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Chapter 1

Introduction

1.1 Background

Aging populations with fewer births than in previous generations characterize modern societies.
According to the background, many studies on robots workingwith humans have been conducted,
and personal and industrial robots performing various tasks have begun to be put into practical
use. In particular, flexible human assist robots (FHARs), which are welfare and nursing care
robots specializing in human support, are attractive in modern societies.

One of the challenges to introducing FHAR in societies is that a control system simultaneously
considering human safety and stable robot motion generation is a must. Ensuring the safety
of the daily living environment is an essential issue faced by FHARs. In particular, as long
as it operates in the same living environment as humans, it is necessary to avoid physical
damage to environments. Additionally, a guaranteed stable motion generation ensuring safety
is also required. Moreover, FHARs, which interact with various environments, must consider
uncertainty; therefore, their control systems must consider robustness against uncertainty. In
order to simultaneously ensure safe and stable motion generation, a control system must satisfy
the mechanical and electrical constraints (e.g., maximum speed, torque, moveable range, etc.)
imposed on robots. Therefore, while controlling FHAR robots, an advanced motion control
method, which can provide robust constrained control, is a must in order to guarantee stable
motion generation.

Motion control[1, 2] is one of the key techniques for controlling such robots. Motion control
systems vary from a single motor to multiple degrees of freedom humanoid robots. There-
fore, control systems in motion control systems include various control systems such as classic
control for single-input/single-output systems using transfer function, modern control for multi-
input/multi-output (MIMO) systems using state-space model, robust control using characteristics
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on systems, etc. Classic control is used in main industrial applications. Moreover, using the
behavior validation of the frequency domain of plant systems, robust control is developed. By
contrast, modern control is developed for controlling MIMO systems, and it is mainly used for
optimal control and observers. In many motion control systems, since simple design and easy
implementation are considered, model-free control techniques such as Proportional-Integral-
Differential (PID) controller are utilized. Additionally, anti-windup control[3, 4] is one of
constrained controls in mode-free control. The method has the ability to consider control input
saturation in the control system; however, it does not cope with state constraints (i.e., dynamics
constraints).

Model-based control (MBC)[16, 17] systems, which are designed by using amathematical model
of plants, have been used in motion control systems frequently. MBC techniques in motion
control represent disturbance observer (DOB), Kalman filter (KF)[18], and linear quadratic
regulator(LQR), etc. In MBC systems, an invariant set[5, 6], which provides motion conditions
considering constraints on robots and desiredmotion set, is used for constrained control design. In
contrast to model-free constrained control, the MBC-based constrained control provides motion
constraints allocated by preliminary conditions. In constrained control systems, an invariant set
is occasionally used. The invariant set-based control systems provide motion response within
the preliminary conditions (invariant set), in the case of the initial values within the conditions.
In particular, the implementations of the invariant set are used by the switching controller and
reference governor[6, 7]. These methods have the advantage that is to divide control performance
on constraints and tracking; therefore, the stability analysis and tracking error are compensated.
However, handling excessive disturbance and controlling high-order plant models are challenging
in consideration of constraints satisfaction over the invariant set. The main drawback of MBCs
is that accurate system models and state information are required.

Among the constrained control systems in the MBC, model predictive control (MPC)[17, 20–
30] is a key technology for realizing advanced motion control. MPC is a control system design
method that can directly impose constraints on robots and realize high profitability, high accuracy,
and high-performance controls; therefore, the MPC-based systems can design advanced control
systems in various systems. However, control performances of MBC systems are decided by
modeling and observation accuracies. In FHAR control systems that interact with uncertain
environments with unknown parameters, robustness compensation against uncertainty is must
be ensured to bring out the control performance of MBC systems. Therefore, applying MPC to
FHAR in uncertain environments is challenging owing to robustness issues.

To explicitly consider unknown disturbance and parameter and modeling errors in control system
design, robust control theory had been established and is represented by H∞ and sliding mode
control[1]. These robust control systems are based on the model and its uncertainty. Therefore,
robust control on MBCs is classified as robust model-based control (RMC).
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Figure 1.1: Robust model-based control

Among the RMC, DOBs [8–15], which are used for estimating and canceling external distur-
bances, are an essential method in motion control and have been highly evaluated as a method
for robust control. Moreover, DOB-based robust motion control is simple and useful for im-
provements of various motion control systems. Additionally, identity disturbance observers
(IDOBs)[1], which are expressed by state-space models, have been developed. Therefore,
FHAR control systems are expected that the disturbance observer-based control will be utilized.
Additionally, FHAR systems contact the environments; therefore, the safety compensation by
the force is a must. In this dissertation, the safe and stable motion generate by utilizing the force
information, which can estimate as a disturbance.

Therefore, this thesis focuses on addressing the robust design problem to ensure constrained
motion control systems in uncertain environments. Fig. 1.1 shows the definition of RMCs and
the relationship of existing typical control system design methods[19]. Additionally, FHAR
systems contact the environments; therefore, the safety compensation by the force is a must. In
this dissertation, the safe and stable motion generate by utilizing the force information, which
can estimate as a disturbance. In other words, how to effectively integrate MPC systems and
DOB systems is clarified.
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1.1.1 Related studies

The main problem with MBC including MPC is that the control performance is greatly affected
by the modeling and parameter errors between the internal model used for design and the
actual plant. The control performance of MPC significantly depends more on the accuracy of
the internal model for predictions. Feedback control theory reduces the effects of modeling
errors. However, in the case of MPC performing online sequential state feedback control, it is
challenging to reduce the error within a finite time. Therefore, when applied to an actual robot
with parameter variations, the control performance deteriorates significantly. In order to reduce
the modeling error, white-box modeling, which completely describes all motion and parameters,
is ideal. However, the utilization of white-box modeling in motion control is nearly always
limited; therefore, gray-box modeling with uncertainty should be used practically. This thesis
focuses on how to solve the modeling error problem. An essential solution to this problem is the
nominalization of the plant model by estimating and canceling various disturbances including
modeling errors, external forces, parameter errors, etc.

In order to compensate for the disturbance influences, robust MPC (RMPC)[31–36] has been
developed. Generally, RMPCs consider bounded disturbance; therefore, robustness is compen-
sated within the bounded set. Additionally, the constraints are strictly modified to compensate
for robustness. FHAR control systems occasionally are affected by disturbance above the torque
limit. In FHAR systems, the undesired disturbance is easily generated by the contact/interaction
of environments; therefore, RMPC, which is conservative, is insufficient to compensate for the
robustness.

In order to solve the problem, some studies that integrate disturbance estimations and MPCs
(Offset-free MPCs)[37–40] have been conducted. One of the offset-free MPCs is the output
disturbance estimation-based MPC method. In this method, an output disturbance observer
estimates the estimation error between measured output and estimated output as disturbance
estimates. Then, the estimated output disturbance uses formodification of reference or prediction.
Hence, the offset-free characteristics depend on the control performance ofMPC, and the internal
model is not compensated.

Alternatively, input disturbance estimation can be utilized to design the offset-free MPC [41–
58]. DOB is a control technique that estimates modeling errors in the internal model, and
it is used for nominalization for the plant model. The conventional methods estimate input
disturbance, output disturbance, and modeling error, etc. Then, disturbance estimates are used
in modifications of reference trajectory generations, optimization problems, etc. However, in the
case of independent design of DOB and MPC, MPCs lose optimality; therefore, the integration
design frequently provides conservative control performance. Additionally, one of the problems
when integrating DOBs and MPCs is the behavior of constraints in cascade control. MPC
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systems imposing the constraints are nearly always used as outer loop controllers. According
to some studies, since actual control input is affected by the disturbance estimates of DOB as
inner loop controller, the control input and output influenced by added disturbance estimate may
cause constraint violation. Furthermore, the control input constraint considering the disturbance
estimate is always time-varying [36].

Conventional DOB-basedMPC systems utilize minimal-order DOB (MDOB) that only estimates
input disturbance. MDOB provides nominalization by nominal inertia or mass system; however,
it does not provide internal model robustness against multi-input/multi-output (MIMO) systems
of multi-degree-of-freedom (MDof) systems. Therefore, in MDof systems, stable motion gen-
eration cannot be guaranteed; therefore, an effective MPC structure considering the disturbance
estimation and internal model robustness is a must (Chapter 2).

Additionally, since constrainedmotion control behaves at constraint boundary, RMPC and offset-
free MPC systems have a problem against noise influences. In other words, the effectiveness
of constrained motion control is frequently lost by noise influences (Chapter 3). Moreover, the
limitation of the performance of DOB, which is a trade-off between high-frequency disturbances
rejection and low-frequency disturbance rejection, is well known. The disturbance estimation
performance of DOBs is decided by the cutoff frequency of the lowpass filter, and the respon-
siveness and noise sensitivity of DOBs is a trade-off relationship. Therefore, high-frequency
disturbance components (noise) remain in the estimates in the low-pass filter-based observer
owing to focus on disturbance compensation. The noisy estimates also affect the control perfor-
mance of MBC systems and constraints guarantee. To cancel the effects of noise, the estimation
time constant of the DOB needs to delay; however, this operation makes inadequate performance
on the disturbance compensation.

In other words, there are problems with the stability and robustness of DOB-based control in a
noisy environment, making it difficult to nominalize the plant model. Moreover, conventional
DOB-based control systems are implemented in motor system with optical encoder; however,
DOBs do not clearly cope with quantization noise generated by encoder sensor. It is indicated
that conventional DOB-based control systems using optical encoders with low-resolution in
joint space have the same problems in stability and robustness. Moreover, for making prediction
trajectories, theMPC requires information on state variables. Accurate state information supports
high precision control; however, the accurate state estimation must consider robustness against
noise and disturbances. A robust state estimation method considering disturbance and noise is
a must for compensating for the control performance of MPC systems. Therefore, an improved
DOB for simultaneously estimating state and disturbance considering various noise reduction is a
must (Chapter 4). Finally, as a well-known fact, it is difficult to guarantee closed-loop stability in
MPCs in uncertain environments[17, 20] and saturated systems. Generally, stability analysis for
MPCs only considers the nominal model. Additionally, in RMPC design, bounded disturbances
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only are assumed. Effective methods to guarantee stability are approaches to terminal state
constraints and terminal cost function and provide stability under nominal environments. In
theory, terminal state constraints can be used for ensuring nominal stability, and the terminal
penalty can also ensure the nominal stability conditions. However, to compose the theorem,
compensation of internalmodel robustness is amust. Additionally, the stability conditions require
a large computational load for compensating the stable behavior. Therefore, this dissertation
focuses on the nominalization of the actual system and attempts to assist the compensation of
stable motion generation under the influence of noise and disturbance by using the internal-loop
controller and fast MPC. As a result, the influences of unpredictable or unmeasured disturbances,
system uncertainty, non-linearity, and instability are reduced in MPC systems, and the stable
motion generation by the MPC system is guaranteed.
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1.2 Main objective of this thesis

This thesis aims to realize safe FHAR systems against interaction with various environments. In
order to achieve the aim, the main objective is to establish a constrained motion control method
with robustness against noise and disturbance. In particular, the elemental technologies required
to achieve this objective are described.

The main components of this thesis describe a robust MPC method and a noise-free robust
simultaneous estimation method of state and disturbance to compensate for the internal model
robustness.

1.3 Thesis structure

Figure 1.2 shows the chapter organization of this thesis.

Chapter 1 explained the introduction, background, problem, and objective of this thesis.

In Chapter 2, conventional disturbance estimation methods and the standard MPC are explained.
Then, the design method and the verification result of a robust MPC, which integrates DOB
and MPC, are shown. The verification results show that MPC with DOB is effective against
disturbance and can improve robustness. Moreover, the problem of constrained motion control
to stem from observation noise is shown.

In Chapter 3, a noise-free constrained motion control method is described. In this chapter, a
Kalman filter with disturbance estimation is used as a DOB for a robust MPC to enhance noise
influence reduction. In the method, the constrained motion control system filtered by Kalman
filter methods-based DOB is designed. With respect to rejecting noise influences, the verification
shows the effectiveness of the proposed design method; however, it is confirmed that the DOB
prioritizing the noise rejection makes sluggish disturbance estimation. Therefore, the Kalman
filter-based DOB cannot solve the usual problem of existing disturbance estimation methods,
which is the trade-off between disturbance estimation speed and noise sensitivity.

In Chapter 4, in order to solve the problem of disturbance estimation, a noise-free robust
simultaneous estimation method of state and disturbance is explained. Using variable gains,
the estimation method simultaneously provides both robustness against noise and disturbance
for MBC systems. Additionally, unlike existing disturbance estimation methods, the proposed
method can explicitly and adaptively handle white and quantization noises.

This thesis is concluded in Chapter 5.
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Figure 1.2: Chapter organization
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Chapter 2

Robust Model-based Motion Control

2.1 Introduction

This chapter describes the robust constrained motion control. In order to design the robust
constrained motion control, the integration design methods for robust MPCs by using DOBs are
shown in this chapter.

In Sec. 2.2, the design method of DOBs is illustrated. In this section, in contrast to the
conventional DOB, a DOB for simultaneously estimating state and disturbance is described. The
DOBs have two abilities for canceling the disturbance and for realizing acceleration control.

Secs. 2.3 and 2.4 focus on those two abilities and describes the two integration design methods
against each ability. Sec. 2.3 focus on MPC integrated with DOB for canceling the disturbance
in constrained systems. Sec. 2.4 focus on MPC integrated with DOB, for realizing constrained
acceleration control. In these sections, controller integration design methods that take advantage
of the DOBs are proposed. In this chapter, two application examples by each method are shown.
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2.2 Disturbance observer

DOBs[8, 12–14, 117] can estimate and cancel unknown disturbances and modeling errors. Fur-
thermore, DOB is known as a robust control technique in motion control systems. Additionally,
DOB systems are easily considered to apply to various systems using plant models. More-
over, some design methods for DOBs have been considered: (1) identity disturbance observer
(IDOB)[99] simultaneously estimate system state and disturbance, (2) extended state observer
(ESO)[118–120] supports to use nonlinear models, (3) model error compensator (MEC)[121]
does not require inverse models, and (4) sliding-mode observer-based DOB[122, 123] compen-
sates nonlinear disturbance, etc.

A minimal order disturbance observer (MDOB)[8, 12–14, 117], which focuses on estimating
disturbance, is the most familiar method in DOBs. Moreover, the MDOB can estimate the
disturbances with external force and model error by using the nominal model. Then, the
disturbance estimates are used to cancel the disturbance and to make robust control systems.

Therefore, in this dissertation, the IDOB,which can simultaneously estimate state and disturbance
is only focused. Additionally, IDOBs have the ability to robust estimation by simultaneous
estimation for state and disturbance; therefore, IDOB can use to improve the control performance
of MBCs including MPCs.

2.2.1 Estimation problem

This section describes the simultaneous estimation of state and disturbance. The plant is assumed
as a 1-degree of freedom such as an inertial system and a motor system and is defined by a linear
time-invariant system. Then, the parameters of the system state are defined as a torque τ [Nm]
and an angle y [rad]. The measured variable is assumed as the true angle q.

This equation of motion is given by

q̈ =
1
J
{τ − cq̇}, (2.1)

where q̈, J, τ, and c denote a angular acceleration, an inertia, a input torque, and a viscous
friction coefficient, respectively.

Additionally, the state vector of the system is described as x = [q q̇]T. Then, the state-space
model of the system can be described as

ẋ = Ax + Bu, (2.2)

y = Cx, (2.3)
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Figure 2.1: Block diagram of MDOB

where u = τ, A =

0 1

0 −c/J

, B = [0 1/J
]T
, and C =

[
1 0
]
.

The estimation problems for the systems are defined to estimate the true angle q, velocity q̇, and
the disturbance.

2.2.2 Minimal order disturbance observer (MDOB)

Firstly, a design method for MDOB is explained. The disturbance model is described as all
disturbances τd (i.e., external τdis and internal τp disturbances) into input disturbances. The
disturbance torque model can be described as

τ̇dis = 0. (2.4)

This disturbance model denotes the step-type disturbance; therefore, the DOB based on the
disturbance model aims to estimate the step-type disturbance.

The system of Eq. (2.1) extended by the disturbance τdis can describe as

q̈ =
1
J
{τ − cq̇ − τdis}, (2.5)

where, τdis denotes the external disturbances.

Moreover, the nominal inertia Jn for designing the MDOB is used. In practice, the MDOB
is used in joint space; therefore, an encoder angle information has to convert into velocity by
using pseudo-differential. Therefore, considering the pseudo derivative Gd(s) = gds/(s + gd),
the disturbance estimates (τd) of the MDOB can be described as

τd = −τp − cq̇ − τdis
=

gw
s + gw

{τ + gwJnGd(s)q} − gwJnGd(s)q, (2.6)
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(a) acceleration controller (b) equivalent system

Figure 2.2: Block diagram of acceleration control

where τp denotes the disturbance torque by model errors as internal disturbance, and gd and gw
denote cutoff frequencies used in the pseudo-derivative and a lowpass filter in the MDOB. If the
disturbances are canceled, the system model is nominalized by the MDOB using the nominal
inertial system of Jn. On the other hand, the disturbance estimates involve external and internal
disturbances. Thus, to estimate external force disturbances, the utilization of a reaction force
observer[103] is a must. Fig. 2.1 shows the block diagram of the MDOB.

In the DOB, the disturbance estimation attempts using the step-type disturbance model. There-
fore, in theory, the DOB cannot handle time-varying disturbance influences. However, the DOB
has the dynamics for disturbance estimation. Therefore, in the case of the DOB design with
the fast updating of the disturbance estimates (i.e., using high cutoff frequency), the disturbance
estimates by the DOB can track the actual disturbance with a small-time delay.

On the other hand, using the nominalization performance of MDOBs, the MDOBs can handle
acceleration control based on nominal inertia. Acceleration control is one of the key techniques
inmotion control because acceleration can simultaneously treat force control and position control
in the same dimensions. Fig. 2.2 shows the MDOB-based acceleration control and its equivalent
system. TheMDOB handles noise effects by sensors using the cutoff frequencies. In Eq. (2.6), it
is confirmed that the second term propagates noise effects to the state and disturbance estimates
by Gd(s). Therefore, because the general MDOB utilizes the measured variables to feedback
controllers, noise effects sometimes affect the control loop.
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2.2.3 Identity disturbance observer (IDOB)

Secondly, the IDOB, which aims to simultaneous estimation of state and disturbance using a
state-space model, is described. The configuration of the IDOB is similar to the steady-state
Kalman filter. The block diagram of the IDOB is illustrated in Fig. 2.3. Adding Eq. (2.5) in Eq.
(2.2), then, a state space model is given by

ẋ = Ax + Bu − Bτdis, (2.7)

y = Cx, (2.8)

where, A, B, and C denote the system state, input, and output matrices. A new state vector
x extended by the disturbance estimates τd is defined using the augmented state vector x̄ =

[q q̇ τd]T. Moreover, the state-space model dealing with the augmented state vector can be
described as

˙̄x = Āx̄ + B̄u, (2.9)

y = C̄x̄, (2.10)

where Ā =

A −B
0 0

, B̄ = [B 0
]T
, and C̄ =

[
C 0

]
.

The IDOB based on the state space observer can be described as

˙̄x = (Ā − LC̄)x̄ + B̄u + Ly, (2.11)

= (Ā −
Lstate

Ldis

 C̄)x̄ + B̄τ +

Lstate

Ldis

 y. (2.12)

L is the observer gain matrix which are structured by state Lstate and disturbance Ldis. The
nominal stability of the IDOB is compensated by the eigenvalues (pole) design. The IDOB is
capable to reduce the influences of noise than the MDOB via (Ā − HC̄). The IDOB is designed
by using pole placement methods; therefore, the observable of the extended system is a must.

The observability matrix, which guarantees for the observable on the extended systems, is given
by

rankUo = nx, (2.13)

where Uo = [C̄ C̄ Ā C̄ Ā2]T and nx denotes the number of state variables. The observable of
the extended model is given by

rankUo = rank


1 0 0

0 1 0

0 −c/J −1/J

 = nx. (2.14)
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(a) disturbance suppression (b) acceleration controller

Figure 2.3: Block diagram of IDOB

Therefore, the extendedmodel is observable, and the IDOB can be designed using pole placement
methods. On the other hand, the observability of the IDOB can also be compensated by det(Uo),
0. Additionally, the observability of the extended model follows the observability of the original
state-space model.

As with the MDOBs, the IDOB can handle the acceleration control. Fig. 2.3 shows the IDOB-
based acceleration control. IDOB can handle multi variables and its acceleration control in a
single system. In order to design acceleration control by the IDOB, the disturbance estimation
is defined as

τd = −τdis − cq̇. (2.15)

Additionally, the system matrix of the IDOB is defined as A =

0 1

0 0

.
2.2.3.1 Design of discrete-time IDOB

StandardMPCs are defined by discrete-time systems. Therefore, to integrate IDOB into discrete-
time control systems, the design of discrete-time IDOB is described in this section.

The sampling time is defined as Ts [s]. Using the sampling time and zero-order hold, the
continuous-time state-space model (Eqs. (2.2) and (2.3)) can be transformed to the discrete-time
state-space model, which can be defined as

x(k + 1) = Adx(k) + Bdu(k), (2.16)

y(k) = Ckx(k). (2.17)
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Figure 2.4: Block diagram of discrete-time IDOB

where Ad, Bd, and C denote coefficient matrices in the discrete-time state-space model, respec-
tively.

