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Chapter 0.

Introduction

The theory of operator algebras is a branch of functional analysis. This theory was

initiated to formulate a mathematical framework of quantum mechanics. The theory of

operator algebras itself is deeply evolving and interacting with other fields like representa-

tion theory, dynamical systems, number theory and so on. Operator algebras are divided

into von Neumann algebras and C*-algebras, depending on topologies. In this thesis, we

study C*-algebras. Because C*-algebras are highly abstract objects, it used to be difficult

to construct a C*-algebra with desired properties. Now there are many ways to construct

C*-algebras from mathematical objects like groups, dynamical systems, directed graphs

and so on. Many researchers have studied the relation between associated C*-algebras

and their ingredients.

In this thesis, we treat C*-algebras associated to étale groupoids. A groupoid is a small

category whose morphisms are invertible. An étale groupoid is a groupoid equipped with

topology which has discreteness in some sense. Discrete groups and topological spaces

are typical examples of étale groupoids. Étale groupoids are associated to many objects

like discrete group actions, directed graphs, tilings and so on. Using étale groupoids, we

can treat many objects in a unified way.

For an étale groupoid G, one can associate C*-algebras C∗(G) and C∗
λ(G), which are

called the full groupoid C*-algebra and the reduced groupoid C*-algebra respectively.

The study of C*-algebras associated to groupoids was initiated by Renault’s lecture note

[18]. The class of groupoid C*-algebras is an important class of C*-algebras because it

contains a broad class of C*-algebras and groupoid C*-algebras are somewhat treatable.

Actually, many researchers have studied the relationship between étale groupoids G and

groupoid C*-algebras C∗(G), C∗
λ(G). For example, the simplicity of groupoid C*-algebras

is studied in [3] while the intermediate subalgebras of groupoid C*-algebras are studied

in [4].

As mentioned above, we can construct étale groupoids from many objects. In this

thesis, we mainly treat étale groupoids associated to actions of inverse semigroups. An
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inverse semigroup is a special class of semigroups. Inverse semigroup actions are used

to describe the local symmetry of the spaces, while group actions describe the global

symmetry of the spaces. When an inverse semigroup acts on a topological space, one can

associate an étale groupoid. An inverse semigroup acts on a certain topological space

called a spectrum in a natural way. Hence, we can associate an étale groupoid, which is

called a universal groupoid, to this action on the spectrum. The study of the universal

groupoids is initiated by Paterson [14]. It is a natural task to study the relation between

inverse semigroups and the universal groupoids. Because the universal groupoids are

constructed only from the algebraic structure of inverse semigroups, it is expected that

properties of the universal groupoids should be described in purely algebraic language.

The author of this thesis studies the relation among inverse semigroups, étale groupoids

and C*-algebras. This research aims to give algebraic and intuitive description for infinite

dimensional phenomena of C*-algebras by using inverse semigroup and étale groupoids.

In addition, this research also aims to apply techniques in the theory of C*-algebras to the

theory of inverse semigroups and étale groupoids. In short, the purpose of this research

is to construct a framework to mutually develop the theory of inverse semigroups, étale

groupoids and C*-algebras.

In this thesis, we study the relation among inverse semigroups, étale groupoids and

C*-algebras from the view point of quotients. We will prove that quotients of inverse

semigroups induce the quotients of étale groupoids. Similarly, we prove that quotients of

étale groupoids induce the quotients of C*-algebras. Then we investigate certain quotients

such as the abelianization of inverse semigroups, étale groupoids and C*-algebras. The

main theorems in this thesis are Theorem A, B and C as described below.

This thesis is organized as follows. Chapter 1 is devoted to preliminaries. We introduce

here notions which we use in this thesis.

In Chapter 2, we describe the results in [11]. Quotients of inverse semigroups and

C*-algebras are fundamental notions and well-established. On the other hand, quotients

of étale groupoids seem to be fundamental notions, but the author could not find them

in literatures. Therefore, we establish the notion of quotient étale groupoids. One may

imagine that the notion of a quotient étale groupoid is defined as a surjective groupoid

homomorphism to another étale groupoid. However, such formal quotients do not induce

the quotients of groupoid C*-algebras in a natural way. Therefore, in this thesis, we define

the notion of quotient étale groupoids so that the quotients of groupoid C*-algebras are

naturally induced. After we define the notion of quotient étale groupoids, we observe

that quotients of étale groupoids actually induce the quotients of C*-algebras. Using

these facts, we obtain the main theorem (Theorem 2.2.2.4) in this chapter. For an étale

groupoid G, we define the abelianization Gab, which is also an étale groupoid. This étale
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groupoid Gab describes the abelianization of C∗(G) as follows.

Theorem A (Theorem 2.2.2.4). Let G be an étale groupoid with the locally compact

Hausdorff unit space G(0). Then the abelianization C∗(G)ab of C∗(G) is isomorphic to

C∗(Gab).

The key step in the proof of Theorem 2.2.2.4 is the calculation of one dimensional

representations of C∗(G) (Theorem 2.2.1.8). At the end of this chapter, we explain the

relation between these theorems and the dual of étale abelian group bundles.

In Chapter 3, we describe the results in [10]. We study the relation between quotients of

inverse semigroups and quotients of the universal groupoids. Given an inverse semigroup

S, one can associate the universal groupoid Gu(S). We observe that a quotient S ↠ S/ν

of an inverse semigroup S by a congruence ν induces the invariant set Fν of Gu(S) and

the normal subgroupoid Gu(ker ν)Fν ⊂ Gu(S)Fν , where Gu(S)Fν denotes the restriction

of Gu(S) to Fν . Now we may consider the quotient étale groupoid Gu(S)Fν/Gu(ker ν)Fν

and obtain one of the main theorems (Theorem 3.2.1.3).

Theorem B (Theorem 3.2.1.3). Let S be an inverse semigroup and ν be a congruence

on S. Then Gu(S/ν) is isomorphic to Gu(S)Fν/Gu(ker ν)Fν .

This theorem gives us a way to compute the universal groupoids associated to quotient

inverse semigroups. Indeed, we compute the universal groupoid associated to the certain

quotient inverse semigroups including the abelianizations. We show that the abelianiza-

tions of étale groupoids introduced in Chapter 2 corresponds to the abelianizations of

inverse semigroups.

Theorem C (Theorem 3.2.2.3). Let S be an inverse semigroup. Then Gu(S
ab) is iso-

morphic to Gu(S)
ab.

In the last of this chapter, we give applications and examples. We analyse Clifford

inverse semigroups and compute the universal groupoids associated to the free Clifford

inverse semigroups (Theorem 3.3.2.7). We also evaluate the number of fixed points in

transformation groupoids associated to Boolean actions (Corollary 3.3.3.2).
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Chapter 1.

Preliminaries

1.1 Preliminaries

In this section, we recall fundamental notions which we use in this thesis. First, we recall

the definitions and properties of C*-algebras, inverse semigroups and étale groupoids.

Then we explain how to associate C*-algebras to étale groupoids. Finally we define the

notion of inverse semigroup actions and explain how to construct étale groupoids from

given inverse semigroup actions.

1.1.1 C*-algebras

In this subsection, we recall fundamental notions about C*-algebras. See [22] or [5] for

details.

In this thesis, we assume that a coefficient of a vector space is the field of complex

numbers C. A C-algebra is a C-vector space with a multiplication which is compatible

with the structure of C-vector space. A Banach space is a complete normed space.

Definition 1.1.1.1. A Banach space A is called a Banach algebra if A is equipped with

a multiplication such that ‖ab‖ ≤ ‖a‖‖b‖ holds for all a, b ∈ A. A C*-algebra is a Banach

algebra A equipped with an involution A 3 a 7→ a∗ ∈ A such that

1. (αa+ βb)∗ = αa∗ + βb∗ holds for all α, β ∈ C and a, b ∈ A;

2. (a∗)∗ = a holds for all a ∈ A;

3. (ab)∗ = b∗a∗ holds for all a, b ∈ A; and

4. ‖a∗a‖ = ‖a‖2 holds for all a ∈ A.

Definition 1.1.1.2. Let A and B be C*-algebras. A map π : A → B is called a *-

homomorphism if π is a linear map which satisfies π(a1a2) = π(a1)π(a2) and π(a∗1) =

π(a1)
∗ for all a1, a2 ∈ A. C*-algebras A and B are said to be isomorphic if there exist

*-homomorphisms π : A → B and σ : B → A such that σ ◦ π = idA and π ◦ σ = idB
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hold. Equivalently, A and B are isomorphic if there exists a bijective *-homomorphism

π : A→ B.

The continuity of a *-homomorphism is automatically deduced as follows.

Proposition 1.1.1.3 ([22, Proposition 5.2 in Chapter I]). Let A and B be C*-algebras.

Then every *-homomorphism π : A→ B is norm decreasing (i.e. ‖π(a)‖ ≤ ‖a‖ holds for

all a ∈ A). Moreover, π is injective if and only π is an isometry (i.e. ‖π(a)‖ = ‖a‖ holds

for all a ∈ A).

Example 1.1.1.4. Let X be a locally compact Hausdorff space. A continuous function

f : X → C is said to vanish at infinity if for all ε > 0, the set

{x ∈ X | |f(x)| ≥ ε}

is a compact subset of X. The set of all continuous functions on X is denoted by C(X).

The set of all elements in C(X) vanishing at infinity is denoted by C0(X). Then C(X)

and C0(X) are C-algebras with respect to the pointwise operations. For f ∈ C0(X),

define ‖f‖ ··= supx∈X |f(x)|. Then this defines a norm on C0(X) and C0(X) is a Banach

algebra. Since C0(X) has an involution defined by the pointwise complex conjugation,

C0(X) is a C*-algebra. Note that C0(X) = C(X) if and only if X is compact.

We recall the Gelfand-Naimark duality. Let A be a commutative C*-algebra. We

denote the set of characters of A by ∆(A). Recall that ∆(A) is the set of all nonzero

*-homomorphisms from A to C. It is known that ∆(A) is a subset of A∗, the dual space

of A, and a locally compact Hausdorff space with respect to the weak* topology.

Theorem 1.1.1.5 (Gelfand-Naimark). Let A be a commutative C*-algebra. Then A

is isomorphic to C0(∆(A)). Moreover, if a locally compact Hausdorff space Y satisfies

A ' C0(Y ), then Y is homeomorphic to ∆(A).

Another typical example of C*-algebras is a C*-algebras of bounded linear operators

on a Hilbert space.

Example 1.1.1.6. Let H be a Hilbert space. We denote the set of all bounded linear

operators on H by B(H). Then B(H) is a C*-algebra. Recall that the norm of x ∈ B(H)

is defined by

‖x‖ ··= sup
∥ξ∥≤1

‖xξ‖

and the involution of x ∈ B(H) is defined to be the operator x∗ ∈ B(H) which satisfies

〈ξ|x∗η〉 = 〈xξ|η〉
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for all ξ, η ∈ H. The existence and uniqueness of x∗ follow from Riesz representation

theorem.

For a C*-algebra A, a *-homomorphism from A to B(H) is called a *-representation

of A on H. The next theorem states that every C*-algebra is isomorphic to a subalgebra

of B(H).

Theorem 1.1.1.7 (Gelfand-Naimark). Let A be a C*-algebra. Then there exist a Hilbert

space H and an injective *-representation π : A→ B(H).

1.1.2 Inverse semigroups

In this subsection, we recall fundamental notions about inverse semigroups. See [13] or

[14] for more details.

Let S be a semigroup, which is a set equipped with a multiplication with the associative

law. For s ∈ S, an element t ∈ S is called a generalized inverse of s if t satisfies sts = s

and tst = t. A semigroup S is called an inverse semigroup if each s ∈ S admits a unique

generalized inverse, which is denoted by s∗ ∈ S.

Example 1.1.2.1. A group Γ is an inverse semigroup. Note that s∗ = s−1 holds for all

s ∈ Γ.

Example 1.1.2.2. Let n ∈ N be a natural number. For 1 ≤ i, j ≤ n, define ei,j ∈Mn(C)
to be the n× n matrix whose (i, j)th entry is 1 and the other entries are zero. Then

S ··= {ei,j ∈Mn(C) | 1 ≤ i, j ≤ n} ∪ {0}

is an inverse semigroup with respect to the usual product of matrices. Note that ei,jek,l =

δj,kei,l and e
∗
i,j = ej,i hold for all i, j, k, l ∈ {1, 2, . . . , n}, where δk,l denotes the Kronecker

delta.

Example 1.1.2.3. Let X be a topological space. A partial homeomorphism on X is

a homeomorphism between open subsets of X. For a partial homeomorphism f on X,

the domain and range of f are denoted by dom f and ran f respectively. The set of all

partial homeomorphisms on X is denoted by IX . Then IX is an inverse semigroup with

respect to the multiplication defined by the composition of maps. We remark that the

composition f ◦ g ∈ IX of f ∈ IX and g ∈ IX is defined on dom g ∩ g−1(dom f ∩ ran g).

Also remark that the inverse of f ∈ IX is the inverse map f−1.

Let S be an inverse semigroup. By a subsemigroup of an inverse semigroup S, we

mean a subset T ⊂ S closed under the multiplication and generalized inverse s 7→ s∗. We

denote the set of all idempotents in S by E(S) ··= {e ∈ S | e2 = e}. It is known that E(S)
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is a commutative subsemigroup of S. A zero element is a unique element 0 ∈ S such that

0s = s0 = 0 holds for all s ∈ S. A unit is a unique element 1 ∈ S such that 1s = s1 = s

holds for all s ∈ S. An inverse semigroup does not necessarily have a zero element nor

a unit. A subsemigroup N of S is said to be normal if E(S) ⊂ N and sns∗ ∈ N holds

for all s ∈ S and n ∈ N . An order on S is defined by declaring that s ≤ t if st∗t = s for

s, t ∈ S. Remark that e ≤ f is equivalent to ef = e for e, f ∈ E(S). Note that E(S) is a

meet semilattice. Indeed, one can see that the infimum of e, f ∈ E(S) is ef .

We recall that the notion of congruences. A congruence is an equivalence relation which

is compatible with the multiplication of an inverse semigroup.

Definition 1.1.2.4. Let S be an inverse semigroup. An equivalence relation ν on S is

called a congruence if (s, t) ∈ ν implies (as, at) ∈ ν and (sa, ta) ∈ ν for all s, t, a ∈ S.

One can see that S/ν is an inverse semigroup such that the quotient map S → S/ν is

a semigroup homomorphism.

Example 1.1.2.5. Let Γ be a group. There is a one-to-one correspondence between

congruences on Γ and normal subgroups of Γ. For a congruence ν on Γ, define

Nν ··= {n ∈ Γ | (e, n) ∈ ν},

where e ∈ Γ is the unit element. Then Nν is a normal subgroup of Γ. Conversely, for

a normal subgroup N ⊂ Γ, define an equivalence relation νN on Γ by declaring that

(s, t) ∈ νN if s−1t ∈ N for s, t ∈ Γ. Then νN is a congruence on Γ. One can see that

ν = νNν and NνN = N hold for all congruences ν and normal subgroups N ⊂ Γ.

