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Chapter 0.

Introduction

The theory of operator algebras is a branch of functional analysis. This theory was
initiated to formulate a mathematical framework of quantum mechanics. The theory of
operator algebras itself is deeply evolving and interacting with other fields like representa-
tion theory, dynamical systems, number theory and so on. Operator algebras are divided
into von Neumann algebras and C*-algebras, depending on topologies. In this thesis, we
study C*-algebras. Because C*-algebras are highly abstract objects, it used to be difficult
to construct a C*-algebra with desired properties. Now there are many ways to construct
C*-algebras from mathematical objects like groups, dynamical systems, directed graphs
and so on. Many researchers have studied the relation between associated C*-algebras
and their ingredients.

In this thesis, we treat C*-algebras associated to étale groupoids. A groupoid is a small
category whose morphisms are invertible. An étale groupoid is a groupoid equipped with
topology which has discreteness in some sense. Discrete groups and topological spaces
are typical examples of étale groupoids. Etale groupoids are associated to many objects
like discrete group actions, directed graphs, tilings and so on. Using étale groupoids, we
can treat many objects in a unified way.

For an étale groupoid G, one can associate C*-algebras C*(G) and C§(G), which are
called the full groupoid C*-algebra and the reduced groupoid C*-algebra respectively.
The study of C*-algebras associated to groupoids was initiated by Renault’s lecture note
[IR]. The class of groupoid C*-algebras is an important class of C*-algebras because it
contains a broad class of C*-algebras and groupoid C*-algebras are somewhat treatable.
Actually, many researchers have studied the relationship between étale groupoids G' and
groupoid C*-algebras C*(G), C5(G). For example, the simplicity of groupoid C*-algebras
is studied in [B] while the intermediate subalgebras of groupoid C*-algebras are studied
in [4].

As mentioned above, we can construct étale groupoids from many objects. In this

thesis, we mainly treat étale groupoids associated to actions of inverse semigroups. An



inverse semigroup is a special class of semigroups. Inverse semigroup actions are used
to describe the local symmetry of the spaces, while group actions describe the global
symmetry of the spaces. When an inverse semigroup acts on a topological space, one can
associate an étale groupoid. An inverse semigroup acts on a certain topological space
called a spectrum in a natural way. Hence, we can associate an étale groupoid, which is
called a universal groupoid, to this action on the spectrum. The study of the universal
groupoids is initiated by Paterson [[4]. It is a natural task to study the relation between
inverse semigroups and the universal groupoids. Because the universal groupoids are
constructed only from the algebraic structure of inverse semigroups, it is expected that
properties of the universal groupoids should be described in purely algebraic language.

The author of this thesis studies the relation among inverse semigroups, étale groupoids
and C*-algebras. This research aims to give algebraic and intuitive description for infinite
dimensional phenomena of C*-algebras by using inverse semigroup and étale groupoids.
In addition, this research also aims to apply techniques in the theory of C*-algebras to the
theory of inverse semigroups and étale groupoids. In short, the purpose of this research
is to construct a framework to mutually develop the theory of inverse semigroups, étale
groupoids and C*-algebras.

In this thesis, we study the relation among inverse semigroups, étale groupoids and
C*-algebras from the view point of quotients. We will prove that quotients of inverse
semigroups induce the quotients of étale groupoids. Similarly, we prove that quotients of
étale groupoids induce the quotients of C*-algebras. Then we investigate certain quotients
such as the abelianization of inverse semigroups, étale groupoids and C*-algebras. The
main theorems in this thesis are Theorem A, B and C as described below.

This thesis is organized as follows. Chapter [ is devoted to preliminaries. We introduce
here notions which we use in this thesis.

In Chapter B, we describe the results in [I[1]. Quotients of inverse semigroups and
C*-algebras are fundamental notions and well-established. On the other hand, quotients
of étale groupoids seem to be fundamental notions, but the author could not find them
in literatures. Therefore, we establish the notion of quotient étale groupoids. One may
imagine that the notion of a quotient étale groupoid is defined as a surjective groupoid
homomorphism to another étale groupoid. However, such formal quotients do not induce
the quotients of groupoid C*-algebras in a natural way. Therefore, in this thesis, we define
the notion of quotient étale groupoids so that the quotients of groupoid C*-algebras are
naturally induced. After we define the notion of quotient étale groupoids, we observe
that quotients of étale groupoids actually induce the quotients of C*-algebras. Using
these facts, we obtain the main theorem (Theorem ZZZ274) in this chapter. For an étale
groupoid G, we define the abelianization G®, which is also an étale groupoid. This étale



groupoid G® describes the abelianization of C*(G) as follows.

Theorem A (Theorem ZZZZ74). Let G be an étale groupoid with the locally compact
Hausdorff unit space G(*). Then the abelianization C*(G)* of C*(Q) is isomorphic to
C*(G=).

The key step in the proof of Theorem PZ2Z7 is the calculation of one dimensional
representations of C*(G) (Theorem PZZTR). At the end of this chapter, we explain the
relation between these theorems and the dual of étale abelian group bundles.

In Chapter B, we describe the results in [I0]. We study the relation between quotients of
inverse semigroups and quotients of the universal groupoids. Given an inverse semigroup
S, one can associate the universal groupoid G, (S). We observe that a quotient S — S/v
of an inverse semigroup S by a congruence v induces the invariant set F, of G,(.S) and
the normal subgroupoid G (kerv)p, C G,(S)p,, where G, (S)F, denotes the restriction
of G,(5) to F,. Now we may consider the quotient étale groupoid G, (5)r, /Gu(ker v)p,
and obtain one of the main theorems (Theorem B=ZZT73).

Theorem B (Theorem BZT3). Let S be an inverse semigroup and v be a congruence
on S. Then G,(S/v) is isomorphic to G, (S5)r, /Gu(ker v)g, .

This theorem gives us a way to compute the universal groupoids associated to quotient
inverse semigroups. Indeed, we compute the universal groupoid associated to the certain
quotient inverse semigroups including the abelianizations. We show that the abelianiza-
tions of étale groupoids introduced in Chapter 2 corresponds to the abelianizations of

inverse semigroups.

Theorem C (Theorem BZZ23). Let S be an inverse semigroup. Then G, (S%") is iso-
morphic to G, (S)*".

In the last of this chapter, we give applications and examples. We analyse Clifford
inverse semigroups and compute the universal groupoids associated to the free Clifford
inverse semigroups (Theorem BZ32770). We also evaluate the number of fixed points in

transformation groupoids associated to Boolean actions (Corollary B=3=372).
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Chapter 1.

Preliminaries

1.1 Preliminaries

In this section, we recall fundamental notions which we use in this thesis. First, we recall
the definitions and properties of C*-algebras, inverse semigroups and étale groupoids.
Then we explain how to associate C*-algebras to étale groupoids. Finally we define the
notion of inverse semigroup actions and explain how to construct étale groupoids from

given inverse semigroup actions.

1.1.1 C*-algebras

In this subsection, we recall fundamental notions about C*-algebras. See [22] or [5] for
details.

In this thesis, we assume that a coefficient of a vector space is the field of complex
numbers C. A C-algebra is a C-vector space with a multiplication which is compatible

with the structure of C-vector space. A Banach space is a complete normed space.

Definition 1.1.1.1. A Banach space A is called a Banach algebra if A is equipped with
a multiplication such that ||ab|| < ||a||||b]| holds for all a,b € A. A C*-algebra is a Banach
algebra A equipped with an involution A > a — a* € A such that

1. (aa + Bb)* = @a* + Bb* holds for all o, 3 € C and a,b € A;

2. (a*)* = a holds for all a € A4;

3. (ab)* = b*a* holds for all a,b € A; and

4. |la*all = ||la]|* holds for all a € A.

Definition 1.1.1.2. Let A and B be C*-algebras. A map 7: A — B is called a *-
homomorphism if 7 is a linear map which satisfies 7(ajas) = m(a1)m(az) and w(a}) =
m(ay)* for all aj,a; € A. C*-algebras A and B are said to be isomorphic if there exist
*_homomorphisms 7: A — B and 0: B — A such that c o7 = idy and 7w o 0 = idp



hold. Equivalently, A and B are isomorphic if there exists a bijective *-homomorphism
m A— B.

The continuity of a *-homomorphism is automatically deduced as follows.

Proposition 1.1.1.3 ([22, Proposition 5.2 in Chapter I]). Let A and B be C*-algebras.
Then every *-homomorphism 7: A — B is norm decreasing (i.e. ||7(a)|| < ||a| holds for

all a € A). Moreover, 7 is injective if and only 7 is an isometry (i.e. ||7(a)|| = ||a|| holds
for all a € A).

Example 1.1.1.4. Let X be a locally compact Hausdorff space. A continuous function
f: X — C is said to vanish at infinity if for all € > 0, the set

{r e X |[f(z)] = e}

is a compact subset of X. The set of all continuous functions on X is denoted by C'(X).
The set of all elements in C'(X) vanishing at infinity is denoted by Cy(X). Then C(X)
and Cy(X) are C-algebras with respect to the pointwise operations. For f € Cy(X),
define || f|| := sup,cx|f(2)|. Then this defines a norm on Cy(X) and Cy(X) is a Banach
algebra. Since Cy(X) has an involution defined by the pointwise complex conjugation,
Co(X) is a C*-algebra. Note that Cy(X) = C(X) if and only if X is compact.

We recall the Gelfand-Naimark duality. Let A be a commutative C*-algebra. We
denote the set of characters of A by A(A). Recall that A(A) is the set of all nonzero
*-homomorphisms from A to C. It is known that A(A) is a subset of A*, the dual space
of A, and a locally compact Hausdorff space with respect to the weak™ topology.

Theorem 1.1.1.5 (Gelfand-Naimark). Let A be a commutative C*-algebra. Then A
is isomorphic to Cy(A(A)). Moreover, if a locally compact Hausdorff space Y satisfies
A~ Cy(Y), then Y is homeomorphic to A(A).

Another typical example of C*-algebras is a C*-algebras of bounded linear operators

on a Hilbert space.

Example 1.1.1.6. Let H be a Hilbert space. We denote the set of all bounded linear
operators on H by B(H). Then B(H) is a C*-algebra. Recall that the norm of z € B(H)
is defined by

[l == sup [|z¢]|
lel<1

and the involution of x € B(H) is defined to be the operator z* € B(H) which satisfies

(Elz™n) = (x€|n)



for all £,n € H. The existence and uniqueness of z* follow from Riesz representation

theorem.

For a C*-algebra A, a *-homomorphism from A to B(H) is called a *-representation

of A on H. The next theorem states that every C*-algebra is isomorphic to a subalgebra

of B(H).

Theorem 1.1.1.7 (Gelfand-Naimark). Let A be a C*-algebra. Then there exist a Hilbert
space H and an injective *-representation 7: A — B(H).

1.1.2  Inverse semigroups

In this subsection, we recall fundamental notions about inverse semigroups. See [[3] or
[4] for more details.

Let S be a semigroup, which is a set equipped with a multiplication with the associative
law. For s € S, an element ¢ € S is called a generalized inverse of s if ¢t satisfies sts = s
and tst = t. A semigroup S is called an inverse semigroup if each s € S admits a unique
generalized inverse, which is denoted by s* € S.

Example 1.1.2.1. A group I is an inverse semigroup. Note that s* = s~! holds for all
sel.

Example 1.1.2.2. Let n € N be a natural number. For 1 <i,j < n, define ¢; ; € M, (C)

to be the n x n matrix whose (i, j)th entry is 1 and the other entries are zero. Then
S = {ei,j € Mn(C) ’ 1 S Z,j S TL} U {O}

is an inverse semigroup with respect to the usual product of matrices. Note that e; jer; =
djkeig and e ; = e;; hold for all 4, j, k, 1 € {1,2,...,n}, where d;,; denotes the Kronecker
delta.

Example 1.1.2.3. Let X be a topological space. A partial homeomorphism on X is
a homeomorphism between open subsets of X. For a partial homeomorphism f on X,
the domain and range of f are denoted by dom f and ran f respectively. The set of all
partial homeomorphisms on X is denoted by Ix. Then [y is an inverse semigroup with
respect to the multiplication defined by the composition of maps. We remark that the
composition fog € Ix of f € Ix and g € Ix is defined on dom g N g~!(dom f Nrang).
Also remark that the inverse of f € Ix is the inverse map f~!.

Let S be an inverse semigroup. By a subsemigroup of an inverse semigroup S, we
mean a subset 7' C S closed under the multiplication and generalized inverse s — s*. We
denote the set of all idempotents in S by E(S) := {e € S | ¢* = e}. It is known that F(S)
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is a commutative subsemigroup of S. A zero element is a unique element 0 € S such that
0s = s0 = 0 holds for all s € S. A unit is a unique element 1 € S such that 1s = s1 = s
holds for all s € S. An inverse semigroup does not necessarily have a zero element nor
a unit. A subsemigroup N of S is said to be normal if E(S) C N and sns* € N holds
for all s € S and n € N. An order on S is defined by declaring that s <t if st*t = s for
s,t € S. Remark that e < f is equivalent to ef = e for e, f € E(S). Note that E(S) is a
meet semilattice. Indeed, one can see that the infimum of e, f € E(9) is ef.

