Those data
are classified by D/C; C(x) computes the likelihood that x belongs to each class, and D(x) also
computes the likelihood of real/fake. Based on those results, the parameters of the generator
and the D/C are updated by the gradient descendant as follows.

For generator, we update the parameters so that fake data are classified as real by D(x).
More precisely, the parameters of the generator are updated to the direction that the following
cost function LG decreases,

LG = −
m∑
j=1

log(D(xjfake)), (5.5)

as in case of QGAN discussed in Section 3.3.3. Also by the same argument to derive (3.58), the
gradient vector is given by

∂LG(θ)

∂θk
' 1

m

m∑
j=1

(
− log(D(x

j(k+)
fake )) + log(D(x

j(k−)
fake ))

)
. (5.6)

For D/C, we update the parameters so that it correctly judges if the input data is real/fake
by D(x) and additionally classifies them into the true class by C(x). Thus, we update the
parameters of the classical neural network to the direction that the following cost function LD/C
decreases:

LD/C = (LD + LC)/2, (5.7)

where

LD = −Ex∼pG(θ,x)[log(1−D(x))]− Ex∼q(x)[log(D(x))] (5.8)

' − 1

m

m∑
j=1

(
log
(

1−D(xjfake)
)

+ logD(xa,jdata)
)
, (5.9)

LC = Ex∼p(x)[h(c+ 1, C(x))] + Ex,y∼ql(x,y)[h(y, C(x))] (5.10)

' 1

m

m∑
j=1

h(c+ 1, C(xjfake)) +
1

`

∑̀
j=1

h(yj , C(xa,jL )), (5.11)

with q(x) as the underlying probability distribution of the input vectors in the training dataset
and ql(x, y) as the underlying distribution of the pairs of the input vector and the label in the
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Algorithm 2 Quantum semi-supervised generative adversarial network [52]

1: for i = 1 to Niter do
2: for a = 1 to NB do
3: Load labeled data {(xa,jL , ya,j)}`Dj=1 and unlabeled data as {xa,jUL}

m−`D
j=1 .

4: for j = 1 to m do
5: Set xjfake to the measurement result of U(θ)|0〉⊗n.
6: end for
7: for k = 1 to n do
8: for j = 1 to m do

9: Set x
j(k+)
fake and x

j(k−)
fake to the measurement results of Uk+(θ)|0〉⊗n and Uk−(θ)|0〉⊗n.

10: end for
11: Set ∂LG/∂θk to

∑m
j=1

[
− logD(x

(k+)j
fake ) + logD(x

(k−)j
fake )

]
/m.

12: end for
13: Update θ by the gradient descent algorithm using the gradient vector {∂LG/∂θk}Pk=1 .

14: Set LD to −
∑m
j=1

[
log
(

1−D(xjfake)
)

+ logD(xa,jdata)
]
/m.

15: Set LC to
∑m
j=1 h(c+ 1, C(xjfake))/m+

∑`D
i=1 h(ya,j , C(xa,jL ))/`D.

16: Set LD/C to (LD + LC)/2.
17: Compute the gradients of LD/C using the back propagation and update the parameters by the

gradient descent algorithm.
18: end for
19: end for
20: The classifier C(x) as the final result.

labeled dataset. Here h(y,a) is the cross entropy loss defined by

h(y,a) = −ay + log

(
d∑

u=1

exp(zu)

)
, (5.12)

where zu is the u-th element of the vector z and d is the dimension of z. The gradient vector
can be computed in a similar manner using the backpropagation as (3.51). Same as the training
of the generator, the gradient descent is used for the update of the parameters in LD/C .

In each iteration, we update the parameters of the generator and the discriminator by using
all batches. After a sufficiently large number of iterations, we obtained C(x) as a good classifier.
The overall algorithm is summarized in Algorithm 2 with Niter as the number of iterations.

5.2 Numerical Demonstration

In this section, we demonstrate the performance of the qSGAN method through numerical sim-
ulations. In particular, we find that a quantum generator with high expressive power leads to
a better classifier after successful learning. Also, the resulting classification accuracy is compa-
rable to that of using a standard classical neural network generator. The resulting classification
accuracy is comparable to that obtained using a classical neural network generator.

5.2.1 Noiseless case

The source of the real data used in this simulation is the set of images of 1 × 8 pixels shown in
Fig. 5.2. Each pixel takes a value of 0 (black) or 1 (white). Also, each image is assigned a label
‘0’ or ‘1’ (hence c = 2) for the following convention. If all white pixels in an image are connected,
or there is only one white pixel in an image, the image is labeled ‘0’. If the white pixels in the
image are split into two separate parts, then the image is labeled ‘1’. The number of images with
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Figure 5.2: Left (enclosed by the blue rectangular): The real data used in the numerical simulation. The
data is divided into eight batches. Right (enclosed by the red dotted rectangular): Examples of images and
their labels. Reprinted figure from [DOI: 10.1038/s41598-021-98933-6]. Creative Commons Attribution 4.0
International license. Copyright 2021 by the Kouhei Nakaji and Naoki Yamamoto.

Figure 5.3: Left: The quantum circuit with four layers used in the simulation. Center: The D/C system,
where the last layer functions as the classifier C(x) or the discriminator D(x). Right: The training/test
dataset combination for the 4-fold cross-validation. Reprinted figure from [DOI: 10.1038/s41598-021-98933-
6]. Creative Commons Attribution 4.0 International license. Copyright 2021 by the Kouhei Nakaji and
Naoki Yamamoto.

the label ‘0’ and the number of images with the label ‘1’ are both 28; therefore, there are a total
of 56 images. This dataset is divided into eight batches containing m = 7 images.

As the quantum generator, we use an eight-qubits parametrized quantum circuit with a single
layer or four layers; the generator with four layers is shown in the left of Fig. 5.3. Each layer
is composed of parametrized single-qubit rotational gates exp(−iθiσai/2) and CNOT gates that
connect adjacent qubits; here θi is the i-th parameter and σai is the Pauli operator (ai = x, y, z).
All θi and ai are randomly initialized at the beginning of each training. The numerical simulation
run on Qiskit QASM Simulator [74].

As the D/C, a neural network with four layers is used, which is shown in the center of Fig. 5.3.
The first three layers of the network are shared by both the discriminator D(x) and the classifier
C(x). The number of nodes in the first, second, and third layers is 8, 40, and 8, respectively;
all nodes between the layers are fully connected, and we use ReLU as the activation function.
The last layer for the classifier has three nodes, corresponding to the likelihood of label ‘0’, label
‘1’, and fake classes; these nodes are fully connected to those of the third layer, and the softmax
function is used as the activation function. The last layer of the discriminator has one node,
which gives the value of D(x); this node is fully connected to the nodes of the third layer, and
the sigmoid function (σ(x) = 1/(1 + exp(−x))) is used as the activation. The neural network is
implemented by PyTorch [116].

We choose two of the eight batches as the training dataset (hence NB = 2) and the other six
as the test dataset in each trial. We perform the 4-fold cross-validation by changing the training
and test dataset, which is summarized in the right table of Fig. 5.3. For each training/test dataset,
we execute 20 trials; therefore, we execute 80 trials totally. To demonstrate the semi-supervised
learning, we mask some labels in each batch; recall that the number of labeled examples in
each batch is denoted by `, which takes ` = 2 or 5 in this simulation. As the gradient descent
algorithm, Adam [76] is used, whose learning coefficient is set to 0.001 for the case of generator
and 0.005 for the case of D/C.
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The left and center plots of Fig. 5.4 show the relationship between the average classification
accuracy of the test data and the iterations. Each point is obtained as the average of 80 trials. The
two subfigures correspond to different number of labeled data, as ` = 2 (left) and ` = 5 (center). In
each subfigure, we show three different cases, depending on the generator; the quantum generator
with one layer (blue) and that with four layers (orange), and the uniform-noise generator (green)
that randomly generates 8-bit data with equal probability, which is not updated while training.
The error bar represents the standard deviation of the average classification accuracy.

We see that when only a few labeled data is available (` = 2), the quantum generator
with four layers results in the highest classification accuracy, which implies that the quantum
generator with bigger expressibility contributes to the higher accuracy by effectively generating
samples to train the classical D/C. On the other hand, in the case where five of eight image data
in each batch are labeled (` = 5), the three generators achieve almost the same accuracy. This
might be because, in this case, all the generators fail to generate a more valuable dataset than
the set of labeled real data for effectively training the D/C. This observation is supported by
the fact that the untrained uniform-noise generator, which, of course, is not related to the real
dataset, achieves almost the same classification accuracy. Therefore, we expect that the quantum
generator is useful when the number of labeled data is limited.

In this numerical simulation, we obtained the best classification accuracy when the con-
structed classical sample distribution corresponding to the output of the quantum generator
does not match the distribution producing the real dataset, as predicted in [50]. In addition, we
found that the cost for the quantum generator, LG, is larger than that for the classical D/C,
LD/C , when the best accuracy is reached. These facts are favorable for the current noisy quan-
tum devices that cannot be effectively trained due to the noise. Hence the next topic is to study
how much the noise affects the quantum generator and accordingly the classification accuracy.

5.2.2 Noisy case

We examine the case where a noise channel is applied between every layer of the quantum
generator. In particular, we assume the depolarizing channel:

E(ρ) = (1− p)ρ+ p
I

2n
, (5.13)

where ρ is a density matrix, I is the identity matrix, n is the number of qubits and p is a noise
parameter. In this density matrix representation, the ideal unitary gate operation is expressed
as Ui(ρ) = UiρU

†
i , where Ui is the i-th layer unitary matrix. Then, the output density matrix of

the four-layers quantum circuit under the above depolarizing noise is given by

ρout = E ◦ U4 ◦ E ◦ U3 ◦ E ◦ U2 ◦ E ◦ U1(|0〉〈0|)

= E ◦ U4 ◦ E ◦ U3 ◦ E ◦ U2

(
(1− p)U1|0〉〈0|U†1 + p

I

2n

)
= · · · = (1− p)4 U4U3U2U1|0〉〈0|U†1U

†
2U
†
3U
†
4 +

(
1− (1− p)4

) I
2n
, (5.14)

where for instance, E ◦ Ui(·) denotes the composite function E (Ui(·)) of E(·) and Ui(·). The
samples are generated by measuring ρout. Other than the noise, the simulation setting is the
same as the noiseless case. We examine the case when only two of eight image data in each batch
are labeled (` = 2).

The resulting classification accuracy achieved via the quantum generator under the depo-
larization noise is shown in the right of Fig. 5.4, with several values of noise strength p. The
horizontal axis represents the magnitude of total noise, i.e., the coefficient of the second term in
Eq. (5.14), while the vertical axis represents the average classification accuracy at the final (=
100-th) iteration step. The error bar is the standard deviation of the average accuracy. The result
is that, as discussed before, the classification accuracy does not become worse than the noiseless
case as long as the depolarization noise for each layer of the quantum generator is suppressed to
some level (p = 0.05). This demonstrates the second advantage of the proposed qSGAN; The
quantum generator in our qSGAN framework does not need to generate a pure quantum state.
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Figure 5.4: Left, Center: Classification accuracy of the classifier when using the quantum generator. The
number of labeled data is ` = 2 (left) and ` = 5 (center). Right: Classification accuracy of the classifier for
` = 2 when using the four-layers quantum generator under the depolarization noise (5.13). The data points
surrounded by the red rectangles are drawn with the same data. Reprinted figure from [DOI: 10.1038/s41598-
021-98933-6]. Creative Commons Attribution 4.0 International license. Copyright 2021 by the Kouhei Nakaji
and Naoki Yamamoto.

Figure 5.5: Classification accuracy of the classifier when using the five-layers classical neural network genera-
tor. The number of labeled data is ` = 2 (left) and ` = 5 (right). Reprinted figure from [DOI: 10.1038/s41598-
021-98933-6]. Creative Commons Attribution 4.0 International license. Copyright 2021 by the Kouhei Nakaji
and Naoki Yamamoto.
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5.2.3 Comparison with classical neural network generator

Finally, we compare the performance of the proposed qSGAN to the fully classical case where
the generator is given by a five-layer classical neural network. The input to the generator is
the 1-dimensional normal Gaussian noise with zero mean and unit variance. The second, third,
and fourth layers comprise 40 nodes and the fifth (= final) layer has eight nodes. The nodes
between the layers are fully connected, and ReLU is used as the activation function. The output
sample is obtained by transforming the values of the nodes at the final layer by the sigmoid
function (σ(x) = 1/(1 + e−x)). We use the same D/C used in the quantum case. As the
gradient descent algorithm, we use Adam, whose learning coefficients are set to 0.001 for both
the generator and the D/C. Fig. 5.5 shows the classification accuracy for the test data over the
number of iteration, which is obtained as the average of over 80 trials when using the classical
neural network generator. The two subfigures are obtained with a different number of labeled
data, ` = 2 and ` = 5.

The result is that for the case ` = 2, the classifier aided by the classical neural network
generator achieves the classification accuracy of about 67%, which is comparable to that of the
four-layers quantum generator shown in the left subfigure of Fig. 5.4. The notable point is that
the number of parameters of the classical and quantum generators are 3688 and 32, respectively.
Hence, naively, the quantum generator has a rich expressibility power comparable to the classical
one even with much fewer parameters. This means that the training of the quantum generator
is easier than the classical one, which is actually shown in Figs. 5.4 and 5.5. More importantly,
this result implies that a bigger quantum generator with a tractable number of parameters could
have a potential to work even for some problems that are intractable via any classical one due to
the explosion of the number of parameters.

61



Chapter 6

Solutions to the barren plateau
issue assessed by the
expressibility analysis

As we see in Section 3.4.1, the barren plateau issue is critical for all variational quantum algo-
rithms. For mitigating this issue, several approaches have been proposed; e.g., circuit initial-
ization [117], special structured ansatz [54], and parameter embedding [118]. In Section 6.1, we
review those possible solutions.