Remark 1.1.2.6. As in Example 1.1.2.5, the notion of congruences corresponds to the

notion of normal subgroups in case of groups. For a general inverse semigroup S, it is

known that a congruence on S corresponds to a congruence pair, which is a pair of normal

inverse subsemigroups of S and a normal congruence on E(S) with some compatibilities.

We do not explain a congruence pair any more because we do not use facts about a

congruence pair. See [15] for details.

A congruence ρ on E(S) is said to be normal if (e, f) ∈ ρ implies (ses∗, sfs∗) ∈ ρ

for all e, f ∈ E(S) and s ∈ S. One of the typical examples of normal congruences is

E(S) × E(S). Assume that ρ is a normal congruence on E(S). Define an equivalence

relation νρ,min on S by declaring that (s, t) ∈ νρ,min if (s∗s, t∗t) ∈ ρ and se = te holds

for some e ∈ E(S) with (e, s∗s) ∈ ρ. Then νρ,min is the minimum congruence on S

such that its restriction to E(S) coincides with ρ. One can see that νE(S)×E(S),min is the

least congruence such that the quotient inverse semigroup becomes a group. We call

S/νE(S)×E(S),min the maximal group image of S.
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Remark. We check that νρ,min is the minimum congruence on S such that its restriction

to E(S) coincides with ρ for the reader’s convenience. It is easy to see that νρ,min is an

equivalence relation on S. We show that νρ,min is a congruence on S. Assume that (s, t) ∈
νρ,min and a ∈ S. It suffices to show (as, at), (sa, ta) ∈ νρ,min. We have (s∗s, t∗t) ∈ ρ and

there exists e ∈ E(S) such that se = te and (s∗s, e) ∈ ρ. Since we have (s∗s, e) ∈ ρ and

ρ is a congruence on E(S), it follows (s∗a∗as, s∗a∗ase) = (s∗a∗ass∗s, s∗a∗ase) ∈ ρ. One

can see that (t∗a∗at, t∗a∗ate) ∈ ρ in the same way. Since we have

s∗a∗ase = (se)∗a∗a(se) = (te)∗a∗a(te) = t∗a∗ate,

it follows (s∗a∗as, t∗a∗at) ∈ ρ from (s∗a∗as, s∗a∗ase) ∈ ρ and (t∗a∗at, t∗a∗ate) ∈ ρ. From

se = te, it follows that

ass∗a∗ase = ase = ate = att∗a∗ate = ats∗a∗ase.

Combining with (s∗a∗as, s∗a∗ase) ∈ ρ, we obtain (as, at) ∈ νρ,min. Next we show

(sa, ta) ∈ νρ,min. Since ρ is normal and (s∗s, t∗t) ∈ ρ, we have (a∗s∗sa, a∗t∗ta) ∈ ρ.

In addition, we have (a∗s∗sa, a∗ea) ∈ ρ and

saa∗ea = sea = tea = taa∗ea.

Hence, we obtain (sa, ta) ∈ νρ,min.

It is easy to show that the restriction of νρ,min to E(S) coincides with ρ. Let ν be

a congruence on S whose restriction to E(S) is ρ. We show νmin,ρ ⊂ ν. Take (s, t) ∈
νmin,ρ. Then there exists e ∈ E(S) such that se = te and (s∗s, e), (t∗t, e) ∈ ρ ⊂ ν.

By (s∗s, e), (t∗t, e) ∈ ν, we have (s, se), (t, te) ∈ ν. Combining with se = te, we obtain

(s, t) ∈ ν. Therefore, νρ,min is the minimum congruence on S whose restriction to E(S)

is ρ.

An inverse semigroup S is said to be Clifford if s∗s = ss∗ holds for all s ∈ S. One can

verify that an inverse semigroup S is Clifford if and only if se = es holds for all s ∈ S

and e ∈ E(S). A congruence ν on S is said to be Clifford if S/ν is Clifford. Similarly, a

congruence ν is said to be commutative if S/ν is commutative.

1.1.3 Étale groupoid

In this subsection, we recall fundamental notions about étale groupoids.

Definition 1.1.3.1. A groupoid is a set G together with a unit space G(0) ⊂ G, domain

and range maps d, r : G→ G(0) and a multiplication

G(2) ··= {(α, β) ∈ G×G | d(α) = r(β)} 3 (α, β) 7→ αβ ∈ G

such that
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1. for all x ∈ G(0), d(x) = x and r(x) = x hold,

2. for all α ∈ G, αd(α) = r(α)α = α holds,

3. for all (α, β) ∈ G(2), d(αβ) = d(β) and r(αβ) = r(α) hold,

4. if (α, β), (β, γ) ∈ G(2), we have (αβ)γ = α(βγ),

5. every γ ∈ G, there exists γ′ ∈ G which satisfies (γ′, γ), (γ, γ′) ∈ G(2) and d(γ) = γ′γ

and r(γ) = γγ′.

Since the element γ′ in (5) is uniquely determined by γ, γ′ is called the inverse of γ and

denoted by γ−1. A subgroupoid of G is a subset of G which is closed under the inverse

and multiplication. For U ⊂ G(0), we define GU ··= d−1(U) and GU ··= r−1(U). We define

also Gx ··= G{x} and Gx ··= G{x} for x ∈ G(0). The isotropy bundle of G is denoted by

Iso(G) ··= {γ ∈ G | d(γ) = r(γ)}. Note that Iso(G) is a subgroupoid of G. If G satisfies

G = Iso(G), then G is called a group bundle over G(0). A group bundle G is said to be

abelian if Gx is an abelian group for all x ∈ G(0).

Definition 1.1.3.2. A topological groupoid G is a groupoid equipped with a topology

where the multiplication and inverse of G are continuous. A topological groupoid G is

said to be étale if the domain map d : G → G(0) is a local homeomorphism (namely, for

all α ∈ G, there exists an open neighborhood U of α such that d(U) ⊂ G(0) is an open

set and the restriction map d|U is a homeomorphism onto d(U)).

An étale topological groupoid is called an étale groupoid for short. Remark that the

range map of an étale groupoid G is also a local homeomorphism, since r(α) = d(α−1)

holds for all α ∈ G and the inverse α 7→ α−1 is a homeomorphism.

We give typical examples of étale groupoids.

Example 1.1.3.3. A topological space is an étale groupoid such that G = G(0) holds. A

discrete group is an étale groupoid such that G(0) is a singleton.

Example 1.1.3.4. Let X be a topological space, Γ be a discrete group and α : Γ y X be

an action. The transformation groupoid Γnα X is defined as follows. Define Γnα X ··=
Γ×X as a topological space. The unit space of ΓnαX is X, which is identified with the

subset of Γnα X via an inclusion X 3 x 7→ (e, x) ∈ Γnα X. The source map and range

map are defined by s((t, x)) = x and r((t, x)) = αt(x) respectively for (t, x) ∈ Γ nα X.

For a pair (t1, y), (t2, x) ∈ Γ nα X with y = αt2(x), their multiplication is defined by

(t1, y) · (t2, x) ··= (t1t2, x). An inverse is given by (t, x)−1 = (t−1, αt(x)). Then, Γnα X is

an étale groupoid.

In some literatures, the condition that the domain map d : G→ G(0) is a local homeo-

morphism in Definition 1.1.3.2 is replaced by the condition that the domain map d : G→
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G is a local homeomorphism. As in Proposition 1.1.3.5, these definitions are equivalent.

Proposition 1.1.3.5 ([8, Proposition 3.2]). Let G be an étale groupoid. Then the unit

space G(0) is an open subset of G. In particular, the domain and range maps d, r are

local homeomorphisms as maps from G to G.

Definition 1.1.3.6. Let G be an étale groupoid. A subset U ⊂ G is called a bisection if

the restrictions d|U and r|U are injective.

Remark 1.1.3.7. By the definition of an étale groupoid, the set of open bisections is a

basis of G. For an open bisection U ⊂ G, d|U and r|U are homeomorphisms onto their

images since they are open maps.

We often use the fact that the multiplication map of an étale groupoid is an open map.

Proposition 1.1.3.8 ([14, Proposition 2.2.4]). Let G be an étale groupoid and U, V ⊂ G

be open sets. Then a set UV ··= {αβ ∈ G | α ∈ U, β ∈ V, d(α) = r(β)} ⊂ G is an open

set. Furthermore, if U, V ⊂ G are open bisections, UV is also an open bisection.

Definition 1.1.3.9. Let G1 and G2 be groupoids. A map Φ: G1 → G2 is called a

groupoid homomorphism if (Φ(α),Φ(β)) ∈ G
(2)
2 and Φ(αβ) = Φ(α)Φ(β) hold for all

(α, β) ∈ G
(2)
1 .

As a morphism between étale groupoids, we often consider a groupoid homomorphism

which is a local homeomorphism. Whether an étale groupoid homomorphism is a local

homeomorphism or not is determined by its behaviour on the unit spaces as the following

proposition shows. This proposition follows from the definition of étale groupoids.

Proposition 1.1.3.10. Let G and H be étale groupoids. A groupoid homomorphism

Φ: G → H is a local homeomorphism if and only if Φ|G(0) : G(0) → H(0) is a local

homeomorphism.

As in the case of group actions, the notion of invariant sets is defined for étale groupoids.

Definition 1.1.3.11. Let G be a groupoid. A subset F ⊂ G(0) is said to be invariant if

d(γ) ∈ F implies r(γ) ∈ F for all γ. A point x ∈ G(0) is called a fixed point if {x} ⊂ G(0)

is invariant.

Note that a set F ⊂ G(0) is invariant if and only if G(0) \ F is invariant. If F ⊂ G(0) is

invariant, then GF = GF ∩ GF holds and GF ⊂ G is a subgroupoid whose unit space is

F . In particular, Gx ⊂ G is a discrete group if x ∈ G(0) is a fixed point.

Proposition 1.1.3.12. Let G be an étale groupoid with the Hausdorff unit space G(0).

Then the set of all fixed points F ⊂ G(0) is a closed subset.

12



Proof. We show that G(0) \ F ⊂ G(0) is an open set. Take x ∈ G(0) \ F . Then there

exists γ ∈ G such that x = d(γ) and x 6= r(γ). Take an open bisection U which contains

γ. Let SU : d(U) → r(U) denote a homeomorphism defined by SU(d(α)) = r(α) for each

α ∈ U . Since G(0) is Hausdorff, there exist open sets U1, V1 ⊂ G(0) such that d(γ) ∈ U1,

r(γ) ∈ V1 and U1 ∩ V1 = ∅. By the continuity of SU , there exists an open set U2 ⊂ U

such that γ ∈ U2 and r(U2) ⊂ V1. Now one can see x ∈ d(U2) ⊂ G(0) \ F . Therefore,

G(0) \ F ⊂ G(0) is an open set.

We will use the next proposition for the set of all fixed points.

Proposition 1.1.3.13. Let G be an étale groupoid with the locally compact Hausdorff

unit space G(0) and U, F ⊂ G(0) be an invariant open and closed subset respectively.

Then GU ⊂ G is an open subgroupoid of G and an étale groupoid with the locally

compact Hausdorff unit space U in the relative topology. Similarly, GF ⊂ G is a closed

subgroupoid of G and an étale groupoid with the locally compact Hausdorff unit space

F in the relative topology.

Proof. Observe that U and F are locally compact Hausdorff spaces in the relative

topology of G(0). Now it is clear that GU and GF are étale groupoids.

1.1.4 Étale groupoid C*-algebras

Following Connes’s idea in [7], we associate a C*-algebra to an étale groupoid which is

not necessarily Hausdorff. If G is not Hausdorff, the set of all continuous functions on G

is not enough to capture the structure of G. The key idea is to consider functions which

are continuous on some open set but not necessarily continuous on the whole space. See

[8, Section 3] for more details.

We assume that the unit space G(0) is a locally compact Hausdorff space with respect

to the relative topology when we consider groupoid C*-algebras. Remark that the whole

space G is not necessarily a Hausdorff space. Since d : G → G(0) is a local homeomor-

phism, G has a basis which consists of locally compact Hausdorff subsets.

Let G be an étale groupoid with the locally compact Hausdorff unit space G(0). For an

open Hausdorff subset U ⊂ G, we denote the set of all continuous functions on U with

compact support by Cc(U). We regard an element in Cc(U) as an element in Funct(G),

the vector space of all complex valued functions on G, by defining it to be 0 outside of U .

We define C(G) ··= span
⋃

U Cc(U) ⊂ Funct(G), where the union is taken over all open

Hausdorff subsets U ⊂ G.

If G is Hausdorff, then C(G) coincides with Cc(G). If G is not Hausdorff, an element

in C(G) may not be continuous.
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Proposition 1.1.4.1 ([8, Proposition 3.10]). Let G be an étale groupoid with the locally

compact Hausdorff unit space G(0). Take an open basis {Ui}i∈I of G consisting of open

Hausdorff subsets. Then C(G) is the linear span of
⋃

i∈I Cc(Ui). In particular, C(G) is

the linear span of
⋃

U Cc(U), where the union is taken over all open bisections of G.

Proof. This follows from the partition of unity argument.

Definition 1.1.4.2. Let G be an étale groupoid with the locally compact Hausdorff unit

space G(0). Recall that C(G) is equipped with a structure of C-vector space by pointwise

addition and scalar multiplication. The multiplication f ∗ g ∈ C(G) and involution

f ∗ ∈ C(G) of f, g ∈ C(G) are defined by

f ∗ g(γ) =
∑

β∈Gd(γ)

f(γβ−1)g(β), f ∗(γ) = f(γ−1).

Then C(G) is a *-algebra under these operations.

One can see that Cc(G
(0)) ⊂ C(G) is a *-subalgebra.

Lemma 1.1.4.3 ([8, Proposition 3.14]). Let G be an étale groupoid with the locally

compact Hausdorff unit space G(0) and f ∈ C(G). Then there exists a constant Cf ≥ 0

such that ‖ρ(f)‖ ≤ Cf for all Hilbert spaces H and *-homomorphisms ρ : C(G) → B(H).

Proof. We may assume that f ∈ Cc(U) for some open bisection U ⊂ G. One can see

that f ∗ ∗ f ∈ Cc(G
(0)). Since Cc(G

(0)) is a union of commutative C*-algebras, we have

‖ρ(h)‖ ≤ supx∈G(0)|h(x)| for all h ∈ Cc(G
(0)). Then we obtain ‖ρ(f)‖2 = ‖ρ(f ∗ ∗ f)‖ ≤

supx∈G(0)|f ∗ ∗ f(x)| <∞.

Let G be an étale groupoid with the locally compact Hausdorff unit space G(0). We

denote the left regular representation by λx : C(G) → ℓ2(Gx) at x ∈ G(0), which is defined

by

λx(f)δβ =
∑

d(α)=r(β)

f(α)δαβ

for f ∈ C(G) and β ∈ Gx. One can see that
⊕

x∈G(0) λx is a faithful *-representation of

C(G). The reduced norm of f ∈ C(G) is defined by

‖f‖ ··= sup
x∈G(0)

‖λx(f)‖.

We denote the reduced groupoid C*-algebra of G by C∗
λ(G), which is the completion of

C(G) by the reduced norm.