We recall that the notion of congruences. A congruence is an equivalence relation which

is compatible with the multiplication of an inverse semigroup.

Definition 1.1.2.4. Let S be an inverse semigroup. An equivalence relation v on S is
called a congruence if (s,t) € v implies (as,at) € v and (sa,ta) € v for all s,t,a € S.

One can see that S/v is an inverse semigroup such that the quotient map S — S/v is

a semigroup homomorphism.

Example 1.1.2.5. Let I" be a group. There is a one-to-one correspondence between

congruences on [' and normal subgroups of I'. For a congruence v on I'; define
N,:={neTl|(en) € v},

where e € I is the unit element. Then N, is a normal subgroup of I'. Conversely, for
a normal subgroup N C I, define an equivalence relation vy on I' by declaring that
(s,t) € vy if s7't € N for s,t € I'. Then vy is a congruence on I'. One can see that
v =vy, and N,, = N hold for all congruences v and normal subgroups N C I'.

Remark 1.1.2.6. As in Example [CI24, the notion of congruences corresponds to the
notion of normal subgroups in case of groups. For a general inverse semigroup S, it is
known that a congruence on S corresponds to a congruence pair, which is a pair of normal
inverse subsemigroups of S and a normal congruence on E(S) with some compatibilities.
We do not explain a congruence pair any more because we do not use facts about a

congruence pair. See [I3] for details.

A congruence p on E(S) is said to be normal if (e, f) € p implies (ses*, sfs*) € p
for all e, f € E(S) and s € S. One of the typical examples of normal congruences is
E(S) x E(S). Assume that p is a normal congruence on E(S). Define an equivalence
relation v, i, on S by declaring that (s,t) € v,mm if (s*s,t*t) € p and se = te holds
for some e € E(S) with (e,s*s) € p. Then v,y is the minimum congruence on S
such that its restriction to E(S) coincides with p. One can see that vg(s)xp(s)min is the
least congruence such that the quotient inverse semigroup becomes a group. We call
S/vE(s)x E(S)min the maximal group image of S.



Remark. We check that v, i, is the minimum congruence on S such that its restriction
to E(S) coincides with p for the reader’s convenience. It is easy to see that v, is an
equivalence relation on S. We show that v, i, is a congruence on S. Assume that (s,t) €
Vpmin and a € S. It suffices to show (as, at), (sa,ta) € v, min. We have (s*s,t*t) € p and
there exists e € E(S) such that se = te and (s*s,e) € p. Since we have (s*s,e) € p and
p is a congruence on E(S), it follows (s*a*as, s*a*ase) = (s*a*ass*s, s*a*ase) € p. One

can see that (t*a*at,t*a*ate) € p in the same way. Since we have

s*a*ase = (se)*a*a(se) = (te)*a*a(te) = t*a*ate,
it follows (s*a*as,t*a*at) € p from (s*a*as, s*a*ase) € p and (t*a*at, t*a*ate) € p. From
se = te, it follows that

ass*a*ase = ase = ate = att*a*ate = ats*a*ase.

Combining with (s*a*as,s*a*ase) € p, we obtain (as,at) € v,mm. Next we show
(sa,ta) € Vpmin. Since p is normal and (s*s,t*t) € p, we have (a*s*sa,a*t*ta) € p.
In addition, we have (a*s*sa,a*ea) € p and

saa*ea = sea = tea = taa’ea.

Hence, we obtain (sa,ta) € v, min.

It is easy to show that the restriction of v, i, to E(S) coincides with p. Let v be
a congruence on S whose restriction to E(S) is p. We show vyin, C v. Take (s,t) €
Vmin,p- LThen there exists e € E(S) such that se = te and (s*s,e), (t"t,e) € p C v.
By (s*s,e), (t*t,e) € v, we have (s, se), (t,te) € v. Combining with se = te, we obtain
(s,t) € v. Therefore, v, yin is the minimum congruence on S whose restriction to E(.5)
is p.

An inverse semigroup S is said to be Clifford if s*s = ss* holds for all s € S. One can
verify that an inverse semigroup S is Clifford if and only if se = es holds for all s € §
and e € E(S). A congruence v on S is said to be Clifford if S/v is Clifford. Similarly, a

congruence v is said to be commutative if S/v is commutative.
1.1.3 Etale groupoid

In this subsection, we recall fundamental notions about étale groupoids.

Definition 1.1.3.1. A groupoid is a set G together with a unit space G(®) C G, domain
and range maps d,7: G — G(© and a multiplication

G? .= {(a, 5) e G x G |d(a) =7(B)} 2 (a, ) = af € G

such that

10



for all z € G, d(x) = x and r(x) = x hold,

for all @ € G, ad(a) = r(a)a = a holds,

for all (o, B) € G®, d(af) = d(B) and r(af) = r(a) hold,

if (o, 8), (8,7) € G®), we have (af)y = a(B7),

every v € G, there exists 7/ € G which satisfies (v',7), (7,7') € G® and d() = 7'y
and r(v) = 77"

SANE O

Since the element +' in (8) is uniquely determined by =y, 4/ is called the inverse of v and
denoted by 77t. A subgroupoid of G is a subset of G which is closed under the inverse
and multiplication. For U C G, we define Gy := d~'(U) and GV := r~}(U). We define
also G, = G,y and G* = G} for & € GO, The isotropy bundle of G is denoted by
Iso(G) := {y € G | d(y) = r(7)}. Note that Iso(G) is a subgroupoid of G. If G satisfies
G = Iso(G), then G is called a group bundle over G(®. A group bundle G is said to be
abelian if G, is an abelian group for all z € G,

Definition 1.1.3.2. A topological groupoid G is a groupoid equipped with a topology
where the multiplication and inverse of G are continuous. A topological groupoid G is
said to be étale if the domain map d: G — G© is a local homeomorphism (namely, for
all @ € G, there exists an open neighborhood U of a such that d(U) C G is an open
set and the restriction map d|y is a homeomorphism onto d(U)).

An étale topological groupoid is called an étale groupoid for short. Remark that the
range map of an étale groupoid G is also a local homeomorphism, since r(a) = d(a™!)
holds for all o € G and the inverse a — ! is a homeomorphism.

We give typical examples of étale groupoids.

Example 1.1.3.3. A topological space is an étale groupoid such that G = G holds. A

discrete group is an étale groupoid such that G is a singleton.

Example 1.1.3.4. Let X be a topological space, I' be a discrete group and a.: I' ~ X be
an action. The transformation groupoid I' x, X is defined as follows. Define I' x, X :=
[' x X as a topological space. The unit space of I' x, X is X, which is identified with the
subset of I" X, X via an inclusion X > z — (e,z) € I' X, X. The source map and range
map are defined by s((¢,z)) = = and r((t,x)) = au(x) respectively for (¢,z) € ' x, X.
For a pair (t1,y), (t2,x) € T' x4 X with y = a4, (), their multiplication is defined by
(t1,y) - (t2,x) := (t1t2, x). An inverse is given by (t,z)™' = (71, ay(z)). Then, T’ x, X is
an étale groupoid.

In some literatures, the condition that the domain map d: G — G© is a local homeo-
morphism in Definition [CI=37 is replaced by the condition that the domain map d: G —

11



G is a local homeomorphism. As in Proposition T34, these definitions are equivalent.

Proposition 1.1.3.5 ([8, Proposition 3.2]). Let G be an étale groupoid. Then the unit
space G is an open subset of G. In particular, the domain and range maps d,r are

local homeomorphisms as maps from G to G.

Definition 1.1.3.6. Let GG be an étale groupoid. A subset U C G is called a bisection if
the restrictions d|y and r|y are injective.

Remark 1.1.3.7. By the definition of an étale groupoid, the set of open bisections is a
basis of G. For an open bisection U C G, d|y and r|y are homeomorphisms onto their
images since they are open maps.

We often use the fact that the multiplication map of an étale groupoid is an open map.

Proposition 1.1.3.8 ([4, Proposition 2.2.4]). Let G be an étale groupoid and U,V C G
be open sets. Then a set UV :={af € G|a e U,p € V,d(a) =r(f)} C G is an open
set. Furthermore, if U,V C G are open bisections, UV is also an open bisection.

Definition 1.1.3.9. Let GG; and Gy be groupoids. A map ®: G; — Gy is called a
groupoid homomorphism if (®(«), ®(5)) € G and ®(af) = ®(a)®(5) hold for all
(a, B) € G§2).

As a morphism between étale groupoids, we often consider a groupoid homomorphism
which is a local homeomorphism. Whether an étale groupoid homomorphism is a local
homeomorphism or not is determined by its behaviour on the unit spaces as the following
proposition shows. This proposition follows from the definition of étale groupoids.

Proposition 1.1.3.10. Let G and H be étale groupoids. A groupoid homomorphism
®: G — H is a local homeomorphism if and only if ®|s0: G© — H® is a local

homeomorphism.
As in the case of group actions, the notion of invariant sets is defined for étale groupoids.

Definition 1.1.3.11. Let G be a groupoid. A subset F' C G is said to be invariant if
d(v) € F implies 7(y) € F for all 7. A point 2 € G(¥) is called a fixed point if {z} ¢ G

1S invariant.

Note that a set F' C G(© is invariant if and only if G\ F is invariant. If F C G is
invariant, then Gp = Gp N G holds and Gy C G is a subgroupoid whose unit space is
F. In particular, G, C G is a discrete group if z € G is a fixed point.

Proposition 1.1.3.12. Let G be an étale groupoid with the Hausdorff unit space G(©.
Then the set of all fixed points F € G is a closed subset.

12



PROOF. We show that GO\ F ¢ G© is an open set. Take z € G© \ F. Then there
exists v € G such that x = d(y) and x # r(vy). Take an open bisection U which contains
v. Let Sy: d(U) — r(U) denote a homeomorphism defined by Sy (d(a)) = r(«) for each
a € U. Since G is Hausdorff, there exist open sets Uy, V; € G(© such that d(v) € Uy,
r(y) € Vi and U; NV} = (). By the continuity of Sy, there exists an open set Uy C U
such that v € U, and 7(Us) C Vi. Now one can see x € d(Uy) C G \ F. Therefore,
GO\ F c G is an open set. O

We will use the next proposition for the set of all fixed points.

Proposition 1.1.3.13. Let GG be an étale groupoid with the locally compact Hausdorff
unit space G and U, F € G© be an invariant open and closed subset respectively.
Then Gy C G is an open subgroupoid of G and an étale groupoid with the locally
compact Hausdorff unit space U in the relative topology. Similarly, Gr C G is a closed
subgroupoid of G and an étale groupoid with the locally compact Hausdorff unit space
F' in the relative topology.

PRrROOF. Observe that U and F' are locally compact Hausdorff spaces in the relative
topology of G(*). Now it is clear that Gy and G are étale groupoids. [

1.1.4 Etale groupoid C*-algebras

Following Connes’s idea in [[7], we associate a C*-algebra to an étale groupoid which is
not necessarily Hausdorff. If G is not Hausdorff, the set of all continuous functions on G
is not enough to capture the structure of G. The key idea is to consider functions which
are continuous on some open set but not necessarily continuous on the whole space. See
[R, Section 3] for more details.

We assume that the unit space G is a locally compact Hausdorff space with respect
to the relative topology when we consider groupoid C*-algebras. Remark that the whole
space G is not necessarily a Hausdorff space. Since d: G — G© is a local homeomor-
phism, GG has a basis which consists of locally compact Hausdorff subsets.

Let G be an étale groupoid with the locally compact Hausdorff unit space G©. For an
open Hausdorff subset U C G, we denote the set of all continuous functions on U with
compact support by C.(U). We regard an element in C.(U) as an element in Funct(G),
the vector space of all complex valued functions on GG, by defining it to be 0 outside of U.
We define C(G) := spanJ,; C.(U) C Funct(G), where the union is taken over all open
Hausdorff subsets U C G.

If G is Hausdorff, then C(G) coincides with C.(G). If G is not Hausdorff, an element
in C(G) may not be continuous.

13



Proposition 1.1.4.1 ([8, Proposition 3.10]). Let G be an étale groupoid with the locally
compact Hausdorff unit space G®. Take an open basis {U;}ic; of G consisting of open
Hausdorff subsets. Then C(G) is the linear span of | J,.; C.(U;). In particular, C(G) is
the linear span of |J;; Cc(U), where the union is taken over all open bisections of G.

PrOOF. This follows from the partition of unity argument. O

Definition 1.1.4.2. Let G be an étale groupoid with the locally compact Hausdorff unit
space G, Recall that C(G) is equipped with a structure of C-vector space by pointwise
addition and scalar multiplication. The multiplication f % ¢ € C(G) and involution
f*€C(G) of f,g € C(G) are defined by

Frg) = Y f(BM9(B), f(7)=FHD.

BEGa(y)

Then C(G) is a *-algebra under these operations.
One can see that C.(G¥) C C(G) is a *-subalgebra.