Among those solutions, the literature [54] only gives the theoretical guarantee that the bar-
ren plateau issue is avoided, and therefore, is arguably the most promising among the solutions.
However, for applying the method in [54], we must use the alternating layered ansatz whose en-
tangling operations are limited compared to the hardware efficient ansatz. The limited entangling
operations in general lead to the loss of expressive power for generating arbitrary quantum states;
if the loss is huge, the solution in [54] is not usable in the variational quantum algorithm. In
Section 6.2, which is the contribution of the author of this thesis, we examine the expressibility
of the alternating layered ansatz and assess the method in [54].

6.1 Possible solutions to the barren plateau issue

6.1.1 Identity block strategy

The proof of the barren plateau utilizes the fact that the parameters in the hardware efficient
ansatz are randomly initialized, which is why the distribution of the unitary matrix corresponding
to the ansatz is close to unitary 2-design. The method proposed in [119] is to change the random
initialization strategy to another one so that the barren plateau issue is avoided. In this method
the hardware efficient ansatz is still used.

The initialization strategy introduced in [119] is so-called identity block strategy. In the
strategy the deep PQC is separated into multiple blocks; the depth of each block, which is also
a hardware efficient ansatz, is taken to be shallow enough so that even if we randomly initialize
the parameters inside the block the distribution of the unitary operator corresponding to the
block does not become close to unitary 2-design. Some of the parameters in each block are
randomly initialized while the rest of the parameters are initialized so that the unitary operator
corresponding to the block is identity. More precisely each block is separated into the former
part and the latter part that has the same structure as the former part, and if the first part of
the `-th block is randomly initialized and the unitary operator corresponding to the former part
is given as U` then the latter part of the block is initialized as U†` as we show in Fig. 6.1, which is
realizable by inverting the signs of the parameters in the former block. Once the training starts
the parameters in the latter part of each block is freely changed; given the unitary corresponding
to the former part of `-th block at the iteration t as U(θ`,t1 ), the unitary operator corresponding
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Figure 6.1: The overview of the initialization when using the identity block strategy.

to the latter part becomes U(θ`,t2 ) 6= U(θ`,t1 )†. Note that U(θ`,01 ) = U` and U(θ`,t2 ) = U†` .
As a consequence of introducing the above initialization strategy, the gradient of the cost

function at the first iteration becomes large as we see in the following argument. Given the
number of blocks as L and the cost function at iteration t as

Ct(θ) = Tr
(
ρU tall(θ)†OU tall(θ)

)
, (6.1)

where U(θ)tall ≡
∏L
`=1 U(θ`,t) and U(θ`,t) ≡ U(θ`,t2 )U(θ`,t1 ), the gradient of the cost function at

t = 0 is

∂Ct(θ)

∂θj

∣∣∣∣
t=0

= Tr

(
∂U tall(θ)†

∂θj

∣∣∣∣
t=0

OU0
all(θ)

)
+ Tr

(
U0

all(θ)†O ∂U tall(θ)

∂θj

∣∣∣∣
t=0

)
. (6.2)

Suppose that the parameter θj is included in the `′-th block, then

∂Ct(θ)

∂θj

∣∣∣∣
t=0

=
∂Tr

(
U(θ`

′,t)†OU(θ`
′,t)
)

∂θj

∣∣∣∣∣∣
t=0

, (6.3)

which is O(1) since U(θ`
′,t) corresponding to the `′-th block is shallow.

The obvious flaw of the above argument is that we do not discuss how large the gradient
becomes after the serveral iterations; it is only proved that large gradient vector is obtained at the
first iteration. In [119] from a numerical experiment using VQE with 7-qubit hardware efficient
ansatz, it is inferred that even after much iterations the gradient is still large and therefore the
barren plateau issue is avoided.

6.1.2 Layerwise learning

Another method for devising the initialization strategy is the layerwise learning strategy proposed
in Ref. [120]. As in the initial block strategy discussed in the previous subsection, the way of
initializing the parameters is devised so that the barren plateau issue is avoided. In this strategy
there are two stages: (i) layerwise learning stage and (ii) overall learning stage.
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Figure 6.2: Overview of the layerwise learning.

(Phase 1) Layerwise learning stage

Suppose that we want to find U(θ) that minimizes the cost function

C(θ) = Tr
(
ρU(θ)†OU(θ))

)
. (6.4)

In the layerwise learning stage, we start from training a shallow hardware efficient ansatz U1(θ)
by the gradient descendant so that the following cost is minimized

C1(θ1) = Tr
(
ρU1(θ1)†OU1(θ1))

)
. (6.5)

Note that the training is not troubled by the barren plateau issue because U1(θ1) is shallow.
Suppose that after enough training of U1(θ1) we obtain an optimal parameter θ∗1 . Then in the

second step we add a shallow hardware efficient ansatz U2(θ2), which is initialized as U2(θ2) = I,
after the circuit U1(θ∗1) and we train U2(θ2) so that the following C2(θ2) is minimized:

C2(θ2) = Tr
(
ρU2(θ2)†U1(θ∗1)†OU2(θ∗1)U1(θ1)

)
. (6.6)

It should be noted that the parameters in the firstly appended ansatz U1 are fixed; the optimiza-
tion that minimizes C2 requires training of the shallow circuit U2(θ). Therefore in this step again
the training is not troubled by the barren plateau issue.

In the similar manner, new shallow hardware ansatz U`(θ`), which is initialized as identity, is
appended to the circuit in the `-th step and only the parameters in this newly appended ansatz
are trained. In every training steps, only the shallow ansatzes are trainied, and therefore, the
barren plateau issue can be avoided in this stage. In the following, we assume that we stop this
procedure at L-th step, i.e. we obtain the circuit

U0(θ) =

L∏
`=1

U`(θ
∗
` ), (6.7)

which becomes the input of the next stage. The overview of the process of the layerwise learning
stage is shown at the top of Fig. 6.2.
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(Phase 2) Overall learning stage

In the overall learning stage, we train all parameters of the circuit built in the previous stage.
More precisely the circuit is trained so that

C(θ) = Tr
(
ρU(θ)†OU(θ)

)
(6.8)

is minimzed, with

U(θ) =

L∏
`=1

U`(θ`). (6.9)

As the initial parameters, θ` = θ∗` are used for all ` that are obtain in the previous stage.

A merit of using the method

The training process in Phase 2 is same as that of the ordinary VQA using the hardware efficient
ansatz. The only difference is the parameter initialization. In [120] it is claimed that the process
in Phase 1 functions as the initialization process different from the random initialization, which
is why the barren plateau is avoidable by this method since the barren plateau issue is proved
under the condition that the parameters are randomly initialized. For supporting their craim,
the authors in [120] also shows a numerical evidence that the barren plateau is avoided by using
a quantum machine learning task.

6.1.3 Using alternating layered ansatz instead of hardware efficient
ansatz

The above discussed two methods change the initial parameters but it does not change the cost
function landscape. Ref. [54] propose a method to change the cost function landscape by using
an ansatz named alternating layered ansatz.

The structure of the alternating layered ansatz is as follows. ALT is composed of multiple
layers. Each layer of ALT has separated blocks, where each block has repetitions of parametrized
single-qubit rotational gates and entanglers that entangle all qubits inside the block. In the
odd-number-labeled layers, each block contains m qubits, so that m is an even number and
n/m is an integer. Conversely, the odd-number-labeled layers contain n/m blocks which operate
on {1, . . . ,m}, {m + 1 . . . , 2m}, ..., and {n − m + 1, . . . , n} qubits. The even-number-labeled
layers contain n/m + 1 blocks which operate on {1, . . . ,m/2}, {m/2 + 1, . . . , 3m/2}, ..., and
{n−m/2+1, . . . , n} qubits; namely, the first and the last block operate on m/2 qubits, while the
others operate on m qubits. The structure of the alternating layered ansatz when the number of
layers is L, m = 4, and the number of qubits is 12 is shown in Fig. 6.3. For later purpose, let us
call m as locality.

The characteristics of the cost landscape when using the alternating layered ansatz depends
on the form of the cost function. Before going into the detail of how the cost landscape is changed,
we define two types of observables: the local observable and the global observable.

Local observable

An observable O is said to be k-local if O can be written in the form of

O =

n/m∑
j=1

cjO
m
j , (6.10)

where Omj is an Hermitian operator that non-trivially operates on m(j − 1) + 1 ∼ mj-th qubits
and {cj}nj=1 are real constants (some of cj can be zero). For instance

O = σz ⊗ In−1 + I1 ⊗ σz ⊗ In−2 (6.11)
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Figure 6.3: The structure of the alternating layered ansatz when the number of layers is L, m = 4, and the
number of qubits is 12.

is a 1-local observable. As another example

O = σz ⊗ σy ⊗ In−2 + I2 ⊗ σx ⊗ σy (6.12)

is 2-local observable.

Global observable

An observable O is said to be global if O contains the term that non-trivially operates on all
qubits. For instance

O = σz ⊗ σy ⊗ · · · ⊗ σx (6.13)

is the global observable.

The cost function landscape dramatically changes depending on whether the observable is
local or global. Suppose that the distribution of the unitary operator corresponding to each
block is unitary 2-design when randomly choosing the parameters. In [54] it is proved that if an
observable O is m-local and we use the alternating layered ansatz with locality equals to m, then〈

∂C

∂θj

〉
=

∫
dθ
∂C

∂θj
= 0,

〈(
∂C

∂θj

)2
〉

=

∫
dθ

(
∂C

∂θj

)2

≥ O
(

1

2mL

)
(6.14)

where C = Tr(ρUalt(θ)†OUalt(θ)) with Ualt(θ) as the unitary operator corresponding to the
alternating layered ansatz. As long as mL = O(log n) the gradient decreases only polynomially
with the value of n.

To the contrary if an observable O is global, even if we use the alternating layered ansatz
with locality equals to m, the gradient of the cost is suppressed as〈

∂C

∂θj

〉
=

∫
dθ
∂C

∂θj
= 0,

〈(
∂C

∂θj

)2
〉

=

∫
dθ

(
∂C

∂θj

)2

≤ O
(

1

2n

)
. (6.15)

The proof is in [54].
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Figure 6.4: Overview of the tensor product ansatz.

6.1.4 Comparison of the three methods

We discussed three different methods to avoid the barren plateau issue. The first one and the
second one are the methods to change the initialization strategy from the random initialization.
The third one is the method to change the cost function landscape by using the alternating
layered ansatz.

The flaw of the discussion in both the first and the second methods is that they do not give
a good theoretical evidence. In particular, it is not assured whether or not the gradient is large
after some iterations even if we start the optimization from the points where the gradient is large.

To the contrary for the third method using the alternating layered ansatz, it is theoretically
shown that the barren plateau issue is avoided as long as the observable is local. Since there are a
lot of problems that the observable can be local, e.g. VQE with the Bravyi-Kitaev transformation
in the quantum chemistry or the quantum machine learning, the method using the alternating
layered ansatz may solve the barren plateau issue in wide range of problems in VQA.

However, we can not immediately conclude that the third method is applicable to wide range
of problems in VQA because the alternating layered ansatz may not have enough capability
to express variety of unitary operations. We call the capability as expressibility, which we will
formally define in the next chapter. The expressibility is especially important in case that there
is lack of prior knowledge about the problem solution. For instance in VQE, where the goal is to
find a quantum state that minimizes the Hamiltonian, it is required that the ansatz has enough
capability to generate an arbitrary state as long as we do not have prior knowledge about the
target state.

It is not clear whether or not the alternating layered ansatz has rich expressibility since the
entangling operations are limited. As an extreme example let us consider the case where there are
no entangling operations between the blocks, namely the case where the corresponding unitary
operation Uten can be written as

Uten(θ) = U(θ1)⊗ U(θ2) · · ·U(θn/m), (6.16)

where U(θj) is the unitary operation for m-qubits. We call the ansatz tensor product ansatz. The
structure of the tensor product ansatz is shown in Fig. 6.4. Also suppose that the cost function
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is given by C(θ) = Tr(ρUten(θ)†OUten(θ)). Then under the condition that the distribution of
U(θa) when θa is randomly chosen is unitary 2-design, it can be proven that〈

∂C(θ)

∂θj

〉
=

∫
dθ
∂C(θ)

∂θj
= 0,

〈(
∂C(θ)

∂θj

)2
〉

=

∫
dθ

(
∂C(θ)

∂θj

)2

' O
(

1

2m

)
, (6.17)

with O as m-local. However it is obvious Uten(θ) can not express an arbitrary unitary operator
and also can only generate product states, which are expressed as

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn/m〉, (6.18)

where |ψj〉 is an m-qubit quantum state. From this example we see that removing the entangling
operations may do harm to the ansatz’s expressibility; in the alternating layered ansatz, where
some of the entangling operations is removed from the hardware efficient ansatz, may lose the
expressibility.

Therefore we emphasize that studying the expressibility of the alternating layered ansatz is
important for assessing the applicability of the third method, which is the most appealing solution
for the barren plateau problem. The rest of the paper is devoted to study the expressibility of
ansatzes.

6.2 Expressibility of alternating layered ansatz

In this section, we discuss the expressibility of the ansatzes for the variational quantum algorithm.
Particularly, by checking the expressibility of the alternating layered ansatz (ALT), which is
introduced for avoiding the barren plateau phenomenon, we see if the scalability issue of the
VQA is solvable by using ALT. As a theoretical tool for analyzing the expressibility, we use the
expressibility measure proposed in Ref. [56].

The structure of this chapter is as follows. In Section 6.2.1, we review the expressibility
measures introduced in Ref. [56]. Next, we show the ansatzes we examine in this thesis. In
Section 6.2.3, we describe the expressibility of ansatzes. Finally, we check the validity of the
results with the expressibility analysis by the numerical experiment using the variational quantum
eigensolver.

