
A Thesis for the Degree of Ph.D. in

Engineering

Study of Database Management
System Performance and Isolation in

Virtualization Environments

July 2021

Graduate School of Science and Technology

Keio University

Asraa Abdulrazak Ali Mardan

Acknowledgement

I would like to thank my advisor, Prof. Kenji Kono for his constant guid-

ance during all the time of research. This dissertation would not have been

possible without his advice and encouragement. I would like to thank my

dissertation committee, Prof. Motomichi Toyama, Prof. Kenichi Kourai,

and Dr. Takahiro Hirofuchi. This dissertation was improved by their insight

comments and valuable feedback.

I am also thankful to my colleagues in the system software lab. who

always gave me a hand and helped me when I need something or have a

question.

Also, I would like to express my sincere gratitude to Ministry of Edu-

cation, Culture, Sports, Science and Technology (MEXT) scholarship which

gives me the opportunity to study in Japan and to get my PhD degree from

Keio university.

Finally, I thank my family, my parents and sisters, for their support all

these years. Without their support, encouragement, and financial help, many

accomplishments in my life including this dissertation would not have been

possible.

2

Abstract

Database management system (DBMS) is one of the foundational and largest

applications in the cloud. Major cloud service providers like Amazon web

services, Microsoft Azure, Google clouds offer DBMS as a service. The cloud

employs virtualization to consolidate DBMSes for efficient resource utiliza-

tion and to isolate collocated workloads. There are two major virtualization

technologies: hypervisor-based (virtual machines) and operating-system-level

virtualization (containers). The underlying virtualization technologies in the

cloud have a critical impact on performance and isolation, especially in disk

I/O. To guarantee the service-level agreement (SLA), the disk I/O perfor-

mance and its isolation are important in DBMSs because they are inherently

disk I/O intensive.

This dissertation investigates DBMS performance and isolation in con-

tainers and virtual machines. Containers are widely believed to outperform

virtual machines because of their small virtualization overhead, but the shar-

ing of the same kernel may violate the isolation. Virtual machines are ex-

pected to provide stronger isolation but suffer from performance overheads

that come from devices’ virtualization and running a complete OS. This

trade-off between the performance and isolation in containers and virtual

machines is not well understood. The need for a better understanding of the

behavior of applications on these two virtualization technologies has become

fairly desirable. This allows the cloud service providers to choose the ap-

propriate virtualization technology for their application needs. In the case

of DBMS, the need for high I/O performance and good isolation when disk

I/O contentions occur. The failure to achieve these causes Quality-of-Service

violations which results in a financial loss to clouds.

Containers have become widely used in clouds and preferred over virtual

3

machines to consolidate DBMS due to their near-native performance and

lightweight deployment. The key finding in this dissertation is virtual ma-

chines outperform containers in DBMS performance. The analysis reveals

that file-system journaling has negative effects on DBMS performance and

isolation in containers. DBMS is an update-intensive application and causes

a lot of file-system journaling. Journaling is very important to keep file-

system consistency and for crash recovery. Hence, file-system journaling can

not be disabled especially with DBMS applications.

The contribution of this dissertation is twofold. First, identifying the un-

derlying causes behind file-system journaling problems in containers. Since

containers share the same file-system, the sharing of journaling modules

causes performance dependencies among containers. Also, file-system jour-

naling interferes with disk I/O control of containers and violates isolation

between them. Second, proposing a configuration method to overcome the

journaling problems in containers. The method achieves per-container jour-

naling without re-designing the file-systems or modifying the existing kernel.

The results show that DBMS performance improves up to 3.4x in containers

with the proposed configuration. Eventually, containers get their perfor-

mance advantage and outperform virtual machines by 1.4x, and show an

identical disk I/O isolation.

4

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Study Overview . 4

1.3 Previous Studies . 6

1.4 Organization . 7

2 Related Work 8

2.1 Investigating I/O Performance and Isolation 8

2.2 Exploring DBMS Performance and Isolation 10

2.3 Enhancing I/O Performance and Isolation 11

2.4 Designing New File-systems or Journaling Techniques 12

2.5 Proposing Storage Systems for containers 14

2.6 Summary . 14

3 Background 16

3.1 Hypervisor and OS-based Virtualization 16

3.1.1 KVM . 17

3.1.2 LXC . 18

3.1.3 OpenVZ . 19

3.2 Disk I/O in Container and VM 19

3.3 Disk I/O Control by Cgroup 20

3.4 Disk I/O Performance and Isolation 23

3.4.1 Experimental Setup . 23

3.4.2 Results . 24

3.5 Summary . 25

i

4 DBMS Performance and Isolation 27

4.1 MySQL Performance and Isolation 27

4.1.1 Experimental Setup . 28

4.1.2 Results . 28

4.2 Analyzing DBMS Performance and Isolation 29

4.2.1 Investigating the effect of Fsync 31

4.2.2 File-system Journaling 32

4.2.3 Journaling Problems in Containers 34

4.2.4 Journaling Influence on MySQL Performance 38

4.2.5 Journaling Influence on MySQL Isolation 41

4.3 Summary . 44

5 Alleviating Journaling Problems in Containers 48

5.1 A Quest for Best Solution . 49

5.2 Proposed Configuration Method 49

5.2.1 Per-container Journaling Module 50

5.2.2 Journaling I/O Accounting 52

5.3 Experiments . 53

5.3.1 Per-container Journaling 53

5.3.2 Combined with Journaling I/O Accounting 57

5.3.3 Improvement of DBMS performance and isolation . . . 60

5.4 In-memory Database Performance 61

5.5 Discussion . 68

5.6 Summary . 70

6 Conclusion 72

6.1 Contribution Summary . 72

6.2 Future Work . 73

Bibliography 75

List of Papers 83

List of Figures

3.1 Architectures of hypervisor and OS-based virtualization. . . . 18

3.2 Interior structure and I/O paths of KVM and LXC 20

3.3 Illustration of Cgroup with proportional-weight policy. 21

3.4 Proportional-weight policy in cgroup fails to control disk I/O

bandwidth. 22

3.5 Disk I/O throughput in KVM, LXC, and OpenVZ. 24

3.6 Disk I/O throughput in KVM, LXC, and OpenVZ in consoli-

dation case. 25

3.7 Performance isolation in KVM, LXC, and OpenVZ. 26

4.1 MySQL throughput in KVM, LXC, and OpenVZ. 29

4.2 MySQL performance isolation in KVM, LXC, and OpenVZ . . 30

4.3 Throughput of high-fsync workload in KVM, LXC, and OpenVZ. 32

4.4 A typical journaling file-system. 33

4.5 File-system journaling in container virtualization. 34

4.6 Disk I/O isolation when the low-fsync is collocated with no-

fsync workload. 37

4.7 Disk I/O isolation when the low-fsync is collocated with high-

fsync workload. 38

4.8 MySQL throughput with 70% share of disk I/O. 39

4.9 MySQL throughput with 30% share of disk I/O. 40

4.10 Disk I/O usage in MySQL in LXC with 70% share. 42

4.11 Disk I/O usage in MySQL in OpenVZ with 70% share. 43

4.12 Disk I/O usage in MySQL in KVM with 70% share. 44

4.13 Disk I/O usage in MySQL in LXC with 30% share. 45

4.14 Disk I/O usage in MySQL in OpenVZ with 30% share. 46

iii

4.15 Disk I/O usage in MySQL in KVM with 30% share. 47

5.1 The architecture of ”Normal approach” and ”Ploop approach”. 50

5.2 Disk I/O throughput with the proposed configuration. 54

5.3 MySQL throughput with the proposed configuration. 55

5.4 MySQL throughput with the proposed configuration, MySQL

is given 30% share. 56

5.5 Disk I/O isolation in per-container journaling without/with

accounting. 58

5.6 Throughput of high-fsync workload with the proposed config-

uration. 59

5.7 Disk I/O isolation of MySQL in per-container journaling with

the accounting, MySQL is given 70% share. 62

5.8 Disk I/O isolation of MySQL in per-container journaling,

MySQL is given 70% share. 63

5.9 Disk I/O isolation of MySQL in per-container journaling with

the accounting, MySQL is given 30% share. 64

5.10 Disk I/O isolation of MySQL in per-container journaling,

MySQL is given 30% share. 65

5.11 Disk I/O isolation when two MySQL containers/VMs are col-

located together. 66

5.12 MySQL throughput when two MySQL containers/VMs are

collocated together. 66

5.13 Typical In-memory database with data persistency. 67

5.14 Redis throughput in standalone case. 67

5.15 Redis throughput in consolidation case. 68

5.16 Redis throughput with the proposed configuration. 69

List of Tables

4.1 Average fsync latency of the high-fsync workload. 35

4.2 Average fsync latency of MySQL with 70% share of disk I/O. 39

4.3 Average fsync latency of MySQL with 30% share of disk I/O. 40

5.1 Average fsync latency of MySQL with the proposed configu-

ration. 56

5.2 Average fsync latency of MySQL with the proposed configu-

ration, MySQL is given 30% share. 57

5.3 Average fsync latency of the per-container journaling with-

out/with accounting. 59

5.4 Average fsync latency of Redis in consolidation case. 68

v

Chapter 1

Introduction

In the era of cloud computing, many organizations as well as individuals are

turning to the cloud services and applications. It is estimated that about 94%

of enterprises already use a cloud service [17]. The cloud service simply means

the delivery of computing services including servers, storage, databases, net-

working, and applications over the Internet [70]. The cloud provides a lot of

benefits like, dynamic scalability of resources, remote management and main-

tenance, pay-as-you-go model, which means the pay only for resources that

are being used. These benefits help in lower the operating cost, running the

infrastructure more efficiently, and scale as the business needs change [70].

The cloud relies on virtualization technology, which is the building block

of the cloud datacenters. Virtualization is needed to achieve server con-

solidation for efficient resource usage and to meet the growing demands of

resources with resource sharing. There are two main virtualization technolo-

gies: and hypervisor-based and operating system (OS)-based virtualization.

In hypervisor-based virtualization, a special program called hypervisor vir-

tualizes hardware resource allowing multiple virtual machines (VMs) to run

on a single physical machine. Each VM runs a complete guest OS. The OS-

based virtualization shifts the layer of virtualization from hardware to the OS

level by creating multiple virtual units at the user space known as containers.

These containers share the same host kernel but are isolated from each other

through private namespaces [33] and resource control mechanisms [34] at the

OS level.

1

CHAPTER 1. INTRODUCTION

Containers are lightweight in size and provide a near-native performance,

faster provisioning, better scalability, and fewer resources consumption com-

pared to VMs [28]. Containers allow a rapid building, testing, deployment,

and development of applications in the cloud [56]. These advantages make

containers widely used and preferred over VMs to deploy applications in

the cloud [76]. Cloud service providers like Amazon web services(AWS) [1],

Google cloud platform [23], and Microsoft azure [52] adopt containers to

deliver their services and applications.

One of the important applications and common services in the cloud is

the database management system (DBMS). Many popular Web services and

applications such as Facebook [55], Dropbox [75], and Saleforce [77] make use

of DBMS. Major cloud services providers offer DBMS as a cloud service like

Microsoft’s SQL Azure [51], Google Cloud SQL [22], and AWS databases [2].

It is estimated that 45% of companies use a cloud-based DBMS and it will

continue to increase with the next years [61]. It is expected that by 2022,

75% of all DBMS will be deployed and migrated to the cloud [20]. On the

other hand, DBMS is one of the most deployed applications with containers

in the cloud [11]. According to the real-world container’s use report [10],

popular DBMSes like MySQL, Redis, Postgres, and MongoDB are the most

commonly deployed container’s images in the cloud.

The deployment of DBMS in the cloud means the application runs on

a shared virtualized environments. The performance and isolation are im-

portant in these virtualized environments, where multiple users’ applications

are consolidated on the same server. Users expect their applications run in

isolated manner and to get the performance they pay for. Failing to achieve

isolation results in performance degradation as users’ applications negatively

affected by each other. This leads to quality-of-service violations which result

in financial loss to cloud services providers [78] [25]. Hence, DBMS consol-

idation in the cloud must be done while observing per user performance

guarantees and good isolation when resource contentions occur.

The disk I/O contention is very common in the cloud when multiple

I/O applications consolidated togather [24] [26] [73]. Since DBMS is an

I/O intensive application and largely deployed in the cloud, the disk I/O

performance and isolation are very important in such an application. In this

2

CHAPTER 1. INTRODUCTION

dissertation, I study the performance and isolation of DBMS consolidation

in virtualization environments.

1.1 Motivation

The underlying virtualization technologies in the cloud have critical impact

on the performance and isolation, especially in disk I/O, in DBMS. To guar-

antee the service-level agreement (SLA), the disk I/O performance and its

isolation are important in DBMSs because they are inherently disk I/O inten-

sive. In containers and VMs, the performance and isolation are intersected.

Containers overcome VM performance overheads that come from devices vir-

tualization by the hypervisor and running a complete OS inside each VM.

However, containers share the same kernel components like file-system and

buffer caches, the isolation among containers becomes weak and hard to ac-

complish. For example, if one container accesses many files to increase the

pressure on a shared buffer cache, other containers suffer from performance

degradation because less cache is allocated for them. On the other hand, VMs

have stronger isolation because no kernel components in the guest OSes are

shared among VMs.

Although containers are preferred over VMs to avoid virtualization over-

head, the trad-offs between performance and isolation in containers and VMs

are not well understood. There is no sufficient studies regard the resource

contention and the effect of kernel sharing on performance isolation among

containers. This prevents the cloud services providers from selecting ap-

propriate virtualization technology for application performance. For DBMS,

storage I/O is mainly the key factor that determines the overall performance,

despite that the other resource contention like memory and network I/O may

also affect the performance. This dissertation focus on storage I/O as the

first step toward investigation the performance interference among virtual-

ized environments. Investigating I/O performance and isolation of containers

and VMs answers the question of “What virtualization technology is better

for DBMS consolidation in the cloud?”.

3

CHAPTER 1. INTRODUCTION

1.2 Study Overview

Throughout this dissertation, I study DBMS performance and isolation in

virtualization environments. I investigate the disk I/O performance and

isolation in containers and VMs. Disk I/O performance and isolation are

critical in DBMS which orchestrates and performs a large number of disk

I/Os. Surprisingly, our results show that DBMS performance is better in

VMs than containers. VMs outperform containers by up to 2.4x in DBMS

performance. This is contrary to the general belief that containers outper-

form VMs because of negligible virtualization overhead. Furthermore, disk

I/O isolation is very terrible when consolidating DBMSes in containers. A

container given 30% share of disk I/Os consumes 70% share although the

resource control mechanism enforces disk I/O limits.

Our analysis reveals that the sharing of journaling module in containers

degrade DBMS performance and violates disk I/O isolation. The journaling

module is the kernel component that is responsible for handling file-system

journaling. The journaling records updates not yet committed to the file-

system and provides backup and recovery capabilities. The journaling is

very important to guarantee consistency and for crash recovery in file sys-

tems [62] [13]. Hence, file-system journaling should not be turned off espe-

cially in update-intensive applications like DBMS. DBMS invokes a lot of

fsync, a system call that ensures updates are written to disk and triggers

file-system journaling.

In this dissertation, I identify the underlying causes behind the journal-

ing problems in containers. The journaling degrades I/O performance in

containers because of the following reasons. Since the journaling module

is shared inherently among containers, it causes performance dependency

among containers. To guarantee consistency, existing file-systems typically

use journaling with transactions. A journaling module batches updates from

multiple containers into a single transaction and commits the transaction to

disk periodically or when fsync is invoked. If a single transaction contains

updates from multiple containers, each container has to wait until the data

belonging to other containers is flushed. Even if each transaction contains

updates solely from one container, the transactions are serialized in a jour-

4

CHAPTER 1. INTRODUCTION

naling module and cannot be committed in parallel. It takes a long time

to commit the transaction and fsync from other containers are suspended

because of the lack of parallelism.

In addition, the journaling interferes with disk I/O control of the ker-

nel resource control mechanism known as cgroup [34]. Since the journaling

module is running outside of containers, I/O operations from the module are

overlooked by the cgroup and not accounted for the container that initiates

the journaling I/Os. This violates I/O isolation among the containers.

I propose a configuration method to alleviate these journaling problems in

containers. I show that the careful configuration of containers can gracefully

solve the journaling problems without re-designing the file-systems or modi-

fying the existing kernel. Our configuration achieves per-container journaling

by first, providing each container with a virtual disk so that each container

can have its own file system. Hence, each container has its own journaling

module to eliminate the bottleneck of the shared journaling module and its

performance dependencies. Second, these per-container journaling modules

are still running outside of containers and their I/Os are still overlooked. To

account journaling I/Os, a proper configuration of kernel processes that han-

dle the journaling operations is needed. These journaling processes should

belong to the same cgroup of their corresponding containers.

This configuration is not widely adopted in the clouds because most con-

tainer implementations do not support virtual disk device. The use of VM to

avoid the journaling problems comes with the cost of virtualization overheads.

Our result proves that it is possible to use containers to get its performance

gain without suffering from the journaling problems. The quantitative analy-

sis shows the feasibility of our configuration in improving DBMS performance

and isolation in containers. The results show that DBMS performance im-

proves up to 1.3x with the virtual block device configuration, and improves

more up to 3.4x with the proper configuration of per-container journaling

processes. Eventually, containers outperform VMs by 1.4x and show a com-

parable disk I/O isolation to that of VMs.