Lemma 1.1.4.3 ([, Proposition 3.14]). Let G be an étale groupoid with the locally
compact Hausdorff unit space G(© and f € C(G). Then there exists a constant Cy > 0
such that ||p(f)|| < C} for all Hilbert spaces H and *-homomorphisms p: C(G) — B(H).

PROOF. We may assume that f € C.(U) for some open bisection U C G. One can see
that f* * f € C.(GY). Since C.(G") is a union of commutative C*-algebras, we have
lp()l < sup,cqo|h(z)] for all h € Ce(G). Then we obtain [|p(f)[* = |o(f* * f)I| <

Supeqo |7 f(z)| < oo O

Let G be an étale groupoid with the locally compact Hausdorff unit space G, We
denote the left regular representation by A, : C(G) — (*(G,) at x € G, which is defined
by

Ae(N)s = > f(@)das
d(c)=r(B)

for f € C(G) and B € G,. One can see that €, ;o A is a faithful *-representation of
C(G). The reduced norm of f € C(G) is defined by

If1] == sup [[A(f)]]

zeG )

We denote the reduced groupoid C*-algebra of G by C5(G), which is the completion of
C(G) by the reduced norm.
The universal norm of f € C(G) is defined by

| £l == sup{llp(/)|l | p: C(G) — B(H) is a *-representation}.

14



By Lemma [CT473, the universal norm takes values in [0,00). Since the left regular
representations of C(G) induces a faithful *-representation of C(G), the universal norm
becomes a C*-norm (see [B, Section 4]). The completion of C(G) by universal norm is
denoted by C*(G). We shall remark that every *-representation of C(G) induces the *-
representation of C*(G). Note that the inclusion C,(G®) C C(G) extends to Co(G?) C
C*(G).

Proposition 1.1.4.4. Let G be an étale groupoid with the locally compact Hausdorff
unit space G and F € G be a closed invariant set. Then the restriction C(G) > f
flar € C(GF) extends to the surjective *-homomorphism C*(G) — C*(Gr).

PRrROOF. First, we check that f|s, € C(GFp) for all f € C(G). We may assume that
f € C.(U) for some open Hausdorff subset U C G, since C(G) is spanned by |J,; C.(U),
where the union is taken over all open Hausdorff subsets U C G. Defining V := GpNU,
V' is a Hausdorff open subset of Gr. Then f|g,. is contained in C.(V) C C(Gp).

Direct calculations imply that the restriction C(G) > f — flg, € C(Gr) is a *-
homomorphism.

Next, we show that the restriction C(G) > f — f|a, € C(GF) is surjective. Note that
{GrNU | U C G is an open Hausdorff subset} is an open basis of Gr. Take an open
Hausdorff subset U C G and f € C.(GpNU) arbitrarily. Put V := GpNU. Since V C U
is a closed subset of U and f € C,(V), there exists f € C.(U) such that f|, = f by the
Tietze extension theorem. Now we obtain f € C (G) such that f lc = f. By Proposition
1270, C(Gp) is the linear span of |J,; C.(Gr N U), where the union is taken over all
open Hausdorff subsets U C G. Therefore, the restriction C(G) > f — flg, € C(GF) is
surjective.

By the universality of C*(G), the restriction C(G) > f — flg, € C(GF) extends to
the *-homomorphism C*(G) — C*(Gr). Since the image of C*(G) is dense in C*(Gp),
C*(G) — C*(Gp) is surjective.ld O

1.15 Etale groupoids associated to inverse semigroup actions

In this subsection, we recall how to construct an étale groupoid from inverse semigroup
actions.

Let X be a topological space. We denote by Ix the inverse semigroup of homeomor-
phisms between open sets in X. An action a: S ~ X of an inverse semigroup S on X
is a semigroup homomorphism S 5 s — «, € Ix. For e € E(S), we denote the domain

of a by D¢. Then ay is a homeomorphism from D%, to D¢.. In this thesis, we always

1) Now we use the fact that the image of a *-homomorphism becomes a closed subset. See [22, Chapter I].
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assume that J,c ) D¢ = X holds.

For an action a: S ~ X, we associate an étale groupoid S x, X as the following. First
we put the set S % X = {(s,2) € S x X | z € D%,}. Then we define an equivalence
relation ~ on S * X by (s,z) ~ (t,y) if

x =y and there exists e € F(S) such that x € D2 and se = te.

Set S X, X := 5% X/~ and denote the equivalence class of (s,z) € S* X by [s,z]. The
unit space S X, X is X, where X is identified with the subset of S x, X via the injection

Xoz—lez]€eSx,X,ze D

The source and range maps are defined by

d([s, 2]) = z, r([s, 2]) = as(z)

for [s,2] € S x4 X. The product of [s,au(z)],[t, 2] € S X4 X is [st,z]. The inverse is
[s,z]7t = [s*, as(z)]. Then S x, X is a groupoid with these operations. For s € S and
an open set U C D¢, define

[s,U] :={[s,z] € Sxq X |z € U}.

These sets form an open basis of S'x,X. With this structure, Sx, X is an étale groupoid.

Let S be an inverse semigroup. Now we define the spectral action 5: S ~ E/(\S) A
character on E(S) is a nonzero semigroup homomorphism from E(S) to {0,1}, where
{0,1} is an inverse semigroup with the usual product. The set of all characters on E(S)
is denoted by E/’(E) We view L?(E) as a locally compact Hausdorff space with respect to
the topology of pointwise convergence. Define

Np == {¢ € B(S) | £(e) = L,E(p) = 0 for all p € P}

for e € E(S) and a finite subset P C E(S). Then these sets form a basis for the topology

— —

on E(S). For e € E(S), we define D? := {¢ € E(S) | £(e) = 1}. For each s € S and
¢ € DY, define 3,(€) € D2.. by B,(€)(e) = &(s*es), where e € E(S). Then 3 is an action

s*s)
—_—

B:S ~ E(S), which we call the spectral action of S. Now the universal groupoid of S is
defined to be G, (S) := S xg E(S5).
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Chapter 2.

Quotients of étale groupoids and the
abelianizations of groupoid C*-algebras

In this chapter, we review main results obtained in [1]. First, we introduce the notion
of quotient étale groupoids in Section Pl Then we observe that quotients of étale
groupoids induce quotients of groupoid C*-algebras. In section EZ2, we investigate the
abelianizations of groupoid C*-algebras. For a given étale groupoid, we construct an
étale group bundle which describes the abelianization of the original associated groupoid
C*-algebra.

2.1 Quotients of étale groupoids

In this section we introduce the notion of quotient étale groupoids. Then we will
observe that a quotient of an étale groupoid induces a *-homomorphism of a groupoid
C*-algebra.

2.1.1 Quotients of étale groupoids

In this subsection we introduce the notion of quotient étale groupoids. First, we define
normal subgroupoids and quotient groupoids. Then we show that quotient groupoids of

étale groupoids by open normal subgroupoids again become étale.
Definition 2.1.1.1. Let G be a groupoid. A subgroupoid H C G is said to be normal if

1. G® ¢ H ¢ Iso(G) holds and
2. aHa™' C H holds for all a € G.

Definition 2.1.1.2. Let GG be a groupoid and H C G be a normal subgroupoid. Then
we define an equivalence relation ~ on G by declaring that o ~ g if d(«) = d(5) and
afB~t € H. We denote the quotient set G/~ by G/H.
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We prove some lemmas needed to define the groupoid structure of a quotient groupoid.

Lemma 2.1.1.3. Let G be a groupoid and H C G be a normal subgroupoid. Suppose
that a, o € G satisfy o ~ . Then we have d(«) = d(’) and r(a) = ().

from the definition of o ~ /. Since /™' € H C

PROOF. Tt follows that d(«) = d(a)
= d(aa’™t) = r(d). O

Iso(G), we have r(a) = r(aa’™t)
Lemma 2.1.1.4. Let G be a groupoid and H C G be a normal subgroupoid. Suppose
that a, o/, 8, ' € G satisfy a ~ o/, B ~ ', d(a) = r(f). Then we have d(a/) = r(5’) and
af ~ o' .
PROOF. By Lemma PZT13, we have d(«) = d(a/) and r(5) = (). Using d(a) = r(5),
we obtain d(o') = ().

The last assertion follows from a simple calculation. Indeed, we have d(af) = d(f) =

A() = d(e’8') and
0B(@/B) = aB~a! = (a8 0~ (aa ™) € H.
Note that a3 ta~t € H, since H is normal. O

Definition 2.1.1.5. Let GG be a groupoid, H C G be a normal subgroupoid and ¢: G —
G/H be the quotient map. A groupoid structure of G/H is defined as follows:

e a unit space (G/H)® is ¢(G©), which can be identified with G© via an injection

qlco;

e domain and range maps d,r: G/H — G© are defined by d(q(v)) = q(d(7));
r(q(7)) = q(r(7)) for v € G;

e a multiplication of G/H is defined by ¢(a)q(8) := q(ap) for a, 5 € G with d(a) =
r(B).

One can see that the inverse map of G/H satisfies q(7)™! = q(y!) for v € G. Then G/H
is a groupoid under these operations.

Remark 2.1.1.6. The operations of G/H are well-defined by Lemma ZT1-3 and Lemma
7

If G is a topological groupoid, then we consider the quotient topology as a topology of
G/H.

Lemma 2.1.1.7. Let G be an étale groupoid and H C G be an open normal sub-
groupoid. Then the quotient map ¢: G — G/H is an open map. Furthermore, ¢ is a
local homeomorphism.
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PROOF. Let U C G be an open subset. Then ¢~ '(q(U)) = UH is an open subset of G
by Proposition I3X. Hence, ¢(U) C G/H is an open subset by the definition of the
quotient topology.

Next, we show that the quotient map ¢: G — G/H is a local homeomorphism. Fix a
v € G. Then take an open bisection U C G with v € U. One can see that ¢y is injective.
Since ¢ is an open map, ¢|y is a homeomorphism onto an open subset ¢(U) C G. Hence,
q is a local homeomorphism. O

Observe that ¢|qo : GO — (G/H)® is homeomorphic.

Proposition 2.1.1.8. Let G be an étale groupoid and H C G be an open normal
subgroupoid. Then G/H is an étale groupoid.

PROOF. First, we show the continuity of the inverse G/H > 6 — ¢! € G/H. One can
see that the map G 3 v — ¢q(y)™' € G/H is continuous, since the following diagram is

commutative:

inverse

G ——(

| I

G/H inversS G/H

By the definition of the quotient topology, the inverse of G/H is continuous.

Next, we show that the multiplication of G/H is continuous. Take (q(a),q(B)) €
(G/H)® and an open set U C G//H such that q(a)q(8) € U. Since af € ¢ '(U) and
¢ Y(U) C G is open, there exist open sets V;,V, C G such that o € Vi,8 € V, and
ViVy C ¢ 1 (U). Since the subsets Vi, Vo C G are open, q(V1),q(Vz) C G/H are also open.
One can see that ¢(a) € q(V1), q(8) € q(V2) and ¢(V1)q(V2) = q(ViVa) C U. Therefore,
the multiplication of G/H is continuous.

Finally, we show that G/H is étale. Since the restriction ¢|s) gives a homeomorphism
from G to (G/H)®, (G/H)® is a locally compact Hausdorff space. One can see that
the domain map d: G/H — (G/H)© is a local homeomorphism, since we have Lemma
2TT170 and the following diagram is commutative for every open bisection U C G:

U —L— q(U)

dl |a

d(U) —— d(q(U)).
Therefore, G/H is an étale groupoid. [
Now we obtain the next theorem by Lemma ZZT-174 and Proposition ZZTT°8,
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Theorem 2.1.1.9 ([, Theorem 3.10]). Let G be an étale groupoid and H C G be an
open normal subgroupoid. Then the sequence of the étale groupoids

H inclusion G q G/H

is exact, that is, ¢"}((G/H)?) = H.
We have the fundamental homomorphism theorem. The proof is straightforward.

Proposition 2.1.1.10. Let G and H be étale groupoids and ®: G — H be a continuous
groupoid homomorphism which is a local homeomorphism. Assume that ® is injective on
G©. Then ker ® := &~ (H) is an open normal subgroupoid of G. Moreover there exist
an isomorphism ®: G/ ker ® — ®(G) which makes the following diagram commutative:

G——H

I

G/ ker &

where Q): G — G/ ker ® denotes the quotient map.

As in the case of topological groups, Hausdorffness of a quotient groupoid can be

characterized as follows.

Proposition 2.1.1.11. Let G be an étale groupoid and H C G be an open normal
subgroupoid. Then G/H is Hausdorff if and only if H C G is closed.

PROOF. Recall that an étale groupoid G is Hausdorff if and only if its unit space G©)
is a closed subset of G (see, for example, [P0, Lemma 2.3.2]). If G/H is Hausdorff,
(G/H)® c G/H is closed. Hence, H = ¢ *((G/H)©) is a closed subset of G.

Suppose that H C G is closed. Since ¢ is an open map, (G/H) \ (G/H)® = ¢(G \
H) Cc G/H is open. Hence, (G/H)® C G/H is closed, which implies that G/H is
Hausdorft. O

Proposition 2.1.1.12. Let G be an étale groupoid. Then the interior of isotropy
Iso(G)° C Iso(G) is a normal subgroupoid.