6.2.1 Expressibility measure

As in Ref. [56], we define the expressive power of a given ansatz by the randomness of the state
generated from the ansatz. For the measure of the randomness, we discuss the frame potential
and the Kullback-Leibler (KL) divergence.

Frame Potential

To define the expressive power of a given ansatz C, we consider the deviation of the state
distribution generated by C from the Haar distribution. Suppose that |ψθ〉 is the state generated
by the ansatz C characterized by the parameters θ ∈ Θ, e.g., |ψθ〉 = UC(θ)|0〉, θ ∈ Θ, with UC(θ)
as the unitary operator corresponding to C and |0〉 as an initial state. Then the deviation can
be defined by

D(t)(C) =

∥∥∥∥∫
Haar

(|ψ〉〈ψ|)⊗tdψ −
∫

Θ

(|ψθ〉〈ψθ|)⊗tdθ
∥∥∥∥
HS

,

where
∫

Haar
is the integration over the state |ψ〉 that is distributed according to the Haar measure,

‖ · ‖HS is the Hilbert Schmidt norm. Then we call that the ansatz C with smaller D(t)(C) has a
higher expressibility. The reason why the definition of expressibility is reasonable is as follows.
The state |ψ〉 generated from the Haar distribution can in principle represent an arbitrary state.
Thus, the condition D(t)(C) ≈ 0 means that the ansatz C generate almost all states, including
the optimal solution (e.g., the ground state in VQE); also, in this case, the states generated from
C are almost equally distributed, which is favorable when we do not have prior knowledge of the
problem.
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For the computation of D(t)(C), we can use the following defined t-th generalized frame
potential [121] of C:

F (t)(C) =

∫
Φ

∫
Θ

|〈ψφ|ψθ〉|2tdφdθ, (6.19)

where both Θ and Φ represent the same set of parameters. In this thesis, we simply call it the
t-th frame potential. In particular, we can compute the t-th frame potential of N -dimensional

states distributed according to the Haar measure as F (t)
Haar(N) =

∫
Haar

∫
Haar
|〈ψ|ψ′〉|2tdψdψ′. The

t-th frame potential links to the value of D(t)(C) in the following manner; that is, for an arbitrary
positive integer t, it holds

F (t)(C)−F (t)
Haar(N) = D(t)(C) ≥ 0. (6.20)

The equality in the last inequality holds if and only if the ensemble of |ψθ〉 is a state t-design
[122–124]. Therefore, the ansatz C with smaller F (t)(C) has a higher expressibility. Additionally,

since F (t)(C) is lower bounded by F (t)
Haar(N), we can use the t-th frame potential as an indicator

for the non-uniformity in the state distribution. In Sec. 6.2.3, we compute F (1)(C) and F (2)(C)
for several ansatz C.

KL-Divergence

We define another measure of expressibility by using the fidelity distribution. The fidelity distri-
bution is the distribution of the quantity F = |〈ψθ|ψφ〉|2, when the circuit parameters θ ∈ Θ and
φ ∈ Φ are randomly sampled. Given the probability distribution as P (C,F ), the t-th frame po-
tential is the t-th moment of P (C,F ). Thus, P (C,F ), contains more information for quantifying
the randomness of C than F (t)(C). Thus, as another indicator, we use the following measure to
quantify the expressibility of C:

E(C) = DKL (P (C,F )‖PHaar(F )) =

∫ 1

0

P (C,F ) log
P (C,F )

PHaar(F )
dF, (6.21)

where DKL(q‖p) is the KL divergence between the probability distributions q and p. Also
PHaar(F ) is the probability distribution of the fidelity F = |〈ψ|ψ′〉|2, where |ψ〉 and |ψ′〉 are
sampled from the Haar distribution. In Ref. [125], the equality PHaar(F ) = (N − 1)(1 − F )N−2

is derived, where N is the dimension of Hilbert space. In general, DKL(q‖p) = 0 if and only if
q = p, and small DKL(q‖p) means that the distributions q and p are close with each other. Thus,
the smaller value of E(C) means that the ansatz C has a higher expressibility. Hence, we use
E(C) as an indicator for quantifying the expressibility of an ansatz.

Finally, we emphasize that the t-th moment of P (C,F ) and PHaar(F ) are F (t)(C) and

F (t)
Haar(N), respectively. Thus, if the values of F (t)(C) is close to F (t)

Haar(N), the value of E(C) is
also close to zero.

6.2.2 Ansatzes

In this thesis, we will investigate the three types of ansatzes introduced in the previous sections:
the hardware efficient ansatz (HEA), the alternating layered ansatz (ALT), and the tensor product
ansatz (TEN). Let us summarize the three ansatzes in the following.

Hardware Efficient Ansatz

The HEA circuit consists of multiple layers of parametrized single qubit gates and entanglers
which entangle all qubits. In the following, let C`,nHEA be the class of HEA with ` layers where
each layer contains n-qubits.
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Figure 6.5: Examples of TEN, ALT, and HEA. The upper figures: overall structures of the ansatzes in
the case n = 8 and ` = 3 (and m = 4 for TEN and ALT). The lower figure: circuits inside the blocks,
where σai (ai ∈ {x, y, z}) is the Pauli matrix and θi ∈ [0, 2π] is a parameter. Reprinted figure from [DOI:
10.22331/Q-2021-04-19-434]. Creative Commons Attribution 4.0 International license. Copyright 2021 by
the Kouhei Nakaji and Naoki Yamamoto.

Alternating Layered Ansatz

The ALT is composed of ` layers as in HEA. Each layer has separated blocks, where each block
has parametrized single-qubit rotational gates and entanglers that entangle all qubits inside the
block. In the odd-number-labeled layers, each block contains m qubits, so that m is an even
number and n/m is an integer. Conversely, the odd-number-labeled layers contain n/m blocks
which operate on {1, . . . ,m}, {m+1 . . . , 2m}, ..., and {n−m+1, . . . , n} qubits. The even-number-
labeled layers contain n/m+ 1 blocks which operate on {1, . . . ,m/2}, {m/2 + 1, . . . , 3m/2}, ...,
and {n − m/2 + 1, . . . , n} qubits; namely, the first and the last block operate on m/2 qubits,

while the others operate on m qubits. In the following, let us use C`,m,nALT for denoting the class
of ALT with the above-defined indices.

Tensor Product Ansatz

TEN also consists of ` layers, where each layer contains n/m blocks (we assume n/m is an integer),
which contain repetitions of single-qubit rotation gates and entanglers combining all qubits in
the block. Throughout all the layers, the blocks operate on {1, . . . ,m}, {m + 1 . . . , 2m}, ...,
and {n − m + 1, . . . , n} qubits. Therefore, TEN always generates a product state of the form

|ψ1〉 ⊗ · · · ⊗ |ψn/m〉 where each |φi〉 is composed of m qubits. Let C`,m,nTEN be the class of TEN
described above. In Fig. 6.5, the summary of the structures of these ansatzes is shown.

6.2.3 Expressibility of the ansatzes

In this section, we analyze the expressibility of the three ansatzes introduced in Section 6.2.2.
Firstly, we analytically compute the first and the second frame potentials of those ansatzes and
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show that shallow ALT can have almost the same expressibility as that of HEA with suitable
choice of ` and m. Next, we further confirm the result by a numerical simulation in terms of the
KL-divergence.

Analytical expressions of the frame potential

First of all, we assume that the ensemble of the unitary matrices corresponding to C`,nHEA is 2-
design. Similarly, we assume that the ensemble of the unitary matrices corresponding to each
block of C`,m,nALT and C`,m,nTEN are 2-design. Literatures [102] and [126] also adopt these assump-
tions. Note that such ensemble of unitary matrices can be generated by randomly choosing the
parameters of the circuit having a specific structure.

Under the assumption, the following integration formulae hold. First, if the ensemble of n×n
unitary matrices {U} is 1-design, it holds:∫

1design

dUUijU
∗
mk =

δimδjk
n

, (6.22)

where
∫

1design
dU is the integral over the 1-design ensemble of the unitary matrices. Note that

if an ensemble of the unitary matrices is 2-design, the ensemble is also 1-design. Second, if the
ensemble of n× n unitary matrices {U} is 2-design, the following formula holds:∫

2design

dUUi1j1Ui2j2U
∗
i′1j
′
1
U∗i′2j′2 =

4∑
k=1

λ
(n)
k ∆k

i1j1i2j2i′1j
′
1i
′
2j
′
2
, (6.23)

where

λ
(n)
1 = λ

(n)
2 =

1

22n − 1
, λ

(n)
3 = λ

(n)
4 = − 1

(22n − 1)2n
,

∆1
i1j1i2j2i′1j

′
1i
′
2j
′
2

= δi1i′1δj1j′1δi2i′2δj2j′2 ,

∆2
i1j1i2j2i′1j

′
1i
′
2j
′
2

= δi1i′2δj1j′2δi2i′1δj2j′1 ,

∆3
i1j1i2j2i′1j

′
1i
′
2j
′
2

= δi1i′1δj1j′2δi2i′2δj2j′1 ,

∆4
i1j1i2j2i′1j

′
1i
′
2j
′
2

= δi1i′2δj1j′1δi2i′1δj2j′2 , (6.24)

and
∫

2design
dU is the integral over the 2-design ensemble of the unitary matrices. We use these

formulae to derive the theorems shown below.

The First Frame Potential

For the first frame potentials, the following theorem holds.

Theorem 2. If the ensemble of the unitary matrices corresponding to C`,nHEA and the ensemble

of the unitary matrices corresponding to each block of C`,m,nALT and C`,m,nTEN are 2-design, then the
following equalities hold:

F (1)(C`,nHEA) = F (1)(C`,m,nALT ) = F (1)(C`,m,nTEN ) = F (1)
Haar(2

n). (6.25)

We can readily prove he equality, F (1)(C`,nHEA) = F (1)
Haar(2

n), from the assumption of the
theorem, since if the ensemble of the unitary matrices corresponding to the circuit is 2-design,
the ensemble of the states generated by the circuit is a state 2-design (and therefore a state
1-design). For the other equalities, the proof is given in Appendix B.1. It should be noted that,

accordingly, the ensembles of the states generated by C`,nHEA, C`,m,nALT , and C`,m,nTEN are all 1-design.

The Second Frame Potential

The second frame potential of the Haar random circuits, F (2)
Haar(2

n), can be computed as

F (2)
Haar(2

n) =

∫ 1

0

dFF 2(2n − 1)(1− F )2n−2 =
1

(2n + 1)2n−1
. (6.26)

Then, for C`,nHEA and C`,m,nTEN , the following theorem holds.
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Theorem 3. If the ensemble of the unitary matrices corresponding to C`,nHEA and the ensemble

of the unitary matrices corresponding to each block of C`,m,nTEN are 2-design, then the following
equalities hold:

F (2)(C`,nHEA) = F (2)
Haar(2

n), (6.27)

F (2)(C`,m,nTEN ) = 2
n
m−1 · 2n + 1

(2m + 1)
n
m
F (2)

Haar(2
n). (6.28)

We can readily prove the equality (6.27) from the assumption of the theorem, because, as
we mentioned above, if the ensemble of the unitary matrices corresponding to the circuit is 2-
design, the ensemble of the states generated by the circuit is a state 2-design. For Eq.(6.28), we

give the proof in Appendix B.2. From this theorem we find that F (2)(C`,m,nTEN ) is always larger

than F (2)
Haar(2

n); in particular, F (2)(C`,m,nTEN ) ' 2n/m−1F (2)
Haar(2

n) for large n, meaning that the
expressibility of TEN is much smaller than that of HEA in the sense of the frame potential.

For ALT, it is complicated to obtain an explicit formula. Hence in Theorem 4 below, let
us provide a formula for computing the values of F (2)(C2,m,n

ALT ) and F (2)(C3,m,n
ALT ); we left the

computation methods for the other `s are for future work. As a preparation for stating a theorem,
below we define a 16-dimensional vector a(2,m), a 16×16 matrix B(2,m), a 64-dimensional vector
a(3,m), and a 64× 64 matrix B(3,m). Given integers ka, kb ∈ {1, 2, 3, 4}, the (4(ka− 1) + kb)-th
component of the vector a(2,m) is defined as

a(2,m)4(ka−1)+kb =

∫
2design

dPdQ

√
λ

(m)
ka

λ
(m)
kb

∆(ka,kb)(P,Q), (6.29)

where ∆(ka,kb)(P,Q) is the function of m/2×m/2 unitary matrices P and Q:

∆(ka,kb)(P,Q) =
∑
uu′ii′

jj′ll′

∑
pp′qq′

∆ka
u0u′0i0i′0∆kb

p0p′0q0q′0PjuPj′u′P
∗
liP
∗
l′i′QlpQl′p′Q

∗
jqQ

∗
j′q′ . (6.30)

Next, given integers ka, kb, kc ∈ {1, 2, 3, 4}, the (16(ka− 1) + 4(kb− 1) + kc)-th component of the
vector a(3,m) is defined as

a(3,m)16(ka−1)+4(kb−1)+kc =

∫
2design

dPdQ

√
λ

(m)
ka

λ
(m)
kb

λ
(m)
kc

∆(ka,kb,kc)(P,Q), (6.31)

where ∆(ka,kb,kc)(P,Q) is a function of m/2×m/2 unitary matrices P and Q:

∆(ka,kb,kc)(P,Q) =
∑
uu′ii′

jj′ll′

∑
rr′tt′

pp′qq′

∆ka
u0u′0i0i′0∆kb

jlj′l′trt′r′∆
kc
p0p′0q0q′0PtuPt′u′P

∗
jiP
∗
j′i′QlpQl′p′Q

∗
rqQ

∗
r′q′ .