The universal norm of f ∈ C(G) is defined by

‖f‖ ··= sup{‖ρ(f)‖ | ρ : C(G) → B(H) is a *-representation}.
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By Lemma 1.1.4.3, the universal norm takes values in [0,∞). Since the left regular

representations of C(G) induces a faithful *-representation of C(G), the universal norm

becomes a C*-norm (see [6, Section 4]). The completion of C(G) by universal norm is

denoted by C∗(G). We shall remark that every *-representation of C(G) induces the *-

representation of C∗(G). Note that the inclusion Cc(G
(0)) ⊂ C(G) extends to C0(G

(0)) ⊂
C∗(G).

Proposition 1.1.4.4. Let G be an étale groupoid with the locally compact Hausdorff

unit space G(0) and F ⊂ G(0) be a closed invariant set. Then the restriction C(G) 3 f 7→
f |GF

∈ C(GF ) extends to the surjective *-homomorphism C∗(G) → C∗(GF ).

Proof. First, we check that f |GF
∈ C(GF ) for all f ∈ C(G). We may assume that

f ∈ Cc(U) for some open Hausdorff subset U ⊂ G, since C(G) is spanned by
⋃

U Cc(U),

where the union is taken over all open Hausdorff subsets U ⊂ G. Defining V ··= GF ∩U ,
V is a Hausdorff open subset of GF . Then f |GF

is contained in Cc(V ) ⊂ C(GF ).

Direct calculations imply that the restriction C(G) 3 f 7→ f |GF
∈ C(GF ) is a *-

homomorphism.

Next, we show that the restriction C(G) 3 f 7→ f |GF
∈ C(GF ) is surjective. Note that

{GF ∩ U | U ⊂ G is an open Hausdorff subset} is an open basis of GF . Take an open

Hausdorff subset U ⊂ G and f ∈ Cc(GF ∩U) arbitrarily. Put V ··= GF ∩U . Since V ⊂ U

is a closed subset of U and f ∈ Cc(V ), there exists f̃ ∈ Cc(U) such that f̃ |V = f by the

Tietze extension theorem. Now we obtain f̃ ∈ C(G) such that f̃ |GF
= f . By Proposition

1.1.4.1, C(GF ) is the linear span of
⋃

U Cc(GF ∩ U), where the union is taken over all

open Hausdorff subsets U ⊂ G. Therefore, the restriction C(G) 3 f 7→ f |GF
∈ C(GF ) is

surjective.

By the universality of C∗(G), the restriction C(G) 3 f 7→ f |GF
∈ C(GF ) extends to

the *-homomorphism C∗(G) → C∗(GF ). Since the image of C∗(G) is dense in C∗(GF ),

C∗(G) → C∗(GF ) is surjective.
1)

1.1.5 Étale groupoids associated to inverse semigroup actions

In this subsection, we recall how to construct an étale groupoid from inverse semigroup

actions.

Let X be a topological space. We denote by IX the inverse semigroup of homeomor-

phisms between open sets in X. An action α : S y X of an inverse semigroup S on X

is a semigroup homomorphism S 3 s 7→ αs ∈ IX . For e ∈ E(S), we denote the domain

of αe by D
α
e . Then αs is a homeomorphism from Dα

s∗s to D
α
ss∗ . In this thesis, we always

1) Now we use the fact that the image of a *-homomorphism becomes a closed subset. See [22, Chapter I].
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assume that
⋃

e∈E(S)D
α
e = X holds.

For an action α : S y X, we associate an étale groupoid SnαX as the following. First

we put the set S ∗ X ··= {(s, x) ∈ S × X | x ∈ Dα
s∗s}. Then we define an equivalence

relation ∼ on S ∗X by (s, x) ∼ (t, y) if

x = y and there exists e ∈ E(S) such that x ∈ Dα
e and se = te.

Set S nα X ··= S ∗X/∼ and denote the equivalence class of (s, x) ∈ S ∗X by [s, x]. The

unit space SnαX is X, where X is identified with the subset of SnαX via the injection

X 3 x 7→ [e, x] ∈ S nα X, x ∈ Dα
e .

The source and range maps are defined by

d([s, x]) = x, r([s, x]) = αs(x)

for [s, x] ∈ S nα X. The product of [s, αt(x)], [t, x] ∈ S nα X is [st, x]. The inverse is

[s, x]−1 = [s∗, αs(x)]. Then S nα X is a groupoid with these operations. For s ∈ S and

an open set U ⊂ Dα
s∗s, define

[s, U ] ··= {[s, x] ∈ S nα X | x ∈ U}.

These sets form an open basis of SnαX. With this structure, SnαX is an étale groupoid.

Let S be an inverse semigroup. Now we define the spectral action β : S y Ê(S). A

character on E(S) is a nonzero semigroup homomorphism from E(S) to {0, 1}, where
{0, 1} is an inverse semigroup with the usual product. The set of all characters on E(S)

is denoted by Ê(S). We view Ê(S) as a locally compact Hausdorff space with respect to

the topology of pointwise convergence. Define

N e
P
··= {ξ ∈ Ê(S) | ξ(e) = 1, ξ(p) = 0 for all p ∈ P}

for e ∈ E(S) and a finite subset P ⊂ E(S). Then these sets form a basis for the topology

on Ê(S). For e ∈ E(S), we define Dβ
e
··= {ξ ∈ Ê(S) | ξ(e) = 1}. For each s ∈ S and

ξ ∈ Dβ
s∗s, define βs(ξ) ∈ Dβ

ss∗ by βs(ξ)(e) = ξ(s∗es), where e ∈ E(S). Then β is an action

β : S y Ê(S), which we call the spectral action of S. Now the universal groupoid of S is

defined to be Gu(S) ··= S nβ Ê(S).

16



Chapter 2.

Quotients of étale groupoids and the

abelianizations of groupoid C*-algebras

In this chapter, we review main results obtained in [11]. First, we introduce the notion

of quotient étale groupoids in Section 2.1. Then we observe that quotients of étale

groupoids induce quotients of groupoid C*-algebras. In section 2.2, we investigate the

abelianizations of groupoid C*-algebras. For a given étale groupoid, we construct an

étale group bundle which describes the abelianization of the original associated groupoid

C*-algebra.

2.1 Quotients of étale groupoids

In this section we introduce the notion of quotient étale groupoids. Then we will

observe that a quotient of an étale groupoid induces a *-homomorphism of a groupoid

C*-algebra.

2.1.1 Quotients of étale groupoids

In this subsection we introduce the notion of quotient étale groupoids. First, we define

normal subgroupoids and quotient groupoids. Then we show that quotient groupoids of

étale groupoids by open normal subgroupoids again become étale.

Definition 2.1.1.1. Let G be a groupoid. A subgroupoid H ⊂ G is said to be normal if

1. G(0) ⊂ H ⊂ Iso(G) holds and

2. αHα−1 ⊂ H holds for all α ∈ G.

Definition 2.1.1.2. Let G be a groupoid and H ⊂ G be a normal subgroupoid. Then

we define an equivalence relation ∼ on G by declaring that α ∼ β if d(α) = d(β) and

αβ−1 ∈ H. We denote the quotient set G/∼ by G/H.
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We prove some lemmas needed to define the groupoid structure of a quotient groupoid.

Lemma 2.1.1.3. Let G be a groupoid and H ⊂ G be a normal subgroupoid. Suppose

that α, α′ ∈ G satisfy α ∼ α′. Then we have d(α) = d(α′) and r(α) = r(α′).

Proof. It follows that d(α) = d(α′) from the definition of α ∼ α′. Since αα′−1 ∈ H ⊂
Iso(G), we have r(α) = r(αα′−1) = d(αα′−1) = r(α′).

Lemma 2.1.1.4. Let G be a groupoid and H ⊂ G be a normal subgroupoid. Suppose

that α, α′, β, β′ ∈ G satisfy α ∼ α′, β ∼ β′, d(α) = r(β). Then we have d(α′) = r(β′) and

αβ ∼ α′β′.

Proof. By Lemma 2.1.1.3, we have d(α) = d(α′) and r(β) = r(β′). Using d(α) = r(β),

we obtain d(α′) = r(β′).

The last assertion follows from a simple calculation. Indeed, we have d(αβ) = d(β) =

d(β′) = d(α′β′) and

αβ(α′β′)−1 = αββ′−1α′−1 = (αββ′−1α−1)(αα′−1) ∈ H.

Note that αββ′−1α−1 ∈ H, since H is normal.

Definition 2.1.1.5. Let G be a groupoid, H ⊂ G be a normal subgroupoid and q : G→
G/H be the quotient map. A groupoid structure of G/H is defined as follows:

• a unit space (G/H)(0) is q(G(0)), which can be identified with G(0) via an injection

q|G(0) ;

• domain and range maps d, r : G/H → G(0) are defined by d(q(γ)) ··= q(d(γ));

r(q(γ)) ··= q(r(γ)) for γ ∈ G;

• a multiplication of G/H is defined by q(α)q(β) ··= q(αβ) for α, β ∈ G with d(α) =

r(β).

One can see that the inverse map of G/H satisfies q(γ)−1 = q(γ−1) for γ ∈ G. Then G/H

is a groupoid under these operations.

Remark 2.1.1.6. The operations of G/H are well-defined by Lemma 2.1.1.3 and Lemma

2.1.1.4.

If G is a topological groupoid, then we consider the quotient topology as a topology of

G/H.

Lemma 2.1.1.7. Let G be an étale groupoid and H ⊂ G be an open normal sub-

groupoid. Then the quotient map q : G → G/H is an open map. Furthermore, q is a

local homeomorphism.
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Proof. Let U ⊂ G be an open subset. Then q−1(q(U)) = UH is an open subset of G

by Proposition 1.1.3.8. Hence, q(U) ⊂ G/H is an open subset by the definition of the

quotient topology.

Next, we show that the quotient map q : G → G/H is a local homeomorphism. Fix a

γ ∈ G. Then take an open bisection U ⊂ G with γ ∈ U . One can see that q|U is injective.

Since q is an open map, q|U is a homeomorphism onto an open subset q(U) ⊂ G. Hence,

q is a local homeomorphism.

Observe that q|G(0) : G(0) → (G/H)(0) is homeomorphic.

Proposition 2.1.1.8. Let G be an étale groupoid and H ⊂ G be an open normal

subgroupoid. Then G/H is an étale groupoid.

Proof. First, we show the continuity of the inverse G/H 3 δ 7→ δ−1 ∈ G/H. One can

see that the map G 3 γ 7→ q(γ)−1 ∈ G/H is continuous, since the following diagram is

commutative:

G G

G/H G/H.

inverse

q q

inverse

By the definition of the quotient topology, the inverse of G/H is continuous.

Next, we show that the multiplication of G/H is continuous. Take (q(α), q(β)) ∈
(G/H)(2) and an open set U ⊂ G/H such that q(α)q(β) ∈ U . Since αβ ∈ q−1(U) and

q−1(U) ⊂ G is open, there exist open sets V1, V2 ⊂ G such that α ∈ V1, β ∈ V2 and

V1V2 ⊂ q−1(U). Since the subsets V1, V2 ⊂ G are open, q(V1), q(V2) ⊂ G/H are also open.

One can see that q(α) ∈ q(V1), q(β) ∈ q(V2) and q(V1)q(V2) = q(V1V2) ⊂ U . Therefore,

the multiplication of G/H is continuous.

Finally, we show that G/H is étale. Since the restriction q|G(0) gives a homeomorphism

from G(0) to (G/H)(0), (G/H)(0) is a locally compact Hausdorff space. One can see that

the domain map d : G/H → (G/H)(0) is a local homeomorphism, since we have Lemma

2.1.1.7 and the following diagram is commutative for every open bisection U ⊂ G:

U q(U)

d(U) d(q(U)).

q

d d

q

Therefore, G/H is an étale groupoid.

Now we obtain the next theorem by Lemma 2.1.1.7 and Proposition 2.1.1.8,
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Theorem 2.1.1.9 ([11, Theorem 3.10]). Let G be an étale groupoid and H ⊂ G be an

open normal subgroupoid. Then the sequence of the étale groupoids

H G G/H
inclusion q

is exact, that is, q−1((G/H)(0)) = H.

We have the fundamental homomorphism theorem. The proof is straightforward.

Proposition 2.1.1.10. Let G and H be étale groupoids and Φ: G→ H be a continuous

groupoid homomorphism which is a local homeomorphism. Assume that Φ is injective on

G(0). Then kerΦ ··= Φ−1(H(0)) is an open normal subgroupoid of G. Moreover there exist

an isomorphism Φ̃: G/ kerΦ → Φ(G) which makes the following diagram commutative:

G H

G/ kerΦ

Φ

Q
Φ̃

,

where Q : G→ G/ kerΦ denotes the quotient map.

As in the case of topological groups, Hausdorffness of a quotient groupoid can be

characterized as follows.

Proposition 2.1.1.11. Let G be an étale groupoid and H ⊂ G be an open normal

subgroupoid. Then G/H is Hausdorff if and only if H ⊂ G is closed.

Proof. Recall that an étale groupoid G is Hausdorff if and only if its unit space G(0)

is a closed subset of G (see, for example, [20, Lemma 2.3.2]). If G/H is Hausdorff,

(G/H)(0) ⊂ G/H is closed. Hence, H = q−1((G/H)(0)) is a closed subset of G.

Suppose that H ⊂ G is closed. Since q is an open map, (G/H) \ (G/H)(0) = q(G \
H) ⊂ G/H is open. Hence, (G/H)(0) ⊂ G/H is closed, which implies that G/H is

Hausdorff.

Proposition 2.1.1.12. Let G be an étale groupoid. Then the interior of isotropy

Iso(G)◦ ⊂ Iso(G) is a normal subgroupoid.

Proof. We show that Iso(G)◦ is normal. By Proposition 1.1.3.5, G(0) is contained in

Iso(G)◦. Take α ∈ G and γ ∈ Iso(G)◦ with d(α) = r(γ). There exist open bisections

U, V ⊂ G with α ∈ U and γ ∈ V ⊂ Iso(G). Then, by Proposition 1.1.3.8, UV U−1 ⊂ G

is an open subset which contains αγα−1. Since U is bisection and V ⊂ Iso(G), we
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have UV U−1 ⊂ Iso(G). Therefore, αγα−1 ∈ Iso(G)◦ and Iso(G)◦ is an open normal

subgroupoid.

An étale groupoid G/ Iso(G)◦, which is a special case of quotient groupoids, coincides

with a groupoid of germs of the canonical action (see [19, Section 3]). One can see that

G/ Iso(G)◦ is effective1).

2.1.2 *-homomorphisms induced by quotients of étale groupoids

For an étale groupoid G and an open normal subgroupoid H ⊂ G, we have obtained

the quotient étale groupoid G/H. Next, we see that the quotient map q : G → G/H

induces a *-homomorphism C∗(G) → C∗(G/H).

Let G be an étale groupoid with the locally compact Hausdorff unit space G(0). For

f ∈ C(G), we define f̃ : G/H → C by

f̃(γ) ··=
∑

q(α)=γ

f(α)

for γ ∈ G/H. Then the following proposition holds.

Proposition 2.1.2.1. LetG be an étale groupoid with the locally compact Hausdorff unit

space G(0) and H ⊂ G be an open normal subgroupoid. Then C(G) 3 f 7→ f̃ ∈ C(G/H)

is a surjective *-homomorphism.