PROOF. We show that Iso(G)° is normal. By Proposition T34, G(© is contained in
Iso(G)°. Take o € G and v € Iso(G)° with d(a) = r(y). There exist open bisections
UV C Gwith o € U and v € V C Iso(G). Then, by Proposition II3R, UVU~! C G
is an open subset which contains aya™'. Since U is bisection and V C Iso(G), we
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have UVU™! C Iso(G). Therefore, aya™! € Iso(G)° and Iso(G)° is an open normal
subgroupoid. O

An étale groupoid G/ Iso(G)°, which is a special case of quotient groupoids, coincides
with a groupoid of germs of the canonical action (see [I9, Section 3]). One can see that
G/ Iso(G)° is effectivel,

2.1.2  *-homomorphisms induced by quotients of étale groupoids

For an étale groupoid G and an open normal subgroupoid H C G, we have obtained
the quotient étale groupoid G/H. Next, we see that the quotient map ¢: G — G/H
induces a *-homomorphism C*(G) — C*(G/H).

Let G be an étale groupoid with the locally compact Hausdorff unit space G(°). For
f eC(@), we define f: G/H — C by

= > flo
q(o)=y

for v € G/H. Then the following proposition holds.

Proposition 2.1.2.1. Let G be an étale groupoid with the locally compact Hausdorff unit
space G(© and H C G be an open normal subgroupoid. Then C(G) 3 f — f € C(G/H)

is a surjective *-homomorphism.

PROOF. First, we show f € C(G/H). We may assume that there exists an open bisection
U C G such that f|y € C(U) and f|g\pv = 0. Then ¢(U) C G/H is an open bisection
and f|q(U) = fol(qly) " € C.q(U)), since q|y is a homeomorphism onto the image.
Moreover, one can see that fi/mn @) = 0. Hence, f € C.(q(U)) C C(G/H).

We show that C(G) > f — f € C(G/H) is a *homomorphism. We only check that
C(G) > f+— f € C(G/H) preserves the multiplications, since it is easy to check that this
map is linear and preserves the involution. For all f,g € C(G) and +' € G/H, we have

frgt) =Y fraly Z > fle)g(B) = Z f(a)g(B)

a(n=y =" af=y
Frat) =Y Fa)g Z > Z f
o Bl=' a’'f'=y" q(a)=a' q(B)=
= Y fl
q(aB)=v'

Finally, we show that C(G) > f — f € C(G/H) is surjective. Note that

{¢(U) C G/H | U C G is an open bisection}

1) Recall that an étale groupoid G is said to be effective if G(©) = Iso(G)° holds
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is an open basis of G. Let U C G be an open bisection and f € C.(¢q(U)). One can see
that ¢|y is a homeomorphism onto its image. Define g := f o q|y € C.(U). Then we
have g = f. By Proposition IT24, C(G/H) is the linear span of | J,; C.(¢(U)), where
the union is taken over all open bisections U C G. Hence, C(G) 3 f — f € C(G/H) is a

surjective *-homomorphism. O]

By Proposition 21271, the map C(G) > f — f € C(G/H) c C*(G/H) is a *-
homomorphism. By the definition of the universal norm of C(G), we have ||f|| < ||f||
for all f € C(G). Therefore, the *-homomorphism in Proposition 221 extends to the
*-homomorphism @Q: C*(G) — C*(G/H). Since the image of @ is dense in C*(G/H), Q
is surjective (see, for example, [2, Corollary 11.5.1.2]).

We make some observations on a Cuntz-Krieger uniqueness theorem in the remainder
of this section.

Lemma 2.1.2.2. Let Q: C*(G) — C*(G/H) be the *-homomorphism as above. Then
ker Q N Cy(G@) = {0} holds.

PROOF. Since the universal norm of a function in C.(G®) coincides with the supremum
norm, Q|e, () is isometric. Therefore, Q|g, () is isometric and ker @ N Co(G?) =
{0}. O

Lemma 2.1.2.3. Let GG be an étale groupoid with the locally compact Hausdorff unit
space G and H C G be an open normal subgroupoid. Then the *-homomorphism
Q: C*(G) — C*(G/H) induced by Proposition 2121 is injective if and only if H = G(©),
PROOF. It is clear that the *-homomorphism @Q: C*(G) — C*(G/H) is injective if H =
GO Suppose that GO C H and take 7o € H \ G©). There exists an open bisection

U C G with 79 € U C H. By the Urysohn lemma, there exists f; € C.(U) with
f1(70) = 1. Define f, € C.(G®) by

fio(dly)™M(y) (v €d(U))

B0, (v € GO\ d(U)).

We have f := fi — fo # 0, since f(70) = 1. One can see that Q(f) = 0, which implies
that () is not injective. O]

Recall that an étale groupoid G is said to be effective if G(©) = Iso(G)°.

Corollary 2.1.2.4 (cf. [8, Proposition 5.5]). Let G be an étale groupoid with the locally

compact Hausdorff unit space G(®. Assume that every nonzero ideal I C C*(G) satisfies
INCy(G®) #£{0}. Then G is effective.
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Figure 2.1 Picture of X in Example ZZIT—Z4

PROOF. By Proposition 2T T2, Iso(G)° is a normal subgroupoid of G. Letting
Q: C*(G) — C*(G/Iso(G)°) be the *-homomorphism induced by Proposition 2121,
we have kerQ N Cy(G®) = {0} by Lemma ZT22. The assumption implies that
Q: C*(G) — C*(G/Iso(G)°) is injective. Therefore, we obtain Iso(G)° = G(©) by Lemma
7/ 7 [

Remark 2.1.2.5. It was proved in [3, Proposition 5.5] that Corollary 2124 holds for
Hausdorff étale groupoids. In [3, Proposition 5.5], the authors use the augmentation
representation, which seems to work for non-Hausdorff étale groupoids.

As shown in Proposition 221, the quotient map G — G/ Iso(G)° of étale groupoids
induces the *-homomorphism C*(G) — C*(G/Iso(G)°). Using this *-homomorphism,
we obtain the proof of Corollary ZZT°24, which seems to be more direct than that in [3,
Proposition 5.5].

The converse of Corollary ZZT24 does not hold for non-Hausdorff étale groupoids.
Indeed, Exel showed that there exists an effective étale groupoid G such that there exists
a nonzero ideal I C C*(G) with I N Cy(G®) # {0} in [9] (cf. Example ZTZ8).

Example 2.1.2.6 ([9, Section 2]). Let X := ([-1,1] x {0}) U ({0} x [=1,1]) C R? (see

figure 1) and K := {e, s,t, st} be the Klein group, which is isomorphic to Z/2Z & Z/27.
We define an action o of K on X by

US(('r?y)) = (_xay)a Ut((x>y)) = (377 _y>? 08t<<x7y)) = (_x> —Z/)

for (z,y) € X.
Consider the transformation groupoid G := K X, X (see Example ITT-34). One can
see that

Iso(G) = GO U{(s,(0,9)) € G |y € [-1,1]}
U{(t, (x,0)) €e G|z e[-1,1]}U{(st,(0,0))}.
Moreover, we have Iso(G)° = Iso(G) \ {(s, (0,0)), (¢,(0,0)), (st,(0,0))}. Since Iso(G)° is

0)
not closed in G (for example, (s, (0,0)) € Iso(G)° \ Iso(G)°), the quotient étale groupoid
G/ Iso(G)° is not Hausdorff by Proposition ZTTT1. In [d], Exel shows that there exists
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a nonzero ideal I C C*(G/Iso(G)°) with I N Co((G/Iso(G)°) @) = {0}, although it is
effective.

Let G be an étale groupoid with the locally compact Hausdorff unit space G(©. In
[6], the authors defined the notion of singularity for an element of C}(G). An element
a € C5(G) is said to be singular if the interior of {7y € G | (04| Aa¢y)(@)dacy)) # 0} is empty,
where 0, € (*(Gy(,)) denotes the delta function at v € Gy(). In [6], the authors proved
the following theorem.

Theorem 2.1.2.7 ([, Theorem 4.4]). Let G be a second countable étale groupoid with
the locally compact Hausdorff unit space G(°). Assume that G is effective and C%(G) has
no nonzero singular element. Then every nonzero ideal I C C}(G) satisfies INCo(G®) #

{o}.

By the universality of C*(G), the left representation extends to the *-representation
Aot C*(G) — B(*(G,)). Following [6], we say that an element a € C*(G) is singular if
the interior of {7y € G | (6;|Aa(y)(@)da(y)) 7 0} is empty. A uniqueness theorem for C*(G)
implies that C*(G) has no nonzero singular elements.

*

Proposition 2.1.2.8. Let GG be a second countable étale groupoid with the locally com-
pact Hausdorff unit space G®. Assume that every nonzero ideal I C C*(G) satisfies
INCy(G®) #£{0}. Then C*(G) has no nonzero singular elements.

PROOF. Observe that the canonical surjective *-homomorphism C*(G) — C5(G) is iso-
morphic by the assumption. Note that G is effective by Proposition 2124, We define
S :={x e GO |G, NG = {r}}. One can see that S is an invariant set. Moreover, S
is a dense subset of G by [I9, Proposition 3.6]. Therefore, letting 7 := €
injective on Cy(G(®). Then 7 is injective by the assumption.

veg Azy T 18

Let a € C*(G) be a singular element. By [B, Lemma 4.2}, we have

d({ € G| (6,]Aat)(@)dai)) # 0}) € GO\ 8.

Using this fact, we show 7(a) = 0. Take x € S. Assume that there exist «, 5 € G, such
that

(00| Az (a)dg) # 0.

Then we have

(ap-1|Aa(s-1)(a)da(s-1)) = (da|Au(a)dp) # 0.

It follows that r(3) = d(8~1) € S. This contradicts the fact that = d(3) € S and S is
invariant. Now we have (6, |A;(a)dg) = 0 for all a, 5 € G, and therefore A\,(a) = 0 holds
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for all x € S. Now we have 7(a) = 0, which implies a = 0. Hence, C*(G) has no nonzero
singular element. O

2.2 The abelianizations of étale groupoid C*-algebras

In this section we calculate the abelianizations of étale groupoid C*-algebras. First, we
recall the abelianizations of C*-algebras, following [, Definition 2.8]. For a C*-algebra
A, its abelianization is defined by A* = A/I, where I C A is the closed two-sided
ideal generated by {zy —yxr € A | z,y € A}. The abelianization A*" is a commutative
C*-algebra with the following universality: for all commutative C*-algebra B and *-
homomorphism 7: A — B, there exists the unique *-homomorphism 7: A*® — B such
that # o ¢ = 7, where q: A — A?" denotes the quotient map.

2.2.1 One dimensional representations of a groupoid C*-algebra

For a C*-algebra A, we denote the set of all one-dimensional nondegenerate represen-
tations of A by A(A). Namely, A(A) is the set of all nonzero *-homomorphisms from
A to C. We suppose that A(A) is equipped with the pointwise convergence topology.
If A is commutative, A(A) is known as the Gelfand spectrum of A. First, we calculate
A(CH(@Q)).

Let G be an étale groupoid with the locally compact Hausdorff unit space G(®) and
r € GO be a fixed point of G. Note that G, is a discrete group. We temporarily
denote the surjection in Proposition TIT44 by Q,: C*(G) — C*(G,). Also, we denote
the circle group by T := {z € C | |z| = 1}. For a group homomorphism y: G, — T, the
map C.(Gz) 2 f = > cq, X(7)f(7) € Cis a *homomorphism. This *-homomorphism
extends to the *~homomorphism C*(G,) — C, which we also denote by x: C*(G,) — C.

Definition 2.2.1.1. Let G be an étale groupoid with the locally compact Hausdorff unit
space GO, z € G be a fixed point and x: G, — T be a group homomorphism. Then
we define a *-homomorphism ¢, ,: C*(G) — C by ¢, := x 0 Q.

We will show that all elements of A(C*(G)) have this form (Theorem PZZTR).

Proposition 2.2.1.2. Let G be an étale groupoid with the locally compact Hausdorff
unit space G and ¢ € A(C*(G)). Then there exists unique x, € G which satisfies

o(f) = f(x,) for all fe Co(GD).

PROOF. We have ¢|c, o) # 0 since Cp(G?) has an approximate identity of C*(G).
Therefore, @], oy belongs to A(Co(G)). Now the existence and uniqueness of z,, €
G follow from the Gelfand-Naimark theorem. ]
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Proposition 2.2.1.3. Let G be an étale groupoid with the locally compact Hausdorff
unit space G and ¢ € A(C*(Q)). Then x, € G as defined in Proposition ZZT2 is a
fixed point.

PROOF. Assume that v € G satisfies d(y) = x,. We will show 7(y) = x,. There exists an
open bisection U C G with v € U. Take n, € C.(U) which satisfies n,(y) = 1. Note that
we have n? xn, € C.(G©) and n? x ny(z,) = |ny(y)]* = 1. Fix f € C.(GY) arbitrarily.

