

A Study of Efficient Kernel Adaptive Filtering Algorithm Based on
Parallel Projection, Shrinkage Operator, and Model Learning

February 2021

TAKIZAWA, Masaaki

１ページ目：博士論文 表 紙記入例
２ページ目：博士論文 背表紙記入例
３ページ目：博士論文 中表紙記入例

A Thesis for the Degree of Ph.D. in Engineering

A Study of Efficient Kernel Adaptive Filtering Algorithm Based on
Parallel Projection, Shrinkage Operator, and Model Learning

February 2021

Graduate School of Science and Technology
Keio University

TAKIZAWA, Masaaki

Abstract
Various tasks in signal processing and machine learning can be cast as esti-
mations of nonlinear functions. With the rise of big data, online/adaptive
learning algorithms to solve nonlinear estimation problems in an online fash-
ion have attracted particular attention. Typical methods for online nonlinear
estimation include neural network, Volterra filter, and Kalman filter, each
of which has the following issues: local minima, high computational com-
plexity, and model dependency. Although online/adaptive learning method
with reproducing kernels, which is called the kernel adaptive filtering (KAF),
overcome those issues, KAF suffers from the following efficiency issues: (i)
convergence speed of algorithms, (ii) increase of the dictionary size, and (iii)
the design of kernel parameters. This study aims to propose online nonlin-
ear estimation algorithms that overcome those issues (i)-(iii) and verify the
efficacy of the algorithm through computer simulations.

First, an adaptive technique to enhance the convergence speed of KAF
algorithms is presented. The proposed technique is based on the use of the
geometric structure of reproducing kernel Hilbert space (RKHS)s as well
as data-reusing implemented with the parallel projection. Thanks to the
proposed technique, the proposed KAF algorithm has the advantages: high
estimation-accuracy, low complexity, and fast convergence/tracking as well
as noise robustness.

Second, an adaptive dictionary-reconstruction scheme based on a shrink-
age operator is presented to avoid performance degradations of the algorithm
caused by obsolete elements in the dictionary, as well as the increases of
memory usages and computational complexities caused by the dictionary-
size explosion. The proposed algorithm is shown to enjoy the monotone
approximation property for a certain function.

Third, an online algorithm that adapts the parameters of Gaussian func-
tions (scales and centers) iteratively by a coordinate descent-based algorithm
is presented. It is pointed out that the initial Gaussian scales largely affect
the efficiency and the precision of the estimate. To alleviate the sensitivity
to the initial scales, the multiscale screening method is presented which se-
lects an adequate initial scale from multiple values efficiently. The proposed
algorithm includes the adaptive learning of the coefficient vector of Gaus-
sians as well as the Gaussian parameters, thereby learning mathematical
models adaptively.

1

Acknowledgment

This thesis completes my studies in the undergraduate course at Niigata
University from 2012 to 2013, in the master’s course at Keio University
from 2013 to 2015, and in the doctoral course at Keio University from 2018
to 2021. I am deeply grateful to my adviser Associate Professor Masahiro
Yukawa for his guidance, advice, and comments throughout all these years.
I would also express my deep gratitude to Professor Isao Yamada of Tokyo
Institute of Technology for his support. Furthermore, it is my pleasure to
thank all the current and formal students of the Yukawa laboratory for the
friendship. My special thanks to Ms. Ishii for her careful support on my
overall activities related to my research. I would like to thank Professor
Masaaki Ikehara, Professor Shuichi Adachi, and Professor Yoshimitsu Aoki
for serving as members of the examining committee of this thesis. My works
related to this thesis were supported by KAKENHI Grant numbers 18J21595
and 18H01446.

2

Contents

Abbreviations 10

Notations 11

1 General Introduction 13
1.1 Background . 13
1.2 Notations and Problem Settings 14
1.3 Kernel Adaptive Filtering . 15

1.3.1 Reproducing Kernels 15
1.3.2 Kernel Adaptive Filter 16
1.3.3 Two Classes of Kernel Adaptive Filtering Algorithms 16
1.3.4 Review of Kernel Adaptive Filtering Algorithms . . . 18

1.4 Motivation of This Study . 19
1.4.1 Issue (i): Convergence Speed of Algorithm 19
1.4.2 Issue (ii): Increase of Dictionary Size 21
1.4.3 Issue (iii): Design of Kernel Parameters 21
1.4.4 Contribution of This Thesis 22

1.5 Preliminaries . 24
1.5.1 Convexity, Proper, and Lower Semi-continuity 24
1.5.2 Gradients of Convex Functions 25
1.5.3 Subgradient . 25
1.5.4 Nonexpansive and Quasi-nonexpansive Mappings . . . 26
1.5.5 Proximity Operator 26
1.5.6 Projections onto Subspace and Linear Variety 27
1.5.7 Universal approximation property of the Gaussian kernel 28
1.5.8 Normal Distribution 28

2 A Fast KAF Algorithm Based on Parallel Projection 29
2.1 Introduction . 29
2.2 The Φ-PASS Algorithm . 30

2.2.1 Key Ideas of the Proposed Algorithm 30
2.2.2 The Proposed Algorithm 33
2.2.3 Discussions . 37

3

2.2.4 Monotone Approximation and Convergence Analysis . 40
2.3 Experiments of the Φ-PASS Algorithm 44

2.3.1 Parameter design . 44
2.3.2 Experiment A — Stationary Data 45
2.3.3 Experiment B — Nonstationary Data 50
2.3.4 Experiment C — Mean Daily Temperature 52
2.3.5 Advantages Shown Through the Experiments 52

2.4 Conclusion . 53

3 An Efficient KAF Algorithm with Dictionary Refinements 56
3.1 Introduction . 56
3.2 Fundamental Results on Kernel Adaptive Filtering 57

3.2.1 Preliminaries . 57
3.2.2 Restricted Gradient and Isomorphism 58
3.2.3 The CKLMS Algorithm 60
3.2.4 Error Surface Analysis 65

3.3 The DR-Φ-PASS Algorithm 66
3.3.1 Key Ingredients . 66
3.3.2 Cost Function and a Straightforward Idea 67
3.3.3 The Proposed Algorithm 68
3.3.4 Discussions . 70
3.3.5 Computational Complexity 74

3.4 Experiments of the DR-Φ-PASS Algorithm 74
3.4.1 Parameter Settings . 74
3.4.2 Experiment A — Function Estimation 76
3.4.3 Experiment B — Nonstationary Data Prediction . . . 81
3.4.4 Experiment C — Real Data 81
3.4.5 Wrapping Up . 82

3.5 Conclusion . 83

4 An Efficient KAF Algorithm with Adaptations of Kernel
Scales and Centers 86
4.1 Introduction . 86
4.2 Nonlinear Model and Cost Function 87
4.3 Proposed Algorithm . 90

4.3.1 Dictionary Growing Strategy under Multiscale Screening 90
4.3.2 Updates of Heights, Scales, and Centers of Gaussian . 92

4.4 Discussions . 96
4.4.1 Monotone Decreasing Property of Cost Function . . . 96
4.4.2 On Global-to-Local Order of Multiscale Screening . . 99
4.4.3 Parameter Design . 99
4.4.4 Computational Complexity 101

4.5 Simulation Results . 103
4.6 Conclusion . 110

4

5 General Conclusion 113

A Sketch of the Derivation of (4.8) 115

B Proof of (4.20) 116

C Proof of (4.21) 118

5

List of Figures

1.1 Estimation of a nonlinear system with a nonlinear adaptive
filter. 15

1.2 Estimation of the nonlinear function ψ with the Gaussian
kernels. 17

1.3 A summary of the existing KAF algorithms. 20
1.4 A situation when κ(·,un) /∈Mn. 20
1.5 Relations of the proposed algorithms and related algorithms. 23

2.1 Projection-along-subspace when κ(·,un) /∈Mn. 30
2.2 Selective update by means of the projection along an affine

subspace Vn when κ(·,un) /∈Mn. 32
2.3 Parallel projection for p = 2 combined with the idea of projection-

along-subspace. 33
2.4 The Φ-PASS algorithm for ρ = 0 and p = 2. 34
2.5 The selective updating strategy in Example 2.2. 37
2.6 Comparisons of the proposed and conventional algorithms in

computational complexity for L = 4. 39
2.7 Results of Experiment A1: MSEs of the Φ-PASS algorithms,

KLMS, and NORMA. 46
2.8 Results of Experiment 1: dictionary sizes of the Φ-PASS al-

gorithms, KLMS, and NORMA. 46
2.9 Results of Experiment A2: MSEs of Φ-PASS and KAP. Case

1: large noise variance. Case 2: small noise variance. 49
2.10 Results of Experiment A2: dictionary sizes of Φ-PASS and

KAP. Case 1: large noise variance. Case 2: small noise variance. 49
2.11 Results of Experiment B: MSEs of Φ-PASSs, KRLS, and

QKLMS. 51
2.12 Results of Experiment B: dictionary sizes of Φ-PASSs, KRLS,

and QKLMS. 51
2.13 Time-series data used in Experiment C. 53
2.14 Results of Experiment C: MSEs of Φ-PASS, KRLS Tracker,

KAP, QKLMS, RAN, and Kalman filter. 54

6

2.15 Results of Experiment C: dictionary sizes of Φ-PASS, KRLS
Tracker, KAP, QKLMS, RAN, and Kalman filter. 55

3.1 The isomorphism between M and Rr. α ∈ [0,π] satisfies

cosα =
〈ϕ, ϕ̂〉H
‖ϕ‖H ‖ϕ̂‖H

=

〈

h, ĥ
〉

G

‖h‖G
∥

∥

∥
ĥ
∥

∥

∥

G

. 60

3.2 Equal error contour of J̃(h̃) in Case (i). 62
3.3 Equal error contour of J(h) in Case (i). 63
3.4 MSE learning curves for r = 2 in Case (i). 63
3.5 Equal error contour of J̃(h̃) in Case (ii). 64
3.6 Equal error contour of J(h) in Case (ii). 64
3.7 MSE learning curves for r = 2 in Case (ii). 65
3.8 A block diagram of the proposed algorithm. 69
3.9 Results of Experiment A-1: average MSEs of DR-Φ-PASS

and Φ-PASS. 75
3.10 Results of Experiment A-1: average dictionary sizes of DR-

Φ-PASS and Φ-PASS. 76
3.11 Results of Experiment A-1: probabilities of DR-Φ-PASS and

Φ-PASS. 77
3.12 Results of Experiment A-2: MSEs of DR-Φ-PASS, FOBOS-

KLMS, and Sparse-QKLMS. 78
3.13 Results of Experiment A-2: dictionary sizes of DR-Φ-PASS,

FOBOS-KLMS, and Sparse-QKLMS. 79
3.14 Eigenvalue spreads of Rn (of FOBOS-KLMS) and R̃n (of

DR-Φ-PASS). 80
3.15 Results of Experiment B: MSEs of DR-Φ-PASS and KRLS

Tracker. 82
3.16 Results of Experiment B: dictionary sizes of DR-Φ-PASS and

KRLS Tracker. 83
3.17 Results of Experiment C: MSEs of DR-Φ-PASS, Sparse-QKLMS,

FOBOS-KLMS, KRLS Tracker, Kalman filter, and RAN. . . 85
3.18 Results of Experiment C: dictionary sizes of DR-Φ-PASS,

Sparse-QKLMS, FOBOS-KLMS, KRLS Tracker, Kalman fil-
ter, and RAN. 85

4.1 A diagram of ONEGAP. At each time instant n, ONEGAP
updates the estimate in two steps. 89

4.2 The selection strategy for rn = 3 (three Gaussians) and s(NC)
n =

2. The numbers 1 and 2 denote the priority. In this illustra-
tion, g(·; ξ(1), c(1)) and g(·; ξ(3), c(3)) are selected. The uns-
elected Gaussian g(·; ξ(2), c(2)) is not tested for the sake of
computational efficiency. 93

4.3 An example of initial Gaussian scales for Q = 4. 102

7

4.4 Computational complexities of the proposed and related al-
gorithms. 104

4.5 Results of Experiment 1: the minimum difference of the Gaus-
sian scales between the target function and the atoms. 105

4.6 Results of Experiment 1: MSEs. 106
4.7 Results of Experiment 1: dictionary sizes. 107
4.8 Results of Experiment 2: MSEs. 108
4.9 Results of Experiment 2: dictionary sizes. 109
4.10 Learning curves of Experiment 3: (a) laser data from SantaFe

data set. 110
4.11 Learning curves of Experiment 3: (b) Mackey-Glass equation. 111

8

List of Tables

1.1 Comparisons of nonlinear estimation methods. 14

2.1 Summary of the Φ-PASS algorithm. 36
2.2 Computational complexities of the proposed and existing al-

gorithms. 38
2.3 Parameter settings and complexities for Experiment A1. . . . 47
2.4 Parameter settings and complexities for Experiment A2. . . . 48
2.5 Parameter settings and complexities for Experiment B. 50
2.6 Parameter settings and complexities for Experiment C. 52

3.1 Eigenvalue spreads of R and R̃. 66
3.2 Summary of the proposed algorithm. 70
3.3 Computational complexity of the proposed and conventional

algorithms. 74
3.4 Parameter settings for Experiment A-1. 75
3.5 Parameter settings for Experiment A-2. 78
3.6 Parameter settings and complexities for Experiment B. 80
3.7 Parameter settings and results for Experiment C. 84
3.8 Results of Experiment C. 84

4.1 Computational complexities of the proposed and related al-
gorithms. 103

4.2 Results of Experiment 3. 112

9

Abbreviations

RKHS reproducing kernel Hilbert space
KAF kernel adaptive filtering
MKAF multikernel adaptive filtering
Φ-PASS parallel hyperplane projection

along affine subspace algorithm
DR-Φ-PASS dual regularization Φ-PASS algorithm
ONEGAP online nonlinear estimation with

adaptations of Gaussian parameters algorithm
LMS least mean square algorithm
NLMS normalized least mean square algorithm
APA affine projection algorithm
RLS recursive least square algorithm
APSM adaptive projection subgradient method
APFBS adaptive proximal forward-backward splitting
NORMA naive online risk minimization algorithm
KLMS kernel least mean square algorithm
KNLMS kernel normalized least mean square algorithm
KAPA kernel affine projection algorithm
QKLMS quantized kernel least mean square algorithm
KAPSM kernel adaptive projection subgradient method
KRLS kernel recursive least square algorithm
FOBOS-KLMS kernel least mean square algorithm

with forward-backward-splitting
MKNLMS multi-kernel least mean square algorithm
KAW kernel adaptive width algorithm
QKLMS-AKS QKLMS with adaptive kernel size
QKAPSM quantized kernel APSM algorithm
RBF radial basis function network
GP Gaussian process
MFFN Multilayer feed-forward network

10

Notations

R the set of all real numbers
R++ the set of all strictly positive real numbers
N the set of all nonnegative integers
N∗ the set of all positive integers
(·)T vector or matrix transpose
A−1 inverse of matrix A

E(·) expected value of a random variable
tr(·) trace of matrix
∇ gradient
U input space
0 the null vector of the input space
H reproducing kernel Hilbert space (RKHS)
θ the null vector of the RKHS
I identity matrix
L dimension of the input space
u input vector
d output if system
κ kernelized input vector
h coefficients vector
e error
〈·, ·〉H inner product in H
‖·‖H norm in H
〈·, ·〉 the canonical inner product
‖·‖ the Euclidean norm
κ(·, ·) reproducing kernel
ψ target function
ϕ estimate of ψ
n time index

11

r number of dictionary elements
J index set of dictionary elements
M dictionary subspace
s number of selected elements
J̃ index set of selected elements
M̃ subspace spanned by selected elements
V affine subspace
p number of projections

computed in parallel
I index set of data

used in parallel projection
S bounded-instantaneous-error hyperslab
ρ error bound for S
Π zero instantaneous error hyperplane in H
H zero instantaneous error hyperplane in Rr

δ coherence parameter
ε threshold for error criterion
µ extrapolation coefficient
λ step size
ω weight of parallel projections and distance function
w weight of the -1 norm
τ regularization parameter
γ Lipschitz constant
Θ cost function of the proposed algorithm
PK(·) projection onto

a nonempty closed convex set K
G Gram matrix

12

Chapter 1

General Introduction

1.1 Background

Nonlinear functions appear in science and engineering, e.g., system identifi-
cation, channel equalization, acoustic echo cancellation, time-series predic-
tion, and so on. In particular, online (sequential) estimation techniques for
nonlinear functions have attracted particular attention with the rise of big
data due to small computational costs and memory usages of online learn-
ing algorithms. In Table 1.1, nonlinear estimation techniques are summa-
rized. Typical methods for online nonlinear estimation include Kalman fil-
ter, Volterra filter, and multilayer feed-forward network (MFFN). Extended
and unscented Kalman filters [1, 2] are dominant choices when the target
system has a state-space formulation. The state-space model determines
the modeling capability and the complexity of the Kalman filters as well as
the convexity of problem. Parameter estimations for the state-space mod-
els have been studied in a variety of industrial applications, including the
control of motor activity [3, 4], state estimation of power systems [5, 6],
state-of-charge estimation for lithium-ion batteries [7], and control and es-
timation in vehicle systems [8, 9]. Volterra filter [10] is widely applied in
acoustics applications [11] and nonlinear system identification [12]. How-
ever, the order of the Volterra series expansion is limited typically to two
(or three at most) due to the increase of computational loads, which means
that the Volterra filter has limited capabilities to capture the nonlinearity
of the target. MFFN is widely used for nonlinear estimation [13] due to
its universal approximation property [14]. Despite the critical property, the
learning of MFFNs optimization problem usually faces the problem of local-
minima, i.e., there is no guarantee that solutions reach the global-minima
[15, 16].

Computational methods for nonlinear signal processing tasks based on
reproducing kernels have been developed during the last decades, as wit-
nessed by the success of support vector machine/regression and principal

13

Chapter 1

Table 1.1: Comparisons of nonlinear estimation methods.
Adaptivity Modeling capability Convexity Complexity

Kalman filter Yes Depending on state-space model
Volterra filter Yes Limited Yes Large

MFFN Yes Universal No Large
GP No Universal Yes Large
KAF Yes Universal Yes Moderate

component analysis [17, 18]. While traditional kernel methods consider
essentially butch settings, i.e., all training data are available in advance,
online/adaptive methods have gained attention during the past decade. A
typical example is Gaussian process (GP) regression [19, 20] is a nonlinear
regression method based on reproducing kernels. GP regression mainly con-
siders for butch settings due to its sizeable computational complexity of the
kernel-matrix-inversion operation.

Recently, Kernel adaptive filtering (KAF) [21, 22, 23, 24, 25, 26, 27, 28,
29, 30] has gathered significant attention due to the following three reasons
[24].

1. Convexity: Kernel adaptive filtering can be viewed as linear adap-
tive filtering in a higher-dimensional feature space, which means that
a wealth of knowledge on adaptive filtering, based on convex optimiza-
tion, is available.

2. Computational efficiency: Due to the reproducing property of re-
producing kernels (see Section 1.3.1), the inner product operation in
the feature space is computed efficiently.

3. High estimation capability: Under an appropriate choice of repro-
ducing kernels, a kernel adaptive filter enjoys high estimation capabil-
ity, as well as computational efficiency and convexity. In the case of
Gaussian kernel (see Section 1.3.1), filters have the universal approxi-
mation property (see Section 1.5.7).

1.2 Notations and Problem Settings

Let R, R++, and N be the sets of real numbers, strictly positive real numbers,
and nonnegative integers, respectively. The superscript (·)T denotes the
transpose of a vector/matrix. The L-dimensional Euclidean space is denoted
by RL, and the Euclidean inner product and norm are denoted by 〈·, ·〉 and
‖·‖, respectively. A real Hilbert space H equipped with an inner product
will be denoted by (H, 〈·, ·〉H) as well as its induced norm ‖·‖H.

14

Chapter 1

un +

−

dn − d̂n

Nonlinear Adaptive Filter

dn

d̂n

νn

Nonlinear Function

Figure 1.1: Estimation of a nonlinear system with a nonlinear adaptive filter.

The online nonlinear estimation problem considered in the present study
is the following (see Figure 1.1): estimate an unknown nonlinear function
ψn : U → R by means of sequentially arriving input vectors un ∈ U and its
output dn := ψn(un)+νn ∈ R contaminated by additive noise νn ∈ R. Here,
we denote by U ⊂ RL the input space in which the input vectors un arise,
where n ∈ N is the time index. No prior knowledge is assumed available
about the structure of ψ and the input signals.

1.3 Kernel Adaptive Filtering

1.3.1 Reproducing Kernels

In the field of adaptive filtering [31, 32], online learning schemes for linear
function have been studied for a long time. A possible way to extend the
scope of linear models to nonlinear processing is to map the input data into
a high dimensional feature space using a nonlinear function. The idea is the
following; transform the input data into a high dimensional feature space
via a function such that the inner product operation in the feature space is
computed efficiently. Let us start from the definition of reproducing kernel
Hilbert space (RKHS).

Definition 1.1 (Reproducing kernel Hilbert space) Let H be a real
Hilbert space of functions f : U → R. The space H is a reproducing kernel
Hilbert space when there exists a function κ : U × U → R that satisfies the
following properties.

1. κ (·,u) ∈ H,∀u ∈ U .

2. f (u) = 〈f,κ (·,u)〉H ,∀f ∈ H,∀u ∈ U .

15

Chapter 1

The property 2 is called the reproducing property and a function κ : U×U →
R is called a reproducing kernel of H. In particular, for any u,v ∈ U ,

κ (u,v) = κ (v,u) = 〈κ (·,u) ,κ (·,v)〉H . (1.1)

Some examples of the reproducing kernel are given below:

Linear kernel:
κ (u,v) = uTv, u,v ∈ RL (1.2)

Polynomial kernel:

κ (u,v) =
(

uTv + c
)p

, p ∈ N, c ≥ 0, u,v ∈ RL (1.3)

Laplacian kernel:

κ (u,v) = exp

(

−β
L
∑

l=1

|ul − vl|
)

, β > 0, u,v ∈ RL (1.4)

where ul = [u]l and vl = [v]l

Gaussian kernel:

κ (x,y) = exp

(

−‖x− y‖2

2ξ

)

, ξ > 0, u,v ∈ RL (1.5)

1.3.2 Kernel Adaptive Filter

Let {κ(·,uj)}j∈Jn be the dictionary with the dictionary index aet Jn :=

{j(1)n , j(2)n , · · · , j(rn)n } ⊂ {0, 1, 2, · · · , n}. Here, the cardinality |Jn| = rn de-
notes the dictionary size at time n. A nonlinear model can be defined as

ϕn :=
∑

j∈Jn

h(j)n κ(·,uj), h(j)n ∈ R, n ∈ N. (1.6)

Assume here that the dictionary is linearly independent. Figure 1.2 illus-
trates an example of estimation with four Gaussian kernels. Using the re-
producing property, the output of the filter ϕn to the input un is given by

ϕn(un) = 〈ϕn,κ(·,un)〉H =
rn
∑

j=1

h(j)n κ(un,uj). (1.7)

1.3.3 Two Classes of Kernel Adaptive Filtering Algorithms

Under the strategy of minimizing the instantaneous squared error
(dn − ϕn(un))

2, the filter updating rule is desired to satisfy the following

16

Chapter 1

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Target ψ

EstimateO
u
tp
u
t

Input

Figure 1.2: Estimation of the nonlinear function ψ with the Gaussian ker-
nels.

conditions (the principle of minimal disturbance).