In discrete-time systems, the step-type disturbance model is given by

τd(k + 1) = τd(k). (2.18)

Using the discrete-time models, the extended state-space model in discrete-time can be described
as

x̄(k + 1) = Ād x̄(k) + B̄du(k), (2.19)

y(k) = C̄d x̄(k), (2.20)

where Ād =

Ad −Bd

0 1

, B̄d =
[
Bd 0

]T
, and C̄d =

[
Cd 0

]
, respectively.

If the extended model has observability, the discrete-time IDOB can design.

The discrete-time IDOB can be described as

x̄(k + 1) = (Ād − HC̄d)x̄(k) + B̄du(k) + Hy(k), (2.21)

= (Ād −
Hstate

Hdis

 C̄d)x̄(k) + B̄dτ(k) +

Hstate

Hdis

 y(k), (2.22)

where H denotes the observer gain matrix in the discrete-time IDOB. In the design of discrete-
time IDOB, the observability of the extended model is a must. The guarantee the observability
follows Eqs. (2.13) and (2.14). Fig. 2.4 shows the block diagram of the discrete-time IDOB. In
the rest of this dissertation, the discrete-time IDOB are handled as the IDOB.
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2.3 Robust constrained motion control against disturbance

In this section, a constrained motion control method based on the integration of IDOB and
MPC is described. MPC can be expected to make high control performance near the limit of
mechanical and mathematical performances, considering these constraints. However, the control
close to the limit value of the constraint always has the problem that constraint violation due to
the influence of disturbance. In the constraint violation situation, MPC falls into an unstable state
with no optimal control input, and the advantage of being able to consider constraints is lost. In a
general MPC system, the disturbance is canceled because it contains an integrator for calculating
the control input. However, the cancel speed is sluggish and tracking errors remain due to the
influence of disturbance. This problem is an obstacle to achieving high control performance by
MPC.

Additionally, many studies of guarantee of nominal stability of MPC use a nominal plant model.
For assisting the stability of MPC, the nominalization method is a must. Some studies suggest
that offset-free MPC (robust MPC) can be implemented by output disturbance observers. In
order to design offset-free MPCs, it is required as many disturbance estimation variables as
there are state variables. Additionally, observation of the state variables is also needed. Also,
the estimated disturbance in offset-free MPC is used to compensate for prediction trajectory or
reference trajectory. Therefore, it does not use to directly nominal the plant model. Furthermore,
implementing acceleration control, which is important formotion control systems, is challenging.
Therefore, in this section, controller integration design methods that take advantage of the
disturbance observer are proposed.

Therefore, by using IDOB, this section describes an MPC with offset-free characteristics and
disturbance suppression. The DOBs can definitely assist to realizes the nominal control per-
formance of MPCs. Generally, offset-free MPC is described as output disturbance estimation
rejection in reference trajectory. In this chapter, nominalization of MPC systems is focused
and DOBs for input disturbance estimation are used. High-bandwidth MDOB, which has been
widely used for disturbance estimation, has the advantage of being able to perform fast dis-
turbance estimation, and a robust control system can be constructed by directly canceling the
disturbance. Some studies in MPC with DOB are being conducted to eliminate and suppress
disturbance. The conventional DOB control directly removes the disturbance estimate for the
real disturbance. The direct disturbance cancellation occasionally makes unexpected motion
such as vibration, noise, etc. In that case, the control performance deteriorates. When used in
combination with an MPC that operates near the limit value, conventional DOB control may
cause constraint violation due to the influence of vibration and noise.

In this method, in contrast to many conventional DOB controls, the disturbance estimate is not
directly canceled against the actual disturbance. For canceling and suppressing the input and
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(a) cart robot (b) model description

Figure 2.5: Experimental system

output disturbance, the extended state-space system including the disturbance is regarded as the
internal model, the optimization control problem of MPC is formulated. By the extended system
as the internal model, the disturbance is suppressed via the optimization of the control input even
for the system with oscillation or vibration. The coefficient matrices of the extended system used
in the IDOB design are used for the design of the prediction model. However, the output matrix
(CMPC) for designingMPCs is redefined as full state observation based on the estimates of IDOB,
and the disturbance is also included in the control variables. TheMPC includes pseudo-feedback
control on the disturbance and derives the optimal control input that indirectly suppresses and
eliminates the influence of the disturbance. In this method, except for using the extended system
for the internal model, it basically follows the design method found in many studies and does not
perform optional special design.

2.3.1 Mathematical modeling

This section introduces the mathematical model of the plant.

MPC prediction and IDOB estimation are governed by the mathematical model. The plant is a
simple one degree of freedom mass-damper system as a cart, and the physical parameters of the
mathematical model are defined in Fig. 2.5 and Table 2.1. The position of the cart (z) is given by

z = r1θp (2.23)

z = r2θm (2.24)

The driving force is given by

fm =
τ

r2
. (2.25)
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The motion equations of the motor and the cart can be described as

Jθ̈m +Cmθ̇m = τ − τex (2.26)

mcz̈ +Ccż =
τex
r2

(2.27)

From Eq. (2.24), we obtain

θm =
z
r2
. (2.28)

Substituting Eq. (2.28) into Eq. (2.25), we have

J
r2
z̈ +

Cm

r2
ż = τ − τex. (2.29)

Dividing both sides of Eq. (2.29) by r2, it is given by

J
r22
z̈ +

Cm

r22
ż =

τ

r2
− τex

r2
. (2.30)

Adding Eqs. (2.27) and (2.30),

(mc +
J
r22
)z̈ + (Cc +

Cm

r22
)ż =

τ

r2
= fm. (2.31)

Defining mc +
J
r22
= M and Cc +

Cm
r22
= C, the motion equation can be described as

Mz̈ +Cż = fm. (2.32)

Moreover, the state space model of the cart is derived. From Eq. (2.32), we obtain

dv
dt
= v̇ = −Cc

M
v +

1
M

fm, (2.33)

where each variable denotes mass (= M), viscous friction (= Cc), position (= z), velocity (= v)
and the state variable (x = [z v]T). The state space model can be described as

ẋ =

 żv̇
 =
 0 1

0 −Cc
M


 zv
 +
 0

1
M

 fm (2.34)

y =
[
1 0

]  zv
 . (2.35)
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Table 2.1: Parameter definition of the cart

mc Mass
z Position
v Velocity
r1 Radius of the front wheel
r2 Radius of the rear wheel
θp Angle of the front wheel
θm Angle of the rear wheel
Cc Viscous friction of the system
Cm Viscous friction of the motor
τex External forces
τ Torque
J Motor inertia
fm Driving force

2.3.2 Output disturbance estimation

The disturbance estimated by IDOBs is explained. The extended system assuming only the input
disturbance was shown. In the extended system, the influences of the output disturbance are
explained.

A state-space model with input and output disturbances (di and do) can be described as

ẋ = Ax + Bu − Bdi (2.36)

y(k) = Cx + do (2.37)

Applying the KFD to this system, the disturbance estimates (d̂) are given by

d̂ = di + P(s)−1do, (2.38)

where, P(s) = {s(Ms +Cc)}−1.

From (2.38), the IDOBs including the KFDs can handle the influences of all disturbance as the
input disturbance estimates in theory. In particular, if the output disturbance can be defined as
time-invariant, the disturbance estimates can be described as

d̂ = di + s(Ms +Cc)do = di + (Ms +Cc)ḋo = di (2.39)

The influences of the time-invariant output disturbance do not appear in the disturbance estimates.
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2.3.3 Linear model predictive control

2.3.3.1 Outline of model predictive control scheme

Preliminaries on problems to apply MPCs in motion control systems are explained. In the case
of single-input/single-output (SISO) systems, its control variables, and manipulated variables
can theoretically be perfectly tracked by using the inverse model. By contrast, in the case of
multi-input/multi-output(MIMO) systems, tracking system design is challenging unless a high-
precision servo system or perfect tracking control[59] can be constructed. In order to control
MIMO systems, the method of solving the infinite time-optimal control problem by the Riccati
equation, which is a linear quadratic regulator (LQR), had been developed in the 1960s. Then,
the concept of MPC[60, 61], which is the optimal control theory in finite-time optimization,
was developed in the 1970s. In this thesis, an MPC, which optimizes control input variation, as
standard MPC. The MPC can directly handle to suppression of sudden change of control inputs
by external disturbances based on weighted design, in contrast to MPC that optimizes control
input. Fig. 2.6 shows the basis graphical concept of the standard MPC. MPC is a control method
to optimize control inputs from the current time k to the finite-time k+Nu. Nu is a control horizon
that denotes the number of steps that allow the change of the control inputs. In order to optimize

Figure 2.6: Outline control law of MPC systems
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the control inputs, minimization of tracking-error predictions is used based on a model of plants.
The predicted trajectories is for finite-time horizon (k to k + Np, where Np denotes prediction
steps). In the control law, the optimum amount of change in the control input is constant from
k + Nu to k + Np. In order for the control variables to track set values s(k+Np |k), which denotes
global reference values, a reference trajectory r(k+Np |k)in the prediction horizon is tracked. Using
a predicted control output that minimizes the total prediction tracking error, the control inputs
are determined by the optimization problem. Then, the first element of the optimal control input
trajectory is applied to plants. MPC sequentially calculates this scheme for each sampling time.

General MPCs [17, 23] have characteristics as follows:

• Multivariable control system can be controlled

• Input and output constraints of plants explicitly can be handled

• Future behavior is predicted

• The computational load is heavy and a long sampling time is require

• Control performance is depended on internal models.

• In theory, various mathematical models can be applied

Additionally, a feature of MPC is that the optimization control problem can express quadratic
programming (QP) problems. QP problems can easily formulate constrained optimization
problems. In MPC systems, this constraint can directly impose on the input and output variables
of plants depending on modeling. Utilization to the advantages, many studies on MPC have
been carried out on mechatronic and robotics systems in motion control. The basic LMPC is
described. In this study, the model of the plant is described as linear models; therefore, the
linear MPC is used in the actuator control system. Note that, LMPC is a simple control method;
therefore, the LMPC-based proposed system can easily expand to other systems.

2.3.3.2 Outline of optimization control problem

In this chapter, the control problem for MPCs is defined for a servo problem for x. Additionally,
the decision variables as the optimize parameters are defined as the future trajectory of the
difference of the control input ∆u. The optimization control problem for tracking control of
linear systems is used and is given by

J =
Np∑
i=1

||r(k + i|k) − y(k + i|k)||2Q +
Nu−1∑
i=0

||∆u(k + i|k)||2R (2.40)
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where k denotes the current sampling instant, and ||α||2X = αTXα. r(k + i|k) and y(k + i|k) denote
the desired and predicted control variables in k + i. Q and R are the weight matrices for tracking
error and control input, Np and Nu denote prediction and control horizons. Note that, in this
chapter, the DOB for guaranteeing robustness is introduced to the control system as an inner-loop
controller. Therefore, the control input obtained from the MPC (u) is not available as the current
input torque τ(k). Moreover, the u is integral of optimized control input variation; therefore,
the MPC has an integrator in the output of the controller. This integrator performs the control
input generation. However, it cannot provide the disturbance rejection performance because the
integrator is not handled tracking-error information.

Additionally, the bounded constraints can be imposed for x and u. The constraints are given by

xlow ≤ x(k + i|k) ≤ xupp, i = 1, 2, ...,Np

ulow ≤ uMPC(k + i|k) ≤ uupp, i = 0, 1, ...,Nu − 1 (2.41)

∆ulow ≤ ∆u(k + i|k) ≤ ∆uupp, i = 0, 1, ...,Nu − 1

where ∗low and ∗upp denote the lower and upper bounds on each variable. The MPC minimizes
Eq. (3.12) and optimizes the difference of the control input ∆u(k). Moreover, the control input
obtained from the MPC can be described as

u(k) = u(k − 1) + ∆u(k). (2.42)

By using IDOB, the state estimates can be used in LMPC systems; therefore, the state estimates(x̂)
by IDOB are used as control variables (ŷ).

The predicted state trajectory Z(k) from the current time k to the prediction horizon Np is given
by

Z(k) =


x̂(k + 1|k)

...

x̂(k + Np|k)

 = Ψx(k) + Γu(k − 1) +Θ∆U(k), (2.43)

where, Ψ, Γ, and Θ denote the matrices for prediction.

Then, the predicted tracking error trajectory ε(k) is given by

ε(k) = Tre f (k) −Ψx̂(k) − Γu(k − 1) (2.44)

where Tre f is a reference trajectory.
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Using each trajectory, the optimization problem can be transformed as

minimize.
∆U

V(k) = −∆UT(k)G + ∆UT(k)H∆U(k)

subject to. Ω∆U(k) ≤ ω

∆U(k) =


∆u(k|k)

...

∆u(k + Nu − 1|k)


G = 2 ·ΘT · Q · ε(k)

H = ΘT · Q ·Θ + R

where, the optimal control input is obtained by accumulating the first element (∆̂u(k|k) =

∆u) of ∆U. Based on [17], each variable is defined as Ψ =



Ad
...

ANu
d
...

ANp

d


, Γ =



Bd
...

Nu∑
i=0

Ai
dBd

...
Np−1∑
i=0

Ai
dBd


, Θ =



Bd . . . 0

AdBd + Bd . . . 0
...

. . .
...

Nu−1∑
i=0

Ai
dBd . . . Bd

Nu∑
i=0

Ai
dBd . . . AdBd + Bd

...
...

...
Np−1∑
i=0

Ai
dBd . . .

Np−Nu∑
i=0

Ai
dBd



, where Ad and Bd denote discretized system and input matrices.

Ω and ω denote the matrix and vector reflecting the constraints.
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2.3.4 Preliminary experiment

In this section, the effectiveness of the simple integrated system of the LMPC and the IDOB
are shown. Additionally, a fast implementation method is provided. In order to confirm the
feasibility of the integration methods, some experiments of position control of the cart system
were carried out. The experimental conditions of the experiments are as follows;

1. Position control with velocity and control input constraints, (Np = 100, and Nu = 3),

2. Position control with position, velocity, and control input constraints, (Np = 30, and
Nu = 3).

In all experiments, the position reference was set to 0.1 [m]. The velocity and control input
constraints were set to 1.0 [m/s] and 2 [N]. The control input constraint was defined by covering
the actuator limit value 2.074 [N]. In the second experiment, the position constraint is imposed
with zre f /2 [m]. Additionally, the weight matrices on MPC were set to Q = diag(102, 1) and the
weight R = 1.

In the experiment, the sampling time of the control system is 1 [ms]. Each system was im-
plemented by a digital signal processor (sBOXII by MIS Corporation) via MATLAB coder by
Mathworks Inc. Moreover, Hildreth’s QP algorithm was used to solve the MPC problem.

However, the MPC has a computational load problem. In order to implement the control system
with 1 [ms], the constraints and iteration number were reduced. In contrast to conventional
design, the state constraints (position or velocity constraints) are reduced to 8 steps on prediction.
Additionally, the number of iterations of the QP solver is limited by 60 steps, and the maximum
permissible error is set to 10−8.

The experimental results are shown in Figs. 2.7 and 2.8. The results show the effectiveness of
the MPC with respect to the constraints. Moreover, it is confirmed that the MPC systems can
consider the control input and output constraints.

On the other hand, the simple integrated system has the problem of control input constraints. In
this system, the actual control input (ũ) can be described as

ũ(k) = u(k) + d̂(k) = u(k − 1) + ∆u(k) + d̂(k). (2.45)

The control input constraints on the MPC are imposed on the MPC output (∆u); however, the
actual control input consists of the sum of the MPC output and disturbance estimates. To address
the problem, the two solutions are proved in this chapter. One is a modification of the optimal
control problem by using the disturbance estimates and models, and another one is a utilization
of a time-varying constraint modified by current disturbance estimates.

24



Chapter 2. Robust Model-based Motion Control

(a) z (b) ˆ̇z

(c) u (d) d̂

(e) ∆u

Figure 2.7: Experimental results: Position control with velocity and control input constraints
using long prediction horizon.

In particular, the second result is indicated that the constraints are preferred to the references
in MPC control systems. Additionally, the robot has gear on the actuator. On the motion with
constraint boundary, the gear ratio and resolution generate vibration and numerical instability
in the control system. Therefore, it is evident that the bounded motion control systems must
consider the noise influences and sensor resolution. Chapter 4 presented the solution to address
the noise problem.
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(a) z (b) ˆ̇z

(c) u (d) d̂

(e) ∆u

Figure 2.8: Experimental results: Position control with position, velocity, and control input
constraints.
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2.3.5 Model predictive control with disturbance suppression[62]

In contrast to the conventional method, the MPC explained in this section uses the extended
model including disturbance as the internal model. The state vector of the extended model is
defined by x̄ = [z v d̂]

T, and the extended model is given by

x̄(k + 1) =

 Ad −Bd

0 1

 x̄(k) +
 B0
 fm(k) (2.46)

y =
[
Cd 0

]
x̄(k) (2.47)

where, Ad, Bd, and Cd denote the discretized coefficient matrix of the system (Eqs. (2.34) and
(2.35)).

The MPC treats all extended state variables as control variables. Moreover, the control law is
given by

J =
Np∑
i=1

||r(k + i|k) − x̄(k + i|k)||2Q +
Nu−1∑
i=0

||∆u(k + i|k)||2R. (2.48)

where r denotes the reference for the extended state vector.

Therefore, the control variables can include the disturbance estimates. The tracking error between
the disturbance set-point value (= 0) and the estimated value (= d̂) should be minimized while
optimizing the control input. Therefore, the control input considered the tracking error is derived.
Note that is the well-known fact that the error is never minimized because the disturbance is
not controllable. However, the proposed method can indirectly suppress the influence of the
disturbance by constructing a pseudo-feedback loop using the optimization problem minimizing
the error of the disturbance.

The constraint violation creates a solution, ”no solution". The available solution is a must
for online MPC systems. To avoid the problem, this chapter uses a countermeasure using
iterative methods among several available methods. The iterative method solves the optimization
method by using the iterative step of searching for the optimal solution, and the interactive
solution approaches an actual solution. Therefore, the interactive solution has the ability to
approximately behave as the optimal solution. Note that the approximate solution frequently
violated the constraints. TheMPC systemusing the approach can handle the constraint violations.
Moreover, in the proposed method, the constraint violations by external and internal disturbances
are considerably reduced by the disturbance estimates. Thus, the infeasible or unsatisfactory
solutions as control inputs are reduced.

Additionally, the optimization control problem calculates the control input rate ∆u. ∆u is then
used by the accumulator to derive the control input. Thus, u is not clearly obtained from the
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MPC. However, to solve the optimization control problem, the predicted state trajectory is used.
Moreover, the predicted trajectory is used for optimizing the control input rate. Therefore, the
control input is always considered in the solved control problem. Through this scheme, the MPC
can handle control input constraints directly. In the light of this information, the optimization
control problem with disturbance estimates can explicitly cancel the disturbance by using the
control inputs with disturbance estimates. However, in the case of implementation of the hard
constraints, the imposed constraints have to be set tighter than the original.

2.3.6 Numerical verification: offset-free control under disturbance influence

The effectiveness of disturbance suppression by the proposed method is shown. Moreover,
position control simulations of a simple mass-damper system with input and output disturbances
are used to verify. In the verifications, the set points are set to [position(m), velocity (m/s),
disturbance (N)] = [1, 0, 0]. By setting the disturbance reference to 0, the influence of input and
output disturbances can be suppressed, and the offset-free characteristic of the proposed method
can be shown. Additionally, MPC has the ability to activation of the constraints imposed on the
state vector. Therefore, in some simulations, the constraints are imposed on the position (1m).
By the constraints, overshoot motion is suppressed under disturbance-free situations.

In order to verify the effectiveness of the proposed method against disturbance by simulation,
comparative verification shown in Table. reftable:teiann was carried out. The MPC used for
comparison is general LMPC. Each tuning parameter has the same value as the proposedmethod,
shown in Table 2.4.

In Table 2.2, (a) is the proposed method; (b) is the general MPC; (c) is the conventional DOB
control and MPC that directly removes the disturbance. The comparison results are shown the
effectiveness of the disturbance suppression function. The effectiveness of offset-free control by
the proposed method can be quantitatively evaluated by comparing each result. The conditions
of disturbance are set to 1) step type and 1N (10s) in plant input; 2) step type and 0.5N(10s) in
plant output. The DOB in the verification (a, b, c) can estimate the stationary disturbance (di) at
the input; however, it cannot estimate the effect of the stationary disturbance (do in 10s) at the
output.
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Table 2.2: Simulation conditions

Estimation MPC Disturbance rejection Output disturbance Constraint
(a) DOB prop. proposed Const. reference position
(b) OB∗ conv. Non Const. reference position
(c) DOB conv. conv. Const. reference position

where, *:OB denotes normal state observer.

Table 2.3: Parameters of DOB

Pole p [0.80 0.82 0.84]
Sampling time δ1[s] 0.01

Table 2.4: Parameters of MPC

Weight matrix on tracking error Qm diag(102 101 10−2)
Last of weight matrix on tacking error Qm−last 3 × Qm

Weight on control input rate Rm 10−1

Each horizon [Np Nu] [20 5]
Sampling time for control δ2[s] 0.10

Figure 2.9: Simulation results: position
(proposed:(a))

Figure 2.10: Simulation results: state es-
timates by IDOB (proposed:(a))

Figure 2.11: Simulation results: disturbance estimates by IDOB (proposed:(a))
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Figure 2.12: Comparison result (b) : po-
sition

Figure 2.13: Comparison result (b) : State
estimates by OB

Figure 2.14: Comparison result (c) : po-
sition

Figure 2.15: Comparison result (c) : state
estimates by IDOB

Figure 2.16: Comparison result (c) : disturbance estimates by IDOB

2.3.6.1 Controller setup

Tables 2.3 and 2.4 shows the parameters of the control systems. The parameters for DOB and
MPC were empirically determined by trial and error. The prediction and control horizons are
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designed in consideration of tracking performance and computational load. Furthermore, in
order to improve the control performance, only a last weight matrix of Q and R set to tripled
from the normal weight. The setup is based on a terminal cost function. Qmpc and Rmpc are set
to

Qmpc =


Qm 0

. . .