(6.32)

Also, given integers ka, kb, kc, kd ∈ {1, 2, 3, 4}, the (4(ka − 1) + 4kb, 4(kc − 1) + kd)-th component
of the matrix B(m, 2) is defined as

B(2,m)4(ka−1)+kb,4(kc−1)+kd =

∫
2design

dPdQ

√
λ

(m)
ka

λ
(m)
kb

√
λ

(m)
kc

λ
(m)
kd

∆(ka,kb,kc,kd)(P,Q), (6.33)

where ∆(ka,kb,kc,kd)(P,Q) is a function of m×m matrices P and Q:

∆(ka,kb,kc,kd)(P,Q) =
∑

u2u
′
2i2i
′
2

j2j
′
2l2l
′
2

∑
p2p
′
2q2q

′
2

∑
u3u
′
3i3i
′
3

j3j
′
3l3l
′
3

∑
p3p
′
3q3q

′
3

∆ka
u20u′20i20i′20∆kb

p20p′20q20q′20∆kc
u30u′30i30i′30∆kd

p30p′30q30q′30

× P j3u3

j2u2
P
j′3u
′
3

j′2u
′
2
P ∗l3i3l2i2

P
∗l′3i
′
3

l′2i
′
2
Ql3p3l2p2

Q
l′3p
′
3

l′2p
′
2
Q∗j3q3j2q2

Q
∗j′3q

′
3

j′2q
′
2

(6.34)

For the matrix component Ms,t
i,j , the upper indices correspond to the first m/2 qubits and the

lower indices correspond to the last m/2. Given integers ka, kb, kc, kd, ke, kf ∈ {1, 2, 3, 4}, the
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Figure 6.6: The values of F (2)(C)/F (2)
Haar(2

n) for ALT and TEN. The left and right figures show the case

` = 2 and ` = 3, respectively. The vertical axes are in the logarithmic scale. If F (2)(C)/F (2)
Haar(2

n) is close
to 1, this means that the expressibility of the ansatz C is relatively high. Reprinted figure from [DOI:
10.22331/Q-2021-04-19-434]. Creative Commons Attribution 4.0 International license. Copyright 2021 by
the Kouhei Nakaji and Naoki Yamamoto.

(16(ka − 1) + 4(kb − 1) + kc, 16(kd − 1) + 4(ke − 1) + kf )-th component of the matrix B(m, 3) is
defined as

B(3,m)16(ka−1)+4(kb−1)+kc,16(kd−1)+4(ke−1)+kf

=

∫
2design

dPdQ

√
λ

(m)
ka

λ
(m)
kb

λ
(m)
kc

√
λ

(m)
kd

λ
(m)
ke

λ
(m)
kf

∆(ka,kb,kc,kd,ke,kf )(P,Q), (6.35)

where ∆(ka,kb,kc,kd,ke,kf )(P,Q) is a function of m×m matrices P and Q:

∆(ka,kb,kc,kd,ke,kf )(P,Q) =
∑

u2u
′
2i2i
′
2

j2j
′
2l2l
′
2

∑
r2r
′
2t2t

′
2

p2p
′
2q2q

′
2

∑
u3u
′
3i3i
′
3

j3j
′
3l3l
′
3

∑
r3r
′
3t3t

′
3

p3p
′
3q3q

′
3

∆
ka11
u20u′20i20i′20∆

ka31
j2l2j′2l

′
2t2r2t

′
2r
′
2
∆
kb11
p20p′2q20q′20

×∆
ka12
u30u′30i30i′30∆

ka32
j3l3j′3l

′
3t3r3t

′
3r
′
3
∆
kb12
p30p′3q30q′30P

t3u3
t2u2

P
t′3u
′
3

t′2u
′
2
P ∗j3i3j2i2

P
∗j′3i

′
3

j′2i
′
2

×Ql3p3l2p2
Q
l′3p
′
3

l′2p
′
2
Q∗r3q3r2q2 Q

∗r′3q
′
3

r′2q
′
2
. (6.36)

Now we can give the theorem as follows (the proof is given in Appendix B.3).

Theorem 4. If the ensemble of the unitary matrices corresponding to each block of C2,m,n
ALT and

C3,m,n
ALT are 2-design, then we have

F (2)(C2,m,n
ALT ) = a(2,m)TB(2,m)

n
m−1a(2,m), (6.37)

F (2)(C3,m,n
ALT ) = a(3,m)TB(3,m)

n
m−1a(3,m). (6.38)

The vectors a(`,m) and the matrices B(`,m) for ` = 2, 3 are obtained by directly computing
Eqs. (6.29), (6.31), (6.33), and (6.35), which then lead to F (2)(C2,m,n

ALT ) and F (2)(C3,m,n
ALT ). Now

our interest is in the gap of these quantities from F (t)
Haar(2

n), to see the expressibility of ALT.

For this purpose, in Fig. 6.6 we show F (2)(C2,m,n
ALT )/F (2)

Haar(2
n) and F (2)(C3,m,n

ALT )/F (2)
Haar(2

n) as
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a function of n/m, for several values of (m,n). For comparison, F (2)(C2,m,n
TEN )/F (2)

Haar(2
n) and

F (2)(C3,m,n
TEN )/F (2)

Haar(2
n) are shown in the figure. Recall that, if this measure takes a smaller

value, this means that the corresponding ansatz has a higher expressibility. Here is the list of
notable points:

• For any pair of (n,m), it is clear that F (2)(C`,m,nALT ) is much smaller than F (2)(C`,m,nTEN ) for
both ` = 2, 3 meaning that, as expected, ALT has a much higher expressibility than TEN.

• For any pair of (n,m), F (2)(C2,m,n
ALT ) > F (2)(C3,m,n

ALT ) holds, i.e., as ` increases, the express-
ibility increases.

• For any fixed n/m, the ALT with bigger m always has a higher expressibility. For example,
the ALT with (n,m) = (50, 10) has a higher expressibility than the ALT with (n,m) =
(20, 4). This is because, if the structure of the circuit (the number of division in each layer
for making the block) is the same, then an ALT with bigger block components has a higher
expressibility.

• For a fixed n, we have ALT with the smaller second order frame potential by taking m
bigger. For instance n = 100, we have F (2)(C2,2,100

ALT ) > F (2)(C2,4,100
ALT ) > F (2)(C2,10,100

ALT ).
That is, for a limited number of available qubits, the ALT with less blocks has a higher
expressibility.

• F (2)(C`,m,nALT ) ' F (2)
Haar(2

n) when m = 10 for all n/m within the figure and for both ` = 2, 3.
Hence the ALT composed from the blocks with m = 10 qubits in each layer has almost the
same expressibility as the HEA without respect to the total qubits number, n. In other
words, for a given HEA with fixed n, we can divide each layer into separated 10-qubits
blocks to make an ALT, without decreasing the expressibility.

The last point is of particular important in our scenario. That is, we are concerned with the

condition on the number m such that F (2)(C`,m,nALT ) ' F (2)
Haar(2

n) holds. The following Theorem 4
and the subsequent Corollary 1, which can be readily derived from the theorem, provide a means
for evaluating such m.

Theorem 5. If the ensemble of the unitary matrices corresponding to each block of C2,m,n
ALT and

C3,m,n
ALT are 2-design, then the following inequalities hold:

F (2)(C2,m,n
ALT ) <

(
1 +

1

2n

)(
1 +

1.2

2m

)2
(

1 + 8

((
1 +

20.8

2m/2

) n
m−1

− 1

))
F (2)

Haar(2
n), (6.39)

F (2)(C3,m,n
ALT ) <

(
1 +

1

2n

)(
1 +

1.2

2m

)2
(

1 + 32

((
1 +

83.2

2m/2

) n
m−1

− 1

))
F (2)

Haar(2
n). (6.40)

Corollary 1. If m = 2a log2 n and 143/(ana−1 log2 n) < 1,

F (2)(C2,m,n
ALT ) <

(
1 +

1

2n

)(
1 +

1.2

n2a

)2(
1 +

143

ana−1 log2 n

)
F (2)

Haar(2
n). (6.41)

If m = 2a log2 n and 2288/(ana−1 log2 n) < 1,

F (2)(C3,m,n
ALT ) <

(
1 +

1

2n

)(
1 +

1.2

n2a

)2(
1 +

2288

ana−1 log2 n

)
F (2)

Haar(2
n). (6.42)

The proof is in Appendix B.4 and Appendix B.5. Recall from Eq. (6.20) that F (t)(C) ≥
F (t)

Haar(N) holds for any ansatz C. Therefore, if m ≥ 4 log n and n is enough large, Corollary 1

implies that F (2)(C2,m,n
ALT ) ∼ F (2)

Haar(2
n) and F (2)(C3,m,n

ALT ) ∼ F (2)
Haar(2

n). This means that the

ensembles of the states generated by C2,m,n
ALT and C3,m,n

ALT are almost 2-design. Hence in this case,
from Theorem 2, the expressibility of ALT is as high as that of HAE. It is worth mentioning that,
when m = O(log2 n), the vanishing gradient problem does not happen in ALT as long as the
cost function is local and ` is small [126]. More precisely, it was shown there that the variance of
the gradient of such a cost function is larger than the value proportional to O(1/2m`); thus, by
taking m = O(log2 n), the variance decreases with only O(1/poly(n)) as a function of n, whereas
in the HEA case the same variance decreases exponentially fast as n becomes large. Therefore,
the expressibility and the trainability coexists in the shallow ALT with m = O(log2 n).

74



Expressibility measured by KL divergence

n Ansatz ` m
Depth of
each block

# of gate
parameters

Example of
the circuit

4

TEN
2 2 2 16 -
3 2 2 24 Fig. 6.7a

ALT
2 2 2 16 -
3 2 2 24 Fig. 6.7b

HEA 4 - - 16 Fig. 6.7c

6

TEN
2 2 2 24 -
3 2 2 36 -

ALT
2 2 2 24 -
3 2 2 36 -

HEA 6 - - 36 -

8

TEN
2

2 2 32 -
4 4 64 -

3
2 2 48 -
4 4 96 -

ALT
2

2 2 32 -
4 4 64 -

3
2 2 48 -
4 4 96 -

HEA 8 - - 64 -

Table 6.1: Parameters chosen for computing the KL-divergence. The number of gate parameters are com-
puted by n× `× (Depth of each block) for TEN and ALT, and n× ` for HEA.

In Subsection 6.2.3, we showed that the first two moments of P (C`,m,nALT , F ) and P (C`,nHEA, F )
are close to those of PHaar(F ) as long as we choose m = O(log2 n), and the unitary cor-
responding to the block is sufficiently random. The result implies that both the distribu-
tions P (C`,m,nALT , F ) and P (C`,nHEA, F ) themselves are close to PHaar(F ); namely P (C`,m,nALT , F ) '
P (C`,nHEA, F ) ' PHaar(F ). In this subsection, we compare the distributions and support the con-
jecture. In this subsection, to support the conjecture, we evaluate the values of KL-divergence
E(C) = DKL (P (C,F )‖PHaar(F )) for the case C = C`,m,nALT and C = C`,nHEA, in addition to

C = C`,m,nTEN for comparison with various sets of (`,m, n). In particular, we focus on the re-
lationship between the values of F (2)(C) and E(C), and check if F (2)(C) ' F (2)(C ′) would lead
to E(C) ' E(C ′) for a fixed n.

We summarize the parameters chosen for calculating the KL-divergence in Table 6.1. The
structure of the circuits are chosen to be similar to those used in Section 6.2.3; namely, for TEN
and ALT, we set the depth of the circuits inside each block is to m so that the ensemble of the
unitary matrices corresponding to each block becomes close to 2-design [127, 128]; for HEA, ` is
set to n so that the ensemble of the unitary matrices corresponding to the whole circuits becomes
close to 2-design. We expect that F (2)(C3,2,4

ALT ) ≈ F (2)(C4,4
HEA) and F (2)(C3,4,8

ALT ) ≈ F (2)(C8,8
HEA),

because, in Fig 6.6, we see that F (2)(C3,2,4
ALT ) and F (2)(C3,4,8

ALT ) are almost equals to the Haar
counterparts when the ensembles of unitary matrices corresponding to each block are 2-design.
Thus, we here check if F (2)(C) ' F (2)(C ′) would mean E(C) ' E(C ′) in these parameter sets.
As an example of the circuit, the whole structure of C3,2,4

TEN , C3,2,4
ALT , and C4,4

HEA in our settings
are shown in Figs. 6.7a, 6.7b, and 6.7c, respectively. As illustrated in the figures, each layer is
composed of parametrized single qubit gates and fixed 2-qubit CNOT gates.

In each trial, we generate 200 states. When generating a state in each trial, we randomly
choose the parameters and the type fo single-qubit gate of the circuit. That is, for the i-th single
qubit gate Ri(θi) = exp(σaiθi) with ai = {x, y, z} and θi ∈ [0, 2π], in each trial all ai and θi are
randomly chosen. Then 200 fidelity values are computed, which are then used to construct the
histogram with 1000 bins to approximate the probability distribution P (C,F ). Increasing the
number of generated states and the number of bins do not affect the following conclusions.
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(a) The structure of C3,2,4
TEN . The red boxes correspond to blocks.

(b) The structure of C3,2,4
ALT . The red boxes correspond to blocks.

(c) The structure of C4,4
HEA.

Figure 6.7: The structures of ansatzes in our setting. Reprinted figure from [DOI: 10.22331/Q-2021-04-19-
434]. Creative Commons Attribution 4.0 International license. Copyright 2021 by the Kouhei Nakaji and
Naoki Yamamoto.

In this setting, we show the KL divergences E(C`,m,nALT ), E(C`,nHEA), and E(C`,m,nTEN ) in Fig. 6.8.

As a reference, we also show the values of F (2)(C)/F (2)
Haar(2

n) computed from the second moment
of the fidelity distributions. Each data point and associated error bar is the average and the
standard deviation of 10 trials of computation, respectively. Here is the list of points:

• For a fixed n, E(C`,m,nTEN ) is always bigger than E(C`,m,nALT ) and E(C`,nHEA).