Proof. First, we show f̃ ∈ C(G/H). We may assume that there exists an open bisection

U ⊂ G such that f |U ∈ Cc(U) and f |G\U = 0. Then q(U) ⊂ G/H is an open bisection

and f̃ |q(U) = f ◦ (q|U)−1 ∈ Cc(q(U)), since q|U is a homeomorphism onto the image.

Moreover, one can see that f̃(G/H)\q(U) = 0. Hence, f̃ ∈ Cc(q(U)) ⊂ C(G/H).

We show that C(G) 3 f 7→ f̃ ∈ C(G/H) is a *-homomorphism. We only check that

C(G) 3 f 7→ f̃ ∈ C(G/H) preserves the multiplications, since it is easy to check that this

map is linear and preserves the involution. For all f, g ∈ C(G) and γ′ ∈ G/H, we have

f̃ ∗ g(γ′) =
∑

q(γ)=γ′

f ∗ g(γ) =
∑

q(γ)=γ′

∑
αβ=γ

f(α)g(β) =
∑

q(αβ)=γ′

f(α)g(β),

f̃ ∗ g̃(γ′) =
∑

α′β′=γ′

f̃(α′)g̃(β′) =
∑

α′β′=γ′

∑
q(α)=α′

∑
q(β)=β′

f(α)g(β)

=
∑

q(αβ)=γ′

f(α)g(β).

Finally, we show that C(G) 3 f 7→ f̃ ∈ C(G/H) is surjective. Note that

{q(U) ⊂ G/H | U ⊂ G is an open bisection}

1) Recall that an étale groupoid G is said to be effective if G(0) = Iso(G)◦ holds
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is an open basis of G. Let U ⊂ G be an open bisection and f ∈ Cc(q(U)). One can see

that q|U is a homeomorphism onto its image. Define g ··= f ◦ q|U ∈ Cc(U). Then we

have g̃ = f . By Proposition 1.1.4.4, C(G/H) is the linear span of
⋃

U Cc(q(U)), where

the union is taken over all open bisections U ⊂ G. Hence, C(G) 3 f 7→ f̃ ∈ C(G/H) is a

surjective *-homomorphism.

By Proposition 2.1.2.1, the map C(G) 3 f 7→ f̃ ∈ C(G/H) ⊂ C∗(G/H) is a *-

homomorphism. By the definition of the universal norm of C(G), we have ‖f̃‖ ≤ ‖f‖
for all f ∈ C(G). Therefore, the *-homomorphism in Proposition 2.1.2.1 extends to the

*-homomorphism Q : C∗(G) → C∗(G/H). Since the image of Q is dense in C∗(G/H), Q

is surjective (see, for example, [2, Corollary II.5.1.2]).

We make some observations on a Cuntz-Krieger uniqueness theorem in the remainder

of this section.

Lemma 2.1.2.2. Let Q : C∗(G) → C∗(G/H) be the *-homomorphism as above. Then

kerQ ∩ C0(G
(0)) = {0} holds.

Proof. Since the universal norm of a function in Cc(G
(0)) coincides with the supremum

norm, Q|Cc(G(0)) is isometric. Therefore, Q|C0(G(0)) is isometric and kerQ ∩ C0(G
(0)) =

{0}.

Lemma 2.1.2.3. Let G be an étale groupoid with the locally compact Hausdorff unit

space G(0) and H ⊂ G be an open normal subgroupoid. Then the *-homomorphism

Q : C∗(G) → C∗(G/H) induced by Proposition 2.1.2.1 is injective if and only if H = G(0).

Proof. It is clear that the *-homomorphism Q : C∗(G) → C∗(G/H) is injective if H =

G(0). Suppose that G(0) ( H and take γ0 ∈ H \ G(0). There exists an open bisection

U ⊂ G with γ0 ∈ U ⊂ H. By the Urysohn lemma, there exists f1 ∈ Cc(U) with

f1(γ0) = 1. Define f2 ∈ Cc(G
(0)) by

f2(γ) =

f1 ◦ (d|U)−1(γ) (γ ∈ d(U))

0 (γ ∈ G(0) \ d(U)).

We have f ··= f1 − f2 6= 0, since f(γ0) = 1. One can see that Q(f) = 0, which implies

that Q is not injective.

Recall that an étale groupoid G is said to be effective if G(0) = Iso(G)◦.

Corollary 2.1.2.4 (cf. [3, Proposition 5.5]). Let G be an étale groupoid with the locally

compact Hausdorff unit space G(0). Assume that every nonzero ideal I ⊂ C∗(G) satisfies

I ∩ C0(G
(0)) 6= {0}. Then G is effective.
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Figure 2.1 Picture of X in Example 2.1.2.6

Proof. By Proposition 2.1.1.12, Iso(G)◦ is a normal subgroupoid of G. Letting

Q : C∗(G) → C∗(G/ Iso(G)◦) be the *-homomorphism induced by Proposition 2.1.2.1,

we have kerQ ∩ C0(G
(0)) = {0} by Lemma 2.1.2.2. The assumption implies that

Q : C∗(G) → C∗(G/ Iso(G)◦) is injective. Therefore, we obtain Iso(G)◦ = G(0) by Lemma

2.1.2.3.

Remark 2.1.2.5. It was proved in [3, Proposition 5.5] that Corollary 2.1.2.4 holds for

Hausdorff étale groupoids. In [3, Proposition 5.5], the authors use the augmentation

representation, which seems to work for non-Hausdorff étale groupoids.

As shown in Proposition 2.1.2.1, the quotient map G→ G/ Iso(G)◦ of étale groupoids

induces the *-homomorphism C∗(G) → C∗(G/ Iso(G)◦). Using this *-homomorphism,

we obtain the proof of Corollary 2.1.2.4, which seems to be more direct than that in [3,

Proposition 5.5].

The converse of Corollary 2.1.2.4 does not hold for non-Hausdorff étale groupoids.

Indeed, Exel showed that there exists an effective étale groupoid G such that there exists

a nonzero ideal I ⊂ C∗(G) with I ∩ C0(G
(0)) 6= {0} in [9] (cf. Example 2.1.2.6).

Example 2.1.2.6 ([9, Section 2]). Let X ··= ([−1, 1] × {0}) ∪ ({0} × [−1, 1]) ⊂ R2 (see

figure 2.1) and K ··= {e, s, t, st} be the Klein group, which is isomorphic to Z/2Z⊕Z/2Z.
We define an action σ of K on X by

σs((x, y)) = (−x, y), σt((x, y)) = (x,−y), σst((x, y)) = (−x,−y)

for (x, y) ∈ X.

Consider the transformation groupoid G ··= K nσ X (see Example 1.1.3.4). One can

see that

Iso(G) = G(0) ∪ {(s, (0, y)) ∈ G | y ∈ [−1, 1]}
∪ {(t, (x, 0)) ∈ G | x ∈ [−1, 1]} ∪ {(st, (0, 0))}.

Moreover, we have Iso(G)◦ = Iso(G) \ {(s, (0, 0)), (t, (0, 0)), (st, (0, 0))}. Since Iso(G)◦ is

not closed in G (for example, (s, (0, 0)) ∈ Iso(G)◦ \ Iso(G)◦), the quotient étale groupoid

G/ Iso(G)◦ is not Hausdorff by Proposition 2.1.1.11. In [9], Exel shows that there exists
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a nonzero ideal I ⊂ C∗(G/ Iso(G)◦) with I ∩ C0((G/ Iso(G)
◦)(0)) = {0}, although it is

effective.

Let G be an étale groupoid with the locally compact Hausdorff unit space G(0). In

[6], the authors defined the notion of singularity for an element of C∗
λ(G). An element

a ∈ C∗
λ(G) is said to be singular if the interior of {γ ∈ G | 〈δγ|λd(γ)(a)δd(γ)〉 6= 0} is empty,

where δγ ∈ ℓ2(Gd(γ)) denotes the delta function at γ ∈ Gd(γ). In [6], the authors proved

the following theorem.

Theorem 2.1.2.7 ([6, Theorem 4.4]). Let G be a second countable étale groupoid with

the locally compact Hausdorff unit space G(0). Assume that G is effective and C∗
λ(G) has

no nonzero singular element. Then every nonzero ideal I ⊂ C∗
λ(G) satisfies I∩C0(G

(0)) 6=
{0}.

By the universality of C∗(G), the left representation extends to the *-representation

λx : C
∗(G) → B(ℓ2(Gx)). Following [6], we say that an element a ∈ C∗(G) is singular if

the interior of {γ ∈ G | 〈δγ|λd(γ)(a)δd(γ)〉 6= 0} is empty. A uniqueness theorem for C∗(G)

implies that C∗(G) has no nonzero singular elements.

Proposition 2.1.2.8. Let G be a second countable étale groupoid with the locally com-

pact Hausdorff unit space G(0). Assume that every nonzero ideal I ⊂ C∗(G) satisfies

I ∩ C0(G
(0)) 6= {0}. Then C∗(G) has no nonzero singular elements.

Proof. Observe that the canonical surjective *-homomorphism C∗(G) → C∗
λ(G) is iso-

morphic by the assumption. Note that G is effective by Proposition 2.1.2.4. We define

S ··= {x ∈ G(0) | Gx ∩ Gx = {x}}. One can see that S is an invariant set. Moreover, S

is a dense subset of G(0) by [19, Proposition 3.6]. Therefore, letting π ··=
⊕

x∈S λx, π is

injective on C0(G
(0)). Then π is injective by the assumption.

Let a ∈ C∗(G) be a singular element. By [6, Lemma 4.2], we have

d({γ ∈ G | 〈δγ|λd(γ)(a)δd(γ)〉 6= 0}) ⊂ G(0) \ S.

Using this fact, we show π(a) = 0. Take x ∈ S. Assume that there exist α, β ∈ Gx such

that

〈δα|λx(a)δβ〉 6= 0.

Then we have

〈δαβ−1|λd(β−1)(a)δd(β−1)〉 = 〈δα|λx(a)δβ〉 6= 0.

It follows that r(β) = d(β−1) 6∈ S. This contradicts the fact that x = d(β) ∈ S and S is

invariant. Now we have 〈δα|λx(a)δβ〉 = 0 for all α, β ∈ Gx and therefore λx(a) = 0 holds
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for all x ∈ S. Now we have π(a) = 0, which implies a = 0. Hence, C∗(G) has no nonzero

singular element.

2.2 The abelianizations of étale groupoid C*-algebras

In this section we calculate the abelianizations of étale groupoid C*-algebras. First, we

recall the abelianizations of C*-algebras, following [1, Definition 2.8]. For a C*-algebra

A, its abelianization is defined by Aab = A/I, where I ⊂ A is the closed two-sided

ideal generated by {xy − yx ∈ A | x, y ∈ A}. The abelianization Aab is a commutative

C*-algebra with the following universality: for all commutative C*-algebra B and *-

homomorphism π : A → B, there exists the unique *-homomorphism π̃ : Aab → B such

that π̃ ◦ q = π, where q : A→ Aab denotes the quotient map.

2.2.1 One dimensional representations of a groupoid C*-algebra

For a C*-algebra A, we denote the set of all one-dimensional nondegenerate represen-

tations of A by ∆(A). Namely, ∆(A) is the set of all nonzero *-homomorphisms from

A to C. We suppose that ∆(A) is equipped with the pointwise convergence topology.

If A is commutative, ∆(A) is known as the Gelfand spectrum of A. First, we calculate

∆(C∗(G)).

Let G be an étale groupoid with the locally compact Hausdorff unit space G(0) and

x ∈ G(0) be a fixed point of G. Note that Gx is a discrete group. We temporarily

denote the surjection in Proposition 1.1.4.4 by Qx : C
∗(G) → C∗(Gx). Also, we denote

the circle group by T ··= {z ∈ C | |z| = 1}. For a group homomorphism χ : Gx → T, the
map Cc(Gx) 3 f 7→

∑
γ∈Gx

χ(γ)f(γ) ∈ C is a *-homomorphism. This *-homomorphism

extends to the *-homomorphism C∗(Gx) → C, which we also denote by χ : C∗(Gx) → C.

Definition 2.2.1.1. Let G be an étale groupoid with the locally compact Hausdorff unit

space G(0), x ∈ G(0) be a fixed point and χ : Gx → T be a group homomorphism. Then

we define a *-homomorphism φx,χ : C
∗(G) → C by φx,χ ··= χ ◦Qx.

We will show that all elements of ∆(C∗(G)) have this form (Theorem 2.2.1.8).

Proposition 2.2.1.2. Let G be an étale groupoid with the locally compact Hausdorff

unit space G(0) and φ ∈ ∆(C∗(G)). Then there exists unique xφ ∈ G(0) which satisfies

φ(f) = f(xφ) for all f ∈ C0(G
(0)).

Proof. We have φ|C0(G0) 6= 0 since C0(G
(0)) has an approximate identity of C∗(G).

Therefore, φ|C0(G(0)) belongs to ∆(C0(G
(0))). Now the existence and uniqueness of xφ ∈

G(0) follow from the Gelfand-Naimark theorem.
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Proposition 2.2.1.3. Let G be an étale groupoid with the locally compact Hausdorff

unit space G(0) and φ ∈ ∆(C∗(G)). Then xφ ∈ G(0) as defined in Proposition 2.2.1.2 is a

fixed point.

Proof. Assume that γ ∈ G satisfies d(γ) = xφ. We will show r(γ) = xφ. There exists an

open bisection U ⊂ G with γ ∈ U . Take nγ ∈ Cc(U) which satisfies nγ(γ) = 1. Note that

we have n∗
γ ∗ nγ ∈ Cc(G

(0)) and n∗
γ ∗ nγ(xφ) = |nγ(γ)|2 = 1. Fix f ∈ Cc(G

(0)) arbitrarily.

Direct calculations show that n∗
γ ∗ f ∗ nγ(xφ) = nγ(γ)f(r(γ))nγ(γ) = f(r(γ)). On the

other hand, one can see that n∗
γ ∗ f ∗ nγ ∈ Cc(G

(0)). Then we have

n∗
γ ∗ f ∗ nγ(xφ) = φ(n∗

γ ∗ f ∗ nγ) = φ(n∗
γ)φ(f)φ(nγ) = φ(n∗

γ ∗ nγ)φ(f) = f(xφ).

Therefore, f(r(γ)) = f(xφ) holds for all f ∈ Cc(G
(0)), which implies r(γ) = xφ. Hence,

xφ ∈ G(0) is a fixed point of G.

Proposition 2.2.1.4. Let G be an étale groupoid with the locally compact Hausdorff

unit space G(0), φ ∈ ∆(C∗(G)) and γ ∈ Gxφ . Take an open bisection Uγ ⊂ G with γ ∈ Uγ

and fγ ∈ Cc(Uγ) with fγ(γ) = 1. Then φ(fγ) is independent of the choice of Uγ and fγ.

Moreover, we have φ(fγ) ∈ T.

Proof. First, we show φ(fγ) ∈ T. Since f ∗
γ ∗ fγ ∈ C0(G

(0)), we have

|φ(fγ)|2 = φ(f ∗
γ ∗ fγ) = f ∗

γ ∗ fγ(xφ) = |fγ(γ)|2 = 1.