C1. Vanishing the instantaneous error (ϕn(un) = dn).

C2. Being close to the current filter ϕn.

Based on the above conditions C1 and C2, Kivinen et al. have derived a
stochastic gradient descent method in an RKHS H, named the Naive online
regularized risk minimization algorithm (NORMA) algorithm [21]. When
the new data is observed, NORMA updates an estimate in the direction
of the function κ(·,un) centered on the new data un, which means that
the current estimate is updated in the direction of the normal vector of the
following hyperplane:

Πn := {ϕ ∈ H : ϕ(un) = 〈ϕ,κ(·,un)〉H = dn}. (1.8)

Here, the equality ϕ(un) = 〈ϕ,κ(·,un)〉 is due to the reproducing property
of the RKHS H. The set Πn is a collection of functions (estimates) of which
the output ϕ(un) to the input un equals the output dn of the system. Each
update is quite similar to the least mean square (LMS) algorithm, which is
well known in the field of linear adaptive filtering. It should be remarked
that ϕn and ϕn+1 lie in the dictionary subspace

Mn := span{κ(·,uj)}j∈Jn ⊂ H, n ∈ N. (1.9)

17

Chapter 1

We refer to this approach based on the RKHS-inner-product expression as
functional-space approach. In the functional-space approach, the filter ϕn is
updated to reduce the distance between Πn.

The parameter-space approach is obtained by reconsidering the condi-
tions C1 and C2. For f :=

∑r
j=1 h

(j)κ(·,x(j)) ∈ H , we obtain

〈f,κ(·,u)〉H = f(u) =
r
∑

j=1

h(j)κ(u,x(j)) = 〈κ,h〉 , (1.10)

where
κ := [κ(u,x(1)),κ(u,x(2)), · · · ,κ(u,x(r))]T ∈ Rr (1.11)

and
h := [h(1), h(2), · · · , h(r)]T ∈ Rr. (1.12)

In the parameter-space, the ‘closeness’ in the condition C2 is measured by
the Euclidean norm of coefficients vectors rather than the Hilbertian norm
of functions. The idea of the parameter-space approach is the followings:
update the coefficient vector h in the direction of the normal vector of the
following hyperplane:

Hn := {h ∈ Rrn : 〈κn,h〉 = dn}, (1.13)

where
κn := [κ(un,uj(1)n

)),κ(un,uj(2)n
), · · · ,κ(un,uj(rn)

n
)]T (1.14)

is the kernelized input vector.

1.3.4 Review of Kernel Adaptive Filtering Algorithms

There have been many studies on kernel adaptive filtering and many kernel
adaptive filtering algorithms have been proposed [27, 28, 33, 29].
Algorithms: In Figure 1.3, existing KAF algorithms are summarized. As
described in the previous subsection, the existing kernel adaptive filtering
algorithms can be classified into two general categories: (i) the parameter-
space approach and (ii) the functional-space approach. The parameter-space
approach updates a filter by finding a coefficients vector which gives a small
(or zero) instantaneous error, and the update can be explained as the update
in parameter-space (the number of coefficients-dimensional Euclidian space).
The kernel recursive least square (KRLS) algorithm [22], the KRLS Tracker
algorithm [30], kernel normalized least mean square (KNLMS) algorithm,
the kernel affine projection (KAP) algorithm [27], and the multikernel nor-
malized least mean square (MKNLMS) algorithm [28] fall into this approach.
In contrast, the functional-space approach updates a filter by finding a func-
tion which gives a small (or zero) instantaneous error. The kernelized least
mean square (KLMS) algorithm [33], kernel adaptive projected subgradient

18

Chapter 1

method (KAPSM) [26], and the quantized KLMS (QKLMS) algorithm [29]
fall into this approach.
Novelty Criteria: Under the update based on functional-space approach,
the dictionary size rn grows linearly as time goes by, i.e., κ(·,un) ∈Mn for
any n ∈ N. To keep it bounded, a simple truncation rule is used in [21],
discarding the oldest datum and accepting the new one at each time. This
seems to be natural in terms of adaptivity, but it possibly results in discard-
ing useful data for estimation. For another approach to bound dictionaries,
novelty criteria have therefore been proposed to construct a well-organized
dictionary by accepting novel data only; e.g., the approximate linear de-
pendency of Engel et al. [22], the coherence of Richard et al. [27], and the
surprise (a subjective information-theoretic criterion) of Liu et al. [34].
Dictionary Refinement Techniques: An adaptive dictionary-refinement
technique based on the proximity operator of a weighted (block) -1 norm
for kernel adaptive filtering has initially been proposed by Yukawa in 2010
[35, 36, 28] for the parameter-space approach in the multikernel adaptive
filtering (MKAF) context. Specifically, to enhance the model efficiency,
a weighted (block) -1 norm regularization is applied to the cost function,
which is applied in various fields [37, 38, 39, 40]. A similar algorithm (for
the monokernel case) has been presented and analyzed by Gao et al. in 2013
[41], under the name of KNLMS with forward-backward-splitting (FOBOS-
KNLMS) algorithm. A sparse algorithm classified in functional-space ap-
proach was proposed by Chen et al. under the name of Sparse-QKLMS [42].
Another line of researches related to the dictionary refinement techniques
are the so-called budget learning which keeps the dictionary size at some
pre-specified budget [43, 30].

1.4 Motivation of This Study

Although KAF has attracted significant attention due to its computational
efficiency caused by the reproducing property of the positive definite kernel
as well as being free from the issue of local minima, KAF suffers from the
following efficiency issues: (i) convergence speed of algorithms, (ii) increase
of the dictionary size, and (iii) the design of kernel parameters. Each issue
is specifically described below.

1.4.1 Issue (i): Convergence Speed of Algorithm

Applying one of the novelty criteria to KAF algorithms based on the functional-
space approach (e.g., NORMA and KLMS), the filter cannot move when the
new data is not added into the dictionary, implying that the guarantee of
each update no longer exists. This means that once one of those criteria
is introduced, the observed datum that is regarded as insufficiently novel
is simply discarded and makes no contributions to estimation even though

19

Chapter 1

functional-space approach parameter-space approach

LMS-based

APSM[44]-based

NLMS (APA)-based

RLS-based

NORMA(Kivinen et al.), 2004

KLMS (Liu et al.), 2008

QKLMS (Chen et al.), 2012

Sparse-QKLMS
(Chen et al.), 2012

KAPSM (Slavakis et al.), 2008

KNLMS, KAP
(Richard et al.), 2009

MKNLMS (Yukawa), 2012

FOBOS-KNLMS
(Gao et al.), 2013

KRLS (Engel et al.), 2004

KRLS Tracker

(Vaerenberg et al.), 2012

Figure 1.3: A summary of the existing KAF algorithms.

Mn

ϕn θ

κ(·,un)

Πn

Figure 1.4: A situation when κ(·,un) /∈Mn.

it can be informative enough to adjust the coefficients. Specifically, once
the admission control is operated under one of those criteria, it is no longer
guaranteed that the normal vector κ(·,un) of Πn lies in the dictionary sub-
space Mn. Figure 1.4 illustrates such a situation that κ(·,un) /∈Mn. It is
seen that the estimate ϕn has to leave Mn to be projected onto Πn. This
implies that one cannot update the estimate straightforwardly in this case
since the next estimate ϕn+1 should lie in Mn. This is waste-of-resources
which leads to slow convergences of algorithms.

Remark 1.1 The methods proposed in [22, 27] update the estimate even
when κ(·,un) ∈Mn. Our current focus is, however, on the methods based
on projections in the RKHS. The method in [22] performs a recursive least
square update in terms of the coefficients. The method in [27] operates the

20

Chapter 1

orthogonal projection in a Euclidean space, not in the RKHS.

1.4.2 Issue (ii): Increase of Dictionary Size

In [41], it has been reported that some obsolete elements still exist, i.e.,
there are elements of which the coefficients are small even though we per-
form admission controls with the novelty criteria. Moreover, obsolete ele-
ments negatively affect the estimation, and therefore those elements should
be pruned from the dictionary. Considering time-dependent function ψn,
dictionary elements, which are ‘not’ obsolete at some point in time, may
become obsolete when ψn changes and has zero-value at the radius of those
elements. Those obsolete elements increase the dictionary size senselessly.

As described in Section 1.3.4, some dictionary refinement techniques
are proposed. Those techniques, however, are mainly presented for the
parameter-space approach. As a functional-space algorithm with -1 norm
regularization, the Sparse QKLMS algorithm has been presented in [42],
which exploits a subgradient, defined in the RKHS, of an instantaneous
squared error penalized by the -1 norm. However it involves the computa-
tion of the inverse of a Gram matrix, which increases the overall complexity
of the algorithm.

1.4.3 Issue (iii): Design of Kernel Parameters

One of the largest difficulties of kernel adaptive filtering lies in finding an
appropriate kernel to construct an “efficient model” in the sense of reduc-
ing the estimation errors with low (or affordable at most) complexity. If
improper kernels are used, the kernel adaptive filter may need a large-size
dictionary, which causes slow convergence. Under the use of Gaussian kernel,
the efficacy of models relies on the scales and centers of Gaussian kernels.
Regarding the kernel scales, a reasonable scale parameter has been assumed
available prior to adaptation in the early studies of kernel adaptive filtering.
This assumption is however unrealistic, particularly when the data under
consideration is nonstationary.

The MKAF algorithms [45, 28, 46, 47, 48, 49, 50] has been proposed as
a convex analytic approach with multiple different scales, and the concept
of online model selection and learning has been presented in [51, 52] based
on the MKAF framework, selecting appropriate scales from a hundred pos-
sible scales by shrinking the coefficient vector for each scale while learning
those parameters as well as reducing the estimation errors simultaneously.
Although those selection schemes for the Gaussian parameters yield rea-
sonably good results, there is still sufficient room for improvements in the
sense of “efficiency” of the estimate. In the kernel adaptive filtering con-
text, moreover, some methods have been proposed to adapt the kernel scales
[53, 54, 55] and centers [56, 57] in the dictionary. The method proposed in

21

Chapter 1

[54] uses a common scale parameter for all kernel functions. The method
in [55, 58] updates both scales and centers individually, as in the proposed
approach.

We focus on the fact that the performance of the aforementioned alter-
nating update approach depends highly on the initial scales [59]. Specifically,
the initial Gaussian scales affect the efficiency and the accuracy of the es-
timate significantly when the selected scale was far from the actual ones of
the target function due to the “gradient vanishment” (see Section 4.3.1).

1.4.4 Contribution of This Thesis

The contributions of my doctoral study are three folds.
First, we present an efficient KAF algorithm for adaptive nonlinear es-

timation based on projections aiming to enhance the learning speed of the
algorithm by using the information of the observed data effectively. The pro-
posed algorithm, named parallel hyperslab projection along affine subspaces
(Φ-PASS), is based on three ideas: projection-along-subspace, selective up-
date, and parallel projection. The projection-along-subspace yields excellent
performances with small dictionary sizes. The selective update effectively re-
duces the complexity without any serious degradation of performance. The
parallel projection leads to fast convergence/tracking accompanied by noise
robustness.

Second, we present an adaptive dictionary-reconstruction scheme based
on a shrinkage operator, named the parallel hyperplane projection along
affine subspaces algorithm with dictionary refinements (DR-Φ-PASS). We
apply the popular -1 norm regularization [35, 28, 41] for the sake of adap-
tive refinements of model complexities. A straightforward approach is to ap-
ply the adaptive proximal forward-backward splitting (APFBS) algorithm
[60] to the cost function (which is the sum of smooth and nonsmooth func-
tions) in the functional subspace. However, the proximity operator defined
in the functional subspace has no closed-form expression. We, therefore,
propose a heuristic, but efficient, algorithm that employs the proximity op-
erator defined in the parameter space. This heuristic idea drastically reduces
the computational complexity of the algorithm. Although the proposed al-
gorithm uses different inner products between the forward and backward
steps, we show that it still enjoys a monotone approximation property re-
garding a cost function with a certain modified weighted -1 norm under some
conditions.

Third, focusing on the model defined by a weighted sum of Gaussian
functions, we propose an efficient adaptive method updating the Gaussian
parameters (scales and centers) and the coefficients alternately to reduce
the instantaneous squared errors named online nonlinear estimation with
adaptations of Gaussian parameters (ONEGAP). The Gaussian function, as
a basis, has the following advantages in the problem setting of this thesis:

22

Chapter 1

Learning in RKHS H

NORMA
KLMS

Eliminate
the limitation
of the update

Φ-PASS DR-Φ-PASS
(Chapter 2) (Chapter 3)-1 norm

regularization

Gaussian model with adaptaions
of Gaussian scales and centers

ONEGAP
(Chapter 4)

Figure 1.5: Relations of the proposed algorithms and related algorithms.

1. Universality:
Since no prior knowledge is assumed about the structure of the tar-
get system, the model should have a strong capability to approximate
functions. The Gaussian function has the universality [61] and there-
fore the Gaussian model can represent a wide variety of functions. For
more details about the universality see Section 1.5.7.

2. Unimodality:
Under the online setting considered in this paper, a possible strategy
for updating the estimate is minimizing the instantaneous squared
error with the observed input and output (un, dn). If a certain periodic
function is employed as a basis, for instance, each function affects a
wide range of the estimate. This is against the above updating strategy
since updating the coefficient of a basis changes the estimate over a
wide range. The Gaussian function, on the other hand, is unimodal,
and therefore the coefficient update affects only a local region.

The key difference between the proposed algorithm and the methods in
[53, 54, 55, 56, 57] is a novel online dictionary growing technique, which
builds a dictionary with multiple initial scales selected by a hierarchical se-
lection strategy. The use of multiple initial values, however, may cause un-
desirable growths of the dictionary size (which involve high computational
complexities and large memory size). To avoid this, we present an effi-
cient dictionary growing strategy named multiscale screening method, which
‘screens’ the large- and small- scale Gaussians based on the error and novelty
criteria.

Figure 1.5 shows the relations between the proposed algorithms and
related KAF algorithms. We remark that ONEGAP is no longer KAF al-
gorithm, since the RKHS, in which the filter is updated, changes through
estimation due to the adaptation of the Gaussian scales.

23

Chapter 1

This study: In Chapter 1, the background, the objective of this study,
and the previous studies were presented. In the rest of Chapter 1, some
ingredients used throughout this thesis were presented.

In Chapter 2, an adaptive technique to enhance the convergence speed of
KAF algorithms, named Φ-PASS, was presented. The proposed technique
was based on the use of the geometric structure of reproducing kernel Hilbert
spaces as well as data-reusing implemented with the parallel projection.

In Chapter 3, first, the relation between the functional-space and Euclidean-
space approaches were investigated to kernel adaptive filtering based on
the isomorphism between two real Hilbert spaces: the so-called dictionary
subspace of a functional space and a Euclidean space equipped with a
dictionary-dependent inner product. Second, an efficient functional-space
projection algorithm, named DR-Φ-PASS, that refines the dictionary adap-
tively was proposed. The proposed algorithm was shown to enjoy the mono-
tone approximation property for a certain function.

In Chapter 4, ONEGAP which adapts the parameters of Gaussian func-
tions (scales and centers) iteratively by a coordinate descent-based algorithm
with the proposed multiscale screening method was presented. ONEGAP
consists of two steps: (i) the dictionary growing step and (ii) the parameter
updating step. In the first step, the dictionary grows under a hierarchical
selection strategy. In the second step, the Gaussian parameters are updated
in sequence.

In Chapter 5, the results of this study were summarized.

1.5 Preliminaries

1.5.1 Convexity, Proper, and Lower Semi-continuity

Let H be a real Hilbert space. A set C ∈ H is call a convex set if (1− ζ)x+
ζy ∈ C, ∀x,y ∈ C, ∀ζ ∈ [0, 1].

If a set C is closed as well as convex, it is called a closed convex set.

Definition 1.2 (convex function, proper function) A function f : H→
(−∞,∞] := R ∪ {∞} is called convex function if

f ((1− ζ)x+ ζy) ≤ (1− ζ)f (x) + ηf (y) ,∀x,y ∈ H,∀ζ ∈ (0, 1) . (1.15)

In particular, a convex function f : H→ (−∞,∞] is called proper if

dom (f) := {x ∈ H|f (x) <∞} /= ∅. (1.16)

Definition 1.3 (lower semicontinuous function) A function f : H →
(−∞,∞] is called lower semicontinuous if the set

lev≤a (f) := {x ∈ H|f (x) ≤ a} (1.17)

24

Chapter 1

is closed for every a ∈ R.

The set of all proper lower semicontinuous convex functions is denoted by
Γ0 (H).

Definition 1.4 (strictly convex) A function f ∈ Γ0 (H) is called strictly
convex if

(x /= y, ζ ∈ (0, 1))⇒ f ((1− η)x+ ζy) < (1− ζ)f (x) + ζf (y) . (1.18)

Definition 1.5 (coercivity) A function f ∈ Γ0 (H) is called coercive if

‖x‖H →∞⇒ f (x)→∞. (1.19)

1.5.2 Gradients of Convex Functions

Proposition 1.1 (Properties of gradients of convex functions [62])
Suppose f : RL → R is convex and in C1. Then following statements are
equivalent.

1. Lipschitz continuity of ∇f(x): there exists and L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x,y ∈ domf. (1.20)

2. g(x) := L
2 ‖x‖

2 − f(x) is convex.

3. Quadratic upper bound:

f(y) ≤ f(x) + 〈∇f(x),∇f(y)〉+ L

2
‖y − x‖2 . (1.21)

4. Co-coercivity

〈∇f(x)−∇f(y),x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2 . (1.22)

1.5.3 Subgradient

Definition 1.6 (Subgradient) Let f : H → R be continuous and convex.
Then for any x ∈ H, there always exists x̃ ∈ H satisfying

‖y − x‖H x̃+ f(x) ≤ f(y), ∀y ∈ H. (1.23)

The vector x̃ is called a subgradient of f at x. The set of all such vectors is
called the subdifferential of f at x, and it is denoted as ∂f(x).

25

Chapter 1

1.5.4 Nonexpansive and Quasi-nonexpansive Mappings

A point x ∈ H is called a fix point of a mapping T : H → H if T (x) = x.
The set of all fix points of T is denoted by Fix (T) := {x ∈ H | T (x) = x}.
The mapping T : H→ H is called nonexpansive if

‖T (x)− T (y)‖H ≤ ‖x− y‖H ∀x,y ∈ H. (1.24)

A mapping T : H → H is called β-Lipschitz continuous with a Lipschitz
constant β over H if there exists β > 0 satisfying

‖T (x)− T (y)‖H ≤ β ‖x− y‖H ,∀x,y ∈ H. (1.25)

In particular, a mapping T : H → H is called strictly contractive if there
exists κ ∈ (0, 1) such that ‖T (x)− T (y)‖H ≤ ‖x− y‖H ,∀x,y ∈ H.

Suppose that the mapping T : H→ H has at least one fix point.

Definition 1.7 (quasi-nonexpansive mapping) The mapping T : H →
H is called quasi-nonexpansive if T satisfies

‖T (x)− z‖H ≤ ‖x− z‖H ,∀x ∈ H,∀z ∈ Fix (T) . (1.26)

1.5.5 Proximity Operator

Definition 1.8 (proximity operator) The proximity operator of index
τ ∈ (0,∞) of f ∈ Γ0 (H) is defined by

proxτf : H→ H : x 2→ argmin
y∈H

{

f (y) +
1

2τ
‖x− y‖2H

}

. (1.27)

The existence and the uniqueness of the minimizer of (1.27) are guaranteed
respectively by the coercivity and the strict convexity of f (·)+ 1

2τ ‖x− ·‖2H.
Equivalently, for every x ∈ H, proxτf (x) is characterized as a unique point
satisfying

{

proxτf (x)
}

= {z ∈ H|z + τ∂f (z) 3 x} , (1.28)

i.e.,
proxτf (x) = (I + τ∂f)−1 (x) , (1.29)

which is again equivalent to

〈

y − proxτf (x) ,
x− proxτf (x)

τ

〉

H
+ f

(

proxτf (x)
)

≤ f (y) ,∀y ∈ H.

(1.30)
The proximity operator is firmly nonexpansive, i.e., rproxτf := 2proxτf −I :
H→ H, is nonexpansive:

∥

∥

(

2proxτf − I
)

x−
(

2proxτf − I
)

y
∥

∥

H ≥ ‖x− y‖H . (1.31)

26

Chapter 1

If argminx∈H f(x) /= ∅, the set of all minimizers of f is equal to that of the
Moreau envelope and also expressed as the fixed point set of proxτf : H→ H;
i.e.,

argmin
x∈H

f (x) = argmin
x∈H

τf (x) = Fix
(

proxτf
)

. (1.32)

1.5.6 Projections onto Subspace and Linear Variety

Definition 1.9 (metric projection) Given a nonempty closed convex set
C ⊂ H and any point x ∈ H, there exists a unique point PC (x) ∈ C satisfying

dC := min
z∈C
‖x− z‖H = ‖x− PC (x)‖H . (1.33)

The mapping H 3 x 2→ PC (x) ∈ C is called the metric projection onto C.

Given nonzero and linearly independent vectors y1, · · · ,yn and and ar-
bitrary vector x, the metric projection PM(x) of x onto the subspace
M := span{yj}, j = 1, · · · , n is given by

PM(x) =
n
∑

j=1

αjyj. (1.34)

Here, α1, · · · ,αn is obtained by solving the following normal equation

Gα = [〈x,y1〉 , · · · , 〈x,yn〉]T, (1.35)

where

G :=











〈y1,y1〉H 〈y1,y2〉H · · · 〈y1,yr〉H
〈y2,y1〉H 〈y2,y2〉H · · · 〈y2,yr〉H

...
...

. . .
...

〈yr,y1〉H 〈yr,y2〉H · · · 〈yr,yr〉H











(1.36)

is called Gram matrix. Given a closed subspace M in a Hilbert space H,
define a linear variety as V := M+ v for some v ∈ H. Then, the projection
PV(x) of x onto V is has the following expressions.

1. PV(x) = PM(x− v) + v.

2. PV(x) = PM(x) + PV(θ).

We next show that the projection depends on metric design. Given
any positive definite matrix

(

RL×L 3
)

G 4 0, we define an inner product
and its induced norm, respectively, as 〈x,y〉G := xTGy,∀x,y ∈ RL, and
‖x‖G :=

√

〈x,x〉G,∀x ∈ RL. Hereafter, we regard G as a metric which
determines the metric-distance between x and y by ‖x− y‖G.

27

Chapter 1

Definition 1.10

(a) G-orthogonal: Vectors x and y are said to be G-orthogonal, if
〈x,y〉G = 0.

(b) G-projection: Given a closed convex set C ⊂ R, the metric projection
of x onto C in terms of the metric G is defined as

PG
C (x) := argmin

y∈C
‖y − x‖G , (1.37)

which is referred to as the G-projection of x onto C.