• As the number of layers increases, the KL-divergence decreases for fixed (m,n).

• For a fixed n, the tendency of the values of F (2)(C)/F (2)
Haar(2

n) is strongly correlated with
that of KL-divergence.

• As expected, F (2)(C3,m,n
ALT ) ≈ F (2)(Cn,nHEA) is realized when (m,n) = (2, 4) and (4, 8).

• E(C3,m,n
ALT ) is as small as E(Cn,nHEA) in the parameter sets where F (2)(C3,m,n

ALT ) ≈ F (2)(Cn,nHEA)
is realized, i.e., (m,n) = (2, 4) and (4, 8). This result implies that the state distribution in
ALT is also close to that in HEA, in the setting where the second frame potential is close

to F (2)
Haar(2

n).

From some of the above observations, we find the strong correlation between F (2)(C)/F (2)
Haar(2

n)
and E(C); that is, as F (2)(C) becomes close to 1, then E(C) becomes close to 0. Thus, combin-
ing the result obtained in Section 6.2.3, we get a clear evidence that, as far as m = O(log2 n),
E(C2,m,n

ALT ) ≈ 0 and E(C3,m,n
ALT ) ≈ 0 hold. That is, the high expressibility and trainability in ALT

proven in Section 6.2.3 are assured also in terms of KL-divergence.
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Figure 6.8: F (2)(C)/F (2)
Haar(2

n) (top) and KL-divergence (bottom) for each ansatz. The sets of points with

which F (2)(C3,m,n
ALT ) ≈ F (2)(C3,n

HEA) hold are enclosed by the red rectangles. Reprinted figure from [DOI:
10.22331/Q-2021-04-19-434]. Creative Commons Attribution 4.0 International license. Copyright 2021 by
the Kouhei Nakaji and Naoki Yamamoto.

6.2.4 Numerical Experiment

Recall that ALT was originally introduced with the motivation to resolve the vanishing gradient
problem in VQE, which has been often observed when using HEA; then we were concerned with
the expressibility of ALT in VQE, meaning that ALT would not offer a chance to reach the optimal
solution due to the possible loss of expressibility. But we now know that this concern has been
resolved under some conditions, as concluded in the previous section; that is, the expressibility
and the trainability coexists in the shallow ALT with m = O(log2 n). This section provides a
case study of VQE that implies this desirable fact.

We choose the Hamiltonian of 4-qubits Heisenberg model on a 1-dimensional lattice with
periodic boundary conditions:

H =

4∑
i=1

(σixσ
i+1
x + σiyσ

i+1
y + σizσ

i+1
z ), (6.43)

where σia (a ∈ {x, y, z}) is the Pauli matrix that operates on the i-th qubit and σ5
a = σ1

a.
The goal of VQE problem is to find the minimum eigenvalue of H, by calculating the mean
energy 〈H〉 = 〈ψθ|H|ψθ〉 = 〈0|UC(θ)†HUC(θ)|0〉 via a quantum computer and then updating
the parameter θ ∈ Θ to decrease 〈H〉 via a classical computer, in each iteration. As ansatzes,
C3,2,4

TEN , C3,2,4
ALT , and C4,4

HEA are chosen. As indicated in Fig. 6.8, the values of KL divergence

corresponding to these ansatzes show that E(C3,2,4
TEN) > E(C3,2,4

ALT ) ' E(C4,4
HEA). That is, this ALT

has the expressibility as high as that of HEA, and further, it is expected to enjoy the trainability
unlike the HEA.

The simulation results are shown in Fig. 6.9. In the top three subfigures of Fig. 6.9, the
blue lines and the associated error bars represent the average and the standard deviation of 〈H〉
in total 100 trials, respectively. In each trial, the initial parameters of the ansatz are randomly
chosen, and the optimization to decrease 〈H〉 in each iteration is performed by using the Adam
Optimizer with learning rate 0.001 [76]. The green line shows the theoretical minimum energy
(i.e., the ground energy) of H. Also the bottom subfigures of Fig. 6.9 show three trajectories of
〈H〉 (red lines) whose energies at the final iteration step are the smallest three.

The ansatz C3,2,4
TEN , which has the least expressibility in the sense of frame potentials and the
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KL divergence analysis, clearly gives the worst result; its least mean-energy is far above from the
ground energy. This is simply because the state generated via C3,2,4

TEN cannot represent the ground

state for any parameter choice. The result on C4,4
HEA is the second worst, which also does not

reach the ground energy as in the case of TEN. Note that increasing the number of parameters
does not change this result; that is, we also executed the simulation with C4,6

HEA that has the

same number of parameters as C3,2,4
ALT but did not find a better result than that of C4,4

HEA. On the

other hand, C3,2,4
ALT succeeds in finding the ground state; in fact, 5 of the total 100 trajectories

generated via this ALT reach the ground energy. Hence this result implies that, in this example,
the expressibility and the trainability coexist in ALT, while the latter is lacking in HEA.

This better trainability of ALT than that of HEA could be explained in terms of the “mag-
nitude” of the gradient vector ∇θ〈H〉 = [∂〈H〉/∂θ1, . . . , ∂〈H〉/∂θP ], where P is the number of
parameters. Now care should be taken to define an appropriate magnitude, because the focused
ansatzes have different number of parameters. In this work, we regard ∂〈H〉/∂θp, (p = 1, . . . , P )
as random variables and, based on this view, define the magnitude of ∇θ〈H〉 as the mean of the
absolute value of those random variables:

‖g(θ)‖ =
1

P

P∑
p=1

∣∣∣∣∂〈H〉∂θp

∣∣∣∣ . (6.44)

We evaluate the average of the magnitude (6.44) over sample trajectories, at several values

of energy reached through the update of θ. For this purpose, let θ
(i)
C (t) denote the vector of

parameters of a given ansatz C at the t-th step (number of iteration) of the i-th trajectory, and

E
(i)
C (t) = 〈0|UC(θ

(i)
C (t))†HUC(θ

(i)
C (t))|0〉 be the energy at θ

(i)
C (t). Next, to define the average of

‖g(θC)‖ over the sample trajectories at the given energy value E, let t
(i)
E be the smallest integer

such that the energy of the i-th trajectory satisfies E
(i)
C (t

(i)
E ) ≤ E; in other words, t

(i)
E represents

the number of iteration such that the i-th trajectory first reaches the value E. Note that some
trajectories may not reach a given value E for all the repetition of θC . (For example, as seen
above, all trajectories of TEN never reached the value E = −7.) Hence, let IE be the set of

index i such that the i-th trajectory reaches the value E at some point of t
(i)
E . We can now define

the average of ‖g(θC)‖ as

〈‖g(θC)‖〉E =
1

|IE |
∑
i∈IE

∥∥∥g(θ
(i)
C (t

(i)
E ))

∥∥∥ , (6.45)

where |IE | denotes the size of IE . Fig. 6.10 shows Eq. (6.45) for the specific values of E (integers
from −7 to 0) for the three ansatzes C3,2,4

TEN , C3,2,4
ALT , and C4,4

HEA. The standard deviation of the
average is indicated by the error bar. For instance, 〈‖g(θC)‖〉E ' 5.6 for the case of orange point
(i.e., the case of ALT) at E = −1 was calculated with |IE | = 100; actually, all 100 trajectories
become lower than E = −1. The figure shows that 〈‖g(θC)‖〉E in ALT is always larger than that
in HEA for all E, and this result is consistent to the theorems given in [126]. Such a larger gradient
vector might enable ALT to circumvent possible flat energy landscapes and eventually realize the
better trainability than HEA, but further studies are necessary to confirm this observation. Note
that TEN has the largest values of 〈‖g(θC)‖〉E when E ≥ −5, which yet do not lead to the
convergence to the global minimum due to the lack of expressibility.
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Figure 6.9: Top: Energy versus the iteration step in the VQE problem for the Hamiltonian (6.43), with the
ansatz TEN (left), ALT (center), and HEA (right). The blue lines and the associated error bars represent
the average and the standard deviation of the mean energies in total 100 trials, respectively; in each trial,
the initial parameters of the ansatz are randomly chosen. Optimization to decrease 〈H〉 in each iteration
is performed by using Adam Optimizer with learning rate 0.001. Bottom: Three of 100 trajectories for
each ansatz TEN (left), ALT (center), and HEA (right), indicated by red lines. The trajectories are chosen
such that the energies at the final iteration step are the three smallest values. Reprinted figure from [DOI:
10.22331/Q-2021-04-19-434]. Creative Commons Attribution 4.0 International license. Copyright 2021 by
the Kouhei Nakaji and Naoki Yamamoto.

Figure 6.10: The average and the standard deviation of ‖g(θ)‖ versus E. The norm of the gradient is defined

as ‖g(θ)‖ = 1
P

∑P
p=1

∣∣∣∂〈H〉∂θp

∣∣∣. Reprinted figure from [DOI: 10.22331/Q-2021-04-19-434]. Creative Commons

Attribution 4.0 International license. Copyright 2021 by the Kouhei Nakaji and Naoki Yamamoto.
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Chapter 7

Conclusion and outlook

7.1 Conclusion

The quantum computer is expected to have many real-world applications, but the capability of
the quantum devices developed in the next few decades is limited; a small number of available
qubits and much noise are especially severe. In this thesis, we proposed algorithms maximizing
the functionality of NISQ and assessed their feasibility. Chapter 2 and Chapter 3 were devoted
to the basics of the quantum computation and NISQ. In Chapter 4 and later, we proposed and
assessed the algorithms tailored for NISQ. Let us summarize the content of each chapter in the
following.

In Chapter 2, we discussed the basics of quantum computation. After introducing the building
blocks of the quantum computation, we demonstrated the power of the quantum computation
by the phase estimation algorithm.

In Chapter 3, we discussed the noisy intermediate quantum device (NISQ). In the chapter,
we first reviewed the characteristics of NISQ. Particularly, we discussed how the noise affects the
computation results in NISQ. Next, we checked some methods to mitigate the error by the error
mitigation technique. The main content of this section was the introduction of the variational
quantum algorithm (VQA), which effectively utilizes NISQ to solve real-world problems. Finally,
we discussed critical issues in VQA. We showed that the barren plateau issue, where the gradient
of the cost function becomes exponentially small when the number of qubits increases, is especially
severe.

In Chapter 4, we proposed the faster amplitude estimation (FAE), which is the method for
efficiently extracting the computational results from the amplitude of the quantum state. We
showed that the proposed algorithm without using the phase estimation algorithm successfully
reduces the number of gates, and the computational complexity is as small as the phase estimation
algorithm.

In Chapter 5, we proposed the quantum semi-supervised generative adversarial network (qS-
GAN), which provides a method to utilize NISQ as an adversary for training a classifier. We
demonstrated that the high expressibility of the quantum circuit contributes to the classifier’s
performance. Also, even with small noise, the classification performance did not worsen; it implies
that qSGAN is suitable for the execution in NISQ.

Chapter 6 was devoted to the solution for the barren plateau issue of VQA reviewed in
Chapter 3. In the former part of the chapter, we discussed the methods to avoid the barren
plateau issue. Three methods were introduced there: the method devising the initializing strat-
egy, the method using the layer-wise learning, and the method using the alternating layered
ansatz (ALT). Additionally, we discussed that only the method utilizing ALT is theoretically
guaranteed. However, we also showed that the applicability of ALT is unclear since ALT may
not have enough expressibility to generate the solution of VQA. Based on the above discussion,
in the latter part of Chapter 6, we examined the expressibility of ALT. Our conclusion of the
analysis was in addition to that the shallow ALT can solve the barren plateau issue, the ALT
has enough expressibility. Namely, in the expressibility measure of the frame potential and the
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KL-divergence, those shallow ALTs had almost the same expressibility as HEAs, which are often
used in hybrid algorithms but suffer from the barren plateau issue. In particular, we proved
that such expressibility holds if the number of entangled qubits in each block are of the order of
the logarithm of the number of all resource qubits, which is consistent with the previous result
discussing the trainability of ALT. We also provided a case study of the VQE problem, implying
that the ALT enjoys both the expressibility and trainability.

7.2 Outlook

There are open problems regarding the contents we discussed in Chapter 4, Chapter 5, and
Chapter 6. Let us show the problems in the following.

As for FAE, the main issue is how to reduce the effect of noise for realizing practical appli-
cations in the current device. We list the open problems as follows:

• Are there any methods to reduce the number of two-qubit gates in the amplitude ampli-
fication operator? As we see in Fig. 4.1, the amplitude amplification operator includes a
multi-controlled operation, which still requires a lot of two-qubit gates. Since we repeatedly
use the operator, the impact of reducing the two-qubit gate from the operator is enormous.

• How does the qubit connectivity affect the algorithm? Can we build the ‘hardware efficient’
amplitude amplification operator free from the limitation of the qubit connectivity?

• Can we utilize the error mitigation technique for FAE? Some of the subsequent works [129–
132] discuss the QAE algorithm in the presence of noise, but they consider a limited class
of the noise models. By utilizing the error mitigation, we may build the noise model-
independent QAE methods in the presence of unknown noise.

• What are the device requirements for achieving the quantum advantage with FAE in prac-
tical problems?

Regarding qSGAN, applying QGAN to SSL problems is new and immature. Therefore, there is
still large room for improvement. The open problems of qSGAN are as follows:

• How does the algorithm changes if we use the other SGAN architecture such as the one
proposed in [45]?

• Can we apply qSGAN for the case where the dataset is given by the quantum states? Note
that some of the QGAN algorithms, such as [27] propose algorithms in the case of using the
quantum dataset.

• Can we use the quantum-classical hybrid generator instead of the quantum generator? The
quantum-classical hybrid generator is the generator that the outputs of the quantum circuit
are loaded into the classical neural network, and the outputs of the neural network become
the fake samples.