Therefore, φ(fγ) ∈ T.
Second, we show that φ(fγ) is independent of the choice of Uγ and fγ. Assume that

fγ ∈ Cc(Uγ) and gγ ∈ Cc(Vγ) satisfies fγ(γ) = gγ(γ) = 1, where Uγ and Vγ ⊂ G are

open bisections. Find a function h ∈ Cc(d(Uγ ∩ Vγ)) ⊂ Cc(G
(0)) such that h(d(γ)) = 1.

Recall that d(γ) = r(γ) = xφ since xφ is a fixed point. Also, note that φ(h) = h(xφ) = 1.

Putting f̃γ ··= fγ ∗h and g̃γ = gγ ∗h, we have that f̃γ and g̃γ are contained in Cc(Uγ ∩Vγ).
Then it follows that f̃γ

∗
∗ g̃γ ∈ C0(G

(0)) and

φ(fγ)φ(gγ) = φ(h)φ(fγ)φ(gγ)φ(h) = φ(f̃γ
∗
∗ g̃γ)

= f̃γ
∗
∗ g̃γ(xφ) = h(r(γ))fγ(γ)gγ(γ)h(d(γ)) = 1.

Now we have φ(fγ) = φ(gγ) since φ(fγ) ∈ T.

Proposition 2.2.1.5. Let G be an étale groupoid with the locally compact Hausdorff

unit space G(0) and φ ∈ ∆(C∗(G)). We define χφ : Gxφ → T by χφ(γ) ··= φ(fγ), where

γ ∈ Gxφ and fγ ∈ C(G) is a function as in Proposition 2.2.1.4. Then χφ : Gxφ → T is a

group homomorphism.
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Proof. Take α, β ∈ Gxφ . We show χφ(α)χφ(β) = χφ(αβ). Take fα, fβ ∈ C(G) as in

Proposition 2.2.1.4. It follows that fα ∗ fβ ∈ Cc(U) for some open bisection U ⊂ G and

fα ∗ fβ(αβ) = 1. Hence, we have

χφ(αβ) = φ(fα ∗ fβ) = φ(fα)φ(fβ) = χφ(α)χφ(β)

by the definition of χφ.

Proposition 2.2.1.6. Let G be an étale groupoid with the locally compact Hausdorff

unit space G(0). Then we have φ = φxφ,χφ for all φ ∈ ∆(C∗(G)).

Proof. Take f ∈ Cc(U), where U ⊂ G is an open bisection. It suffices to show that

φ(f) = φxφ,χφ(f), since C
∗(G) is generated by such functions. Note that f ∗∗f ∈ Cc(G

(0)).

If Gxφ ∩ f−1(C \ {0}) = ∅, then we have 0 = f ∗ ∗ f(xφ) = |φ(f)|2. Since the restriction

of f |Gxφ
is zero, it follows that φxφ,χφ(f) = 0 = φ(f). If Gxφ ∩ f−1(C \ {0}) 6= ∅,

Gxφ ∩ f−1(C \ {0}) is a singleton because f is supported on an open bisection. Let

γ ∈ Gxφ ∩ f−1(C \ {0}) be the unique element of Gxφ ∩ f−1(C \ {0}). Observe that

F ··= f/f(γ) ∈ Cc(U) satisfies F (γ) = 1. Now we have

φxφ,χφ(f) = f(γ)χφ(γ) = f(γ)φ(F ) = φ(f).

Hence, we have φxφ,χφ = φ.

Proposition 2.2.1.7. Let G be an étale groupoid with the locally compact Hausdorff

unit space G(0), x ∈ G(0) be a fixed point and χ : Gx → T be a group homomorphism.

Then x = xφx,χ and χ = χφx,χ .

Proof. First, we show x = xφx,χ . Take f ∈ Cc(G
(0)) arbitrarily. Then we have

f(xφx,χ) = φx,χ(f) = f(x)χ(x) = f(x).

Hence, it follows x = xφx .

Next, we show χ = χφx,χ . Take γ ∈ Gx arbitrarily. There exist an open bisection

U ⊂ G with γ ∈ U and f ∈ Cc(U) with f(γ) = 1. Then we have

χφx,χ(γ) = φx,χ(f) = f(γ)χ(γ) = χ(γ).

Hence, we have shown x = xφx,χ and χ = χφx,χ .

Combining Propositions 2.2.1.6 and 2.2.1.7, we obtain the next theorem.

Theorem 2.2.1.8 ([11, Theorem 4.8]). Let G be an étale groupoid with the locally

compact Hausdorff unit space G(0). Define a set

D ··= {(x, χ) | x ∈ G(0) is a fixed point

and χ : Gx → T is a group homomorphism}.
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Then the map

D 3 (x, χ) −→ φx,χ ∈ ∆(C∗(G))

is bijective.

2.2.2 Construction of an étale abelian group bundle Gab

For an étale groupoid G with the locally compact Hausdorff unit space G(0), we con-

struct an étale abelian group bundle Gab so that C∗(G)ab ' C∗(Gab) holds.

Proposition 2.2.2.1. Let G be an étale group bundle with the locally com-

pact Hausdorff unit space G(0). We define the commutator subgroupoid of G by

[G,G] ··=
⋃

x∈G(0) [Gx, Gx], where [Gx, Gx] is the commutator subgroup of Gx. Then

[G,G] is an open normal subgroupoid of G.

Proof. It is obvious that [G,G] ⊂ G is a normal subgroupoid. We show that [G,G] ⊂ G

is open. Take γ ∈ [G,G]. By the definition of the commutator subgroup, there exists

{αj}kj=1, {βj}kj=1 ⊂ Gd(γ) such that

γ = α1β1α
−1
1 β−1

1 α2β2α
−1
2 β−1

2 · · ·αkβkα
−1
k β−1

k .

Take open bisections Uj, Vj ⊂ G such that αj ∈ Uj and βj ∈ Vj for all j = 1, 2, . . . , k.

We show that U1V1U
−1
1 V −1

1 ⊂ [G,G], where we define U−1 ··= {γ−1 | γ ∈ U} for U ⊂ G.

Fix γ′ ∈ U1V1U
−1
1 V −1

1 . Then there exist α, α′ ∈ U1 and β, β′ ∈ V1 which satisfy γ =

αβα′−1β′−1. Since G is a group bundle, we have d(α) = d(α′) = d(β) = d(β′). We obtain

α = α′ and β = β′ because U1 and V1 are bijections. Therefore, γ
′ = αβα−1β−1 ∈ [G,G].

Similarly, one can show that U1V1U
−1
1 V −1

1 U2V2U
−1
2 V −1

2 · · ·UkVkU
−1
k V −1

k ⊂ [G,G].

By Proposition 1.1.3.8, U1V1U
−1
1 V −1

1 U2V2U
−1
2 V −1

2 · · ·UkVkU
−1
k V −1

k is an open set and

contains γ. Hence, [G,G] ⊂ G is an open normal subgroupoid.

Let G be an étale groupoid with the locally compact Hausdorff unit space G(0). Recall

that the set of all fixed points F ⊂ G(0) is a closed subset of G(0) (Proposition 1.1.3.12).

We define Gfix ··= GF , which is an étale groupoid from Proposition 1.1.3.13. Since we

have Gfix = Iso(Gfix), Gfix is an étale group bundle.

Definition 2.2.2.2. Let G be an étale groupoid with the locally compact Hausdorff unit

space G(0). We define the abelianization of G by Gab ··= Gfix/[Gfix, Gfix].

Let G be an étale groupoid with the locally compact Hausdorff unit space G(0). Then

we have a *-homomorphism C∗(G) → C∗(Gfix) induced by the restriction (Proposi-

tion 1.1.4.4). Composing with the *-homomorphism C∗(Gfix) → C∗(Gab) in Proposition

2.1.2.1, we obtain a *-homomorphism π : C∗(G) → C∗(Gab).
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Note that C∗(G) is commutative if and only if G is an étale abelian group bundle. In

particular, C∗(Gab) is commutative.

Lemma 2.2.2.3. Let G be an étale groupoid with the locally compact Hausdorff unit

space G(0). Then the map Φ: ∆(C∗(Gab)) 3 χ 7→ χ ◦ π ∈ ∆(C∗(G)) is bijective.

Proof. Surjectivity of π implies that Φ is injective. We show that Φ is surjective. Take

φ ∈ ∆(C∗(G)). Then we have the fixed point xφ ∈ G(0) and the group homomorphism

χφ which makes the following diagram commutative:

C∗(G) C

C∗(Gxφ),

φ

q χφ

where q : C∗(G) → C∗(Gxφ) is the *-homomorphism obtained in Proposition 1.1.4.4.

By the universality of Gab
xφ

··= (Gxφ)
ab = (Gab)xφ , we obtain the group homomorphism

χ̄φ : G
ab
xφ

→ T which makes the following diagram commutative:

C∗(Gxφ) C

C∗(Gab
xφ
),

χφ

q′ χ̄φ

where q′ : C∗(Gxφ) → C∗(Gab
xφ
) denotes the *-homomorphism induced by the quotient

map Gxφ → Gab
xφ
.

Let res : C∗(Gab) → C∗(Gab
xφ
) denote the *-homomorphism obtained by the restriction

C(Gab) → C(Gab
xφ
) (see Proposition 1.1.4.4). Now we have the following commutative

diagram:

C∗(G) C∗(Gxφ)

C∗(Gab) C∗(Gab
xφ
).

C
q

φ

χφ

π

res

χ̄φ
q′

In particular, we have φ = (χ̄φ ◦ res) ◦ π and χ̄φ ◦ res ∈ ∆(C∗(Gab)). Hence, Φ is

surjective.

We are now ready to calculate the abelianization of C∗(G).
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Theorem 2.2.2.4 ([11, Theorem 4.12]). Let G be an étale groupoid with the locally

compact Hausdorff unit space G(0). Then C∗(G)ab is isomorphic to C∗(Gab) via the

unique isomorphism π̄ which makes the following diagram commutative:

C∗(G) C∗(Gab)

C∗(G)ab

π

Q
π̄

where Q : C∗(G) → C∗(G)ab denotes the quotient map.

Proof. By the universality of C∗(G)ab, we obtain a *-homomorphism which makes the

following diagram commutative:

C∗(G) C∗(Gab)

C∗(G)ab.

π

Q
π̄

It is clear that π̄ is surjective. We show that π̄ is injective. Suppose that a ∈ C∗(G)

satisfies π(a) = 0. It suffices to show Q(a) = 0, which is equivalent to φ̄(Q(a)) = 0 for

all φ̄ ∈ ∆(C∗(G)ab) since C∗(G)ab is commutative. Take φ̄ ∈ ∆(C∗(G)ab) and define

φ ··= φ̄ ◦ Q. Then, by Lemma 2.2.2.3, there exists φ̃ ∈ ∆(C∗(Gab)) which makes the

following diagram commutative:

C∗(G) C∗(Gab)

C.

π

φ
φ̃

Now we have the following commutative diagram:

C∗(G) C∗(Gab)

C∗(G)ab C.

π

Q φ
φ̃

φ̄

Hence, we have φ̄(Q(a)) = φ̃(π(a)) = 0.

2.2.3 Duals of étale abelian group bundles

Let G be an étale groupoid with the locally compact Hausdorff unit space G(0). Since

the abelianization of C∗(G) is a commutative C*-algebra, C∗(G)ab is isomorphic to

C0(∆(C∗(G)ab)) via the Gelfand transformation (see, for example, [2, Theorem II.2.2.4]).

In this subsection we calculate the Gelfand spectrum ∆(C∗(G)ab).
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For a discrete abelian group Γ, its Pontryagin dual group is defined as the set of all

group homomorphisms from Γ to T, which is denoted by Γ̂. Then Γ̂ is an abelian group

with respect to the pointwise multiplication. It is known that Γ̂ is a compact abelian

topological group with respect to the topology of pointwise convergence.

Proposition 2.2.3.1. Let Γ be a discrete group and Q : C∗(Γ) → C∗(Γab) be the *-

homomorphism induced by the quotient map Γ → Γab. Then the map

Φ: Γ̂ab 3 χ 7→ χ ◦Q ∈ ∆(C∗(Γ))

is a homeomorphism. Hence, C∗(Γ)ab is isomorphic to C(Γ̂ab).

Proof. This follows from the universality of Γab and C∗(Γ).

As seen in the previous proposition, the key to calculate ∆(C∗(G)) is the Pontryagin

dual.

Definition 2.2.3.2. Let G be an étale abelian group bundle with the locally compact

Hausdorff unit space G(0). We define a group bundle Ĝ ··= {(χ, x) | x ∈ G(0), χ ∈ Ĝx}
over G(0).

Note that Ĝ is a group bundle such that Ĝx = Ĝx × {x}(' Ĝx) for every x ∈ G(0).

Let G be an étale abelian group bundle with the locally compact Hausdorff unit space

G(0) and (χ, x) ∈ Ĝ. Recall that we obtain the *-homomorphism φx,χ ∈ ∆(C∗(G)) as in

Definition 2.2.1.1.

Definition 2.2.3.3. Let G be an étale abelian group bundle with the locally compact

Hausdorff unit space G(0). For each f ∈ C(G), we define evf : Ĝ → C by evf ((χ, x)) =

φx,χ(f), where (χ, x) ∈ Ĝ. We define a topology of Ĝ as the weakest topology in which

evf is continuous for all f ∈ C(G).

Proposition 2.2.3.4. Let G be an étale abelian group bundle with the locally compact

Hausdorff unit space G(0). Then the map

Ψ: ∆(C∗(G)) 3 φ 7→ (χφ, xφ) ∈ Ĝ

is a homeomorphism (see Propositions 2.2.1.2 and 2.2.1.5 for the definition of xφ and χφ).

Hence, C∗(G) is isomorphic to C0(Ĝ)

Proof. Proposition 2.2.1.8 states that Ψ is a bijection and Ψ−1 is given by Ψ−1((χ, x)) =

φx,χ for each (χ, x) ∈ Ĝ. For each f ∈ C(G), the map ∆(C∗(G)) 3 φ 7→ evf ((χφ, xφ)) =

φ(f) ∈ C is continuous. This means that Ψ is continuous. The continuity of Ψ−1 follows

from approximation arguments. Therefore, Ψ is a homeomorphism.
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Let G be an étale groupoid. Recall that Gab is an étale abelian group bundle.

Corollary 2.2.3.5. Let G be an étale groupoid with the locally compact Hausdorff unit

space G(0). Then C∗(G)ab is isomorphic to C0(Ĝab).

Proof. Recall that C∗(G)ab is isomorphic to C∗(Gab) by Theorem 2.2.2.4. Since Gab is

an étale abelian group bundle, Proposition 2.2.3.4 implies that C∗(Gab) is isomorphic to

C0(Ĝab).

Proposition 2.2.3.6. Let G be an étale abelian group bundle with the locally compact

Hausdorff unit space G(0). Then Ĝ is a locally compact Hausdorff topological group

bundle. Furthermore, Ĝ is compact if and only if G(0) is compact.

Proof. It is clear that Ĝ is locally compact Hausdorff, since Ĝ is homeomorphic to

∆(C∗(G)). In order to show the continuity of the operations, take f ∈ C(G) arbitrarily.
Then the map Ĝ(2) 3 (χ1, χ2) 7→ evf (χ1χ2) = evf (χ1) evf (χ2) ∈ C is continuous. There-

fore, the multiplication of Ĝ(2) is continuous. Similarly, one can show that the inverse

is continuous. Hence, Ĝ is a locally compact Hausdorff topological group bundle. The

last assertion follows from the fact that G(0) is compact if and only if C∗(G) ' C0(Ĝ) is

unital.