Finally, I explore the performance of an in-memory database system that

gains popularity recently. The in-memory database is a DBMS that relies on

main memory for data storage instead of disk storage. Our results show that

5

CHAPTER 1. INTRODUCTION

the sharing of the journaling module in containers degrades the in-memory

database’s performance as well. Our proposed configuration improves the

in-memory database’s performance and mitigates the journaling effects.

1.3 Previous Studies

There are no sufficient studies regarding DBMS performance and isolation

under hypervisor and OS-based virtualization. The I/O performance and iso-

lation are investigated in hypervisor-based virtualization [87, 5, 50, 7, 29, 65,

57, 86]. However, there is a scarcity in the studies on OS-based virtualization

and the comparison between containers and VMs.

Some studies [14, 69, 9, 54, 64] compared disk I/O performance in con-

tainers and VMs but focus only on the performance; the I/O isolation is not

addressed. Other studies [46] [84] [72] [19] compared disk I/O isolation in

VMs and containers and show that VMs have a stronger isolation. However,

the underlying causes that affect containers’ I/O isolation is not investigated.

The studies in [74] and [85] explored the DBMS performance isolation

in containers and showed that the database performance suffers from inter-

ference when it is collocated with I/O intensive workloads. However, no

analysis are performed to understand how the interference occurs in con-

tainers. The study in [74] suggested that the sharing of buffer cache is the

cause of database interference with I/O workloads. In this dissertation, I re-

veal that file-system journaling is the root cause of the interference. DBMS

suffers from interference even when the buffer cache is not shared.

Other studies focused on enhancing the I/O performance in containers.

The study in [37] divides underlying hardware resource between containers

to avoid resource conflict. The study showed that the sharing of the swap

area causes the resource conflict in solid state device storage (SSD). In our

recommended configuration by using the per-container journaling, each con-

tainer has its own virtual disk with the swap area and avoids the above

problem. The study in [53] suggested to disable the data synchronization

inside containers to improve I/O performance. However, such solution is

risky in update intensive application like DBMS and equivalent to disabling

file-system journaling.

6

CHAPTER 1. INTRODUCTION

Some OS researchers worked on designing a completely new file sys-

tems [43] [32] or developing novel journaling mechanisms [60] to improve

file-system journaling. The study in [31] proposed a virtualized storage de-

vice for each container on top of which an isolated I/O stack is built. These

solution can mitigate some of journaling problems in containers. However,

all of these works involve non-negligible modifications to the kernel, and the

existing file systems and I/O stack must be replaced to utilize it. Hence,

these solutions are difficult to deploy on current cloud platforms. In this dis-

sertation, I quest for possible solutions to alleviate the journaling problems in

containers without any code modification. We show that these problems can

be overcomed without re-designing the file systems or modifying the existing

kernel.

1.4 Organization

This dissertation is organized as follows. Chapter 2 describes the related

works in detail. Chapter 3 explains the background of container and VM

architectures and the overview of disk I/O control in them. The chapter also

compares the disk I/O performance and isolation in containers and VMs.

Chapter 4 investigates DBMS performance and isolation in containers and

VMs. The chapter highlights the motivation by showing that containers are

not suitable for DBMS consolidation despite outperform VMs in I/O through-

put. The chapter analyzes DBMS performance and isolation, and describes

the file-system journaling problems in containers. Chapter 5 proposes a con-

figuration method for containers to alleviate file-system journaling problems

in containers. The quantitative analysis confirms the the feasibility of our

recommended configuration in overcoming the journaling problems. Finaly,

chapter 6 concludes this dissertation and discusses the future work.

7

Chapter 2

Related Work

As containers have grown in popularity during recent years, they gain atten-

tion from researchers to study their performance and compare it with VMs.

Most of these research efforts focus on exploring the container’s performance

advantage over VM’s performance overhead. In an application like DBMS

which is an I/O intensive application, the I/O performance and isolation are

very important. The I/O performance and isolation of VMs have been stud-

ied well in the literature [87, 5, 50, 7, 29, 65, 57, 86]. However, there are

no sufficient studies regarding I/O isolation in containers and the effect of

kernel sharing on performance isolation among containers.

This chapter overviews the existing studies and discusses the importance

of this dissertation. Since file-system journaling affects DBMS performance

and isolation in containers, I review the studies that improve file-system

journaling as well. I divide the studies into categories based on whether they

target the I/O performance and isolation in containers, or they target file-

system journaling problems. I summarize the pros and cons of each study

within each category.

2.1 Investigating I/O Performance and Isola-

tion

Numerous researchers have studied the performance of containers and com-

pared it with that of VMs. However, most of these studies focus only on

8

CHAPTER 2. RELATED WORK

performance, the performance isolation is not addressed. Researchers from

IBM compared the performance of a docker container [12] and a KVM [35],

a hypervisor-based VM [14]. Their work focused on a single container or VM

performance and compared them to native non-virtualized performance to

isolate and understand the overhead introduced by VM. Their results showed

docker outperforms KVM in disk I/O with a different type of I/O workloads.

Same results are obtained in [54] which compared KVM, docker, and LXC

container [44]. Both LXC and docker outperform KVM in disk I/O and

archive near native-performance. Regola et al [69] evaluated the I/O perfor-

mance of OpenVZ [16] container and KVM in high-performance computing

(HCL) environment. OpenVZ outperforms KVM in I/O throughput and

achieves near-native performance. Che et al [9] compared disk I/O perfor-

mance in Xen [4], another hypervisor-based virtualization, with KVM and

OpenVZ. The results show that OpenVZ has a comparative I/O performance

to Xen but better than that of KVM.

Some studies explored disk I/O isolation in containers and compared it

with VMs. Matthews et al studied performance isolation in OpenVZ, Solaris

container [81], Xen, VMware [79], another hypervisor-based virtualization.

The scenario consisted of running two VMs/containers and dividing system

resources between them. The performance of applications is measured upon

one of the VM/container while the other VM/container is performing a stress

test with benchmarks. VMware imposes stronger isolation than Xen and

the containers. Both OpenVZ and Solaris containers showed a performance

degradation and suffered from poor isolation in disk I/O intensive workloads.

However, the underlying mechanism that causes performance interference in

containers is not investigated. Similarly, Xavier et al [84] evaluated per-

formance isolation in LXC and OpenVZ with Linux VServer [80], one of

the oldest implementation of a Linux container-based system. The results

showed that disk I/O isolation is violated in all container systems but the

underlying causes are not investigated. Surya et al [18] [19] studied the in-

terference among multiple containers and how different types of workloads,

when scheduled together affect the performance of each other. In the case of

I/O intensive workloads, containers suffered from performance interference.

They suggested that since the caching of the file-system is taken care of by

9

CHAPTER 2. RELATED WORK

a shared kernel, this can result in one container having an impact on the

performance of other concurrent containers. Sharma et al [72] compared the

performance isolation in LXC and KVM and showed that despite LXC out-

performs KVM in disk I/O, it lacked the I/O isolation between containers.

They suggested that the sharing of host OS block layer components like the

I/O scheduler increases the performance interference for disk workloads in

containers.

2.2 Exploring DBMS Performance and Isola-

tion

There is a scarcity in the studies that investigate DBMS performance and iso-

lation in containers. Felter et al [14] compared the performance of docker and

KVM against two database systems, MySQL and Redis. Their results showed

that the container outperforms VM in both MySQL and Redis throughput.

However, they didn’t study performance isolation when DBMS is collocated

with other containers/VMs. Soltesz et al. [74] compare performance isolation

of database application in VServer container and Xen, using Open Source

Database Benchmark (OSDB). The performance of the VServer container

running a database application is impacted by other containers running I/O

intensive workloads. They suggested that I/O intensive containers monopo-

lize the buffer cache to degrade the database application. Our investigation

reveals that the file-system journaling disturbs database performance in the

container even if the buffer cache is not shared. In our experiments, the

direct I/O is used to bypass the buffer cache. Xavier et al. [85] compared

LXC and KVM in terms of the performance interference in DBMS. Accord-

ing to their study, LXC suffers more severely from interference than KVM

when a database is collocated disk with I/O-intensive workloads. They sug-

gested that cgroup is working properly when using it to restrict resources in

KVM than LXC. However, no analysis is conducted to understand how per-

formance interference occurs in LXC and why the resource control is failed.

In this dissertation, I explain that file-system journaling interferes with disk

I/O control of cgroup in containers. Also, I show that KVM beats LXC not

10

CHAPTER 2. RELATED WORK

only in I/O isolation but also in DBMS performance as I consider the case

of journaling-intensive workloads.

2.3 Enhancing I/O Performance and Isola-

tion

A few studies worked on or suggested a solution to improve I/O performance

and isolation in containers. Kwon et al. [37] presented a storage framework

to enhance I/O performance and resource isolation of Docker containers in

solid-state device (SSD) storage. They achieved that by divided underlying

hardware resources between containers to avoid resource conflict. The di-

vided SSD is achieved by implementing multiple NVM sets in real hardware

to provide concurrent storage accesses. Their investigation points out that

the reasons for poor I/O performance and isolation in docker are the sharing

of the same swap space among containers and the kernel. The swap is a

storage space that is used when the amount of physical memory is full. If

the system needs more memory space, inactive pages in memory are moved

to the swap space [67]. Hence when the kernel performs I/Os due to page-in

and page-out when running memory-intensive containers, this swap space can

cause storage resource conflict and degrade the I/O performance. However,

this work only targets I/O performance in SSD storage and requires a hard-

ware modification. It doesn’t address the resource contention of the shared

journaling module in containers. In this dissertation, our recommended con-

figuration by using the per-container journaling, each container has its virtual

disk device with its own swap space and avoids the above problem as well.

Mizusawa et al. [53] presented an evaluation of file operations of Over-

layFS which is a widely recognized method for improving I/O performance

in docker. OverlayFS is a union mount filesystem and one of the storage

drivers of docker. According to their results, the performance of file writing

is severely low because of the synchronization of data in memory and storage.

The write operations required a remarkably long time due to data synchro-

nization. They suggest disabling this synchronization to improve the I/O

performance. However, such a solution is not acceptable for an application

11

CHAPTER 2. RELATED WORK

like DBMS. Similarly, disabling file-system journaling to avoid journaling

problems and to improve I/O performance is not acceptable. It has the risk

of losing the user’s data and file-system consistency.

Mavridis et al [47] suggested combining both containers and VMs to en-

hance the isolation among containers. They suggested running a group of

containers on top of VMs instead of running all containers on the bare-metal

host machine. This method can reduce the resource contention on the shared

resource of host OS among containers. They evaluated the performance over-

head on CPU, memory, network, and disk I/O that results from running

containers inside VMs. They compared the performance overhead under

KVM, Xen, and Hyper-V [82] VMs to determine which virtualization adds

less overhead. Although this approach has been used by some cloud plat-

forms to enhance the isolation and security among containers; but it adds a

non-negligible overhead on I/O performance. Also, the group of containers

that run inside VM, still share the same journaling module of VM. Hence,

such a configuration approach is not suitable to avoid file-system journaling

problems in containers.

2.4 Designing New File-systems or Journal-

ing Techniques

Some OS researchers proposed new file-systems or journaling techniques to

enhance file-system journaling. Such works can contribute to mitigating some

journaling problems in containers. Lu et al [43] proposed IceFS, a novel file

system that separates physical on-disk structures of the file-system. They

create new file-system abstractions known as “cubes” that include logically

related files and directories. These cubes allow concurrent file-system up-

dates. IceFS includes novel transaction splitting machinery to enable per-

cube journaling to file system, thus disentangling I/Os traffic in different

cubes. Normally, file-system journaling uses bundled transactions that group

updates from many files together. This causes performance dependencies be-

tween I/O applications that update files and directories. The transaction

splitting allows file-system journaling to commit transactions from different

12

CHAPTER 2. RELATED WORK

cubes in parallel which increases the I/O performance of applications. IceFS

can solve the bundled transactions’ problem in containers, however, they

still share the same journaling module that interferes with disk I/O control

of cgroup. Also, the existing file-system must be replaced to utilize IceFS

benefit.

Similarly, Park et al [60], proposed iJournaling, a new journaling tech-

nique that adopts the transaction splitting approach. They enable journaling

at the file level by creating per-file transactions instead. Hence, if the jour-

naling is invoked by a fsync call, ijournaling commits only the transaction

related to the fsynced file without flushing the other files’ updates like in

bundled transaction. The file-level transaction has only the related updates

of the fsynced file and takes a shorter time to be committed. This enhances

the fsync latency and improves I/O performance. Such journaling techniques

can improve the performance of update-intensive containers but do not over-

come all the journaling problems. For example, fsync calls serialization from

multiple containers and uncounted journaling I/Os are not addressed.

Kang et al [32] introduced SpanFS, a novel file system that consists of a

collection of micro file system services called domains. SpanFS distributes

files and directories among the domains, provides a global file system view

on top of the domains. The storage device blocks are partitioned among

the domains. Each domain has its on-disk and in-memory data structures,

and its own kernel services like journaling. This design enables independent

and parallel journaling per-domain. Using such a file-system can overcome

journaling problems if each container runs within one domain. However,

since the number of domains is limited, running multiple containers on a

domain makes containers share the same journaling module again. Besides

the cost and difficulties in managing domains and storage partitions, the

existing file-system is needed to be replaced.

13

CHAPTER 2. RELATED WORK

2.5 Proposing Storage Systems for contain-

ers

Containers share the same storage system and kernel I/O stack of host OS.

This can lead to I/Os contentions and poor scalability on many CPU cores

among containers. To eliminate storage system contentions, some works pro-

posed a dedicated storage system for containers. Kang et al [31] introduced

MultiLanes, a virtualized storage device for each container on top of which

an isolated I/O stack is built. They achieved that by partitioning kernel

and virtual file-system data structures and creating a file-based virtualized

block device for each container. The virtualized storage device allows each

container to have its guest file-system and journaling module. However, this

work requires a non-negligible file-system modification and the kernel I/O

stacks must be replaced to utilize it. OpenVZ [16] developers show that

file-system journaling can be a serious bottleneck in containers and try to

address this problem. If one container fills up in-memory journal with lots

of small operations leading to file metadata updates, all the other containers

I/O will block waiting for the journal to be written to disk [59]. OpenVZ

implements a special virtual block device for containers atop of it, a guest

file system is running. Although each container will have its own file-system

and journal, this solution alone does not solve the journaling problems in

containers as it will be shown in this dissertation.

2.6 Summary

Several works discussed the performance of containers and compared it with

VMs. They showed that the container achieves higher performance than

VMs in disk I/O. However, the existing work does not focus on performance

isolation when multiple VMs/containers are consolidated. The trad-off be-

tween disk I/O performance and isolation in containers and VMs are still

not well understood. Some works compared DBMS performance in contain-

ers and VMs. However, they did not investigate disk I/O isolation in DBMS,

for which the containers cannot provide comparable performance with VMs.

14

CHAPTER 2. RELATED WORK

The performance isolation in disk I/O for containers is not easy to achieve.

Some works suggested dividing the underlying storage among containers to

avoid I/O contentions or running containers inside VMs to enhance the iso-

lation. Other work suggested disabling data synchronization to enhance I/O

performance in containers. However, non of these works solve file-system

journaling problems that affect I/O performance and isolation in containers.

New file systems or journaling techniques have been proposed to over-

come some of the file-system journaling limitations, like providing logically

separated units for independent or parallel journaling within the file-system.

These novel file systems do not overcome all of the journaling problems in

containers, and the existing file systems or kernel I/O stack must be replaced

to utilize them. Some works introduced a virtualized storage device to pro-

vide each container with its own file system. However, this solution alone

does not solve all of the journaling problems and their effects on I/O isolation

in containers.

15

Chapter 3

Background

The objective of this chapter is to describe the background of the container

and virtual machine architectures, and the overview of disk I/O control in

them. The chapter also shows the comparison of disk I/O performance and

isolation in the container and virtual machine. KVM is chosen as represen-

tative of hypervisor-based virtualization, While LXC and OpenVZ a repre-

sentative of OS-based virtualizations. The results confirm that the container

is better than the virtual machine in disk I/O performance and shows a

comparable disk I/O isolation.

3.1 Hypervisor and OS-based Virtualization

In traditional virtualization, a special program called hypervisor runs on

top of the host OS and virtualizes the underlying physical hardware. This

enables multiple virtual machines (VMs) to run on a single physical machine

as shown in Figure 3.1. The result is that each VM contains a guest OS, a

virtual copy of the hardware that the OS requires to run, and an application

and its libraries and dependencies. Instead of virtualizing the underlying

hardware, the OS-based virtualization shifts the layer of virtualization and

starts abstractions at the OS level by creating multiple virtual units at the

user-space known as containers. Containers share the same host OS and

contain only the application and its associated libraries and dependencies.

This gives the lightweight advantage of containers over VMs when it comes to

16

CHAPTER 3. BACKGROUND

application deployments like faster provisioning, better scalability, and fewer

resource consumption. Containers are built and isolated from each other by

two underlying Linux kernel technologies:

Namespaces. Namespaces are a kernel mechanism for limiting the vis-

ibility that a group of processes has of the rest of a system. For example

limiting the visibility to certain process trees, network interfaces, user IDs,

or filesystem mounts [45]. It uses to create an isolated container that has no

visibility or access to objects outside the container. A namespace provides

an abstraction for a kernel resource that makes it appear to the container

that it has its own private, isolated instance of the resource [72]. Processes

running inside the container appear to be running on a normal Linux sys-

tem although they are sharing the underlying kernel with processes located

in other namespaces. Linux implements namespaces for isolating: process

IDs, user IDs, file system mount points, networking interfaces, IPC, and host

names [14].