Example 1.1 Define the hyperplane

Π :=
{

h ∈ RL : hTu = d =
〈

h,G−1u
〉

G

}

, n ∈ N. (1.38)

In the Hilbert space equipped with the inner product 〈·, ·〉A, the normal vector
of Π is G−1u, and the G-projection of x onto the hyperplane Π can be
computed as

PG
Π (x) = x+

d− xTu

uTG−1u
G−1u. (1.39)

1.5.7 Universal approximation property of the Gaussian ker-
nel

Definition 1.11 (Universality [61]) A continuous kernel κ(·, ·) on a com-
pact metric space (X, d) is called universal if the space of all functions in-
duced by κ is dense in the space C(X) of all continuous functions f : X → R,
i.e., for every function f ∈ C(X) and every ε > 0 there exists a function g
induced by κ with

‖f − g‖∞ ≤ ε, (1.40)

where ‖·‖∞ := supx∈X |f(x)| is the supremum norm.

Example 1 in [61] shows that the Gaussian kernel (1.5) is universal.

1.5.8 Normal Distribution

A normal distribution of a variate x ∈ R is a statistic distribution with
probability density function

P (x) =
1

σ
√
2π

exp

(

−(x− µ)2

2σ2

)

(1.41)

and is denoted by N (µ,σ2), where µ ∈ R is the mean and σ > 0 is the
variance.

28

Chapter 2

A Fast KAF Algorithm
Based on Parallel Projection

2.1 Introduction

In this chapter, we propose an efficient kernel adaptive filtering algorithm
that is based on the following three key ideas: (i) projection-along-subspace,
(ii) selective updating, and (iii) data reusing by means of parallel projection.
Consider the set of vectors on the dictionary subspace Mn (see (1.9)) that
nullify the instantaneous error. It is clearly the intersection of Mn and the
hyperplane Πn (see (1.8)) and it would thus be natural to project the current
estimate ϕn onto Mn ∩ Πn. It can be viewed that ϕn is projected onto Πn

along Mn (see Section 2.2.1). This is the idea of projection-along-subspace,
enabling effective utilization of resources. The projection can be computed
simply using the projection of κ(·,un) onto Mn, of which the computation
involves the inversion of an rn× rn Gram matrix. This could make a signifi-
cant impact to the overall complexity of the algorithm when rn is large. Our
idea to alleviate this computational issue is the selective updating: pick up a
few elements that are maximally coherent to κ(·,un) and then update their
coefficients with the other coefficients fixed. Geometrically, the selection of
the elements determines an affine subspace passing through the current es-
timate ϕn, and the ϕn is projected onto Πn along the affine subspace. The
third idea is data reusing using parallel projection. Some of the past data, as
well as the current datum, are exploited for updating the estimate at each
time, accommodated in hyperplanes, or more generally ‘hyperslabs’. The
current estimate ϕn is projected onto multiple hyperslabs in parallel, and
then the projections are combined convexly. The errors for multiple data
are suppressed simultaneously, and this contributes to enhancing the conver-
gence/tracking speeds. As reported in [63] already, the parallel projection
strategy is more robust to noise compared to the affine projection strategy.
These three key ideas are unified into the Φ-PASS) algorithm.

29

Chapter 2

Mn

ϕn

PMn∩Πn(ϕn)θ PMn(κ(·,un))

κ(·,un)

Πn

Figure 2.1: Projection-along-subspace when κ(·,un) /∈Mn.

2.2 The Φ-PASS Algorithm

2.2.1 Key Ideas of the Proposed Algorithm

We present three key ideas of the proposed algorithm: (A) projection-along-
subspace, (B) selective update, and (C) parallel projection. These ideas lead
respectively to (A) high estimation-accuracy with a small dictionary size,
(B) low complexity, and (C) fast convergence/tracking as well as noise ro-
bustness. Those properties are of particular importance in online scenarios.

Projection-along-subspace

The basic idea is the following: (i) nullify the instantaneous error for the
current measurements, (ii) minimize the traveling distance from the current
estimate ϕn to minimally disturb the previous learning, and (iii) stay in the
dictionary subspace Mn. This clearly suggests the use of the projection
PMn∩Πn(ϕn) of the current point ϕn onto the intersection Mn ∩Πn, where
Πn is defined in (1.8). Figure 2.1 presents a geometric interpretation of
PMn∩Πn(ϕn). One can first project the normal vector κ(·,un) of Πn onto
the subspace Mn. The projection PMn∩Πn(ϕn) can then be given in the
form of ϕn+βnPMn(κ(·,un)) for some βn ∈ R (see Section 2.2.2). It can be

30

Chapter 2

seen in the figure that the current estimate ϕn is projected onto Πn along
the subspace Mn.

Although the use of the projection-along-subspace yields excellent per-
formance with a reasonable dictionary size, it involves the inversion of the
rn × rn Gram matrix

Gn =











κ
(

u
j
(n)
1

,u
j
(n)
1

)

· · · κ
(

u
j
(n)
1

,u
j
(n)
rn

)

...
. . .

...

κ
(

u
j
(n)
rn

,u
j
(n)
1

)

· · · κ
(

u
j
(n)
rn

,u
j
(n)
rn

)











. (2.1)

which may need to be avoided in real time implementations. We therefore
introduce the idea of the selective update to reduce the computational loads
for the inversion in the following subsection.

Selective Update

The idea is the following: select a few elements that are maximally coherent
to κ(·,un) and then update the coefficients of the selected elements only.
Let {κ(·,uj))}j∈J̃n

be the selected elements where

J̃n := {j̃(n)1 , j̃(n)2 , · · · , j̃(n)sn } ⊂ Jn. (2.2)

Here, sn(≤ rn) is the number of selected elements at time n. A specific
example of J̃n will be given in Section 2.2.2. To update the coefficients of
the selected elements with the other coefficients fixed, the direction vector
from ϕn should lie in the subspace

M̃n := span{κ(·,uj)}j∈J̃n
⊂Mn. (2.3)

This implies that the next estimate ϕn+1 should lie in the linear variety
(affine subspace)

Vn := M̃n + ϕn := {f + ϕn : f ∈ M̃n}.

To embody the above arguments, we modify the item (iii) of the basic idea
in Section 2.2.1 into the following: stay in the affine subspace Vn. Under
this modification, the current estimate ϕn is projected onto the intersection
Vn ∩Πn.

Figure 2.2 presents a geometric interpretation of the selective update
by means of PVn∩Πn(ϕn). It can be seen that the current estimate ϕn is
projected onto Πn along the affine subspace Vn. In analogy with the case
in the previous subsection, PVn∩Πn(ϕn) can be given in the form of ϕn +
βnPM̃n

(κ(·,un)) for some βn ∈ R.
The selective update reduces the inversion of the rn × rn Gram matrix

31

Chapter 2

Mn

Vn

ϕn

PVn∩Πn(ϕn)

Πn

κ(·,un)

PM̃n
(κ(·,un))θ

M̃n

Figure 2.2: Selective update by means of the projection along an affine
subspace Vn when κ(·,un) /∈Mn.

to that of an sn× sn Gram matrix. We will show in Section 2.3 that the use
of sn = 1 gives reasonable performances and it brings a drastic reduction of
computational loads.

Parallel Projection

We finally explain the parallel projection. The idea is the following: use
the p most recent measurements at each time instant (data reusing), and
suppress the errors for those p measurements simultaneously by operat-
ing p projections in parallel. The p measurements {(uι, dι)}ι∈In , In :=
{n, n−1, · · · , n−p+1}, are accommodated into the hyperplanes Πι, ι ∈ In.
The current estimate ϕn is projected onto the hyperplanes in parallel, and
then the projections are combined convexly. The resulting point (an average
point of the projections) gives the direction in which the estimate travels.
Figure 2.3 presents a geometric interpretation of the parallel projection com-
bined with the idea of the projection-along-subspace.

32

Chapter 2

Mn ∩ Πn−1

Mn ∩Πn

ϕn
ϕn+1

PMn∩Πn(ϕn)

PMn∩Πn−1(ϕn)

Mn

Figure 2.3: Parallel projection for p = 2 combined with the idea of
projection-along-subspace.

2.2.2 The Proposed Algorithm

We first present the proposed algorithm which is based on the key ideas
presented in Section 2.2.1. We then discuss the selective updating strategy,
computational issues, and the relation to prior works. We finally present
a convergence analysis of the proposed algorithm for the mathematically
tractable case of non-selective update. For each of the p measurements
(uι, dι), ι ∈ In, let {κ(·,uj)}j∈J̃n,ι

be the set of selected elements with the

set of their associated indices J̃n,ι(⊂ Jn). Then, its corresponding affine
subspace is given by

Vn,ι := span{κ(·,uj)}j∈J̃n,ι
+ ϕn ⊂Mn. (2.4)

Instead of a zero-instantaneous-error hyperplane, we define its relaxed set,
a bounded-instantaneous-error hyperslab, as follows:

Sι := {ϕ ∈ H : (ϕ (uι)− dι)
2 ≤ ρ}, ι ∈ In, (2.5)

where ρ ≥ 0 is the error bound. The hyperslabs S(n)
ι are referred to as

stochastic property sets [63] as each of the sets contains the desired solu-
tion with high probability under some stochastic assumptions. The set-
theoretic adaptive filtering approach [63, 44, 64, 65], stemming from the
set-theoretic estimation framework [66], seeks to push an estimate towards
the intersection of those stochastic property sets. It has been observed in
[63, 44, 64, 67, 68, 65] that the use of parallel projection brings efficient
adaptive algorithms. Note here that Sι = Πι in the special case of ρ = 0.

33

Chapter 2

Sn−1

Sn

Vn,n

Vn,n−1

ϕn

ϕn+1

PCn,n(ϕn)

PCn,n−1(ϕn)

Mn

Figure 2.4: The Φ-PASS algorithm for ρ = 0 and p = 2.

The proposed algorithm projects the current estimate ϕn onto the following
closed convex sets in parallel:

Cn,ι := Vn,ι ∩ Sι ⊂Mn, n ∈ N, ι ∈ In. (2.6)

The proposed algorithm is given as follows; the derivation is given in Section
2.2.4.

Algorithm 2.1 (The Φ-PASS algorithm) For the initial estimate ϕ0 :=
θ, generate the sequence (ϕn)n∈N of nonlinear estimates by

ϕn+1 := ϕn + λn

(

∑

ι∈In

ωn,ιPCn,ι (ϕn)− ϕn

)

, n ∈ N, (2.7)

where ωn,ι ≥ 0,∀ι ∈ In, satisfying
∑

ι∈In ωn,ι = 1, is the weight assigned
to each set Cn,ι and λn ∈ [0, 2µn] is the step size with the extrapolation
coefficient

µn :=

∑

ι∈In

ω(n)
ι

∥

∥PCn,ι(ϕn)− ϕn

∥

∥

2

∥

∥

∥

∥

∥

∑

ι∈In

ω(n)
ι PCn,ι(ϕn)− ϕn

∥

∥

∥

∥

∥

2 ≥ 1. (2.8)

In the trivial case that the denominator is zero, µn := 1.

34

Chapter 2

A geometric interpretation of the proposed algorithm is given in Fig-
ure 2.4. Geometrically, the current estimate ϕn is projected onto the hy-
perslabs Sn and Sn−1 in parallel along the affine subspaces Vn,n and Vn,n−1,
respectively.

Let us now present the definition of coherence [27]:

c (u,v) :=
|κ (u,v)|

√

κ (u,u)
√

κ (v,v)
, u, v ∈ U . (2.9)

We present examples of dictionary construction and selective update below.

Example 2.1 (Dictionary construction with coherence [27])
With J−1 := ∅, the dictionary index set Jn is defined recursively as

Jn :=

{

Jn−1 ∪ {n}, if maxj∈Jn c(un,uj) ≤ δ,
Jn−1, otherwise,

where δ ∈ (0, 1).

Example 2.2 (Selective updating strategy with coherence) For each
ι ∈ In, construct J̃n,ι such that c(uι,uj) ≥ c(uι,uk) for all j ∈ J̃n,ι and
k ∈ Jn \ J̃n,ι; i.e., select such elements that are maximally coherent to
κ(·,uι).

We finally show how to compute the projection in (2.7). Let M be a
subspace of H such that κ(·,uj) ∈M, j ∈ J := {1, 2, · · · , s}, where uj ∈ U .
Given any ϕ ∈M, define

V := span{κ(·,uj)}j∈J + ϕ = M̃+ ϕ ⊂M, (2.10)

where M̃ := span{κ(·,u(j))}j∈J . Given u ∈ U and d ∈ R, define a hyperslab
S := {f ∈ H : (f (u)− d)2 ≤ ρ}. We assume that κ(·,u) /⊥ M̃; this
assumption will be justified later on. It can then be shown that C := V ∩ S
is nonempty. The projection onto the nonempty closed convex set C(⊂M)
is given by

PC(ϕ) = ϕ+ bPM̃(κ(·,u)) (2.11)

where

b = ς
max{|d− ϕ (u)|−√ρ, 0}

∑

j∈J
αjκ (u,uj)

, (2.12)

PM̃(κ(·,u)) =
∑

j∈J
αjκ(·,uj). (2.13)

Here, ς := sign(d−ϕ(u)) with the signum function sign(·), and the coefficient
vector α := [α(1),α(2), · · · ,α(s)]T ∈ Rs is obtained by solving the following

35

Chapter 2

Table 2.1: Summary of the Φ-PASS algorithm.
The Φ-PASS Algorithm
Requirement : λn ∈ [0, 2µn], ωn,ι ≥ 0 with

∑

ι∈In ωn,ι = 1

Estimate output : ϕn(un) :=
∑

j∈Jn
h(j)n κ(un,uj)

Estimate update :
1. Construct Jn based on a novelty criterion (e.g., the coherence)
2. hn,n := 0 if n ∈ Jn

3. Construct J̃n,ι(⊂ Jn) (see Example 2.2)
4. Compute ϕn+1 based on (2.7) and (2.11)–(2.16).

normal equation:
Gα = y (2.14)

for

G :=







κ (u1,u1) · · · κ (u1,us)
...

. . .
...

κ (us,u1) · · · κ (us,us)






(2.15)

y := [κ (u,u1) ,κ (u,u2) , · · · κ (u,us)]
T. (2.16)

In the case of ϕ ∈ C(⇔ β = 0), it is clear by definition that PC(ϕ) = ϕ
so that (2.11) holds. Assume now that ϕ /∈ C(⇔ β /= 0). In this case, one
can verify that the PC(ϕ) in (2.11) lies on the boundary (closer to ϕ) of C
in the affine subspace V. Hence, to prove (2.11), it is sufficient to show that
PM̃(κ(·,u)) ⊥ M̃∩ Π̃, where Π̃ := {f ∈ H : 〈f,κ(·,u)〉 = 0} is a translation
of the boundary hyperplanes of S [69]. This can be readily proved by noting
the orthogonal decomposition κ(·,u) = PM̃(κ(·,u))+PM̃⊥ (κ(·,u)) together
with κ(·,u) ⊥ Π̃ and PM̃⊥(κ(·,u)) ⊥ M̃. Here, M̃⊥ is the orthogonal

complement of M̃.
The denominator in (2.12) can be written as

∑

j∈J
α(1)κ (u,u1) =

〈

PM̃(κ(·,u)),κ(·,u)
〉

=
∥

∥PM̃(κ(·,u))
∥

∥

2
. (2.17)

The use of the coherence for the dictionary construction excludes the trivial
case of κ(·,u) ⊥ M since the new measurement is perfectly novel in this
case. Under the use of the coherence also for the selective update (see
Example 2.2), it can readily be verified that κ(·,u) /⊥ M̃, which implies
that PM̃(κ(·,u)) /= θ. Hence, the denominator in (2.12) is ensured to be
nonzero under the use of the coherence criterion. The coherence is thus a
reasonable criterion for the proposed algorithm. The Φ-PASS algorithm is
summarized in Table 2.1.

36

Chapter 2

Sι ∩Mn

PSι∩Mn(ϕn)

Mn

ϕn

span{κ(·,uj1)}+ ϕn span{κ(·,uj2)}+ ϕn

κ(·,uj1)
κ(·,uj2)

PMn(κ(·,uι))

θ

Figure 2.5: The selective updating strategy in Example 2.2.

2.2.3 Discussions

On the selective updating strategy in Example 2.2: Given ι ∈ In,
it holds that 〈κ(·,uι),κ(·,uj)〉 = 〈PMn(κ(·,uι)),κ(·,uj)〉 for any j ∈ Jn,
since κ(·,uj) ∈Mn. One can thus verify that

c(uι,uj) =

∣

∣

∣

∣

〈

PMn(κ(·,uι))

‖κ(·,uι)‖
,
κ(·,uj)

‖κ(·,uj)‖

〉
∣

∣

∣

∣

. (2.18)

Since

argmax
j∈Jn

c(uι,uj) = argmax
j∈Jn

∣

∣

∣

∣

〈

PMn(κ(·,uι))

‖PMn(κ(·,uι))‖
,
κ(·,uj)

‖κ(·,uj)‖

〉
∣

∣

∣

∣

,

one can see that such elements κ(·,uj) that have the least angles with the
line span{PMn(κ(·,uι))} are selected. Note here that

PSι∩Mn(ϕn)− ϕn ∈ span{PMn(κ(·,uι))}. (2.19)

A geometric interpretation is given in Figure 2.5. One can see that κ(·,uj1)
has a smaller angle with span{PMn(κ(·,uι))} than κ(·,uj2). We remark
here that the projection along span{κ(·,uj1)} gives a better approximation
of PSι∩Mn(ϕn) than the other one, the projection along span{κ(·,uj2)}. The
Pythagorean theorem guarantees in general that the smaller the angle, the
better the approximation. This justifies the strategy presented in Example
2.2.

37

Chapter 2

Table 2.2: Computational complexities of the proposed and existing algo-
rithms.

QKLMS (L+ 2)rn
Φ-PASS (p = 1) (L+ 2)rn + s2n + 4sn + υinv(sn)

KAP (L+ p2 + 2p+ 1)rn + 2p2 + p+ υinv(p)
KRLS Tracker 2r2n + (L+ 9)rn + υinv(rn)

Φ-PASS (L+ 2p + 2)rn + s2n(2p + 1) + sn(6p + 1) + pυinv(sn)
Φ-PASS-Full (2p + 1)r2n + (L+ 7p+ 2)rn + υinv(rn)

Computational complexity: We discuss the complexity of the proposed
algorithm under the selective updating strategy in Example 2.2. The com-
putational complexity of kernel adaptive filtering algorithms at each time
instant n ∈ N is generally given in terms of the dictionary size rn as well as
the dimension L of the input space U . As the complexity depends on the
kernel employed, it is supposed that a Gaussian kernel is employed (see Sec-
tion 2.3). The computational complexity of the proposed algorithm depends

also on the cardinality
∣

∣

∣
J̃n,ι

∣

∣

∣
which is supposed to be a constant sn for all

ι ∈ In at each time instant n ∈ N. The case of the non-selective update (i.e.,
J̃n,ι = Jn, ∀ι ∈ In) is referred to specially as the fully-updating Φ-PASS
algorithm, abbreviated as Φ-PASS-Full. In the Φ-PASS-Full algorithm, the
Gram matrix (cf. G in (2.15)) involved in the computation of PCn,ι(ϕn) is
kept constant as long as the dictionary remains unchanged. When the dic-
tionary is updated, the Gram matrix evolves and its inverse of the previous
(rn − 1)× (rn − 1) Gram matrix can be updated into the inverse of the new
rn × rn Gram matrix by using the formula for the inverse of a partitioned
matrix together with the matrix inversion lemma [70].1

Table 2.2 summarizes the overall per-iteration (asymptotic) complexity
(the number of real multiplications) of the proposed algorithm and the exist-
ing algorithms: QKLMS [29], KAP [27], and KRLS Tracker [30]. The precise
complexity (rather than the asymptotic one) of Φ-PASS for p = 1 is given by
(L+ sn+1)rn + s2n+4sn, excluding the complexity O(s3n) for the inversion.
The complexity contains all the computations required per iteration such
as that for the dictionary construction and the selection of the coefficients
updated. A comparison is counted as a multiplication. Figure 2.6 illustrates
the complexity as a function of the dictionary size rn for L = 4. The curves
are plotted based on the precise complexities with O(N t) counted as N t

for any positive integers N and t. For instance, the curve of Φ-PASS for
p = 1 is plotted with (L+ sn + 1)rn + s3n + s2n + 4sn for sn = 1. The affine

1The size of the matrix is incremented by one and its (rn − 1) × (rn − 1) submatrix
is exactly the same as the Gram matrix at the previous iteration. We, therefore, do not
count the computation for the inverse of the submatrix.

38

Chapter 2

0 50 100 150 200
10

0

10
2

10
4

Φ-PASS (sn = 1, p = 1)

Φ-PASS (sn = 1, p = 8)

QKLMS

KRLS Tracker
KAP (p = 8)

Dictionary size rn

C
om

p
le
xi
ty

Figure 2.6: Comparisons of the proposed and conventional algorithms in
computational complexity for L = 4.

order (the data-reusing factor) of KAP is set to p = 8. For rn = 200, for
instance, Φ-PASS (p = 8) approximately requires 3.9 times less complexity
than KAP and 136 times less complexity than KRLS Tracker, respectively.
Although Φ-PASS (p = 8) requires higher complexities than QKLMS, it has
significant advantages in performance, as shown in Section 2.3.
Relation to other prior works: Let ρ = 0 and p = 1, employ a Gaus-
sian kernel, and adopt the updating strategy presented in Example 2.2 for
|J̃n,ι| = 1, ∀ι ∈ In, n ∈ N. In this case, J̃n,n := argmaxj∈Jn

c(un,uj) =
argminj∈Jn

‖un − uj‖, meaning that un is quantized to its nearest point
in {uj}j∈Jn . The Φ-PASS algorithm is thus reduced in this case to the
QKLMS algorithm [29].

Let ρ = 0, p = 1, and λn :=
∑

j∈Jn
α(j)κ(un,uj)

κ(un,un)
for the Φ-PASS-Full

algorithm with a Gaussian kernel employed. In this case, the proposed
algorithm is reduced to the sparse sequential algorithm [71]. One can verify
that λn ≤ 1(< 2µn) by substituting u = un into (2.17) and by noting that
∥

∥PM̃(κ(·,u))
∥

∥

2 ≤ ‖κ(·,u)‖2 = κ(u,u).
To sum up the above arguments, the proposed algorithm for p = 1 in-

cludes QKLMS and the sparse sequential algorithm as its two extreme cases
in the following sense: QKLMS updates only one coefficient at each itera-
tion whereas the sparse sequential algorithm updates all coefficients. The

39

Chapter 2

proposed algorithm bridges the gap between the two important algorithms in
a systematic way. In the sparse sequential algorithm, the estimate ϕn is pro-
jected onto Πn and, if the projection is sufficiently close to the dictionary
subspace Mn, it is again projected back onto Mn. The sparse sequential
algorithm therefore requires the inversion of an rn × rn Gram matrix to
compute the projection onto Mn. Likewise, the proposed algorithm with
non-selective update requires the inversion of an rn × rn Gram matrix. At
the price of computing the inversion, the convergence behavior is improved
significantly by updating all the coefficients at every iteration (see Section
2.2.1). A unique, and also attracting, feature of the proposed algorithm is
the selective updating which yields a drastic reduction of the complexity by
avoiding the computation of the full rn × rn Gram matrix. While the pro-
posed algorithm can select and update an arbitrary number of coefficients,
the QKLMS algorithm can select and update only one coefficient at each it-
eration. It has been reported that updating only one coefficient could cause
considerable performance degradations, and updating slightly more (such as
sn = 5) coefficients often yields nearly identical results to Φ-PASS-full with
a marginal increase of complexity [46].