Direct calculations show that n x f * n,(v,) = n,(7) f(r(7))n,(v) = f(r(7)). On the
other hand, one can see that n} x f xn, € C.(G©). Then we have

nyx frny(ap) = o] frny) = @l)e(fe(n,) = (]« ny)o(f) = f(z,)-

Therefore, f(r(v)) = f(x,) holds for all f € C.(G?), which implies r(y) = z,. Hence,
Ty, € G is a fixed point of G. O]

Proposition 2.2.1.4. Let GG be an étale groupoid with the locally compact Hausdorff
unit space G, ¢ € A(C*(G)) and v € G,,,. Take an open bisection U, C G with v € U,
and f, € C.(U,) with f,(y) = 1. Then ¢(f,) is independent of the choice of U, and f,.
Moreover, we have ¢(f,) € T.

PROOF. First, we show ¢(f,) € T. Since f * f, € Co(G®), we have

(e(L)P = o(fs % f2) = [1 % fy(xo) = | (P =1

Therefore, ¢(f,) € T.

Second, we show that ¢(f,) is independent of the choice of U, and f,. Assume that
fy € C.(U,) and g, € C.(V,) satisfies f,(v) = g,(y) = 1, where U, and V, C G are
open bisections. Find a function h € C.(d(U, NV;)) C C.(G©) such that h(d(y)) = 1.
Recall that d(v) = r(v) = x, since z,, is a fixed point. Also, note that ¢(h) = h(z,) = 1.
Putting fw = fyxh and G~ = g *h, we have that fv and g are contained in C.(U,NV,).
Then it follows that f7 x g, € Co(G?) and

o()eler) = e(e([)e(gy)e(h) = o(f, * §3)
= 1, % 3 () = hr(M) (g, ()h(d(7)) = 1.
Now we have ¢(f,) = ¢(g,) since ¢(f,) € T. O

Proposition 2.2.1.5. Let G be an étale groupoid with the locally compact Hausdorff
unit space G and ¢ € A(C*(G)). We define x,: G,, — T by x,(7) := ¢(f,), where
v € Gy, and f, € C(G) is a function as in Proposition Z2ZT4. Then x,: G, — T is a

group homomorphism.
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PRrROOF. Take o, 8 € G,,. We show x,(a)x,(8) = x,(af). Take f,, fz € C(G) as in
Proposition ZZZT4. It follows that f, * f3 € C.(U) for some open bisection U C G and
fa * f3(aB) = 1. Hence, we have

Xo(aB) = @(fa * f5) = o(fa)p(fs) = Xo(@) X0 (B)
by the definition of x,. O

Proposition 2.2.1.6. Let G be an étale groupoid with the locally compact Hausdorff
unit space G(®. Then we have ¢ = ¢,_,, for all p € A(C*(G)).

ProOF. Take f € C.(U), where U C G is an open bisection. It suffices to show that
@(f) = @u, . (f), since C*(G) is generated by such functions. Note that f*xf € C.(G?).
If G,, N f~H(C\ {0}) =0, then we have 0 = f** f(z,) = |o(f)[>. Since the restriction

of fla,, is zero, it follows that v, (f) = 0 = ¢(f). If G, N f71(C\ {0}) # 0,
Gz, N f7HC\ {0}) is a singleton because f is supported on an open bisection. Let

vy € Gy, N f7HC\ {0}) be the unique element of G,, N f~'(C\ {0}). Observe that
F:= f/f(v) € C.(U) satisfies F'(vy) = 1. Now we have

Pape (F) = F(V)Xe(7) = F(0)e(F) = @ (f).
Hence, we have o, \, = ¢. l
Proposition 2.2.1.7. Let G be an étale groupoid with the locally compact Hausdorff

unit space G, 2z € GO be a fixed point and y: G, — T be a group homomorphism.
Then z =z, and x = X, .-

PROOF. First, we show = =z, . Take f € C.(G") arbitrarily. Then we have
f(@e, ) = ax(f) = flx)x(x) = f(2).
Hence, it follows z = z,, .

Next, we show x = x,,,. Take v € G, arbitrarily. There exist an open bisection
UCGwithyeUand f e C.(U) with f(y) = 1. Then we have

Xewn (V) = Py (f) = (V)X (7) = x(7)-

Hence, we have shown x = z,, and x = x,, . - [

Combining Propositions 2218 and 222174, we obtain the next theorem.

Theorem 2.2.1.8 ([I1, Theorem 4.8]). Let G be an étale groupoid with the locally
compact Hausdorff unit space G©. Define a set

D= {(z,x) | * € GV is a fixed point

and y: G, — T is a group homomorphism}.
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Then the map
D3 (z,x) — pay € A(C(G))

is bijective.

2.2.2 Construction of an étale abelian group bundle G#°

For an étale groupoid G with the locally compact Hausdorff unit space G, we con-
struct an étale abelian group bundle G*" so that C*(G)*> ~ C*(G?") holds.

Proposition 2.2.2.1. Let G be an étale group bundle with the locally com-
pact Hausdorff unit space G(®. We define the commutator subgroupoid of G by
G,G) = Ueqo[Gar G, where [Gy, G, is the commutator subgroup of G,. Then
[G, G] is an open normal subgroupoid of G.

PROOF. It is obvious that [G, G] C G is a normal subgroupoid. We show that [G, G| C G
is open. Take v € [G,G]. By the definition of the commutator subgroup, there exists
{a; Y51 {B;}-) C Gy such that

v = aifiay By awfeay Byt By By

Take open bisections U;,V; C G such that a; € U; and 3; € V; for all j = 1,2,... k.
We show that U,V UVt € [G, G], where we define U™! := {4~ |y € U} for U C G.
Fix 4/ € U,ViU; 'Vt Then there exist a,o’ € U; and 3,3 € V; which satisfy v =
afa’~1B'1. Since G is a group bundle, we have d(a) = d(a’) = d(B) = d(’). We obtain
a =o' and 3 = 8 because U; and Vi are bijections. Therefore, v/ = afa™187! € |G, G].
Similarly, one can show that UV U; 'V U VoUWt -+ U VULV C GG,

By Proposition TI3R, U, V.U, 'V U VoUy 'Vt - U ViU Vit is an open set and
contains . Hence, [G,G] C G is an open normal subgroupoid. ]

Let G be an étale groupoid with the locally compact Hausdorff unit space G(©). Recall
that the set of all fixed points F C G is a closed subset of G(*) (Proposition [T-313).
We define Gy, := Gp, which is an étale groupoid from Proposition [CI-3T3. Since we
have Gy = Iso(Gix), Gy is an étale group bundle.

Definition 2.2.2.2. Let GG be an étale groupoid with the locally compact Hausdorff unit
space G¥. We define the abelianization of G' by G := Gy, /[Gix, Gixl-

Let G be an étale groupoid with the locally compact Hausdorff unit space G®. Then
we have a *-homomorphism C*(G) — C*(Ggy) induced by the restriction (Proposi-
tion IT44). Composing with the *-homomorphism C*(Gjy) — C*(G?) in Proposition
PT21, we obtain a *-homomorphism 7: C*(G) — C*(G?P).
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Note that C*(G) is commutative if and only if G is an étale abelian group bundle. In
particular, C*(G®) is commutative.

Lemma 2.2.2.3. Let G be an étale groupoid with the locally compact Hausdorff unit
space G(©). Then the map ®: A(C*(G®)) > x = y o € A(C*(Q)) is bijective.

PROOF. Surjectivity of m implies that ® is injective. We show that ® is surjective. Take
¢ € A(C*(G)). Then we have the fixed point z, € G® and the group homomorphism
X, which makes the following diagram commutative:

C*(G) ——= C
| /
C*(Ga,),

where ¢: C*(G) = C*(G,,) is the *-homomorphism obtained in Proposition I_TZ24.
By the universality of G';Z = (G
Xo: G;Z — T which makes the following diagram commutative:

2,)" = (G*™),,, we obtain the group homomorphism

C*(G,,) 2 C
| A
CH(G5),

where ¢: C*(G,,) — C*(G2”) denotes the *-homomorphism induced by the quotient
©
map G, — G;Z.
Let res: C*(G*) — C*(GZZ) denote the *-homomorphism obtained by the restriction
C(G*™) — C (Gii) (see Proposition TI24). Now we have the following commutative
diagram:

O (Gb) =y CF(G2).

In particular, we have p = (Y, ores) o and ¥, ores € A(C*(G*)). Hence, ® is

surjective. 0

We are now ready to calculate the abelianization of C*(G).
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Theorem 2.2.2.4 ([, Theorem 4.12]). Let G be an étale groupoid with the locally
compact Hausdorff unit space G®). Then C*(G)*" is isomorphic to C*(G?) via the
unique isomorphism 7 which makes the following diagram commutative:

* C* (Gab)

Ql/

where Q: C*(G) — C*(G)* denotes the quotient map.

PROOF. By the universality of C*(G)*", we obtain a *-homomorphism which makes the

following diagram commutative:
C* ) C* ( Gab)

? /

It is clear that 7 is surjective. We show that 7 is injective. Suppose that a € C*(G)
satisfies m(a) = 0. It suffices to show @Q(a) = 0, which is equivalent to ¢(Q(a)) = 0 for
all p € A(C*(G)?P) since C*(G)? is commutative. Take ¢ € A(C*(G)*?) and define
¢ = ¢ oQ. Then, by Lemma 2223, there exists ¢ € A(C*(G*)) which makes the

following diagram commutative:

CH(G) —Z C*(G™)
\ l

Now we have the following commutative diagram:

(@) —T— C*(G™)
: l \ I
Hence, we have ¢(Q(a)) = ¢(m(a)) = 0. O

2.2.3 Duals of étale abelian group bundles

Let G be an étale groupoid with the locally compact Hausdorff unit space G»). Since
the abelianization of C*(G) is a commutative C*-algebra, C*(G)*> is isomorphic to
Co(A(C*(G)P)) via the Gelfand transformation (see, for example, [2, Theorem I11.2.2.4]).
In this subsection we calculate the Gelfand spectrum A(C*(G)2P).
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For a discrete abelian group I', its Pontryagin dual group is defined as the set of all
group homomorphisms from I" to T, which is denoted by . Then I is an abelian group
with respect to the pointwise multiplication. It is known that Tis a compact abelian
topological group with respect to the topology of pointwise convergence.

Proposition 2.2.3.1. Let T’ be a discrete group and Q: C*(I') — C*(I'*") be the *-
homomorphism induced by the quotient map I' — I'*. Then the map

O: T2 5y s yoQ € A(CHD))
is a homeomorphism. Hence, C*(I")?" is isomorphic to C (l:a\b)

PROOF. This follows from the universality of " and C*(T). O

As seen in the previous proposition, the key to calculate A(C*(G)) is the Pontryagin
dual.

Definition 2.2.3.2. Let G be an étale abelian group bundle with the locally compact
Hausdorff unit space G(®. We define a group bundle G = {(x,2) | v € GO x € G}

over GO,

Note that G is a group bundle such that G, = G, x {z}(~ é;) for every x € G(©).

Let G be an étale abelian group bundle with the locally compact Hausdorff unit space
GO and (x, ) € G. Recall that we obtain the *-homomorphism Vuy € A(C*(G)) as in
Definition P21

Definition 2.2.3.3. Let GG be an étale abelian group bundle with the locally compact
Hausdorff unit space G(©). For each f € C(G), we define ev;: G — C by evi((x,x)) =
©ur (f), where (x,z) € G. We define a topology of G as the weakest topology in which
evy is continuous for all f € C(G).

Proposition 2.2.3.4. Let GG be an étale abelian group bundle with the locally compact
Hausdorff unit space G(». Then the map

U: A(CHG)) 3 ¢ = (X, 2,) € G

is a homeomorphism (see Propositions 22T and 213 for the definition of z, and x.,).

-~

Hence, C*(G) is isomorphic to Cy(G)

PROOF. Proposition 22T states that ¥ is a bijection and W~ is given by W~ ((x, z)) =
g for each (x,z) € G. For each f € C(G), the map A(CHG)) 2 ¢ = evi((xp, Ty)) =
©(f) € C is continuous. This means that ¥ is continuous. The continuity of ¥~ follows

from approximation arguments. Therefore, ¥ is a homeomorphism. O
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Let G be an étale groupoid. Recall that G2 is an étale abelian group bundle.

Corollary 2.2.3.5. Let GG be an étale groupoid with the locally compact Hausdorff unit
space G(©). Then C*(G)? is isomorphic to Co(G?P).

PROOF. Recall that C*(G)?" is isomorphic to C*(G?") by Theorem Z224. Since G2 is
an étale abelian group bundle, Proposition 222234 implies that C*(G?") is isomorphic to
Co(G?b). O

Proposition 2.2.3.6. Let GG be an étale abelian group bundle with the locally compact
Hausdorff unit space G(®). Then Gis a locally compact Hausdorff topological group
bundle. Furthermore, G is compact if and only if G is compact.