Cgroups. cgroups, which stands for control groups, is a kernel mech-

anism for limiting and controlling the resources consumption by a group of

processes running on a system. For example, you can apply CPU, memory,

network, or IO quotas [45]. Linux implements cgroup for each major resource

type: CPU, memory, network, and disk I/O. The cgroup is largely composed

of two parts, the core, and controllers. The core is responsible for hierarchi-

cally organizing processes while the controller is responsible for distributing

a specific type of system resource along the hierarchy [49]. The OS kernel

provides access to multiple controllers (also called subsystems) that limit the

resource usage; for example, the I/O controller limits disk usage, the CPU

controller limits CPU usage, etc. A container’s resource consumption can be

controlled by simply changing the limits of its corresponding cgroup.

3.1.1 KVM

KVM (Kernel-based Virtual Machine) is an open-source hypervisor-based

virtualization technology built into a Linux system. As a kernel module

added into Linux, KVM turns Linux into a hypervisor that allows a host

machine to run multiple isolated VMs [35]. The hypervisors need some OS-

17

CHAPTER 3. BACKGROUND

Hardware

Host OS

Hypervisor

VM

App

Binaries/
Libraries

Guest OS

VM

App

Binaries/
Libraries

Guest OS

Hardware

Host OS

Container Container

App

Binaries/
Libraries

App

Binaries/
Libraries

Figure 3.1: Architectures of hypervisor and OS-based virtualization.

level components such as a memory manager, process scheduler, I/O stack,

device drivers, a network stack, and more to run VMs. KVM has all these

components because it’s part of the Linux kernel [68]. In KVM, each VM

is implemented as a process by running an unmodified guest OS inside a

Linux process. The VM is scheduled by the standard Linux scheduler, with

dedicated virtual hardware like a network card, CPU, memory, and disks [68].

KVM uses hardware virtualization features in recent processors to reduce

complexity and overhead such as Intel VT or AMD-V. KVM supports both

emulated I/O devices through QEMU [6] and para-virtualized I/O devices

using virtio [71]. QEMU is a device emulator and virtualizer that is used to

simulate the VM’s I/O and triggering the real I/O. Virtio is a para-virtualized

driver that is used to accelerate I/Os in VMs. The combination of these two

technologies is used to reduce I/O virtualization overhead in KVM [48].

3.1.2 LXC

LXC (Linux Container) is an open-source OS-based virtualization technol-

ogy for or running multiple isolated containers in Linux systems. LXC share

the same kernel of the host OS and are isolated from each other through

private namespaces and resource control mechanisms of cgroup. During the

container startup, by default, process IDs, user IDs, IPC, file system mount

18

CHAPTER 3. BACKGROUND

points, networking interfaces, are virtualized and isolated through the PID

namespace, IPC namespace, and file system namespace, and network names-

pace respectively [84]. LXC offers an environment similar to VM but without

the overhead that comes with running a separate kernel and simulating all

the hardware [44]. The processes inside the container are run and handled

like any regular process on the host OS. The process control and resource

consumption are accomplished by cgroup of their corresponding containers.

3.1.3 OpenVZ

OpenVZ (Open Virtuozzo) is another open-source OS-based virtualization

technology for Linux systems. Unlike LXC, OpenVZ uses a custom kernel

instead of a mainstream Linux kernel. The custom kernel is a modified Linux

kernel with the function of virtualization, isolation, checkpointing, live mi-

gration, and resource management [9]. OpenVZ introduces four resource

management components named user beancounters (a set of limits and guar-

antees done through control parameters), fair CPU scheduling, disk quotas,

and I/O scheduling [84]. In the same way as LXC, OpenVZ uses kernel

namespaces to provide resource isolation among containers. OpenVZ sup-

ports the container with a virtual block device which allows each container

to have its own file system. Normally, containers share the same file system

of host OS where each container is just a directory of files that is isolated us-

ing chroot [40]. The chroot is a linux operation uses to provide a container

with its root directory, which is a sub-tree of the host file system [74].

3.2 Disk I/O in Container and VM

Containers and VMs are different in how their disk I/Os are executed and

handled on the host machine. Figure 3.2 (a) and (b) show the interior struc-

ture and I/O paths of KVM, and LXC respectively. OpenVZ has a similar

structure to LXC. In KVM, a guest OS runs on top of a host OS. Hardware

devices such as disk drives are virtualized with QEMU device emulator [87].

A disk I/O request is performed in the guest OS but the guest mode has no

privilege to access the underlying I/O devices. The I/O requests of the guest

19

CHAPTER 3. BACKGROUND

Hardware

Host
Kernel space Disk Driver

Host OS
User

Space
Process

Container

Hardware

Host Kernel
Block I/O layer

Host OS User Space

process
VM user
space

KVM

File System
layer

Namespace Cgroup Para-virtualized
Driver

Virtualized hardware
(QEMU)

Guest File
system

Cgroup

Kernel

Container

Process

Journal
Module

Journal
Module

process
VM user
space

Virtualized hardware
(QEMU)

Kernel

Journal
Module

Guest File
system

Para-virtualized
Driver

(a) KVM

Hardware

Host
Kernel space Block I/O layer

Host OS
User

Space
Process

Container

Hardware

Host Kernel

Disk Driver

Host OS User Space

process
VM user
space

KVM

File System
layer

Namespace Cgroup Para-virtualized
Driver

Virtualized hardware
(QEMU)

Guest File
system

Cgroup

Kernel

Container

Process

Journal
Module

Journal
Module

process
VM user
space

Virtualized hardware
(QEMU)

Kernel

Journal
Module

Guest File
system

Para-virtualized
Driver

(b) LXC

Figure 3.2: Interior structure and I/O paths of KVM virtual machine and

LXC container.

OS are trapped into the host user-space and passed to the QEMU device

emulator. QEMU handles the I/O requests and triggers the real disk I/Os

which then are processed by the host OS [9]. These steps add performance

overhead on VM’s I/Os. In LXC, I/O processes run directly on a host OS

without any virtualization overheads from guest mode/user-space context

switching and QEMU device emulation. A disk I/O request from a container

is handled in the same way as ordinary processes on the host. In exchange

for the performance advantage, the container provides weaker isolation of

performance. Since containers share kernel components like buffer caches

and other data structures at the OS-level, the activity inside one container

is likely to affect the performance of other containers.

3.3 Disk I/O Control by Cgroup

Cgroup uses the block I/O controller to enforce disk I/O control. Cgroup

supports two policies for controlling disk I/O: 1) I/O throttling and 2)

proportional-weight [38]. I/O throttling policy is used to set an upper limit

for the number of I/O operations performed by specific group, it simply

20

CHAPTER 3. BACKGROUND

Process 1 Process 2

Dispatch queue

Hardware / Disk

I/O Block layer

I/O Scheduler

I/Os requests

I/Os of process 2I/Os of process 1

Cgroup1 Cgroup2

Re-order I/Os and
dispatch I/Os base on

Cgroup weights

30% disk I/Os
Low weight

70% disk I/Os
High weight

Figure 3.3: Illustration of Cgroup with proportional-weight policy.

caps the maximum usage of I/O request rates [66]. In I/O throttling, a con-

tainer/VM cannot make use of an idle resource even if there is no contention

over the resource; it waists the idle resource. Proportional-weight policy al-

lows setting weights to specific cgroup . This means that each cgroup has

a set percentage or share (depending on the weight of the cgroup) of I/O

operations [66]. Proportional-weight enforces the resource limits only when

there is contention over the resource. For example, a container given a 30%

share of disk I/Os can consume as many I/O operations as possible if there

is no contention over disk I/O. Needless to say, if there is contention over

disk I/O, the container can use up to 30% share of disk I/Os. Figure 3.3 il-

lustrates cgroup with Proportional-weight policy. The policy is implemented

in the I/O scheduler layer where I/Os from different processes are queued

and dispatched to the underlying disk base on their cgroup I/O weights.

These weights specify the relative amount of disk time the cgroup can use

in relation to other cgroup [27].

Similarly to old Cgroup, the new version of control group Cgroupv2 uses

disk time to apply the proportional-weights I/O control [27]. These time-

based weight controls the I/O requests but does not consider the size of I/O

21

CHAPTER 3. BACKGROUND

0

10

20

30

40

50

60

70

80

90

100

Container with 30%
disk share

Container with 70%
disk share

VM with 30% disk
share

VM with 70% disk
share

P
er

ce
n

ta
ge

 o
f

I/
O

 u
sa

ge

Bandwidth rate I/O operations rate

Figure 3.4: Proportional-weight policy in cgroup fails to control disk I/O

bandwidth. High-weight VM/container (given 70% share of disk I/Os) gets

less bandwidth than a low-weight VM/container (given 30% share of disk

I/Os)

each request takes. In this case, the amount of disk I/O that each I/O request

incurs is not taken into consideration when applying the desired share. If a

container/VM issues a single I/O request that incurs a huge amount of disk

I/O, it can monopolize the disk bandwidth.

I conduct an experiment consisting of running two collocated contain-

ers/VMs and I used Cgroup proportional-weights policy for disk I/O control.

The experiment setting is described in section 3.4.1. One container/VM is

given a 30% share of disk I/O and the other container/VM is given a 70%

share of disk I/O. Both of these two containers/VMs are performing sequen-

tial writes using FIO workload but with different I/O sizes. Here, the low-

weight container/VM (given 30% share) issues 64KB-disk I/Os while the

high-weight container/VM (given 70% share) issues 16KB-disk I/Os. Fig-

ure 3.4 shows a container/VM with a low disk I/O weight (given 30% share

of I/O request rate) can consume more bandwidth than a container/VM with

a high disk I/O weight (given 70% share of I/O request rate). Hence, I sug-

gest that Cgroup developers should consider this issue to improve disk I/O

control of Cgroup.

22

CHAPTER 3. BACKGROUND

3.4 Disk I/O Performance and Isolation

To confirm the general belief that containers are better than VMs in per-

formance, this section compares the disk I/O performance and isolation in

containers and VMs. Past studies [87, 50, 7, 29, 65] have shown that tradi-

tional hypervisors such as Xen, VMware, and KVM have high-performance

overheads. From the viewpoint of performance isolation, VMs promise to pro-

vide better isolation than containers because each VM runs a stand-alone OS

without sharing any kernel components. The I/O performance and isolation

are very relevant. The failure in achieving I/O isolation causes performance

degradation between collocated containers/VMs. Performance isolation is

a scheme of resource management that provides performance guarantees to

containers/VMs [78]. If multiple containers/VMs are competing for a partic-

ular resource, each container/VM cannot use the resource beyond the share

allocated to it. If there is no contention over a resource, a container/VM

should be able to consume the resource as much as it demands, which leads

to more efficient use of resources in clouds. For example, if a VM/container

is given a 30% share of disk I/O, it can consume as much disk I/Os as it de-

mands if there is no contention over disk I/O. But if other containers/VMs

are competing for disk I/Os, it can consume the only 30% of disk I/Os.

3.4.1 Experimental Setup

The experimental environment consists of dell PowerEdge T610 with Xeon

2.8 GHz CPU, 4 cores, and 32 GB RAM as a host machine. Ubuntu 18.04.1

LTS 64bit Linux distribution with the 4.18.0-25-generic kernel is installed.

SAS hard disk of 1TB is formatted with ext4 file system with the default

journaling mode; i.e., only the metadata are journaled. Disk resource control

is enforced through Cgroup’s proportional-weight policy. The new version

of control group “Cgroupv2” [27] is used with LXC and KVM. LXC 3.0.4 is

used for Linux containers while OpenVZ 7.0.10 with its corresponding kernel

and resources control is used for OpenVZ container. KVM-qemu 2.11.1 is

installed on the host and the guest environments are the same as the host.

Each VM is allocated one virtual CPU that pins to a one CPU core and 1GB

RAM with a raw disk partition allocated as secondary storage. The same

23

CHAPTER 3. BACKGROUND

3.6

7.1

2.5

4.3

6.95

2.6

3.6

6.5

2.3

0

2

4

6

8

10

seq-read random-read seq-write random-write

40

60

80

100

KVM LXC OpenVZ

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

Figure 3.5: Disk I/O throughput in KVM, LXC, and OpenVZ. Containers

beat VM in all I/O workloads.

CPU and memory configuration is applied to the containers.

3.4.2 Results

To examine the I/O performance, flexible I/O (FIO) benchmark [15] is used

to generate four types of I/O workloads: 16KB random read/write and 64KB

sequential read/write. Direct I/O mode is turned on to bypass the adverse

effect of the buffer cache. Figure 3.5 shows the I/O throughput of KVM,

LXC, and OpenVZ. In this experiment, one instance of a container or a VM

is running. As shown from Figure. 3.5, both LXC and OpenVZ outperform

KVM in all I/O workloads.

LXC and OpenVZ show better performance than KVM in consolidation

cases when two VMs/containers are consolidated on a single physical ma-

chine. The one VM/container is given a 30% share of disk I/Os and the

other is given a 70% share. Figure 3.6 shows the throughput of one con-

tainer/VM (the one with 70% disk share) when the same I/O workloads in

Figure 3.5 are run in two VMs/containers. As this figure shows LXC and

OpenVZ beat KVM in all cases.

Figure 3.7 (a), (b), and (c) show the performance isolation of KVM,

LXC, and OpenVZ respectively. In this experiment, two VMs/containers

24

CHAPTER 3. BACKGROUND

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

0.9

2.5

11.1

2.4

0.950.8

2

0.75

0

1

2

3

seq-read random-read seq-write random-write

14

16

18

20
KVM LXC OpenVZ

Figure 3.6: Disk I/O throughput in KVM, LXC, and OpenVZ in consol-

idation case when two I/O workloads are collocated together. Containers

outperform VMs in all workloads

are launched to run the sequential write workload. The one VM/container

is given a 30% share of disk I/Os and the other is given 70% share. Fig-

ure 3.7 shows that all of KVM, LXC, and OpenVZ respect the shares of disk

I/O gracefully. The VM/container with 30% share consumes around 30%

share, and the VM/container with 70% share consumes around 70% share.

LXC and OpenVZ containers enforce the resource limit successfully and show

comparable performance isolation to VM.

3.5 Summary

The background of the container and virtual machine architectures are pre-

sented in this chapter. The overview of KVM, LXC, and OpenVZ systems is

presented as well. Disk I/O in these systems is explained and disk I/O control

by Cgroup is examined. Disk I/O performance and isolation are compared

in KVM, LXC, and OpenVZ. The results show that containers outperform

virtual machines in disk I/O performance and provide identical I/O isolation

to that of the virtual machine. Based on these results, it is expected that

DBMS performance and isolation will be better in the container than in the

25

CHAPTER 3. BACKGROUND

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed

D
is

k
I/
O

 u
sa

g
e
[%

]

time(sec)

VM A: FIO Seq. write with 30% share
VM B: FIO Seq. write with 70% share

(a) Disk I/O usage in KVM

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed

D
is

k
 I

/O
 u

s
a

g
e

[%
]

time(sec)

ContainerA: FIO Seq. write with 30% share
ContainerB: FIO Seq. write with 70% share

(b) Disk I/O usage in LXC

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed

D
is

k
I/
O

 u
sa

g
e
[%

]

time(sec)

ContainerA: FIO Seq. write with 30% share
ContainerB: FIO Seq. write with 70% share

(c) Disk I/O usage in OpenVZ

Figure 3.7: Performance isolation in KVM, LXC, and OpenVZ where the

one VM/container is given 30% share of disk I/O and the other is given 70%.

All VMs/containers respect the given shares of disk I/O.

virtual machine as it will be compared in the next chapter.

26

Chapter 4

DBMS Performance and

Isolation

The objective of this chapter is to investigate DBMS performance and isola-

tion in the container and virtual machine. The chapter highlights the moti-

vation that despite containers are preferred over virtual machines because of

virtualization overhead, the trade-offs between performance and isolation in

containers and virtual machines are still unclear. From the results obtained

in Chapter 3, it is expected that containers are more appropriate than vir-

tual machines for consolidating DBMSes. Surprisingly, the results show that

DBMS performance is better in virtual machines than in containers. Fur-

thermore, disk I/O isolation is very terrible when consolidating DBMSes in

containers. The analysis reveals that file-system journaling in containers

degrades DBMS performance and violates disk I/O isolation. Our investiga-

tion identifies the underlying causes behind file-system journaling problems

in containers.

4.1 MySQL Performance and Isolation

Based on results in Chapter 3, it is expected that LXC and OpenVZ are

more appropriate than KVM for consolidating DBMSes. LXC and OpenVZ

outperform KVM in disk I/O throughput and show I/O isolation compara-

ble with KVM. This section shows the experiments that have conducted to

27

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

confirm these results. Surprisingly, the experimental results are contrary to

the expectation. Containers are not appropriate for DBMS consolidation.

Containers are worse than VMs in DBMS performance and violate the I/O

isolation even when the resource limit is imposed by Cgroup.

4.1.1 Experimental Setup

The same experimental environment in Chapter 3, Section 3.4.1 is used. To

examine the performance and isolation in DBMS, MySQL ver. 5.7.27 is in-

stalled in each container/VM with InnoDB as a storage engine. MySQL

is configured to use direct I/O since it is the common setting in DBMS to

avoid the well-known problem of double caching. The transaction model is

the default autocommit, in which MySQL performs a commit after each SQL

statement. Sysbench OLTP benchmark [36] generates workloads, which run

in a separated machine connected via Cisco 1Gbit Ethernet switch. Sys-

bench is configured to use the non-transactional mode so that each query

is automatically committed. The workload generates INSERT queries to 10

database tables each with 100,000 rows of records. The number of clients is

increased until I/O operations are saturated.