In the machine learning community, online classification methods with
kernels have been proposed [72, 73, 74]. One of the central issues of on-
line kernel-based classification is an unbounded number of support vectors,
which corresponds to the dictionary size in the present context. The com-
mon approach among the above methods to handling this issue is fixing the
number of support vectors at the predefined budget. The idea of budget
learning has been applied indeed to kernel adaptive filtering [30, 43]. In
Section 2.3, the proposed algorithm is compared with the method in [30]
which is one of the state-of-the-art algorithms based on the budget learning.

2.2.4 Monotone Approximation and Convergence Analysis

The proposed algorithm is based on the framework of set-theoretic adap-
tive filtering [63, 44, 64, 65], which stems from the set-theoretic estimation
concept [66]. In this framework, a desired solution (a best approximation of
the ψ in Mn) is characterized as a common point of the so-called stochastic
property sets at each time instant. In the present context, the convex sets
Cn,ι correspond to the stochastic property sets, containing the desired solu-
tion with high probability under some stochastic assumptions (see [63] for
details). The idea of set-theoretic adaptive filtering is pushing an estimate
towards the intersection of the stochastic property sets.

40

Chapter 2

Define a sequence of convex functions (Θn)n∈N as follows. If ϕn ∈
⋂

ι∈In Cn,ι, then let Θn(ϕ) := 0 for all ϕ ∈ H. Otherwise, we have νn :=
∑

ι∈In ωn,ιd(ϕn, Cn,ι) /= 0, where d(ϕ, Cn,ι) := minf∈Cn,ι ‖ϕ− f‖
=
∥

∥ϕ− PCn,ι(ϕ)
∥

∥ is a metric distance function, and let

Θn(ϕ) :=
∑

ι∈In

ωn,ιd(ϕn, Cn,ι)
νn

d(ϕ, Cn,ι), ϕ ∈ H. (2.20)

The additional weight d(ϕn, Cn,ι) emphasizes those sets which are more dis-
tant from the current estimate ϕn than the other sets. A minimizer of Θn

is such a point that is maximally consistent with the information accommo-
dated by each set Cn,ι. The set of minimizers of Θn is therefore expected to
contain the desired solution. The set of minimizers is simply the intersec-
tion of Cn,ιs if the intersection is nonempty. One can thus make an estimate
closer to the desired solution by suppressing the ‘time-varying’ objective
function Θn at each iteration. (See [65] for comprehensive descriptions of
the set-theoretic adaptive filtering.) We use APSM [44] presented below to
minimize the sequence (Θn)n∈N of ‘time-varying’ objective functions asymp-
totically.

Scheme 2.1 (APSM [44] with no constraint)

ϕn+1 :=







ϕn − λn
Θn(ϕn)

‖Θ′
n(ϕn)‖2

Θ′
n(ϕn), if Θ′

n(ϕn) /= θ,

ϕn, otherwise,
(2.21)

where ϕ0 ∈ H, λn ∈ [0, 2], and Θ′
n(ϕn) is a subgradient of Θn at ϕn [44].

Substituting Θ′
n(ϕn) :=

1
νn

∑

ι∈In ωn,ι(ϕn−PCn,ι(ϕn)) and (2.20) for ϕ =

ϕn with d(ϕn, Cn,ι) =
∥

∥ϕn − PCn,ι(ϕn)
∥

∥ into (2.21) reproduces the Φ-PASS
algorithm in (2.7) and (2.8). In the following, we present a deterministic
analysis of the proposed algorithm. We first show that ϕn approaches every
minimizer of Θn monotonically at each iteration.

Theorem 2.1 (Monotone Approximation) Assume that
Ωn := arginfϕ∈H Θn(ϕ) /= ∅ and that ϕn /∈ Ωn. Then, it holds that

‖ϕn+1 − ϕ∗‖ < ‖ϕn − ϕ∗‖, ∀ϕ∗ ∈ Ωn, for any λn ∈
(

0, 2
(

1− Θ∗
n

Θn(ϕn)

))

,

where Θ∗
n := infϕ∈H Θn(ϕ).

Proof: The claim can be verified directly by [44, Theorem 2(a)]. !

The monotone approximation property shown in Theorem 2.1 suggests
that ϕn would approach the desired solution monotonically at each iteration
since the desired solution is expected to be a minimizer of Θn. This property

41

Chapter 2

is quite important in practice to ensure the stability of the proposed algo-
rithm. It is also a fundamental question of theoretical interests whether the
sequence (ϕn)n∈N generated by the proposed algorithm is convergent; if it
is convergent, questions are whether the limit point as well as the sequence
(ϕn)n∈N has any optimality, and how the limit point can be characterized.
To allow further analyses to answer this question, we make the following set
of assumptions.

Assumption 2.1 (Required for Theorem 2.2)

1. Step-size condition: (λn)n∈N ⊂ [µnε1, µn(2− ε2)] ⊂ (0, 2µn), ∃ε1, ε2 >
0.

2. Dictionary constancy: there exists some N0 ∈ N such that Mn = MN0

for all n ≥ N0.

3. Data consistency: there exists some N1 ≥ N0 such that
CN1 :=

⋂

ι∈Ĩn,n≥N1
Cn,ι has a relative interior with respect to the sub-

space MN0 , where Ĩn := {ι ∈ In : ϕn /∈ Cn,ι}.2

The dictionary constancy (Assumption 2.1.2) is a realistic assumption
under the use of the coherence criterion (see Example 2.1) because it has
been proven in [27] that the dictionary size remains finite as the time in-
dex n goes to infinity provided that the input space U is compact. The
data consistency (Assumption 2.1.3) assumes, roughly speaking, the exis-
tence of a small ‘mass’ of points in MN0 each of which makes bounded
instantaneous errors for all data observed after the time instant N1. It is
therefore assumed implicitly that the noise contained in dn is bounded (see
[65] for instance). Under the use of a Gaussian kernel, one can naturally
assume that ψ ∈ H (allowing an infinitesimal discrepancy) due to its uni-
versality [75]. If the dictionary is well constructed, one may also assume
that there are good estimates of ψ in MN0 ; small errors could be regarded
as noise. Another implicit assumption behind the data consistency is a
disuse of the selective updating strategy. This is because, if J̃n,ι ! Jn,
Vn,ι = span{κ(·,uj)}j∈J̃n,ι

+ϕn ! MN0 = span{κ(·,uj)}j∈Jn and thus Vn,ι

has no relative-interior with respect toMN0 , meaning that there is no chance
for its subset Cn,ι(⊂ Vn,ι) to have a relative interior in this case. To sum up,
the data-consistency assumption comes with five implications: (i) an appro-
priate design of the error bound ρ appearing in (2.5) (cf. [63]), (ii) bounded
noise, (iii) appropriate kernels such as Gaussian, (iv) well-constructed dic-
tionaries, and (v) the disuse of the selective updating strategy. In fact, the
appropriate design of ρ involves multiple factors such as environmental noise,
modeling errors, and imperfection of the dictionary. We stress however that

2A point ϕ̃ ∈ CN1
is called a relative interior of CN1

with respect to MN0
if there exists

some ε > 0 such that {ϕ ∈MN0
: ‖ϕ− ϕ̃‖ < ε} ⊂ CN1

.

42

Chapter 2

the above implications never restrict the applicability of the proposed algo-
rithm. It will actually be shown in Section 2.3 that the proposed algorithm
performs well with ρ := 0 and also with the selective updating strategy
used, and that the use of the selective update brings substantial reductions
of computational costs without causing any serious degradation of perfor-
mance. We also make the following assumption, which is optional and can
be eliminated, for simplifying the proof of our convergence analysis.

Assumption 2.2 (Optional for Theorem 2.2) The dictionary is con-
structed in an incremental manner, i.e., M0 ⊆ M1 ⊆ M2 ⊆ M3 · · · , so
that ϕn ∈MN0 for all n ∈ N under Assumption 2.1.2.

Assumption 2.2 is automatically guaranteed under the use of the coher-
ence criterion (see Example 2.1). We now present the convergence analysis
below.

Theorem 2.2 (Convergence Analysis) Under Assumptions 2.1 and 2.2,
the following statements hold.

(a) Convergence and asymptotic optimality: The sequence (ϕn)n∈N gener-
ated by Algorithm 2.1 converges to some ϕ̂ ∈ H and limn→∞Θn(ϕn) =
limn→∞Θn(ϕ̂) = 0.

(b) Characterization of the limit point: Suppose that infn≥N1,ι∈In ωn,ι > 0.

Then, the limit point is characterized by ϕ̂ ∈ lim infn→∞
⋂

ι∈Ĩn Cn,ι,
where lim infn→∞

⋂

ι∈Ĩn Cn,ι :=
⋃∞

n=0

⋂

k≥n

(

⋂

ι∈Ĩk Ck,ι
)

and the over-

line denotes the closure.

Proof: To apply [44, Theorem 2(b)–(d)] directly for verifying the claims, we
need to assume that the set CN1 has an interior. This is however unrealistic
because MN0(⊃ CN1) is strictly smaller than the whole space H in most
cases and thus has no interior. Strictly speaking, to verify only Theorem
2.2(a), the assumption can be relaxed into the following: CN1 has a relative
interior with respect to some hyperplane. This is still unrealistic for the
same reason unfortunately.

Under Assumptions 2.1.2 and 2.2, we regard MN0 as a (whole) Hilbert
space since ϕn ∈MN0 for all n ∈ N; the domain of Θn is restricted to MN0

accordingly. Then, the existence of an interior of CN1 is ensured by Assump-
tion 2.1.3. The other conditions in [44, Theorem 2(b)–(d)] can be verified
by following the way in [44, Proposition 3(a), (b)]. Thus, [44, Theorem
2(b)–(d)] can be applied to verify the claims. !

The reader may refer to [76, 77, 78] for more information about the
proof technique shown above; the discussion is presented there under general
linear constraints. Theorem 2.2 guarantees that the point sequence (ϕn)n∈N
converges to a point ϕ̂ in lim infn→∞

⋂

ι∈Ĩn Cn,ι and that the limit point

43

Chapter 2

ϕ̂ as well as the point sequence (ϕn)n∈N is asymptotically optimal (i.e., it
minimizes the sequence (Θn)n∈N of objective functions asymptotically).

2.3 Experiments of the Φ-PASS Algorithm

We show the practical advantages of the Φ-PASS algorithm in its applica-
tions to online prediction of the following time-series data.

Data A : Stationary data generated by

dn := ψA(dn−1, dn−2)

:= (0.2 − 0.7 exp(−d2n−1))dn−1 − 0.8(1 + exp(−d2n−1)dn−2)

+ 0.2 sin(dn−1π) (2.22)

for d−2 := d−1 := 0.1. We show that the Φ-PASS algorithm enjoys high
estimation-accuracy with a small dictionary size, fast convergence, low
complexity, and noise robustness in Section 2.3.2.

Data B : Nonstationary data generated by

dn := (0.8− 0.5 exp(d2n−1))dn−1 − (0.3 + 0.9 exp(−d2n−1))dn−2

+ 0.1 sin(dn−1π) (2.23)

for 0 ≤ n ≤ 2500 (d−2 := dn−1 := 0.1) and dn := ψA(dn−1, dn−2) for
n > 2500. We show the tracking capability to the nonstationarity in
Section 2.3.3.

Data C : Real data of the mean daily temperature measured at Fisher
River near Dallas with a one-day sampling rate over a period of approx-
imately four years, Jan. 01, 1988 to Dec. 31, 1991. The data can be
downloaded from the website of Data Market (http://datamarket.com/).
We show the advantages over the state-of-the-art methods in Section
2.3.4.

The dictionary of the proposed algorithm is constructed with the co-
herence criterion (see Example 2.1). We focus on two extreme cases: the
non-selective update (Φ-PASS-Full) and the selective update (Φ-PASS) with

the strategy described in Example 2.2 for
∣

∣

∣
J̃n,ι

∣

∣

∣
= 1.

2.3.1 Parameter design

The parameters s and p control the tradeoff between the computational
complexity and the performance of the algorithm, and users can design those
parameters for each application. The larger the parameters δ, the larger the
maximal dictionary size. Although the use of the large dictionary tends to

44

Chapter 2

yield fast convergence and low MSEs, this may cause also an explosion of
the computational complexity.

The stepsize λn is an important parameter that determines the per-
formance of the algorithm. Although strict adjustments are necessary to
obtain the best performance of the algorithm, as a rule of thumb, setting
λn ∈ [0.01µn, 0.1µn] gives a reasonable performance. The detailed settings
of those parameters are presented in each of the experiments.

We employ a Gaussian kernel and uniform weights; i.e.,

ωn,ι = (min{p, n+ 1})−1 , ι ∈ In. (2.24)

We set the error bound to ρ := 0 for showing that the proposed algorithm
works well without its delicate tuning.

2.3.2 Experiment A — Stationary Data

Experiment A1: Comparisons with NORMA and KLMS

We predict each datum dn with the vector un := [d̂n−1, d̂n−2, · · · , d̂n−L]T ∈
U ⊂ RL of past data. Here, d̂n := dn+vn, n ∈ N, where vn ∼ N (0, 1.0×10−2)
is the additive white Gaussian noise. The nonlinear filter ϕn is updated
with (un, d̂n) at each time n ∈ N. We mention that the datum dn :=
ψA(dn−1, dn−2) depends indirectly on all the past data since the data dn−1

and dn−2 are functions of (dn−2, dn−3) and (dn−3, dn−4), respectively, and
so on. In this experiment, we let L = 4 as it yields reasonable performance.
We test 100 independent runs with the additive noise generated randomly,
and the mean squared error (MSE) is computed by averaging the instanta-
neous squared errors (dn − ϕn(un))

2 over the 100 runs. The parameter of
the Gaussian kernel is set to ξ =

√
8.0. The proposed algorithm is compared

with NORMA [21] and KLMS. To demonstrate the efficiency coming from
the idea of projection-along-subspace, we test KLMS without any admis-
sion control for the dictionary. Table 2.3 summarizes the set of parameters
employed in this experiment and the average computational complexities
(the number of real multiplications). For NORMA, ε > 0, λ ∈ (0, 1/ε), and
τ ∈ N∗ are the regularization parameter, the step size, and the upper bound
of the dictionary size, respectively. For KLMS, λ > 0 is the step size. The
dictionary size of NORMA is chosen so that it is nearly identical to that of
Φ-PASS at the end of the adaptation. We mention that Φ-PASS (p = 1)
with |J̃n,ι| = 1 coincides with QKLMS [29]. We remark that the stepsize
significantly affect to the KAF algorithms and therefore should be carefully
tuned. The step size for each algorithm is chosen so that the steady-state
MSEs become close to each other. The average complexities are calculated
with the dictionary size averaged over both iterations and runs.

Figures 2.7 and 2.8 depict the MSE learning curves and the evolutions
of the dictionary size, respectively. We remark that the learning curve of

45

Chapter 2

2000 4000 6000 8000
-10

-8

-6

-4

-2

0

2

4

6

8

Φ-PASS (p = 1)

Φ-PASS-Full (p = 1), KLMS

NORMA

Φ-PASS (p = 8)

Φ-PASS-Full (p = 8)

M
S
E

d
B

Iteration number

Figure 2.7: Results of Experiment A1: MSEs of the Φ-PASS algorithms,
KLMS, and NORMA.

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

KLMS

Φ-PASS

D
ic
ti
on

ar
y
si
ze

NORMA

Iteration number

Figure 2.8: Results of Experiment 1: dictionary sizes of the Φ-PASS algo-
rithms, KLMS, and NORMA.

46

Chapter 2

Table 2.3: Parameter settings and complexities for Experiment A1.
parameter complexity dictionary

size (mean)

Φ-PASS
(p = 1) λn = 0.4 199

Φ-PASS-Full
(p = 1) λn = 0.6

δ = 0.975
2195

32.4

Φ-PASS
(p = 8) λn = 0.03µn 780

Φ-PASS-Full
(p = 8) λn = 0.1µn 20523

NORMA λ = 0.3, ε = 10−5, τ = 38 228 38.0
KLMS λ = 0.1 25003 5000.5

the dictionary sizes are continuous since the curves are average over the
multiple runs. The figure together with Table 2.3 gives the following three
observations. Observation 1: Φ-PASS (p = 8) attains a significantly better
performance than NORMA, KLMS, and Φ-PASS (p = 1) with fairly low
complexity. Observation 2: Φ-PASS (p = 8) attains a substantial reduction
of complexity compared to Φ-PASS-Full (p = 8) while the performance
degradation is marginal. This shows the efficacy of the use of past data
together with the selective update. Observation 3: Φ-PASS (p = 1) achieves
approximately the same performance as KLMS and yields a drastic reduction
in complexity due to the use of the small size of dictionary. This efficiency
comes from the idea of projection-along-subspace. We finally remark that
the observed poor performance of NORMA is due to the small dictionary size
which implies that the dictionary is reconstructed with unacceptably-high
frequency.

Experiment A2: Comparisons with KAP

We use the same stationary data (Data A) under the same problem settings
as in Section 2.3.2 with different noise levels:

Case 1 : Large variance vn ∼ N (0, 1.0 × 10−1).

Case 2 : Small variance vn ∼ N (0, 1.0 × 10−4).

To show the noise robustness due to the use of the parallel projection rather
than the affine projection, the proposed algorithm is compared with KAP
[27]. Table 2.4 summarizes the parameters and the average computational
complexities. For KAP, λ > 0 and ε > 0 are the step size and the regulariza-

47

Chapter 2

Table 2.4: Parameter settings and complexities for Experiment A2.
parameter complexity dictionary

size (mean)

Φ-PASS
(p = 8) λn = 0.01µn 2140

Case 1
KAP λ = 0.05 8632 93.9

p = 8, ε = 10−5 δ =

Φ-PASS 0.975

(p = 8) λn = 0.03µn 587

Case 2
KAP λ = 0.06 2636 23.4

p = 8, ε = 10−5

tion parameter, respectively. The step size and the regularization parameter
are chosen so that each algorithm achieves the best performance.

Figures 2.9 and 2.10 depict the results. It can be seen that the proposed
algorithm significantly outperforms KAP in the noisy situation (Case 1)
although the difference in the quiet situation (Case 2) is minor. This shows
the noise robustness of the proposed algorithm. We mention that the large
noise variance increases the variance of the measurements d̂n, thus enlarging
the dictionary size under the same coherence threshold.

48

Chapter 2

2000 4000 6000 8000
-15

-10

-5

0

5

10

Φ-PASS (Case 1)

KAP (Case 1)

Φ-PASS (Case 2)

KAP (Case 2)

M
S
E

d
B

Iteration number

Figure 2.9: Results of Experiment A2: MSEs of Φ-PASS and KAP. Case 1:
large noise variance. Case 2: small noise variance.

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

D
ic
ti
on

ar
y
si
ze

Case 2

Case 1

Iteration number

Figure 2.10: Results of Experiment A2: dictionary sizes of Φ-PASS and
KAP. Case 1: large noise variance. Case 2: small noise variance.

49

Chapter 2

Table 2.5: Parameter settings and complexities for Experiment B.
parameter complexity dictionary

size (mean)

Φ-PASS
(p = 8) λn = 0.05µn 610

Φ-PASS-Full
(p = 8) λn = 0.05µn δ = 0.97

3761 24.3

QKLMS λ = 0.4 145

KRLS ζ = 1.5× 10−3 3008 26.7

2.3.3 Experiment B — Nonstationary Data

The simulation settings are basically the same as in Section 2.3.2. We pre-
dict each dn for the nonstationary data (Data B) from noisy measurements
d̂n with vn ∼ N (0, 1.0 × 10−2) for L = 4 and the Gaussian scale ξ =

√
8.0.

The proposed algorithm is compared with the existing algorithms: QKLMS
[29] and KRLS [22]. (KRLS is built upon the stationarity assumption but
we show its performance for reference.) We adopt the coherence criterion for
QKLMS.3 Table 2.5 summarizes the parameters and the average complexi-
ties. For QKLMS, λ > 0 is the step size. For KRLS, ζ > 0 is the threshold of
the approximate linear dependency criterion. The step size is chosen so that
the steady-state MSEs of the proposed algorithm and QKLMS are nearly
identical to each other in the first half of adaptation. The parameters δ and
ζ are chosen so that the dictionary sizes of all algorithms are nearly identical
in the second half.

Figures 2.11 and 2.12 depict the results. It can be seen that the proposed
algorithm exhibits a better tracking performance than the existing ones.
Also, the proposed algorithm with the selective update is quite efficient; its
complexity is much lower than that of KRLS.

3Bounding the coherence c(u,v) from above is essentially equivalent to bounding the
distance ‖u− v‖ from below, where u,v ∈ U .

50

Chapter 2

0 1000 2000 3000 4000 5000
-20

-15

-10

-5

0

5

10

QKLMS

Φ-PASS (p = 8)

Φ-PASS-Full (p = 8)

KRLS

M
S
E

d
B

Iteration number

Figure 2.11: Results of Experiment B: MSEs of Φ-PASSs, KRLS, and
QKLMS.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

KRLS

Φ-PASS, QKLMS

D
ic
ti
on

ar
y
si
ze

Iteration number

Figure 2.12: Results of Experiment B: dictionary sizes of Φ-PASSs, KRLS,
and QKLMS.

51

Chapter 2

Table 2.6: Parameter settings and complexities for Experiment C.
parameter complexity squared dictionary

error dB size (mean)

Φ-PASS λn = 0.2µn 3225 −20.61
(p = 40)

QKLMS λ = 0.1 δ = 200 −12.40 33.3

λ = 0.02 0.94 12333 −17.58
KAP p = 40, ε = 10−3

KRLS M = 41 4927 −19.77 38.77
Tracker ξ = 1, ε = 3× 10−4

2.3.4 Experiment C — Mean Daily Temperature

We finally use the real data, Data C plotted in Figure 2.13, to show the
advantages of the proposed algorithm over the state-of-the-art algorithms:
QKLMS [29], and KAP [27], KRLS Tracker [30]. As a pre-processing, the
data are divided by its maximum value for normalization. The first 380
samples are used as training data for online learning, and the rest is used
as test data to evaluate the generalization abilities; this follows the way in
[33]. The temperature dn is predicted with un := [dn−1, dn−2, · · · , dn−L]T ∈
U ⊂ RL for L = 4 and the Gaussian scale ξ = 1.0. Table 2.6 summarizes the
parameters, the computational complexities based on the dictionary sizes
averaged over the training phase, and the MSEs averaged over the testing
phase. For KRLS Tracker, M ∈ N∗, ξ ∈ (0, 1], and ε > 0 are the budget,
the forgetting factor, and the regularization parameter, respectively. The
step size, the regularization parameter, and the forgetting factor are chosen
so that each algorithm achieves the best performance. The budget M for
KRLS Tracker is chosen so that its dictionary size in the testing phase (not
in the training phase) is identical to those of the other algorithms to make
the MSE comparisons in the testing phase more meaningful.