PROOF. It is clear that G is locally compact Hausdorff, since G is homeomorphic to
A(C*(@)). In order to show the continuity of the operations, take f € C(G) arbitrarily.
Then the map G® 3 (x1, x2) — evr(xixz) = eve(xa)evye(xe) € Cis continuous. There-
fore, the multiplication of G® is continuous. Similarly, one can show that the inverse
is continuous. Hence, Gisa locally compact Hausdorff topological group bundle. The
last assertion follows from the fact that G(© is compact if and only if C*(G) ~ Co(@) is
unital. O

Example 2.2.3.7. We give an example of an étale groupoid G such that G is not Haus-

dorff although G is Hausdorff. Let &3 = (s,t | 83 =12 = ¢, st = ts?) = {e, s, 5%, 1, ts,15%}

be the symmetric group of degree 3 and Az := {e, s, s>} C &3 be the subgroup of even

permutations. Let G := &3 x [0, 1]\ {(¢,1) | t € A3} be an étale group bundle over [0, 1].

Then G can be drawn as follows:
(ts2,0)
(52,0) (s2,1)
(ts,0)

(5,0

)
(,0)
(e,0)

(s,1)

(e;1)

One can see that [G,G] C G is not closed. By Proposition 2T 111, G** = G/[G,G] is
not Hausdorff. Indeed, letting ¢: G — G denote the quotient map, G looks as follows:

a((£,0))

d(€0)  al(e)al(s))a((s%1))
The dual Ea\b of G® can be drawn as follows:
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Note that Ea\b is not étale.
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Chapter 3.

Invariant sets and normal subgroupoids of
universal étale groupoids induced by
congruences of inverse semigroups

In this chapter, we review results obtained in [I0]. First, we investigate congruences
on inverse semigroups from the view point of the spectrum in Section BTl In Section B2,
we show that the universal étale groupoids associated to quotient inverse semigroups can
be described by restrictions and quotients of the original universal étale groupoids. In

Section B33, we give applications and examples of the previous sections.

3.1 Certain least congruences

Recall that an inverse semigroup S is said to be Clifford if s*s = ss* holds for all s € S.
In addition, a congruence v on S is said to be Clifford if S/v is Clifford. The notion of
a commutative congruence is defined in the same way. It is known that every inverse
semigroup admits the least Clifford congruence and the least commutative congruence.
For example, see [16, Proposition III. 6. 7] for the least Clifford congruence and [I'7] for the
least commutative congruence. In this section, we reprove that every inverse semigroup
admits the least Clifford congruence and the least commutative congruence by a new
method using the spectrum.

—

3.1.1 Invariant subset of F(S)

—

Let S be an inverse semigroup. Recall that we have the spectral action 5: S ~ E(S)
(see the last of Chapter M). A subset F' C E/(\S) is said to be invariant if Ss(F N Dg+s) C F
holds for all s € S. Note that F' is invariant if and only if F' is invariant as a subset of the
universal groupoid G,(S). First, we observe that an invariant subset induces a normal

congruence on E(S) in the next proposition.
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—_—

Proposition 3.1.1.1. Let S be an inverse semigroup and F C E(S) be an invariant
subset. We define the set pp C E(S) x E(S) of all pairs (e, f) € E(S) x E(S) such that
&(e) = &(f) holds for all € € F. Then pr is a normal congruence on F(S).

PROOF. It is obvious that pr is a congruence on E(S). We show that pr is normal.
Take s € S and (e, f) € pp. It suffices to show that {(ses*) = {(sfs*) for all £ € F. If
£(ss*) = 0, we have {(ses*) = £(sfs*) = 0. Assume that {(ss*) = 1. Since F is invariant,
we have 34(€) € F. From (e, f) € pp, it follows

§(ses™) = P (§)(e) = Bs- (§)(f) = &(sf57).
Thus pp is a normal congruence on E(S5). O

Let S be an inverse semigroup and p be a normal congruence on E(S). Moreover, let

L — —

q: E(S) — E(S)/p denote the quotient map. For £ € E(S)/p, we define q(&) € E(S) by
q(&)(e) = &(q(e)), where e € E(S). Note that g(§) is not zero since ¢ is surjective. Then

q: E(S)/p — E(S) is a continuous map by the definition of the topology of pointwise
convergence. One can see that

QE(S)/p) = {€ € E(S) | &(e) = () for all (e, f) € p)
holds. In particular, F), := Z]\(W p) is a closed subset of @

We say that F' C E(S) is multiplicative if the multiplication of two elements in F' also
belongs to F' whenever it is not zero.

Proposition 3.1.1.2. Let S be an inverse semigroup and p be a normal congruence on

—

E(S). Then F, C E(S) is a closed multiplicative invariant set.

—

PROOF. It is easy to show that F, C E(S) is a closed multiplicative set. We show that
F, C E(S) is invariant. Take £ € F, and s € S with {(s*s) = 1. To see (,(&) € F,, it
suffices to show that 54(£)(e) = Bs(§)(f) holds for all (e, f) € p. Since p is normal, we

have (s*es, s*fs) € p. Hence, we have
Ps(§)(e) = &(ses) = £(s™fs) = Bs(E)(f),
where the middle equality follows from § € F},. n

Proposition 3.1.1.3. Let S be an inverse semigroup. Then p = pg, holds for every
normal congruence p on E(S).

—

PROOF. Assume that (e, f) € p. For all n € E(S)/p, it follows that

q(n)(e) =n(q(e)) = nlq(f)) = qan)(f).
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Therefore, (e, f) € pr,.
To show the reverse inclusion, assume that (e, f) € pg,. Define nge) € E(S)/p by

(p > q(e)),

1
Tg(e) (D) =
" 0 (otherwise),

where p € E(S)/p. By (e, f) € pr,, we have nge)(q(f)) = nge)(q(e)) = 1. Therefore,
q(f) > q(e). Similarly we obtain ¢(f) < g(e), so g(e) = q(f) holds. Thus, it follows that

(e, f) € p- O
We say that F' C E/(\S) is unital if F' contains the constant function 1.

Lemma 3.1.1.4. Let S be an inverse semigroup and F' C E/(\S) be a unital multiplicative
set. Assume that F' separates E(S) (that is, for e, f € E(S), e = f is equivalent to the
condition that £(e) = £(f) holds for all £ € F'). Then F is dense in E(S5).

PROOF. For e € E(S) and a finite subset P C E(S), we define

Np = {¢ € B(S) | £(e) = 1&(p) = 0 for all p € P}

Recall that these sets form an open basis of E/(\S) Observe that Np = N¢p holds, where
eP :={ep € E(S) | p € P}. Now it suffices to show that FF N N§g # () holds for nonempty
N7 such that p < e holds for all p € P.

In case that P = (), the constant function 1 belongs to F N N&. We may assume that
p < e holds for all p € P. Since Nj is nonempty, we have e # p for all p € P. Since F
separates E(S), there exists £, € F such that £,(e) = 1 and &,(p) = 0 for each p € P.
Define § := [ cp &p; then £ € Np N F. O

Proposition 3.1.1.5. Let S be an inverse semigroup. Then F' = F},, holds for every

unital multiplicative invariant closed set F' C E(S5).

PROOF. It is easy to show that F' C F),,. Let ¢: E(S) — E(S)/pr denote the quotient
map. Then the set g~'(F) is a unital multiplicative closed set which separates E(S)/pr.
By Lemma BTT14, g '(F) = E(S)/pr holds. Therefore, we have F D q(g~'(F)) =

q(E(S)/pr) = Fpp. =
Corollary 3.1.1.6. Let S be an inverse semigroup. There is a one-to-one correspondence

between normal congruences on E/(S) and unital multiplicative invariant closed sets in

—

E(S).

PROOF. Just combine Propositions BT 13 and BT 1. O
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3.1.2 The least Clifford congruences

Let S be an inverse semigroup. Recall that a congruence p on S is said to be Clifford
if S/p is Clifford. For example, S x S is a Clifford congruence on S. In this subsection,
we prove that every inverse semigroup admits the least Clifford congruence (Theorem
BT3). Our construction of the congruence is based on the fixed points of l?(g)

—

Definition 3.1.2.1. Let S be an inverse semigroup. A character £ € E(.5) is said to be
fixed if £(s*es) = &(e) holds for all e € E(S) and s € S such that £(s*s) = 1. We denote
the set of all fixed characters by E(S5)s,.

— — —

One can see that E(.S)g, is a closed subset of E(S). Moreover, E(S);, is a multiplicative

set. The fixed characters are characterized in the next proposition.

—

Proposition 3.1.2.2. Let S be an inverse semigroup and { € FE(S). The following

conditions are equivalent.

(1) ¢ is a fixed character;
(2) € can be extended to a semigroup homomorphism ¢: S — {0, 1}; and
(3) &(s*s) = &(ss*) holds for all s € S.

In this case, &: S — {0,1} is the unique extension of &.

PRrOOF. If £ € @ has an extension &: S — {0,1}, we have

£(s) = &(s)" = £(s7s) = &(s"s)

for all s € S. Therefore, a semigroup homomorphism extension of £ is unique if it exists.

We show that (1) implies (2). Assume that £ € E(S) is fixed. Then define £(s): S —
{0,1} by £(s) := &(s*s) for s € S. For s,t € S, if £(t*t) = 1, we have £(st) = £(t*s%st) =
E(s*s) = g(s)g(t) If £(t*t) = 0, we have £(st) = £(s)E(t) = 0. Thus, £ is a semigroup
homomorphism.

It is obvious that (2) implies (3). We show that (3) implies (1). Take s € S with
£(s*s) = 1. It suffices to show that Bs(&)(e) = £(e) holds for all e € E(S). This follows

from the following direct calculation:

Ps(€)(e) = E(s"es) = £((es)"(es)) = E((es)(es)”)
= {(ess™e) = {(ess™) = £(e)€(ss7) = £(e)€(s™s) = E(e).

Now we have shown that the conditions (1), (2) and (3) are equivalent. O

Definition 3.1.2.3. Let S be an inverse semigroup. We define the normal congruence
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peit 7= Prigy, On E(S). Furthermore, we define the congruence vejs *= Vpgpymin O S
and SChf = S/I/C]if.

Lemma 3.1.2.4. Let S be an inverse semigroup, v be a Clifford congruence on S and
q: S — S/v be the quotient map. Then a set

F, = {§odlns) € B(S) | § € E(S/v)}
is contained in l?(?)ﬁx. Moreover, @ﬁx = E/’(E) holds if and only if S is Clifford.
Remark 3.1.2.5. Before proceeding to the proof of Lemma B2, we verify that F), in
Lemma BT is well-defined.

Let S be an inverse semigroup, v be a congruence and ¢: S — S/v. Then ¢(E(S)) =
E(S/v) holds. Indeed, ¢(E(S)) C E(S/v) is obvious. Take p € F(S/v) and s € S such
that ¢(s) = p. Then p = q(s*s) € q(F(S)). Therefore, we have q(E(S)) = E(S/v). Using
this fact, one can verify that £ o ¢|g(s) is a character on E(S) for £ € E/(\S) Indeed, it is
easy to see that £ o g|p(s) is a semigroup homomorphism. Since ¢(E(S)) = E(S/v) and
q is a surjection, £ o q|p(g) is nonzero. Hence, £ o ¢|g(s) is a character on E(S).

From the above argument, it follows that F,, in Lemma B1T24 is well-defined.

—

PROOF OF THE LEMMA BTT24. Take £ € E(S/v) and s € S. Since S/v is Clifford, we
have

§oq(s™s) = &(q(s"s)) = E(q(ss™)) = o q(ss™).

Therefore, £ o q|g(s) is a fixed character by Proposition B1T22.
Applying what we have shown for the trivial congruence v = {(s,s) € S x S | s € S},

—_— e

it follows that E(S)s, = E(S) holds if S is Clifford. Assume that E(S)s, = E(S) holds

—

and take s € S. Define a character s € E(S) by

1 (e>s*s),
58*8(6) = .
0 (otherwise),

—_—

where e € E(S). Since we assume that E(S); = E(5), we have

X

Ers(557) = Eprg(s7s) = 1

by Proposition BET22. Then we have s*s < ss*. It follows that s*s > ss* from the same
argument. Now we have s*s = ss* and S is Clifford. [

Now we show that every inverse semigroup admits the Cliffordization. See Definition
B3 for the definition of vcy.
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Theorem 3.1.2.6 ([0, Theorem 3.11]). Let S be an inverse semigroup. Then vy is
the least Clifford congruence on S.

—

PROOF. First, we show that the congruence vcy is Clifford. Take s € S and £ € E(S5)s,.
Then we have £(s*s) = &£(ss*) by Proposition BTZ4. Therefore, (s*s, ss*) € veyr and
veye is a Clifford congruence.

Let v be a Clifford congruence and ¢: S — S/v be the quotient map. To show that

—

vene C v, take (s,t) € voye. First, we show that (s*s,t*t) € v. We define n € E(S/v) by

(e > q(s*s)),

1
n(e) =
0 (otherwise).

—

By Lemma BT24, it follows that n o g € E(S);,. Since (s,t) € veyr, we have 1 =
n o q(s*s) = no q(t*t), which implies ¢(t*t) > g(s*s). The reverse inequality is obtained
symmetrically and therefore ¢(t*t) = ¢(s*s) holds.