4.1.2 Results

The performance and isolation of MySQL are compared in LXC, OpenVZ,

and KVM. In the experiment, two VMs/containers are launched, each exe-

cutes MySQL workload. Figure 4.1 shows MySQL throughput in consolida-

tion case (the throughput of one container/VM). For comparison, the figure

shows MySQL throughput in a standalone case, where one VM/container is

launched. Out of expectation VM outperforms containers in consolidation

cases when two VMs/containers are collocated together on the same machine.

LXC and OpenVZ performance is 22% and 25% worse than KVM in MySQL

throughput respectively.

Figure. 4.2 compares the performance isolation of MySQL between VMs

and containers in the previous experiment. The disk I/O control is imposed

by Cgroup. One VM/container is given a 30% share of disk I/O and the

other is given a 70% share. The X-axis shows the elapsed time and the Y-

28

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0

100

200

300

400

500

600

700

800

900

1000

Standalone case Consolidation case

R
e

q
u

e
st

/s
e

c
KVM LXC OpenVZ

Figure 4.1: MySQL throughput in KVM, LXC, and OpenVZ. The graph

shows 1) standalone, 2) collocated with other VM/container. Surprisingly

KVM outperforms LXC and OpenVZ.

axis shows the percentage of the disk I/Os consumed by each VM/container.

Figure (a) indicates that KVM respects the resource limit because the VM

with 30% share consumes around 30% of disk I/Os and the other VM with

70% share does around 70%. On the other hand, Figure (b) and Figure (c)

show disk I/O isolation in LXC and OpenVZ respectively. The figures show

a clear disk I/O contention between collocated containers. The disk I/Os

consumption of the container with 30% share and container with 70% share

fluctuates terribly from 0% to 55%. This indicates that containers violate the

resource control in MySQL workload although they previously show perfect

isolation comparable to that of VM in FIO workloads.

4.2 Analyzing DBMS Performance and Iso-

lation

This section provides a quantitative analysis of DBMS performance and iso-

lation in containers and VMs. To understand the results of MySQL in con-

tainers that are contrary to the expectations, disk I/O performance and

29

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/O

 u
sa

ge
[%

]

VM A: MySQL with 30% I/O share
VM B: MySQL with 70% I/O share

(a) Disk I/O usage in KVM

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/O

 u
sa

ge
[%

]

ContainerA: MySQL with 30% I/O share
ContainerB: MySQL with 70% I/O share

(b) Disk I/O usage in LXC

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/O

 u
sa

ge
[%

]

ContainerA: MySQL with 30% I/O share
ContainerB: MySQL with 70% I/O share

(c) Disk I/O usage in OpenVZ

Figure 4.2: Performance Isolation in KVM, LXC, and OpenVZ. Containers

show a terrible disk I/O isolation with MySQL database.

isolation are investigated. Depending on the user case, DBMS can become

an update-intensive application, it performs a lot of data write and change

in a database. DBMS invokes fsync calls at a high rate to ensure updates

are written to disk. I suggest fsync calls that are invoked at a high rate slow

down disk I/O and affect DBMS performance in containers. The fsync is

closely related to file-system journaling. Since containers share the journaling

mechanism unlike VMs, journaling activities are serialized and bundled with

each other, resulting in inferior I/O performance and isolation. I identify the

underlying causes behind file-system journaling problems in containers. The

results confirm the influence of journaling problems on MySQL performance

30

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

and isolation.

4.2.1 Investigating the effect of Fsync

MySQL performance degrades in LXC and OpenVZ even though the per-

formance is better than KVM in the FIO workloads. A major difference in

the MySQL and FIO workloads is that the MySQL invokes fsync frequently

to ensure that all updates are written to the final destination on disk. The

fsync is a system call transfers (flushes) modified data and metadata (infor-

mation associated with data) in buffer cache to the disk device so that all

data can be retrieved even if the system crashes or is rebooted [41]. The call

blocks until the device reported that data transfer has completed [41]. In the

MySQL workload, fsync is invoked at the rate of 27 times/sec in KVM, and

14 and 12 times/sec in LXC and OpenVZ respectively. On the other hand,

the FIO workload in previous experiments does not invoke fsync explicitly.

In FIO workload, updates are flushed to disk at the rate of 0.2 times/sec

(every 5 seconds).

To verify that the high rate of fsync has a significant impact on I/O

performance, I have prepared three I/O workloads: 1) no-, 2) low-, and

3) high-fsync workload. The no-fsync workload is the same as the FIO

sequential-write workload. The low- and high-fsync benchmarks are based

on the no-fsync workload but set to issue fsync calls more frequently. The

low- and high-fsync workload issue fsync every 20 I/O operations (at the

rate of 3–5 times/sec) and 5 I/O operations (at the rate of 10–15 times/sec),

respectively.

Figure 4.3 shows the throughput of the high-fsync workload when it is col-

located with a VM/container running either 1) no-, 2) low-, or 3) high-fsync

workload. For comparison, the figure shows the throughput of the no-fsync

collocated with the no-fsync workload. LXC and OpenVZ outperform KVM

only when both containers/VMs are running the no-fsync workload. If one

workload is changed to the high-fsync, KVM always beats LXC and OpenVZ.

The throughput in LXC and OpenVZ degrade when the collocated workload

invokes fsync more frequently in low-fsync workload. The throughput in

LXC and OpenVZ degrade more when collocated with high-fsync workload.

31

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

3.2

2.5 2.5 2.5

3.6

2.4

2.08

1.7

3.5

2.5

2.1

1.8

0

1

2

3

4

5

no-fsync collocated
with no-fsync

high-fsync collocated
with no-fsync

high-fsync collocated
with low-fsync

high-fsync collocated
with high-fsync

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

KVM LXC OpenVZ

Figure 4.3: Throughput of disk I/O in KVM, LXC, and OpenVZ. A con-

tainer/VM is running high-fsync workload and is collocated with either 1)

no-, 2) low-, or 3) high-fsync workload. LXC and OpenVZ performance

degrades as fsync intensity increases in the collocated workload.

While KVM shows a stable and constant throughput (around 2.5 MB/sec)

regardless of collocated workload. These results point out that a high rate of

fsync calls are relevant in disk I/O performance in the container but not in

VM. The fsync is closely related to file-system journaling. It is the sharing

of file-system journaling that degrade I/O performance as will be explained

in the next sections.

4.2.2 File-system Journaling

Modern file systems use journaling [63, 60, 30, 13] to keep the file-system

consistency and for data recovery after unexpected system crashes or power

failures. Updating files or directories usually requires multiple write opera-

tions on on-disk data structures. If a power failure or system crash happens

between the writes, the on-disk data structures become inconsistent. For

example, when a file is removed, the disk blocks it occupies must be returned

to the free block list. This operation involves the updates on multiple on-

disk data structures such as inode and bitmap. If the on-disk structures are

32

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

Journal
module

update update

Single transaction

…..

On-disk Journal

Disk
partition

File-system
updates File-system

commit

File-system
recovery

Figure 4.4: A typical journaling file-system.

partially updated, the file system becomes inconsistent. In the worst case,

the user cannot access it anymore. Journaling is write-ahead logging. Before

updating the file system, it logs the write operations to an on-disk region

called journal.

Figure 4.4 shows a typical journaling file-system. The file-system uses

journal to log file-system updates not yet committed to disk to avoid meta-

data corruption [30]. Metadata refers to the managing structures for data on

a disk and it is important to keep file-system consistency. Metadata repre-

sents directory and file creation, removal, growing, truncating, and so on [30].

In case of a system crash or power failure, before updates are committed to

disk, the file-system recovers from inconsistency by re-doing the logs in the

journal.

A kernel component responsible for handling the journaling operation is

called a journal module as shown in Figure 4.4. Only a single journaling

module can run at a time [63]. If there are multiple journaling modules,

they cause a race condition and file-system inconsistency because they may

access sensitive on-disk data structures concurrently. For efficiency, several

updates on files or directories are bundled into a single transaction which

logs the write operations. In the Linux file system (ext4), JBD2 (Journaling

Block Device) is responsible for journaling. The JBD2 groups file-system

updates from multiple processes in that single compound transaction. After

logging the updates, the transaction is committed to the file system and then

33

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

Container BContainer A
User space

kernel space

Disk (block layer)Journal region

Host File System

I/Os
controlled
by Cgroup B

I/Os
controlled
by Cgroup A

Journaling I/Os are out of cgroups’ control

I/OsI/Os

Journal
Module

Transaction 1 Transaction 2 Transaction 3

…Updates from
container A

Updates from
container B

Updates from contain-
-ner A & container B

Transaction are
committed in
serial one at a
time

Figure 4.5: File-system journaling in container virtualization.

removed from the journal. The transactions are committed in serial one at a

time, periodically (every 5 sec by default) or every time fsync is invoked [63].

4.2.3 Journaling Problems in Containers

Containers share the same kernel components of the host like the file system

and journaling module. The sharing of a journaling module in containers

causes a negative impact on disk I/O performance and isolation. The jour-

naling module causes performance dependencies across collocated containers

and interferes with disk I/O control of cgroup. These problems result in the

violation of performance isolation and degrade I/O performance in contain-

ers.

Performance Dependencies Through Journaling:

Figure 4.5 illustrates file-system journaling in containers. In the figure, two

containers share the single journaling module, and thus a single transaction

bundle updates from the two containers. When one container invokes fsync,

the journaling module commits all the updates in the transaction and thus

the one container has to wait until the updates from the other container

are committed. Ideally, invoking fsync in a container should commit only

34

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

Table 4.1: Average fsync latency of the high-fsync workload when collocated

with either 1) no-, 2) low-, or 3) high-fsync workload in KVM and LXC.

Collocated workload KVM LXC OpenVZ

No-fsync 18.58ms 33.81ms 31.78ms

Low-fsync 18.94ms 38.86ms 39.81ms

High-fsync 18.27ms 44.09ms 50.41ms

the updates belonging to that particular container. Because of the bun-

dled transaction, calling fsync causes unrelated updates to be flushed as

well. This dependency can violate the performance isolation because one

container can degrade the performance of another by invoking many fsync

calls. A performance dependency can be caused even if a single transaction

solely contains updates from one container. The transactions are serialized

and cannot be committed in parallel because two different transactions may

update a global shared data structure on disk (for instance, inode bitmap).

Suppose transactions 2 and 3 contain updates solely from container A and B,

respectively. Transactions 2 and 3 cannot be committed in parallel because

transactions are serialized in the journaling module to keep the order of up-

dates. Therefore, if two containers invoke fsync at the same time, container

A, for example, has to wait until transaction 2 is committed.

To confirm the above observation, I measure the fsync latency of KVM,

LXC, and OpenVZ in the previous experiment in Section 4.2.1. Table 4.1

shows the fsync latency of the high-fsync workload when it collocated with

either 1) no-, 2) low-, or 3) high-fsync workload. The fsynclatency increases

in LXC and OpenVZ as fsync intensity increases in the collocated work-

load. This increase of fsync latency comes from fsyncs contention between

containers due to transactions serialization. The fsync is blocked until the

journaling transaction is committed. This increases fsync latency which

degrades the I/O performance of the high-fsync workload. For KVM, the av-

erage latency is about 18.5ms regardless of the collocated workloads. KVM

avoids the journaling problem because each VM has its own kernel and jour-

naling module as shown in Figure 3.2 (a).

Figure 4.6 shows the usage of disk I/O in KVM, LXC, and OpenVZ when

35

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

the low-fsync workload is collocated with the no-fsync workload. The low-

fsync container is given 70% disk share and the other is given 30% disk share.

The figure also shows the usage of disk I/O consumed by JDB2, the jour-

naling module for Linux Ext4. Performance isolation is gracefully respected

in KVM whereas in LXC and OpenVZ are slightly violated. When the col-

locating workload is changed to the high-fsync, the journaling initiated by

the high-fsync has a significant impact on the performance isolation of the

low-fsync. Figure 4.7 shows that LXC and OpenVZ violate the performance

isolation, whereas KVM respects it gracefully. The low-fsync container in

LXC is used around 50–30% share while in OpenVZ, is used 50% share.

This is instead of 60% share when the low-fsync container was collocated

with no-fsync workload. Since the low-fsync container waits for slow fsync

calls, it can not fully utilize the given share of disk I/O and cgroup judges

the low-fsync container is not disk-intensive. As a result, the low-fsync con-

tainer hands over its share to the high-fsync container. This indicates that

the journaling activity of each container adversary impacts the performance

isolation of the other.

Impact of Journaling on disk I/O control:

The sharing of journaling modules among containers interferes with the disk

I/O control of cgroup. As shown in Figure 4.5, the journaling module is

running outside of controlled containers. The journaling I/Os are overlooked

by cgroup and not accounted for the container that initiated the updates.

Suppose that cgroup divides the disk I/Os of container A and B into 70%

and 30% share, respectively. If container B invokes fsync calls frequently, its

corresponding journaling I/Os are not accounted for the 30% disk I/O share.

This results in the violation of performance isolation between containers A

and B; container B gets a higher disk I/O share than 30%.

Figure 4.7 indicates that I/O operations from a journaling module are

overlooked in LXC and OpenVZ. Disk I/O consumed by JBD2 increases from

10% to 28% in LXC and from 9% to 21% in OpenVZ when the collocated

workload is changed from the no-fsync to the high-fsync. This increase is

caused by the high rate of fsync calls in the high-fsync workload and thus

36

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed

D
is

k
I/
O

 u
sa

g
e
[%

]

time(sec)

VM A: Low Fsync() write with 70% share
VM B: No Fsync() write with 30% share

(a) Disk I/O usage in KVM.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed

D
is

k
 I
/O

 u
s
a
g
e
[%

]

time(sec)

ContainerA: Low Fsync() write with 70% share
ContainerB: No Fsync() write with 30% share
JBD2

(b) Disk I/O usage in LXC.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed

D
is

k
I/

O
 u

sa
g

e
[%

]

time(sec)

ContainerA: Low Fsync() write with 70% share
ContainerB: No Fsync() write with 30% share
JBD2

(c) Disk I/O usage in OpenVZ.

Figure 4.6: Disk I/O isolation in KVM, LXC, and OpenVZ when the low-

fsync is collocated with no-fsync wrokload.

it should be accounted for the high-fsync container. As shown in Fig. 4.7,

the high-fsync container, which is given 30% share, consumes 30% share

of disk I/O without taking the journaling I/Os into consideration. Since

the journaling I/O increases by 18% (= 28% − 10%) in LXC and by 12%

(= 21% − 9%) in OpenVZ when the workload is changed to the high-fsync,

this 18% and 12% consumption of disk I/O should be accounted for the

containers. For example in the case of LXC, the high-fsync container should

consume up to 12% (= 30% − 18%) share in total. While in OpenVZ, the

high-fsync container should consume up to 18% (= 30%−12%) share in total.

On the other hand, KVM divides the disk I/O to 70% and 30% between two

37

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed

D
is

k
I/

O
 u

sa
g

e
[%

]

time(sec)

VM A: Low Fsync() write with 70% share
VM B: High Fsync() write with 30% share

(a) Disk I/O usage in KVM.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed

D
is

k
I/
O

 u
sa

g
e
[%

]

time(sec)

ContainerA: Low Fsync() write with 70% share
ContainerB: High Fsync() write with 30% share
JBD2

(b) Disk I/O usage in LXC.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed

D
is

k
 I
/O

 u
s
a
g
e
[%

]

time(sec)

ContainerA: Low Fsync() write with 70% share
ContainerB: High Fsync() write with 30% share
JBD2

(c) Disk I/O usage in OpenVZ.

Figure 4.7: Disk I/O isolation in KVM, LXC, and OpenVZ when the low-

fsync is collocated with high-fsync wrokload.

VMs perfectly. In the case of KVM, cgroup monitors all I/O operations from

each VM which contains those from the journaling module that runs inside

each VM.

4.2.4 Journaling Influence on MySQL Performance

To confirm that MySQL performance is affected by journaling problems, the

throughput of MySQL is measured when it is collocated with a VM/container

running either 1) no-, 2) low-, or 3) high-fsync workload. A container/VM

running MySQL is given 70% share of disk I/O while the other is given 30%

38

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0

50

100

150

200

250

300

350

400

450

500

 MySQL collocated
with no-fsync

 MySQL collocated
with low-fsync

MySQL collocated
with high-fsync

R
e

q
u

e
st

/s
e

c
KVM LXC OpenVZ

0

50

100

150

200

250

300

350

400

450

500

 MySQL collocated
with no-fsync

 MySQL collocated
with low-fsync

MySQL collocated
with high-fsync

R
e

q
u

e
st

/s
e

c

KVM OpenVZ Ploop

0

100

200

300

400

500

600

700

 MySQL collocated
with no-fsync

 MySQL collocated
with low-fsync

MySQL collocated
with high-fsync

R
eq

u
es

t/
se

c

KVM Ploop Modifed PloopFigure 4.8: MySQL throughput in KVM, LXC, and openVZ with either 1)

no-, 2) low-, or 3) high-fsync workloads. MySQL is given 70% share of disk

I/O.

Table 4.2: Average fsync latency of MySQL when collocated with no-, low-,

high-fsync workload. MySQL VM/container is given 70% share.