0 Qm−last

, and Rmpc =


Rm 0

. . .

0 Rm

 ∈ R10×10.

2.3.6.2 Results

Figs. 2.9-2.11 show the results of the proposed method in (a). Fig. 2.9 shows the reference
and response of the position. Fig. 2.10 shows the estimated state by DOB. Fig. 2.11 shows the
estimates and real of input and output disturbances. The tracking control by the proposed method
can be performed without steady-state error even after being affected by a strong disturbance.
Compared to the results of the conventional method, the proposed method is the usefulness of
removing the influence of the disturbance.

From Fig. 2.10, sudden vibrations in the state estimates can be seen in 10s. The vibrations are
generated by applying a strong disturbance; however, it quickly converges to the set point. There-
fore, it is evident that the tracking performance of the proposed method is useful. Additionally,
a large velocity can be seen in 10 s. Then, it is trying to rapidly accelerate and follow the set
value, the motion can suppress by imposing constraints on the motor output and speed.

From Fig. 2.11, it is confirmed that the disturbance estimates cannot be affected constant output
disturbances. Moreover, the disturbance estimates are varied in 5s, owing to the control input for
motion control byMPC. In the controller design, the variation of disturbance estimates by control
input must be suppressed by tuning parameters for stability. In applications to actual systems,
it is worthy of evaluation that the proposed method can obtain the same control performance
without directly the disturbance rejection, unlike the conventional method. Moreover, since the
proposed methodMPC does not include a special design method, it can be expected to be applied
to complicated systems and other model-based control methods. z Moreover, since the proposed

Table 2.5: Simulation results

Tracking error Estimation error
(a) P P
(b) N *
(c) P P

where, P and N denote positive and negative.
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method MPC does not include a special design method, it can be expected to be applied to
complicated systems and other MBDCs.

Figs. 2.12-2.16 show the comparison results in disturbance suppression ((b), (c)). Figs. 2.12-
2.13 shows the results of general MPC system. The results indicate that MPC has the ability
to suppress disturbance; however, its performance is not sufficient. The state variables have a
steady-state tracking error while affecting the disturbance, and the performance of removing the
steady-state deviation is inadequate. Therefore, it is evident that the proposed method can add
the ability to remove the steady-state error owing to the influence of disturbance.

Figs. 2.14-2.15 show the results of MPC with DOB. In these results, by contrast to the proposed
method, the disturbance estimate is directly canceled. From the results, it has the same per-
formance on disturbance suppression as the proposed method. The direct disturbance rejection
occasionally generates undesired motion. The proposed method can eliminate the undesired
motion while keeping equivalent control performance. In particular, the proposed method has
the ability of improved control performance in noisy environments, where disturbance estimates
are significantly influenced by noise.

Overall, the proposedmethod can cancel and suppress the disturbances while considering control
output constraints, and achieve offset-free control.
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(a) state (b) control inputs

Figure 2.17: Simulation results(A): LQR

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.18: Simulation results(A): LQR + IDOB

2.3.7 Numerical verification: control input and velocity constraints

In the previous section, the disturbance suppression performance of the proposed method under
the state constraints is shown. In this section, the constrained control performances under the
control input constraints and state constraints are verified.

Constrained state regulation simulations of the mass-damper system are used to verify the
effectiveness of the proposed method. In the verifications, the initial state of the plant and
IDOBs are set to [position(m), velocity (m/s)] = [0.1, 0.1]. Moreover, the constraints are
imposed on velocity (= 1 m/s) and control inputs (= 2N).
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.19: Simulation results(A): constrained TPW-based MPC with IDOB

In the verification, an MPC with terminal penalty weights (TPW) [65] is used for designing the
proposed methods. The TPW-based MPC has closed-loop stability when all constraints are not
activated. Additionally, the response characteristic of the MPC can be approximated by LQR
systems having the same weight matrices; therefore, tune-up and design are simple.

Considering the terminal penalty weight, the optimization control problem of the MPC can be
desired as

J =
Np−1∑
i=1

||r(k+ i|k)− y(k+ i|k)||2Q+
Np−1∑
i=0

||∆uMPC(k+ i|k)||2R+ ||r(k+Np|k)− y(k+Np|k)||2Qt
, (2.49)

where, Qt denotes the terminal penalty weight, and it is given by the Cholesky decomposition of
the Riccati matrix of the approximated LQR[66]. As the drawback of this method, each horizon
is set to the same horizon (Np = Nu) for approximating the MPC systems by the LQR systems;
therefore, the computational load is heavier than standard MPCs.

The verified disturbance conditions are as follows:

A without disturbance

B Step type disturbance: 1N (within the input constraints)

C Step type disturbance: 2N (Same as the input constraint)
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.20: Simulation results(A): constrained MPC with IDOB

D Parameter error: j = 0.5Jn

E Parameter error: j = 1.5Jn

Additionally, in order to verify the effectiveness of the proposed method, some control systems
are compared:

• LQR

• LQR with IDOB

• TPW-based MPC with IDOB

• MPC with IDOB

• TPW-based proposed MPC using IDOB

Additionally, the first LQR system uses actual state information in the simulation.

2.3.7.1 Controller setup

The sampling time is set to 10 [ms]. The continuous poles of IDOB were set to [-8 -9 -10].
Moreover, the weights of the LQR andMPCs were set to Q = diag(1, 1) and R = 1. Additionally,
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.21: Simulation results(A): proposed TPW-based MPC with IDOB

(a) state (b) control inputs

Figure 2.22: Simulation results(B): LQR

considering the closed-loop response time, the prediction horizonwas set to 114 by the eigenvalue
of the system matrix.

In the proposed MPC design, the weight matrix (Q) is augmented by Q = diag(1, 1, 1) including
disturbance term. In this section, the solver of MPCs was implemented by Hildreth QP[23].
Moreover, considering the computational load, the number of iterations is set to 40 steps and
the allowable error is set 10−8. By using the short iteration number, the constraints are flexibly
handled under the influences of the disturbances.
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.23: Simulation results(B): LQR + IDOB

2.3.7.2 Results

The simulation results are shown in Figs. 2.17-2.41.

In the results with respect to A( = without disturbance), it is confirmed that the LQR and MPCs
have a similar response, and each MPC can ensure the velocity constraints. Moreover, it is also
confirmed that the state estimates of the IDOBs are matched to actual values.

In the results with respect to B( = step-type disturbance 1N), it is confirmed that the LQR
and MPCs keep a similar response, and each MPC can ensure the velocity constraints on the
estimated velocities. Moreover, it is also confirmed that the state estimates of the IDOBs have
errors while estimating the disturbance. Therefore, the actual velocities violate the constraints.
In order to solve this, fast disturbance estimation is a must. Furthermore, it is evident that the
fast disturbance estimation assists to ensure the constraints.

In the results with respect to C( = step-type disturbance 2N), it is confirmed that the LQR and
MPCs are significantly influenced by disturbance because the external disturbance is equivalent
to the control input limitation. However, from Fig. 2.31, it is evident that the proposed MPC
method can achieve to recover the constraint violation on control input and velocity. The
conventional methods cannot recover the constrained motion from disturbance influences. The
recovery ability is useful for handling unknown environments and for robust constrained motion
control. Therefore, the proposed method is useful compared to the conventional MPCs.
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.24: Simulation results(B): constrained TPW-based MPC with IDOB

In the results with respect to D and E (mass variation), it is confirmed that the LQR and MPCs
have a similar response, and each MPC can ensure the velocity constraints. In the case of lighter
mass than designed mass, the estimation performance of the IDOBs is reduced by parameter
error; therefore, the velocity constraints cannot be secured by the estimation error. Moreover,
the estimated state is vibrational; therefore, underestimated mass has to eliminate in designing
MPCs. In the case of heavier mass than designed mass, the estimation and control performances
of the IDOBs and MPC are less affected by the mass variation; however, small estimation errors
have occurred.

Overall, the proposed method is more useful under large disturbances. In particular, it can
achieve a robust MPC design and can generate stable constrained motion. Additionally, the
constraint recovery ability is effective for working with unknown environments.

2.3.8 Summary

In this section, the practical integrationmethod of IDOB and LMPCwas explained. Additionally,
the proposed method is an offset-free MPC including disturbance suppression. Moreover, some
simulation verifications show the effectiveness of the proposed method.
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.25: Simulation results(B): constrained MPC with IDOB

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.26: Simulation results(B): proposed TPW-based MPC with IDOB
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(a) state (b) control inputs

Figure 2.27: Simulation results(C): LQR

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.28: Simulation results(C): LQR + IDOB
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.29: Simulation results(C): constrained TPW-based MPC with IDOB

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.30: Simulation results(C): constrained MPC with IDOB
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(a) state estimates (b) control inputs

(c) disturbance estimate (d) disturbance estimate (large-scale)

Figure 2.31: Simulation results(C): proposed TPW-based MPC with IDOB

(a) state (b) control inputs

Figure 2.32: Simulation results(D): LQR
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.33: Simulation results(D): LQR + IDOB

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.34: Simulation results(D): constrained TPW-based MPC with IDOB
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.35: Simulation results(D): constrained MPC with IDOB

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.36: Simulation results(D): proposed TPW-based MPC with IDOB
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(a) state (b) control inputs

Figure 2.37: Simulation results(E): LQR

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.38: Simulation results(E): LQR + IDOB
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.39: Simulation results(E): constrained TPW-based MPC with IDOB

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.40: Simulation results(E): constrained MPC with IDOB
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 2.41: Simulation results(E): proposed TPW-based MPC with IDOB
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2.4 Constrained acceleration control[67]

In the previous section, the integration method of MPC and IDOB is explained. Online itera-
tion method-based MPCs cannot handle high-frequency motion control. In particular, human-
interactive robots are required high-speed response against environments. For instance, when the
MPC is applied to a manipulator with an unknown environment, the force cannot control without
environmental parameters used in the internal model. Therefore, in this section, the practical
constrained acceleration control method for a fast motion control system is explained using
hybrid position/force control (HPFC) for a multi-degree-of-freedom manipulator(MDoFMs).

This section explains a robust HPFC strategy forMDoFMs considering the input torque saturation
in joint space. In particular, the proposed position/force control utilizes the joint space position
control with torque constraints for avoiding the undesired behavior on force control with respect
to contact motion. In order to consider the torque constraints, the position control system on
each joint space is utilized and the reference is calculated by using inverse kinematics[90] by
the workspace position reference based on the implicit position control law. In the proposed
control system, predictive functional control (PFC)[91–94], which is an MPC, is used as each
position control system in each joint space. MPC is well-known as a control system that
can treat the constraints on control input and system state. However, the MPC has a heavy
computational load and requires the accuracy of the internal models. When MPC attempts to
apply to force control, the force cannot be controlled since the design of the internal model
cannot use environmental parameters. However, the proposed method can achieve force control
via position control; therefore, the MPC is not required environmental parameters. Moreover,
a short sampling time is a must for achieving force control. The PFC can design with a short
sampling time because of avoiding iterative online optimization. Therefore, the PFC is effective
for systematically considering torque saturation in short sampling control systems. In order to
apply PFCs to MDoFMs, it is necessary to utilize the DOB method[9–11, 95–99]. The MDoFM
control with DOB is possible to make independent position control in each joint by decoupling
using the nominal inertia matrix and by constructing acceleration control. Therefore, to use this
decoupling controller, the proposed method utilizes the IDOB-based acceleration control system
on each joint position control. Fortunately, the decoupling-based joint control can independently
design the responses on each joint position; therefore, it is easy to use redundancy. Moreover, the
proposed control system can treat disturbance cancellation and fast motion control with torque
constraints. In this section, some experiments including HPFC control of a planar three-link
manipulator are carried out to show the usefulness and validity of the proposed control systems.
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Figure 2.42: Modeling of three-link manipulator.

2.4.1 Preliminaries

2.4.1.1 Modeling

To verify the proposed method, a planar three-link manipulator is used in this section. The
modeling of the manipulator is shown in Fig. 2.42. In the manipulator system, the position
and angle of the end-effector on a plane can be controlled. When the end-effector angle is
appropriately controlled, force control can be achieved by a single-axis force sensor. To verify
the HPFC system, position control and force control are required in the same system; therefore,
this robot is suitable for validating the proposed method.

The state vector (q) and the input torque vector (τ) in a joint space are described as q = [q1 q2 q3]T

and τ = [τ1 τ2 τ3]T, respectively. Moreover, the position and posture of the end-effector of the
workspace are described as X = [x y ϕ]T . Then, using the Lagrange equation, the equations of
motion in the joint space can be described as

q̈ = J−1{τ − D(q̇) − H(q, q̇) − τdis}, (2.50)

where J, D, and H are the inertial matrix, the friction function, and the and a Coriolis and
centrifugal forces, respectively. Moreover, τdis is the disturbance torque generated by model
errors and external force.

Then, the workspace position by the forward kinematics can be described as

X =
[
Ja1 Ja2 Ja3

]T
, (2.51)
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Figure 2.43: System diagram of the proposed control system. FK and IK denote forward and
inverse kinematics.

where Ja1 = L1 cos q1 + L2 cos(q1 + q2)+ L3 cos(q1 + q2 + q3), Ja2 = L1 sin q1 + L2 sin(q1 + q2)+

L3 sin(q1 + q2 + q3), and Ja3 = q1 + q2 + q3.

Additionally, the differential kinematics for translating the velocities in the joint space and
workspace is given by

Ẋ = Jaco q̇ (2.52)

where Jaco is a 3×3 Jacobianmatrix based on Eq. (2.51). The Jacobianmatrix of q is represented
by Jaco(q); however, (q) is omitted in this section.

2.4.2 Proposed control system

The control system diagram is shown in Fig. 2.43. The proposed control system can divide
into four parts: 1) IDOB for nominalizing the plant model, for improving robustness, and
for designing the acceleration control, 2) implicit law of force control used for transforming
the workspace position reference to the workspace force reference, 3) inverse kinematics for
converting to the joint space position command from the workspace position reference, and
4) PFC for the acceleration control considering torque constraints in joint space. This section
describes the case of force control on the x-axis.

2.4.2.1 IDOB-based acceleration control

The IDOB used in the joint space is shown in Fig. 2.44. In the IDOB, the equation of disturbance
can be described as

τ̂d = D(q̇) + H(q, q̇) + τdis. (2.53)

This equation is used for designing acceleration control and for normalizing the system model.
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Figure 2.44: Acceleration control by IDOB for MIMO systems.

The state vector by position and velocity is defined as ζ = [qT q̇T]T. Moreover, to estimate
the state and disturbance simultaneously, new state vector extended by disturbance is defined as
ζ̄ = [ζT τTd ]

T. Then, the extended state-space model can be described as

 ˆ̇ζˆ̇τd
 = Ā ˆ̄ζ + B̄τ,

=

A −B
0 0


 ζ̂τ̂d
 +
B0
 τ, (2.54)

y = C̄ ˆ̄ζ =
[
C 0

]  ζ̂τ̂d
 , (2.55)

where A, B, C, and 0 are the system, input, output, and zero matrices defined by appropriate
orders, respectively. Moreover, Ā, B̄, and C̄ are the extended system, input, and output matrices.

Using the disturbance estimation of Eq. (2.53), the matrices are given by

A =

0 I

0 0

 , (2.56)

B =

 0
J−1n

 , (2.57)

C =
[
I 0
]
, (2.58)

where I and 0 are 3 × 3 dimension identity and zero matrices.

2.4.2.2 Implicit force control

The converting law of a force command (Fref) into the position command (Xref) is described in
the workspace. In the experimental validation, force control of the x-axis was performed, and
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other state variables (y, ϕ) were controlled by the position controller. Therefore, this section
concerns converting Fref

x to xref .

By position-based impedance control, the conversion of the nominal position command (xrefn )
can be described as

xrefn = xcp +
1
Ke

Fref
x , (2.59)

where xcp and Ke are the contact position and the environmental stiffness parameter, respectively.
To apply the force control with the environmental parameters is challenging under uncertain
environments. Furthermore, excessive force is usually possible due to the variation of stiffness
and contact points. Such a control system using constant parameters cannot deal with various
environments.

To control the force with unknown environments, a modified impedance command is proposed
in this section, and it can be described as

xref = x +
1
K f

(Fref
x − Fx), (2.60)

x̃ =
1
K f

(Fref
x − Fx), (2.61)

xref = x + x̃, (2.62)

where K f denotes the convert gain and Fx denotes the observed force. As shown by Eq. (2.60),
the force tracking error is integrated into the position command. Eq. (2.62) is capable to consider
the force reference and position deviation. Moreover, the proposed reference method can achieve
fast force control by position control. This assists to reject impact force, bouncing motion, and
hunting motion owing to contact motion. On the other hand, in the case of position control of
all variables, the control system inputs the workspace position command.

2.4.2.3 Inverse kinematics

The implicit force control using the workspace position control considers the stable contact
motion with torque constraints. In the implicit law, the transformation of the workspace position
command (Xref) to the position reference in joint space (qref) is required. In this section, the
inverse kinematics method using the Levenvetg-Marquardt method[90] is utilized with small
modifications to consider the singular points in the workspace posture of the manipulator.
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Additionally, the equations of inverse kinematics can be described as

qref(k) = q(k) + q̃ref(k), (2.63)

q̃ref(k) = H(k)M(k), (2.64)

H(k) = {JTaco(k)WeJaco(k)

+Wn(k)}−1, (2.65)

M(k) = JTaco(k)WeXe(k) + Xe(k), (2.66)

We = diag(w1,w2,w3), (2.67)

Wn(k) = diag(Xe(k)) + λI, (2.68)

where k is the current sample time. Moreover, in this section, singular states can be avoided using
a small bias λ(= 10−8) and the tracking error vector in Eq. (2.68). Additionally, We denotes
a diagonal matrix including weights (w1,w2, and w3) in each joint. Wn denotes and a diagonal
matrix of the error vector and a damping factor in the workspace. Xe denotes a tracking error
vector of the workspace position. Moreover, this method can control the manipulator from the
singular state, and it can calculate the joint angle reference using the reference velocity. In this
section, velocity constraints by maximum speed (30 rad/s) in actual motor are imposed on q̃ref ,
and the constraints can be described as 2π · 30/60 = π[rad/s]. Overall, joint angle control for
workspace position control is effective, since it can avoid singular states.

2.4.2.4 Joint space position control

In joint space, the position control system uses acceleration control by the IDOB and the PFC.
General MPCs control MIMO systems with system state constraints via online optimization.
In contrast to this, PFCs control the system state with input constraints. Moreover, online
optimization is not required. PFCs do not explicitly handle output constraints; however, it is
possible to design using a small sampling time than standard MPCs. Therefore, in acceleration
control, PFCs are to easily use like general PD control. Moreover, the control parameters for
designing PFC are defined as the target response time and a damping factor on prediction tracking
errors. The PFC is easier to implement a joint space controller with the torque constraints and
the nominal response in each joint actuator with PFCs than it is with PD systems.

The proposed control system utilizes each independent PFCs as position control in each joint.
Furthermore, the independent PFCs are designed based on decoupling by the IDOB. Therefore,
it can generate the acceleration reference for each joint angle and perform position control in
joint space with torque constraints. Moreover, by using the target response time, the response in
joint angles can be controlled explicitly and independently.
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The main problem of MBC systems is the error of internal models. The model errors in the
internal model create a reduction of the control performance of MBC systems. In the IDOB
-based PFC, the internal model system is different from the internal models used in conventional
systems. In the proposed method, the system 1/s2 is utilized based on the nominalization
obtained from the IDOB. Therefore, the internalmodel does not use the physical parameters of the
manipulator, and it is systematically to decide the control performance. In the proposed system,
the offset-free tracking performance in joint space position is dependent on the performance of
disturbance estimation and cancellation of the IDOB. The design method of PFC follows [94].
The description in this section focuses on the first joint angle (q1), and the design methods of the
internal model and the torque constraints are explained.

2.4.2.5 Internal model of PFC

A state vector xq = [q1 q̇1] in joint space is defined using the state estimates by the IDOB, and
the digital state-space model is given by

xq(k + 1) = Aqxq(k) + Bqu(k), (2.69)

y(k) = Cqxq(k), (2.70)

where the coefficient matrices can be described as

Aq =

1 Ts

0 1

 , (2.71)

Bq =

 0Ts

 , (2.72)

Cq =
[
1 0
]
. (2.73)

where Ts denotes the sampling time of the control systems. Moreover, the control input (u)
directly can be described as the acceleration reference (q̈ref1 ) and the physical parameters are not
used for designing the internal model.