Finally, VQA as a whole has its issues to be solved. Let us summarize those open problems as
follows:

• Can we give the theoretical guarantee in the convergence performance of VQA? In classical
deep neural networks, the convergence property is theoretically proven at a certain limit
[133]. Can we show a similar theorem in VQA? Note that the author of this thesis has
been working on this topic and proved the convergence property in the case of the hybrid
quantum-classical neural network [134]. The subsequent work [135] also tackles the problem
in the case of the quantum neural network, but there is still room for improvement.

• Are there any methods that avoid the barren plateau issue, and the ansatz has enough
expressibility even when the cost function is global?

• If we measure the expressibility of the ansatz by the capability of expressing arbitrary
function rather than that of generating arbitrary quantum states, how does the result of
Chapter 6 change? We used the expressibility measure for measuring the capability of
generating an arbitrary quantum state. The definition is reasonable as long as the problem
we solve is finding the optimal quantum state. However, in some problems, such as quantum
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machine learning, we need to create a quantum circuit that approximates the target function;
in this case, the above definition of expressibility may be unsatisfactory. Thus, it is a good
direction to define an expressibility measure to capture the capability of approximating the
target function and analyze the expressibility of ALT by using the measure. The literature
[136–138] examines the capability of approximating the function, but the useful measure
has not been proposed yet.

The practical use of quantum computers still requires significant progress. However, solving
the open problems mentioned above will surely bring us closer to the realization. I hope that
this thesis will contribute to the solution of these problems.

82



Bibliography

[1] R. P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21:467–488, 1982.

[2] P. Shor. Algorithms for quantum computation: discrete logarithms and factoring. Pro-
ceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134,
1994.

[3] J. R. McClean, R. Babbush, P. J. Love, and A. Aspuru-Guzik. Exploiting locality in
quantum computation for quantum chemistry. The Journal of Physical Chemistry Letters,
5(24):4368–4380, 2014.

[4] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer. Gate-count esti-
mates for performing quantum chemistry on small quantum computers. Physical Review
A, 90(2):022305, 2014.

[5] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, and A. Aspuru-Guzik.
Exponentially more precise quantum simulation of fermions in second quantization. New
Journal of Physics, 18(3):033032, 2016.

[6] R. Babbush, D. W. Berry, J. R. McClean, and H. Neven. Quantum simulation of chemistry
with sublinear scaling in basis size. npj Quantum Information, 5(1):1–7, 2019.

[7] P. Rebentrost, B. Gupt, and T. R. Bromley. Quantum computational finance: Monte carlo
pricing of financial derivatives. Physical Review A, 98(2):022321, 2018.

[8] D. J. Egger, R. G. Gutiérrez, J. C. Mestre, and S. Woerner. Credit risk analysis using
quantum computers. IEEE Transactions on Computers, 2020.

[9] N. Stamatopoulos, D. J. Egger, Y. Sun, C. Zoufal, R. Iten, N. Shen, and S. Woerner.
Option pricing using quantum computers. Quantum, 4:291, 2020.

[10] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum
machine learning. Nature, 549(7671):195–202, 2017.

[11] S. Srinivasan, C. Downey, and B. Boots. Learning and inference in hilbert space with
quantum graphical models. In Advances in Neural Information Processing Systems, pages
10338–10347, 2018.

[12] M. Schuld, I. Sinayskiy, and F. Petruccione. Prediction by linear regression on a quantum
computer. Physical Review A, 94(2):022342, 2016.
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Appendix A

Theorems for Faster amplitude
estimation

A.1 Proof of Complexity Upper Bound

In this appendix, we provide proof of the complexity upper bound.
Theorem The following upper bound holds for Norac:

Norac <
4.1 · 103

ε
ln

(
4 log2(2π/3ε)

δ

)
. (A.1)

Proof. Our strategy to obtain the upper bound is calculating the required number of N1st
shot and

N2nd
shot for the algorithm to work correctly with the probability 1− δ. Both upper bounds of N1st

shot

and N2nd
shot can be derived from the condition that our algorithm works correctly in the second

stage because even though the condition from the first stage also bounds N1st
shot loosely, the most

strict upper bound of N1st
shot can be gotten from the condition that the estimation error of ν is

small enough. Thus, we only discuss the condition from the second stage in the following.
In the second stage, as we mention in Section 4.3, the algorithm works correctly as long

as ∆ρj ≤ π/3. Even though the conditions for atan
(
s2j−1 , c2j−1

)
derived from ∆ρj ≤ π/3 are

different depending on whether the confidence interval of ρj is the connected confidence interval
or the disconnected confidence interval, the required precisions for s2j−1 and c2j−1 do not change
depending on the interval type. Therefore, in the following, we discuss only the case of the
connected confidence interval. Then, the condition ∆ρj ≤ π/3 can be converted to

|atan (s2j−1 , c2j−1)− atan (s∗2j−1 , c∗2j−1)| ≤ π

3
(A.2)

where s∗2j−1 , c∗2j−1 are the true values of s2j−1 and c2j−1 respectively. Given ∆c2j−1 = |c2j−1 −
c∗2j−1 |, ∆s2j−1 = |s2j−1 − s∗2j−1 |, by using the result (A.18), which we show in Appendix A.2, the
following inequality holds for the left hand side of (A.2):

|atan (s2j−1 , c2j−1)− atan (s∗2j−1 , c∗2j−1)| < max(2∆c2j−1 + 2∆s2j−1 , 3∆c2j−1) (A.3)

as long as ∆c2j−1 < 1/4 and ∆s2j−1 < 1/3. On the other hand, from (4.20), it holds that

∆s2j−1

=

∣∣∣∣−s∗2j−1(sin ν − sin(ν −∆ν)) + c∗2j−1(cos ν − cos(ν −∆ν)) + ∆c2j−1 cos ν + ∆c
2j−1+2j0−1

sin ν

∣∣∣∣
(A.4)

≤
√

2− 2 cos(∆ν) + |∆c2j−1 cos ν|+ |∆c
2j−1+2j0−1 |

sin ν
, (A.5)
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where ∆ν = ν − 2j0+1θ and 3π/8 − |∆ν| ≤ ν ≤ 3π/4 − |∆ν|. Thus, if at least the estimation
errors are bounded as

∆c2j−1 ≤
1

9
, (A.6)

∆c2j−1+2j0−1 ≤
1

9
, (A.7)

|∆ν| < π

60
, (A.8)

then it holds

∆s2j−1 <

√
2− 2 cos( π60 ) + 1

9 | cos( 3π
4 −

π
60 )|+ 1

9

sin( 3π
4 −

π
60 )

<
1

3
. (A.9)

As a result,

|atan (s2j−1 , c2j−1)− atan (s∗2j−1 , c∗2j−1)| < max(2 · 1

9
+ 2 · 1

3
, 3 · 1

9
) <

π

3
(A.10)

is satisfied. By using (4.12), the direct calculation shows that if we choose

N2nd
shot = 972 ln

(
2

δc

)
, (A.11)

then both the conditions (A.6) and (A.7) are satisfied with the probability 1− 2δc. On the other
hand, (A.8) is achieved if at least

∆c2j−1 <
1

9
√

2
(A.12)

holds in the first stage because

∆ν =
1

2

(
arccos

(
cmin
2j0−1

)
− arccos

(
cmax
2j0−1

))
<

1

2

(
arccos

(
cos

(
3π

4

))
− arccos

(
cos

(
3π

4

)
+

1

9
√

2

))
<

π

60
. (A.13)

Thus, by using (4.12) again, we can leadily show that by setting

N1st
shot = 1944 ln

(
2

δc

)
, (A.14)

then (A.12) and hence (A.8) is satisfied with the probability 1 − δc. In summary, as far as
(A.11) and (A.14) are satisfied, for all j(> j0), ∆ρj ≤ π/3 holds and (4.23) is satisfied under
the assumption that all the estimates of cosines are inside the confidence interval. Note that the
probability that all the estimates are inside the interverl is (1− δc)j0+2(`−j0) > 1− (2`− j0)δc.

Finally, we evaluate the query complexity in the worst case. The worst case is that the
algorithm moves to the second stage at the first iteration(j = 1). In this case, the number of
oracle call is

Norac < N1st
shot +

∑̀
j=2

(2N2nd
shot × 2j−1) = 1944 ln

(
2

δc

)
+ 1944(2` − 2) ln

(
2

δc

)
, (A.15)

and the success probability of the algorithm is 1−(2`−1)δc. Thus, if we demand that the success
probability is more than 1− δ then δc < δ/2` and

Norac < 1944 · 2` ln

(
4`

δ

)
. (A.16)

By combining with (4.31)

Norac <
4.1 · 103

ε
ln

(
4 log2(2π/3ε)

δ

)
. (A.17)
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A.2 Theorem for atan function

Theorem When c, c∗, s ∈ [−1, 1], s∗ takes one of the value of ±
√

1− c∗2, ∆c = |c − c∗| and
∆s = |s− s∗|, the following inequality holds:

|atan(s, c)− atan(s∗, c∗)| < max(2∆c+ 2∆s, 3∆c) (A.18)

if ∆s < 1/2 and ∆c < 1/4 and if there is no discontinuity of atan(s, c) in the intervals: s∗−∆s ≤
s ≤ s∗ + ∆s and c∗ −∆c ≤ c ≤ c∗ + ∆c.
Proof. It is suffice to prove in following three cases: (i) cc∗ > 0 (ii) cc∗ < 0 and (iii) cc∗ = 0. In
case (i) cc∗ > 0, using trigonometric addition formulas for arctan, it holds that

|atan(s, c)− atan(s∗, c∗)| = |arctan(s, c)− arctan(s∗, c∗)|

=

∣∣∣∣arctan

(
s∗∆c− c∗∆s

1 + c∗∆c+ s∗∆s

)∣∣∣∣
≤
∣∣∣∣ |s∗|∆c+ |c∗|∆s
1− |c∗|∆c− |s∗|∆s

∣∣∣∣
< 2∆c+ 2∆s. (A.19)

To show the last inequality, we use 1− |c∗|∆c− |s∗|∆s > 1−
√

(1/3)2 + (1/4)2 > 1/2 .
In case (ii) cc∗ < 0,

|atan(s, c)− atan(s∗, c∗)| = lim
η→0

(|arctan(s, c)− arctan(s, η)|

+ |arctan(s, η)− arctan(s∗,−η)|)
+ |arctan(s∗,−η)− arctan(s∗, c∗)|) , (A.20)

where the sign of η is same as that of c. The first term in (A.20) can be bounded as

lim
η→0
|arctan(s, c)− arctan(s, η)| = lim

η→0

∣∣∣∣ ∂∂c arctan
(s
c

)
|c=c0(c− η)

∣∣∣∣
= lim
η→0

∣∣∣∣ −sc20 + s2
(c− η)

∣∣∣∣
≤
∣∣∣∣ s

c20 + s2
c

∣∣∣∣
≤
∣∣∣∣ 1

(c∗ − (c∗ − c0))2 + (s∗ − (s∗ − s))2
c

∣∣∣∣
≤

∣∣∣∣∣ 1(
3
5 −

1
4

)2
+
(

4
5 −

1
3

)2 c
∣∣∣∣∣

< 3|c|, (A.21)

where c0 take the value between η and c, and we use the mean value theorem for showing the
first equality. Similary,

lim
η→0
|arctan(s∗,−η)− arctan(s∗, c∗)| < 3|c∗|. (A.22)

By substituting (A.21), (A.22) and limη→0 |arctan(s, η)− arctan(s∗,−η)| = 0 (that follows from
no-discontinuity condition) to the right-hand side of (A.20), it follows

|atan(s, c)− atan(s∗, c∗)| < 3(|c|+ |c∗|) = 3∆c. (A.23)

The last equality holds because the signs of c and c∗ are different.
In case (iii) cc∗ = 0, when c∗ = 0,

|atan(s, c)− atan(s∗, c∗)| = lim
η→0

(∣∣∣±π
2
− arctan(s∗, η)

∣∣∣+ |arctan(s∗, η)− arctan(s, η)|

+ |arctan(s, η)− arctan(s, c)|) , (A.24)

93



where the sign ± is the same as the sign of s and the sign of η is same as that of c. The values
of the first line go to 0 and the value of the second line can be evaluated by the same arguments
as (A.21). Thus, it follows

|atan(s, c)− atan(s∗, c∗)| < 3(|c|) = 3∆c. (A.25)

By the same discussion, when c = 0

|atan(s, c)− atan(s∗, c∗)| < 3(|c∗|) = 3∆c. (A.26)

In all of the three cases, (A.18) is proved.
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Appendix B

Theorem for the expressibility
computation

Here we prove several theorems introduced in Section 6.2. In the following, for the unitary matrix
Ua corresponding to the entire circuit, we denote the unitary matrix corresponding to the i-th
layer of the circuit to be Ua(i) and the unitary matrix corresponding to the j-th block in the i-th
layer as Ua(i, j).