Figures 2.14 and 2.15 depict the results. It is seen that the proposed
algorithm considerably outperforms KAP and QKLMS. We remark here
that the approximately 3 dB gain from KAP comes with another benefit
of lower complexity. The proposed algorithm exhibits better generalization
ability and lower complexity than KRLS Tracker, although its convergence
speed in the training phase is slightly slower.

2.3.5 Advantages Shown Through the Experiments

To sum up the simulation results, the major advantages of the proposed
algorithm are summarized as follows.

1. The proposed algorithm achieved excellent performances with small

52

Chapter 2

0 200 400 600 800 1000 1200 1400
-40

-30

-20

-10

0

10

20

30

T
em

p
er
at
u
re

◦ C

Days

Figure 2.13: Time-series data used in Experiment C.

dictionary sizes in all the experiments. In particular, despite the small
dictionary size, it attains, by the use of parallel projection, even better
performances than KLMS. This comes from the key idea of projection-
along-subspace presented in Section 2.2.1.

2. The proposed algorithm achieved reasonably good performances with
fairly small complexities in all the experiments. This comes from the
idea of selective update presented in Section 2.2.1.

3. The proposed algorithm achieved fast convergence and tracking, even
for nonstationary data, by the use of parallel projection presented in
Section 2.2.1. The use of parallel projection also brought the robust-
ness to noise.

4. For the real data, the proposed algorithm significantly outperformed
QKLMS and KAP, while its generalization ability is slightly better
than KRLS Tracker and it saves approximately 35 % of the complexity.

2.4 Conclusion

We proposed the Φ-PASS algorithm for adaptive nonlinear estimation tasks.
The key ideas were projection-along-subspace, selective update, and paral-
lel projection. The projection-along-subspace systematically eliminates the

53

Chapter 2

200 400 600 800 1000 1200 1400

-25

-20

-15

-10

-5

QKLMS

KAP

Φ-PASS(p = 40)KRLS Tracker

S
qu

ar
ed

er
ro
r
d
B

Iteration number

Figure 2.14: Results of Experiment C: MSEs of Φ-PASS, KRLS Tracker,
KAP, QKLMS, RAN, and Kalman filter.

waste-of-resources issue, yielding excellent performances with small dictio-
nary sizes. The selective update effectively reduces the complexity without
any serious degradation of performance, as justified by a geometric interpre-
tation. The parallel projection leads to fast convergence/tracking accompa-
nied by noise robustness. The convergence analysis in the particular case
of non-selective update was presented by using the framework of APSM.
Numerical examples demonstrated the benefits from the three ideas as well
as the advantages of the proposed algorithm over the state-of-the-art algo-
rithms. Interestingly, the proposed algorithm bridges a pair of important
algorithms: QKLMS and the sparse sequential algorithm.

We remark that some related researches have been studied in [46, 79]. In
[46], a multikernel extension of Φ-PASS (with single projection) is proposed.
The method in [46] performs projections in the Cartesian-product of the
multiple RKHSs.

54

Chapter 2

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

KRLS Tracker

Iteration number

D
ic
ti
on

ar
y
si
ze

Φ-PASS, QKLMS, KAP

Figure 2.15: Results of Experiment C: dictionary sizes of Φ-PASS, KRLS
Tracker, KAP, QKLMS, RAN, and Kalman filter.

55

Chapter 3

An Efficient KAF Algorithm
with Dictionary Refinements

3.1 Introduction

First, we provide a basis to clarify the relationship between the two classes
of KAF algorithms: the functional and parameter-space approaches. We
show that the dictionary subspace and a parameter space are isomorphic
under the inner product defined with the Gram matrix G. This means that
the learning in the dictionary subspace can be regarded as the learning in
the parameter space with the particular G-inner product. Based on the
isomorphism between the dictionary subspace and the parameter space, we
define the restricted gradient, which is the gradient of the cost functional
under the restriction to the dictionary subspace. The restricted gradient,
together with the isomorphism, provides a way to view the behaviors of the
two approaches in a common space, either in the dictionary subspace or in
the parameter space. With the restricted gradient, we derive a stochastic
restricted-gradient descent method in the dictionary subspace, named the
Constrained KLMS (CKLMS) algorithm [80]. To clarify the relationship of
two approaches, we compare CKLMS and KNLMS from the error surface
view.

Second, we derive a promising functional-space algorithm that suppresses
the weighted squared-distance functions penalized by the -1 norm. A straight-
forward idea of the proposed algorithm is to apply APFBS algorithm to the
cost function (which is the sum of smooth and nonsmooth functions) un-
der the G-inner product, unfortunately, the proximity operator defined with
the G-inner product has no closed form expression. Moreover, the compu-
tation of the proximity operator defined with the G-inner product includes
the inverse of the Gram matrix G. We therefore propose a heuristic, but
efficient, algorithm that employs the proximity operator defined with the
standard inner product which has the closed form expression. Although the

56

Chapter 3

proposed algorithm uses different inner products between the forward and
backward steps of APFBS, we show that it still enjoys a monotone approxi-
mation property regarding a cost function with a certain modified weighted
-1 norm under some conditions.

3.2 Fundamental Results on Kernel Adaptive Fil-
tering

3.2.1 Preliminaries

To facilitate understanding of the underlying relation between two classes of
kernel adaptive filtering algorithms, we assume in this section is generated
with a fixed set of functions {κ(·,x(j))}rj=1 for some given x(j) ∈ U . Assume
that the dictionary is linearly independent so that the Gram matrix

G :=







κ
(

x(1),x(1)
)

· · · κ
(

x(1),x(r)
)

...
. . .

...
κ
(

x(r),x(1)
)

· · · κ
(

x(r),x(r)
)






∈ Rr×r (3.1)

is positive definite [69]. We can thus define the G-inner product (for more
details, see Section 1.5.6). The dictionary elements span the dictionary
subspace

M := span{κ(·,x(j))}rj=1 ⊂ H. (3.2)

The output of a filter ϕ :=
∑r

j=1 h
(j)κ(·,x(j)), h(j) ∈ R, to the input un is

given by

ϕ(un) = 〈ϕ,κ(·,un)〉H =
r
∑

j=1

h(j)κ(un,x
(j)) = 〈h,κn〉 , (3.3)

where κn := [κ(un,x(1)), κ(un,x(2)), · · · ,κ(un,x(r))]T is the kernelized in-
put vector and h := [h(1), h(2), · · · , h(r)]T is the coefficient vector. Due to the
two inner-product expressions in (3.3), the output ϕ(un) can be regarded as
a linear functional 〈ϕ,κ(·,un)〉H of ϕ, and also as a linear function 〈h,κn〉
of h. The MSE E(dn − ϕ(un))2 can thus be regarded as a functional of ϕ,
and also as a function of h:

Jϕ(ϕ) :=E(〈ϕ,κ(·,un)〉2H)− 2E(dn 〈ϕ,κ(·,un)〉H) + E(d2n), (3.4)

Jh(h) :=hTRh− 2pTh+E(d2n), (3.5)

where R := E(κnκ
T
n) is the autocorrelation matrix of the kernelized input

vector κn and p := E(dnκn) is the cross-correlation vector between dn and
κn. By abuse of notation, we simply denote Jh(h) and Jϕ(ϕ) by J(h)
and J(ϕ), respectively. As shown in the following section, the Euclidean-

57

Chapter 3

space and functional-space approaches seek to minimize J(h) and J(ϕ),
respectively, by, e.g., a stochastic gradient method.

3.2.2 Restricted Gradient and Isomorphism

We define (i) the gradient of the functional J under the restriction to the
dictionary subspace M and (ii) the metric projection onto a closed convex
subset of a real Hilbert space.1

Definition 3.1 (Restricted gradient) Given any ϕ :=
∑r

i=1 h
(i)κ(·,x(i)),

the gradient ∇|MJ(ϕ) restricted to M is defined as a unique vector g ∈M
such that

〈g,ϕε〉H = 〈∇J(h), ε〉 , ∀ε := [ε(1), ε(2), · · · , ε(r)]T ∈ Rr, (3.6)

where ϕε :=
∑r

j=1 ε
(j)κ(·,x(j)) ∈ M and ∇J(h) := 2(Rh − p) ∈ Rr

is the ordinary gradient (the Fréchet differential in Rr) of J(h) at h :=
[h(1), h(2), · · · , h(r)]T.

The basic fact shown below plays a key role in the present study.

Lemma 3.1 The pair of real Hilbert spaces (M, 〈·, ·〉H) and (Rr, 〈·, ·〉G) are
isomorphic under the correspondence

M 3 ϕ :=
r
∑

j=1

h(j)κ(·,x(j))←→ [h(1), h(2), · · · , h(r)]T =: h ∈ Rr. (3.7)

Proof: The linear independence of the dictionary implies that the correspon-
dence is clearly a bijective mapping. Given any vector ĥ := [ĥ(1), · · · , ĥ(r)]T ∈
Rr, the inner product between ϕ and ϕ̂ :=

∑r
j=1 ĥ

(j)κ(·,x(j)) is 〈ϕ, ϕ̂〉H =
∑r

i=1

∑r
j=1 h

(i)ĥ(j)κ(x(i),x(j)) = hTGĥ =
〈

h, ĥ
〉

G
, verifying that the map-

ping is inner product preserving. !

Lemma 3.1 states that learning in the functional subspace M can be
expressed equivalently as learning in the Euclidean space Rr with the inner
product 〈·, ·〉G. By the isomorphism in Lemma 3.1, the restricted gradient
∇|MJ(ϕ) can be expressed as below (see Figure 3.1).

Proposition 3.1

1. The restricted gradient ∇|MJ(ϕ) is the Fréchet differential, defined in
M, of J at ϕ.

1A set K is said to be convex if βx + (1 − β)y ∈ K, ∀x, y ∈ K, ∀β ∈ (0, 1). If a set is
closed and convex, we say that it is closed convex.

58

Chapter 3

2. Through the correspondence in (3.7), the restricted gradient ∇|MJ(ϕ)
can be expressed as

∇|MJ(ϕ) = PM(∇J(ϕ)) ←→∇GJ(h) := G−1∇J(h), (3.8)

where ∇J(ϕ) is the Fréchet differential, defined in H, of J at ϕ.

Proof of Proposition 3.1.1. Due to the correspondence ϕε ←→ ε, the iso-
morphism presented in Lemma 3.1 indicates that ‖ε‖2G = ‖ϕε‖2H. Since
λmin ‖ε‖2 ≤ ‖ε‖2G, where λmin > 0 is the minimal eigenvalue of G, one can
verify that

0 ≤

∣

∣

∣
J(ϕ+ ϕε)− J(ϕ)−

〈

∇|MJ(ϕ),ϕε
〉

H

∣

∣

∣

‖ϕε‖H

≤ λ−1/2
min

|J(h+ ε)− J(h)− 〈∇J(h), ε〉|
‖ε‖ → 0 as ‖ε‖ → 0. (3.9)

Proof of Proposition 3.1.2. By the definition of the restricted gradient
∇|MJ(ϕ), we have

〈

∇|MJ(ϕ),ϕε
〉

H = 〈∇J(h), ε〉 =
〈

G−1∇J(h), ε
〉

G
, ∀ε ∈ Rr. (3.10)

A simple inspection of (3.10) under Lemma 3.1 verifies∇|MJ(ϕ)←→ ∇GJ(h).
On the other hand, it can be readily verified that PM(∇J(ϕ))←→ G−1bϕ,
where bϕ := [

〈

∇J(ϕ),κ(·,x(1))
〉

H , · · · ,
〈

∇J(ϕ),κ(·,x(r))
〉

H]
T ∈ Rr. The

proof will hence be completed by showing that bϕ = ∇J(h). Since

〈bϕ, ε〉Rr =
r
∑

j=1

ε(j)
〈

∇J(ϕ),κ(·,x(j))
〉

H

=

〈

∇J(ϕ),
r
∑

j=1

ε(j)κ(·,x(j))

〉

H

= 〈∇J(ϕ),ϕε〉H (3.11)

and ‖ϕε‖2H = ‖ε‖2G ≤ λmax ‖ε‖2, where λmax > 0 is the maximal eigenvalue
of G, it follows that

0 ≤ |J(h + ε)− J(h)− 〈bϕ, ε〉|
‖ε‖

≤ λ1/2max
|J(ϕ+ ϕε)− J(ϕ) − 〈∇J(ϕ),ϕε〉H|

‖ϕε‖H
→ 0 as ‖ϕε‖H → 0. (3.12)

This implies that bϕ is the Fréchet differential of J at h in Rr. !

As the restricted gradient ∇|MJ(ϕ) is the Fréchet differential in M
(Proposition 3.1.1), it gives the steepest ascent direction, within the dic-
tionary subspace M, of the tangent plane of the functional J(ϕ) at the

59

Chapter 3

∇|MJ(ϕ) ∇GJ(h)

h

ĥ

ϕ

ϕ̂

(M, 〈·, ·〉H) (Rr, 〈·, ·〉G)

ααθ 0

Figure 3.1: The isomorphism between M and Rr. α ∈ [0,π] satisfies cosα =

〈ϕ, ϕ̂〉H
‖ϕ‖H ‖ϕ̂‖H

=

〈

h, ĥ
〉

G

‖h‖G
∥

∥

∥
ĥ
∥

∥

∥

G

.

point ϕ; indeed we have

argmax
∆ϕ∈M, ‖∆ϕ‖H=1

〈∇J(ϕ),∆ϕ〉H = argmax
∆ϕ∈M, ‖∆ϕ‖H=1

〈PM(∇J(ϕ)),∆ϕ〉H

=
PM(∇J(ϕ))
‖PM(∇J(ϕ))‖H

=
∇|MJ(ϕ)

∥

∥∇|MJ(ϕ)
∥

∥

H
.

(3.13)

Here, the first equality is verified by the orthogonal decomposition ∇J(ϕ) =
PM(∇J(ϕ))+PM⊥(∇J(ϕ)) and by 〈PM⊥(∇J(ϕ)),∆ϕ〉H = 0 for any ∆ϕ ∈
M, where M⊥ := {π ∈ H : 〈m,π〉H = 0, ∀m ∈ M} is the orthogonal
complement of M.

3.2.3 The CKLMS Algorithm

We present a very basic stochastic algorithm based on the restricted gradi-
ent. Replacing R and p by their instantaneous approximation κnκ

T
n and

dnκn, respectively, an instantaneous approximation of the gradient ∇J(h)
is defined as [81, 32, 31]

∇̂J(h) := −2 (dn − 〈h,κn〉)κn, n ∈ N. (3.14)

Based on (3.8), an instantaneous approximation of the restricted gradient
∇GJ(h), expressed in the Euclidean space Rr, can be defined as

∇̂GJ(h) := G−1∇̂J(h) = −2 (dn − 〈h,κn〉)G−1κn, n ∈ N. (3.15)

60

Chapter 3

By (3.15) and the correspondence [46, Lemma 1]

PM (κ(·,un))←→ G−1κn, (3.16)

the instantaneous approximation ∇̂GJ(h) can be expressed in the functional
space M as (see also (3.3))

∇̂|MJ(ϕ) = −2 (dn − 〈ϕ,κ(·,un)〉H)PM(κ(·,un))
(

←→ ∇̂GJ(h)
)

. (3.17)

Let ϕ0 := θ ←→ h0 := 0 be the initial filter. The CKLMS is then given by

ϕn+1 := ϕn −
λ

2
∇̂|MJ(ϕn) = ϕn + λenPM(κ(·,un)), n ∈ N, (3.18)

where λ > 0 is the step size and en := dn − ϕn(un). To express CKLMS in
Rr, we parameterize a kernel adaptive filter as follows:

ϕn(·) =
r
∑

j=1

h(j)n κ(·,x(j)) ∈ H, n ∈ N, (3.19)

where h(j)n ∈ R.
We can then verify the following proposition.

Proposition 3.2 The CKLMS algorithm in (3.18) can be regarded as the
LMS algorithm for the pair (κ̃n, dn)n∈N of the modified input vector κ̃n :=

G− 1
2κn and the output.2 In other words, it is a stochastic gradient descent

method for the modified MSE cost function

(J(h) =) J̃(h̃) = h̃TR̃h̃− 2p̃Th̃+ E(d2n) (3.20)

of h̃ := G
1
2h, where R̃ := E

(

κ̃nκ̃
T
n

)

= G− 1
2RG− 1

2 and p̃ := E (dnκ̃n) =

G− 1
2p.

Proof: Under the correspondence in Lemma 3.1, (3.18) is equivalent to

hn+1 := hn −
λ

2
∇̂GJ(hn) = hn + λenG

−1κn, n ∈ N, (3.21)

where hn := [h(1)n , h(2)n , · · · , h(r)n]T ∈ Rr. Left-multiplying both-sides of

(3.21) by G
1
2 yields

h̃n+1 = h̃n + λenκ̃n, n ∈ N, (3.22)

where h̃n := G
1
2hn. Since ϕn(un) = 〈hn,κn〉 =

〈

h̃n, κ̃n

〉

(see (3.3)), the

2For any positive semi-definite matrix Q, there exists a unique square root Q
1

2 satis-

fying Q = Q
1

2Q
1

2 .

61

Chapter 3

-100 -50 0 50 100
-100

-50

0

50

100

Figure 3.2: Equal error contour of J̃(h̃) in Case (i).

instantaneous error en can be rewritten as

en = dn −
〈

h̃n, κ̃n

〉

. (3.23)

From (3.22) and (3.23), it can be seen that (3.18) can be regarded as the
LMS algorithm for (κ̃n, dn)n∈N. Also, (3.22) can be rewritten as

h̃n+1 = h̃n −
λ

2
∇̂J̃(h̃n), n ∈ N, (3.24)

where
∇̂J̃(h̃n) := −2enκ̃n. (3.25)

!

Proposition 3.2 tells us that the error surface for the CKLMS algorithm
is governed by the modified autocorrelation matrix R̃ = G− 1

2RG− 1
2 . On the

other hand, the error surface of (the unnormalized version of) the KNLMS
algorithm [27] is governed by R, since it performs the LMS update for the
ordinary MSE cost function J(h). We illustrate these arguments with some
particular examples in the following subsection.

62

Chapter 3

-100 -50 0 50 100
-100

-50

0

50

100

Figure 3.3: Equal error contour of J(h) in Case (i).

0 0.5 1 1.5 2

10
4

-300

-250

-200

-150

-100

-50

0

50

Iteration number

M
S
E

d
B

KNLMS

CKLMS

Figure 3.4: MSE learning curves for r = 2 in Case (i).

63

Chapter 3

-100 -50 0 50 100
-100

-50

0

50

100

Figure 3.5: Equal error contour of J̃(h̃) in Case (ii).

-100 -50 0 50 100
-100

-50

0

50

100

Figure 3.6: Equal error contour of J(h) in Case (ii).

64

Chapter 3

0 1000 2000 3000 4000 5000
-300

-250

-200

-150

-100

-50

0

50

Iteration number

M
S
E

d
B

KNLMS
CKLMS

Figure 3.7: MSE learning curves for r = 2 in Case (ii).

3.2.4 Error Surface Analysis

We consider an estimation problem of the superposition of two Gaussian

functions: ψ(u) = 30 exp
(

− (u−x(1))2

2×0.12

)

+ 30 exp
(

− (u−x(2))2

2×0.12

)

, for x(1) := 0.4

and x(2) := 0.5. The input un ∈ R, n ∈ N, is generated randomly from a
uniform distribution within the range of [−1, 1], and the output is generated
by dn := ψ(un), n ∈ N. We let λ = 0.1 and σ = 0.1, and assume that the
dictionary is {κ(·, x(1)),κ(·, x(2))} whose linear span contains the ψ.

Figure 3.2 depicts the equal error contours of J̃(h̃) with the trajectory of
the vectors generated by CKLMS. Likewise, Figure 3.3 depicts those of J(h)
with the trajectories for KNLMS. The position of each point on the trajec-
tories was computed by taking an average over 100 independent trials. Fig-
ure 3.4 plots the MSE curves, showing how much impact the difference in the
contour shapes between J̃(h̃) and J(h) gives on the MSE performance. The
MSEs are computed by averaging the instantaneous squared errors over the
100 trials. One can see that the equal error contours of J̃(h̃) is better condi-
tioned and CKLMS performs better while the convergence of KNLMS is de-
teriorated due to the ‘squeezed’ shape of contours as depicted in Figure 3.3.
The eigenvalue spreads of R and R̃ are cond2(R) := ‖R‖2

∥

∥R−1
∥

∥

2
= 8.13

cond2(R̃) = 1.99, respectively, where ‖·‖2 denotes the spectral norm. We
have empirically found that the convergence speed of KNLMS tends to be

65

Chapter 3

Table 3.1: Eigenvalue spreads of R and R̃.

cond2(R) cond2(R̃)
Case (i) 8.13 1.99
Case (ii) 1.07 1.07

slow (see Figure 3.4) particularly when the dictionary elements are closely
located to each other. It is beyond the scope of the present study to verify
this empirical finding.
Case (ii): In this case, R ≈ R̃ because G ≈ I, and hence the equal error
contours in Figures 3.5 and 3.6 look similar and the convergence behaviors
of the two algorithms are nearly identical (see Figure 3.7).