2.4.2.6 Outline of PFC scheme

In this section, the acceleration reference derivation is described. General PFC method as
position control is described on [93] and [94]. In design of the PFC, the reference trajectory
(T (k + i)) in the prediction horizon is defined as

T (k + i) = s(k + i) − αi(s(k) − y(k)), (2.74)
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where s denotes the setpoint, which is obtained by inverse kinematics as the joint angle reference,
and α denotes the damping factor of the reference trajectory[94]. The damping factor is given
by

α = e−3Ts/Tref , (2.75)

where Tref is the closed-loop target response time of the internal system. Moreover, α is defined
by Eq. (2.75); therefore, Tref is the main tuning parameter of the controller. Moreover, the PFC
does not optimize all sample points on the prediction horizon in each sampling time. To calculate
the control input, the coincidence points, which are the calculation points within the prediction
horizon, are decided on the prediction trajectory. The coincidence points (h j) are given by

h j = Tref/(Ts(n − j + 1)), (2.76)

where h j( j = 1, 2, ..., n) denote the sample step points (h j ·Ts = calculation points) of coincidence
points in prediction horizon and n denotes the number of coincidence points. Moreover, n is a
control parameter for deciding the shape of control inputs.

The cost function (V) using these coincidence points based on future tracking error minimization
between the reference trajectory and the output prediction (ŷ) can be described as

V(k) =
n∑
j=1

{ŷ(k + h j) − T (k + h j)}2, (2.77)

=

n∑
j=1

{yb(h j)Tµ(k) +Cq(A
h j
q − I)xq(k)

+(αh j − 1)(s(k) − y(k))}2. (2.78)

where µ denote the optimal control input as the decision variable. Moreover, the optimal control
inputs for all coincident points are calculated by a combination of basis functions (e.g., step,
ramp, and parabola functions[92, 93]). yb(h j) is the state response generated by each base
function input. In the case of n = 3, the state response depending on the first coincidence point
can be described as

yb(h j) = Θ(h j)us +Θ(h j)ur +Θ(h j)up (2.79)

whereΘ = [CqA
h j
q Bq ... CqA0

qBq ∈ Rh j], us = [1 ... 1]T ∈ Rh j , ur = [0 Ts 2Ts ... h jTs]T ∈ Rh j ,
and up = [0 (Ts)2 (2Ts)2 ... (h jTs)2]T ∈ Rh j . The state prediction of PFC is calculated by
using the forced response to the base functions and the free responses to the system (CqAi

qxq(k)).
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Therefore, the control input vector µ and closed-form solution can be given by

µ(k) = −{
n∑
j=1

{yb(h j)yb(h j)T}−1

×
n∑
j=1

{Cq(A
h j
q ) − I)xq(k)

+(αh j − 1)(s(k) − y(k))}yb(h j). (2.80)

The first element in µ based on the receding horizon control is input to the system as the control
inputs.

2.4.2.7 Acceleration constraints

PFCs handle the control input constraints on the internal model system. In this section, the
PFC of the proposed method derives the control input as the acceleration reference in each
joint angle. Therefore, the constraints treated by the PFC are described as the constraints
on acceleration reference. Considering stable motion generation with torque saturation, the
torque constraint, which is an essential constraint for stable manipulator control, is treated by
the PFC. Moreover, the torque constraints are effective for suppressing wind-up problems[3, 4]
in disturbance estimation by DOBs. For designing the torque constraints via the acceleration
constraints, the torque constraint based on the torque limit (τlimit) determined from the actual
system can be described as

−τlimit ≤ τ1 ≤ τlimit. (2.81)

Using the acceleration reference and the disturbance estimates at (k), the input torque is given by

τ1(k) = jnq̈ref1 (k) + τ̂d(k), (2.82)

where jn is the nominal inertia parameter of q1. The control input as acceleration reference with
torque limit can be described as

−τlimit ≤ jnq̈ref1 (k) + τ̂d(k) ≤ τlimit, (2.83)

j−1n (−τlimit − τ̂d(k)) ≤ q̈ref1 (k) ≤ j−1n (τlimit − τ̂d(k)). (2.84)

The PFC system based on this constraint can explicitly impose the torque constraints via the
acceleration reference. Additionally, due to the IDOB use of the torque-bounded control input,
the acceleration constraints can avoid overestimating disturbance estimates.
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2.4.2.8 Stability analysis

The nominal closed-loop stability in the proposed system is explained. The number of coin-
cidence points uses n = 3 in this analysis. The PFC system represented by Eq. (2.80) has a
closed-form optimal solution; therefore, the controller can be described as a linear time-invariant
controller. The actual control input (µ1 = q̈ref1 ) can be obtained by

µ1 = f f o{r f i(qref1 − q̂1) − f f r x̂q + I3×1q̂1}, (2.85)

where f f o ∈ Rn, r f i = [1−αh1 1−αh2 1−αh3]T ∈ Rn, and f f r = [CqAh1
q CqAh2

q CqAh3
q ]T ∈ Rn×2

are the vector regarding µ1 of the inverse matrix on forced response (yb), the reference trajectory
generation vetor, and the vector of the free response, respectively. Using Eq. (2.70), the elements
of position on f f r are given by f f r,1,1, f f r,2,1, f f r,3,1 = 1, where f f r,v,w are w-th column and the
elements of v-th row in f f r. Therefore, using each matrix element, the closed-form optimal
control input can be described as

µ1 = f f o,1{r f i,1(qref1 − q̂1) − f f r,1,2 ˆ̇q1}

+ f f o,2{r f i,2(qref1 − q̂1) − f f r,2,2 ˆ̇q1}

+ f f o,3{r f i,3(qref1 − q̂1) − f f r,3,2 ˆ̇q1},

= kp(qref1 − q̂1) − kd ˆ̇q1, (2.86)

where kp = ( f f o,1r f i,1 + f f o,2r f i,2 + f f o,3r f i,3) and kd = ( f f o,1 f f r,1,2 + f f o,2 f f r,2,2 + f f o,3 f f r,3,2).
In the case of unconstrained, from Eq. (2.87), the PFC system used in the proposed system is
approximated as simple PD control. Moreover, the discrete-time transfer function (G(z)) using
the nominal internal model, can be described as

G(z) =
T 2
s kpz

2

(1 + T 2
s kp + Tskd)z2 − (Tskd + 2)z + 1

. (2.87)

The asymptotic and Lyapunov stabilities and on the proposed joint controller can both be ensured
using to set the absolute value of the eigenvalues of the denominator to <1. In the actual system,
a large sampling time presumably creates unexpected motion; therefore, the sampling time has
to be set to the smallest value in allocable. Moreover, the main control parameter of the PFC is
Tref , and the condition of the stability can be designed as Tref > 0. Thus, the PFC used in the
proposed system is optimal and stable. Furthermore, if the torque or acceleration constraints are
active, the stability is improved because stable motion generation is ensured by the constraints.
Moreover, the disturbance estimates by the IDOB usually compensates for the robustness of the
joint space controller[10]. Additionally, the accuracy of the disturbance estimate is compensated
within the torque limit. Moreover, the excessive disturbance estimates are rejected by the
torque constraints, because the IDOB uses the constrained control input for the estimation. The
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constrained disturbance estimates contribute to the stable estimation of the IDOB, better than
the IDOB-based PFC systems make both robust and stable of the proposed controller in the joint
space. The implicit force control method is designed as a simple feedback system via position
control. Moreover, the inverse kinematics system has numerically stability and convergence
performances[90]. Overall, both robust and stability of the proposed method are compensated
by constrained motion control and accurate disturbance estimations. Note that the saturated
control input cannot stabilize unstable systems; therefore, the motion generation considering to
avoid control input saturation is a must in designing the constraints control systems.
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(a) x-y

(b) appearance

Figure 2.45: Experiment setup

2.4.3 Experiments

The three experiments were conducted to verify the control performance of position/force control
and guaranteed robustness to external forces. In the first experiment, the position/force control
performance by the implicit force control under both with and without torque saturation is
demonstrated. In the second experiment, the stable motion against excessive external forces of
the proposed method without the force sensor is validated. The final experiment verified the
effectiveness of the redundancy of themanipulator using the target response time. Fig. 2.45 shows
the three-link manipulator utilized for the experiments. DC motors with optical encoders (made
by harmonic-drive systems) on each joint are used in the manipulator. Moreover, the tip of the
end-effector on the manipulator attached a single-axis force sensor (made by A&DCorporation).
The proposed control system for themanipulatorwas implemented using a digital signal processor
(sBOXII made by MIS Corporation). In the controller design, the physical parameters are link
distance ({l1, l2, l3} = 0.20 m) and mass ({m1,m3,m5} = 0.22 kg, {m2,m4} = 0.77 kg). The force
sensor requires the lowpass filter for the noise reduction; therefore, the time constant 0.05 s was
used for the filter. In all experiments, the proposed control systemswere discretized by Ts = 0.001
s. By using the motor and motor-driver specifications, the torque limitations of each link torque
were defined as τlimit,q1=τlimit,q2=20.7360 Nm for the first joint and second joint, respectively, and
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(a) X(0) (b) Xref
0

(c) Xref
0 w/ environment (d) Xref

f

Figure 2.46: An example snapshot of experiment 2.4.3.2.

Figure 2.47: Experiments setup and configuration for 2.4.3.3. The blue arrows show the
direction of the external forced disturbance.

τlimit,q3=12.6720 Nm for the third joint. Moreover, the saturation function based on the actual
limitations was implemented in the plant input in the experimental systems.

2.4.3.1 Controller setup

In the experimental validations, conventional HPFC by acceleration control using IDOB and
IDOB-based resolved acceleration control (DRAC)[100] were compared with the proposed
method. Through the comparison of HPFC, it is validated that the torque bounded control
system using the constrained position control system in each joint space brings equivalent
control performance in HPFC with respect to conventional methods. Furthermore, through
the comparison of DRAC, the usefulness of HPFC implemented by the constrained joint space
control was verified. In the all systems, the IDOB was designed by using the nominal inertia
matrix Jn = diag(2.6683, 1.6772, 0.8155) and the pole with [-40, -41, -42, -43, -44, -45, -46,
-47, -48]. The Jn parameter was set by actual physical parameters. In order to avoid the singular
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points, the initial state conditions of the IDOB used the initial angle reference (qref0 ) with respect
to the initial state reference. This is because the initial joint angles of the manipulator were
allocated in the singular points. The singular state generates the overestimation of the Jacobian
matrix. By using the angle reference as the initial state of the IDOB, the singular points for the
Jacobian matrix were easily avoided. Additionally, the workspace position information in all
results was derived by using the forward kinematics based on the state estimates by the IDOB.

The convert gain in the proposed implicit law was given by K f = 10Fref
x which was determined

by considering contact velocity. The number of coincidence points and target response time
in the PFC systems were set to n = 3 and Tref,q1 = Tref,q2 = Tref,q3 = 1.0 s, and used for
the experiments 2.4.3.2 and 2.4.3.3. The control performance of the proposed control system
could be improved by using redundancy with modification of the target closed-loop response
time, the results of which were shown in the final experiment 2.4.3.4. Furthermore, considering
the difference of the motor outputs, the weight parameters used in the inverse kinematic were
designed as {w1,w2,w3} = 102, 102, 101.

The compared HPFC and DRAC systems were designed as the controller equations for the
control input, which, for HPFC, can be represented as

τ = Jn{qref + τd}, (2.88)

= Jn{qrefpos + qrefforce + τd}, (2.89)

qrefpos = KphxJ+aco{S(Xref
0 − X̂) − Kdhx q̇ (2.90)

qrefforce = Kph f JTaco{(I − S)(Fref − Fres), (2.91)

and, for the DRAC, as

τ = Jn{qref + τd}, (2.92)

= JnJ+aco{Kpx(Xref − X̂)

−Kdx q̇ − J̇aco q̇}, (2.93)

where (Kphx, Kpx) and (Kdhx, Kdx) are the proportional and differential gains for the position
control, respectively, Kph f denotes the proportional gain for the force control, and S is a select
matrix (diag(0,1,1)). J+aco is the pseudo-inverse matrix of Jaco. The Jacobian matrix in this
section is a square matrix; therefore, it does not require usually the pseudo-inverse matrix.
However, it was used due to the ability to treat the singular point. The velocity feedback-loop
was added to the position controller on the force control, which was introduced to reject the
impact force. The reference generator and the IDOB for DRAC were set the same as the
proposed control system. Furthermore, these parameters were adjusted using trial and error via
each experiment.
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(a) prop. (b) conv. HPFC (c) conv. DRAC

Figure 2.48: Experimental results on Fref
x = 2N in Sec. 2.4.3.2 . The filled area shows

the position/force control. The dashed lines in the torque results are the torque limitations
(τlimit,q1,q2,q3 ).

2.4.3.2 Results on HPFC

The first experiment verified the control performance for tracking control of the position and
force by the proposed control system when it comes into contact with the rigid environment. In
the case of the rigid environment contact, because of saturation on input torque by the reaction
force, conventional force control systems can frequently generate unstable motion, when the
manipulator comes into contact with the rigid objects. The proposed control system considering
the torque saturation by the designed constraints can avoid unstable behavior. This experiment
considered two force references on the x-axis: 2 and 5 N. Moreover, in each control system, the
force reference 2 N did not make the saturation on the torque but the force reference 5 N did.

The validated control scheme began from an initial state X(0) = [x(0) y(0) ϕ(0)] = [0.6 0 0]

and then moved to the initial position Xref
0 = [xref0 yref0 ϕref0 ] = [0.45 0 0]; the position and force

control were handled from around 30 s. The references of the position and force control were
set to Xref

f = [Fref
x yref ϕref] = [(2 or 5 N) 0 m 0 rad]. The workspace force reference Fref

x was
transformed to the workspace position reference by using the proposed implicit force control law
described in 2.4.2.2. Fig. 2.46 shows a snapshot in the experiments. In Fig. 2.46(b)-(c), an
environment of steel was installed, and the force control performance was verified by contact
with the steel. Moreover, the switching of references from position control to hybrid control was
performed manually. The workspace position reference of the proposed method is (2.62). It is
necessary for the posture angle control of the end effector by the controllers because the uniaxial
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(a) prop. (b) conv. HPFC (c) conv. DRAC

Figure 2.49: Experimental results on Fref
x = 5N in Sec. 2.4.3.2 . The filled area shows

the position/force control. The dashed lines in the torque results are the torque limitations
(τlimit,q1,q2,q3 )

force sensor was utilized. Therefore, proper attitude control is required to perform appropriate
force control. Moreover, in the proposed method, considering the independent position control
of the workspace and joint space, the initial joint position control by the initial angle reference
(qref0 ) was used to move from initial state X(0) to Xref

0 . Conventional workspace position control
systems are difficult to control the initial posture (elbow up or down), but the proposed control
system can easily control the initial posture. However, the proposed method can be directly
controlled the posture.

In the HPFC system, the control gain matrices were given by (2N): Kphx = {diag(30, 30, 30)},
Kdhx = 2

√
Kphx, Kph f = diag(40, 40, 40), and (5N): Kphx = {diag(30, 30, 30)}, Kdhx = 2

√
Kphx,

Kph f = diag(20, 20, 20). For the DRAC system, the control gain matrices were set as (2N): Kpx

= diag(15, 15, 15) and Kdx = 2
√
Kpx, and (5N): Kpx = diag(30, 30, 30) and Kdx = 2

√
Kpx.

The validated results on Fref
x =2 N by each controller are illustrated by Fig. 2.48. From the

results of the proposed method, it is confirmed that; the maximum impact force is 5.0152 N,
the free motion time from force control start to contact is 522 ms, and the mean error on force
tracking for 50-100 s is 0.0032 N. In the HPFC system, the maximum impact force is 5.6958 N,
the free-motion time is 1,070 ms, and the mean error of steady-state force tracking for 50-100 s
is 0.0008 N. In the DRAC system, the impact force is 10.2835 N, the free-motion time is 517 ms,
and the mean error of force tracking for 50-100 s is -0.0007N. From the results, it is confirmed
that the proposed control system has comparable force control performance with respect to
conventional control systems. Additionally, in the proposed system, the fluctuations for position
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and posture are minimal. Furthermore, it has a smaller impact force than the HPFC system, and
the free motion time is shorter (i.e., the motion control is faster). The proposed system also
brings a smaller impact force than the DRHC system, and the free-motion time is equivalent.
Hence, the proposed control system can simultaneously handle the impact force rejection and fast
motion control; however, the mean error on the force is slightly larger than conventional systems,
and an undesired torque saturation is made. These are attributed to the design of the target
closed-loop response time. Therefore, this force tracking error can be suppressed by improving
the tune-up, and Sec. 2.4.3.4 illustrates its result. Additionally, it is confirmed that the proposed
control system is effective and useful for ensuring stable motion control when torque inputs are
not saturated.

The validated results on Fref
x =5N are shown in Fig. 2.49. The results are indicated that the torque

inputs of each controller are saturated while controlling the force. Therefore, in theory, each
controller does not realize complete force control because the control input is not enough for the
force control. In the results of the proposed control system, the maximum impact force is 8.9371
N, the free-motion time is 520 ms, and the mean error on force tracking for 50-100 s is 0.0010
N. Moreover, the variation of torque in the initial position control was made by the disturbance
estimates affected by nonlinear friction. In the results of the conventional HPFC system, the
maximum impact force is 9.3942 N, the free-motion time is 899 ms, and the mean error on force
tracking for 50-100 s is 0.0809 N. In the results of the conventional DRAC system, the maximum
impact force is 15.2608 N, the free-motion time is 434 ms, and the mean error for 50-100 s is
0.1835 N. Indeed, in force control performance, the proposed control system can better suppress
impact force compared with the conventional HPFC system. The validated results are indicated
that that the DRAC has a large reaction force and mean tracking error. Moreover, with respect
to implicit force control, it was difficult to control the force by using the DRAC system while
considering posture control. By contrast, the proposed method by using the implicit control
and the torque saturation can suppress the bouncing motion caused by the contact. Moreover,
the free-motion time of the proposed method is decided by the adaptive gain without references
and environmental paramFeters; therefore, the proposed implicit control law is effective for
stable force control with uncertain environments. Considering the position control results, the
results of y and ϕ indicates that the proposed control system has a better tracking performance
than the conventional systems. By contrast, the conventional control systems cannot accurately
control the position and posture due to the input torque saturation by contact because the torque
saturation generates these tracking errors. Additionally, the results are indicated that the torque
inputs calculated from the conventional controllers are clearly saturated, and vibrational motion
and tracking error are caused. However, the torque beyond the mechanical limitation is rejected
by the saturation function; therefore, unstable motion by excessive control inputs is avoided.

Overall, the results are indicated that the proposed method can perform the stable position/force
control explicitly considering the torque limitation via the acceleration reference. Moreover, the
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target response time can be implemented while considering the saturation on each actuator, and
it is useful for generating the stable coupled workspace motion. In essence, the proposed control
system can avoid unstable motion generation and excessive control inputs and optimize joint
motion control. Consequently, the unnecessary variations in position and posture are rejected
by constrained robust joint space controller, and the proposed control system can achieve stable
motion control in hybrid position/force control.
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(a) prop. (b) HPFC (c) DRAC

Figure 2.50: Experimental validation results on l1 in 2.4.3.3. In the red and blue filled areas,
the first link was disturbed to the left side (q < y) by force and to the right side (y < q) by forced

disturbance.

(a) prop. (b) HPFC (c) DRAC

Figure 2.51: Experimental validation results on l2 in 2.4.3.3. In the red and blue filled areas,
the second link was disturbed to the left side (q < y) by force and to the right side (y < q) by

forced disturbance.

2.4.3.3 Motion generation against external forces

Torque-bounded control systems are effective to guarantee stable motion against external distur-
bances with undesired contact. Furthermore, the torque-bounded robot control systems oppose
the external disturbance force until the torque is reached to the constraints, then, it moves ac-
cording to the external force after constraint activation. In particular, this behavior assists safety
motion generation for various robot tasks. The proposed control system has the potential to
apply in these areas. Fig. 2.47 shows a setup for the experiment. In this experiment, the external
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(a) prop. (b) HPFC (c) DRAC

Figure 2.52: Experimental validation results on l3 in 2.4.3.3. In the red and blue filled areas,
the third link was disturbed to the left side (q < y) by force and to the right side (y < q) by

forced disturbance.

disturbance forces of roughly π/2 [rad] to each link are forcibly applied. The controller param-
eters use the same as Sec. 2.4.3.2. Note that the initial state values in the proposed method are
defined by the joint space position. In this experiment, the initial states were set to the workspace
position to verify the workspace behavior against external disturbances.

The experimental results on each link are shown in Figs. 2.50-2.52. From the results, it is
confirmed that the proposed control system can always perform the stable motion generation
for the manipulator under torque saturation regardless of the contact points on the robot arm.
Furthermore, after torque saturation, the position and posture increase monotonically. Therefore,
it is evident that the proposed method can generate the constrained stable motion adapted
to external disturbance torques. Additionally, the proposed system can suppress overshoot
and avoid vibration based on the imposed torque constraints. Moreover, the stable recovery
motion is generated by the target response time. By contrast, the HPFC system generates large
and unwanted motion against excessive disturbance (see the result of l2). Indeed, the HPFC
system is occasionally dangerous owing to create excessive reaction motion with excessive
torque. In theory, the excessive torque against the large disturbance is always generated by
simple feedback. The same can be indicated for the DRAC system. The excessive reactions
by the conventional simple feedback system are problematic, and it is not ensured the safety
motion generation. Therefore, the proposed method with target response time and constrained
motion control is effective for the safety contact motion generation. Additionally, considering
unmeasured disturbances, the disturbance torque estimationmethod assists to improve the overall
control performance of the proposed method. Therefore, the proposed control system is expected
to extend with reaction torque observer [101]-[103].
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(a) Trackability improvement (b) Impact force improvement

Figure 2.53: Experimental results on 2.4.3.4.