Let n € E(S//V\Chf) be the above character. Since 1o ¢ is a fixed character and (s,t) €
Ve, there exists e € E(S) such that nog(e) = 1 and se = te hold. Since no g(e) = 1,

we have g(e) > q(s*s) = q(t*t) by the definition of . Now we have ¢(s) = q(s)q(e)
q(t)q(e) = q(t). Therefore, (s,t) € v. O

Corollary 3.1.2.7. Let S be an inverse semigroup, 17" be a Clifford inverse semigroup
and ¢: S — T be a semigroup homomorphism. Then there exists a unique semigroup
homomorphism @: S — T which makes the following diagram commutative:

¥

S———T

|

SClif

where ¢: S — S® denotes the quotient map.

3.1.3 The least commutative congruences

We say that a congruence on inverse semigroup is commutative if the quotient semi-
group is commutative. In this subsection, we show that every inverse semigroups admits
the least commutative congruence.

Recall that we denote the circle group by T := {z € C| |z| = 1}. We view T U {0} as
an inverse semigroup with the usual product. By S , we denote the set of all semigroup

homomorphisms from S to T U {0}.
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Definition 3.1.3.1. Let S be an inverse semigroup. We define the commutative congru-
ence v, on S as the set of all pairs (s,t) € S x S such that ¢(s) = ¢(t) holds for all
Y E S. We define S := S/Vap.

One can see that S is actually commutative.

Let S be a Clifford inverse semigroup and e € E(S). We define H, := {s € S | s*s = e}.
One can see that H, is a group with the operation inherited from S. Note that the unit
of H, is e.

In order to show that v, is the least commutative congruence, we need the next lemma.

Lemma 3.1.3.2. Let S be a Clifford inverse semigroup and e € E(S). Then a group
homomorphism ¢: H, — T can be extended to a semigroup homomorphism ¢: S —
T u{0}.

PROOF. Define

s = [0 ez
0 (otherwise).

Then one can check that ¢ is a semigroup homomorphism extension of ¢. O]

Theorem 3.1.3.3 ([I0, Theorem 3.15]). Let S be an inverse semigroup. Then v,, in
Definition BTT=31 is the least commutative congruence on S.

PROOF. Assume that v is a commutative congruence. Let ¢: S — S/v denote the quo-
tient map. In order to show v,, C v, take (s,t) € vup.

First, we show that q(s*s) = ¢(t*t). It suffices to show that £(q(s*s)) = &(q(t*t)) holds
for all € € @) Note that {oq € L?(E) is a fixed point by Lemma BT24. Since £ oq
is a restriction of an element in S by Proposition B2, €(q(s*s)) = &(q(t*t)) follows
from (s*s,t*t) € vy,

In order to show that ¢(s) = ¢(t), it suffices to show that ¥ (q(s)) = ¥(q(t)) for all
group homomorphisms 1): Hyes) — T, since Hy-s) = {a € S/v | a*a = q(s*s)} is an
abelian group. By Lemma B3, there exists a semigroup homomorphism extension
Ve 5/'/\1/ of 1. Since ¢ oq € S and (s,t) € vap, we have ¥(q(s)) = ¥(q(t)). Therefore,
q(s) = q(t) holds. O

Corollary 3.1.3.4. Let S be an inverse semigroup, 7' be a commutative inverse semi-
group and ¢: S — T be a semigroup homomorphism. Then there exists a unique semi-

group homomorphism @: S* — T which makes the following diagram commutative:
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where ¢: S — 52" denotes the quotient map.

3.2 Universal étale groupoids associated to quotient inverse semigroups
3.2.1 General case

Let S be an inverse semigroup and v be a congruence on S. Let ¢: S — S/v denote
the quotient map. Note that
F,={€odqlus) € E(S) | € € E(S/v)}
is a closed invariant subset of G,(S) as shown in Proposition BT 12

We omit the proof of the next proposition, since it is not difficult.

Proposition 3.2.1.1. Let S be an inverse semigroup and H C S be a subsemigroup
such that F(S) C H. Then the map

Gu(H) 3 [5,€] = [s, €] € Gu(S)

is a groupoid homomorphism which is a homeomorphism onto its image. Moreover, the

image is an open subgroupoid of G,(5).

Via the map in the above proposition, we identify G, (H) with an open subgroupoid of
G.(S). Note that G,,(S)© c G,(H) holds.

Let S be an inverse semigroup, v be a congruence on S and ¢: S — S/v be the
quotient map. Define ker v := ¢~ '(E(S/v)) C S. Then ker v is a normal subsemigroup of
S. Although G, (kerv) is not necessarily a normal subgroupoid of G,(5), the following
holds.

Proposition 3.2.1.2. Let S be an inverse semigroup and v be a congruence on S. Then

Gu(ker v)p, is an open normal subgroupoid of G, (S)r, .

Proor. We know that G, (kerv)p, is an open subgroupoid of G,(S)g,. We show that
Gu(kerv)p, is normal in G, (S)F,. Let ¢: S — S/v denote the quotient map.

First, we show G, (kerv)p, C Iso(G,(S)r,). Take [n,{] € Gy(kerv)g,, where n € ker v.
Since £ € F, holds, there exists n € E@ﬁ) such that £ = nogq. Since q(n) € E(S/v)
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holds, we have ¢(n*) € E(S/v) and

Bu(§)(e) = E(n"en) = n(q(n")q(e)g(n))
=n(q(n"))n(q(e))n(q(n)) = n(g(n*n))n(q(e)) = &(e)

for all e € E(S), where we use n(q(n*n)) = {(n*n) = 1 in the last equality. Therefore,
Bn(§) = £ holds and it follows that [n,¢] € Iso(Gy(kerv)p, ).
Next we show that [s,n][n, &][s,n]™* € Gu(kerv)f, holds for all [n, €] € G, (ker v)p, and
§)-

[s,m] € Gu(S)E, such that n = £,(£)(= &). One can see that

[s,ml[n, €][s,n] ™" = [sns™, Bs()].
Now it follows that [s, n][n,¢][s,n]" € Gu(kerv)p, from sns* € kerv. O

Theorem 3.2.1.3 ([0, Theorem 4.3]). Let S be an inverse semigroup and v be a con-
gruence on S. Then G, (S/v) is isomorphic to G, (S) g, /Gu(ker v)p,

PROOF. Let ¢: S — S/v denote the quotient map. Note that a map
¢: E(S/v)5&—~Eoq€eF,

is well-defined by Remark BT"2ZH. One can verify that ¢ is a homeomorphism.
Define a map

©: Gu(S)r, 2[5, 4(&)] = la(s), €] € Gu(S/v).

Using Proposition II=3T0, one can see that ® is a groupoid homomorphism which is a
local homeomorphism and injective on G, (S )ESV’ Observe that ® is surjective.

We show that ker & = G, (ker v)g, holds. The inclusion ker ® D G, (ker v)f, is obvious.
In order to show that ker ® C G, (kerv)g,, take [s,q(&)] € ker ®. Since we have [¢(s),£] €
G.(S/v) 9 and q(E(S)) = E(S/v), there exists e € E(S) such that [q(s),&] = [q(e), £].
There exists f € E(S) such that &(q(f)) = 1 and ¢(s)q(f) = q(e)q(f). Now we have
sf € kerv, so it follows that

[5,q(8)] = [s/,q(&)] € Gulkerv)p,.

This shows that ker & = G, (kerv)p,.
By Proposition T 110, ¢ induces an isomorphism ® which makes the following dia-

gram commutative:

GulS)r, —2 s Gu(S)v)



where () denotes the quotient map. O

3.2.2 Universal groupoids associated to special quotient inverse semigroups

Minimum congruences associated to normal congruences on semilattices of idempotents

Let S be an inverse semigroup. Recall that a congruence p on E(S) is normal if
(e, f) € p implies (ses*,sfs*) € p for all s € S and e, f € E(S). Note that one can
construct the least congruence v, ,in whose restriction to E(S) coincides with p. Recall
that we can associate the closed invariant subset F, of G,(S) as shown in Proposition
9 .

Proposition 3.2.2.1. Let S be an inverse semigroup and p be a normal congruence on
E(S). Then G,(S/Vpmin) is isomorphic to G (S)F,.

PROOF. By Theorem BZ13, it suffices to show that G (ker v, min)r, = Gu(S)g holds.
Let g: S — S/Vpmin denote the quotient map. Take [n,q(§)] € Gu(ker vy min)F,, Where
n € kerv, i, and £ € m) Since n € ker v, yin, there exists e € E(S) such that
q(n) = q(e). By the definition of v, i, there exists f € E(S) such that nf = ef and

(n*n, f) € phold. Observe that g(¢)(n*n) = &(q(n"n)) = &(q(f)) = &(q(e)) = 1. We have

[0, 3O = [nf.3(E)] = [ef, @) € Cul(9),-
Now we have shown that G (ker v, min)r, = GU(S)%L). O

Theorem 3.2.2.2 ([I0, Theorem 4.5]). Let S be an inverse semigroup. Then G, (SM)
is isomorphic to G, (S)fx.

PROOF. Recall the definition of voir = Vpguemin (see Definition BT273). Since we have
Proposition B2, it suffices to show F, ,, = E/’(g)ﬁx. By Lemma BT2Z24, we have
F,. C Lf(g)ﬁx. To show the reverse inclusion, take § € L?(?)ﬁx. By Proposition B2,
there exists a semigroup homomorphism extension &: S — {0,1}. Since {0, 1} is Clifford,

there exists a semigroup homomorphism 7: S — {0,1} such that 7o ¢ = &, where

q: S — SN denotes the quotient map. Therefore, we have & = 7o ¢| E(S) € Fpoye- Now
we have shown F, .. = E(5)g,. O

The least commutative congruences

Let S be an inverse semigroup and v,, be the least commutative congruence (see
Proposition BT-31 and Theorem BT-373). Recall that the abelianization of S is defined
to be S& 1= S/v,,.
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Theorem 3.2.2.3 ([I0, Theorem 4.6]). Let S be an inverse semigroup. Then G, (S?) is
isomorphic to G, (S)*.

PROOF. By Theorem BZT3, it suffices to show that F, , = L?(E)ﬁx and Gy (ker vap)ax =
[Gu(S)six, Gu(9)sx] hold.

Observe that v, is equal to voy on E(S). Indeed, this follows from the fact that
g0|E(S) € @ﬁx holds for all p € S. Therefore, we have F,, | = /(g)ﬁx.

Next we show that G, (ker vap)fix = [Gu(9)fix, Gu(S)sx). The inclusion

Gu(ker Vab)ﬁx D) [GU(S)ﬁX, GU<S)ﬁX]

is easy to show.

Let g: S — S* and ¢': S — S° denote the quotient maps. Since a commutative
inverse semigroup is Clifford, there exists a semigroup homomorphism o: S — §ab
such that ¢ = 0 o ¢’. To show the reverse inclusion

Gu(ker Vap)six C [Gu(S)fix, Gu(S)ix),

—

take [n, q(&)] € Gy(ker vap)ax, where n € kerv,, and € € E(S2P). Since n € ker vy, there
exists e € F(S) such that ¢(n) = g(e). Then we have g(n*n) = g(e). Since v,;, coincides
with voye on E(S), it follows that ¢'(n*n) = ¢/(e). Define

Hyey={s eS| s's=¢q(e)};

then Hy (. is a group in the operation inherited from S“%. Observe that a unit of Hy(
is ¢'(e) and we have ¢'(n) € Hy (). Fix a group homomorphism x: Hy ) — T arbitrarily.
By Proposition BT32,  is extended to the semigroup homomorphism y: S — TU{0}.
Since TU{0} is commutative, there exists a semigroup homomorphism y: S — TU{0}
which makes the following diagram commutative:

§ab ——— T U {0}
X

Now we have
x(d'(n)) = X(a(n)) = X(a(e)) = x(d'(e))-

Since we take a group homomorphism x: Hy () — T arbitrarily, it follows that ¢'(n) €
(Hy (e); Hy (o)), where [Hy (o), Hy ()] denotes the commutator subgroup of Hy (). Therefore,
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there exists s1, Sa, ..., Sm,t1,t2,...,t,m € S such that

q'(n) =¢q'(s1)d (t1)q (51)°¢ (t1)" - - - ¢ (5m)q (tm)q (5m) "¢ ()"
= ¢ (s1t187t] - - Smbmsitr).

By the definition of vy, there exists f € E(S) such that
nf = sit1s7t] - - Smtmsy o f

and ¢'(n*n) = ¢'(f) hold. Then we have

[n,q(&)] = [nf, q(&)]
= [s1t1s7t] -+ - Smtmsptin S, 4(E)]
= [s1t181t] -+ SmtmSpti, A(6)] € [Gu(S)fix; GulS)six]

Thus, it is shown that G, (ker vap)aix = [Gu(9)fix, Gu(S)six]- O

3.3 Applications and examples
3.3.1 Clifford inverse semigroups from the view point of fixed points

A 0-group is an inverse semigroup isomorphic to I'U{0} for some group I'. For a group
', we denote the 0-group associated to I' by 'Y := T'II {0}. It is clear that every 0-group
is a Clifford inverse semigroup. Conversely, we see that every Clifford inverse semigroup
is embedded into a direct product of O-groups. Remark that this fact is already known
(see 16, Theorem 2.6]). Using fixed characters, we obtain a new proof.