3.3 The DR-Φ-PASS Algorithm

3.3.1 Key Ingredients

The proposed algorithm shares the two key ingredients with the Φ-PASS
algorithm proposed in Chapter 2: (i) Parallel projection: the p most re-
cent data are exploited at each iteration for attaining fast convergence. (ii)
Selective update: only a few coefficients associated with those dictionary el-
ements which are coherent to κ(·,un) are updated for complexity reduction.
Moreover, as well as the ingredients (i) and (ii), the proposed algorithm has
the following third key ingredient: (iii) Dictionary refinement: a dictionary
is refined dynamically by discarding obsolete elements from the dictionary
by means of iterative shrinkage. We discuss those key ingredients in detail
below.
(i) Parallel Gn-projection. We use the p most recent input-output pairs
(un, dn), (un−1, dn−1), · · · , (un−p+1, dn−p+1) to polish the coefficients; i.e,
the filter ϕn is updated in such a way that the estimation errors en, en−1, · · · ,
en−p+1 are suppressed. The set of indices that indicate the set of data
exploited at time n ∈ N is denoted by In := {n, n − 1, · · · , n − p + 1}; for
mathematical rigor, we let In := {n, n − 1, 0} for n < p− 1. The proposed
algorithm is based on the projections, with the Gn inner product, onto
multiple hyperplanes

Hn,ι :=
{

h ∈ Rrn :
〈

h,G−1
n κn,ι

〉

Gn
= dι

}

, ι ∈ In, (3.26)

where κn,ι := [κ(uι,uj
(n)
1

) κ(uι,uj
(n)
2

), · · · ,κ(uι,uj
(n)
rn

)]T. For more details,

see Section 2.2.1
(ii) Selective update. We approximate the projection by selectively up-
dating the coefficients te reduce the computational complexity of the algo-
rithm. To update the selected coefficients with the other coefficients fixed,

66

Chapter 3

the update-direction vector (in the functional space H) should lie in the
functional subspaces

M̃n,ι := span{κ(·,u(j))}j∈J̃n,ι
⊂Mn ⊂ H, ι ∈ In. (3.27)

Under the correspondence in Lemma 3.1, we define Euclidean affine sub-
spaces Vn,ι ⊂ Rrn , ι ∈ In, via the correspondence

Mn ⊃ M̃n,ι + ϕn := {m+ ϕn | m ∈ M̃n,ι}←→ Vn,ι ⊂ Rrn . (3.28)

Note here that hn ∈ Vn,ι since ϕn ∈ M̃n,ι + ϕn. In the Euclidean space
Rrn , the selective update can be accomplished by projecting hn onto each
hyperplane Hn,ι along the affine subspace Vn,ι. This is equivalent in fact to
projecting hn onto

HV
n,ι := Hn,ι ∩ Vn,ι, ι ∈ In. (3.29)

(iii) Dictionary refinement. Our growing strategy of the dictionary is
based on the coherence which has initially been proposed in [27]. It does
not, however, take into account the statistics of inputs nor the characteristics
of the nonlinear system ψ to be estimated. This implies that the dictionary
constructed only with the coherence criterion may contain obsolete elements.
To discard such elements adaptively, we penalize our cost function by the
weighted -1 norm to sparsify the coefficient vector as in [28, 41, 35, 36, 42]. It
has been shown in [41] that obsolete dictionary-elements would give negative
impacts on the performance of adaptive algorithms. The use of the weighted
-1-norm penalty is expected to prevent such negative impacts.

3.3.2 Cost Function and a Straightforward Idea

Based on the arguments presented in Section 3.3.1, we define a sequence of
convex functions (Θn)n∈N as follows:

Θn(h) := Φn(h) + τΩn(h), h ∈ Rrn , (3.30)

where τ > 0 is the regularization parameter. Here,

Φn(h) :=
1

2

∑

ι∈In

ωn,ιd
2
Gn

(h,HV
n,ι) (smooth) (3.31)

is a weighted squared-distance function for some given weights ωn,ι > 0 such
that

∑

ι∈In ωn,ι = 1, ι ∈ In, where

dGn(h,H
V
n,ι) := min

g∈HV
n,ι

‖h− g‖Gn
(3.32)

67

Chapter 3

is the Gn-metric distance from h to the closed convex sets HV
n,ι. The second

term

Ωn(h) := ‖wn ◦ h‖1 (nonsmooth) (3.33)

is a weighted -1 norm for dictionary refinements, where

wn := [w
(j(n)

1)
n , w

(j(n)
2)

n , · · · , w(j(n)
rn)

n]T, w(j)
n > 0, ∀j ∈ Jn, is the weights,

‖x‖1 :=
∑rn

j=1

∣

∣x(j)
∣

∣ is the -1 norm of x := [x(1), x(2), · · · , x(rn)] ∈ Rrn , and
wn ◦h denotes the Hadamard (componentwise) product between wn and h.

The adaptive proximal forward-backward splitting (APFBS) algorithm
[60] is an efficient method to minimize a sequence of convex functions each
of which is the sum of smooth and nonsmooth convex functions (see (3.30),
(3.31), and (3.33)). A straightforward idea would be to apply APFBS to the
function sequence (Θn)n∈N with the inner product 〈·, ·〉Gn

. This approach,
however, is impractical unfortunately, since the proximity operator of Ωn in
the Hilbert space (Rrn , 〈·, ·〉Gn

) has no closed-form expression. We therefore
present a modified algorithm in the following subsection.

3.3.3 The Proposed Algorithm

Inspired by APFBS, the proposed algorithm includes the following two steps
in addition to two more steps for dictionary updates.
Gradient (forward) step. The proposed algorithm exploits the Gn-
gradient [60]

∇GnΦn(h) = h−
∑

ι∈In

ωn,ιP
Gn

HV
n,ι
(h), h ∈ Rrn . (3.34)

The use of the Gn metric leads to fast convergence as illustrated in Section
3.2.4. It has indeed been reported in [67, 68] that the use of adequately-
designed time-variable metric could yield substantial accelerations of con-
vergence speed. We stress here that the Gn metric is naturally induced by
the metric in the RKHS H.
Proximal (backward) step. We adopt the canonical inner product 〈·, ·〉
for the proximal step of APFBS rather than the Gn inner product 〈·, ·〉Gn

,
i.e., the proposed algorithm exploits the proximity operator [82]

proxλnτΩn
(h) := argmin

x∈Rrn

(

Ωn(x) +
1

2λnτ
‖h− x‖2

)

=
rn
∑

j=1

max

{

0, 1− λnτw
(j)
n

|h(j)|

}

h(j)e(j)n ,

h := [h(1), h(2), · · · , h(rn)]T ∈ Rrn . (3.35)

68

Chapter 3

augmentation forward step backward step zero removalhn
Tn

ĥn
I − λn∇Gn

Φn

ĥf
n

proxλnτΩn

ȟn+1

T
hn+1

Figure 3.8: A block diagram of the proposed algorithm.

Here, e(j)n denotes the length-rn unit vector with one at the jth position and
zeros elsewhere.

We present below the DR-Φ-PASS algorithm, which is based on APFBS
applied to (Θn)n∈N in (3.30).

Algorithm 3.1 (DR-Φ-PASS) Let ĥ0 := 0 ∈ R and generate the se-
quence (hn)n∈N by

ĥn := Tn(hn) ∈ Rrn , n ∈ N,

hn+1 := T
{

proxλnτΩn

[

ĥn − λn∇GnΦn(ĥn)
]}

, n ∈ N. (3.36)

Here, λn ∈ [0, 2] is the step size. Tn is the operator that augments a vector
by adding zero as a new entry at the bottom (i.e., adds κ(·,un) into the dic-
tionary) only when κ(·,un) is sufficiently novel under some novelty criterion
such as the coherence (see Example 3.1 below), and T is the operator that
shrinks the length of a vector by removing zero components (i.e., discards
obsolete elements from the dictionary).

We define ĥf
n := ĥn − λn∇GnΦn(ĥn) and ȟn+1 := proxλnτΩn

(

ĥf
n

)

for

n ∈ N and show a block diagram of the DR-Φ-PASS algorithm in Figure 3.8.

Example 3.1 (Novelty criterion based on coherence [27]) Given a
dictionary {κ(·,uj)}j∈J , κ(·,un) is regarded novel if maxj∈J c(un,uj) ≤ δ
for some threshold δ ∈ (0, 1).

From the definition of Vn,ι, it is clear that the Gn-projection PGn

HV
n,ι
(ĥn)

only changes the selected coefficients h(j), j ∈ J̃n,ι, while keeping the unse-
lected coefficients h(j), j ∈ J̃ c

n,ι, unchanged. Therefore, the jth component
of the projection can be written as

[PGn

HV
n,ι
(ĥn)]j =

{

h(j)n , j ∈ J̃ c
n,ι,

p(j)n,ι, j ∈ J̃n,ι,
(3.37)

where [69]

pn,ι := [p
(j̃(n,ι)

1)
n,ι , p

(j̃(n,ι)
2)

n,ι , · · · , p(j̃
(n,ι)
sn)

n,ι]T := P
G̃n,ι

H̃n,ι
(h̃n,ι)

= h̃n,ι +
dι − hT

nκn,ι

κ̃T
n,ιG̃

−1
n,ικ̃n,ι

G̃−1
n,ικ̃n,ι ∈ Rsn,ι . (3.38)

69

Chapter 3

Table 3.2: Summary of the proposed algorithm.

The DR-Φ-PASS algorithm

Requirement : step size λn ∈ [0, 2]

Initialization : J .=0
−1 := ∅, J0 := ∅

Filter output : ϕn(un) :=
∑

j∈Jn
h(j)n κ(un,uj)

Filter update :
1. Add a new element into the dictionary
based on some novelty criterion such as
the coherence (see Example 3.1).

If κ(·,un) is novel, Jn := J .=0
n−1 ∪ {n}. Otherwise, Jn := J .=0

n−1.

2. If n ∈ Jn, let ĥn := [hT
n 0]T. Otherwise let ĥn := hn.

3. Construct J̃n,ι(⊂ Jn).

4. Compute PGn

HV
n,ι
(ĥn) based on (3.37) and (3.38).

5. Compute ĥf
n = ĥn + λn

(

∑

ι∈In ω
(n)
ι PGn

HV
n,ι
(ĥn)− ĥn

)

.

6. Compute ȟn+1 = proxλnτΩn
(ĥf

n) based on (3.35).
7. Discard obsolete dictionary elements: hn+1 = T (ȟn+1)

and let J .=0
n := {j ∈ Jn : ȟ(j)n+1 /= 0}.

Here, h̃n,ι := [h̃(j̃
(n,ι)
1), h̃(j̃

(n,ι)
2), · · · , h̃(j̃

(n,ι)
sn,ι)]T,

κ̃n,ι := [κ(uι,uj̃(n,ι)
1

) κ(uι,uj̃(n,ι)
2

), · · · ,κ(uι,uj̃(n,ι)
sn,ι

)]T,

G̃n,ι :=















κ
(

u
j̃(n,ι)
1

,u
j̃(n,ι)
1

)

· · · κ
(

u
j̃(n,ι)
1

,u
j̃(n,ι)
sn,ι

)

...
. . .

...

κ

(

u
j̃(n,ι)
sn,ι

,u
j̃(n,ι)
1

)

· · · κ
(

u
j̃(n,ι)
sn,ι

,u
j̃(n,ι)
sn,ι

)















∈ Rsn,ι×sn,ι , (3.39)

and

H̃n,ι :=

{

h̃ ∈ Rsn,ι :
〈

h̃, G̃−1
n,ικ̃n,ι

〉

G̃n,ι

= dι

}

, ι ∈ In. (3.40)

The DR-Φ-PASS algorithm is summarized in Table 3.2.

3.3.4 Discussions

Monotone approximation property

We present a monotone approximation property of DR-Φ-PASS below.

70

Chapter 3

Theorem 3.1 (Monotone approximation) Assume that
(i) sgn(GnWn sgn(ĥf

n)) = sgn(ĥf
n), where sgn(·) denotes the signum func-

tion defined as sgn(0) := 0, sgn(x) := 1, if x > 0, and sgn(x) := −1, if
x < 0, and

(ii) ĥf
n ∈ Dn := {h ∈ Rrn : |h(i)| > λnτw

(j(n)
i)

n , i = 1, 2, · · · , rn}.
Define Ω̃n(h) = ‖w̃n ◦ h‖1 , h ∈ Rrn, for the modified weights w̃n :=

GnWn sgn(ĥf
n), where Wn := diag(wn). Let

Θ̃n(h) := Φn(h) + τ Ω̃n(h), h ∈ Rrn . (3.41)

Then, the monotone approximation property holds between ĥn ∈ Rrn and
ȟn+1 ∈ Rrn:

∥

∥ȟn+1 − h∗∥
∥

Gn
<
∥

∥

∥
ĥn − h∗

∥

∥

∥

Gn

(3.42)

for any h∗ ∈ Ξ(n)
ι := argminh∈Rrn Θ̃n(h) /= ∅, if hn /∈ Ξ(n)

ι .

Proof: We first define the subdifferential of a continuous convex function.

Definition 3.2 (Subdifferential) Given a positive definite matrix A ∈
Rrn×rn, let (Rrn , 〈·, ·〉A) be a real Hilbert space. Then, the subdifferential of
a continuous convex function f : Rrn → R at x ∈ Rrn is defined as

∂Af(x) := {x̃ ∈ Rrn : 〈y − x, x̃〉A + f(x) ≤ f(y), ∀y ∈ Rrn} /= ∅. (3.43)

Proof of Theorem 3.1: By (3.35) and the assumption (ii), the jth element of
ȟn+1 := proxλnτΩn

(ĥf
n) is given by

ȟ(j)n+1 = max

{

0, 1 − λnτw
(j)
n

|ĥ(j),fn |

}

ĥ(j),fn =

(

1−
λnτw

(n)
j

|ĥ(j),fn |

)

ĥ(j),fn (3.44)

By (3.44) and the assumption (i), we obtain

sgn(ȟn+1) = sgn(ĥf
n) = sgn(GnWn sgn(ĥ

f
n)) = sgn(w̃n), (3.45)

from which the subdifferential of Ω̃n at ȟn+1 with the canonical inner prod-
uct is given by

∂IΩ̃n(ȟn+1) = {|w̃n| ◦ sgn(ȟn+1)} = {|w̃n| ◦ sgn(w̃n)} = {w̃n}, (3.46)

where | · | denotes componentwise absolute value. By (3.45) and (3.46), one
can verify that

∂IΩn(ȟn+1) = {Wn sgn(ȟn+1)} = {Wn sgn(ĥ
f
n)}

= {G−1
n w̃n} = G−1

n ∂IΩ̃n(ȟn+1) = ∂GnΩ̃n(ȟn+1). (3.47)

71

Chapter 3

Here, the last equality can be verified by observing that

x̃ ∈ ∂GnΩ̃n(ȟn+1)

⇔
〈

y − ȟn+1, x̃
〉

Gn
+ Ω̃n(ȟn+1) ≤ Ω̃n(y), ∀y ∈ Rrn

⇔
〈

y − ȟn+1,Gnx̃
〉

I
+ Ω̃n(ȟn+1) ≤ Ω̃n(y), ∀y ∈ Rrn

⇔ Gnx̃ ∈ ∂IΩ̃n(ȟn+1). (3.48)

Since the proximity operator can be characterized as the resolvent of the
subdifferential [82], i.e.,

proxλnτΩn
= (I + λnτ∂IΩn)

−1 , (3.49)

one can verify with (3.47) that

ȟn+1 = proxλnτΩn
(ĥf

n) = (I + λnτ∂IΩn)
−1 (ĥf

n)

⇔ ĥf
n ∈ (I + λnτ∂IΩn) (ȟn+1) =

(

I + λnτ∂GnΩ̃n

)

(ȟn+1)

⇔ ȟn+1 =
(

I + λnτ∂GnΩ̃n

)−1
(ĥf

n)

= proxGn

λnτ Ω̃n
(ĥf

n) = proxGn

λnτ Ω̃n
(ĥn − λn∇GnΦn(ĥn)). (3.50)

This is APFBS with the Gn inner product applied to Θ̃n(h) = Φn(h) +
τ Ω̃n(h), and hence (4.25) holds (cf. [60]). !

The proposed algorithm uses different inner products in each of the for-
ward and backward steps. Nevertheless, Theorem 4.1 clarifies its underlying
principle. The theorem states that the proposed algorithm pushes the es-
timate towards the set of minimizers of Θ̃n with the Gn inner product,
whereas the algorithm has been derived from the cost function Θn. This is
simply because the proximity operator, with the canonical inner product,
of the weighted -1 norm can be regarded basically as the proximity opera-
tor, with the Gn inner product, of the -1 norm with the modified weights
w̃n. The efficacy of the proposed algorithm will be shown experimentally in
Section 3.4.

Proposition 3.3 (A sufficient condition for the assumption (i))

Assume that [Gn]ii = κ(u(j
(n)
i),u(j

(n)
i)) > 0 for all i = 1, 2, · · · , rn, where

[Gn]ij is the (i, j) component of Gn for any i, j = 1, 2, · · · , rn. Assume also
that Wn = I and that Gn is strictly diagonally dominant, i.e.,

[Gn]ii >
∑

i .=j

[Gn]ij , ∀i = 1, · · · , rn. (3.51)

Then, the assumption (i) of Theorem 4.1 holds.

Proof: Let a := [a1, a2, · · · , arn]T ∈ {1,−1}rn . Then, the ith element of

72

Chapter 3

Gna is given by

[Gna]i = [Gn]iiai +
∑

i .=j

[Gn]ijaj. (3.52)

Since ai ∈ {1,−1}, we have

sgn([Gna]i) = sgn



[Gn]iiai +
∑

i .=j

[Gn]ijaj





= sgn







[Gn]ii +
∑

i .=j

[Gn]ijaj/ai



 ai





= sgn(ai) = ai, ∀i = 1, · · · , rn. (3.53)

Here, the third equality is verified by

[Gn]ii +
∑

i .=j

[Gn]ijaj/ai ≥ [Gn]ii −
∑

i .=j

|[Gn]ij | > 0, (3.54)

where the strict inequality is due to (3.51). By (3.53), the assumption (i) is
directly verified.

!

The assumption (ii) is violated if ĥn contains some nearly zero compo-
nents. In such a case, however, those minor components are discarded by
the proximity operator and T , and hence violations of the assumption (ii)
would give no major impacts on the overall performance. Indeed, the pro-
posed algorithm is robust against violations of the assumptions (i) and (ii),
as will be shown in Section 3.4.

Relation to the Φ-PASS algorithm

Roughly speaking, the DR-Φ-PASS algorithm is the Φ-PASS algorithm with
the additional operation of dictionary refinements. To be precise, removing
the proximity operator and T from (3.36), DR-Φ-PASS is reduced to the
original Φ-PASS algorithm with a narrower step-size range. The narrower
range is a consequence of the use of the differentiable function Φn in (3.30)
within the framework of APFBS; the original Φ-PASS algorithm employs
a nondifferentiable function (the sum of ‘non-squared’ distance functions)
within the framework of the adaptive projected subgradient method [44].
This would cause no practical disadvantage though because the step size is
set typically to a small value in the presence of ambient noise.

73

Chapter 3

Table 3.3: Computational complexity of the proposed and conventional al-
gorithms.

DR-Φ-PASS [L+ p(sn + 1) + 3]rn + s2n + psn + pυinv(sn)
Sparse QKLMS [42] r2n + (L+ 3)rn
FOBOS-KLMS [41] (L+ 6)rn

3.3.5 Computational Complexity

The complexity of DR-Φ-PASS depends on the cardinality
∣

∣

∣
J̃n,ι

∣

∣

∣
which is

supposed to be a small constant sn @ rn for all ι ∈ In at each time instant
n ∈ N; sn ≤ 5 typically. The computational complexity (the number of real
multiplications) of the DR-Φ-PASS and existing algorithms are presented
under the use of a Gaussian kernel in Table 3.3. Here, υinv(sn) represents
the complexity to compute the inverse of an sn × sn Gram matrix. We
mention that Sparse QKLMS requires another O(r2n) computation for G−1

n ,
in addition to the complexity presented in Table 3.3, when the dictionary
is updated; here we postulate the use of the matrix inversion lemma [70].
DR-Φ-PASS makes no use of G−1

n and hence enjoys lower complexity than
Sparse QKLMS. This is due to (i) the use of the canonical inner product
for the proximity operator and (ii) the selective updating strategy. DR-Φ-
PASS exhibits faster convergence, at the price of higher complexity, than
FOBOS-KLMS due to the use of the Gn-projection (cf. Section 3.2.4). In
the following section, we show that DR-Φ-PASS outperforms the existing
algorithms in MSE with reasonably low complexities.

3.4 Experiments of the DR-Φ-PASS Algorithm

We show the efficacy of the proposed algorithm in applications to online
estimation of nonlinear functions and online prediction of time series data.

3.4.1 Parameter Settings

The parameters λ and τ are affect significantly to the performance of DR-
Φ-PASS. The parameter τ is affect significantly to the dictionary size of
DR-Φ-PASS, and therefore strict adjustments are necessary to obtain the
best performance of the algorithm. However, as a rule of thumb, setting
τ ∈ [10−5, 10−3] gives a reasonable performance. For setting λ, see Section
2.3.1. The detailed settings of those parameters are presented in each of the
experiments.

For the proposed algorithm, the uniform weights ω(n)
ι = (min{p, n+ 1})−1,

ι ∈ In, are used for the squared-distance function, and the weights w(j)
n :=

74

Chapter 3

Table 3.4: Parameter settings for Experiment A-1.
parameter

DR-Φ-PASS λn = 0.3, p = 1, sn,ι = 1, τ = 0.01
Φ-PASS λn = 0.3, p = 1, sn,ι = 1

0.2 0.4 0.6 0.8
-24

-22

-20

-18

-16

-14

-12

-10

DR-Φ-PASS

Φ-PASSA
ve
ra
ge

M
S
E

d
B

δ

Figure 3.9: Results of Experiment A-1: average MSEs of DR-Φ-PASS and
Φ-PASS.

|ĥ(j),fn |−1

∑

ι∈Jn
|ĥ(ι),fn |−1

, j ∈ Jn, are used for the weighted -1 norm, where ĥ(ι),fn is

a component of ĥf
n associated with κ(·,uι). We employ a Gaussian kernel

with the coherence criterion (see Example 3.1).

75

Chapter 3

0.2 0.4 0.6 0.8
0

100

200

300

400

500

DR-Φ-PASS

Φ-PASS

A
ve
ra
ge

d
ic
ti
on

ar
y
si
ze

δ

Figure 3.10: Results of Experiment A-1: average dictionary sizes of DR-Φ-
PASS and Φ-PASS.

3.4.2 Experiment A — Function Estimation

A-1) A basic performance of the proposed algorithm

We consider the following nonlinear function:

ψ(u) = exp

(

−
∥

∥u− c(1)
∥

∥

2

2× 0.62

)

+ 1.5 exp

(

−
∥

∥u− c(2)
∥

∥

2

2× 0.62

)

− 0.5 exp

(

−
∥

∥u− c(3)
∥

∥

2

2× 0.62

)

− 1.25 exp

(

−
∥

∥u− c(4)
∥

∥

2

2× 0.62

)

, (3.55)

where c(1) := [−0.2, 0.7]T, c(2) := [0.2,−0.3]T , c(3) := [0.6, 0.2]T, and c(4) :=
[−0.3,−0.8]T. The observed signal is generated as dn := ψ(un)+ vn, n ∈ N,
where un is the input data randomly generated from a uniform distribution
within the region [−1, 1]2 and vn ∼ N (0, 1.0 × 10−2) is the additive white
Gaussian noise. The kernel parameter is set to ξ =

√
0.3. To verify that the

proposed algorithm refines the dictionary efficiently, we compare the perfor-
mance of the proposed algorithm with the Φ-PASS algorithm (see Remark
3.3.4). The set of parameters employed in this experiment is summarized in
Table 3.4.

Figures 3.9, 3.9, and 3.11 depict the MSE, the dictionary size averaged

76

Chapter 3

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

δ

P
ro
b
ab

il
it
y

Figure 3.11: Results of Experiment A-1: probabilities of DR-Φ-PASS and
Φ-PASS.

over 5000 iterations and also over 100 runs for each coherence parameter δ,
and the probability that the assumption (i) of Theorem 3.1 holds true. It can
be seen that DR-Φ-PASS reduces the dictionary size by half approximately
compared to that of Φ-PASS while the performance degradation is negligible.
It can also be seen that, even though the probability is approximately zero
for δ ≥ 0.7, DR-Φ-PASS performs well. This indicates the robustness of
DR-Φ-PASS against violations of the assumption (i) of Theorem 3.1.