2.4.3.4 Modification of Tref

This section attempts to improve the position/force tracking control performance for the experi-
ment in Sec. 2.4.3.2 for a force response of 2 N and to suppress the impact force in the case of
the force reference 5 N. It is validated to the effectiveness of independent control response on
all links and redundancy. The results on the improved control performance in Sec. 2.4.3.2 for
a force of 2 N are shown in Fig. 2.53(a). Moreover, the target response times of each link are
modified as Tref,q1 = 1.0 s, Tref,q2 = 1.0 s, and Tref,q3 = 0.7 s. Furthermore, in the results of the
experiment of Sec. 2.4.3.2, the force tracking error was observed as 0.0032N. Thus, the target
response time of q3 must decrease to track the posture and force of the end effector effectively.
For the results, the maximum impact force is 4.3555 N, the contact-free time is 544 ms, and
the mean error on force tracking for 50 -100 s is -0.0004 N. These results indicate the improved
performance of force tracking control. It is evident that the control performance can easily be
improved by the modified target time.

Fig. 2.53(b) shows the results regarding 5 N and reducing the impact force. The target response
times on each PFC system were set to Tref,q1 = 1.2 s, Tref,q2 = 0.5 s, and Tref,q3 = 0.7 s. The
maximum impact force is 7.1967 N, and the contact-free motion time from force control start
to contact is 482 ms. From the results, it is confirmed that the impact force was reduced, and
fast motion control was performed. Thus, it is evident that the proposed system can easily
adjust compared to conventional methods. On the other hand, because the focus in this section
concerns force control, the tracking errors in posture and position remain. To effectively balance
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the position control and force control, the target time design considering the force reference and
the contact-free motion is required.

2.4.4 Summary

In this section, an application example of theMPC ingested IDOBwas shown. Unlike the previous
section, this section described a constrained acceleration control strategy by the fast MPC with
the IDOB. In this section, by using the constrained acceleration control, it was shown that the
robust constrainedmotion control can be achieved as a robust HPFC strategy based on PFC-based
joint space position control with torque constraints for an MDoFM. The proposed system in this
section is useful to consider the control with target response time and torque saturation compared
to conventional controllers. Moreover, the experimental results indicate that the proposed system
is effective in improving safety motion generation against external disturbance forces and torque-
bounded control. In future studies, an optimal method for setting target response time by
control target tasks is a must. Additionally, the proposed system can be easily extended to high
dimensional manipulator systems by the inverse kinematics and decoupling control by DOB-
based control. Considering the stable/safe motion generation, the proposed system is particularly
effective for robot systems interacting with unknown environments.
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2.5 Chapter summary

In this chapter, the integration methods of MPCs and DOBs were shown.

In Sec. 2.2, the conventional DOBs were explained. In Sec. 2.3, how to integrate the IDOB
to MPCs was shown, and its verification results showed the effectiveness and usefulness of
the IDOB-based MPC. In Sec. 2.4, considering implementing the acceleration control and
fast motion control, a PFC, which is a fast MPC, with the IDOB system was shown. The
experimental results show the IDOB-based PFC can achieve robust constrained motion control
for stable motion generation.
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Chapter 3

Robust Motion Control Considering
Observation Noise

3.1 Introduction

In the previous chapter, robust constrained motion control systems by IDOB-MPC are explained.

The main drawback of the DOBs is high noise sensitivity, and the influences of the noise
occasionally limit the application of DOB. Therefore, in this chapter, a DOB with observation
noise reduction is introduced. The design of the DOB is based on the Kalman filter(KF) which
estimates the state vector considering noise influences. In addition to this, the verification
results of the KF-based DOB with MPC are shown. The simultaneous state and disturbance
estimation with observation noise reduction are useful for improving the control performance of
MBC systems. In particular, the influences of noise often cause constraint violations, which is
a problem with MPC systems. The constrained MPC operates at the bound of the constraints;
therefore, the influences of the noise sometimes make a fatal problem. The main objective of this
chapter is to address the problem of MPC made by noise influences. This chapter describes a
constrained motion control system based on MPC and Kalman filter with disturbance estimation
(KFD).

In Sec. 3.2, the design method of DOB with observation noise reduction is explained. In Sec.
3.3, the novel DOB-based MPC is explained. In Sec.3.4, a design method of nonlinear DOBs
based on nonlinear KF-DOB to apply nonlinear systems is described.

Sec. 3.5 concludes this chapter with a clarification of the problem of the KF-based DOB.

71



Chapter 3. Robust Motion Control Considering Observation Noise

3.2 Kalman filter with disturbance estimation

The KFD aims to estimate the state and disturbance and to eliminate noise influences simultane-
ously, in a motor system affected by noise. In order to design the KFD, the extended state-space
model used in the IDOB uses as an internal model of the KF. In theory, by using the extended
model as the internal model in the KF, the KF can estimate the disturbance. Moreover, the noise
reduction performance by KF is better than by DOBs. Therefore, the KFD can probably perform
the accurate state estimation with disturbance estimation without noise influences.

In this section, the mathematical model described in Sec. 2.3.1 is utilized for verification.
Moreover, the extended system design is the same as the previous chapter; however, the KFD
design is defined with the discrete-time model.

3.2.1 Design of Kalman filter with disturbance estimation

In this section, the design method of the KFD is explained.

The state vector x(k) = [z v]T, the control input u(k), measured output y(k), and coefficient
matrices of the discrete-time state-space model (Ad, Bd, and Cd) are defined. The sampling time
of the KFD is δ1. The state-space model of the plant with the disturbance is then given by

x(k + 1) = Adx(k) + Bdu(k) − Bdd(k), (3.1)

y(k) = Cdx(k). (3.2)

The extended state space model for augmented state vector (X̄ = [x d̂]T) is given byx(k + 1)d(k + 1)

 =
Ad −Bd

0 I


x(k)d(k)

 +
Bd

0

 u(k), (3.3)

y(k) =
[
Cd 0

] x(k)d(k)

 . (3.4)

This extended system can use to estimate both input and output disturbances. Eqs. (3.3) and
(3.4) are used to design the KFD. Adding the system and observation noises based on normal
white noise to the extended system, the modified extended system can be described as

X̄(k + 1) = ĀdX̄(k) + B̄du(k) + B̄dv(k), (3.5)

y(k) = C̄dX̄(k) + w(k), (3.6)
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where Ād =

Ad −Bd

0 I

, B̄d =

Bd

0

 and C̄d =
[
Cd 0

]
. Moreover, the input and output noises

are defined as independent white noise and can be described as v ∼ N(0, σ2
v) and w ∼ N(0, σ2

w).
σv and σw denote each variance.

The KFD design method follows the general KF design[16]. Generally, state estimation of the
KFs are calculated by the following time-update equations,

X̂−(k) = ĀdX̂(k − 1) + B̄du(k − 1) (3.7)

P−(k) = ĀdP(k − 1)Ād
T
+ B̄dσ

2
v B̄d

T (3.8)

G(k) = P−(k)C̄d(C̄dP−(k)C̄T
d + σ

2
w)
−1 (3.9)

X̂(k) = X̂−(k) +G(k)(y(k) − C̄dX̂−(k)) (3.10)

P(k) = (I −G(k)C̄d)P−(k) (3.11)

where X̂−(k) and P−(k) denote a priori state estimation and a priori covariance matrix. Moreover,
X̂(k), P(k), andG(k) denote the state estimates, covariancematrix, and Kalman gain, respectively.
Furthermore, σ2

v and σ2
w denote the variances for the system and observation noises.

By using the extended system and Eqs.(3.7)-(3.11), the KFD can be designed.
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3.3 Noise-free constrained motion control

An MPC system with the KFD is robust and cancels disturbances using the special method.
Moreover, the feasibility of the KFD-based MPC system is verified under the condition of
strong external disturbances, observation noise, and friction force. In the verification results, the
superior control performance over the conventional MPC system is shown.

Standard MPCs optimize control inputs considering the constraints imposed on system state and
control inputs. The constraints of MPC are occasionally violated by the influences of noise
and disturbances. Moreover, the problem is called constraint violation of the MPC[17]. With
respect to the constraint violation, MPC cannot achieve safe and reliable motion control by
constrained control. In the conventional method, the switched MPC has been developed to
avoid constraint violation by noise influences. The switched MPC system has constrained MPC
system and unconstrained MPC. In this system, the constraints violation is avoided by switching
unconstrained MPC. The unconstrained MPC can describe a time-invariant system; therefore,
the stability of the control system is compensated. However, the computational load is heavier
than standard MPC, and unexpected motion is clearly generated.

As described in the previous chapter, to suppress or remove disturbances, some researchers were
incorporated the DOB into MPC[41, 42, 47, 49–51]. The DOB performs disturbance rejection
and estimation and robust control. However, DOBs cannot always be compensated for expected
performances in noisy environments. In other words, the application of DOBs is limited. By
contrast, the KFD has the potential to estimate disturbances and reduce the influences of noise
in noisy environments.

This section introduces that theKFD-basedMPC system can treat the influences of both noise and
disturbances. In order to integrate the KFD to the MPC, the MPC with disturbance suppression
is used in this section.

3.3.1 Proposed control system

This section provides the details of the proposed method.

The proposed control system includes an additional KFD, which estimates the state and distur-
bance. The designs on MPC and KFD uses the cart model (Eqs. (2.46) and (2.47)) including
disturbance estimates (= d̂). Moreover, each observation matrix of the MPC and KFD are
independently set to (C = [1 0 0]) in KFD and (C = I3×3) in MPC.
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Moreover, the control law (Eq. (2.48)) is given by

J =
Np∑
i=1

||r(k + i|k) − x̄(k + i|k)||2Q +
Nu−1∑
i=0

||∆u(k + i|k)||2R. (3.12)

where r denotes the reference for the extended state vector. The estimates of the extended state
vector are obtained from the KFD.

In the proposed control system, disturbances other than low-frequency disturbances are regarded
as noise effects. The KFD attenuates the influences of system and observation noises.

3.3.2 Controller setup

Tables 3.1 and 3.2 show the parameters for the MPC and KFD. The design of KFD is as follows;
the system noise to 18 times the real input noise, the output noise to 0.09 times the real sensor
noise, and small initial values set to the error covariance matrix. All parameters for KFD
were tuned up considering the disturbance estimation speed. The overestimated system noise
generates fast disturbance estimation; however, the estimates are significantly affected by the
noise influences. The entries Qm and Rm in Qmpc and Rmpc, respectively, are appropriately
expanded by each prediction horizon. For assisting the stability, the final weighting matrix
[Qm−last] of Qmpc was set to triple the normal weight.

The weight matrices can be described as

Qmpc =


Qm 0

. . .

0 Qm−last

 ∈ R60×60

and, Rmpc =


Rm 0

. . .

0 Rm

 ∈ R5×5.

where all tuning parameters (Q f , R f , Qmpc, Rmpc and Hp, Hu) in the MPC were set with trial and
error.

3.3.3 Numerical verification: disturbance and noise suppressions

To show the effectiveness of the proposed method, simple simulations with disturbance, system
noise, and observation noise are conducted in the mass-damper system. The references were
position 1 m, velocity 0 m/s, disturbance 0 N·m. Moreover, the position constraint was set to 1
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Table 3.1: Parameters on KFD

Covariance
of system noise Qkl = Qn × 18
Covariance

of observation noise Rkl = Rn × 0.09
Initial value

for covariance matrix P0 = diag(10−6 10−6 10−2)
Sampling time
for estimation δ1[s] = 0.01

Table 3.2: Parameters on MPC

Weight matrix
on tracking error Qm = diag(2 · 103 102 10−2)

End of weight matrix
on tracking error Qm−last = 3 × Qm

Weight matrix
on amount of control input change Rm = 10−1

Horizons [Np Nu] = [20 5]
Sampling time
for control δ2[s] = 0.1

m. Using this constraint, the MPC can effectively suppress overshoot, and the effectiveness of
the proposed method for the constraints violation by noise influences can be shown.

The simulation conditions are shown in Table 3.3.

3.3.3.1 Results

Fig. 3.1 shows the simulation results. The observation, reference, and estimation positions are
shown in Fig. 3.1(a). The position and velocity estimated by the KF are shown in Fig. 3.1(b), and
Fig. 3.1(c) shows the disturbance estimates. The compare results on the disturbance estimates
by the KF and DOB are shown in Fig. 3.2. Using the half position constraints, Fig. 3.3 shows
the constrained control ability of the proposed method.

Fig. 3.4 shows the verification results by the conventional MPC method. From all results, it
is confirmed that the proposed method can perform accurate position control under noise and
disturbances. Fig. 3.3 indicates that constraints were definitely imposed by the proposedmethod.

Table 3.3: Verification conditions

Covariance of system noise Qn = 10−3

Covariance of observation noise Rn = 2 cdot10−4

Input disturbance d = 0.5 (in 10 [s])
where, eX = 10X
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(a) position (b) state estimates

(c) disturbance estimates

Figure 3.1: Simulation results

From the position results, the proposed method can achieve an accurate state estimation under the
noise environment. The estimation ability is clearly obtained from general KFs. With respect to
the disturbance estimation, the proposed method can better suppress the disturbance influences
than the standard MPC. It is indicated that the proposed MPC system can perform accurately
constrained control under the influence of noise and disturbances.

However, the estimation speed of theKFD is sluggish, and it generates a tracking error. Fig. 3.1(c)
shows that the estimated disturbance does not converge to the actual disturbance. Although
disturbance estimation is sluggish in theKFD than in the conventional DOBs, the noise sensitivity
of the KFD is better than the DOBs. Additionally, the control performance of the proposed MPC
depends on the estimation speed of the KFD. This sluggish estimation cannot be improved by
modified some parameters. In the case of the KFD based on steady-state KF, the pole of the KFD
is assigned as 103×[-6.9098 -0.0012+0.004i -0.0012-0.0004i ]. Consider the pole information of
the KFD, it is evident that the estimation speed on velocity and disturbance is slow. Additionally,
if the disturbance estimation of the KFD can be improved, the control performance of the
proposed MPC system will also be improved.
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Figure 3.2: Simulation results: disturbance estimates by KFD and IDOB

Figure 3.3: Simulation results: validation for constraint

The improved KFD is described in the next chapter.
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Figure 3.4: Simulation result: position by standard MPC
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(a) position estimate by IDOB (b) velocity estimate by IDOB

(c) position estimate by KFD (d) velocity estimate by KFD

Figure 3.5: Comparison results on state estimation with initial state error by IDOB and KFD

3.3.4 Numerical verification: control input and velocity constraints

The previous section explains the disturbance and noise suppression performance of the proposed
method under the state constraints. This section describes the constrained control performances
under the control input constraints and state constraints. The simulation and compared methods
are the same as Sec. 2.3.6. However, the small observation noise (variance; 10−8) is added to
the position response. In this section, the TPW-MPC was used in the proposed method.

In contrast to Sec. 2.3.6, the initial values of plant and KFD are different. Fig. 3.5 shows state
estimation results by IDOB and KFD. From the results, the KFD has the robustness to initial
state error. The IDOB estimation is affected by the errors of the initial state. By contrast, KFD
can handle the error by the adaptivity of the KF law. It is an advantage of the KFD method.

Therefore, the initial values were set to [0.1 0.1] for the plant, and [0 0] for the KFD.

3.3.4.1 Results

The simulation results are shown in Figs. 3.6-3.30. Additionally, in order to verify the effective-
ness of the proposed method, some control systems are compared:

• LQR w/o state observer

• LQR with IDOB

• TPW-based MPC with IDOB
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• MPC with IDOB

• TPW-based proposed MPC using IDOB

The LQR, which is an unconstrained state feedback controller, is compared to the proposed
systems. Additionally, the first LQR system uses actual state information in the simulation.

In the results with respect to A( = without disturbance), it is confirmed that the LQR and MPCs
have a similar response, and each MPC can ensure the velocity constraints, as is the case with
IDOB. Therefore, the MPCs can ensure the constraints, if there is no disturbance.

In the results with respect to B( = step-type disturbance 1N), it is confirmed that state estimation
by KFD has large errors and the constraints actives to estimated values. However, the activated
constraints are not effective for actual values because large estimation errors occur.

In the results with respect to C( = step-type disturbance 2N), it is confirmed that the results
are significantly influenced by disturbance. However, from Fig. 3.20, it is evident that the
proposed method can achieve to recover the constraint violation on control input, as is the case
with integrated to IDOB. Therefore, even as integrated to KFD, the recovery performance is not
lost. From the results, the effectiveness of the proposed design method is shown.

In the results with respect to D and E (mass variation), it is confirmed that the KFD-based MPCs
can handle the mass variation. The handling performance is obtained by sluggish estimation,
that is, the KFD cannot generate excessive reaction against disturbance and noise.

Overall, the proposed method is only useful under large disturbances. In particular, it has
the potential for achieving a robust MPC design and for generating stable constrained motion
considering noise. Additionally, the constraint recovery ability is effective for working with
unknown environments, as is the case with IDOB.

However, the sluggish disturbance estimation as to the estimation errors affects other variable
estimations. Therefore, the improved KFD is a must.

3.3.5 Summary

In this section, KFD-based MPC was explained. The main drawback of the KFD is definitely
sluggish and insufficient in disturbance estimation. The verification results showed the potential
of the KFD which can improve the control performance of the MPC. However, the solution to
the drawback is a must. In this chapter, improved KFD is provided and explained in the next
chapter.
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(a) state (b) control inputs

Figure 3.6: Simulation results(A): LQR

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.7: Simulation results(A): LQR + KFD
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.8: Simulation results(A): constrained TPW-based MPC with KFD

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.9: Simulation results(A): constrained MPC with KFD
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.10: Simulation results(A): proposed TPW-based MPC with KFD

(a) state (b) control inputs

Figure 3.11: Simulation results(B): LQR
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.12: Simulation results(B): LQR + KFD

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.13: Simulation results(B): constrained TPW-based MPC with KFD
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.14: Simulation results(B): constrained MPC with KFD

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.15: Simulation results(B): proposed TPW-based MPC with KFD
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(a) state (b) control inputs

Figure 3.16: Simulation results(C): LQR

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.17: Simulation results(C): LQR + KFD
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.18: Simulation results(C): constrained TPW-based MPC with KFD

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.19: Simulation results(C): constrained MPC with KFD
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.20: Simulation results(C): proposed TPW-based MPC with KFD

(a) state (b) control inputs

Figure 3.21: Simulation results(D): LQR
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.22: Simulation results(D): LQR + KFD

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.23: Simulation results(D): constrained TPW-based MPC with KFD
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.24: Simulation results(D): constrained MPC with KFD

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.25: Simulation results(D): proposed TPW-based MPC with KFD
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(a) state (b) control inputs

Figure 3.26: Simulation results(E): LQR

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.27: Simulation results(E): LQR + KFD
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.28: Simulation results(E): constrained TPW-based MPC with KFD

(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.29: Simulation results(E): constrained MPC with KFD
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(a) state estimates (b) control inputs

(c) disturbance estimate

Figure 3.30: Simulation results(E): proposed TPW-based MPC with KFD
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3.4 Nonlinear Kalman filter with disturbance estimation

In the previous section, the KFD is explained.

General KF can easily expand to nonlinear systems via nonlinear Kalman filters; therefore, the
KFD has the potential to apply to nonlinear systems. In this section, an example of the nonlinear
Kalman filter with disturbance estimation considering dynamic disturbance is shown. The
application example uses the quadrotor type robot that has nonlinearity and coupled motion. The
quadrotor application shows the usefulness and effectiveness of the KFD in nonlinear systems.

To show the application ability of KFD to nonlinear systems, this section explains an underwater
quadrotor control system using backstepping control and an unscented Kalman filter (UKF) with
disturbance estimation.

Autonomous underwater vehicles (AUVs) have been put to practical use and are expected to
be used to inspect for revetments and the bottom of a ship in a narrow workspace. Moreover,
the tasks have a safety problem since the working space between the others and the work object
becomes close. Thus, if such tasks can automate using the AUVs, safety for the tasks is improved.
Generally, the AUVs are a large system[111–113]. A quadrotor-type robot can control posture
and position using four actuators, and it is widely used as aerial workers[106, 110]. Furthermore,
it brings merits for such tasks in narrow places. However, the quadrotor systems are lightweight
systems. Thus, it can easily be affected by underwater waves. Additionally, the quadrotor
has nonlinearity dynamics and underactuated systems; therefore, its control system handling
the effects is a must. A quadrotor control system used backstepping control was developed,
and it had some suitable merit for controlling the quadrotor systems[110]. In this section, to
show the effectiveness of the nonlinear Kalman filter-based KFD, the backstepping control-
based quadrotor control system is used. To design backstepping control, accurate system state
estimation is a must. In conventional control systems, nonlinear KF techniques such as extended
Kalman filter (EKF) and unscented Kalman filter (UKF)[134], are often used for estimating
the system state. Additionally, it was shown that UKF estimation has a high performance for
quadrotor systems[136]. When underwater tasks are considered, the systems state estimation by
EKF or UKF is affected by unknown wave disturbances.

DOBs, which can estimate unknown input disturbances, are well known in the motion control
field. Generally, DOBs are assuming time-invariant disturbances. Therefore, DOBs are strongly
affected by time-varying disturbances including wave disturbance. This section provides a
method to integrate an internal model of second-order (sine-wave) disturbance into general UKF
for making an accurate system state estimation.

The proposed estimation law based on UKF can estimate the effects of the waves as input
disturbance estimates. Additionally, the UKF using the estimated disturbances can perform
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Figure 3.31: Definition of coordinate frame: relationship between invariant world coordinate
frame(ΣW ) and robot coordinate frame (Σb)

Figure 3.32: Configuration of the whole control system using the backstepping control and the
UKF with disturbance estimation

accurate system state estimation. As a result, the control performance of the backstepping
control-based quadrotor controller can be improved. The proposed method is tested using
numerical simulation.