Example 2.2.3.7. We give an example of an étale groupoid G such that Gab is not Haus-

dorff although G is Hausdorff. Let S3 = 〈s, t | s3 = t2 = e, st = ts2〉 = {e, s, s2, t, ts, ts2}
be the symmetric group of degree 3 and A3 ··= {e, s, s2} ⊂ S3 be the subgroup of even

permutations. Let G ··= S3 × [0, 1] \ {(t, 1) | t 6∈ A3} be an étale group bundle over [0, 1].

Then G can be drawn as follows:

(s,1)

(s2,1)

(e,1)(e,0)

(ts,0)

(s,0)

(s2,0)

(t,0)

(ts2,0)

One can see that [G,G] ⊂ G is not closed. By Proposition 2.1.1.11, Gab = G/[G,G] is

not Hausdorff. Indeed, letting q : G→ Gab denote the quotient map, Gab looks as follows:

q((e,1)),q((s,1)),q((s2,1))q((e,0))

q((t,0))

The dual Ĝab of Gab can be drawn as follows:
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Note that Ĝab is not étale.
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Chapter 3.

Invariant sets and normal subgroupoids of

universal étale groupoids induced by

congruences of inverse semigroups

In this chapter, we review results obtained in [10]. First, we investigate congruences

on inverse semigroups from the view point of the spectrum in Section 3.1. In Section 3.2,

we show that the universal étale groupoids associated to quotient inverse semigroups can

be described by restrictions and quotients of the original universal étale groupoids. In

Section 3.3, we give applications and examples of the previous sections.

3.1 Certain least congruences

Recall that an inverse semigroup S is said to be Clifford if s∗s = ss∗ holds for all s ∈ S.

In addition, a congruence ν on S is said to be Clifford if S/ν is Clifford. The notion of

a commutative congruence is defined in the same way. It is known that every inverse

semigroup admits the least Clifford congruence and the least commutative congruence.

For example, see [16, Proposition III. 6. 7] for the least Clifford congruence and [17] for the

least commutative congruence. In this section, we reprove that every inverse semigroup

admits the least Clifford congruence and the least commutative congruence by a new

method using the spectrum.

3.1.1 Invariant subset of Ê(S)

Let S be an inverse semigroup. Recall that we have the spectral action β : S y Ê(S)

(see the last of Chapter 1). A subset F ⊂ Ê(S) is said to be invariant if βs(F ∩Ds∗s) ⊂ F

holds for all s ∈ S. Note that F is invariant if and only if F is invariant as a subset of the

universal groupoid Gu(S). First, we observe that an invariant subset induces a normal

congruence on E(S) in the next proposition.
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Proposition 3.1.1.1. Let S be an inverse semigroup and F ⊂ Ê(S) be an invariant

subset. We define the set ρF ⊂ E(S)×E(S) of all pairs (e, f) ∈ E(S)×E(S) such that

ξ(e) = ξ(f) holds for all ξ ∈ F . Then ρF is a normal congruence on E(S).

Proof. It is obvious that ρF is a congruence on E(S). We show that ρF is normal.

Take s ∈ S and (e, f) ∈ ρF . It suffices to show that ξ(ses∗) = ξ(sfs∗) for all ξ ∈ F . If

ξ(ss∗) = 0, we have ξ(ses∗) = ξ(sfs∗) = 0. Assume that ξ(ss∗) = 1. Since F is invariant,

we have βs∗(ξ) ∈ F . From (e, f) ∈ ρF , it follows

ξ(ses∗) = βs∗(ξ)(e) = βs∗(ξ)(f) = ξ(sfs∗).

Thus ρF is a normal congruence on E(S).

Let S be an inverse semigroup and ρ be a normal congruence on E(S). Moreover, let

q : E(S) → E(S)/ρ denote the quotient map. For ξ ∈ Ê(S)/ρ, we define q̂(ξ) ∈ Ê(S) by

q̂(ξ)(e) = ξ(q(e)), where e ∈ E(S). Note that q̂(ξ) is not zero since q is surjective. Then

q̂ : Ê(S)/ρ → Ê(S) is a continuous map by the definition of the topology of pointwise

convergence. One can see that

q̂(Ê(S)/ρ) = {ξ ∈ Ê(S) | ξ(e) = ξ(f) for all (e, f) ∈ ρ}

holds. In particular, Fρ ··= q̂(Ê(S)/ρ) is a closed subset of Ê(S).

We say that F ⊂ Ê(S) is multiplicative if the multiplication of two elements in F also

belongs to F whenever it is not zero.

Proposition 3.1.1.2. Let S be an inverse semigroup and ρ be a normal congruence on

E(S). Then Fρ ⊂ Ê(S) is a closed multiplicative invariant set.

Proof. It is easy to show that Fρ ⊂ Ê(S) is a closed multiplicative set. We show that

Fρ ⊂ Ê(S) is invariant. Take ξ ∈ Fρ and s ∈ S with ξ(s∗s) = 1. To see βs(ξ) ∈ Fρ, it

suffices to show that βs(ξ)(e) = βs(ξ)(f) holds for all (e, f) ∈ ρ. Since ρ is normal, we

have (s∗es, s∗fs) ∈ ρ. Hence, we have

βs(ξ)(e) = ξ(s∗es) = ξ(s∗fs) = βs(ξ)(f),

where the middle equality follows from ξ ∈ Fρ.

Proposition 3.1.1.3. Let S be an inverse semigroup. Then ρ = ρFρ holds for every

normal congruence ρ on E(S).

Proof. Assume that (e, f) ∈ ρ. For all η ∈ Ê(S)/ρ, it follows that

q̂(η)(e) = η(q(e)) = η(q(f)) = q̂(η)(f).
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Therefore, (e, f) ∈ ρFρ .

To show the reverse inclusion, assume that (e, f) ∈ ρFρ . Define ηq(e) ∈ Ê(S)/ρ by

ηq(e)(p) =

1 (p ≥ q(e)),

0 (otherwise),

where p ∈ E(S)/ρ. By (e, f) ∈ ρFρ , we have ηq(e)(q(f)) = ηq(e)(q(e)) = 1. Therefore,

q(f) ≥ q(e). Similarly we obtain q(f) ≤ q(e), so q(e) = q(f) holds. Thus, it follows that

(e, f) ∈ ρ.

We say that F ⊂ Ê(S) is unital if F contains the constant function 1.

Lemma 3.1.1.4. Let S be an inverse semigroup and F ⊂ Ê(S) be a unital multiplicative

set. Assume that F separates E(S) (that is, for e, f ∈ E(S), e = f is equivalent to the

condition that ξ(e) = ξ(f) holds for all ξ ∈ F ). Then F is dense in Ê(S).

Proof. For e ∈ E(S) and a finite subset P ⊂ E(S), we define

N e
P
··= {ξ ∈ Ê(S) | ξ(e) = 1, ξ(p) = 0 for all p ∈ P}.

Recall that these sets form an open basis of Ê(S). Observe that N e
P = N e

eP holds, where

eP ··= {ep ∈ E(S) | p ∈ P}. Now it suffices to show that F ∩N e
P 6= ∅ holds for nonempty

N e
P such that p ≤ e holds for all p ∈ P .

In case that P = ∅, the constant function 1 belongs to F ∩N e
P . We may assume that

p ≤ e holds for all p ∈ P . Since N e
P is nonempty, we have e 6= p for all p ∈ P . Since F

separates E(S), there exists ξp ∈ F such that ξp(e) = 1 and ξp(p) = 0 for each p ∈ P .

Define ξ ··=
∏

p∈P ξp; then ξ ∈ N e
P ∩ F .

Proposition 3.1.1.5. Let S be an inverse semigroup. Then F = FρF holds for every

unital multiplicative invariant closed set F ⊂ Ê(S).

Proof. It is easy to show that F ⊂ FρF . Let q : E(S) → E(S)/ρF denote the quotient

map. Then the set q̂−1(F ) is a unital multiplicative closed set which separates E(S)/ρF .

By Lemma 3.1.1.4, q̂−1(F ) = ̂E(S)/ρF holds. Therefore, we have F ⊃ q̂(q̂−1(F )) =

q̂( ̂E(S)/ρF ) = FρF .

Corollary 3.1.1.6. Let S be an inverse semigroup. There is a one-to-one correspondence

between normal congruences on E(S) and unital multiplicative invariant closed sets in

Ê(S).

Proof. Just combine Propositions 3.1.1.3 and 3.1.1.5.
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3.1.2 The least Clifford congruences

Let S be an inverse semigroup. Recall that a congruence ρ on S is said to be Clifford

if S/ρ is Clifford. For example, S × S is a Clifford congruence on S. In this subsection,

we prove that every inverse semigroup admits the least Clifford congruence (Theorem

3.1.2.3). Our construction of the congruence is based on the fixed points of Ê(S).

Definition 3.1.2.1. Let S be an inverse semigroup. A character ξ ∈ Ê(S) is said to be

fixed if ξ(s∗es) = ξ(e) holds for all e ∈ E(S) and s ∈ S such that ξ(s∗s) = 1. We denote

the set of all fixed characters by Ê(S)fix.

One can see that Ê(S)fix is a closed subset of Ê(S). Moreover, Ê(S)fix is a multiplicative

set. The fixed characters are characterized in the next proposition.

Proposition 3.1.2.2. Let S be an inverse semigroup and ξ ∈ Ê(S). The following

conditions are equivalent.

(1) ξ is a fixed character;

(2) ξ can be extended to a semigroup homomorphism ξ̃ : S → {0, 1}; and
(3) ξ(s∗s) = ξ(ss∗) holds for all s ∈ S.

In this case, ξ̃ : S → {0, 1} is the unique extension of ξ.

Proof. If ξ ∈ Ê(S) has an extension ξ̃ : S → {0, 1}, we have

ξ̃(s) = ξ̃(s)2 = ξ̃(s∗s) = ξ(s∗s)

for all s ∈ S. Therefore, a semigroup homomorphism extension of ξ is unique if it exists.

We show that (1) implies (2). Assume that ξ ∈ Ê(S) is fixed. Then define ξ̃(s) : S →
{0, 1} by ξ̃(s) ··= ξ(s∗s) for s ∈ S. For s, t ∈ S, if ξ(t∗t) = 1, we have ξ̃(st) = ξ(t∗s∗st) =

ξ(s∗s) = ξ̃(s)ξ̃(t). If ξ(t∗t) = 0, we have ξ̃(st) = ξ̃(s)ξ̃(t) = 0. Thus, ξ̃ is a semigroup

homomorphism.

It is obvious that (2) implies (3). We show that (3) implies (1). Take s ∈ S with

ξ(s∗s) = 1. It suffices to show that βs(ξ)(e) = ξ(e) holds for all e ∈ E(S). This follows

from the following direct calculation:

βs(ξ)(e) = ξ(s∗es) = ξ((es)∗(es)) = ξ((es)(es)∗)

= ξ(ess∗e) = ξ(ess∗) = ξ(e)ξ(ss∗) = ξ(e)ξ(s∗s) = ξ(e).

Now we have shown that the conditions (1), (2) and (3) are equivalent.

Definition 3.1.2.3. Let S be an inverse semigroup. We define the normal congruence
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ρClif ··= ρ
Ê(S)fix

on E(S). Furthermore, we define the congruence νClif ··= νρClif ,min on S

and SClif ··= S/νClif .

Lemma 3.1.2.4. Let S be an inverse semigroup, ν be a Clifford congruence on S and

q : S → S/ν be the quotient map. Then a set

Fν = {ξ ◦ q|E(S) ∈ Ê(S) | ξ ∈ Ê(S/ν)}

is contained in Ê(S)fix. Moreover, Ê(S)fix = Ê(S) holds if and only if S is Clifford.

Remark 3.1.2.5. Before proceeding to the proof of Lemma 3.1.2.4, we verify that Fν in

Lemma 3.1.2.4 is well-defined.

Let S be an inverse semigroup, ν be a congruence and q : S → S/ν. Then q(E(S)) =

E(S/ν) holds. Indeed, q(E(S)) ⊂ E(S/ν) is obvious. Take p ∈ E(S/ν) and s ∈ S such

that q(s) = p. Then p = q(s∗s) ∈ q(E(S)). Therefore, we have q(E(S)) = E(S/ν). Using

this fact, one can verify that ξ ◦ q|E(S) is a character on E(S) for ξ ∈ Ê(S). Indeed, it is

easy to see that ξ ◦ q|E(S) is a semigroup homomorphism. Since q(E(S)) = E(S/ν) and

q is a surjection, ξ ◦ q|E(S) is nonzero. Hence, ξ ◦ q|E(S) is a character on E(S).

From the above argument, it follows that Fν in Lemma 3.1.2.4 is well-defined.

Proof of the Lemma 3.1.2.4. Take ξ ∈ Ê(S/ν) and s ∈ S. Since S/ν is Clifford, we

have

ξ ◦ q(s∗s) = ξ(q(s∗s)) = ξ(q(ss∗)) = ξ ◦ q(ss∗).

Therefore, ξ ◦ q|E(S) is a fixed character by Proposition 3.1.2.2.

Applying what we have shown for the trivial congruence ν = {(s, s) ∈ S × S | s ∈ S},
it follows that Ê(S)fix = Ê(S) holds if S is Clifford. Assume that Ê(S)fix = Ê(S) holds

and take s ∈ S. Define a character ξs∗s ∈ Ê(S) by

ξs∗s(e) =

1 (e ≥ s∗s),

0 (otherwise),

where e ∈ E(S). Since we assume that Ê(S)fix = Ê(S), we have

ξs∗s(ss
∗) = ξs∗s(s

∗s) = 1

by Proposition 3.1.2.2. Then we have s∗s ≤ ss∗. It follows that s∗s ≥ ss∗ from the same

argument. Now we have s∗s = ss∗ and S is Clifford.

Now we show that every inverse semigroup admits the Cliffordization. See Definition

3.1.2.3 for the definition of νClif .
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Theorem 3.1.2.6 ([10, Theorem 3.11]). Let S be an inverse semigroup. Then νClif is

the least Clifford congruence on S.

Proof. First, we show that the congruence νClif is Clifford. Take s ∈ S and ξ ∈ Ê(S)fix.

Then we have ξ(s∗s) = ξ(ss∗) by Proposition 3.1.2.4. Therefore, (s∗s, ss∗) ∈ νClif and

νClif is a Clifford congruence.

Let ν be a Clifford congruence and q : S → S/ν be the quotient map. To show that

νClif ⊂ ν, take (s, t) ∈ νClif . First, we show that (s∗s, t∗t) ∈ ν. We define η ∈ Ê(S/ν) by

η(e) =

1 (e ≥ q(s∗s)),

0 (otherwise).

By Lemma 3.1.2.4, it follows that η ◦ q ∈ Ê(S)fix. Since (s, t) ∈ νClif , we have 1 =

η ◦ q(s∗s) = η ◦ q(t∗t), which implies q(t∗t) ≥ q(s∗s). The reverse inequality is obtained

symmetrically and therefore q(t∗t) = q(s∗s) holds.