Collocated workload KVM LXC OpenVZ

No-fsync (26.87ms) (72.51ms) (120.23ms)

Low-fsync (27.28ms) (85.09ms) (160.651ms)

High-fsync (26.12ms) (74.08ms) (96.20ms)

share. Figure 4.8 shows MySQL throughput in KVM, LXC, and OpenVZ.

Since each VM has its own journaling module and can avoid all the

journal-related problems, MySQL throughput in KVM is almost constant

(around 425 requests/sec) in all the cases. By avoiding the interference from

the sharing of a journaling module, KVM always shows better throughput

than LXC and OpenVZ. on the other hand, the throughput in LXC and

OpenVZ degrades when the collocated workload changed from no-fsync to

low-fsync. Since the low-fsync workload invokes fsync more frequently than

no-fsync, the fsync latency increases in MySQL and the throughput becomes

worse. Table 4.2 shows fsync latency of MySQL in LXC and OpenVZ are

increased when the collocated workload changed from no-fsync to low-fsync.

39

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0

50

100

150

200

250

300

 MySQL collocated with
no-fsync

MySQL collocated with
low-fsync

MySQL collocated with
high-fsync

R
e

q
u

e
st

/s
e

c
KVM LXC OpenVZ

Figure 4.9: MySQL throughput in KVM, LXC, and openVZ with either 1)

no-, 2) low-, or 3) high-fsync workloads. MySQL is given 30% share of disk

I/O.

Table 4.3: Average fsync latency of MySQL when collocated with no-, low-,

high-fsync workload. MySQL VM/container is given 30% share.

Collocated workload KVM LXC OpenVZ

No-fsync (24.52ms) (116.4ms) (148.3ms)

Low-fsync (24.82ms) (154.2ms) (172.5ms)

High-fsync (24.44ms) (86.5ms) (93.1ms)

When the collocated workload is changed from low-fsync to high-fsync,

MySQL throughput improves in LXC and OpenVZ as shown in Figure 4.8.

This looks strange because the high-fsync invokes more fsync calls than

the low-fsync. Because high-fsync container workload invokes more fsync,

it causes more journaling updates. Hence, MySQL updates are committed

together with the updates from the high-fsync in the same transaction due

to the sharing of the journaling module. From Table 4.2 the fsync latency

of LXC and OpenVZ is reduced to 74.08ms and 96.2ms respectively with the

collocation of high-fsync workload. The reduced latency of fsync results in

improving the throughput of MySQL.

Figure 4.9 shows MySQL throughput when the shares of disk I/O are

swap. MySQL VM/container is given a 30% share and the other is given

40

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

a 70% share. The throughput in LXC and OpenVZ degrades also when

the collocated workload changed from no-fsync to low-fsync. Again, when

the collocated workload is changed from low-fsync to high-fsync, MySQL

throughput improves in LXC and OpenVZ. Table 4.3 shows the fsync la-

tency in LXC and OpenVZ which confirm these similar results. On the other

hand, MySQL throughput in KVM is almost constant again around 220 re-

quests/sec. Since the disk I/O share that MySQL VM/container can use is

reduced to 30% from 70%, the throughput becomes smaller than the previ-

ous experiment. In this setting, LXC and OpenVZ outperform KVM in the

high-fsync workloads although they are beaten in the no-fsync and low-fsync

workloads. This mystery is closely related to performance isolation and thus

discussed in detail in Section 4.2.5.

4.2.5 Journaling Influence on MySQL Isolation

MySQL performance isolation in LXC and OpenVZ is terrible as shown in

Section 4.1.2. To confirm that MySQL isolation in containers is violated due

to the journaling problems, the disk I/O usage of MySQL is compared when it

is collocated with no-, low- and high-fsync workloads. MySQL VM/container

is given a 70% disk share while the other collocated VM/container is given

a 30% share.

Figure 4.10 and Figure 4.11 shows the results in LXC and OpenVZ re-

spectively. Since MySQL is update-intensive, the I/O usage of the journaling

is around 20% in LXC and OpenVZ even when it is collocated with no-

fsync workload. But cgroup overlooks these journaling I/Os and judges the

MySQL container as not I/O-intensive. As a result, cgroup allocates more

disk I/O to the collocating container. MySQL container is given around 20%

share in LXC and OpenVZ instead of 70% disk share.

When the collocated workload is changed to the low- or high-fsync work-

load, the MySQL container consumes more disk I/O share. This is because

the low- or high-fsync container competes for journaling with the MySQL

container. The fsync calls from the low- or high-fsync container are sus-

pended in the journaling module to the contention. Hence, the I/Os from

low- or high-fsync containers are reduced and cgroup allocates more disk

41

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

ContainerA: MySQL with 70% share
ContainerB: No Fsync() write 30% share
JBD2

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

ContainerA: MySQL with 70% share
ContainerB: Low Fsync() write 30% share
JBD2

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

ContainerA: MySQL with 70% share
ContainerB: High Fsync() write 30% share
JBD2

(c) Collocated with high-fsync.

Figure 4.10: Disk I/O usage in MySQL in LXC . Collocated with no-, low-,

high-fsync workloads. MySQL is given 70% share.

I/Os to the MySQL container. This contributes to improving MySQL per-

formance when it collocates with high-fsync container as shown in Figure 4.8.

Figure 4.13 and Figure 4.14 shows the disk I/O usage in LXC and

OpenVZ, where a MySQL container is given 30% share. As shown in the

figures, the MySQL container is given less than 30% share when collocated

with the no-fsync workload, but it is given more share when it collocates with

the low- or high-fsync workloads. If a fsync-intensive workload is collocated

with MySQL, it slows down due to severe contention over the journaling with

MySQL and hands over disk I/O share to MySQL container. This explains

the performance mystery in Figure 4.9. The performance of MySQL in LXC

42

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
B

an
dw

id
th

 u
sa

ge
[%

]

ContainerA: MySQL with 70% share
ContainerB: No Fsync() write 30% share
JBD2

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
B

an
dw

id
th

 u
sa

ge
[%

]

ContainerA: MySQL with 70% share
ContainerB: Low Fsync() write 30% share
JBD2

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/
O

 u
sa

g
e
[%

]

ContainerA: MySQL with 70% share
ContainerB: High Fsync() write 30% share
JBD2

(c) Collocated with high-fsync.

Figure 4.11: Disk I/O usage in MySQL in OpenVZ. Collocated with no-,

low-, high-fsync workloads. MySQL is given 70% share.

and OpenVZ improves when MySQL is collocated with more fsync-intensive

workloads. It is the violation of performance isolation that improves MySQL

throughput in LXC and OpenVZ. This also explains why MySQL container

with 30% share performs better than KVM when collocated with high-fsync

workload as shown in Figure 4.9. In Figure 4.13 (c) and Figure 4.14 (c),

MySQL container consumes 30% share without considering its journaling

I/Os from JBD2 which are overlooked by cgroup. Hence, MySQL container

consumes more than 30% of disk I/O share in total. While in KVM, MySQL

VM consumes 30% share with its journaling I/Os in total.

KVM gracefully respects the I/O control of cgroup in the both setting.

43

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g
e
[%

]

VM A: MySQL with 70% share
VM B: No Fsync write with 30% share

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/
O

 u
sa

g
e
[%

]

VM A: MySQL with 70% share
VM B: Low Fsync write with 30% share

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/
O

 u
sa

g
e
[%

]

VM A: MySQL with 70% share
VM B: High Fsync write with 30% share

(c) Collocated with high-fsync.

Figure 4.12: Disk I/O usage in MySQL in KVM. Collocated with no-, low-,

high-fsync workloads. MySQL is given 70% share.

KVM divides the disk I/O into 30% and 70% share between VMs as shown

in Figure 4.12 and Figure 4.15.

4.3 Summary

This chapter presents a performance evaluation of DBMS consolidation in

containers and VMs. The performance and performance isolation of MySQL

is investigated in LXC and OpenVZ and compared with that of KVM. Our

key finding is that KVM outperforms LXC and OpenVZ in both I/O per-

formance and isolation in DBMS. This finding is contrary to the general

44

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

ContainerA: MySQL with 30% share
ContainerB: No Fsync() write 70% share
JBD2

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/
O

 u
sa

g
e
[%

]

ContainerA: MySQL with 30% share
ContainerB: Low Fsync() write 70% share
JBD2

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
 I
/O

 u
s
a
g
e
[%

]

ContainerA: MySQL with 30% share
ContainerB: High Fsync() write 70% share
JBD2

(c) Collocated with high-fsync.

Figure 4.13: Disk I/O usage in MySQL in LXC . Collocated with no-, low-,

high-fsync workloads. MySQL is given 30% share.

belief that container is always better than VM in performance because of no

virtualization overheads. our results show KVM beats LXC and OpenVZ in

MySQL performance by up to 2X and 2.4X respectively. Furthermore, LXC

and OpenVZ fail to achieve performance isolation among containers although

the resource control mechanism of cgroup enforces disk I/O control.

The analysis reveals that file-system journaling is the root cause of the

poor I/O performance and isolation in the container. Since a journaling

module is shared inherently among containers, it becomes a bottleneck in

performance and causes a serious problem when running update-intensive

applications such as DBMS. The journaling degrades I/O performance in

45

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
 I

/O
 u

s
a

g
e

[%
]

ContainerA: MySQL with 30% share
ContainerB: No Fsync() write 70% share
JBD2

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/
O

 u
sa

g
e
[%

]

ContainerA: MySQL with 30% share
ContainerB: Low Fsync() write 70% share
JBD2

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/
O

 u
sa

g
e
[%

]

ContainerA: MySQL with 30% share
ContainerB: High Fsync() write 70% share
JBD2

(c) Collocated with high-fsync.

Figure 4.14: Disk I/O usage in MySQL in OpenVZ. Collocated with no-,

low-, high-fsync workloads. MySQL is given 30% share.

containers because of the following reasons. The shared journaling mod-

ule causes performance dependency among containers; For optimization, the

file-systems use journaling with transactions. A journaling module batches

updates from multiple containers into a single transaction and commits the

transaction to disk periodically or when fsync is invoked. If a single trans-

action contains updates from multiple containers, each container has to wait

until the data belonging to other containers is committed. Even if each

transaction contains updates solely from one container, the transactions are

serialized in a journaling module and cannot be committed in parallel. It

takes a long time to commit the transaction and fsync from other contain-

46

CHAPTER 4. DBMS PERFORMANCE AND ISOLATION

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/O

 u
sa

ge
[%

]

VM A: MySQL with 30% share
VM B: No Fsync write with 70% share

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/O

 u
sa

ge
[%

]

VM A: MySQL with 30% share
VM B: Low Fsync write with 70% share

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

VM A: MySQL with 30% share
VM B: High Fsync write with 70% share

(c) Collocated with high-fsync.

Figure 4.15: Disk I/O usage in MySQL in KVM. Collocated with no-, low-,

high-fsync workloads. MySQL is given 30% share.

ers are suspended because of the lack of parallelism.

Also, file-system journaling in containers interferes with disk I/O control

of cgroup. Since a journaling module is running outside of controlled con-

tainers, I/O operations from the module are not accounted for containers

that initiate them. This results in an inaccurate division of disk I/Os be-

tween containers. In contrast, KVM avoids journal-related problems because

each VM has its own journaling module due to the complete separation of

kernel components.

47

Chapter 5

Alleviating Journaling

Problems in Containers

The objective of this chapter is to quest for possible solutions to alleviate

file-system journaling problems in containers. The investigation in Chapter 4

reveals the underlying causes behind journaling problems in containers. This

chapter proposes a method to overcome these causes without re-designing

the file-system or modifying the journaling mechanism. The careful configu-

ration of containers can gracefully solve the file-system journaling problems.

The proposed method achieves per-container journaling and eliminates the

bottleneck of the shared journaling module and its performance dependen-

cies. Also, the configuration method overcomes the problem of overlooked

journaling I/O by the cgroup. The quantitative analysis shows the feasi-

bility of the proposed configuration in improving DBMS performance and

isolation in containers. Finally, the chapter explores the performance of

an in-memory database system that gains popularity recently. The results

show that the sharing of the journaling module in containers degrades the

in-memory database’s performance as well. The proposed configuration suc-

cessfully improves the in-memory database’s performance and mitigates the

journaling effects.

48

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

5.1 A Quest for Best Solution

The results of DBMS performance and isolation in Chapter 4 show that con-

tainers are not suitable for DBMS consolidation. The analysis reveals that

the sharing of the journaling module degrades DBMS performance and vio-

lates its isolation in containers. Disabling the file system journaling to avoid

the journaling problems in containers is not acceptable especially in DBMS

because the journaling is indispensable to guarantee crash consistency. On

the other hand, the use of VMs to avoid the journaling problems comes with

the cost of virtualization overheads. Also, the use of VMs wastes the other

advantages of containers like lightweight, scalability, and faster provision-

ing which are important for deploying applications in clouds. Some OS re-

searchers work on designing a completely new file-system or developing novel

journaling mechanisms to overcome the journaling issues, like the bundled

transaction. However, all of these works require heavy implementation and

involve non-negligible modifications to the kernel. Hence, these solutions are

difficult to deploy on current cloud platforms. Also, these works don’t solve

all of the journaling problems in containers, like overlooked journaling I/Os.

By identifying the underlying causes behind journaling problems in contain-

ers, it is possible to overcome these problems in a more straightforward and

acceptable solution. A proper configuration of containers that bypass the

underlying causes can solve the journaling problems as it will be shown in

the next section.

5.2 Proposed Configuration Method

This section demonstrates that journaling problems can be gracefully allevi-

ated by careful configuration of existing container platforms. Unfortunately,

this configuration is not available on all container platforms and not pro-

vided on major cloud platforms even if the underlying container platform

supports the configuration. The proposed configuration can be applied to

the mainstream Linux and existing file systems without any modification.

Section 5.2.1 shows a configuration that avoids bundled transactions and

fsync calls serialization on the journaling module. Section 5.2.2 shows the

49

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

Disk

Container 1 Container 2

/dev/ploop2/dev/ploop1

Per-container
file systems

/ /

Ploop ModulesKernel block

layer

Virtual
block devices

Disk

Host

file

system

chrootchroot /

21

sub dirs

Container 1 Container 2

Journaling
module

Journal Journal 1

Journaling
module 1

Journaling
module 2

Journal 2

Kernel block layer

file system1 file system2

(a) Normal approach

Disk

Container 1 Container 2

/dev/ploop2/dev/ploop1

Per-container
file systems

/ /

Ploop ModulesKernel block

layer

Virtual
block devices

Disk

Host

file

system

chrootchroot /

21

sub dirs

Container 1 Container 2

Journaling
module

Journal Journal 1

Journaling
module 1

Journaling
module 2

Journal 2

Kernel block layer

file system1 file system2

(b) Ploop approach

Figure 5.1: The architecture of ”Normal approach” and ”Ploop approach”

of container implementation.

per-container accounting of journaling I/Os is possible. The combination

of these two configurations solves journaling problems in containers and im-

proves I/O performance and isolation.

5.2.1 Per-container Journaling Module

Containers share the same host file-system. Containers rely on chroot [40]

to provide a per-container view of a file-system, which is a sub-tree of the

host file system [74] [44]. The chroot (change root) changes the root direc-

tory for the current running process and their children to the sub-tree. A

process that is running in such a modified environment cannot access files

that are outside the sub-tree. This modified environment is populated with

all required configuration files, device nodes, and shared libraries to be run

successfully. Although this approach gives each container its own view of

the host file system and semi-isolation from other containers, they still share

the same file-system components. This results in the sharing of kernel re-

sources for managing files. All the containers share the same file system type,

50

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

properties, total number of the inode, cache layer, and most importantly the

on-disk journal and the journaling module. Figure 5.1 (a) illustrates the

normal approach of container’s configuration.

The sharing of the journaling module among containers is the root cause

of the poor I/O performance and the weak isolation in containers. The

journaling problems are caused in particular due to bundled transactions.

The journaling module batches updates from multiple containers into a sin-

gle transaction and commits that transaction to disk periodically or when

fsync is invoked. Even if each transaction contains updates solely from one

container, the transactions are serialized in the journaling module and can-

not be committed in parallel. A possible approach to alleviate this journaling

problem is to provide a per-container journaling module. It disposes of bun-

dled transactions and avoids the performance dependency among containers.

By assigning a virtual block device to each container, each container will

have its own file-system. Hence, each container is served by a separate jour-

naling module and has its own journaling transactions that contain updates

solely from the corresponding container. Since journaling modules in differ-

ent containers can run in parallel, one container no longer has to wait for

other containers to commit their updates. Also, fsync from one container

will flush only data belonging to that particular container and it avoids the

fsync calls contention on the shared journaling module.

The use of loopback device

An easy way to implement a virtual block device is to use a Linux loop-

back device. A loopback device is a pseudo-device that makes a regular file

accessible as a block device. It maps data blocks not to a physical device

such as a hard disk, but to the blocks of a regular file in a file-system [42].

The Linux loopback device has some limitations if used as a virtual disk

for containers. First, the container file system suffers from the problem of

double caching. Since a container file system is created on an ordinary file

(a loopback device), both the host and the container file systems cache file

contents, which leads to the well-known problem of double caching. Second,

direct I/O is not supported. Direct I/O is a way to bypass caching layer

51

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

in the kernel. Direct I/O is important in DBMS because DBMS manages

its own caches to avoid the double caching problem. Also, the direct I/O

ensures that data is written immediately to disk instead of the kernel buffers

first then later being written to the disk. This can aid in minimizing the

data loss in DBMS. Direct I/O is supported by many databases like MySQL

and Oracle. Aside from these limitations, the Linux loopback device lacks

relevant features in the clouds such as dynamic allocation, snapshot, and

migration. These features are indispensable in managing containers in the

data-centers for re-sizing the container to accommodate bursty workloads,

the load balancing among servers, and for backup and data protection.