A-2) A comparison with the existing algorithms using -1 regular-
ization

We show the advantages of the proposed algorithm over the existing algo-
rithms that refine the dictionary using -1 regularization: the FOBOS-KLMS
algorithm [41] and the Sparse QKLMS algorithm [42]. We consider a fluid-
flow control problem [13]:

{

yn := 0.1044un + 0.0883un−1 + 1.4138yn−1 − 0.6065yn−2

dn := 0.3163yn/
√

0.1 + 0.9y2n + ν(1)n ,
(3.56)

77

Chapter 3

0 500 1000 1500 2000 2500 3000
-26

-24

-22

-20

-18

-16

-14

-12

-10

DR-Φ-PASS

FOBOS-KLMS

Sparse QKLMSM
S
E

d
B

Iteration number

Figure 3.12: Results of Experiment A-2: MSEs of DR-Φ-PASS, FOBOS-
KLMS, and Sparse-QKLMS.

Table 3.5: Parameter settings for Experiment A-2.
parameter dictionary complexity

size (mean)

DR-Φ-PASS
λn = 0.02, p = 4

sn,ι = 1, τ = 1.0 × 10−2 14.75 284

Sparse QKLMS
η = 0.015, λ = 4.0× 10−3

γ = 1.0× 10−4 δ = 0.9 23.50 670

FOBOS-KLMS
µ = 0.01, λ = 2.5× 10−4

εα = 1.0× 10−6 15.83 126

where the input un is generated by

u0 := 0 and un := 0.5un−1 +
√

1− 0.52ν(2)n , n ∈ N∗. (3.57)

Here, ν(2)n ∼ N (0, 1.0) and ν(1)n ∼ N (0, 2.5 × 10−3) are the additive white
Gaussian noise. The output dn is predicted with input un = [un, un−1]T (L =
2). We test 100 independent runs by generating the noise randomly and
MSE is computed by averaging the instantaneous squared error over the
100 runs. Table 3.5 summarizes the parameters. For FOBOS-KLMS, the
step size and the regularization parameter of the -1 norm are denoted by
η and λ, respectively. For Sparse QKLMS, the step size, the regularization

78

Chapter 3

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

DR-Φ-PASS

D
ic
ti
on

ar
y
si
ze

FOBOS-KLMS

Sparse QKLMS

Iteration number

Figure 3.13: Results of Experiment A-2: dictionary sizes of DR-Φ-PASS,
FOBOS-KLMS, and Sparse-QKLMS.

parameter for the -1 norm, and the regularization parameter for the Gram
matrix Gn are denoted by η, λ, and γ, respectively. For the proposed algo-
rithm and FOBOS-KLMS, the regularization parameters for the -1 norm are
chosen so that the dictionary sizes of both algorithms are nearly identical to
each other. Sparse QKLMS operates iterative shrinkage to obtain a sparse
coefficient-vector, but keeps all the dictionary elements even though some
coefficients are nearly/exactly zero. For comparison, the regularization pa-
rameters λ of Sparse QKLMS is chosen so that the number of coefficients
larger than the threshold 0.01 is nearly identical to the dictionary sizes of
the other algorithms. For all algorithms, the step sizes are chosen so that
the steady-state MSEs are nearly identical to each other. The other param-
eters are chosen so that each algorithm achieves the best performance. For
FOBOS-KLMS, the weights of the -1 norm are set to wj,n = (|hj,n|+ εα)

−1

for some small constant εα > 0.
Figures 3.12 and 3.13 depict the MSE learning curves and the growth of

dictionary size. Table 3.5 summarizes the average dictionary sizes and the
average computational complexities. One can see that DR-Φ-PASS attains
faster convergence than Sparse QKLMS due to the use of the parallel pro-
jection. Moreover, thanks to (i) the use of the canonical inner product for
the backward step of APFBS and (ii) the selective updating strategy, DR-
Φ-PASS requires lower complexities than Sparse QKLMS. One may notice

79

Chapter 3

0 500 1000 1500 2000 2500 3000
10

0

10
2

10
4

10
6

10
8

10
10

R̃n (DR-Φ-PASS)

Rn (FOBOS-KLMS)

E
ig
en
va
lu
e
sp
re
ad

Iteration number

Figure 3.14: Eigenvalue spreads of Rn (of FOBOS-KLMS) and R̃n (of DR-
Φ-PASS).

Table 3.6: Parameter settings and complexities for Experiment B.
parameter dictionary complexity

size (mean)
DR-Φ-PASS λn = 0.3, p = 8, 16.54 851

sn,ι = 1, δ = 1, τ = 0.025
KRLS Tracker M = 17, λ = 0.999, σ2n = 0.1 17 1055

that FOBOS-KLMS converges slowly compared with the other algorithms.
This is because the error surface for FOBOS-KLMS is squeezed due to the
large eigenvalue spread of the autocorrelation matrix Rn (cf. Section 3.2.4).
(Note that Rn depends on the dictionary and hence on time n in general.)
To verify this, we plot the eigenvalue spreads, averaged over 300 runs, of Rn

and R̃n := G
−1/2
n RnG

−1/2
n in Figure 3.14. One can see that the eigenvalue

spreads of R̃n are smaller than those of Rn, which implies that the error
surface for DR-Φ-PASS is better shaped than that for FOBOS-KLMS. The
matrix Rn was computed according to the closed-form expression presented
in [83].

80

Chapter 3

3.4.3 Experiment B — Nonstationary Data Prediction

We consider the nonstationary data given as follows:

dn := (0.8 − 0.5 exp(d2n−1))dn−1 − (0.3 + 0.9 exp(−d2n−1))dn−2

+ 0.1 sin(dn−1π) for 0 ≤ n ≤ 10000,

dn := (0.2 − 0.7 exp(−d2n−1))dn−1

− 0.8(1 + exp(−d2n−1)dn−2) + 0.2 sin(dn−1π) for n > 10000, (3.58)

with d−2 := d−1 := 0.1. In this experiment, we evaluate the tracking capa-
bility to the nonstationarity. Each datum dn is predicted with the input vec-
tor un := [d̂n−1, d̂n−2, · · · , d̂n−L]T ∈ U ⊂ RL (L = 4). Here, d̂n := dn + vn,
n ∈ N, where vn ∼ N (0, 1.0 × 10−2) is the additive white Gaussian noise.
The kernel parameter is set to ξ = 1. DR-Φ-PASS is compared with one
of the state-of-the-art algorithms based on budget learning: KRLS Tracker
[30]. We test 100 independent runs by generating the noise randomly and
MSEs are computed by averaging the instantaneous squared errors over the
100 runs. Table 3.6 summarizes the set of parameters, the average dictionary
sizes, and the average complexity of each algorithm. The budget size, the
forgetting factor, and the regularization parameter for KRLS Tracker are
denoted by M , λ, and σ2n, respectively. The parameters are chosen so that
each algorithm achieves the best performance and the average dictionary
sizes are close to each other.

Figures 3.15 and 3.16 depict the MSE learning curves and the growth of
dictionary size. It can be seen that DR-Φ-PASS well controls the dictionary
size, leading to fast convergence and tracking with low complexity.

3.4.4 Experiment C — Real Data

We compare the performance of the proposed algorithm with the conven-
tional algorithms in an application to online prediction of the chaotic laser
time series from the Santa Fe time series competition [84]. Each datum dn
is predicted with un := [dn−1, dn−2, · · · , dn−L]T ∈ U ⊂ RL for L = 8 and
σ = 0.25. The compared algorithm includes the linear Kalman filter and
the resource allocating network algorithm [85]. The state-space model for
the Kalman filter is given as

hn+1 = hn + 1ν(1)n

d̂n = uT
nhn + ν(2)n , (3.59)

where ν(1)n and ν(2)n are noises generated by Gaussian distributions and
1 = [1, 1, · · · , 1]T ∈ RL. Table 3.7 summarizes the parameters, and Ta-
ble 3.8 summarizes the average dictionary sizes, the average complexities,
and the average squared errors. Parameters are chosen so that each algo-

81

Chapter 3

0 0.5 1 1.5 2

10
4

-16

-14

-12

-10

-8

-6

DR-Φ-PASS

KRLS Tracker

M
S
E

d
B

Iteration number

Figure 3.15: Results of Experiment B: MSEs of DR-Φ-PASS and KRLS
Tracker.

rithm achieves the best performance. The kernel parameter is set to ξ = 1.
The dictionary size M for KRLS Tracker is chosen so that its average dictio-
nary size is comparable to that of the proposed algorithm. Each algorithm
operates a single run over the data.

Figures 3.17 and 3.18 depict the results. It can be seen that DR-Φ-PASS
outperforms the other algorithms excluding the initial phase. It can also be
seen from Table 3.8 that the average MSE and the complexity of DR-Φ-PASS
are smaller than those of the other algorithms; DR-Φ-PASS attains approx-
imately 2 dB and 2.5 dB lower MSE compared with KRLS Tracker and
Sparse QKLMS, respectively. It should be mentioned that KRLS Tracker
uses a large size of dictionary to attain fast initial convergence.

3.4.5 Wrapping Up

The important outcomes obtained through the experiments are listed below.

1. The proposed algorithm enjoyed low complexities as well as efficient
dictionary refinements in all the experiments. The dictionary refine-
ments are due to the use of the -1 regularization, keeping the dictio-
nary suitable for the statistics of inputs. The low complexity is a direct
consequence of small dictionary-size but also comes from (i) the use of
the canonical inner product for the backward step and (ii) the selective

82

Chapter 3

0 0.5 1 1.5 2 2.5

10
4

0

5

10

15

20

25

30
DR-Φ-PASS

D
ic
ti
on

ar
y
si
ze

KRLS Tracker

Iteration number

Figure 3.16: Results of Experiment B: dictionary sizes of DR-Φ-PASS and
KRLS Tracker.

updating strategy. It should be emphasized that the dictionary refine-
ments were achieved without any severe performance degradation.

2. The proposed algorithm exhibited fast convergence and tracking. In
particular, its superior performance to FOBOS-KLMS is due to the use
of the Gn inner product; this was verified by analyzing the eigenvalue
spreads of the autocorrelation matrices Rn and R̃n. The fast tracking
for the nonstationary data is a consequence of the efficient dictionary
refinements.

3. For the real data, the proposed algorithm significantly outperformed
the state-of-the-art algorithms: Sparse QKLMS, FOBOS-KLMS, and
KRLS Tracker.

4. The proposed algorithm worked robustly against the violation of the
assumptions (i) and (ii) of Theorem 3.1.

3.5 Conclusion

In the first part, we studied the relation between the functional-space and
Euclidean-space approaches under the isomorphism between the dictionary

83

Chapter 3

Table 3.7: Parameter settings and results for Experiment C.
parameter

DR-Φ-PASS λn = 0.3, p = 4, sn,ι = 1, τ = 0.01, δ = 0.6
KRLS Tracker M = 11, λ = 0.995, σ2n = 0.08
FOBOS-KLMS η = 0.3, λ = 3× 10−6, εα = 1× 10−3, δ = 0.6
Sparse QKLMS η = 0.3, λ = 1× 10−3, γ = 1× 10−4, δ = 0.6

Kalman filter ν(1)n , ν(2)n ∼ N (0, 10−2)
RAN η = 0.3, ε = 1× 10−3, δmin = 1× 10−2, δmax = τ = 100

Table 3.8: Results of Experiment C.
dictionary size (mean) complexity squared error dB

DR-Φ-PASS 24.33 1050 −42.12
KRLS Tracker 24.95 2243 −39.95
FOBOS-KLMS 25.92 363 −38.67
Sparse QKLMS 61.72 4488 −38.38

Kalman − 224 −22.37
RAN 29.14 641 −28.54

subspace and the Euclidean space equipped with the particular inner prod-
uct defined with the kernel matrix. The CKLMS algorithm was presented
as a stochastic restricted-gradient method for the MSE cost functional and
it was shown that the shape of its error surface is governed (the kernelized
input vector left-multiplied by the square-root inverse of the kernel matrix).

We remark that a theoretical result about the autocorrelation matrix of
the functional-space approach is given in [86]. In [86], it is shown that the
eigenvalue spread of the autocorrelation matrix of CKLMS is approximately
a square root of that for KNLMS. In [79], an online estimation algorithm
associated with a result in [86] is proposed. The algorithm in [79] is based
on L2-space projections to employ the best metric that induces a perfect
decorrelation property for online nonlinear estimation.

In the second part, we proposed the DR-Φ-PASS algorithm having three
ingredients: (i) parallel Gn-projection, (ii) selective update, and (iii) dictio-
nary refinement. The proposed algorithm is basically the APFBS method,
but it performs the gradient step with the dictionary-dependent inner prod-
uct and the proximal step with the canonical inner product. It was shown
that the sequence of coefficient vectors generated by the proposed algorithm
monotonically approaches, in the Gn-norm sense, the set of minimizers of
the weighted squared-distance cost function penalized by an -1 norm with
the modified weights. The numerical examples showed that the proposed
algorithm achieved effective dictionary refinements as well as fast conver-
gence/tracking under possible data-nonstationarity with low computational
complexity.

84

Chapter 3

0 1000 2000 3000 4000 5000 6000

-50

-40

-30

-20

-10

Sparse QKLMS

FOBOS-KLMS

DR-Φ-PASSKRLS Tracker

Kalman
RAN

M
S
E

d
B

Iteration number

Figure 3.17: Results of Experiment C: MSEs of DR-Φ-PASS, Sparse-
QKLMS, FOBOS-KLMS, KRLS Tracker, Kalman filter, and RAN.

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

Sparse QKLMS

RAN

Iteration number

D
ic
ti
on

ar
y
si
ze FOBOS-KLMS

KRLS Tracker

DR-Φ-PASS

Figure 3.18: Results of Experiment C: dictionary sizes of DR-Φ-PASS,
Sparse-QKLMS, FOBOS-KLMS, KRLS Tracker, Kalman filter, and RAN.

85

Chapter 4

An Efficient KAF Algorithm
with Adaptations of Kernel
Scales and Centers

4.1 Introduction

The primal goal of this chapter is to devise an online algorithm that finds an
efficient model (and the coefficients simultaneously) being able to express the
nonlinear function accurately with reasonably short expansion length. The
efficient model would yield a number of practical benefits such as avoidance
of over-fitting, reduction of computational complexity, saving of memory
storage, improvements of convergence behavior, as well as disclosure of the
latent dimension (interpretability of the resultant estimate).

We propose an efficient adaptive method updating the parameters (scales
and centers) of the Gaussian Kernel and the coefficients alternately to re-
duce the instantaneous squared errors. To enhance the model efficiency, the
instantaneous cost is penalized by the weighted -1 norm of the coefficient
vector, which leads to dictionary pruning. In the kernel adaptive filtering
context, some related works have been proposed to adapt the kernel scales
[53, 54, 55] and centers [56, 57] in the dictionary. The method in [53] up-
dates the scales only when each kernel enters the dictionary and keeps those
scales unchanged after that. Its performance is therefore rather limited. The
method proposed in [54] uses a common scale parameter for all kernel func-
tions. The method in [55, 58] updates both scales and centers individually,
as in the way of the proposed approach. The key difference between the
proposed algorithm and those methods is a novel online dictionary growing
technique, under which the dictionary grows with multiple initial scales se-
lected by a hierarchical selection strategy. The proposed dictionary growing
technique is motivated by the fact that the performance of the aforemen-
tioned alternating update approach depends highly on the initial scales [59].

86

Chapter 4

Specifically, the initial Gaussian scales affect the efficiency and the precision
of the estimate significantly when the selected scale was far from the actual
scales of the target function due to the vanishment of gradients.

The major properties of the proposed algorithm are summarized below.
Multiple initial values for the Gaussian scales are employed to alleviate the
sensitivity to the initial conditions. It is expected here that at least some
of the initial scales are relevant to the estimation task. The use of multiple
initial values, however, may cause undesirable growths of the dictionary size
(which involve high computational complexities and large memory size). To
avoid this, we present an efficient dictionary growing strategy named multi-
scale screening method, which ‘screens’ the large- and small- scale Gaussians
based on the error and novelty criteria. The computational complexity is
reasonably low thanks to a certain selection strategy for dictionary growing
and scale/center updating.

4.2 Nonlinear Model and Cost Function

We define the Gaussian function as

g(u; ξ, c) := exp

(

−‖u− c‖2

2ξ

)

(4.1)

with the scale (variance) parameter ξ > 0 and the center (mean) vector
c ∈ RL. Our time-varying model is then given as

ϕn(u) :=
rn
∑

j=1

h(j)n g(u; ξ(j)n , c(j)n), u ∈ U , (4.2)

with the height h(j)n ∈ R, scale ξ(j)n > 0, and center c
(j)
n ∈ RL of the jth

Gaussian. In this study, the scale ξ(j)n and the center c
(j)
n of each Gaussian

(atom) in the dictionary {g(·; ξ(j)n , c(j)n)}rnj=1, n ∈ N, are regarded as variables.
Namely, those parameters are updated iteratively so that our estimate ϕn

becomes an efficient approximation of the target nonlinear function ψ.
At time instant n, the variables (heights, scales, and centers of rn Gaus-

sians) can be expressed respectively as h := [h(1), h(2), · · · , h(rn)]T ∈ Rrn ,
ξ := [ξ(1), ξ(2), · · · , ξ(rn)]T ∈ Rrn

++, and C := [c(1) c(2) · · · c(rn)] ∈ RL×rn .
The instantaneous cost function is then given by

Θn (h, ξ,C) := Jn (h, ξ,C) + τΩn (h, ξ,C) , (4.3)

where τ > 0 is the regularization parameter, and

Jn (h, ξ,C) :=
1

2
(dn − ϕn(un))

2 (4.4)

87

Chapter 4

Ωn (h, ξ,C) :=
rn
∑

j=1

w(j)
n

∣

∣

∣
h(j)

∣

∣

∣
, (4.5)

for some positive weights w(j)
n > 0. The weighted -1 norm serves to dis-

card those redundant/obsolete Gaussians that make no contribution to the
estimation, yielding parsimonious estimates without causing serious perfor-
mance degradations [28, 87, 35, 36, 42, 88]. Indeed, it has shown in [87]
that obsolete Gaussians remaining in the dictionary may give negative im-
pacts on the performance, and the weighted--1 regularization mitigates such
negative impacts. See [41, 28, 88, 42] for more details about the dictionary
refinement techniques.

Since the squared error function (4.4) is nonconvex for the widths and
centers, it is not practical to give an algorithm and its analysis based on
convex optimization as in Chapter 2 and 3. In this chapter, we thus propose
a heuristic, but efficient, algorithm based on the coordinate descent algo-
rithm [89] as well as presenting the stepsizes that guarantee the monotonic
decreasing of the cost function (4.3). For more details, see Section 4.3.2.

88

Chapter 4

U
p
d
at
e
th
e
d
ic
ti
on

ar
y
by

th
e
m
u
lt
is
ca
le

sc
re
en
in
g
m
et
h
od

.

U
p
d
at
e
th
e
h
ei
gh

ts
h
n
,
th
e
sc
al
es

ξ
n
,

an
d
th
e
ce
nt
er
s
C

n
of

G
au

ss
ia
n
s.

n
→

n
+
1

O
b
se
rv
e
u
n
an

d
d n

.

D
ic
ti
on

ar
y
gr
ow

in
g
st
ep

(S
ec
ti
on

4.
3.
1)

P
ar
am

et
er

u
p
d
at
in
g
st
ep

(S
ec
ti
on

4.
3.
2)

N
ew

G
au

ss
ia
n
g(
·;
ξ(

1
)

in
it
,u

n
)
w
it
h

th
e
la
rg
es
t
sc
al
e
ξ(

1
)

in
it
en
te
rs

th
e
d
ic
ti
on

ar
y.

N
ew

G
au

ss
ia
n
g(
·;
ξ(

Q
)

in
it
,u

n
)
w
it
h

th
e
sm

al
le
st

sc
al
e
ξ(

Q
)

in
it

en
te
rs

th
e
d
ic
ti
on

ar
y.

L
ay
er

1

L
ay
er

QJ
n
(h

n
,ξ

n
,C

n
)
>
ε

co
h
er
en
ce

(1
)
≤
δ

co
h
er
en
ce

(Q
)
≤
δ

Y
es

Y
es

Y
es

N
o

N
o

N
o

U
p
d
at
e
th
e
G
au

ss
ia
n
h
ei
gh

ts

U
p
d
at
e
h
n
by

(4
.1
0)

(s
ee

S
ec
ti
on

4.
3.
2)
.

U
p
d
at
e
th
e
G
au

ss
ia
n
sc
al
es

U
p
d
at
e
ξ
n
by

(4
.1
3)

(s
ee

S
ec
ti
on

4.
3.
2)
.

U
p
d
at
e
th
e
G
au

ss
ia
n
ce
nt
er
s

U
p
d
at
e
C

n
by

(4
.1
6)

(s
ee

S
ec
ti
on

4.
3.
2)
.

(h
n
,ξ

n
,C

n
)

(h
n
+
1
,ξ

n
+
1
,C

n
+
1
)

F
ig
u
re

4.
1:

A
d
ia
gr
am

of
O
N
E
G
A
P
.
A
t
ea
ch

ti
m
e
in
st
an

t
n
,
O
N
E
G
A
P

u
p
d
at
es

th
e
es
ti
m
at
e
in

tw
o
st
ep

s.

89

Chapter 4

4.3 Proposed Algorithm

The proposed algorithm, named ONEGAP, consists of two steps: (i) the
dictionary growing step and (ii) the parameter updating step, where the
latter includes the dictionary pruning process. The flowchart is given in
Figure 4.1. In the first step, the dictionary is initialized to an empty set
(r0 := 0), and it grows under a hierarchical selection strategy using the
sequentially coming data. In the second step, the variables hn, ξn, and Cn

are updated in sequence. Each step will be detailed below.

4.3.1 Dictionary Growing Strategy under Multiscale Screen-
ing

We pay our attention to the following fact: Jn (h, ξ,C) is nonconvex as a
function of each scale parameter ξ(j), and it has shallow slopes at those points
which are far from the optimal point (see [59]). This means that the gradient
vanishes if the initial scale is undesirably large or smaller compared to the
optimal one. In such a case, the learning speeds of the poorly-initialized ξ(j)

become unacceptably slow, and this may cause a serious deterioration of the

whole estimation process. In our preliminary experiments, the use of ξ(1)init
which is hundred times larger/smaller than an adequate scale caused slow
convergence. We thus employ multiple initial values for the Gaussian scales
so that at least some of the initial scales are suitable for the data. To avoid
undesirable growths of the dictionary size due to the use of multiple initial
scales, each input vector is tested from coarse to fine ‘screens’ corresponding
to large- to small- scale Gaussians. This efficient dictionary growing strategy
is named multiscale screening method. The multiscale screening method
consists of the following two sub-steps: (i) the error test and (ii) the novelty
test.