Let η ∈ ̂E(S/νClif) be the above character. Since η ◦ q is a fixed character and (s, t) ∈
νClif , there exists e ∈ E(S) such that η ◦ q(e) = 1 and se = te hold. Since η ◦ q(e) = 1,

we have q(e) ≥ q(s∗s) = q(t∗t) by the definition of η. Now we have q(s) = q(s)q(e) =

q(t)q(e) = q(t). Therefore, (s, t) ∈ ν.

Corollary 3.1.2.7. Let S be an inverse semigroup, T be a Clifford inverse semigroup

and φ : S → T be a semigroup homomorphism. Then there exists a unique semigroup

homomorphism φ̃ : SClif → T which makes the following diagram commutative:

S T

SClif

φ

q
φ̃

,

where q : S → SClif denotes the quotient map.

3.1.3 The least commutative congruences

We say that a congruence on inverse semigroup is commutative if the quotient semi-

group is commutative. In this subsection, we show that every inverse semigroups admits

the least commutative congruence.

Recall that we denote the circle group by T ··= {z ∈ C | |z| = 1}. We view T ∪ {0} as

an inverse semigroup with the usual product. By Ŝ, we denote the set of all semigroup

homomorphisms from S to T ∪ {0}.
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Definition 3.1.3.1. Let S be an inverse semigroup. We define the commutative congru-

ence νab on S as the set of all pairs (s, t) ∈ S × S such that φ(s) = φ(t) holds for all

φ ∈ Ŝ. We define Sab ··= S/νab.

One can see that Sab is actually commutative.

Let S be a Clifford inverse semigroup and e ∈ E(S). We defineHe ··= {s ∈ S | s∗s = e}.
One can see that He is a group with the operation inherited from S. Note that the unit

of He is e.

In order to show that νab is the least commutative congruence, we need the next lemma.

Lemma 3.1.3.2. Let S be a Clifford inverse semigroup and e ∈ E(S). Then a group

homomorphism φ : He → T can be extended to a semigroup homomorphism φ̃ : S →
T ∪ {0}.

Proof. Define

φ̃(s) =

φ(se) (s∗s ≥ e),

0 (otherwise).

Then one can check that φ̃ is a semigroup homomorphism extension of φ.

Theorem 3.1.3.3 ([10, Theorem 3.15]). Let S be an inverse semigroup. Then νab in

Definition 3.1.3.1 is the least commutative congruence on S.

Proof. Assume that ν is a commutative congruence. Let q : S → S/ν denote the quo-

tient map. In order to show νab ⊂ ν, take (s, t) ∈ νab.

First, we show that q(s∗s) = q(t∗t). It suffices to show that ξ(q(s∗s)) = ξ(q(t∗t)) holds

for all ξ ∈ Ê(S/ν). Note that ξ ◦ q ∈ Ê(S) is a fixed point by Lemma 3.1.2.4. Since ξ ◦ q
is a restriction of an element in Ŝ by Proposition 3.1.2.2, ξ(q(s∗s)) = ξ(q(t∗t)) follows

from (s∗s, t∗t) ∈ νab.

In order to show that q(s) = q(t), it suffices to show that ψ(q(s)) = ψ(q(t)) for all

group homomorphisms ψ : Hq(s∗s) → T, since Hq(s∗s) = {a ∈ S/ν | a∗a = q(s∗s)} is an

abelian group. By Lemma 3.1.3.2, there exists a semigroup homomorphism extension

ψ̃ ∈ Ŝ/ν of ψ. Since ψ̃ ◦ q ∈ Ŝ and (s, t) ∈ νab, we have ψ(q(s)) = ψ(q(t)). Therefore,

q(s) = q(t) holds.

Corollary 3.1.3.4. Let S be an inverse semigroup, T be a commutative inverse semi-

group and φ : S → T be a semigroup homomorphism. Then there exists a unique semi-

group homomorphism φ̃ : Sab → T which makes the following diagram commutative:
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S T

Sab

φ

q
φ̃

,

where q : S → Sab denotes the quotient map.

3.2 Universal étale groupoids associated to quotient inverse semigroups

3.2.1 General case

Let S be an inverse semigroup and ν be a congruence on S. Let q : S → S/ν denote

the quotient map. Note that

Fν = {ξ ◦ q|E(S) ∈ Ê(S) | ξ ∈ Ê(S/ν)}

is a closed invariant subset of Gu(S) as shown in Proposition 3.1.1.2.

We omit the proof of the next proposition, since it is not difficult.

Proposition 3.2.1.1. Let S be an inverse semigroup and H ⊂ S be a subsemigroup

such that E(S) ⊂ H. Then the map

Gu(H) 3 [s, ξ] 7→ [s, ξ] ∈ Gu(S)

is a groupoid homomorphism which is a homeomorphism onto its image. Moreover, the

image is an open subgroupoid of Gu(S).

Via the map in the above proposition, we identify Gu(H) with an open subgroupoid of

Gu(S). Note that Gu(S)
(0) ⊂ Gu(H) holds.

Let S be an inverse semigroup, ν be a congruence on S and q : S → S/ν be the

quotient map. Define ker ν ··= q−1(E(S/ν)) ⊂ S. Then ker ν is a normal subsemigroup of

S. Although Gu(ker ν) is not necessarily a normal subgroupoid of Gu(S), the following

holds.

Proposition 3.2.1.2. Let S be an inverse semigroup and ν be a congruence on S. Then

Gu(ker ν)Fν is an open normal subgroupoid of Gu(S)Fν .

Proof. We know that Gu(ker ν)Fν is an open subgroupoid of Gu(S)Fν . We show that

Gu(ker ν)Fν is normal in Gu(S)Fν . Let q : S → S/ν denote the quotient map.

First, we show Gu(ker ν)Fν ⊂ Iso(Gu(S)Fν ). Take [n, ξ] ∈ Gu(ker ν)Fν , where n ∈ ker ν.

Since ξ ∈ Fν holds, there exists η ∈ Ê(S/ν) such that ξ = η ◦ q. Since q(n) ∈ E(S/ν)
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holds, we have q(n∗) ∈ E(S/ν) and

βn(ξ)(e) = ξ(n∗en) = η(q(n∗)q(e)q(n))

= η(q(n∗))η(q(e))η(q(n)) = η(q(n∗n))η(q(e)) = ξ(e)

for all e ∈ E(S), where we use η(q(n∗n)) = ξ(n∗n) = 1 in the last equality. Therefore,

βn(ξ) = ξ holds and it follows that [n, ξ] ∈ Iso(Gu(ker ν)Fν ).

Next we show that [s, η][n, ξ][s, η]−1 ∈ Gu(ker ν)Fν holds for all [n, ξ] ∈ Gu(ker ν)Fν and

[s, η] ∈ Gu(S)Fν such that η = βn(ξ)(= ξ). One can see that

[s, η][n, ξ][s, η]−1 = [sns∗, βs(η)].

Now it follows that [s, η][n, ξ][s, η]−1 ∈ Gu(ker ν)Fν from sns∗ ∈ ker ν.

Theorem 3.2.1.3 ([10, Theorem 4.3]). Let S be an inverse semigroup and ν be a con-

gruence on S. Then Gu(S/ν) is isomorphic to Gu(S)Fν/Gu(ker ν)Fν .

Proof. Let q : S → S/ν denote the quotient map. Note that a map

q̂ : Ê(S/ν) 3 ξ 7→ ξ ◦ q ∈ Fν

is well-defined by Remark 3.1.2.5. One can verify that q̂ is a homeomorphism.

Define a map

Φ: Gu(S)Fν 3 [s, q̂(ξ)] 7→ [q(s), ξ] ∈ Gu(S/ν).

Using Proposition 1.1.3.10, one can see that Φ is a groupoid homomorphism which is a

local homeomorphism and injective on Gu(S)
(0)
Fν
. Observe that Φ is surjective.

We show that kerΦ = Gu(ker ν)Fν holds. The inclusion kerΦ ⊃ Gu(ker ν)Fν is obvious.

In order to show that kerΦ ⊂ Gu(ker ν)Fν , take [s, q̂(ξ)] ∈ kerΦ. Since we have [q(s), ξ] ∈
Gu(S/ν)

(0) and q(E(S)) = E(S/ν), there exists e ∈ E(S) such that [q(s), ξ] = [q(e), ξ].

There exists f ∈ E(S) such that ξ(q(f)) = 1 and q(s)q(f) = q(e)q(f). Now we have

sf ∈ ker ν, so it follows that

[s, q̂(ξ)] = [sf, q̂(ξ)] ∈ Gu(ker ν)Fν .

This shows that kerΦ = Gu(ker ν)Fν .

By Proposition 2.1.1.10, Φ induces an isomorphism Φ̃ which makes the following dia-

gram commutative:

Gu(S)Fν Gu(S/ν)

Gu(S)Fν/Gu(ker ν)Fν

Φ

Q
Φ̃

,
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where Q denotes the quotient map.

3.2.2 Universal groupoids associated to special quotient inverse semigroups

Minimum congruences associated to normal congruences on semilattices of idempotents

Let S be an inverse semigroup. Recall that a congruence ρ on E(S) is normal if

(e, f) ∈ ρ implies (ses∗, sfs∗) ∈ ρ for all s ∈ S and e, f ∈ E(S). Note that one can

construct the least congruence νρ,min whose restriction to E(S) coincides with ρ. Recall

that we can associate the closed invariant subset Fρ of Gu(S) as shown in Proposition

3.1.1.2.

Proposition 3.2.2.1. Let S be an inverse semigroup and ρ be a normal congruence on

E(S). Then Gu(S/νρ,min) is isomorphic to Gu(S)Fρ .

Proof. By Theorem 3.2.1.3, it suffices to show that Gu(ker νρ,min)Fρ = Gu(S)
(0)
Fρ

holds.

Let q : S → S/νρ,min denote the quotient map. Take [n, q̂(ξ)] ∈ Gu(ker νρ,min)Fρ , where

n ∈ ker νρ,min and ξ ∈ Ê(S/ρ). Since n ∈ ker νρ,min, there exists e ∈ E(S) such that

q(n) = q(e). By the definition of νρ,min, there exists f ∈ E(S) such that nf = ef and

(n∗n, f) ∈ ρ hold. Observe that q̂(ξ)(n∗n) = ξ(q(n∗n)) = ξ(q(f)) = ξ(q(e)) = 1. We have

[n, q̂(ξ)] = [nf, q̂(ξ)] = [ef, q̂(ξ)] ∈ Gu(S)
(0)
Fρ
.

Now we have shown that Gu(ker νρ,min)Fρ = Gu(S)
(0)
Fρ
.

Theorem 3.2.2.2 ([10, Theorem 4.5]). Let S be an inverse semigroup. Then Gu(S
Clif)

is isomorphic to Gu(S)fix.

Proof. Recall the definition of νClif = νρClif ,min (see Definition 3.1.2.3). Since we have

Proposition 3.2.2.1, it suffices to show FρClif
= Ê(S)fix. By Lemma 3.1.2.4, we have

FρClif
⊂ Ê(S)fix. To show the reverse inclusion, take ξ ∈ Ê(S)fix. By Proposition 3.1.2.2,

there exists a semigroup homomorphism extension ξ̃ : S → {0, 1}. Since {0, 1} is Clifford,

there exists a semigroup homomorphism η : SClif → {0, 1} such that η ◦ q = ξ̃, where

q : S → SClif denotes the quotient map. Therefore, we have ξ = η ◦ q|E(S) ∈ FρClif
. Now

we have shown FρClif
= Ê(S)fix.

The least commutative congruences

Let S be an inverse semigroup and νab be the least commutative congruence (see

Proposition 3.1.3.1 and Theorem 3.1.3.3). Recall that the abelianization of S is defined

to be Sab ··= S/νab.
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Theorem 3.2.2.3 ([10, Theorem 4.6]). Let S be an inverse semigroup. Then Gu(S
ab) is

isomorphic to Gu(S)
ab.

Proof. By Theorem 3.2.1.3, it suffices to show that Fνab = Ê(S)fix and Gu(ker νab)fix =

[Gu(S)fix, Gu(S)fix] hold.

Observe that νab is equal to νClif on E(S). Indeed, this follows from the fact that

φ|E(S) ∈ Ê(S)fix holds for all φ ∈ Ŝ. Therefore, we have Fνab = Ê(S)fix.

Next we show that Gu(ker νab)fix = [Gu(S)fix, Gu(S)fix]. The inclusion

Gu(ker νab)fix ⊃ [Gu(S)fix, Gu(S)fix]

is easy to show.

Let q : S → Sab and q′ : S → SClif denote the quotient maps. Since a commutative

inverse semigroup is Clifford, there exists a semigroup homomorphism σ : SClif → Sab

such that q = σ ◦ q′. To show the reverse inclusion

Gu(ker νab)fix ⊂ [Gu(S)fix, Gu(S)fix],

take [n, q̂(ξ)] ∈ Gu(ker νab)fix, where n ∈ ker νab and ξ ∈ Ê(Sab). Since n ∈ ker νab, there

exists e ∈ E(S) such that q(n) = q(e). Then we have q(n∗n) = q(e). Since νab coincides

with νClif on E(S), it follows that q
′(n∗n) = q′(e). Define

Hq′(e) = {s ∈ SClif | s∗s = q′(e)};

then Hq′(e) is a group in the operation inherited from SClif . Observe that a unit of Hq′(e)

is q′(e) and we have q′(n) ∈ Hq′(e). Fix a group homomorphism χ : Hq′(e) → T arbitrarily.

By Proposition 3.1.3.2, χ is extended to the semigroup homomorphism χ̃ : SClif → T∪{0}.
Since T∪{0} is commutative, there exists a semigroup homomorphism χ : Sab → T∪{0}
which makes the following diagram commutative:

S SClif

T ∪ {0}Sab

q′

χ̃q

χ
.

Now we have

χ(q′(n)) = χ(q(n)) = χ(q(e)) = χ(q′(e)).

Since we take a group homomorphism χ : Hq′(e) → T arbitrarily, it follows that q′(n) ∈
[Hq′(e), Hq′(e)], where [Hq′(e), Hq′(e)] denotes the commutator subgroup of Hq′(e). Therefore,
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there exists s1, s2, . . . , sm, t1, t2, . . . , tm ∈ S such that

q′(n) = q′(s1)q
′(t1)q

′(s1)
∗q′(t1)

∗ · · · q′(sm)q′(tm)q′(sm)∗q′(tm)∗

= q′(s1t1s
∗
1t

∗
1 · · · smtms∗mt∗m).

By the definition of νClif , there exists f ∈ E(S) such that

nf = s1t1s
∗
1t

∗
1 · · · smtms∗mt∗mf

and q′(n∗n) = q′(f) hold. Then we have

[n, q̂(ξ)] = [nf, q̂(ξ)]

= [s1t1s
∗
1t

∗
1 · · · smtms∗mt∗mf, q̂(ξ)]

= [s1t1s
∗
1t

∗
1 · · · smtms∗mt∗m, q̂(ξ)] ∈ [Gu(S)fix, Gu(S)fix]

Thus, it is shown that Gu(ker νab)fix = [Gu(S)fix, Gu(S)fix].