The use of Ploop

OpenVZ supports “Ploop” [58], a special implementation of the loopback de-

vice which overcomes all the limitations of the Linux loopback device. In the

Ploop approach, the Ploop modules in the kernel block layer are responsible

for presenting a virtual disk for each container. Each container has its own

file system of different types and properties. Figure 5.1 illustrates the Ploop

virtual disk approach and compares it with the normal approach of providing

file-system view in containers. The Ploop implementation has a modular and

a layered design. It consists of the top layer, the main ploop module which

provides a virtual block device to be used for the container’s file-system. The

middle layer is the format module, which does the translation of block device

numbers into image file block numbers. The bottom layer is the I/O module

that responsible for dispatching I/Os to the underlying hardware. It provides

support for direct I/O and avoiding the double cache problem. Also, Ploop

provides support for features that are missing in the loopback device, like

dynamic allocation, snapshot, and migration.

5.2.2 Journaling I/O Accounting

Assigning each container with a virtual block device is not enough to over-

come all journaling problems in containers. Despite each container has its

own journaling module and journaling transactions are separated, the jour-

naling I/Os are not accounted for. The journaling I/Os from these per-

52

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

container journaling modules are still overlooked by the cgroup. The jour-

naling modules are managed by the kernel and are running outside the con-

trolled containers.

The journaling I/Os are performed by a kernel process known as “jbd2”

which is responsible for file-system updates write to disk. In the case of

per-container journaling, this kernel process is created for each container.

These per-container jbd2 processes belong to the kernel, not the container.

Since they are outside of cgroup control, their I/Os are not accounted for

corresponding containers. For example, if two containers are performing I/Os

and one container is given 70% disk share while the other is given 30% share,

their corresponding journaling I/Os by jbd2 are not included in the disk

share. This results in violating the performance isolation of disk I/O.

To solve this issue, the kernel jbd2 process should be included in the

cgroup of its corresponding container. Both the journaling and the con-

tainer’s I/Os can be controlled and accounted together by the cgroup disk

I/O controller. This can be implemented through cgclassify [39] function-

ality. It changes the cgroup of the jbd2 process from the kernel’s root cgroup

to the corresponding container’s cgroup.

5.3 Experiments

This section evaluates the proposed configuration method to confirm it can

overcome journaling problems in containers. The experimental setup is de-

scribed in Section 3.4.1 and Section 4.1.1 . Section 5.3.1 presents the results

and the performance improvement of assigning the container with a virtual

block device. Section 5.3.2 presents the combined performance improvement

when the journaling I/O is being accounted for each container.

5.3.1 Per-container Journaling

To evaluate the effectiveness of the per-container journaling module on miti-

gating journaling problems, each container is assigned a virtual block device

using Ploop. Since LXC doesn’t support a container with a virtual block

device, this configuration is only possible with OpenVZ. First, the I/O per-

53

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0

1

2

3

4

5

6

7

8

Standalone Consolidation with
no-fsync

Consolidation with
high-fsync

l
KVM

Shared journaling

Per-container journaling

Per-container journaling with journaling accounting

Th
ro

u
gh

p
u

t
M

B
/s

e
c

Figure 5.2: Disk I/O throughput in KVM, shared journaling, per-container

journaling, and per-container journaling with journaling accounting.

formance is compared to check whether this configuration has any tax on the

container’s performance. The disk I/O throughput of the FIO sequential-

write workload in three different cases: 1) stand-alone, 2) consolidation with

no-fsync; where the collocated VM/container runs the no-fsync workload,

and 3) consolidation with high-fsync; where the collocated VM/container

runs the high-fsync workload.

Figure 5.2 shows the I/O performance of the shared-journaling in OpenVZ

container denoted by “shared journaling” and the per-container journaling

with Ploop denoted by “per-container journaling”. For comparison, the fig-

ure shows the result of KVM. The result of “per-container journaling with

journal I/O accounting” will be discussed later in Section 5.3.2. In the stan-

dalone case, all containers outperform KVM regardless of the shared or per-

container journaling. This verified that per-container journaling has no ef-

fects on I/O performance. In the consolidation case where both containers

are performing no-fsync workload, the per-container journaling outperforms

KVM and achieves better performance than the shared-journaling in the no-

fsync consolidation case. The same results are obtained in the consolidation

case with the high-fsync workload. This performance improvement is due to

each container now has its own journaling module. The bundled transaction

54

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0

100

200

300

400

500

600

700

800

 MySQL collocated
with no-fsync

 MySQL collocated
with low-fsync

MySQL collocated
with high-fsync

R
e

q
u

e
st

/s
e

c
KVM

Shared journaling

Per-container journaling

Per-container journaling with journaling accounting

Figure 5.3: MySQL throughput in KVM, shared journaling, and per-

container journaling without/with accounting. MySQL container is collo-

cated with either 1) no-, 2) low-, or 3) high-fsync workloads. MySQL con-

tainer/VM is given 70% share.

is not a problem anymore and each container has separate transactions that

are committed in parallel. The reduction of the fsync latency confirms the

improvement. The fsync latency is 80ms and 58ms in the shared journaling

and the per-container journaling, respectively. However, the per-container

journaling still performs lower than KVM in the high-fsync workload. This

points out the per-container journaling does not overcome the journaling

problems completely.

Figure 5.3 shows MySQL throughput when it is collocated with a con-

tainer running either 1) no-, 2) low-, or 3) high-fsync workload. MySQL

VM/container is given a 70% share and the other is given a 30% share. As

shown in the figure, the MySQL throughput of the per-container journal-

ing outperforms the shared-journaling in all cases. MySQL throughput is

improved by up to 1.3x the per-container journaling. Table 5.1 shows the

latency of fsync in the shared and per-container journaling. The latency

of fsync in per-container journaling is smaller than that of shared journal-

ing. The latency of fsync is reduced because no transaction is bundled in the

55

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

Table 5.1: Average fsync latency of MySQL when collocated with no-, low-,

high-fsync workload. JA stands for journaling accounting. MySQL container

is given 70% share.

Collocated

workload

Shared

journaling

Per-container

journaling

Per-container

journaling with

JA

No-fsync 120.23ms 103.80ms 24.23ms

Low-fsync 160.651ms 92.65ms 25.38ms

High-fsync 96.20ms 90.50ms 24.75ms

0

50

100

150

200

250

300

350

400

 MySQL collocated
with no-fsync

 MySQL collocated
with low-fsync

MySQL collocated
with high-fsync

R
e

q
u

e
st

/s
e

c

KVM
Shared journaling
Per-container journaling
Per-container journaling with journaling accounting

Figure 5.4: MySQL throughput in KVM, shared journaling, and per-

container journaling without/with accounting. MySQL is collocated with

either 1) no-, 2) low-, or 3) high-fsync workloads. MySQL container/VM is

given 30% share.

per-container journaling. Compared with KVM, the per-container journaling

still performs lower. Similar results are obtained in Figure 5.4 when MySQL

VM/container is given a 30% share and the other is given a 70% share.

The per-container journaling outperforms the shared-journaling in MySQL

throughput. Table 5.2 shows the latency of fsync is reduced in per-container

journaling. However, the per-container journaling still performs lower than

56

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

Table 5.2: Average fsync latency of MySQL when collocated with no-, low-,

high-fsync workload. JA stands for journaling accounting. MySQL container

is given 30% share.

Collocated

workload

Shared

journaling

Per-container

journaling

Per-container

journaling with

JA

No-fsync 148.3ms 99.4ms 47.6ms

Low-fsync 172.51ms 92.5ms 44.8ms

High-fsync 93.1ms 98.3ms 46.5ms

KVM in MySQL throughput. This indicates the per-container journaling

module is not enough to improve DBMS performance in containers.

5.3.2 Combined with Journaling I/O Accounting

The use of a virtual block disk with the container is not sufficient to overcome

all the journaling-related problems. Although the performance is improved

with the per-container journaling module, it still performs lower than VM

with its performance overhead. The per-container journaling performs lower

than VM for two reasons. First, journaling I/Os are still overlooked by

cgroup because the journaling module runs outside of the controlled con-

tainer. This affects the performance isolation between collocated containers

because the overlooked I/Os affect the performance of the containers. Sec-

ond, the journaling process “JBD2”, responsible for handling the journaling

I/Os, is given equal share regardless of the share given to the corresponding

container. Since JDB2 is a kernel process, it belongs to the root cgroup

to which all the kernel processes belong by default. Even though there is

a separate JDB2 for each container, all the per-container JDB2s belong to

the same cgroup and are given an equal share regardless of the I/O share

of the container each JDB2 is responsible for. This mismatch in disk I/O

share between the container and its corresponding JDB2 affects the I/O per-

formance.

Figure 5.5 shows disk I/O usages of the per-container journaling without

57

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

 ContainerA + JBD2: High Fsync() write with 70% share
JBD2: High Fsync() write with 30% share

ContainerA
ContainerB +
JBD2 of
JBD2 of ContainerB

(a) Per-container journaling.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/O

 u
sa

ge
[%

]

 ContainerA + JBD2: High Fsync() write with 70% share
ContainerB + JBD2: High Fsync() write with 30% share
JBD2 of ContainerA
JBD2 of ContainerB

(b) Per-container journaling combined

with journaling accounting.

Figure 5.5: Disk I/O isolation in per-container journaling and per-container

journaling with journaling accounting”. Both of containers run high-fsync

workloads.

and with the journaling I/Os accounting which is explained in section 5.2.2.

In this experiment, two containers are launched with disk I/O share set to

70% and 30%, respectively. Both containers run the high-fsync workload

to cause file-system journaling. As shown in Figure 5.5a, the per-container

journaling without journaling I/O accounting cannot enforce performance

isolation. Disk I/O usage of both containers fluctuates between 35%–65%.

Figure 5.5a also indicates disk I/O usages of the per-container JDB2s are

almost the same around 15% for containers A and B. Although containers

A and B are given different shares, the corresponding JDB2s are given an

equal share because they belong to the same cgroup (the root cgroup).

On the other hand, the per-container journaling with journaling I/O ac-

counting enforces the performance isolation perfectly as shown in Figure 5.5b.

Container A and B consume 70% and 30% of disk I/O, respectively. JDB2

processes for container A and B consume 20% and 10%, respectively, because

they belong to each cgroup to which the corresponding container belongs.

Table 5.3 shows the latency of fsync in the per-container journaling with-

out and with journaling accounting. Without the journaling accounting, the

JDB processes for containers A and B are given an equal share. Hence, both

58

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

Table 5.3: Average fsync latency of the per-container journaling with-

out/with journaling accounting.

Containers / Disk I/O

shares

Per-container

journaling

Per-container

journaling with JA

container A / 70% 55ms 45ms

container B / 30% 53ms 86ms

0

0.5

1

1.5

2

2.5

3

3.5

4

high-fsync collocated with
no-fsync

high-fsync collocated with
low-fsync

high-fsync collocated with
high-fsync

Th
ro

u
gh

p
u

t
M

B
/s

e
c

KVM

Shared journaling

Per-container journaling

Per-container journaling with journaling accounting

Figure 5.6: Throughput of disk I/O in KVM, shared journaling, and per-

container journaling without/with accounting. A container/VM is running

high-fsync workload and is collocated with either 1) no-, 2) low-, or 3) high-

fsync workload.

containers A and B have almost the same fsync latency around 55ms. With

the accounting, fsync latency of container A is reduced to 45ms while that

of container B is increased to 86ms. This indicates the container A’ JDB

process is given more share while the container B’s JDB process is less share

in accordance with their respective container’s cgroup.

Figure 5.6 shows the throughput of the high-fsync workload when it is

collocated with a VM/container running either 1) no-, 2) low-, or 3) high-

fsync workload. The per-container journaling with the accounting improves

the performance of per-container journaling as shown in the figure. The

59

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

per-container journaling with the accounting outperforms KVM in all cases

and shows a stable throughput (around 2.7 MB/sec) regardless of collocated

workload. This indicates that per-container journaling with the accounting

gets back the performance gain of containers over VMs and mitigates the

journaling problems successfully.

5.3.3 Improvement of DBMS performance and isola-

tion

MySQL performance and isolation in containers are improved dramatically

with the proposed configuration method. Figure 5.3 shows the per-container

journaling with the accounting beats KVM in MySQL performance. MySQL

throughput is improved by up to 1.4x compared to KVM and by up to

3.4x compared to the shared journaling. The per-container journaling

with accounting enhances MySQL throughput by up to 2.6x compared to

the per-container journaling. Table 5.1 shows fsync latency in the per-

container journaling with the accounting becomes smaller than that of the

per-container journaling. Similar results are obtained in Figure 5.4 when

MySQL VM/container is given a 30% share instead of a 70% share. The

per-container journaling with accounting tops the all in MySQL through-

put. Table 5.2 confirms the latency of fsync is reduced with per-container

journaling with accounting.

Aside from the performance, the per-container journaling with accounting

has improved MySQL performance isolation. Figure 5.7 shows the disk I/O

usage of the per-container journaling with accounting. A container running

MySQL, which is given 70% share of disk I/O, is collocated with a container

running either no-, low-, or high-fsync workload. Containers perfectly respect

disk I/O control by cgroup. In all cases, disk I/O share is around 70% in

MySQL. On the other hand, the per-container journaling without account-

ing fails to enforce performance isolation. As shown in Figure 5.8, MySQL

container consumes around 25%, 30%, and 30%–50% share of disk I/O when

collocated with no-, low- high-fsync workload, respectively. Figure 5.9 shows

the disk I/O usage of the per-container journaling with accounting when

MySQL is given 30% share. Containers show acceptable performance iso-

60

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

lation without any contentions. In all cases, disk I/O share is around 40%

in MySQL. Figure 5.10 confirms that the per-container journaling without

accounting is not sufficient to improve MySQL performance isolation since

journaling I/O is not accounted.

MySQL performance and isolation are measured when both collocated

containers/VMs run the MySQL database. Figure 5.11 compares the disk

I/O usage in KVM and per-container journaling with accounting. The disk

I/O is perfectly divided into 30% and 70% shares between containers. The

per-container journaling with accounting achieves comparable performance

isolation to KVM. Figure 5.12 shows MySQL throughput in this experiment

(the throughput of 70% container/VM is reported). The per-container jour-

naling with accounting outperforms KVM and tops the other containers’

configuration in MySQL throughput.

5.4 In-memory Database Performance

Traditional DBMSes store datasets on disk or other underlying storage medi-

ums. Traditional DBMS has high durability since data is stored in persistent

storage. However, it requires disk access every time DBMS performs an op-

eration like a query or an update which affects the performance. To enhance

the performance, traditional DBMSes move frequently accessed data from

disk to cache memory since the memory access is much faster than disk ac-

cess. Recently, in-memory database management systems like Redis [8] and

SQLite [75] have gained popularity. An in-memory database is a database

that keeps the whole dataset in the main memory. An in-memory database

offers higher performance and a minimal response time by eliminating the

need to access the disk. Also, it avoids multiple data copies and irrelevant

tasks, such as caching like an on-disk DBMS. Because all data is stored and

managed in the main memory, it is at risk of being lost upon a server crash

or a power failure. To ensure data durability, the in-memory database uses

a transaction log (on-disk log) to persist each operation applied to memory

as shown in Figure 5.13. In-memory database logs transactions by issuing

fsync periodically or after a specific number of operations are performed in

memory. Since in-memory database is also an journaling intensive and it

61

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/
O

 u
sa

g
e
[%

]

 ContainerA + JBD2: MySQL with 70% share
ContainerB + JBD2: No Fsync() write with 30% share

 JBD2 of ContainerA
 JBD2 of ContainerB

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

 ContainerA + JBD2: MySQL with 70% share
ContainerB + JBD2: Low Fsync() write with 30% share

 JBD2 of ContainerA
 JBD2 of ContainerB

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

ContainerA + JBD2: MySQL with 70% share
ContainerB + JBD2: High Fsync() write with 30% share

 JBD2 of ContainerA
 JBD2 of ContainerB

(c) Collocated with high-fsync.

Figure 5.7: Disk I/O usage of MySQL in per-container journaling with the

accounting. Collocated with no-, low-, high-fsync workloads. MySQL is given

70% share and the other is 30% share. Performance isolation is improved

more.

performs disk I/O for transaction logging, it is highly likely that the sharing

of journaling module affects the performance.

To verify whether the journaling problems in containers affect the in-

memory database as well, the performance of the in-memory database is

measured when it is consolidated with other workloads in containers. The

same experimental environment in Chapter 3, Section 3.4.1 is used. Two

collocated containers/VMs is launched, each with a 4GB of RAM which is

enough to run the in-memory database. Redis ver. 2.8.4 is used as a represen-

62

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

ContainerA + JBD2: MySQL with 70% share
ContainerB + JBD2: No Fsync() write with 30% share
JBD2 0f ContainerA
JBD2 of ContainerB

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

 ContainerA + JBD2: MySQL with 70% share
ContainerB + JBD2: Low Fsync() write with 30% share
JBD2 0f ContainerA
JBD2 of ContainerB

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
 I
/O

 u
s
a
g
e
[%

]

 ContainerA + JBD2: MySQL with 70% share
ContainerB + JBD2: High Fsync() write with 30% share
JBD2 0f ContainerA
JBD2 of ContainerB

(c) Collocated with high-fsync.