3.4.1 Modeling

This section describes an underwater quadrotor. Table 3.4 shows physical parameters. The world
and robot coordinate frames (ΣW and Σb) are defined by Fig. 3.31. The robot position is handled
as the differential position from the origin to the current state. The position of the water surface
is zw = 0.

3.4.1.1 Quadrotor

The mathematical model is defined based on [106, 110]. The state vector ζ = [x y z ϕ θ ψ]T and
the input thrust vector T[N] = [T1 T2 T3 T4]T are defined.

The motion equation can be described as

Mζ̈ + D(ζ̇) + C(ζ̇) + G(ζ) = E(ζ)BtcmT. (3.13)
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Table 3.4: Specifications of quadrotor system

Notation [Unit] Value Explanation
m [kg] 1.3800 Mass

Ix [kg m2] 0.8540 Moment of inertia on x-axis
Iy [kg m2] 0.8540 Moment of inertia on y-axis
Iz [kg m2] 0.9361 Moment of inertia on z-axis

Dm [N/ (m/s)] 0.0436 Coefficient of viscous fric-
tion for movement system

Dp [N/ (m/s)] 0.0082 Coefficient of viscous fric-
tion for posture system

Fm 0.0196 Attenuation coefficient pro-
portional to square value on
movement system

Fp 0.1037 Attenuation coefficient pro-
portional to square value on
posture system

h [m] 0.1090 Distance from COM to
thruster

g [m/s2] 9.8067 Gravity acceleration
W(= −mg) -13.5323 Gravity constant
wrho [kg m3] 1000 Water density

Vr [m2] 0.0011 Volume on x-y coordinates
B(= Vrwrhog) 10.7866 Buoyancy constant
Gz = (W − B) - 2.7457 Gravity and buoyancy con-

stants
Tlim [N] ±25 Output saturation of actua-

tor

M, D(ζ̇), C(ζ̇), G(ζ), E(ζ), and Btcm are a mass matrix, dynamic friction, Coriolis forces,
gravity and buoyancy effects, input transform function, and thruster control matrix, respectively.

Moreover, each variable is given by M = diag(m,m,m, Ix, Iy, Iz), D(ζ̇) =



Dm ẋ + Fm|ẋ|ẋ
Dm+̇Fm|ẏ|ẏ
Dpż + Fp|ż|ż
Dpϕ̇ + Fp|ϕ̇|ϕ̇
Dpθ̇ + Fp|θ̇|θ̇
Dmψ̇ + Fm|ψ̇|ψ̇


,

C(ζ̇) =



żθ̇ − ẏψ̇
ẋψ̇ − żϕ̇
ẏϕ̇ − ẋθ̇

(Iz − Iy)θ̇ψ̇

(Ix − Iz)ϕ̇ψ̇

(Iy − Ix)ϕ̇θ̇


, G(ζ) =



− sin θGz

sin ϕ cos θGz

cos ϕ cos θGz

0

0

0


, Btcm =


1 1 1 1

−h 0 h 0

0 h 0 −h
h −h h −h


,
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(a) surface wave height (b) input disturbance in (a)

Figure 3.33: Simulation: wave disturbance

E(ζ̇) =



sin θ sinψ + cos ϕ sin θ cosψ 0 0 0

− sin ϕ cosψ + cos ϕ sin θ sinψ 0 0 0

cos ϕ cos θ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

D(ζ̇) includes the wave effect using the Morison equation (e.g., Fm|ẋ|ẋ about x). The original
Morison equation uses many complex parameters. Therefore, these influences are simply de-
signed by adding and dividing into inertial force M and drag force D(ζ̇) using the parameters
m, Ix, Iy, Iz, Fm, Fp.

Additionally, since the input thrust can be independently controlled, the force and torque inputs
are obtained from the E(ζ) and Btcm.

E(ζ)BtcmT =
[
Ux Uy Uz τϕ τθ τψ

]T
(3.14)

For the system state calculation, the ζ is calculated by using a double integral of Eq. (3.15).

ζ̈ = M−1{E(ζ)BtcmT − (D(ζ̇) + C(ζ̇) + G(ζ))} (3.15)

3.4.1.2 Underwater wave effect

The effect model of an underwater wave by using the JONSWAP Spectrum[108], is described.
Surface wave behavior can be represented by this spectrum. For the simulations, the z-axis waves
are only considered, and the x-axis and y-axis disturbances are designed via E(ζ). The underwater
wave is generated by the surface waves and system state. Using the position disturbances, the
disturbances on posture torque are calculated by the atan2 function and a low-pass filter. Response
of the designed model for the surface wave is shown in Fig. 3.33.
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3.4.2 Proposed control system design

Fig. 3.32 shows the system diagram of the proposed system. A backstepping quadrotor control
system is used. This controller can control underactuated and nonlinear systems. Moreover,
the motions of x and y are coupled to two-state. One is x and pitch-angle (θ), and the other is
y and roll-angle (ϕ). Thus, the coupled motion is considered by the reference to the controller
(see (3.26)). Additionally, the compensation for the wave effects and the accurate system state
estimation is simultaneously made by the UKF with disturbance estimation.

3.4.2.1 Backstepping controller

The backstepping control-based quadrotor control system is introduced. The controller has been
designed using the Lyapunov stabilization theorem for state variables ζ. Moreover, to design the
backstepping controller, the new control vector q is defined by,

q =

 q1 = x q2 = ẋ q3 = y q4 = ẏ q5 = z q6 = ż

q7 = ϕ q8 = ϕ̇ q9 = θ q10 = θ̇ q11 = ψ q12 = ψ̇

 . (3.16)

The x (= q1) is describe. An error variable of Z1 for q1 is defined by the reference xre f .

Z1 = xre f − q1 (3.17)

A positive-definite Lyapunov function using Eq. (3.17) is defined and can be described as

V(Z1) =
1
2
Z2
1 . (3.18)

Then, a derivative of Eq. (3.18) is given by

d
dt
V(Z1) =

1
2
· d
dt
Z2
1 = Z1(ẋre f − q2). (3.19)

If Eq. (3.19) is negative-definite, Eq. (3.18) becomes a Lyapunov function. To make stabling
for Z1, a pseudo-control input q2 is derived as

q2 = ẋre f + α1Z1. (3.20)

The α1 is the control parameter for stabilizing the q1 and is defined within a stabilizing condition
α1 > 0. Then, Eq. (3.20) is substituted in Eq. (3.19) as,

d
dt
V(Z1) = Z1{ẋre f − (ẋre f + α1Z1)} = −α1Z2

1 . (3.21)
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Then, new value Z2 of Eq. (3.21) is defined as

Z2 = q2 − ẋre f − α1Z1 (3.22)

A Lyapunov function to stabilize the system on the q1 can be described as

V(Z1,Z2) =
1
2
Z2
1 +

1
2
(q2 − ẋre f − α1Z1)2. (3.23)

Additionally, the differential function for Eq. (3.23) can be described as

d
dt
V(Z1,Z2) = −α1Z2

1 + Z2(−Gz/m sin q9 + ux/mUz)

−Z2{ẍre f − α1(Z2 + α1Z1) − Z1}

−α1Z2
1 , (3.24)

where, ux = sin θ sinψ+cos ϕ sin θ cosψ and ẍ = −Gz/m sin q9+Uz ·ux/mwithout friction term.
The friction term is designed as the modeling error. The control input using Eq. (3.17) satisfies
two conditions (ẍre f = 0 and V̇(Z1,Z2) < 0), and can be described as

Ux =
m

Uz · ux
(Z1 −

Gz

m
sin q9 − α1{Z2 + α1Z1} − α2Z2). (3.25)

α2 is a stabilizing parameter of Z2.

The quadrotor system is defined as an underactuated system. In particular, the xmotion simulta-
neously occurs with the θ motion. The x is controlled by controlling the θ. Therefore, to control
x, Ux is used as the angle reference on θ. The angle reference is defined as

θre f =



|Ux| Ux > 0 ∩ Uz > 0

−|Ux| Ux > 0 ∩ Uz < 0

−|Ux| Ux < 0 ∩ Uz > 0

|Ux| Ux < 0 ∩ Uz < 0

0 (otherwise)

(3.26)

Moreover, the reference contains with posture motion (θre f > π/2, and θre f < −π/2). Thus, the
absolute value on the Ux is handled as the reference on θ with a saturation function (−π/4 ≤
θre f ≤ π/4).

3.4.2.2 UKF with disturbance estimation

The backstepping control system requires the system state observation (ζ and ζ̇). Moreover,
η(k) = ζ(k) with noise is assumed. Therefore, for estimating the true ζ and the ζ̇, an observer
simultaneously considering the influences of nonlinearity and disturbance is required. Moreover,
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the system state observer has to consider the effects of the wave. In the proposed system, the
UKF, which simultaneously handles the nonlinearity and underwater wave effects, is used.

A UKF for estimating a higher-order disturbance is proposed, and it can treat sine wave type
disturbances and noise influences. This method simultaneously estimates the system state and
the disturbance while canceling the noise effects. If such a system state observer can be used,
the accurate state estimation for nonlinear systems can be handled under the effects of noise and
disturbance. The design of UKF is explained in [16] and is not special. Thus, the internal model
for the UKF is only described. This section uses an internal model extended by disturbance. An
augmented model for the UKF is designed using a second-order model for input disturbance.
Moreover, the second-order model can be described as

d(k) = d(k − 1) + δḋ(k − 1), (3.27)

ḋ(k) = ḋ(k − 1) + δd̈(k − 1). (3.28)

d is the input disturbance, and δ = 0.01s denotes the sampling time. Furthermore, the state
variables including the disturbance can be described as,

ζ̄(k) = [ζ(k) ζ̇(k) d(k) ḋ(k) d̈(k)]T ∈ R24×1

= [x(k) y(k) z(k) ϕ(k) θ(k) ψ(k)...

ẋ(k) ẏ(k) ż(k) ϕ̇(k) θ̇(k) ψ̇(k)...

dT1(k) dT2(k) dT3(k) dT4(k)...

ḋT1(k) ḋT2(k) ḋT3(k) ḋT4(k)...

d̈T1(k) d̈T2(k) d̈T3(k) d̈T4(k)]
T. (3.29)

The output equation is defined as

η(k) = ζ(k) = Cζ̄(k) =
[
I∈R6×6 0∈R6×18

]
ζ̄. (3.30)

The augmented model for the UKF internal model can be described as

ζ̄(k) = f (ζ(k − 1),T(k − 1)) = ζ̄(k − 1) + δ



ˆ̇ζ(k − 1)
ˆ̈ζ(k − 1)
ḋ(k − 1)
d̈(k − 1)
04×1


. (3.31)

The control inputs from T(k−1) to T(k−1)+ d̂(k−1), and ˆ̈ζ(k−1) are obtained using discretized
Eq. (3.15). In theory, the UKF using the augmented system can handle a sine wave disturbance.
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(a) x (b) y

(c) z

Figure 3.34: Simulation results(a, c, e): position estimates on UKF-based systems

Table 3.5: Simulated systems

Symbol KF Disturbance model
(a) UKF second-order (prop.)
(b) EKF second-order
(c) UKF zero-order
(d) EKF zero-order
(e) UKF none (conv.)
(f) EKF none (conv.)

3.4.3 Numerical verification

The effectiveness of the proposed control system was validated by simulations of motion control
of the underwater quadrotor. Moreover, the initial state is set to ζ(0) =[0 0 -10 0 0 0], and the
reference vector are set to ζre f =[10 15 -10 0 0 0]. Furthermore, the proposed control system and
multiple control systems using conventional KFs were compared. Table 3.5 shows the compared
methods. All control systems can handle the underwater quadrotor control in theory because the
backstepping controller treats the disturbances by waves as the modeling error.

102



Chapter 3. Robust Motion Control Considering Observation Noise

(a) ϕ (b) θ

(c) ψ

Figure 3.35: Simulation results(a, c, e): posture estimates on UKF-based systems

3.4.3.1 Parameter design

In an adjustment of the backstepping control system, a discrete-time linear quadratic regulator
(DLQR) was used for designing the controller parameters (α1, ..., α12). The weight matrices
of the tracking error QLQR and input RLQR for DLQR were designed by trial and error in a
simulation as (QLQR = diag{102, 102, 103, 4 × 103, 4 × 103, 5 × 104, 1, 1, 102, 103, 103, 5 × 102})
and (RLQR = 103 × I6×6). The controller parameters obtained from the DLQR are given by {α1,
..., α12} = { 0.3152, 0.3152, 3.1285, 1.9756, 1.9756, 6.9341, 0.8908, 0.8908, 2.9469, 2.0775,
2.0775, 3.6262 }. The variances of the system Ws and observation Vm, Vp are set to (Ws = 0.1)
and ([Vm,Vp] = [0.1, 0.01]). Moreover, the parameters on Ws, Vm, and Vp denote a wave
disturbance, position sensor resolution, and angle sensor resolution. In the initial parameters
of the UKF, the covariance matrices for estimation error P0, state vector Quk f , and observation
vector Ruk f were set to P0 = diag(10−1 ·I3×3, 10−2 ·I3×3, 10·I3×3, I3×3, 1·I4×4, 10·I4×4, 102 ·I4×4),
Quk f = diag(10−2 · I3×3, 10−3 · I3×3, I3×3, 10−1 · I3×3, 5 ·105 · I4×4, 1/δ ·106 · I4×4, 1/δ2 ·106 · I4×4),
Ruk f = diag(Vm,Vm,Vm,Vp,Vp,Vp). All parameters were decided by a simulation that considers
the estimation speed.
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(a) x (b) y

(c) z (d) ϕ

(e) θ (f) ψ

Figure 3.36: Simulation results(b,d,f): EKF-based systems

3.4.3.2 Simulation verification

Fig. 3.34 and 3.35 show the results of the response on position and posture by UKF-based
control systems and Fig. 3.36 shows the results of EKF-based systems. Moreover, the surface
wave used in the simulations is shown in Fig. 3.33(i). Additionally, the disturbances in (a) for
state vector by the wave are shown in Fig. 3.33(ii). Moreover, Fig. 3.37 shows the results of the
disturbance estimation using zero and second-order models for the disturbance. Fig. 3.38 shows
the results of the velocity estimates on the ϕ with the highest reference.

In the UKF systems (a,c), the simulation results show that the control variables converge into the
reference values considering the unknown disturbance from the wave effects (see Figs. 3.34 –
3.36)Moreover, it is shown that (a) and (c) can cancel disturbance compared to other systems. By
contrast, in the EKF-based control systems (b,d,f) and the general UKF-based control system (e),
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the control variables cannot converge into the reference and cannotmake the tracking control with
oscillation rejection. Moreover, it is confirmed that EKF-based backstepping control systems
have oscillation on x, y, and z. The results indicate that the UKF-based control systems have
advantages for underwater quadrotor control over EKF systems.

Additionally, Fig. 3.37 shows the results on the disturbance estimate, and it indicates that
the estimation performance of the disturbance using the UKF-based systems is more than the
EKF-based systems. Furthermore, it is confirmed that the system (a) using the second-order
disturbance model can cancel the high-frequency disturbance by the effects of the underwater
waves than the system (c) using the zero-order model. By contrast, it is confirmed that the
estimation performance of disturbance using the EKF systems is insufficient. From Fig. 3.37
(ii, iv), the EKF using the zero-order model (d) cannot treat the disturbance estimation, and
the EKF using the second-order model cannot estimate the disturbance by the wave effects.
This difference between the UKFs and EKFs was obtained from how to treat the system noise.
Moreover, the UKF-based systems treat the system noise as the estimation error covariance of the
state vector. Thus, the UKF-based systems can treat the uncertainty by the disturbance using the
disturbance estimates as state variables. By contrast, the EKF-based systems handle the system
noise against the input thrust. Thus, the EKF-based systems do not handle the uncertainty of the
disturbance as the state variable. It is indicated that the UKF with disturbance estimation can
effectively suppress unknown disturbances. Moreover, it is also indicated that the UKF-based
systems have adaptive performances against wave disturbances. Furthermore, Figs. 3.34(i, ii)
and 3.35(i, ii) show that the proposed control system suppresses the underwater wave effects
than other systems. In Fig. 3.38, it is evident that the velocity estimation by the UKF is more
than the other systems. The verification results show the usefulness and validity of the proposed
control system.

3.4.4 Summary

This section showed the effectiveness of the UKF with disturbance estimation for the underwater
quadrotor control method considering the unknown waves. Moreover, this section showed the
usefulness of the UKF with the second-order disturbance model for wave disturbance estimation.
Furthermore, the proposed control system can improve the control performances ofMBC systems
for nonlinear systems using the disturbance model and estimate.
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(a) Verif. (a) (b) Verif. (b)

(c) Verif. (c) (d) Verif. (d)

Figure 3.37: Simulation results(a,b,c,d) : disturbance estimates
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(a) Verif. (a) (b) Verif. (b)

(c) Verif. (c) (d) Verif. (d)

(e) Verif. (e) (f) Verif. (f)

Figure 3.38: Simulation results : velocity estimation ϕ̇
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3.5 Chapter summary

In this chapter, the KFD systemswere explained. Some verification results show the effectiveness
of the KFD with respect to observation noise reduction. However, the results indicated the
drawback of the KFD that is sluggish and insufficient performance in disturbance estimation.

Moreover, the nonlinear KFD using UKF was explained and was applied to a quadrotor system.
From the verification results, it is confirmed that the KFD method is effective in the nonlinear
system. In addition to this, the effectiveness of the disturbance model, which is designed by
the second-order model, is also shown in the case of the time-varying disturbance compensa-
tion. Therefore, the nonlinear KFD has the potential for control performance improvement for
nonlinear control systems.
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Chapter 4

Robust Disturbance Observer with
Variable Gain for Observation Noise
Reduction

4.1 Introduction

In the previous chapter, the MPC with disturbance suppression and KFD is presented. The main
drawback of the KFD method is the sluggish speed in disturbance estimation.

In this section, two conclusive countermeasures for improving KFD are introduced. In Sec. 4.2,
an adaptive Kalman filter with disturbance estimation (AKFD) is explained as the first method.
The AKFD uses a forgetting factor for realizing the fast disturbance estimation and has a trade-off
between noise sensitivity and estimation speed. Therefore, an improved AKFD, which uses a
variable forgetting factor, is introduced in Sec. 4.3.

The variable forgetting factor-based adaptive Kalman filter (VFAKFD) realizes noise-free si-
multaneous estimation of state and disturbance. Additionally, the VFAKFD has the ability of
nominal response realization of observers in various noisy environments.

The main objective of this section is to radically solve the problem of reduction of influences of
observation noise including quantization noise in DOB techniques.
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4.1.1 Background and related works

As previously stated, DOB is an estimation method for unknown disturbances and improves
the robustness of control systems. However, in the case of implementation with low-resolution
sensors, the disturbance estimates by DOB are affected by the observation noise. Therefore,
in this chapter, a novel design method of the KFD for simultaneously estimating the system
state and unknown disturbance considering the observation noise reduction is discussed. The
proposed estimation method can be divided by two parts.

As the first part, to improve the estimation performance byKFD, a forgetting factor-based adaptive
KF (FAKF) is used in this chapter. Moreover, the second part is an online adjustment method
of the forgetting factor on the FAKF. The online adjustment method is utilized for making the
balance of the estimation speed and reduction of observation noise. In this chapter, simulation
validation results are provided including various types of noise environments for demonstrating
the usefulness of the proposed estimation method.

DOBs[8, 12–14, 117], which can estimate and suppress the effects of unknown disturbances and
model error, is a robust control methodology in motion control systems. Moreover, DOBs can
be easily designed for many systems utilizing the inverse model, control input, and measured
variables of the plant. Furthermore, some types of DOBs have been developed[99, 118–123].

Generally, DOB designs can be defined as a servo problem on disturbance estimation. Thus,
the control and estimation performances can be improved by increasing the observer gain.
However, using the high observer gain is challenging owing to the mechanical limitation, in
actual systems. Unfortunately, general DOBs bring a trade-off between noise sensitivity and
disturbance cancellation performance[14]. Furthermore, the control performance of DOB-based
control systems depends on the disturbance estimation performance; therefore, an improved
DOB used in noisy environments is a must.

Additionally, MDOBs designed to joint space to compensate for the robustness of motors use the
velocity estimated from pseudo-differential[124]. General MDOBs, which use the fixed cutoff
frequencies, do not provide a nominal response under an environment of quantization noise
by optical encoders; therefore, the problems on the robustness and stability compensations by
MDOB-based control systems to low-resolution sensors remain. Thus, applying DOBs to the
system having large quantization errors is challenging. A temporary improvement method is
to utilize the cutoff frequency of the DOB close to 0 ( stability limit). However, this method
makes a decrease in the estimation performance on the system state and disturbance. Thus, it
is confirmed that the design methods of conventional DOBs are insufficient countermeasures
against the quantization noise. Therefore, this chapter addresses the improvement of the trade-
off and attempts on the accurate simultaneous estimation of the system state and unknown
disturbance under noisy environments including quantization noise.
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To address the trade-off, Kalman filtered DOB (KF-DOB)[125, 126], which is an MDOB filtered
byKalman filter(KF), and disturbanceKF (DKF)[127], which is designed by an extended internal
model with disturbance model, have been developed. The KF with disturbance estimation can
reduce the influence of observation noise compared to general DOBs; however, it is necessary to
increase the system noise for considering the uncertainty of the disturbance. Thus, the influences
of increased system noise appear as estimation noise in the system state and disturbance estimates.
Therefore, there is a similar trade-off between noise sensitivity and disturbance cancellation
performance even with the KFs.