B.1 Proof of Theorem 2

First, because the probability distribution of F = |〈ψ|ψ′〉|2 with n-qubits states |ψ〉 and |ψ′〉
taken from the Haar measure is given by PHaar(F ) = (2n− 1)(1−F )2n−2, the value of F (1)

Haar(2
n)

is straightforwardly computed as

F (1)
Haar(2

n) =

∫
Haar

∫
Haar

|〈ψ|ψ′〉|2dψdψ′ =

∫ 1

0

dFF (2n − 1)(1− F )2n−2 =
1

2n
. (B.1)

Next, we provide the proof of F (1)(C`,m,nALT ) = F (1)
Haar(2

n). Given two final states |φ〉 = Ua|0〉 and

|ψ〉 = Ub|0〉 generated by C`,m,nALT , we have

F (1)(C`,m,nALT ) =

∫
1design

dUadUb〈0|U†aUb|0〉〈0|U
†
bUa|0〉

=

∫
1design

(∏̀
i=1

dUa(i)

)(∏̀
i=1

dUb(i)

)
× 〈0|Ua(1)

†
Ua(2)

† · · ·Ua(`)
†
Ub(`) · · ·Ub(2)Ub(1)|0〉

× 〈0|Ub(1)
†
Ub(2)

† · · ·Ub(`)†Ua(`) · · ·Ua(2)Ua(1)|0〉

=

∫
1design

∏̀
i=1

k(i)∏
j=1

dUa(i, j)

∏̀
i′=1

k(i′)∏
j′=1

dUb(i
′, j′)


× 〈0|Ua(1)

†
Ua(2)

† · · ·Ua(`)
†
Ub(`) · · ·Ub(2)Ub(1)|0〉

× 〈0|Ub(1)
†
Ub(2)

† · · ·Ub(`)†Ua(`) · · ·Ua(2)Ua(1)|0〉, (B.2)

where k(i) is the number of blocks in the i-th layer, and each
∫
dU is the average over the

ensemble of the unitary matrix U . Because the distribution of each Ua(i, j) is 2-design (and is
therefore 1-design), we can apply the formula (6.22) to the integrals with respect to Ua(i, j).
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Actually, by integrating
∏k(`)
j=1 dUa(`, j) for all a in the last line of (B.2), we have

F (1)(C`,m,nALT ) =

∫
1design

∏̀
i=1

k(i)∏
j=1

dUa(i, j)

∏̀
i′=1

k(i′)∏
j′=1

dUb(i
′, j′)


× 〈0|Ua(1)

†
Ua(2)

† · · ·Ua(`− 1)
†
Ua(`− 1) · · ·Ua(2)Ua(1)|0〉

× 〈0|Ub(1)
†
Ub(2)

† · · ·Ub(`)†Ub(`) · · ·Ub(2)Ub(1)|0〉

=

(
1

2m

)` ∫
1design

L−1∏
i=1

k(i)∏
α=1

dU iαa

 L∏
j=1

k(i′)∏
β=1

dU jβb

× 1

=
1

2n
= F (1)

Haar(2
n). (B.3)

The other equality in Eq. (6.25) can be proved in the same manner.

B.2 Proof of Theorem 3

Similar to the first frame potential, the value of F (1)
Haar(2

n) is straightforwardly computed as

F (2)
Haar(2

n) =

∫ 1

0

dFF 2(2n − 1)(1− F )2n−2 =
1

2n−1(2n + 1)
. (B.4)

Next, we compute F (2)(C`,m,nTEN ). Given two final states |φ〉 = Ua|0〉 and |ψ〉 = Ub|0〉, it is
computed as

F (2)(C`,m,nTEN ) =

∫
2design

(∏̀
i=1

dUa(i, 1)dUb(i, 1)

)
|〈0|Ua(1, 1)

†
Ua(2, 1)

† · · ·Ua(`, 1)
†
Ub(`, 1) · · ·Ub(2, 1)Ub(1, 1)|0〉|4

×
∫

2design

(∏̀
i=1

dUa(i, 2)dUb(i, 2)

)
|〈0|Ua(1, 2)

†
Ua(2, 2)

† · · ·Ua(`, 2)
†
Ub(`, 2) · · ·Ub(2, 2)Ub(1, 2)|0〉|4

× · · · ×
∫

2design

(∏̀
i=1

dUa

(
i,
n

m

)
dUb

(
i,
n

m

))
× |〈0|Ua(`, 1)

†
Ua(`, 2)

† · · ·Ua(`, `)
†
Ub(`, `) · · ·Ub(`, 2)Ub(`, 1)|0〉|4

=

(
1

(2m + 1)2m−1

) n
m

= 2
n
m−1 · 2n + 1

(2m + 1)
n
m
F (2)

Haar(2
n). (B.5)

B.3 Proof of Theorem 4

Here we only show the computation of F (2)(C3,m,n
ALT ). The computation of F (2)(C2,m,n

ALT ) can be
done similarly. The second frame potential can be expressed as follows:

F (2)(C3,m,n
ALT ) =

∫
dUa(1)dUa(2)dUa(3)dUb(1)dUb(2)dUb(3) |〈0|Ua(1)

†
Ua(2)

†
Ua(3)

†
Ub(3)Ub(2)Ub(1)|0〉|4

=

∫
2design

 3∏
i=1

k(i)∏
j=1

dUa(i, j)

 3∏
i′=1

k(i)∏
j′=1

dUb(i
′, j′)


× |〈0|Ua(1, 1)

†
Ua(1, 2)

† · · ·Ua(1, n/m)
†
Ua(2, 1)

†
Ua(2, 2)

† · · ·Ua(2, n/m+ 1)
†

× Ua(3, 1)
†
Ua(3, 2)

† · · ·Ua(3, n/m)
†
Ub(3, n/m) · · ·Ub(3, 2)Ub(3, 1)

× Ub(2, n/m+ 1) · · ·Ub(2, 2)Ub(2, 1)Ub(1, n/m) · · ·Ub(1, 2)Ub(1, 1)|0〉|4.

Recall that k(i) denotes the number of blocks in i-th layer; k(i) = n/m for i = 1, 3 and k(i) =
n/m+ 1 for i = 2. We can get the final formula in the theorem by integrating only the unitary
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matrices in the first layer and the third layer. Executing integrals
∫

2design

∏n/m
j=1 dUa(`, j) and∫

2design

∏n/m
j′=1 dUb(`, j

′) for ` = 1, 3, we have

F (2)(C3,m,n
ALT )

=

∫
2design

n/m+1∏
j=1

dUa(2, j)

n/m+1∏
j′=1

dUb(2, j
′)


4∑

ka11=1

4∑
ka12=1

· · ·
4∑

ka
1 n
m

=1

4∑
ka31=1

4∑
ka32=1

· · ·
4∑

ka
3 n
m

=1

4∑
kb11=1

4∑
kb12=1

· · ·
4∑

kb
1 n
m

=1

λ
(m)
ka11

λ
(m)
ka12
· · ·λ(m)

ka
1 n
m
−1
λ

(m)
ka
1 n
m

λ
(m)
ka31

λ
(m)
ka32
· · ·λ(m)

ka
3 n
m
−1
λ

(m)
ka
3 n
m

λ
(m)

kb11
λ

(m)

kb12
· · ·λ(m)

kb
1 n
m
−1

λ
(m)

kb
1 n
m

×∆(ka11,k
a
31,k

b
11) (Ua(2, 1), Ub(2, 1))×∆(ka11,k

a
31,k

b
11,k

a
12,k

a
32,k

b
12)(Ua(2, 2), Ub(2, 2))

×∆(ka12,k
a
32,k

b
12,k

a
13,k

a
33,k

b
13)(Ua(2, 3), Ub(2, 3))× · · ·

×∆

(
ka1 n
m
−1,k

a
3 n
m
−1,k

b
1 n
m
−1,k

a
1 n
m
,ka3 n

m
,kb1 n

m

)
(Ua

(
2,
n

m

)
, Ub

(
2,
n

m

)
)

×∆
(ka1 n

m
,ka3 n

m
,kb1 n

m
)
(
Ua

(
2,
n

m
+ 1
)
, Ub

(
2,
n

m
+ 1
))

=

4∑
ka11=1

4∑
ka12=1

· · ·
4∑

ka
1 n
m

=1

4∑
ka31=1

4∑
ka32=1

· · ·
4∑

ka
3, n
m

=1

4∑
kb11=1

4∑
kb12=1

· · ·
4∑

kb
1 n
m

=1∫
2design

dUa(2, 1)dUb(2, 1)

√
λ

(m)
ka11

λ
(m)
ka31

λ
(m)

kb11
∆(ka11,k

a
31,k

b
11) (Ua(2, 1), Ub(2, 1))

×
∫

2design

dUa(2, 2)dUb(2, b)

√
λ

(m)
ka11

λ
(m)
ka31

λ
(m)

kb11

√
λ

(m)
ka12

λ
(m)
ka32

λ
(m)

kb12
∆(ka11,k

a
31,k

b
11,k

a
12,k

a
32,k

b
12)(Ua(2, 2), Ub(2, 2))

×
∫

2design

dUa(2, 3)dUb(2, 3)

√
λ

(m)
ka12

λ
(m)
ka32

λ
(m)

kb12

√
λ

(m)
ka13

λ
(m)
ka33

λ
(m)

kb13
∆(ka12,k

a
32,k

b
12,k

a
13,k

a
33,k

b
13)(Ua(2, 3), Ub(2, 3))

× · · · ×
∫

2design

dUa

(
2,
n

m

)
dUb

(
2,
n

m

)√
λ

(m)
ka
1 n
m
−1
λ

(m)
ka
3 n
m
−1
λ

(m)

kb
1 n
m
−1

√
λ

(m)
ka
1 n
m

λ
(m)
ka
3 n
m

λ
(m)

kb
1 n
m

×∆

(
ka1 n
m
−1,k

a
3 n
m
−1,k

b
1 n
m
−1,k

a
1 n
m
,ka3 n

m
,kb1 n

m

)
(Ua

(
2,
n

m

)
, Ub

(
2,
n

m

)
)

×
∫

2design

dUa

(
2,
n

m
+ 1
)
dUb

(
2,
n

m
+ 1
)√

λ
(m)
ka
1 n
m

λ
(m)
ka
3 n
m

λ
(m)

kb
1 n
m

×∆
(ka1 n

m
,ka3 n

m
,kb1 n

m
)
(
Ua

(
2,
n

m
+ 1
)
, Ub

(
2,
n

m
+ 1
))

= a(3,m)TB(3,m)
n
m−1a(3,m), (B.6)

where we use definitions: (6.31), (6.32), (6.35), and (6.36). For the purpose of exemplifying
the computation in the first equality of (B.6), we show the computation when n/m = 2 in the
following. When n/m = 2, the second frame potential can be computed as follows:

F (2)(C3,n,m
ALT )

=

∫
2design

dUa(1, 1)dUa(1, 2)dUa(2, 1)dUa(2, 2)dUa(2, 3)dUa(3, 1)dUa(3, 2)

dUb(1, 1)dUb(1, 2)dUb(2, 1)dUb(2, 2)dUb(2, 3)dUb(3, 1)dUb(3, 2)

|〈0|U†a(1, 1)U†a(1, 2)U†a(2, 1)U†a(2, 2)U†a(2, 3)U†a(3, 1)U†a(3, 2)

Ub(3, 1)Ub(3, 2)Ub(2, 1)Ub(2, 2)Ub(2, 3)Ub(1, 1)Ub(1, 2)|0〉|4
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=

∫
2design

dUa(1, 1)dUa(1, 2)dUa(2, 1)dUa(2, 2)dUa(2, 3)dUa(3, 1)dUa(3, 2)

dUb(1, 1)dUb(1, 2)dUb(2, 1)dUb(2, 2)dUb(2, 3)dUb(3, 1)dUb(3, 2)∑
i,j,k,l,p

(
U∗a (1, 1)i20

i10U
∗
a (1, 2)i40

i30U
∗
a (2, 1)j1i1U

∗
a (2, 2)j3i3j2i2

U∗a (2, 3)j4i4U
∗
a (3, 1)k2j2k1j1

U∗a (3, 2)k4j4k3j3

Ub(3, 1)k2l2k1l1
Ub(3, 2)k4l4k3l3

Ub(2, 1)l1p1Ub(2, 2)l3p3l2p2
Ub(2, 3)l4p4Ub(1, 1)p20

p10Ub(1, 2)p40
p30

)
×∑

q,r,s,t,u

(
U∗b (1, 1)q20

q10U
∗
b (1, 2)q40

q30U
∗
b (2, 1)r1q1U

∗
b (2, 2)r3q3r2q2U

∗
b (2, 3)r4q4U

∗
b (3, 1)s2r2s1r1U

∗
b (3, 2)s4r4s3r3

Ua(3, 1)s2t2s1t1Ua(3, 2)s4t4s3t3Ua(2, 1)t1u1
Ua(2, 2)t3u3

t2u2
Ua(2, 3)t4u4

Ua(1, 1)u20
u10Ua(1, 2)u40

u30

)
×∑

i′,j′,k′,l′,p′

(
U∗a (1, 1)

i′20

i′10U
∗
a (1, 2)

i′40

i′30U
∗
a (2, 1)j′1i′1U

∗
a (2, 2)

j′3i
′
3

j′2i
′
2
U∗a (2, 3)j′4i′4U

∗
a (3, 1)

k′2j
′
2

k′1j
′
1
U∗a (3, 2)

k′4j
′
4

k′3j
′
3

Ub(3, 1)
k′2l
′
2

k′1l
′
1
Ub(3, 2)

k′4l
′
4

k′3l
′
3
Ub(2, 1)l′1p′1Ub(2, 2)

l′3p
′
3

l′2p
′
2
Ub(2, 3)l′4p′4Ub(1, 1)

p′20

p′10Ub(1, 2)
p′40

p′30

)
×∑

q′,r′,s′,t′,u′

(
U∗b (1, 1)

q′20

q′10U
∗
b (1, 2)

q′40

q′30U
∗
b (2, 1)r′1q′1U

∗
b (2, 2)

r′3q
′
3

r′2q
′
2
U∗b (2, 3)r′4q′4U

∗
b (3, 1)

s′2r
′
2

s′1r
′
1
U∗b (3, 2)

s′4r
′
4

s′3r
′
3

Ua(3, 1)
s′2t
′
2

s′1t
′
1
Ua(3, 2)

s′4t
′
4

s′3t
′
3
Ua(2, 1)t′1u′1Ua(2, 2)

t′3u
′
3

t′2u
′
2
Ua(2, 3)t′4u′4Ua(1, 1)

u′20

u′10Ua(1, 2)
u′40

u′30

)
(B.7)

where the bold symbols in the bottom the summation denote the multiple indices, e.g., i =
i1, i2, i3, i4. For the integrals Ua(1, 1), Ub(1, 1), Ua(1, 2), Ub(1, 2),∫