Figure 5.8: Disk I/O usage of MySQL in per-container journaling. Collocated

with no-, low-, high-fsync workloads. MySQL is given 70% share and the

other is 30% share.

tative of in-memory database and it is installed in each container/VM. Redis

database is populated with 200,000 records. YCSB ver. 0.17.0 benchmark

[21] generates workloads, which run in a separated machine connected via

Cisco 1Gbit Ethernet switch. Redis is set to perform transactions logging

every second which is the default setting.

First, the performance of Redis in a standalone case is measured. YCSB

workload generates INSERT queries with 200,000 operation count. Fig-

ure 5.14 shows the throughput in KVM, LXC, and OpenVZ. As shown in

the figure, LXC and OpenVZ outperform KVM which is expected because

63

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

 ContainerA + JBD2: MySQL with 30% share
 ContainerB + JBD2: No Fsync() write with 70% share

 JBD2 of ContainerA

 JBD2 of ContainerB

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

 ContainerA + JBD2: MySQL with 30% share
 ContainerB + JBD2: Low Fsync() write with 70% share

 JBD2 of ContainerA

 JBD2 of ContainerB

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/
O

 u
sa

g
e
[%

]

 ContainerA + JBD2: MySQL with 30% share

ContainerB + JBD2: High Fsync() write with 70% share

 JBD2 of ContainerA

 JBD2 of ContainerB

(c) Collocated with high-fsync.

Figure 5.9: Disk I/O usage of MySQL in per-container journaling with the

accounting. Collocated with no-, low-, high-fsync workloads. MySQL is given

30% share and the other is 70% share. Performance isolation is improved

more.

of VM’s virtualization overhead.

Next, the performance of Redis in the consolidation case is measured. Fig-

ure 5.15 shows Redis throughput when it is collocated with a VM/container

running either 1) no-, 2) low-, or 3) high-fsync workload. In this case, the

buffered I/O is used with FIO workloads since the in-memory database is be-

ing compared this time. As shown in the figure, Redis throughput in KVM is

almost constant (around 1300 operation/sec) regardless of collocated work-

loads. On the other hand, the throughput in LXC and OpenVZ degrades

64

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

 ContainerA + JBD2: MySQL with 30% share
 ContainerB + JBD2: No Fsync() write with 70% share

JBD2 of ContainerA

 JBD2 of ContainerB

(a) Collocated with no-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/

O
 u

sa
g

e
[%

]

 ContainerA + JBD2: MySQL with 30% share
 ContainerB + JBD2: Low Fsync() write with 70% share

JBD2 of ContainerA
 JBD2 of ContainerB

(b) Collocated with low-fsync.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/
O

 u
sa

g
e
[%

]

 ContainerA + JBD2: MySQL with 30% share

ContainerB + JBD2: High Fsync() write with 70% share

 JBD2 of ContainerA

 JBD2 of ContainerB

(c) Collocated with high-fsync.

Figure 5.10: Disk I/O usage of MySQL in per-container journaling. Collo-

cated with no-, low-, high-fsync workloads. MySQL is given 30% share and

the other is 70% share.

when the collocated workload changed from no-fsync to low-fsync. Redis

throughput in LXC and OpenVZ is degraded more when the collocated work-

load changed from low-fsync to high-fsync. Table 5.4 shows fsync latency

of Redis in LXC and OpenVZ are increased when the collocated workload

issue more fsync. LXC and OpenVZ outperform KVM in Redis throughput

only when it collocates with a no-fsync workload. This is because there is

no much journaling contention between containers and because of virtualiza-

tion overhead in VM. When Redis is collocated with a low- and high-fsync

workload, KVM always shows better throughput than LXC and OpenVZ. In

65

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/O

 u
sa

ge
[%

]

VM A: MySQL with 30% I/O share
VM B: MySQL with 70% I/O share

(a) KVM

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

elapsed time(sec)

D
is

k
I/O

 u
sa

ge
[%

]

 ContainerA + JBD2: MySQL with 30% I/O share
 ContainerB + JBD2: MySQL with 70% I/O share

 JBD2 of ContainerA
 JBD2 of ContainerB

(b) Per-container journaling with ac-

counting

Figure 5.11: Disk I/O usage in KVM and Per-container journaling with

accounting when two MySQL containers/VMs are collocated together.

0

100

200

300

400

500

600

700

KVM Shared journaling Per-container
journaling

Per-container
journaling with

journaling accounting

R
e

q
u

e
st

/s
e

c

Figure 5.12: MySQL throughput in KVM and per-container journaling with

accounting when two MySQL containers/VMs are collocated together.

this case, the journaling contention is higher between containers hence, the

performance degradation from journaling problems in containers is higher

than VM’s performance overhead. These results suggest that the sharing

66

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

• J

In-memory
database

Main
memory

Disk Transaction log

updates

queries

Logging
operations

Figure 5.13: Typical In-memory database with data persistency.

0

500

1000

1500

2000

2500

KVM LXC OpenVZ

o
p
e
ra
ti
o
n
/s
e
c

Figure 5.14: Redis throughput in KVM, LXC, and openVZ with INSERT

queries workload.

of a journaling module among containers interferes with in-memory DBMS

performance as well.

To confirm that the performance of the in-memory database is degraded

because of journaling problems in containers, the performance of Redis is

measured with the proposed configuration method. Figure 5.16 shows Redis

throughput in shared journaling, and per-container journaling without/with

accounting. The per-container journaling outperforms the shared journaling

by up to 1.5x in Redis throughput. The per-container journaling shows

a stable throughput (around 2200 operations/sec) regardless of collocated

67

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0

500

1000

1500

2000

2500

KVM LXC OpenVZ

o
p

e
ra

ti
o

n
s/

se
c

hRedis collocated with no-fsync Redis collocated with low-fsync

Redis collocated with high-fsync

Figure 5.15: Redis throughput in KVM, LXC, and openVZ with either 1)

no-, 2) low-, or 3) high-fsync workloads.

Table 5.4: Average fsync latency of Redis when collocated with no-, low-,

high-fsync workload.

Collocated workload KVM LXC OpenVZ

No-fsync (32.7ms) (47.6ms) (43.8ms)

Low-fsync (33.2ms) (58.5ms) (51.71ms)

High-fsync (32.5ms) (65.7ms) (57.5ms)

workload. Since each container has its journaling module, the journaling

contention is mitigated. The fsync latency of Redis in the per-container

journaling is almost constant around 60ms in all cases. Compared to per-

container journaling with the accounting, there is no much improvement in

the throughput. Because in-memory database performance doesn’t depend

on disk I/Os hence, journaling I/Os accounting by cgroup have no effects on

the performance.

5.5 Discussion

The proposed method effectively alleviates the journaling problems in con-

tainers. I advocate the use of virtual block devices and the proper config-

uration of kernel processes for accounting journaling I/Os in containers. I

68

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

0

500

1000

1500

2000

2500

Shared journaling Per-container journaling Per-container journaling with
accounting

o
p

e
ra

ti
o

n
s/

se
c

Redis collocated with no-fsync Redis collocated with low-fsync

Redis collocated with high-fsync

Figure 5.16: Redis throughput in shared journaling, per-container journaling,

and per-container journaling with accounting.

denote that an ordinary loop device is not efficient and recommend the use of

Ploop for virtual disks in containers. Although not all containers support the

Ploop, they can adopt this configuration if they implement a similar virtual

block device with direct I/O support, preventing the double cache, and the

required features for container storage management like the snapshot and dy-

namic re-sizing. Recently, Docker container adds the support of direct-lvm

mode with devicemapper storage diver. Such configuration enables to use of

a block device as a dedicated volume to each container hence, each container

has its own file system similar to the Ploop. However, one problem with

this configuration is cgroup weigh-based I/O controller doesn’t work with

lvm logical volumes because the group weight doesn’t get propagated down

through logical layers.

The performance analysis reveals that the use of a virtual block device is

not sufficient to overcome the journaling problem in containers. The proper

configuration of cgroup and journaling module is crucial to alleviate it. The

quantitative analysis shows that the combination of the two methods can

solve the journaling problems without re-design the file-system or the jour-

naling mechanism.

Unfortunately, this proposed configuration is not widely adopted in major

clouds because most container implementations do not allow this configura-

69

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

tion. Major cloud services like Azure, Google cloud, and AWS neither use

this configuration nor support the OpenVZ with Ploop. This causes poor

I/O performance and isolation when consolidating DBMS and wastes the

container’s advantages over the VM. This results in violating the service-

level agreement and causes financial loss for cloud provides. However, with

adopting the proposed method, it is possible to use containers for DBMS

consolidation in clouds with the performance gain of containers and without

suffering from the journaling problems.

While the proposed method successfully solved the journaling problem in

the current software system with disk storage, the work in this dissertation

may add some contribution to the design of future software systems and the

use of emerging hardware. The much faster flash memory storage like SSD

and NVMe is replacing the disk storage in data centers. The problem of

shared journaling module in containers may be amplified especially with a

use case of update intensive applications like DBMS. Since these fast storage

technologies are capable of performing a much higher number of storage I/O

compared to disk I/O, the contention over shared journaling module will

be higher, which will waste the performance of these fast storage devices.

There will be poor scalability between the emerging storage devices and the

traditional file-systems that are designed for general-purpose use. In the case

of containers and production environments in the cloud, these file-systems

may have contentions over shared components or data structures that cause

performance interference among containers from one side and underutilizes

the high performance of emerging storage devices from another side. Hence,

the software developers should consider the performance gap between the

emerging hardware and traditional design of software systems. This can be

done by re-designing the OS kernel and file-systems with decentralizing the

components and partitioning data structures that cause the bottleneck and

contentions.

5.6 Summary

This chapter proposed a method to overcome file-system journaling prob-

lems in containers. Instead of designing a complete file system or developing

70

CHAPTER 5. ALLEVIATING JOURNALING PROBLEMS IN
CONTAINERS

a new journaling method, the chapter demonstrates that careful configura-

tion of containers in existing file systems can gracefully solve the journaling

problems. The proposed configuration consists of first, per-container jour-

naling by presenting each container with a virtual block device to have its

own journaling module. Hence, eliminating the bottleneck of the shared

journaling module among containers and its performance dependencies. Sec-

ond, accounting journaling I/Os separately for each container with a proper

configuration of journaling processes. The quantitative analysis shows the

feasibility of the proposed configuration in improving DBMS performance

and isolation in containers. The experimental results show MySQL perfor-

mance in containers is improved by 3.4x with the proposed method. Even-

tually, containers outperform VMs by 1.4x and show the performance gain

over VMs. Containers achieve reasonable performance isolation in MySQL

consolidation, comparable to that of VMs. Finally, the chapter explores the

performance of Redis, an in-memory database system. The results show that

the sharing of the journaling module in containers degrades the in-memory

database’s performance as well. The proposed configuration successfully im-

proves the in-memory database’s performance and mitigates the journaling

effects.

71

Chapter 6

Conclusion

6.1 Contribution Summary

This dissertation has conducted a study of DBMS performance and isola-

tion in virtualization environments. The dissertation aimed at investigation

the performance interference in virtualization environments by discussing the

storage I/O in DBMS as a first step. I/O-intensive applications like DBMS

demand high I/O performance and strict performance isolation when they

are consolidated in the cloud. A comparative study of KVM, LXC, and

OpenVZ is performed to understand the trad-off between I/O performance

and isolation in containers and VMs. Most of today’s cloud service providers

adopt containers to achieve higher performance than traditional VMs. How-

ever, the experimental results show the opposite, VMs outperform containers

in DBMS performance. Also, containers show a terrible disk I/O isolation

in DBMS consolidation. The file-system journaling which is mandatory to

guarantee file-system consistency especially in the database application is the

root cause of poor DBMS performance and isolation in containers. When

update intensive applications like DBMS are consolidated in containers, the

shared journaling module easily becomes a bottleneck. Journaling activities

of one container affect I/O performance and isolation of other containers

since DBMS involves frequent journaling.

The dissertation exposes that the sharing of some kernel components vi-

olates the performance and isolation in containers. The investigation reveals

72

CHAPTER 6. CONCLUSION

the underlying causes behind file-system journaling problems in containers.

First, the shared journaling module causes performance dependency among

containers and drgrades I/O performance. Second, file-system journaling

in containers interferes with disk I/O control of cgroup which violate the

isolation between containers.

Instead of designing a complete file-system or developing a new journaling

method, the dissertation demonstrates that careful configuration of contain-

ers can resolve the journaling problems. The proposed configuration method

consists of 1) per-container journaling by presenting each container with a

virtual block device to have its own journaling module, and 2) accounting

journaling I/Os separately for each container. The experimental results show

that DBMS performance in containers is improved up to 3.4x and outperform

VM by 1.4x with the proposed configuration. Aside from the performance,

containers achieve reasonable DBMS performance isolation comparable to

that of VMs.

6.2 Future Work

This dissertation paves the way to more investigation on performance inter-

ference in containers. The study has uncovered that the sharing of some

kernel components can become a bottleneck and violate performance isola-

tion among containers. Thus, one of the future works is to investigate the

sharing of other kernel components, for example, memory and networking

components. Since containers have become widely used to deploy WEB ap-

plications, it is interesting to investigate the possible resource contention in

network I/O with network-intensive applications. Although this study ex-

plores the effect of the shared journaling module on the in-memory database

performance, a further investigation is needed to understand the effect of the

sharing of memory cache on in-memory database performance or the other

memory-intensive applications.

Another future direction is to investigate the journaling problem with the

other journaling file-systems like XFS [3] and NTFS [83]. It is interesting to

compare the effects of their journaling mechanism on the I/O performance

and isolation of containers.

73

CHAPTER 6. CONCLUSION

Since this study advocates the use of per-container virtual block device

and the need for per-container journaling I/O accounting. These features

should be supported in containers and cgroup implementations. Container

systems other than OpenVZ, especially the most used ones like Docker[12]

and LXC, should support a container with a virtual block device like Ploop.

On the other hand, the kernel cgroup should provide a better disk I/O

control. Journaling I/O should be taken into consideration when applying

the disk I/O control among containers. It may be possible to estimate the

amount of journaling I/Os of each container by observing the non-journaling

I/O behaviors of each container. This estimate could be used to adjust the

weight of disk I/Os for each container or a normal process by the cgroup.

74

Bibliography

[1] Amazon. Amazon Web Services, 2021. https://aws.amazon.com/.

[2] Amazon. Databases on AWS, 2021. https://aws.amazon.com/

products/databases/.

[3] Archlinux. XFS, 2021. https://wiki.archlinux.org/index.php/XFS.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. ACM

SIGOPS operating systems review, 37(5):164–177, 2003.

[5] S. K. Barker and P. Shenoy. Empirical evaluation of latency-sensitive

application performance in the cloud. In Proc. of the first annual

ACM SIGMM conference on Multimedia systems (MMSys), pages 35–

46. ACM, 2010.

[6] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX

annual technical conference, FREENIX Track, volume 41, page 46.

Califor-nia, USA, 2005.

[7] F. Caglar, S. Shekhar, and A. Gokhale. Towards a performance in-

terferenceaware virtual machine placement strategy for supporting soft

realtime applications in the cloud. In Proc. of 3rd International Work-

shop on Real-time and Distributed Computing in Emerging Applications

(REACTION) , pages 15–20. Universidad Carlos III de Madrid, 2014.

[8] J. Carlson. Redis in action. Simon and Schuster, 2013.

75

https://aws.amazon.com/
https://aws.amazon.com/products/databases/
https://aws.amazon.com/products/databases/
https://wiki.archlinux.org/index.php/XFS

BIBLIOGRAPHY

[9] J. Che, Y. Y. ans C. Shi, and W. Lin. A synthetical performance eval-

uation of openvz, xen and kvm. In Proc. of Asia-Pacific Services com-

puting Conference, pages 587–594. IEEE, 2010.

[10] Datadog. Real-world container use, 2020. https://www.datadoghq.

com/container-report/#11.

[11] Diamanti. Container Adoption Benchmark Survey, 2019.

https://diamanti.com/wp-content/uploads/2019/06/Diamanti_

2019_Container_Survey.pdf.

[12] Docker. Get Started with Docker, 2021. https://www.docker.com/.

[13] A. Dusseau, H. Remzi, A. Dusseau, and C. Andrea. OPERATING

SYSTEMS. Arpaci-Dusseau Books, 2014.

[14] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated perfor-

mance comparison of virtual machines and linux containers. Technical

Report RC25482 (AUS1407-001), IBM Research Division, 2014.

[15] FIO. fio - Flexible I/O tester, 2021. https://fio.readthedocs.io/

en/latest/index.html.

[16] M. Furman. OpenVZ essentials. Packt Publishing Ltd, 2014.

[17] N. Galov. Cloud Adoption Statistics for 2021, 2021. https://

hostingtribunal.com/blog/cloud-adoption-statistics/#gref.

[18] S. K. Garg and J. Lakshmi. Workload performance and in-

terference on containers. In 2017 IEEE SmartWorld, Ubiqui-

tous Intelligence & Computing, Advanced & Trusted Computed,

Scalable Computing & Communications, Cloud & Big Data Com-

puting, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–6. IEEE,

2017.