By contrast, the KF with disturbance estimation (KFD)[104], which handles the system noise
as the uncertainty for the control input, cannot provide sufficient performance of disturbance
suppression. Moreover, the KFD does not handle the estimation of unknown parameters and
cannot provide fast estimation in unknown parameters because the internal parameters of the
KFD denote the estimation error as fixed noise matrices. To solve the problem of the disturbance
estimation speed, the adaptive design of noise matrices is a must.

This chapter proposes a design method of a KFD, and the proposed method can provide the
simultaneous estimation for the system state and unknown disturbance considering the obser-
vation noise reduction. In the proposed method, the adaptive Kalman filter (AKF)[128–132],
which includes a forgetting factor[133], is used in order to solve the trade-off. Moreover, AKF is
an estimation method for dynamic unknown system state and parameter [134–136] and has the
ability to correspond to the variation of the system by the forgetting factor. Additionally, AKF
does not use for designing IDOB, since there is the same trade-off. Thus, this chapter provides a
design method of a variable forgetting factor (VFF) using an online adjustment method, which
considers solving the trade-off. In designing recursive least squares (RLS) methods, which aims
to estimate unknown parameters, the VFF[137–139] has been utilized[140–143]. Using the
VFF, the AKFD can adeptly treat observation noise reduction and provide the simultaneous esti-
mation for the system state and unknown disturbance. In this chapter, to validate the usefulness
and effectiveness of the proposed estimation method, some numerical verifications considering
various noise environments are conducted.
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4.2 Forgetting-factor based adaptiveKalmanfilterwith disturbance
estimation[115]

Nominal KFD can realize follows;

• Simultaneous estimation of the state and disturbance rejecting noise influences

• Only low-frequency disturbances can be estimated

• To realize highly accurate state estimation considering the influences of noise and distur-
bance

However, the KFD has a problem that the disturbance estimation is sluggish, and its application
to the motion control system cannot be expected. The delayed disturbance estimates make the
tracking errors in the control variable. Therefore, to apply KFD to the motion control system,
elucidating the improved method of disturbance estimation is a must.

In this section, a method for the fast disturbance estimation of KFD is explained. Two improve-
ment methods presented in this section are as follows: one is to augment disturbance models;
the other is the utilization of an AKF that uses the forgetting factor. The improved KFDs can
derive the estimates considering the influence of noise and disturbance.

The effectiveness of both design methods was shown in verification results via position control
simulation. The plant model and conventional KFDs are explained in the previous section.
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4.2.1 Proposed method

4.2.1.1 Disturbance estimation performance of KFDs

In order to show the advantages and disadvantages of the conventional KFD, the simulation
comparison result of disturbance estimation with DOB is shown in Fig. 4.1. The plant is
affected by (system noise: 1× 10−3, observation noise: 2× 10−4, input disturbance 0.5 N). From
the result, it is confirmed that KFD is able to perform more accurate disturbance estimation in a
noisy environment than DOB. The advantage of KFD is that it is possible to estimate the state
with disturbance considering the influence of noise. However, even with a simple mechanism, it
takes 250s to estimate the disturbance. The essential drawback of KFD is sluggish disturbance
estimation.

4.2.2 Augmentation of disturbance model

KFD has a sluggish disturbance estimation speed, and it is difficult to deal with time-varying
disturbances. Therefore, in order to consider the time-varying disturbance, the dimension of the
internal model of KFD is extended.

Firstly, first-order (ramp) disturbance represented by “d(k + 1) = d(k) + ḋ(k)” is assumed. Add
the disturbance estimate (d) and the variation in the disturbance estimate (ḋ) to the state variable

Figure 4.1: Simulation result: disturbance estimates by IDOB and KFD
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(x), and then the state space model for (x̄ =
[
xT d ḋ

]T
) is given by


x(k + 1)

d(k + 1)

ḋ(k + 1)

 = Ād


x(k)

d(k)

ḋ(k)

 + B̄du(k) (4.1)

y(k) = C̄d


x(k)

d(k)

ḋ(k)

 (4.2)

where, Ād =


Ad −Bd 0

0 1 Ts

0 0 1

, B̄d =


Bd

0

0

, C̄d =
[
Cd 0 0

]
.

Secondly, the second-order model of disturbance is explained based on“d(k + 1) = d(k) +

ḋ(k), with ḋ(k + 1) = ḋ(k) + d̈(k)”. The augmented state vector can be discrebed as x̄ =[
xT d ḋ d̈

]T
, and new state space mode is given by


x(k + 1)

d(k + 1)

ḋ(k + 1)

d̈(k + 1)


= Ād


x(k)

d(k)

ḋ(k)

d̈(k)


+ B̄du(k) (4.3)

y(k) = C̄d


x(k)

d(k)

ḋ(k)

d̈(k)


(4.4)

where, Ād =


Ad −Bd 0 0

0 1 Ts 0

0 0 1 Ts

0 0 0 1


, B̄d =


Bd

0

0

0


, C̄d =

[
Cd 0 0 0

]
. These high-order

disturbance models are effective for time-varying disturbance estimation.

4.2.3 Design of adaptive Kalman filter

4.2.3.1 Adaptive Kalman filter with disturbance estimation

The FAKFD can be designed by the AKF used the forgetting factor. Moreover, to estimate
the system state and disturbance simultaneously, an extended system model augmented by the
disturbance estimates is utilized in the internal system model of the AKF. Furthermore, the
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FAKFD can be easily designed by adding the forgetting factor to the design of the KFD.
Additionally, the modified covariance matrix is given by

P(k|k) = {λ−1 · I − K(k)C̄d}P(k|k − 1), (4.5)

where λ (0 < λ ≤ 1) denotes the forgetting factor. In the fixed forgetting factor, in the case
of λ ≈ 0, the current state estimates independents of the previous state estimates and provide
the fast state estimation. In this case, the observation noise effects in the state estimates are
increased with the responsiveness of the estimate. By contrast, in the case of λ ≈ 1, the state
estimates considerably depend on the previous state estimates. Thus, the responsiveness of the
state estimation is considerably reduced; however, the noise effect is simultaneously reduced.

In theory, the forgetting factor increases the error covariance matrix, then, the Kalman gain
increases along with the increased error matrix. Therefore, the decrease of Kalman gain is
prevented, and the updating of the estimation makes quickly.

In this section, replace λ−1 with γ, then new factor γ = λ−1 is used for designing the FAKFD. In
designing the γ, two design methods are assumed.
(a) Design as a scalar value to affect all state estimation of the extended system.

γ = const. ∈ R1×1 (4.6)

(b) Design as a diagonal matrix so that it affects only disturbance estimation.

γ =

In×n 0n×1
01×n γd

 ∈ Rn+1 × n+1 where x ∈ Rn (4.7)

Note that the forgetting factor makes fast disturbance estimation; however, the low-noise sensi-
tivity is lost.

115



Chapter 4. Robust Disturbance Observer with Variable Gain for Observation Noise Reduction

Figure 4.2: System diagram of control system

Table 4.1: Verification conditions

Run time 50 s
Sampling time Ts = 0.1 s
Initial state x0 = 0

Reference position r = 1 (in 10 s)
Distribution of system noise Qn = 1 × 10−3

Distribution of observation noise Rn = 2 × 10−4

Table 4.2: Parameter of KFD

Covariance of system noise Qkl = Qn

Covariance of observation noise Rkl = Rn

Initial value of covariance matrix P0 = I
Initial state with disturbance x̄0 = [0 0 0]T

Table 4.3: Parameter of input disturbances

(a) Stationary disturbance d = 5 (in 25 s)
(b) Ramp type disturbance d(k + 1) = d(k) + 0.1
(c) Low-frequency disturbance d = sin(0.05 ∗ t)
(d) High-frequency disturbance d = sin(10 ∗ t)

4.2.4 Numerical verification

The proposed designed method is verified by the simulation in position control with disturbance
and noise. Fig. 4.2 shows the block diagram of the verified control system. In this verification,
the state and disturbance from the response value including noise are estimated. Tables 4.1 and
4.2 show verification conditions and tuning parameters of KFD. The applied disturbances are
changed in each verification.

The comparison and verification results and explanations are separated from the following three
points.
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(i) Augmented disturbance models

(ii) Forgetting factor design

(iii) Integration of (i) + (ii)

In the comparison, the estimation performance is also focused, but also the control performance.
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Figure 4.3: Simulation results(a): posi-
tion response Figure 4.4: Simulation results(a): distur-

bance estimates

Figure 4.5: Simulation results(b): posi-
tion response

Figure 4.6: Simulation results(b): distur-
bance estimates

4.2.4.1 Verification of augmented disturbance model

In this verification, the zero, first, and second-order disturbance models are compared, and the
dimension of the internal model for KFDs is different. Table 4.3 shows the applied disturbance
condition. Therefore, it is possible to quantitatively evaluate the effect of extending the dimension
of the disturbance estimation.

Figs. 4.3 and 4.4 show the results of position and disturbance responses with respect to step-type
disturbance. It is confirmed that the augmented models make the overestimation of disturbance.
Additionally, the drawback of KFD appears in Fig. 4.4. Moreover, the control performance for
tracking is inadequate. In other words, it can be seen that the step-type disturbance estimation
cannot be speeded up by the augmented models. Therefore, it is indicated that the drawback
cannot be improved by the models.
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Figure 4.7: Simulation results(c): posi-
tion

Figure 4.8: Simulation results(c): distur-
bance

Figure 4.9: Simulation results(d): posi-
tion

Figure 4.10: Simulation results(d): dis-
turbance

Figs. 4.5 - 4.8 show the position and disturbance results of ramp-type and sine-wave disturbances.
These results show that the zero-ordermodel-basedKFD tends to delay the disturbance estimation
and cannot cope with the ramp-type disturbance. By contrast, the augmented model-based KF-D
can handle ramp-type disturbances without the drawback. Therefore, these results indicated that
the augmented models are useful for the time-varying disturbance. Additionally, in the case of
low-frequency disturbances, the proposed method of the second-order model of disturbance is
more effective and useful than the other methods. Therefore, it is evident that KFD is possible to
deal with time-varying disturbances by extending the disturbance model. Moreover, it becomes
possible to handle complicated disturbances that could not be handled by the conventional KFD.

Figs. 4.9 and 4.10 show the position and disturbance results under high-frequency sine-wave
disturbance. The results show that the KFD handles high-frequency disturbance as noise.
Additionally, the KFDs do not estimate disturbances, and the conventional method and the
proposed method have equivalent performance. Table 4.4 shows all results in this verification.
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Table 4.4: Simulation results

zero-order first-order second-order
(a):step N N N
(b):ramp N P P
(c):sine N N P
(d):noise P P P
where N and P indicate Negative and Positive.

Figure 4.11: Simulation results: position
response

Figure 4.12: Simulation results: distur-
bance estimates

Figure 4.13: Simulation results (γd): po-
sition response

Figure 4.14: Simulation results(γd): dis-
turbance estimates

From this table, except for the step-type disturbance, it is confirmed that the disturbance estimation
speed of KFD can be improved by the augmented models. Furthermore, the proposed models
can easily use in conventional DOBs.
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Table 4.5: Estimation performance of the proposed γd in steady-state

γd Estimation response Noise infulence
(a):1.00 More than 1000 s ±0.01 × 10−1
(b):1.02 25s ±0.03 × 10−1
(c):1.05 5 s ±0.15 × 10−1
(d):1.20 1 s ±0.06

4.2.4.2 Forgetting factor design

In the previous verification, the results with the augmented models indicated that the KFD does
not handle the step-type disturbance (see Fig. 4.4). Therefore, this verification aims to attempt
the improvement for step-type disturbance estimation by using the forgetting factor-based AKFD.
Moreover, in order to show the effectiveness of the forgetting factor, the internal model of KFDs
uses the zero-order model.

In designing the AKFD, the two design methods of forgetting factors were introduced. The
parameters are set to

γ1 = 1.05 (4.8)

, and,

γ2 =

In×n 0n×1
01×n γd

 where γd = 1.05. (4.9)

Figs. 4.11 and 4.12 show the compare results of position and disturbance concerning both design
methods. Compared to the conventional KFD, the forgetting factor-based AKFD makes fast
disturbance estimation. In both methods, the disturbance estimation performance is significantly
improved. Additionally, the disturbance estimation of γ2 is faster than γ1. It is evident that
the forgetting factor significantly assists to speed up the disturbance estimation performance of
KFDs. The results indicate the effectiveness of the proposed method.

Moreover, the drawback of the AKFD is an increased noise sensitivity. The results in focusing
on γ2 of the tuning of the forgetting factor are shown in Figs. 4.13 and 4.14. The γd is set to
1.02, 1.05, and 1.20. Table 4.5 shows the compare results in γd. From the position result shown
in Fig. 4.13, the large values of γd make high-tracking performance. By contrast, from the result
of disturbance estimation, it is confirmed that the KFD with a large value of γ is significantly
affected by noise influences. Moreover, the KFD with a small value of γ is seldom affected
by noise influences. These results indicate that the factor γd decides the noise sensitivity of
the KFDs. Additionally, the result indicates that the scalar factor γ1 frequently generates noisy
estimates. The proposed method enables the tune-up only focused on disturbance estimation
performance in KFDs.

121



Chapter 4. Robust Disturbance Observer with Variable Gain for Observation Noise Reduction

Table 4.6: Simulated conditions

No. Extended order Posterior covariance matrice Type of disturbance
1∗ zero-order conventional step
2 zero-order prop. (γ = diag(I, 1.05)) step
3 second-order prop. (γ = 1.05) step
4 second-order prop. (γ = diag(I, 1.05, 1.05, 1.05)) step
5∗ zero-order conventional ramp
6 zero-order prop. (γ = diag(I, 1.05)) ramp
7 second-order prop. (γ = 1.05) ramp
8 second-order prop. (γ = diag(I, 1.05, 1.05, 1.05)) ramp
9∗ zero-order conventional low frequency
10 zero-order prop. (γ = diag(I, 1.05)) low frequency
11 second-order prop. (γ = 1.05) low frequency
12 second-order prop. (γ = diag(I, 1.05, 1.05, 1.05)) low frequency

where, ∗ denotes the conventional mathod.

Figure 4.15: Comparative results: posi-
tion response with respect to step-type dis-

turbance

Figure 4.16: Comparative results: step-
type disturbance

4.2.4.3 AKFD with augmented disturbance models

In this section, the results of integrating the above two methods are shown. Table 4.6 shows
the verification conditions. The compare results include: γ2, γ1 with the augmented second-
order model of disturbance, and γ2 with the augmented second-order model of disturbance.
The disturbances used in the verification are shown in Table 4.3. Figs. 4.15-4.20 show the
compare results of position response, step-type disturbance, ramp-type disturbance, and sine-
wave disturbance.

Figs. 4.15 and 4.16 show the result of position and disturbance on step-type disturbance (Table
4.6 -1,2,3,4).
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Figure 4.17: Comparative results: posi-
tion response with respect to ramp-type

disturbance

Figure 4.18: Comparative results: ramp-
type disturbance

Figure 4.19: Comparative results: po-
sition response with respect to sine-wave

disturbance

Figure 4.20: Comparative results: sine-
wave disturbance

From the result of position response in step-type disturbance, it is evident that the tracking control
performances of the proposed methods are higher than the conventional methods. The result of
the disturbance estimation indicates that the proposed method without the augmented models
is the most effective. Moreover, the augmented model-based KFDs generate the overestimated
disturbance estimates. However, the convergence speed is fast from the overestimation. In light
of this information, it is evident that the proposed method significantly improves the performance
of KFDs.

Moreover, the results of the ramp-type and sine-wave disturbances show that the proposed
method with the augmented models can handle the time-varying disturbance. These control
and estimation performances cannot be achieved by the conventional methods, and the proposed
method without augmented models.
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Table 4.7: List of results of disturbance estimation by KF-D

disturbance (i): Con-
ventional

(ii):2-
order
models

(iii): γ (ix): (ii)
w/ (iii)

Step large de-
lay

large de-
lay

positive overshoot

Ramp large de-
lay

positive small de-
lay

positive

low frequency
sine wave

large es-
timation
error

small de-
lay

small de-
lay

positive

Table 4.7 shows all results. From the results, theKFDhas the drawbacks of disturbance estimation
and its speed. By contrast, the proposed factor is useful for improving the performance of step-
type disturbance estimation. Additionally, it is confirmed that the proposed augmented designs
improve the performance of the KFD. Overall, it is evident that the proposed method is useful
for improving the KFDs.
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4.2.5 Experiments

In order to verify the estimation performance of KFDs (Sec. 3.2 and Sec. 4.2), experiments
of position control of the cart system were conducted. In the experimental system, the actual
disturbances are generated by linear and nonlinear friction forces, sensor noise, and resolution
of control input PWM (pulse width modulation).

In the experiments, the compared systems are as follows:

(i) MDOB,

(ii) IDOB,

(iii) KFD,

(iv) KFD w/ γ = diag(1, 1, 1.05),

(v) KFD w/ γ = diag(1, 1, 1.10),

(vi) KFD w/ γ = diag(1, 1, 1.10),

(vii) KFD based on first-order model,

(viii) KFD w/ γ = diag(1, 1, 1.05, 1.05) based on first-order model,

(ix) KFD based on second-order model,

(x) KFD w/ γ = diag(1, 1, 1.05, 1.05, 1.05) based on second-order model.

Moreover, the position control is described as

u(k) = Kp(yref − ŷ(k)) − Kdv̂(k) + d̂(k), (4.10)

where, yref = 0.1[m] is the position reference, Kp = 10 and Kd = Kp/
√
2 denote the proportional

and differential gain, and v̂ is the velocity estimate.

To evaluate the noise reduction performance of each control system, the results of highpass
filtered disturbance estimates are shown. Additionally, in the highpass filter, the passband
frequency of the filter set to 150 [Hz].

Considering the noise reduction, the cutoff frequencies of the MDOB set to gw= 0.6 [Hz] and gd
= 2[Hz]. Moreover, the pole of IDOB set to -8, -9, and -10 in a continuous system. Furthermore,
in the KFD systems, the system and observation covariance matrices are set to 10−2 and 10−4,
and the initial error covariance matrix is set to diag(10−2, 10−4, 10−2, {10−2, 10−2}).
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4.2.6 Results

The compared results involving the position response, control input, and disturbance estimator
are shown in Figs. 4.21-4.30.

From each position result, it is confirmed that theKFDwith adaptive factor is useful for offset-free
tracking control. In particular, using γ = 1.05, the tracking performance is improved.

From the results on the highpass filtered disturbance estimates, in the actual system, the KFD has
better noise reduction ability than the MDOB system. By contrast, the disturbance estimation
speed by the KFD is slower than MDOB. However, it is even that the adaptive factor-based KFD
(see Figs. 4.21 and 4.24) has better noise reduction performance and similar position response
than MDOB.

Moreover, from the results of the compared magnitude of the adaptive factor, it is confirmed that
the adaptive factor decides the response speed and noise sensitivity on disturbance estimates in
actual systems (see Figs. 4.24-4.26).

Additionally, the results for augmented models are indicated that the disturbance estimates
significantly affected by disturbance variation estimates in the actual system. Moreover, the
undesired behaviors are confirmed by the results. Therefore, an improved estimation performance
for the augmented models is a must. The effective countermeasure is tune-up considering the
disturbance rate estimates (i.e., ˆ̇d and ˆ̈d).

However, it is confirmed the adaptive factor is also effective against augmented systems.

4.2.7 Summary

This section introduced how to improve the KFD method. The two improvement methods were
shown. Moreover, the verification results show the effectiveness of the proposed methods.
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(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.21: Experimental result: MDOB.

(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.22: Experimental result: IDOB.
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(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.23: Experimental result: KFD.

(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.24: Experimental result: KFD w/ γ = 1.05.
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(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.25: Experimental result: KFD w/ γ = 1.10.

(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.26: Experimental result: KFD w/ γ = 1.20.

129



Chapter 4. Robust Disturbance Observer with Variable Gain for Observation Noise Reduction

(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.27: Experimental result: KFD based on first-order disturbance model.

(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.28: Experimental result: KFD based on first-order disturbance model w/ γ = 1.05.
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(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.29: Experimental result: KFD based on second-order disturbance model.

(a) position (b) control input

(c) disturbance estimates (d) Highpass-filter d̂

Figure 4.30: Experimental result: KFD based on second-order disturbance model w/ γ = 1.05.
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4.3 Variable forgetting factor-based adaptive Kalman filter with
disturbance estimation

This section explains the proposed method of simultaneous estimation for the system state and
disturbance. In the FAKFD, the trade-off cannot be solved. To address the trade-off, FAKFD and
an online adjustment method of the forgetting factor are proposed in this section. The proposed
estimation method consists of a FAKFD and an updating law of the VFF. As shown in the
previous section, the FAKFD using a fixed forgetting factor and the extended system model can
provide the fast simultaneous estimation of the state and disturbance. In the proposed method, to
reduce the noise effects, a design method of VFF is introduced for the FAKFD. Additionally, the
VFF is utilized for online adjustment of the noise sensitivity and estimation speed. Moreover,
the proposed estimation method, which uses variable forgetting factor-based adaptive Kalman
filter with disturbance estimation (VFAKFD), can simultaneously estimate the system state and
unknown disturbance while considering the estimation speed and observation noise reduction.