2design

dUa(1, 1)Ua(1, 1)u20
u10Ua(1, 1)

u′20

u′10U
∗
a (1, 1)i20

i10U
∗
a (1, 1)

i′20

i′10 =

4∑
ka11=1

λ
(m)
ka11

∆
ka11
u10u′10i10i′10∆

ka11
u20u′20i20i′20,

(B.8)∫
2design

dUb(1, 1)Ub(1, 1)p20
p10Ub(1, 1)

p′20

p′10U
∗
b (1, 1)q20

q10U
∗
b (1, 1)

q′20

q′10 =

4∑
kb11=1

λ
(m)

kb11
∆
kb11
p10p′10q10q′10∆

kb11
p20p′20q20q′20,

(B.9)∫
2design

dUa(1, 2)Ua(1, 2)u40
u30Ua(1, 2)

u′40

u′30U
∗
a (1, 2)i40

i30U
∗
a (1, 2)

i′40

i′30 =

4∑
ka12=1

λ
(m)
ka12

∆
ka12
u30u′30i30i′30∆

ka12
u40u′40i40i′40,

(B.10)∫
2design

dUb(1, 2)Ub(1, 2)p40
p30Ub(1, 2)

p′40

p′30U
∗
b (1, 2)q40

q30U
∗
b (1, 2)

q′40

q′30 =

4∑
kb12=1

λ
(m)

kb12
∆
kb12
p30p′30q30q′30∆

kb12
p40p′40q40q′40

(B.11)
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hold. For the integrals Ua(3, 1), Ub(3, 1), Ua(3, 2), Ub(3, 2),∫
2design

dUa(3, 1)dUb(3, 1)∑
k1,k2
s1,s2

∑
k′1,k

′
2

s′1,s
′
2

U∗a (3, 1)k2j2k1j1
Ub(3, 1)k2l2k1l1

U∗b (3, 1)s2r2s1r1Ua(3, 1)s2t2s1t1U
∗
a (3, 1)

k′2j
′
2

k′1j
′
1
Ub(3, 1)

k′2l
′
2

k′1l
′
1
U∗b (3, 1)

s′2r
′
2

s′1r
′
1
Ua(3, 1)

s′2t
′
2

s′1t
′
1

=

4∑
ka31=1

λ
(m)
ka31

∆
ka31
j1l1j′1l

′
1t1r1t

′
1r
′
1
∆
ka31
j2l2j′2l

′
2t2r2t

′
2r
′
2

(B.12)

∫
2design

dUa(3, 2)dUb(3, 2)∑
k3,k4
s3,s4

∑
k′3,k

′
4

s′3,s
′
4

U∗a (3, 2)k4j4k3j3
Ub(3, 2)k4l4k3l3

U∗b (3, 1)s4r4s3r3Ua(3, 2)s4t4s3t3U
∗
a (3, 2)

k′4j
′
4

k′3j
′
3
Ub(3, 2)

k′4l
′
4

k′3l
′
3
U∗b (3, 2)

s′4r
′
4

s′3r
′
3
Ua(3, 2)

s′4t
′
4

s′3t
′
3

=

4∑
ka31=1

λ
(m)
ka31

∆
ka32
j3l3j′3l

′
3t3r3t

′
3r
′
3
∆
ka32
j4l4j′4l

′
4t4r4t

′
4r
′
4

(B.13)

hold. Substituting (B.8), (B.9), (B.10), (B.11), (B.12), and (B.13) to (B.7), we get

F (2)(C3,n,m
ALT )

=

4∑
ka11=1

4∑
ka31=1

4∑
kb11=1

4∑
ka12=1

4∑
ka32=1

4∑
kb12=1

λ
(m)
ka11

λ
(m)
ka31

λ
(m)

kb11
λ

(m)
ka12

λ
(m)
ka32

λ
(m)

kb12

∫
2design

dUa(2, 1)dUb(2, 1)

 ∑
u1u
′
1i1i
′
1

j1j
′
1l1l
′
1

∑
r1r
′
1t1t

′
1

p1p
′
1q1q

′
1

∆
ka11
u10u′10i10i′10∆

ka31
j1l1j′1l

′
1t1r1t

′
1r
′
1
∆
kb11
p10p′10q10q′10 (B.14)

Ua(2, 1)t1u1Ua(2, 1)t′1u′1U
∗
a (2, 1)j1i1U

∗
a (2, 1)j′1i′1Ub(2, 1)l1p1Ub(2, 1)l′1p′1U

∗
b (2, 1)r1q1U

∗
b (2, 1)r′1q′1

]
×

∫
2design

dUa(2, 2)dUb(2, 2)

 ∑
u2u
′
2i2i
′
2

j2j
′
2l2l
′
2

∑
r2r
′
2t2t

′
2

p2p
′
2q2q

′
2

∑
u3u
′
3i3i
′
3

j3j
′
3l3l
′
3

∑
r3r
′
3t3t

′
3

p3p
′
3q3q

′
3

∆
ka11
u20u′20i20i′20∆

ka31
j2l2j′2l

′
2t2r2t

′
2r
′
2
∆
kb11
p20p′2q20q′20

∆
ka12
u30u′30i30i′30∆

ka32
j3l3j′3l

′
3t3r3t

′
3r
′
3
∆
kb12
p30p′3q30q′30Ua(2, 2)t3u3

t2u2
Ua(2, 2)

t′3u
′
3

t′2u
′
2
U∗a (2, 2)j3i3j2i2

U∗a (2, 2)
j′3i
′
3

j′2i
′
2

Ub(2, 2)l3p3l2p2
Ub(2, 2)

l′3p
′
3

l′2p
′
2
U∗b (2, 2)r3q3r2q2U

∗
b (2, 2)

r′3q
′
3

r′2q
′
2

]×

∫
2design

dUa(2, 3)dUb(2, 3)

 ∑
u4u
′
4i4i
′
4

j4j
′
4l4l
′
4

∑
r4r
′
4t4t

′
4

p4p
′
4q4q

′
4

∆
ka12
u40u′40i40i′40∆

ka32
j4l4j′4l

′
4t4r4t

′
4r
′
4
∆
kb12
p40p′40q40q′40 (B.15)

Ua(2, 3)t4u4Ua(2, 3)t′4u′4U
∗
a (2, 3)j4i4U

∗
a (2, 3)j′4i′4Ub(2, 3)l4p4Ub(2, 3)l′4p′4U

∗
b (2, 3)r4q4U

∗
b (2, 3)r′4q′4

]
=

4∑
ka11=1

4∑
ka31=1

4∑
kb11=1

4∑
ka12=1

4∑
ka32=1

4∑
kb12=1

λ
(m)
ka11

λ
(m)
ka31

λ
(m)

kb11
λ

(m)
ka12

λ
(m)
ka32

λ
(m)

kb12∫
2design

dUa(2, 1)dUb(2, 1)∆(ka11,k
a
31,k

b
11) (Ua(2, 1), Ub(2, 1))×∫

2design

dUa(2, 2)dUb(2, 2)∆(ka11,k
a
31,k

b
11,k

a
12,k

a
32,k

b
12)(Ua(2, 2), Ub(2, 2))×∫

2design

dUa(2, 3)dUb(2, 3)∆(ka12,k
a
32,k

b
12) (Ua(2, 3), Ub(2, 3)) , (B.16)
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which is the right hand side of the first equality in (B.6) when n/m = 2.

B.4 Proof of Theorem 5

Similar to Theorem 4, we only show the inequality for F (2)(C3,m,n
ALT ) here. The inequality for

F (2)(C2,m,n
ALT ) can be shown in the same manner. In the process of showing the final inequality of

the theorem, we expand a(3,m) and B(3,m) as the sum of a vector/matrix whose components
are O(1) and a vector/matrix whose components are O(1/2m/2).

To evaluate Eq. (6.31)1, we can expand a(3,m) as

a(3,m) =
1

2m

(
v0 +

1.2

2m/2
v1

)
, (B.17)

where

v0i =


1 i = 1 (ka, kb, kc = 1),

1 i = 22 (ka, kb, kc = 2),

0 otherwise,

|v1i| < 1. (B.18)

Also, evaluating Eq. (6.35), we can expand B(3,m) as

B(3,m) =
1

22m

(
D +

1.3

2m/2−6
X

)
, (B.19)

where

Dij =


1 i = 1, j = 1 (ka, kb, kc, kd, ke, kf = 1),

1 i = 22, j = 22 (ka, kb, kc, kd, ke, kf = 2),

0 otherwise,

|Xij | <
1

64
. (B.20)

With α = n/m, let gkα(X,D) be as the set of matrices expressed by
∏α
i=1Ri where Ri = D or X

and the number of Xs in {Ri} is k. For example, XDXX ∈ g3
4(X,D) and XDDD ∈ g1

4(X,D).
Then, F (2)(C3,m,n

ALT ) is expanded as

F (2)(C3,m,n
ALT ) =

1

22m

(
vT0 +

1.2

2m/2
vT1

)
1

22n−2m

(
D +

1.3

2m/2−6
X

)α−1(
v0 +

1.2

2m/2
v1

)
=

1

22n

(
vT0 D

α−1v0 +

(
2.4

2m/2

)
vT1 D

α−1v0 +

(
1.22

2m

)
vT1 D

α−1v1

)

+
1

22n

α−1∑
k=1

(
1.3

2m/2−6

)k α−1Ck∑
i=1

(
vT0 g

k
αiv0 +

(
2.4

2m/2

)
vT1 g

k
αiv0 +

(
1.22

2m

)
vT1 g

k
αiv1

)
,

(B.21)

where gkαi (i = 1, 2 . . . αCk) is an element of gkα(X,D). For an arbitrary g ∈ gkα(X,D) with k ≥ 1,

vT
r gvs < (1, 1, · · · , 1)


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


α−k

1
64

1
64 · · ·

1
64

1
64

1
64 · · ·

1
64

...
...

...
1
64

1
64 · · ·

1
64


k

1
1
...
1

 = 64 (B.22)

holds. For D and v0,v1

vT
1 D

n
m−1vs <

64∑
i=1

(1 · (δi1 + δi22) · 1) = 2 (B.23)

vT
0 D

n
m−1v0 = 2 (B.24)

1The evaluation procedure is straightforward, but a lot of computation is required. Thus, instead of performing a hand-
calculation, we built an algorithm to evaluate (6.31) for arbitrary m and derived the expansion formula by computational
calculation. We also built an algorithm for evaluating (6.35) and derived the expansion formula by computational calculation.
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holds where r, s = 0, 1. By using the inequalities (B.22), (B.23), and (B.24), the upper bound
for F (2)(C3,m,n

ALT ) is derived as follows:

F (2)(C3,m,n
ALT ) <

1

22n

(
2 + 2

(
2.4

2m/2

)
+ 2

(
1.22

2m

)
+ 64

α−1∑
k=1

α−1Ck

(
1.3

2m/2−6

)k
1k
(

1 +
1.2

2m/2

)2
)

=
1

22n−1

(
1 +

1.2

2m

)2
(

1 + 32

((
1 +

1.3

2m/2−6

)α−1

− 1

))

=

(
1 +

1

2n

)(
1 +

1.2

2m

)2
(

1 + 32

((
1 +

83.2

2m/2

)α−1

− 1

))
F (2)

Haar(2
n). (B.25)

B.5 Proof of Corollary 1

As in the above theorems, we only show the inequality for F (2)(C3,m,n
ALT ) here. Whenm = 2a log2 n,

(
1 +

83.2

2m/2

)α−1

<

(1 +
83.2

2m/2

) 2m/2

83.2

 83.2n

2m/2m

< e
83.2n

2m/2m = e
41.6

ana−1 log2 n . (B.26)

If 41.6/(ana−1 log2 n) < 1,

e
41.6

ana−1 log2 n < 1 + (e− 1)
41.6

ana−1 log2 n
. (B.27)

Substituting Eqs. (B.26), (B.27), and m = 2a log2 n into (B.25), we get

F (2)(C3,m,n
ALT ) <

(
1 +

1

2n

)(
1 +

1.2

n2a

)2(
1 +

2288

ana−1 log2 n

)
F (2)

Haar(2
n). (B.28)

101


	Introduction
	Quantum computation
	Building-blocks of the quantum computation
	Quantum bit (qubit)
	Quantum gate
	Measurement

	Noisy quantum operations
	Quantum algorithms
	Quantum Fourier transform
	Quantum phase estimation


	Noisy intermediate-scale quantum computers and variational quantum algorithms
	Limitation of the near-term devices
	Limited number of qubits
	Noise
	Qubit connectivity

	Error mitigation
	Measurement error mitigation
	Zero noise extrapolation

	Variational quantum algorithms
	Basic concepts
	Applications
	Quantum generative adversarial network

	Critical issues of the variational quantum algorithms
	Barren plateau issue
	Other issues in VQA


	Quantum amplitude estimation algorithm tailored for NISQ
	Quantum amplitude estimation
	Preliminary
	Faster amplitude estimation algorithm
	Numerical Demonstration

	Quantum semi-supervised generative adversarial network as an application of NISQ
	Algorithm of qSGAN
	Numerical Demonstration
	Noiseless case
	Noisy case
	Comparison with classical neural network generator


	 Solutions to the barren plateau issue assessed by the expressibility analysis
	Possible solutions to the barren plateau issue
	Identity block strategy
	Layerwise learning
	Using alternating layered ansatz instead of hardware efficient ansatz
	Comparison of the three methods

	Expressibility of alternating layered ansatz
	Expressibility measure
	Ansatzes
	Expressibility of the ansatzes
	Numerical Experiment


	Conclusion and outlook
	Conclusion
	Outlook

	Theorems for Faster amplitude estimation
	 Proof of Complexity Upper Bound
	Theorem for atan function

	Theorem for the expressibility computation
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Corollary 1