[19] S. K. Garg, J. Lakshmi, and J. Johny. Migrating VM workloads to con-

tainers: Issues and challenges. In 11th IEEE International Conference

76

https://www.datadoghq.com/container-report/#11
https://www.datadoghq.com/container-report/#11
https://diamanti.com/wp-content/uploads/2019/06/Diamanti_2019_Container_Survey.pdf
https://diamanti.com/wp-content/uploads/2019/06/Diamanti_2019_Container_Survey.pdf
https://www.docker.com/
https://fio.readthedocs.io/en/latest/index.html
https://fio.readthedocs.io/en/latest/index.html
https://hostingtribunal.com/blog/cloud-adoption-statistics/#gref
https://hostingtribunal.com/blog/cloud-adoption-statistics/#gref

BIBLIOGRAPHY

on Cloud Computing, CLOUD 2018, San Francisco, CA, USA, July 2-7,

2018, pages 778–785, 2018.

[20] Gartner. The Future of the DBMS Market Is Cloud, data man-

agement usage projections by analyst house Gartner, Inc., 2019.

https://www.gartner.com/en/newsroom/press-releases/2019-07-

01-gartner-says-the-future-of-the-database-market-is-the.

[21] Github. Yahoo! Cloud Serving Benchmark, 2021. https://github.

com/brianfrankcooper/YCSB.

[22] Google. Cloud SQL, 2021. https://www.mysql.com/customers/view/

?id=757.

[23] Google. Google Cloud Platform, 2021. https://cloud.google.com/.

[24] A. Gulati, C. Kumar, and I. Ahmad. Storage workload characterization

and consolidation in virtualized environments. In Workshop on Virtual-

ization Performance: Analysis, Characterization, and Tools (VPACT),

page 4, 2009.

[25] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing per-

formance isolation across virtual machines in xen. In Middleware 2006,

pages 342–362. Springer, 2006.

[26] J. G. Hansen and E. Jul. Lithium: virtual machine storage for the cloud.

In Proceedings of the 1st ACM symposium on Cloud computing, pages

15–26, 2010.

[27] T. Heo. Control Group v2, 2021. https://www.kernel.org/doc/html/

latest/admin-guide/cgroup-v2.html.

[28] IBM. Containers vs. VMs: What’s the Difference?, 2020. https://www.

ibm.com/cloud/blog/containers-vs-vms.

[29] H. Jinho, Z. Sai, W. FY, and W. Timothy. A component-based perfor-

mance comparison of four hypervisors. In Proc. of IFIP/IEEE Inter-

national Symposium on Integrated Network Management (IM) , pages

269–276. IEEE, 2013.

77

https://www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-of-the-database-market-is-the
https://www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-of-the-database-market-is-the
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://www.mysql.com/customers/view/?id=757
https://www.mysql.com/customers/view/?id=757
https://cloud.google.com/
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.ibm.com/cloud/blog/containers-vs-vms
https://www.ibm.com/cloud/blog/containers-vs-vms

BIBLIOGRAPHY

[30] M. T. Jones. Anatomy of linux journaling file systems. IBM Developer-

Works, 2008.

[31] J. Kang, B. Zhang, T. Wo, C. Hu, , and J. Huai. Multilanes: providing

virtualized storage for os-level virtualization on many cores. In Proc.

of 12th USENIX Conference on File and Storage Technologies (FAST),

pages 317–329, 2014.

[32] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and J. Huai. Spanfs: a

scalable file system on fast storage devices. In Proc. of USENIX Annual

Technical Conference (ATC), pages 249–261, 2015.

[33] M. Kerrisk. Namespaces Linux manual page, 2020. https://man7.org/

linux/man-pages/man7/namespaces.7.html.

[34] M. Kerrisk. Cgroup Linux manual page, 2021. https://man7.org/

linux/man-pages/man7/cgroups.7.html.

[35] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the linux

virtual machine monitor. In Proc. of the Linux symposium, volume 1,

pages 225–230, 2007.

[36] A. Kopytov. Sysbench manual. MySQL AB, pages 2–3, 2012.

[37] M. Kwon, D. Gouk, C. Lee, B. Kim, J. Hwang, and M. Jung. Dc-store:

Eliminating noisy neighbor containers using deterministic i/o perfor-

mance and resource isolation. In 18th USENIX Conference on File and

Storage Technologies (FAST 20), pages 183–191. USENIX Association,

Feb. 2020.

[38] Linux. Block IO Controller, 2021. https://www.kernel.org/doc/

Documentation/cgroup-v1/blkio-controller.txt.

[39] Linux. cgclassify(1) - Linux man page, 2021. https://linux.die.net/

man/1/cgclassify.

[40] Linux. Chroot- Linux man page, 2021. https://linux.die.net/man/

2/chroot.

78

https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://linux.die.net/man/1/cgclassify
https://linux.die.net/man/1/cgclassify
https://linux.die.net/man/2/chroot
https://linux.die.net/man/2/chroot

BIBLIOGRAPHY

[41] Linux. fsync(2) — Linux manual page, 2021. https://man7.org/

linux/man-pages/man2/fdatasync.2.html.

[42] Linux. loop(4) — Linux manual page, 2021. https://man7.org/linux/

man-pages/man4/loop.4.html.

[43] L. Lu, Y. Zhang, T. Do, S. AI-Kiswany, and R. Arpaci-Dusseau. Physical

disentanglement in a container-based file system. In Proc. of the 11th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI), pages 81–96, 2014.

[44] LXC. Linux containers, Infrastructure for container projects, 2021.

https://linuxcontainers.org/.

[45] D. Macrae. How Linux Kernel Cgroups And Namespaces Made Modern

Containers Possible, 2016. https://www.silicon.co.uk/software/

open-source/linux-kernel-cgroups-namespaces-containers-

186240.

[46] J. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, and D. G. Hamil-

ton. Quantifying the performance isolation properties of virtualization

systems. In Proc. of the 2007 Workshop on Experimental Computer

Science, (ExpCS), page 6. ACM, 2007.

[47] I. Mavridis and H. Karatza. Combining containers and virtual machines

to enhance isolation and extend functionality on cloud computing. Fu-

ture Generation Computer Systems, 94:674–696, 2019.

[48] R. McDougall and J. Anderson. Virtualization performance: perspec-

tives and challenges ahead. ACM SIGOPS Operating Systems Review,

44(4):40–56, 2010.

[49] P. Menage. Linux Cgroup resource management, 2021. https://www.

kernel.org/doc/Documentation/cgroup-v1/cgroups.txt.

[50] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and

W. Zwaenepoel. Diagnosing performance overheads in the xen vir-

tualmachine environment. In Proc. of the 1st ACM/USENIX inter-

79

https://man7.org/linux/man-pages/man2/fdatasync.2.html
https://man7.org/linux/man-pages/man2/fdatasync.2.html
https://man7.org/linux/man-pages/man4/loop.4.html
https://man7.org/linux/man-pages/man4/loop.4.html
https://linuxcontainers.org/
https://www.silicon.co.uk/software/open-source/linux-kernel-cgroups-namespaces-containers-186240
https://www.silicon.co.uk/software/open-source/linux-kernel-cgroups-namespaces-containers-186240
https://www.silicon.co.uk/software/open-source/linux-kernel-cgroups-namespaces-containers-186240
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

BIBLIOGRAPHY

national conference on Virtual execution environments (VEE), pages

13–23. ACM, 2005.

[51] Microsoft. Azure SQL Database, 2021. https://azure.microsoft.

com/en-us/services/sql-database/.

[52] Microsoft. Microsoft Azure, 2021. https://azure.microsoft.com/en-

us/.

[53] N. Mizusawa, J. Kon, Y. Seki, J. Tao, and S. Yamaguchi. Performance

improvement of file operations on overlayfs for containers. In Proc. of

IEEE International Conference on Smart Computing, pages 297–302.

IEEE, 2018.

[54] R. Morabito, J. Kjallman, and M. Komu. Hypervisors vs. lightweight

virtualization: a performance comparison. In Proc. of the International

Conference on Cloud Engineering (IC2E), pages 368–374. IEEE, 2015.

[55] MySQL. MySQL Customer: Facebook, 2021. https://www.mysql.

com/customers/view/?id=757.

[56] NetApp. What are containers?, 2021. https://www.netapp.com/

devops-solutions/what-are-containers/.

[57] L. Nussbaum, F. Anhalt, O. Mornard, , and J. P. Gelas. Linux-based

virtualization for HPC clusters. In In Proc. of Montreal Linux Sympo-

sium, pages 221–234, 2009.

[58] OpenVZ. Ploop, 2021. https://wiki.openvz.org/Ploop.

[59] OpenVZ. Ploop/Why, 2021. https://wiki.openvz.org/Ploop/Why.

[60] D. Park and D. Shin. iJournaling: Fine-grained journaling for improving

the latency of fsync system call. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17), pages 787–798. USENIX Association,

2017.

[61] Percona. Open Source Data Management Software Survey,

2020. https://www.percona.com/open-source-data-management-

software-survey.

80

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.mysql.com/customers/view/?id=757
https://www.mysql.com/customers/view/?id=757
https://www.netapp.com/devops-solutions/what-are-containers/
https://www.netapp.com/devops-solutions/what-are-containers/
https://wiki.openvz.org/Ploop
https://wiki.openvz.org/Ploop/ Why
https://www.percona.com/open-source-data-management-software-survey
https://www.percona.com/open-source-data-management-software-survey

BIBLIOGRAPHY

[62] V. Prabhakaran, A. Arpaci-Dusseau, , and R. Arpaci-Dusseau. Analysis

and evolution of journaling file systems. In Proc. of 2005 USENIX

Annual Technical Conference, pages 105–120. USENIX, 2005.

[63] V. Prabhakaran, A. Arpaci-Dusseau, , and R. Arpaci-Dusseau. Analysis

and evolution of journaling file systems. In Proc. of 2005 USENIX

Annual Technical Conference, pages 105–120. USENIX, 2005.

[64] M. Raho, A. Spyridakis, M. Paolino, and D. Raho. Kvm, xen and

docker: a performance analysis for arm based nfv and cloud computing.

In Proc. of the 3rd Workshop on Advances in Information, Electronic

and Electrical Engineering (AIEEE), pages 1–8. IEEE, 2015.

[65] L. Rasmusson and C. Diarmuid. Performance overhead of kvm on linux

3.9 on arm cortex-a15. ACM SIGBED Review, 11(2):32–38, 2014.

[66] Redhat. Chapter 3. Subsystems and Tunable Parameters, 2021.

https://access.redhat.com/documentation/en-us/red_hat_

enterprise_linux/6/htmlresource_management_guide/ch-

subsystems_and_tunable_parameters.

[67] Redhat. CHAPTER 7. SWAP SPACE, 2021. https:

//access.redhat.com/documentation/en-us/red_hat_enterprise_

linux/5/html/deployment_guide/ch-swapspace.

[68] Redhat. What is KVM?, 2021. https://www.redhat.com/en/topics/

virtualization/what-is-KVM.

[69] N. Regola and J. Ducom. Recommendations for virtualization technolo-

gies in high performance computing. In Proc. of International Confer-

ence on Cloud Computing Technology and Science (CloudCom), pages

409–416. IEEE, 2010.

[70] D. Rountree and I. Castrillo. The basics of cloud computing: Under-

standing the fundamentals of cloud computing in theory and practice.

Newnes, 2013.

81

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html resource_management_guide/ch-subsystems_and_tunable_parameters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html resource_management_guide/ch-subsystems_and_tunable_parameters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html resource_management_guide/ch-subsystems_and_tunable_parameters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-swapspace
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-swapspace
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-swapspace
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.redhat.com/en/topics/virtualization/what-is-KVM

BIBLIOGRAPHY

[71] R. Russell. virtio: towards a de-facto standard for virtual i/o devices.

ACM SIGOPS Operating Systems Review, 42(5):95–103, 2008.

[72] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay. Containers and

virtual machines at scale: A comparative study. In Proceedings of the

17th International Middleware Conference, pages 1:1–1:13. ACM, 2016.

[73] J. Y. Shin, M. Balakrishnan, T. Marian, and H. Weatherspoon. Gecko:

Contention-oblivious disk arrays for cloud storage. In 11th USENIX

Conference on File and Storage Technologies (FAST 13), pages 285–

297, San Jose, CA, Feb. 2013. USENIX Association.

[74] S. Soltesz, H. Potzl, M. Fiuczynski, A. Bavier, and L. Peterson.

Container based operating system virtualization: a scalable, high-

performance alternative to hypervisors. SIGOPS Operating System Re-

view, 41(3):275–287, 2007.

[75] SQLite. Well-Known Users of SQLite, 2021. https://www.sqlite.

org/famous.html.

[76] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci. Cntr: Lightweight

OS containers. In 2018 USENIX Annual Technical Conference (USENIX

ATC 18), pages 199–212, Boston, MA, July 2018. USENIX Association.

[77] D. Tobin. The Salesforce Database Explained, 2019. https://www.

xplenty.com/blog/the-salesforce-database-explained/.

[78] B. Verghese, A. Gupta, and M. Rosenblum. Performance isolation: shar-

ing and isolation in shared-memory multiprocessors. In ACM SIGPLAN

Notices, volume 33, pages 181–192. ACM, 1998.

[79] VMware. Own Your Path to the Future, 2021. https://www.vmware.

com/.

[80] Vserver. Welcome to Linux-VServer, 2018. http://www.linux-

vserver.org/Welcome_to_Linux-VServer.org.

[81] Vserver. Oracle Solaris Containers, 2021. https://www.oracle.com/

solaris/technologies/solaris-containers.html.

82

https://www.sqlite.org/famous.html
https://www.sqlite.org/famous.html
https://www.xplenty.com/blog/the-salesforce-database-explained/
https://www.xplenty.com/blog/the-salesforce-database-explained/
https://www.vmware.com/
https://www.vmware.com/
http://www.linux-vserver.org/Welcome_to_Linux-VServer.org
http://www.linux-vserver.org/Welcome_to_Linux-VServer.org
https://www.oracle.com/solaris/technologies/solaris-containers.html
https://www.oracle.com/solaris/technologies/solaris-containers.html

BIBLIOGRAPHY

[82] Windows. Introduction to Hyper-V on Windows, 2021.

https://docs.microsoft.com/en-us/virtualization/hyper-v-

on-windows/about/.

[83] Windows. NTFS — New Technology File System for Windows, 2021.

https://www.ntfs.com/index.html.

[84] M. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and

C. F. D. Rose. Performance evaluation of container-based virtualization

for high performance computing environments. In Proc. of 21st Eu-

romicro International Conference on Parallel, Distributed and Network-

Based Processing (PDP), pages 233–240. IEEE, 2013.

[85] M. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and

C. F. D. Rose. A performance isolation analysis of disk-intensive work-

loads on container-based clouds. In Proc. of 23rd Euromicro Interna-

tional Conference on Parallel, Distributed and Network-Based Process-

ing (PDP), pages 253–260. IEEE, 2015.

[86] P. Xing, L. Ling, M. Yiduo, S. Sankaran, Y. Koh, and P. Calton. Under-

standing performance interference of i/o workload in virtualized cloud

environments. In Proc. of 3rd International Conference on Cloud Com-

puting (CLOUD), pages 51–58. IEEE, 2010.

[87] B. Zhang, X. Wang, R. Lai, L. Yang, Z. Wang, Y. Luo, and X. Li.

Evaluating and optimizing i/o virtualization in kernel-based virtual ma-

chine (kvm). In IFIP International Conference on Network and Parallel

Computing, pages 220–231. Springer, 2010.

83

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://www.ntfs.com/index.html

List of Papers

Articles on Periodicals

• Asraa Abdulrazak Ali Mardan and Kenji Kono. When the Virtual Ma-

chine Wins over the Container: DBMS Performance and Isolation in

Virtualized Environments. IPSJ Journal of Information Processing,

Vol.28, pp.369–377, July 2020.

• Asraa Abdulrazak Ali Mardan and Kenji Kono. Alleviating File Sys-

tem Journaling Problem in Containers for DBMS Consolidation. IE-

ICE Transactions on Information and Systems, Vol.E104-D, No.7, pp.–

, July 2021.

Articles on International Conference Proceedings

• Asraa Abdulrazak Ali Mardan and Kenji Kono. Containers or Hyper-

visors, Which is Better for Database Consolidation?. In Proceedings of

the IEEE 8th International Conference on Cloud Computing Technol-

ogy and Science (CloudCom ’16), pp.564–571, December 2016.

84

	Introduction
	Motivation
	Study Overview
	Previous Studies
	Organization

	Related Work
	Investigating I/O Performance and Isolation
	Exploring DBMS Performance and Isolation
	Enhancing I/O Performance and Isolation
	Designing New File-systems or Journaling Techniques
	Proposing Storage Systems for containers
	Summary

	Background
	Hypervisor and OS-based Virtualization
	KVM
	LXC
	OpenVZ

	Disk I/O in Container and VM
	Disk I/O Control by Cgroup
	Disk I/O Performance and Isolation
	Experimental Setup
	Results

	Summary

	DBMS Performance and Isolation
	MySQL Performance and Isolation
	Experimental Setup
	Results

	Analyzing DBMS Performance and Isolation
	Investigating the effect of Fsync
	File-system Journaling
	Journaling Problems in Containers
	Journaling Influence on MySQL Performance
	Journaling Influence on MySQL Isolation

	Summary

	Alleviating Journaling Problems in Containers
	A Quest for Best Solution
	Proposed Configuration Method
	Per-container Journaling Module
	Journaling I/O Accounting

	Experiments
	Per-container Journaling
	Combined with Journaling I/O Accounting
	Improvement of DBMS performance and isolation

	In-memory Database Performance
	Discussion
	Summary

	Conclusion
	Contribution Summary
	Future Work

	Bibliography
	List of Papers