4.3.1 Proposed method

4.3.1.1 Adaptive Kalman filter with disturbance estimation

In this section, the KFD law is defined by

x̄(k|k − 1) = Ād x̄(k − 1) + B̄dτ(k − 1), (4.11)

P(k|k − 1) = ĀdP(k − 1)ĀT
d + B̄dQB̄T

d , (4.12)

D(k) = C̄dP(k|k − 1)C̄T
d + R, (4.13)

K(k) = P(k|k − 1)C̄T
d D
−1, (4.14)

ê(k) = y − C̄d x̄(k|k − 1), (4.15)

x̄(k|k) = x̄(k|k − 1) + K(k)ê(k), (4.16)

P(k|k) = {I − K(k)C̄d}P(k|k − 1). (4.17)

In contrast to the previous section, the forgetting factor affects all elements of the covariance
matrix. Consider the accuracy of estimation of KFD, the variable adaptive factor is designed to
affect all state estimations, because the variable parameters always correct estimation errors for
all state variables. Note that the VFAKFD converges to general KF systems, and the convergence
conditions of the VFAKFD are provided in this chapter.

The FAKFD is designed by adding the forgetting factor to the AKF. In the previous section, the
forgetting factor designs to affect the disturbance estimation. In this section, the forgetting factor
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is used for all state variables because the noise effects can be reduced by the VFF. For designing
the VFF, the FAKFD can be described as

P(k|k) = λ−1(k){I − K(k)C̄d}P(k|k − 1), (4.18)

4.3.1.2 Design of variable forgetting factor

To realize the improved estimation performance including noise reduction and fast responsive-
ness, the VFF using the online adjustment method is integrated into the FAKFD. In the related
work to parameter estimation by an RLS using variable forgetting factor [140], a VFF design
using the estimation error has been developed. Therefore, this section proposes an online adjust-
ment method for the VFF based on the estimation error (ê(k)). In the VFF design, in addition to
Eq. (4.18), Eq. (4.13) is given by

D(k) = C̄dP(k|k − 1)C̄T
d + λ(k). (4.19)

Using the VFF as the covariance of the observation noise, the effects of the observation noise
are directly considered.

Additionally, using the estimation error, the VFF (λ(k)) is defined as

λ(k) = λmax −
1

1 + C̄dP(k|k − 1)C̄T
d

· ê
2(k)
α

, (4.20)

where α > 0 is the parameter of this adjustment law and reflects the observation noise. Moreover,
λmax denotes the maximum of λ(k), and it decides the noise sensitivity of all estimates in the
steady-state. Using this law, when ê2(k) >> 0, λ(k) close to 0. Thereby, the response speed
is improved. On the other hand, when ê2(k) ≈ 0 (steady-state), λ close to λmax; therefore, the
influence of the noise in the estimates is significantly suppressed.

Additionally, to converge the estimation of the VFAKFD, the constraints on the VFF is set to

0 < λmin ≤ λ(k) ≤ λmax ≤ 1. (4.21)

The lower bound (λmin) denotes the condition to ensure the positive λ(k) to the large estimation
errors. Furthermore, the lower limit λmin decides the responsivity of the VFAKFD; however,
a small λmin creates noisy estimates. Thus, the design of λmin considers the noise covariance
in observation, and the design of λmax considers to prevent the noise effects in the estimates.
Additionally, the online adjustment method Eq. (4.20) is converged to λmax when the estimation
error is converged to 0. In the case of λmax = 1, the proposed estimation method converges to
the standard Kalman filter without the online adjustment method.
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4.3.2 Numerical Verification: Quantization noise reduction

To validate the effectiveness and usefulness of the proposed estimation method, two numerical
simulations of a position control with an external torque disturbance are conducted in noisy
environments. In the simulations, the proposed method was compared with the conventional
methods (MDOB[8], IDOB[99], KFD[104], and DKF[127]) and two FAKFDs using high and
low forgetting factors. Considering the balance between the response speed of the estimates
and the observation noise rejection, the parameters were set to λmin = 0.8 and λmax = 1 in
the proposed VFAKFD system. Moreover, the verifications were properly performed using
MATLAB/Simulink. In the position control, a PD control is used and can be described as

τ(k) = Kp{qref(k) − q̂(k)} − Kd ˆ̇q(k) + τ̂d(k), (4.22)

where qref = 0 [rad], Kp, Kd, and τ̂d denote a position reference, proportional gain, differential
gain, and the disturbance estimates. Additionally, in the compared MDOB system, q̂(k) cannot
be estimated; therefore, the measured variable y(k) is directly used for position control.

Furthermore, the observation noise effects with respect to quantization noise were designed by
quantization error generated by encoder models. Moreover, the quantization noise effects are
decided using a number (n) with respect to the encoder bits, multiply, and gear ratio, and system
sampling time (Ts). To design the effects, a pulse per revolution (PPR) including all parameters
was defined by breso. The maximum quantization error (Qmax)[124] using the PPR is given by

Qmax =
2π
breso

, (4.23)

and the maximum estimation error of the velocity can be described as

Qv =
Qmax

Ts
. (4.24)

Fig. 4.31 shows the response of the encoder model in case of (n = 8 and Ts = 10−2s, Qmax =

2π/28 = 0.0245).

In all verifications, a step-type input disturbance τdis [Nm] is assumed, and it is given by

τdis =


10 (1 ≤ k)

0 (k < 1)
. (4.25)

Moreover, the state-space expressed DOBs can handle high-order disturbances using the high-
order disturbance model to the internal model. Thus, to validate the simultaneous estimation
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(a) Input and output angles

(b) Quantization error

Figure 4.31: Encoder model

performance by the proposed estimation system, this section only assumes the step-type distur-
bance. Additionally, the physical parameters were set to j = 1, and c = 0. The MDOB using
c = 0 can handle the direct estimation of the external force, similar to other estimation methods.

Furthermore, all estimation methods were adjusted considering the reduction of noise effects.
In the MDOB, it can provide fast disturbance estimation. However, the noise effect of the
disturbance estimate is increased by fast estimation. Thus, the low cutoff frequencies were used
in the compared MDOB.

4.3.2.1 VFF design of quantization noise reduction

The quantization noise effects can be described using n and Ts. Thus, the parameter α in the
VFF can also be designed using n and Ts. Consider the noise effects, α is given by

α = (breso · Ts)−1, (4.26)
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Using this equation, the VFF can easily adjust to various resolutions. However, the automatic
tune law is a temporary way; therefore, an improved estimation performance is obtained by trial
and error turn up.
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4.3.2.2 Results

In this verification, n = {4, 8, 12, 48} and Ts = {10−2, 10−3} [s] are utilized to compare the
reduction performance of quantization noise.

Figs. 4.32-4.35 shows the verification results on disturbance estimates and the VFF. In the results
with the high-resolution and 10−3[s], it is confirmed that the VFAKFD generates the disturbance
estimation response similar to existing DOBs. On the other hand, in the results of the low-
resolution, it can be confirmed that the VFAKFD significantly reduces the noise influences and
can provide the proper disturbance estimates. By contrast, the estimations of disturbance by the
conventional DOBs are significantly affected by the quantization noise. Therefore, it is evident
that the VFAKFD brings smooth convergence of the disturbance estimates while rejecting the
noise effects, and it can effectively perform the disturbance estimation to large quantization
errors.

Furthermore, the VFAKFD has a better response more than the FAKFD without the online
adjustment method. Therefore, it is confirmed that the design method of the VFF is effective for
improving the disturbance estimation and the observation noise reduction. However, using high-
resolution and large sampling time, the VFF makes slow response speed. This is attributed to the
small α by the design of the online adjustment method Eq. (4.26). Therefore, this response speed
can improve by the design of α. From the verification results, it is confirmed that the proposed
method is effective for solving the trade-off. Moreover, the VFAKFD brings robust estimation
considering the model error and observation noise since state estimation clearly includes the
unknown disturbance effects as the disturbance estimates.

Moreover, the root mean square error (RMSE) on q̇ in 5-10s is shown in Table 4.8. From Table
4.8, it is evident that the VFAKFD brings the highest performance on the unmeasured variable
estimation. Furthermore, the result indicates that the VFAKFD can also provide noise-free and
accurate estimations to the state variable, and it can better handle the low-resolution encoderwhile
estimating disturbance compared with conventional methods. Indeed, the proposed method can
treat simultaneous estimation and quantization noise reduction at the same time. Additionally,
under the quantization noise, it is confirmed that it has an improved estimation performance with
small estimation errors in the estimation on the unmeasured variables. Therefore, the proposed
method is effective for realizing robust motion control under the quantization noise.

In conclusion, the VFAKFD simultaneously treats the quantization noise reduction and accurate
disturbance estimation, and it has a proper estimation performance using low-resolution sensors
than conventional DOBs.
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(a) MDOB (b) IDOB

(c) KFD (d) DKF

(e) FAKFD w/ λ = 0.98 (f) FAKFD w/ λ = 0.998

(g) VFAKFD (prop.) (h) λ in VFAKFD(g)

Figure 4.32: Simulation results: n = 4, 16 PPR.

Table 4.8: Simulation results 4.3.2: RMSE of q̇.

Ts n Qv MDOB IDOB KFD DKF FAKFD
(λ = 0.98)

FAKFD
(λ = 0.998) VFAKFD

10−2 4 39.2 5.19 0.88 1.02 0.97 0.25 66.0 0.10
8 2.45 0.65 0.06 1.01 0.06 0.06 66.0 0.01
12 0.15 0.07 3.62 ×10−3 1.01 3.12 ×10−3 0.05 66.0 1.12 ×10−3
48 2.45 2.23 ×10−12 9.46 ×10−14 1.01 1.00 ×10−13 0.05 66.0 6.12 ×10−11

10−3 4 392.7 11.10 1.02 0.49 1.53 1.37 6.95 0.09
8 24.54 1.20 0.07 0.46 0.11 0.12 6.92 0.01
12 1.53 0.32 3.92×10−3 0.46 0.01 0.01 6.92 0.47 ×10−3
48 2.23×10−11 141.93 6.49 ×10−14 0.46 1.48 ×10−13 1.51 ×10−13 6.92 5.63 ×10−13
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(a) MDOB (b) IDOB

(c) KFD (d) DKF

(e) FAKFD w/ λ = 0.98 (f) FAKFD w/ λ = 0.998

(g) VFAKFD (prop.) (h) λ in VFAKFD(g)

Figure 4.33: Simulation results: n = 8, 256 PPR.
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(a) MDOB (b) IDOB

(c) KFD (d) DKF

(e) FAKFD w/ λ = 0.98 (f) FAKFD w/ λ = 0.998

(g) VFAKFD (prop.) (h) λ in VFAKFD(g)

Figure 4.34: Simulation results: n = 12, 65536 PPR.
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(a) MDOB (b) IDOB

(c) KFD (d) DKF

(e) FAKFD w/ λ = 0.98 (f) FAKFD w/ λ = 0.998

(g) VFAKFD (prop.) (h) λ in VFAKFD(g)

Figure 4.35: Simulation results: n = 48, 2.8147 × 1014 PPR.
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Table 4.9: Simulation results 2.4.4: RMSE in unmeasured variable q̇.

Noise MDOB IDOB KFD DKF FAKFD (λ = 0.98) FAKFD (λ = 0.998) VFAKFD
white (variance 10−1) 141.93 0.33 0.14 1.36 1.54 0.01 0.58 ×10−3
white (variance 10−4) 14.19 0.03 0.14 0.14 0.15 1.20 ×10−3 0.81 ×10−3

4.3.3 Numerical Verification: observation noise reductions

The proposed system has the ability to cope with white observation noise. This verification
shows the simultaneous estimation under white noise environments. Moreover, the verification
used the n = 48, Ts = 10−3, and white noise as observation noise with variance 10−1 and 10−4.
The observation values are significantly influenced by the observation noises in comparison to
quantization noise.

In order to cancel the influences of the noises, the α is designed as

α = (0.12)−1 (4.27)

Other conditions are the same as the previous verifications (Qv = 2.23 × 10−11).

4.3.3.1 Results

Figs. 4.36-4.37 shows the results of disturbance estimates under both white noise environments.
The results are indicated that the VFAKFD brings the highest estimation performance of the
disturbance, and it can consider the balance between the response speed and noise reduction.
Thus, the VFAKFD can provide similar performance for the disturbance estimates under the
various noisy environments. The ability is effective for robust design in motion control systems
used in tough environments.

Additionally, the VFAKFD makes a better noise reduction performance and estimates compared
to the FAKFD; therefore, it is indicated that the online adjustment method and the VFF are useful
for reducing the observation noise effects.

The RMSE results on q̇ in 15-30s are shown in Table 4.9. From Table 4.9, it is evident that the
VFAKFD brings the noise-free estimation compared to the conventional methods.

In conclusion, it is confirmed that the VFAKFD is useful and effective for handling simultaneous
estimation, quantization noise reduction, and sensor noise reduction.
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(a) MDOB (b) IDOB

(c) KFD (d) DKF

(e) FAKFD w/ λ = 0.98 (f) FAKFD w/ λ = 0.998

(g) VFAKFD (prop.) (h) λ in VFAKF(g)

Figure 4.36: Simulation results: n = 48, Ts = 10−3[s], white noise (variance 10−1).
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(a) MDOB (b) IDOB

(c) KFD (d) DKF

(e) FAKFD w/ λ = 0.98 (f) FAKFD w/ λ = 0.998

(g) VFAKFD (prop.) (h) λ in VFAKF(g)

Figure 4.37: Simulation results: n = 48, Ts = 10−3[s], white noise (variance 10−4).
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4.3.4 Discussion

In this section, the validity of the design of the VFF is discussed.

To show the effectiveness of the VFF, the validated results on the forgetting factor and observer
gain are illustrated. In this verification, the simulation conditions are the same as the previous
section (observation noise reduction). The forgetting factors are designed within the VFF range
(0.8-1) and set to [1, 0.998, 0.98, 0.95, 0.90, 0.80].

Figs. 4.38 and 4.38 show the compare results. From the results, it is confirmed that the proposed
VFF method makes balanced performance in the estimation. Moreover, the low forgetting factor
(0.8–0.9) generates noisy estimates. By contrast, the high forgetting factor (0.98–1) creates noise-
free estimates; however, the estimates have a large response delay. In light of this information,
the VFF can simultaneously make noise-free and fast estimations. Therefore, it is evident that
the design method of the VFF is valid.

Additionally, in these simulations, the observer pole information in continuous and discrete-time
systems is as shown in Figs. 4.40-4.43. The results compare with the constant forgetting factor
0.98. The approximate pole assignments of each observer were calculated by extended systems
and Kalman gain (i.e., the eigenvalues of the system " Ād − K(k)C̄d"). Additionally, the digital
pole (pd) and continuous pole (pc) are converted by pd = eTs·pc .

The results show that the constant forgetting factors make to keep low eigenvalues of the observer.
Therefore, the constant forgetting factors make noisy estimates by a high gain observer. By
contrast, the VFF method can avoid keeping low eigenvalues of the observer in the steady state.
In other words, the VFF makes noise-free estimates and fast estimation by variation of the pole
placement of the observer.

4.3.5 Summary

In this section, a novel design method of DOB is shown. Under the various noisy environments,
the proposed method can provide the observation noise reduction and accurate systems state and
disturbance estimations.

The proposed estimation system significantly reduces the influence of observation noise in the
state variable estimates. Moreover, the verification results indicate that the proposed estimation
system has higher performance than conventional DOBs in some cases. Therefore, the proposed
method is effective and useful for disturbance cancellation in motion control systems in noisy
environments.

Furthermore, the proposed method using KF is easy to directly extend to a nonlinear system via
nonlinear Kalman filters.
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(a) λ = 1 (b) λ = 0.998

(c) λ = 0.98 (d) λ = 0.95

(e) λ = 0.90 (f) λ = 0.8

(g) VFF (h) λ in (g)

Figure 4.38: Verification results: forgetting factor, white noise (variance 10−1)
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(a) λ = 1 (b) λ = 0.998

(c) λ = 0.98 (d) λ = 0.95

(e) λ = 0.90 (f) λ = 0.8

(g) VFF (h) λ in (g)

Figure 4.39: Verification results: forgetting factor, white noise (variance 10−4)
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(a) Real part in VFF (b) Imaginary part in VFF

(c) Real part in λ = 0.98 (d) Imaginary part in λ = 0.98

Figure 4.40: Discrete-time pole assignment of the observers, white noise (variance 10−1)

(a) Real part in VFF (b) Imaginary part in VFF

(c) Real part in λ = 0.98 (d) Imaginary part in λ = 0.98

Figure 4.41: Continuous-time pole assignment of the observers, white noise (variance 10−1)
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(a) Real part in VFF (b) Imaginary part in VFF

(c) Real part in λ = 0.98 (d) Imaginary part in λ = 0.98

Figure 4.42: Discrete-time pole assignment of the observers, white noise (variance 10−4)

(a) Real part in VFF (b) Imaginary part in VFF

(c) Real part in λ = 0.98 (d) Imaginary part in λ = 0.98

Figure 4.43: Continuous-time pole assignment of the observers, white noise (variance 10−4)
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4.4 Chapter summary

In this chapter, the improved KFD methods were explained.

The proposed method can achieve a noise-free simultaneous estimation of state and disturbance.
By using the proposed method, DOB can widely apply to many systems without any limitation.

In this chapter, the design of the VFF was introduced. The VFF is constrained by the lower
and upper bounds limit. However, the variation range of the VFF is not considered. Therefore,
the suppression of sudden change on the VFF is challenging. In order to generate stable and
smooth responses of the VFF, an introduction of the variation range constraints on VFF has to
be considered.

In addition to this, the design method of the VFF is not compensated in theory. Therefore,
an improved design method considering stability and convergence is a must. In particular, the
variation of VFF can resemble the variation of the pole of the observer. Therefore, to improve
the estimation performance of the VFAKFD, reflecting the pole of the observer to the VFF has
to be considered.
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Conclusion

In this dissertation: Robust Model-based Control in Motion Control Systems, the components
for robust design on the constrained control systems and disturbance observer were presented.
Under the title, robust design methods of constrained model-based control method and noise-free
disturbance estimation method have been proposed. The main component of this dissertation is
robust design methods for MPC systems using disturbance estimation techniques.

This dissertation consists of five chapters. In chapter 1, motivation, background, and objective
for this research were described.

In chapter 2, the disturbance observer-based motion control, and its application to robust con-
strainedmotion control bymodel predictive control were presented. The two integrationmethods
for disturbance observer and model predictive control in motion control and acceleration control
are also presented. The integration systems show to improve the robustness to the disturbance
in MPC systems using the disturbance estimates. Fortunately, the robustness simultaneously
　 brings the offset-free tracking control performance. However, the robustness performance
depends on the accuracy of the disturbance estimates. Moreover, the accuracy of the disturbance
estimates is decided by the magnitude of the gains of the disturbance observers. Unfortunately,
the fast and accurate disturbance observer is considerably affected by the observation noise ef-
fect. Therefore, the problems of the constrained motion control and disturbance observer-based
control are clearly shown, that the main drawback is the increase of noise influences.

In chapter 3, in order to address the noise problem of constrained motion control, the Kalman
filter-based disturbance observation and constrained motion control considering the noise influ-
ences were presented. The verification results indicate the drawback of the Kalman filter-based
disturbance observer which is sluggish and insufficient performances in disturbance estimation.
However, the effective ability of the Kalman filter-based disturbance observer was confirmed;
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therefore, the verification results illustrate that the solution of the drawback is a must. Addition-
ally, the ability of the Kalman filter with disturbance estimation to easily extend to the nonlinear
systems using nonlinear Kalman filter techniques was also presented. In this chapter, as the appli-
cation example, an underwater quadrotor control using nonlinear Kalman filters with disturbance
estimation was shown, and the validated results indicated the usefulness and effectiveness of the
Kalman filter with disturbance observer in nonlinear systems. An integration nonlinear control
system with nonlinear model predictive control and nonlinear Kalman filter with disturbance
estimation is expected as future works because it has the potential to realize robust constrained
motion control in nonlinear systems.

In chapter 4, an improved disturbance estimation method including state estimation, which
simultaneously solves the problem of the disturbance observer andKalman filter with disturbance
estimation, was presented. In order to improve the estimation and noise reduction performances,
a variable forgetting factor was introduced to the Kalman filter with disturbance estimation.
The proposed method can accurately and quickly estimate measured variables, unmeasured
variables, and unmeasured disturbances. Moreover, the variable forgetting factor brings improved
performance on estimation speed and noise reduction to all estimates. Additionally, from the
verification results, it is evident that the proposed method can explicitly handle the observation
noise reduction including white and quantization noises, unlike existing disturbance estimation
methods. In particular, the proposed method can better treat low-resolution sensors; therefore,
there are benefits for cost reduction by using the proposedmethod. In light of this information, it is
concluded that this method is succeeded in expanding the application targets of the disturbance
observers. As future works in this chapter, theoretical design and guarantee of stability and
convergence are required. Additionally, to extend to usefulness, application to nonlinear Kalman
filter systems is also required.

Experimental and numerical verifications for the proposed methods provide their effectiveness
and validity. In the main contributions for this thesis, it is concluded that the developments
for novel constrained control method considering disturbance and noise and novel noise-free
simultaneous estimation method of state and disturbance.

Through this dissertation, a general problem in model predictive control, which relates to the
online computation load, is not addressed. In theory, the robust performance by disturbance
observers requires a shorter sampling time than model predictive control systems. Therefore, to
improve the robust design methods proposed in this dissertation, the integration or application
to fast model predictive control design methods have to consider as future works.
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