Let S be a Clifford inverse semigroup and & € L?(?) Since {¢} C L?(?) is invariant
by Lemma BTZ4, we may consider a normal congruence pe := pre} on E(S) and a
congruence Vg = Vo min 00 S. If & = 1, pe coincides with E(S) x E(S) and S/vg is
the maximal group image of S. We define S(§) = {qe(s) € S/ve | £(s*s) = 1}, where
ge: S — S/ve is the quotient map. Then S(&) is a group.

Define the map p¢: S — S(€)° by

ge(s) (E(s™s) = 1),
pe(s) == ) (3.1)
0 (&(s*s) = 0).
Then ¢ is a semigroup homomorphism.
Proposition 3.3.1.1. Let S be a Clifford inverse semigroup. Then the semigroup ho-

momorphism
P: 535 (pels) geE(se HS
§€E
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is injective. In particular, every Clifford inverse semigroup is embedded into a direct

product of 0-groups.

PROOF. Assume that s,t € S satisfy ®(s) = ®(¢). Since we have pg¢(s*s) = p¢(t*t) for all

§€ Jf(E), it follows that £(s*s) = &£(t*t) for all € € £7(-§) Therefore, we obtain s*s = t*1.
Define &5 € L?(F) by

1 (e >s*s),

Sesle) = 0 (otherwise).

Then we have &+ 5(s*s) = &-4(t*t) = 1. Combining with ¢¢ . (s) = ¢e.. (), we obtain
Ge,..(S) = ge...(t). Therefore, there exists e € E(S) such that £5(e) = &-45(s*s) =1 and
se = te. It follows that e > s*s(= t*t) from E,s(e) = 1. Thus, we have shown that s = ¢
and @ is injective. O

Pr0p051t10n 3.3.1.2. Let S be a finitely generated Clifford inverse semigroup. Then
E (S) is a finite set. More precisely, if S is generated by a finite set F' C .S, then |E( )|
is less than or equal to 2/¥!, where |A| denotes the number of elements in a finite set A.

PrOOF. Take a finite set F' C S which generates S. Let X denote the set of all nonzero
semigroup homomorphisms from S to {0,1}. Then the map

X 3 €&m (E(f)ger € {0,1}"
is injective since F generates S. By Proposition BT2Z2 and Lemma BT24, the map
X3&—= ¢ pe) € E(S) is bijective. Since E(S) is embedded into {0, 1}, E(S) is a finite
set. [

Corollary 3.3.1.3. Let S be a finitely generated Clifford inverse semigroup. Then S is
embedded into a direct sum of finitely many 0-groups.

Let S be a Clifford inverse semigroup and § € L?(?) Recall that G,(S)¢ is a discrete
group. Then G, (S5)¢ can be computed as the following.

Proposition 3.3.1.4. Let S be a Clifford inverse semigroup and £ € E/(\S) Then G, (S5)¢
is isomorphic to S(§).

PROOF. Let ¢¢: S — S(€)° denote the map in Proposition B30, We show that a map
defined by

a:5(8) 2 pe(s) = [s,€] € Gu(S)e

is actually well-defined and an isomorphism. First we check that y¢(s) = @¢(t) is equiv-
alent to [s,&] = [t,€] for all s,t € S with £(s*s) = £(t*t) = 1. Assume that s,t € S with
£(s*s) = £(t*t) = 1 satisfies p¢(s) = @e(t). Then there exists e € E(S) such that se = te
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and &(e) = £(s*s)(= 1) hold by the definition of v¢. Hence, it follows that [s, ] = [t,£].
One can see that [s, ] = [¢,&] implies @¢(s) = e(t) € S(§) by a similar argument. Thus,
the map o is actually well-defined and injective. It is easy to show that o is a group
homomorphism and surjective. Therefore, ¢ is an isomorphism. O

o~

Fix a character £ € E(S). We compute S(£) here. Note that £71({1}) is a directed
set with respect to the order inherited from FE(S). For e € E(S), define S(e) := {s €
S | s*s = e}. Then S(e) is a group. For e, f € E(S) with e < f, define a map
0l S(f) — S(e) by ¢l(s) = se for s € S(f). Then ¢! is a group homomorphism. One
can see that (S(e), /) is an inductive system of groups.

—

Proposition 3.3.1.5. Let S be a Clifford inverse semigroup and £ € E(S). Then we
have the following isomorphism:

limy S(e) ~ S(¢).
£(e)=1

PROOF. Let @¢: S — S(£)? denote the map in Proposition BZ3T10 and put I' := limy S(e).
For e € E(S) with £(e) = 1, we define o.: S(e) — S(§) by o.(s) := e(s). We obtain a
group homomorphism 7: I' — S(£). One can see that ¢ is an isomorphism. ]

Combining Propositions B23 T4 and BZ3T3, we obtain a proof of the next corollary,
which was already proved in [I7].

Corollary 3.3.1.6 ([12, Theorem 3.1]). Let S be a Clifford inverse semigroup and & €

E(S). Then there exists an isomorphism

Gu(S)e = lig S(e).
£0)=1

Let I be a discrete set and {I';};,c; be a family of discrete groups. Then the disjoint

union [[,.,;I'; is a discrete group bundle over I in the natural way. Using Propositions

iel
B23T2 and B3T4, we obtain the next corollary.

Corollary 3.3.1.7. Let S be a finitely generated Clifford inverse semigroup. Then there
exists an isomorphism

—

¢eE(S)

For an étale groupoid G with the locally compact Hausdorff unit space G(©, we write
C*(Q) (resp. C5(@Q)) to represent the universal (resp. reduced) groupoid C*-algebra of G
(see Chapter M or [14] for the definitions). Corollary B3 immediately implies the next
corollary.

47



Corollary 3.3.1.8. Let S be a finitely generated Clifford inverse semigroup. Then we

have isomorphisms

C*(Gu(9) = € C*(S(€)), C1(Gu(S)) ~ @ C5(S(€)).

¢€E(S) ¢€B(S)

3.3.2 Free Clifford inverse semigroups

We investigate universal groupoids and C*-algebras associated to free Clifford inverse
semigroups on finite sets.

First, we recall the definition of the free groups.

Definition 3.3.2.1. Let X be a set. A free group on X is a pair (F(X), k) consisting of
a group F(X) and a map x: X — F(X) such that:

1. K(X) generates F(X) as a group; and
2. for every group I' and a map ¢: X — I, there exists a group homomorphism
¢: F(X) — I such that ¢(x) = p(k(z)) holds for all x € X.

We define free inverse semigroups in a similar way:.

Definition 3.3.2.2. Let X be a set. A free inverse semigroup on X is a pair (FIS(X), )
consisting of an inverse semigroup FIS(X) and a map ¢: X — FIS(X) such that:

1. ¢(X) generates FIS(X) as an inverse semigroup; and
2. for every inverse semigroup 1" and map ¢: X — T, there exists a semigroup homo-
morphism ¢: FIS(X) — T such that p(z) = ¢(¢(x)) holds for all z € X.

It is known that free inverse semigroups exist and are unique up to isomorphism. See

[T3, Section 6.1] for the existence of free inverse semigroups. The uniqueness is obvious.

Definition 3.3.2.3. A free Clifford inverse semigroup on X is a pair (FCIS(X),:) con-
sisting of a Clifford inverse semigroup FCIS(X) and a map ¢: X — FCIS(X) such that:

1. 1(X) generates FCIS(X) as an inverse semigroup; and
2. for every Clifford inverse semigroup 7" and map ¢: X — T, there exists a semigroup
homomorphism @: FCIS(X) — T such that ¢(x) = @(¢(z)) holds for all x € X.

Free Clifford inverse semigroups exist and are unique up to isomorphism. Indeed, for
a free inverse semigroup (FIS(X),:) and the quotient map ¢q: FIS(X) — FIS(X )M one
can see that (FIS(X)“M g o) is a free Clifford inverse semigroup on X. The uniqueness

is obvious.
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Let X be a set. For A C X, define a map xa: X — {0,1} by

(l’GA),

1
xal@) = 0 (z&A).

Since {0,1} is Clifford, x4 can be extended to the semigroup homomorphism from
FCIS(X) to {0, 1}, which we also denote by xa. Every semigroup homomorphism from
FCIS(X) to {0,1} is of the form y 4 for a unique A C X.

By Proposition B2, x 4| grcrs(x)) is a fixed character if A is not empty. By Lemma
BT, all characters on E(FCIS(X)) are fixed characters. Therefore we obtain the next

proposition.

Proposition 3.3.2.4. Let X be a finite set. Put S = FCIS(X). Then the map

—

P(X)\{0} > A= xalres) € E(95)
is bijective, where P(X) denotes the power set of X.

We identify y4| E(FCIS(x)) With x4 since we can recover x4 from the restriction

XA|E(FCIs(x))-
For a nonempty set A C X, define ey := [[, ., t(x)"(x) € E(FCIS(X)). For e €
E(FCIS(X)), the condition that xa(e) = 1 is equivalent to the condition that e > ey.

Using this fact, one can prove the next proposition.
Proposition 3.3.2.5. The map

P(X)\ {0} 5 A e, € E(FCIS(X))
is bijective.

In order to apply Proposition B33 T4 for free Clifford inverse semigroups, we prepare

the next proposition.

Proposition 3.3.2.6. Let X be a set and A C X be a nonempty set. Put S = FCIS(X).
Then S(xa) is isomorphic to the free group F(A) generated by A.

PROOF. If X = A, S(x4) is the maximal group image of S. Therefore, S(x4) is isomor-
phic to F(A).
We assume A C X. Let w4: S — S(xa)? denote the map defined by

49



where Q: S — S/v,, denotes the quotient map. By the universality of F(A), define a
group homomorphism 7: F(A) — S(xa) such that 7(k(a)) = pa(i(a)) for all a € A.
We construct the inverse map of 7. Using the universality of S = FCIS(X), define a
semigroup homomorphism o: S — F(A)? which satisfies

k(z) (z €A

0 (zgA4)

for z € X. We claim that (s,t) € v,, implies o(s) = o(t) for s,t € S. If xya(s*s) =0, we
have o(s) = o(t) = 0. We may assume x4(s*s) = 1. By (s,t) € v,,, we have seq = tea.

o(u(x)) =

Since o(ey) is the unit of F(A), we have o(s) = o(t). Therefore, we obtain a semigroup

homomorphism o: S(x4)° — F(A)? which makes the following diagram commutative:

s —7 5 F(A)

S(XA)O

Now one can verify that g, ,) is the inverse map of 7. l

Now we have the following Theorem.

Theorem 3.3.2.7 ([0, Theorem 5.15]). Let X be a finite set. Then there exists an
isomorphism
G.(FCIS(X))~ [] F(4).
AeP(X)\{0}
ProOF. Put § = FCIS(X). By Proposition B34, it follows that

—

E(S) ={xa € E(S) | Ae P(X)\{0}}
is a finite set. Therefore, we have an isomorphism
Gu(S)~ J] GulSqa
AeP(X)\{0}
By Proposition BZ328, we obtain the isomorphism in the statement. O

3.3.3 Fixed points of Boolean actions

From [Z1, Section 5|, we recall the notion of Boolean actions. By a locally compact
Boolean space, we mean a locally compact Hausdorff space which admits a basis of
compact open sets. Let S be an inverse semigroup and X be a locally compact Boolean
space. An action a: S ~ X is said to be Boolean if
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1. for all e € E(S), D¢ C X is a compact open set of X; and
2. the family

{Dg N ﬂ (X\ D%) lee E(S), P C E(S) is a finite set.}
fep

forms a basis of X.
It is known that G, (S) has the following universal property for Boolean actions.

Theorem 3.3.3.1 (|21, Proposition 5.5]). Let S be an inverse semigroup, X be a Boolean
space and a: S ~ X be a Boolean action. Then S X, X is isomorphic to G, (S)g for

—

some closed invariant subset F' C E(S).
Corollary 3.3.3.2. Let S be a finitely generated inverse semigroup and a: S ~ X be
a Boolean action. Then « has finitely many fixed points. More precisely, the number of

fixed points of « is less than or equal to the number of nonzero semigroup homomorphisms
from S to {0,1}.

PROOF. Since we assume that S is finitely generated, the set of all nonzero semigroup
homomorphisms from S to {0,1} is a finite set. By Proposition BT-Z2, there exists a
bijection between the set of all nonzero semigroup homomorphisms from S to {0, 1} and
E/(\S)ﬁx. Now Theorem BZ3-31 completes the proof. [
Example 3.3.3.3 (cf. [T4, Example 3 in Section 4.2]). For a natural number n € N with
n > 2, the polycyclic inverse monoid P, is an inverse semigroup which is generated by
{0,1,s1,...,8,} with the relation

* J—
Si Sj = 52"]'1

for all 7,7 € {1,2,...,n}. Define £: P, — {0,1} by &{(x) = 1 for all x € P,. Then ¢
is the unique nonzero semigroup homomorphism from P, to {0,1}. Since 0 € P,, ¢ is
an isolated point of E/(\Pn) Therefore, every Boolean action of P, has at most one fixed
point, which becomes an isolated point.
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