3.3 Applications and examples

3.3.1 Clifford inverse semigroups from the view point of fixed points

A 0-group is an inverse semigroup isomorphic to Γ∪{0} for some group Γ. For a group

Γ, we denote the 0-group associated to Γ by Γ0 ··= Γq{0}. It is clear that every 0-group

is a Clifford inverse semigroup. Conversely, we see that every Clifford inverse semigroup

is embedded into a direct product of 0-groups. Remark that this fact is already known

(see [16, Theorem 2.6]). Using fixed characters, we obtain a new proof.

Let S be a Clifford inverse semigroup and ξ ∈ Ê(S). Since {ξ} ⊂ Ê(S) is invariant

by Lemma 3.1.2.4, we may consider a normal congruence ρξ ··= ρ{ξ} on E(S) and a

congruence νξ ··= νρ{ξ},min on S. If ξ = 1, ρξ coincides with E(S) × E(S) and S/νξ is

the maximal group image of S. We define S(ξ) ··= {qξ(s) ∈ S/νξ | ξ(s∗s) = 1}, where
qξ : S → S/νξ is the quotient map. Then S(ξ) is a group.

Define the map φξ : S → S(ξ)0 by

φξ(s) ··=

qξ(s) (ξ(s∗s) = 1),

0 (ξ(s∗s) = 0).
(3.1)

Then φξ is a semigroup homomorphism.

Proposition 3.3.1.1. Let S be a Clifford inverse semigroup. Then the semigroup ho-

momorphism

Φ: S 3 s 7→ (φξ(s))ξ∈Ê(S)
∈

∏
ξ∈Ê(S)

S(ξ)0
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is injective. In particular, every Clifford inverse semigroup is embedded into a direct

product of 0-groups.

Proof. Assume that s, t ∈ S satisfy Φ(s) = Φ(t). Since we have φξ(s
∗s) = φξ(t

∗t) for all

ξ ∈ Ê(S), it follows that ξ(s∗s) = ξ(t∗t) for all ξ ∈ Ê(S). Therefore, we obtain s∗s = t∗t.

Define ξs∗s ∈ Ê(S) by

ξs∗s(e) ··=

1 (e ≥ s∗s),

0 (otherwise).

Then we have ξs∗s(s
∗s) = ξs∗s(t

∗t) = 1. Combining with φξs∗s(s) = φξs∗s(t), we obtain

qξs∗s(s) = qξs∗s(t). Therefore, there exists e ∈ E(S) such that ξs∗s(e) = ξs∗s(s
∗s) = 1 and

se = te. It follows that e ≥ s∗s(= t∗t) from ξs∗s(e) = 1. Thus, we have shown that s = t

and Φ is injective.

Proposition 3.3.1.2. Let S be a finitely generated Clifford inverse semigroup. Then

Ê(S) is a finite set. More precisely, if S is generated by a finite set F ⊂ S, then |Ê(S)|
is less than or equal to 2|F |, where |A| denotes the number of elements in a finite set A.

Proof. Take a finite set F ⊂ S which generates S. Let X denote the set of all nonzero

semigroup homomorphisms from S to {0, 1}. Then the map

X 3 ξ 7→ (ξ(f))f∈F ∈ {0, 1}F

is injective since F generates S. By Proposition 3.1.2.2 and Lemma 3.1.2.4, the map

X 3 ξ 7→ ξ|E(S) ∈ Ê(S) is bijective. Since Ê(S) is embedded into {0, 1}F , Ê(S) is a finite

set.

Corollary 3.3.1.3. Let S be a finitely generated Clifford inverse semigroup. Then S is

embedded into a direct sum of finitely many 0-groups.

Let S be a Clifford inverse semigroup and ξ ∈ Ê(S). Recall that Gu(S)ξ is a discrete

group. Then Gu(S)ξ can be computed as the following.

Proposition 3.3.1.4. Let S be a Clifford inverse semigroup and ξ ∈ Ê(S). Then Gu(S)ξ

is isomorphic to S(ξ).

Proof. Let φξ : S → S(ξ)0 denote the map in Proposition 3.3.1.1. We show that a map

defined by

σ : S(ξ) 3 φξ(s) 7→ [s, ξ] ∈ Gu(S)ξ

is actually well-defined and an isomorphism. First we check that φξ(s) = φξ(t) is equiv-

alent to [s, ξ] = [t, ξ] for all s, t ∈ S with ξ(s∗s) = ξ(t∗t) = 1. Assume that s, t ∈ S with

ξ(s∗s) = ξ(t∗t) = 1 satisfies φξ(s) = φξ(t). Then there exists e ∈ E(S) such that se = te
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and ξ(e) = ξ(s∗s)(= 1) hold by the definition of νξ. Hence, it follows that [s, ξ] = [t, ξ].

One can see that [s, ξ] = [t, ξ] implies φξ(s) = φξ(t) ∈ S(ξ) by a similar argument. Thus,

the map σ is actually well-defined and injective. It is easy to show that σ is a group

homomorphism and surjective. Therefore, σ is an isomorphism.

Fix a character ξ ∈ Ê(S). We compute S(ξ) here. Note that ξ−1({1}) is a directed

set with respect to the order inherited from E(S). For e ∈ E(S), define S(e) ··= {s ∈
S | s∗s = e}. Then S(e) is a group. For e, f ∈ E(S) with e ≤ f , define a map

φf
e : S(f) → S(e) by φf

e (s) = se for s ∈ S(f). Then φf
e is a group homomorphism. One

can see that (S(e), φf
e ) is an inductive system of groups.

Proposition 3.3.1.5. Let S be a Clifford inverse semigroup and ξ ∈ Ê(S). Then we

have the following isomorphism:

lim−→
ξ(e)=1

S(e) ' S(ξ).

Proof. Let φξ : S → S(ξ)0 denote the map in Proposition 3.3.1.1 and put Γ ··= lim−→S(e).

For e ∈ E(S) with ξ(e) = 1, we define σe : S(e) → S(ξ) by σe(s) ··= φξ(s). We obtain a

group homomorphism σ̃ : Γ → S(ξ). One can see that σ̃ is an isomorphism.

Combining Propositions 3.3.1.4 and 3.3.1.5, we obtain a proof of the next corollary,

which was already proved in [12].

Corollary 3.3.1.6 ([12, Theorem 3.1]). Let S be a Clifford inverse semigroup and ξ ∈
Ê(S). Then there exists an isomorphism

Gu(S)ξ ' lim−→
ξ(e)=1

S(e).

Let I be a discrete set and {Γi}i∈I be a family of discrete groups. Then the disjoint

union
∐

i∈I Γi is a discrete group bundle over I in the natural way. Using Propositions

3.3.1.2 and 3.3.1.4, we obtain the next corollary.

Corollary 3.3.1.7. Let S be a finitely generated Clifford inverse semigroup. Then there

exists an isomorphism

Gu(S) '
∐

ξ∈Ê(S)

S(ξ).

For an étale groupoid G with the locally compact Hausdorff unit space G(0), we write

C∗(G) (resp. C∗
λ(G)) to represent the universal (resp. reduced) groupoid C*-algebra of G

(see Chapter 1 or [14] for the definitions). Corollary 3.3.1.7 immediately implies the next

corollary.
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Corollary 3.3.1.8. Let S be a finitely generated Clifford inverse semigroup. Then we

have isomorphisms

C∗(Gu(S)) '
⊕

ξ∈Ê(S)

C∗(S(ξ)), C∗
λ(Gu(S)) '

⊕
ξ∈Ê(S)

C∗
λ(S(ξ)).

3.3.2 Free Clifford inverse semigroups

We investigate universal groupoids and C*-algebras associated to free Clifford inverse

semigroups on finite sets.

First, we recall the definition of the free groups.

Definition 3.3.2.1. Let X be a set. A free group on X is a pair (F(X), κ) consisting of

a group F(X) and a map κ : X → F(X) such that:

1. κ(X) generates F(X) as a group; and

2. for every group Γ and a map φ : X → Γ, there exists a group homomorphism

φ̃ : F(X) → Γ such that φ(x) = φ̃(κ(x)) holds for all x ∈ X.

We define free inverse semigroups in a similar way.

Definition 3.3.2.2. Let X be a set. A free inverse semigroup on X is a pair (FIS(X), ι)

consisting of an inverse semigroup FIS(X) and a map ι : X → FIS(X) such that:

1. ι(X) generates FIS(X) as an inverse semigroup; and

2. for every inverse semigroup T and map φ : X → T , there exists a semigroup homo-

morphism φ̃ : FIS(X) → T such that φ(x) = φ̃(ι(x)) holds for all x ∈ X.

It is known that free inverse semigroups exist and are unique up to isomorphism. See

[13, Section 6.1] for the existence of free inverse semigroups. The uniqueness is obvious.

Definition 3.3.2.3. A free Clifford inverse semigroup on X is a pair (FCIS(X), ι) con-

sisting of a Clifford inverse semigroup FCIS(X) and a map ι : X → FCIS(X) such that:

1. ι(X) generates FCIS(X) as an inverse semigroup; and

2. for every Clifford inverse semigroup T and map φ : X → T , there exists a semigroup

homomorphism φ̃ : FCIS(X) → T such that φ(x) = φ̃(ι(x)) holds for all x ∈ X.

Free Clifford inverse semigroups exist and are unique up to isomorphism. Indeed, for

a free inverse semigroup (FIS(X), ι) and the quotient map q : FIS(X) → FIS(X)Clif , one

can see that (FIS(X)Clif , q ◦ ι) is a free Clifford inverse semigroup on X. The uniqueness

is obvious.
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Let X be a set. For A ⊂ X, define a map χA : X → {0, 1} by

χA(x) =

1 (x ∈ A),

0 (x 6∈ A).

Since {0, 1} is Clifford, χA can be extended to the semigroup homomorphism from

FCIS(X) to {0, 1}, which we also denote by χA. Every semigroup homomorphism from

FCIS(X) to {0, 1} is of the form χA for a unique A ⊂ X.

By Proposition 3.1.2.2, χA|E(FCIS(X)) is a fixed character if A is not empty. By Lemma

3.1.2.4, all characters on E(FCIS(X)) are fixed characters. Therefore we obtain the next

proposition.

Proposition 3.3.2.4. Let X be a finite set. Put S = FCIS(X). Then the map

P (X) \ {∅} 3 A 7→ χA|E(S) ∈ Ê(S)

is bijective, where P (X) denotes the power set of X.

We identify χA|E(FCIS(X)) with χA since we can recover χA from the restriction

χA|E(FCIS(X)).

For a nonempty set A ⊂ X, define eA ··=
∏

x∈A ι(x)
∗ι(x) ∈ E(FCIS(X)). For e ∈

E(FCIS(X)), the condition that χA(e) = 1 is equivalent to the condition that e ≥ eA.

Using this fact, one can prove the next proposition.

Proposition 3.3.2.5. The map

P (X) \ {∅} 3 A 7→ eA ∈ E(FCIS(X))

is bijective.

In order to apply Proposition 3.3.1.4 for free Clifford inverse semigroups, we prepare

the next proposition.

Proposition 3.3.2.6. Let X be a set and A ⊂ X be a nonempty set. Put S = FCIS(X).

Then S(χA) is isomorphic to the free group F(A) generated by A.

Proof. If X = A, S(χA) is the maximal group image of S. Therefore, S(χA) is isomor-

phic to F(A).
We assume A ( X. Let φA : S → S(χA)

0 denote the map defined by

φA(s) =

Q(s) (χA(s
∗s) = 1),

0 (χA(s
∗s) = 0),
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where Q : S → S/νχA
denotes the quotient map. By the universality of F(A), define a

group homomorphism τ : F(A) → S(χA) such that τ(κ(a)) = φA(ι(a)) for all a ∈ A.

We construct the inverse map of τ . Using the universality of S = FCIS(X), define a

semigroup homomorphism σ : S → F(A)0 which satisfies

σ(ι(x)) =

κ(x) (x ∈ A)

0 (x 6∈ A)

for x ∈ X. We claim that (s, t) ∈ νχA
implies σ(s) = σ(t) for s, t ∈ S. If χA(s

∗s) = 0, we

have σ(s) = σ(t) = 0. We may assume χA(s
∗s) = 1. By (s, t) ∈ νχA

, we have seA = teA.

Since σ(eA) is the unit of F(A), we have σ(s) = σ(t). Therefore, we obtain a semigroup

homomorphism σ̃ : S(χA)
0 → F(A)0 which makes the following diagram commutative:

S F(A)0

S(χA)
0

σ

φA

σ̃

.

Now one can verify that σ̃|S(χA) is the inverse map of τ .

Now we have the following Theorem.

Theorem 3.3.2.7 ([10, Theorem 5.15]). Let X be a finite set. Then there exists an

isomorphism

Gu(FCIS(X)) '
∐

A∈P (X)\{∅}

F(A).

Proof. Put S = FCIS(X). By Proposition 3.3.2.4, it follows that

Ê(S) = {χA ∈ Ê(S) | A ∈ P (X) \ {∅}}

is a finite set. Therefore, we have an isomorphism

Gu(S) '
∐

A∈P (X)\{∅}

Gu(S)χA
.

By Proposition 3.3.2.6, we obtain the isomorphism in the statement.

3.3.3 Fixed points of Boolean actions

From [21, Section 5], we recall the notion of Boolean actions. By a locally compact

Boolean space, we mean a locally compact Hausdorff space which admits a basis of

compact open sets. Let S be an inverse semigroup and X be a locally compact Boolean

space. An action α : S y X is said to be Boolean if
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1. for all e ∈ E(S), Dα
e ⊂ X is a compact open set of X; and

2. the family {
Dα

e ∩
⋂
f∈P

(X \Dα
f ) | e ∈ E(S), P ⊂ E(S) is a finite set.

}
forms a basis of X.

It is known that Gu(S) has the following universal property for Boolean actions.

Theorem 3.3.3.1 ([21, Proposition 5.5]). Let S be an inverse semigroup, X be a Boolean

space and α : S y X be a Boolean action. Then S nα X is isomorphic to Gu(S)F for

some closed invariant subset F ⊂ Ê(S).

Corollary 3.3.3.2. Let S be a finitely generated inverse semigroup and α : S y X be

a Boolean action. Then α has finitely many fixed points. More precisely, the number of

fixed points of α is less than or equal to the number of nonzero semigroup homomorphisms

from S to {0, 1}.

Proof. Since we assume that S is finitely generated, the set of all nonzero semigroup

homomorphisms from S to {0, 1} is a finite set. By Proposition 3.1.2.2, there exists a

bijection between the set of all nonzero semigroup homomorphisms from S to {0, 1} and

Ê(S)fix. Now Theorem 3.3.3.1 completes the proof.

Example 3.3.3.3 (cf. [14, Example 3 in Section 4.2]). For a natural number n ∈ N with

n ≥ 2, the polycyclic inverse monoid Pn is an inverse semigroup which is generated by

{0, 1, s1, . . . , sn} with the relation

s∗i sj = δi,j1

for all i, j ∈ {1, 2, . . . , n}. Define ξ : Pn → {0, 1} by ξ(x) = 1 for all x ∈ Pn. Then ξ

is the unique nonzero semigroup homomorphism from Pn to {0, 1}. Since 0 ∈ Pn, ξ is

an isolated point of Ê(Pn). Therefore, every Boolean action of Pn has at most one fixed

point, which becomes an isolated point.
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