The error test is rather simple. When the estimation error is sufficiently
small, the current estimate is good enough already for the current input un

and therefore there is no need to add the new Gaussian (centered at the
current input un) into the dictionary, as there remains little space for im-
provements in estimation accuracy and such a redundant Gaussian function
may even give negative impacts on the performance as mentioned in the
previous section. The error condition is thus given as follows:

Jn (hn, ξn,Cn) > ε, (4.6)

where ε ≥ 0 is the threshold. Here, hn := [h(1)n , h(2)n , · · · , h(rn)n]T, ξn :=

[ξ(1)n , ξ(2)n , · · · , ξ(rn)n]T, and Cn := [c(1)n c
(2)
n · · · c

(rn)
n]. If the error condition

is satisfied, the novelty test is conducted to select a Gaussian function with
an adequate scale parameter; otherwise, the dictionary does not grow at this
time instant.

90

Chapter 4

The novelty test is performed hierarchically based on the multiscale
screening to select an adequate Gaussian scale. The multiscale screening
aims to enhance the model efficiency. The global structures (the low fre-
quency components) of the nonlinear function ψ can be captured efficiently
by relatively large scale Gaussian functions, while the local structures (the
fine parts) of ψ can be captured efficiently by Gaussian functions of appro-
priately small scales. The central philosophy of the multiscale screening is
the following: (i) extract the global structures at the initial phase of esti-
mation and (ii) extract the local structures (the estimation residual after
removing the global structures) gradually once the dictionary for the global
ones is well developed (for more discussions about the global-to-local order
of the multiscale screening, see Section 4.4.2).

We now explain how to choose the initial scale at each iteration. A wide

range of scales ξ(1)init > ξ(2)init > · · · > ξ(Q)
init > 0 are usually adopted. At time

instant n := 0, the dictionary is empty, and the largest scale ξ(1)init to extract
the global structure is selected automatically without any novelty test, which

means that the function g(·; ξ(1)init,u0) enters the dictionary. From the second
iteration, the novelty test is conducted. At time instant n ≥ 2, the similarity

between g(·; ξ(1)init,un) and (a selected subset of) the current dictionary is
evaluated. (Indeed, the similarity is evaluated only with a subset of the
dictionary selected under some criterion as explained later on for reducing
the computational costs of the novelty test.) If the similarity is sufficiently

low, g(·; ξ(1)init,un) is regarded novel and it enters the dictionary. If, and only
if, the similarity is high, it is regarded redundant and the second Gaussian

g(·; ξ(2)init,un) is tested in the same way. If the similarity is sufficiently low,

g(·; ξ(2)init,un) enters the dictionary, and, if (and only if) the similarity is high,
it is regarded redundant and the third one is tested. This continues until
some Gaussian is regarded novel; if all the Gaussian functions are regarded
redundant, the dictionary does not grow at that time instant. Suppose that

some g(·; ξ(q)init,un) enters the dictionary. Then, the sizes of the variable
vectors and matrix are augmented: the augmented vectors and matrices are

given by ĥn := [hT
n 0]T ∈ Rrn+1, ξ̂n := [ξTn ξ(q)init]

T ∈ Rrn+1, and Ĉn :=
[Cn un] ∈ RL×(rn+1), respectively. Suppose in contrast that no Gaussian
enters the dictionary. In this case, we let ĥn := hn, ξ̂n := ξn, and Ĉn := Cn.

Now, we present the selection strategy and the novelty criterion (the
similarity measure). For computational efficiency, our strategy is the follow-

ing: select a subset {g(·; ξ(j)n , c(j)n)}j∈Jn ⊂ {g(·; ξ(j)n , c(j)n)}rnj=1 of the Gaussian
functions in the dictionary that return the largest values at the current in-
put un (see Figure 4.2). Here, Jn := {j1, · · · , js(NC)

n
} with its cardinality

|Jn| = s(NC)
n denotes the index set of the selected Gaussians. More specifi-

91

Chapter 4

cally, we let {j1, j2, · · · , jrn} = {1, 2, · · · , rn} such that

g(un; ξ
(ji)
n , c(ji)n) ≥ g(un; ξ

(jk)
n , c(jk)n), 1 ≤ i < k ≤ rn. (4.7)

This selection strategy is computationally efficient and is expected to include
such a dictionary atom that maximizes our novelty criterion of L2 coherence
(see [27] for the detail of the coherence criterion)

c(ξ(u),u,ξ(v),v) :=

∣

∣

∣

∣

∣

〈

g(·; ξ(u),u), g(·; ξ(v),v)
〉

L2
∥

∥g(·; ξ(u),u)
∥

∥

L2

∥

∥g(·; ξ(v) ,v)
∥

∥

L2

∣

∣

∣

∣

∣

=

(

4ξ(u)ξ(v)

(ξ(u) + ξ(v))2

)L/4

exp

(

− ‖u− v‖2

2(ξ(u) + ξ(v))

)

∈ (0, 1], (4.8)

where 〈·, ·〉L2 and ‖·‖L2 are the inner product and norm of the L2 space (i.e.,
the space of square integrable functions). See Appendix A for the derivation
of (4.8). Under the selection strategy (4.7) and the L2-coherence criterion

(4.8), the novelty test for the Gaussian g(·; ξ(q)init,un) is given as follows:

max
j∈Jn

∣

∣

∣
c(ξ(j)n , c(j)n , ξ(q)init,un)

∣

∣

∣
≤ δ, (4.9)

where δ ∈ [0, 1] is the prespecified threshold. If the condition in (4.9) is

satisfied, the similarity between g(·; ξ(q)init,un) and the existing dictionary

atoms is sufficiently low and therefore g(·; ξ(q)init,un) is regarded to be novel.
The complexity issue will be discussed in Section 4.4.4.

The error and novelty tests share its underlying philosophy with Platt’s
criteria which checks the estimation error and the Euclidean distance be-
tween the current input vector and its closest center of Gaussian in the
dictionary.

4.3.2 Updates of Heights, Scales, and Centers of Gaussian

The heights hn, scales ξn, and centers Cn of the Gaussians are updated in
a sequence. To reduce the computational costs, the selection strategy (4.7)
presented in Section 4.3.1 is applied to the updates of the scales and centers.

We denote by s(ξ)n and s(c)n the sizes of the selected subsets for ξn and Cn,
respectively.

Update of the heights with dictionary pruning

We employ the APFBS algorithm [60] for the cost function in (4.3) which
is a superposition of the smooth fidelity function Jn and the nonsmooth
regularizer τΩn. Although Fn and Ωn are defined for the variable vectors
and matrix compatible with the dictionary of size rn, we keep the same

92

Chapter 4

1

2

g(·; ξ(1), c(1))

g(·; ξ(2), c(2))

g(·; ξ(3), c(3))

c(1) c(2) c(3)un

g(un; ξ(1), c(1))

g(un; ξ(2), c(2))

g(un; ξ(3), c(3))

U

Figure 4.2: The selection strategy for rn = 3 (three Gaussians) and s(NC)
n =

2. The numbers 1 and 2 denote the priority. In this illustration, g(·; ξ(1), c(1))
and g(·; ξ(3), c(3)) are selected. The unselected Gaussian g(·; ξ(2), c(2)) is not
tested for the sake of computational efficiency.

notation to denote the same functions for the resized variables in accordance
with the dictionary growing and pruning.
Step 1 (Height update including dictionary pruning): Let λh > 0 be
the stepsize parameter.

0. Switch hn, ξn, and Cn to the possibly augmented counterparts ĥn ∈
Rr̂n , ξ̂n ∈ Rr̂n

++, and Ĉn ∈ RL×r̂n , where r̂n is either rn + 1 or rn
depending on whether the dictionary grows or not (see Section 4.3.1).

1. Update the Gaussian coefficients by

hn+1 := T



proxλhτΩn



ĥn − λh
∂Jn

(

ĥn, ξ̂n, Ĉn

)

∂ĥ







 ∈ Rrn+1 ,

(4.10)
where

• proxλhτΩn
(h) is the proximity operator of which the jth output

can be computed as

[proxλhτΩn
(h)]j = max

{
∣

∣

∣
h(j)
∣

∣

∣
− λhτw(j), 0

}

sign(h(j)). (4.11)

The dictionary is resized accordingly by discarding those Gaussian func-
tions associated with the zero components.

93

Chapter 4

The partial differential in (4.10) is given by

∂Jn
(

ĥn, ξ̂n, Ĉn

)

∂ĥ
= −en

(

ĥn, ξ̂n, Ĉn

)

gn, (4.12)

where gn := [g(un; ξ̂
(1)
n , ĉ(1)n), · · · , g(un; ξ̂

(r̂n)
n , ĉ(r̂n)n)]T ∈ Rr̂n and en

(

ĥ, ξ̂, Ĉ
)

:=

dn −
∑r̂n

j=1 ĥ
(j)g(un; ξ̂(j), ĉ(j)), where ĥ(j), ξ̂(j), and ĉ(j) are the jth compo-

nents and column of ĥ, ξ̂, and Ĉ, respectively. The same notation en will
be used to denote the same instantaneous error function for the resized
variables compatible with the size-rn+1 dictionary.

Update of the scales

To update the scale parameters over the set R++, we derive the multiplica-
tive gradient update for the cost function in (4.3).

Step 2 (Scale update): Let λ(j)ξ > 0 be the stepsize parameter.

0. Switch ξ̂n and Ĉn again to its resized counterparts ξ̌n ∈ R
rn+1
++ and

Čn ∈ RL×rn+1 , respectively, compatible with the downsized dictionary
after pruning.

1. Select the index set {j1, j2, · · · , js(ξ)n
} by (4.7) from the renewed dictio-

nary {g(·; ξ̌(j)n , č(j)n)}rn+1
j=1 .

2. Update the scales of the selected Gaussians in a pseudo-code style as
follows:1

for i = 1 : s(ξ)n

ξ̌(ji)n ← ξ̌(ji)n exp

(

−λ(ji)ξ ξ̌(ji)n

∂Jn
(

hn+1, ξ̌n, Čn
)

∂ξ̌(ji)

)

(4.13)

end

Note that the updated scale ξ̌(ji)n will be used to evaluate the partial
differential in (4.13) for updating its subsequent scales. The same
applies to Step 3 (center update) in Section 4.3.2.

3. ξn+1 ← ξ̌n.

1The notation a← b in the pseudo code means “substitute b to a”.

94

Chapter 4

The partial differential in (4.13) is given by

∂Jn
(

hn+1, ξ̌n, Čn
)

∂ξ̌(j)

= −
en
(

hn+1, ξ̌n, Čn
)

h(j)n+1

∥

∥

∥
un − č

(j)
n

∥

∥

∥

2
g(un; ξ̌

(j)
n , č(j)n)

2(ξ̌(j)n)2
. (4.14)

The multiplicative update (4.13) together with (4.14) is derived as follows.
To ensure the strict positivity of ξ̌(j), we change the variable ξ̌(j) into η̌(j) :=
log ξ̌(j) ∈ R which can take any real number. Then, the gradient update for

the corresponding parameter η̌(j)n := log ξ̌(j)n is given, in a pseudo-code style,
as

η̌(j)n ←η̌(j)n − λ
(j)
ξ

∂Jn
(

hn+1, ξ̌n, Čn
)

∂η̌(j)

= η̌(j)n − λ
(j)
ξ ξ̌(j)n

∂Jn
(

hn+1, ξ̌n, Čn
)

∂ξ̌(j)
, (4.15)

where the equality is due to ∂Jn/∂η̌(j) = (∂Jn/∂ξ̌(j)) × (∂ξ̌(j)/∂η̌(j)) =
ξ̌(j)∂Jn/∂ξ̌(j). Operating the inverse map exp(·) of the logarithmic function
to the both sides of (4.15) yields (4.13).

Update of Čn

For the Gaussian centers č
(j)
n , we employ the standard gradient descent

update.

Step 3 (Center update): Let λ(j)c > 0 be the stepsize parameter.

1. Select the index {j1, j2, · · · , js(c)n
} by (4.7) from the renewed dictionary

{g(·; ξ(j)n+1, č
(j)
n)}rn+1

j=1 .

2. Update the centers of the selected Gaussians as follows:

for i = 1 : s(c)n

č(ji)n ← č(ji)n − λ(ji)c

∂Jn
(

hn+1, ξn+1, Čn
)

∂č(ji)
(4.16)

end

3. Cn+1 ← Čn, j = 1, · · · , rn+1.

95

Chapter 4

The partial differential in (4.16) is given by

∂Jn
(

hn+1, ξn+1, Čn
)

∂č(j)

= −
en
(

hn+1, ξn+1, Čn
)

h(j)n+1g(un; ξ
(j)
n+1, č

(j)
n)(un − č

(j)
n)

ξ(j)n+1

. (4.17)

Remark 4.1 The order of the updates (heights, widths, and centers) affects
the performance of the algorithm and the estimates obtained. If the update
of heights results in a sufficiently small error, the adaptations of widths and
centers stagnate and no efficient estimation is obtained. The order of the
proposed method however yields efficient estimates, since even if the update
of heights reduces the error, the soft thresholding operator reproduces a small
error and creates a room for the adaptations of the widths and centers.
The numerical experiments in Section 4.5 show the efficacy of the proposed
algorithm.

Remark 4.2 The selective update strategy of ONEGAP is related to the
set-membership approach [90, 91], which updates the estimate only when the
current error is sufficiently large for reducing the computational complexity
of the parameter update. Some kernel adaptive filtering algorithms based
on the set-membership approach have been proposed [92, 93, 94]. Although
the proposed selection strategy shares the same motivation, the criterion for
selecting the Gaussians to be updated differs significantly from that of the
set-membership approach: the proposed selection strategy checks the values
of Gaussians at the current input un (see Figure 2). In the proposed selec-
tion strategy, moreover, the number of the Gaussians to be updated can be
designed by the user.

4.4 Discussions

4.4.1 Monotone Decreasing Property of Cost Function

ONEGAP alternates the (proximal) gradient updates for the Gaussian coef-
ficients hn, scales ξn, and centers Cn. The standard analysis of the proximal
gradient algorithm can be applied with (local) Lipschitz continuity of the
function. Here, given a metric space (X,d(·, ·)), a mapping T : X → X is
said to be locally Lipschitz continuous on a subset C ⊂ X if, for any pair
(x, y) ∈ C × C, d(Tx, Ty) ≤ γd(x, y) for some constant γ ≥ 0 [82]. If in
particular C = X, T is Lipschitz continuous.

For simplicity, we introduce the following shorthand notation to express
Jn as a function of a specific entry ξ(j) of ξ:

J (ξ(j))
n (ξ(j)) := Jn(hn+1, ξ, Čn)

∣

∣

∣

ξ(i) = ξ̌(i)n , i /= j.
(4.18)

96

Chapter 4

Note here that all the variables excluding ξ(j) are fixed to the up-to-date
values. Likewise, define

J (c(j))
n (c(j)) := Jn(hn+1, ξn+1,C)

∣

∣

∣

c(i) = č
(i)
n , i /= j.

(4.19)

As Jn is quadratic in h, ∂Jn
∂h is clearly Lipschitz continuous with constant

γ(h)n = ‖gn‖2. As the multiplicative update of ξ̌(ji)n in (4.13) is derived

from the (additive) gradient update of η̌(ji)n (:= log ξ̌(ji)n), we consider the

local Lipschitz continuity of ∂J
(ξ(j))
n

∂η(j)
, η(j) := log ξ(j).2 The (local) Lipschitz

continuity of ∂J(ξ(j))
n

∂η(j)
and ∂J(c(j))

n

∂c(j)
is given below.

Lemma 4.1

1. The partial derivative ∂J(ξ(j))
n

∂η(j)
is locally Lipschitz on [t,+∞), t ∈ R,

with constant

γ(η)j,n(t) :=

∣

∣

∣
h(j)n+1

∣

∣

∣

(∣

∣

∣
d̂(j)n

∣

∣

∣
+
∣

∣

∣
h(j)n+1

∣

∣

∣

)

2

∥

∥

∥
un − č(j)n

∥

∥

∥

2
e−t, (4.20)

where d̂(j)n := dn −
∑

i .=j h
(i)
n+1 exp

(

−
∥

∥

∥
un−č

(i)
n

∥

∥

∥

2

2ξ̌(i)n

)

.

2. The partial derivative ∂J
(c(j))
n

∂c(j)
is Lipschitz continuous with constant

γ(c)j,n = δ∗j,n

∣

∣

∣
h(j)n+1

∣

∣

∣

ξ(j)n+1

(
∣

∣

∣
ď(j)n

∣

∣

∣
+ δ∗j,n

∣

∣

∣
h(j)n+1

∣

∣

∣

)

≤

∣

∣

∣
h(j)n+1

∣

∣

∣

ξ(j)n+1

(
∣

∣

∣
ď(j)n

∣

∣

∣
+
∣

∣

∣
h(j)n+1

∣

∣

∣

)

,

(4.21)
where

δ∗j,n := max
i=1,2,··· ,L

δ(i)j,n ∈ (0, 1] (4.22)

with δ(i)j,n := exp

(

−
∑

k .=i(u
(k)
n − č(k)n)2

2ξ(j)n+1

)

∈ (0, 1] and ď(j)n := dn −

∑

i .=j h
(i)
n+1 exp

(

−
∥

∥

∥
un−č

(i)
n

∥

∥

∥

2

2ξ(i)n+1

)

.

proof: See Appendices B and C.

Inspecting (4.20), we can see that the local Lipschitz constant γ(η)j,n(t)
decreases monotonically in t, meaning that the stepsize range allowed for

2The multiplicative update can also be updated with the mirror descent update with
negative entropy [95], as mentioned in [96].

97

Chapter 4

updating the scale parameters becomes narrower as t decreases. This im-

plies that the stepsize bound must be smaller than 2/γ(η)j,n (t) when η̌(j)n is
updated to a smaller value (i.e., when its corresponding gradient is positive
valued). A question of theoretical interest here is the following: under the

standard stepsize range (0, 2/γ(η)j,n (t)), what is the maximal possible t > 0 for

which the cost function is locally Lipschitz with constant γ(η)j,n(t) at the cur-

rent estimate η̌(j)n both before and after the update, so that the monotone
decreasing property is ensured. Such a t is clearly the updated estimate
(which is smaller than before the update) when the gradient is positive.
To ensure the local Lipschitz continuity for all possible stepsizes within the

range (0, 2/γ(η)j,n (t)), we consider the following equation:

t = η̌(j)n −
2

γ(η)j,n(t)

∂J (ξ(j))
n (ξ̌(j)n)

∂η(j)
. (4.23)

We can now present the monotone decreasing property.

Theorem 4.1 Let λh ∈
(

0, 2

γ(h)
n

)

, λ(j)ξ ∈
(

0, 2

γ(η)
j,n(t

(j)
n)

)

, and λ(j)c ∈
(

0, 2

γ(c)
j,n

)

for3

t(j)n =















η̌(j)n ,
∂Jn(ĥn+1, ξ̌n, Čn)

∂η(j)
≤ 0

t̃(j)n ,
∂Jn(ĥn+1, ξ̌n, Čn)

∂η(j)
> 0,

(4.24)

where t̃(j)n is a unique solution of (4.23). Then, after each iteration, it holds
that

Jn (hn, ξn,Cn)− Jn (hn+1, ξn+1,Cn+1) ≥ 0. (4.25)

proof: The claims for λh and λ(j)c are verified directly by applying the mono-
tone decreasing properties of the (proximal) gradient descent [62, 97] in

light of Lemma 4.1. In the rest, we verify the stepsize range of λ(j)ξ . If

∂J(ξ(j))
n (ξ̌(j)n)
∂η(j)

≤ 0, the estimate η̌(j)n increases after the gradient update, and

therefore the (local) Lipschitz constant γ(η)j,n(η̌
(j)
n) is valid over [η̌(j)n ,∞) in

which the updated η̌(j)n lies. If, on the other hand, ∂J(ξ(j))
n (ξ̌(j)n)
∂η(j)

> 0, η̌(j)n

decreases after the update in (4.13), and therefore the maximal t ensur-
ing the local Lipschitz continuity is characterized by (4.23). In this case,

3In (4.24), η̌(j)
n is the parameter before update, as it cannot be used to update the η̌

(j)
n

itself otherwise.

98

Chapter 4

(4.23) has a unique solution since f(t) := t −
(

η̌(j)n − 2

γ(η)
j,n(t)

∂J(ξ(j))
n (ξ̌(j)n)
∂η(j)

)

is continuous and monotonically increasing with limt→+∞ f(t) = +∞ and
limt→−∞ f(t) = −∞.

Equation (4.23) has no closed form solution, and an iterative method

needs to be used to find the t̃(j)n . This is unfavorable in online estimation.
We therefore present efficient designs of the stepsize parameters based on
Theorem 4.1 without solving (4.23) explicitly in Section 4.4.3.

4.4.2 On Global-to-Local Order of Multiscale Screening

We discuss the global-to-local (large-to-small scale) order of the proposed
multiscale screening method. To find an economic way of expressing the
unknown function ψ with our Gaussian model given in (4.2), the appropriate
centers and scales of Gaussian need to be known. This is certainly unrealistic
in online scenarios in which the amount of available data is rather limited
especially at the early phase of estimation. The local structures need to
be expressed with delicate adjustments of center points (as well as scale),
and thus small-scale Gaussians are more sensitive to the mismatch of the
center position than large-scale ones. This is one of the reasons for the
global-to-local order.

Another reason comes from the characteristics of the data-fidelity func-
tion Jn (h, ξ,C) in (4.4). As pointed out in Section 4.3.1, the learning speeds
of ONEGAP become slow when the initial scales are far from the ones of the
target due to the gradient vanishment. The sole use of an undesirably-large
initial scale tends to yield an underfitting estimate, since the corresponding
Gaussian does not fit the nonlinear function ψ. In contrast, the sole use
of an undesirably-small initial scale tends to yield an overfitting estimate
and it also causes an explosion of the dictionary size, since the learning
algorithm seeks to express every detail of ψ with a peaky Gaussian individ-
ually. From the current perspective of the authors, this is caused mainly by
the gradient vanishment issue mentioned above, but nevertheless we can-
not deny the possibility of falling into some local minima. The goal of the
present study is to build an adaptive algorithm which generates an efficient
approximation of ψ, and the use of small initial scale, especially at the early
learning-phrase, is therefore not recommended from this efficiency aspect.
The proposed global-to-local strategy works quite well in practice.

4.4.3 Parameter Design

The parameters δ, ε, and Q control the tradeoff between the computational
complexity and the performance of the algorithm, and users can design
those parameters for each application. As a rule of thumb, the larger the
parameters δ, ε, and Q, the larger the maximal dictionary size. Although the

99

Chapter 4

use of the large dictionary tends to yield fast convergence and low MSEs, this
may cause also an explosion of the computational complexity. Empirically,
setting Q = 3 gives a reasonable performances without an explosion of
the computational complexity. See Section 4.4.4 for more details about
the computational complexity. Empirically, setting the selection parameters

s(NC)
n , s(ξ)n , s(c)n from 3 to 7 gives a reasonably low computational complexity
(see Section 4.5). The parameter β in the weight of the -1 norm (see (4.4))
is the regularization parameter to avoid division by zero, and it is thus set
to some small value such as 10−4.

The stepsize parameters λh, λ
(j)
ξ , and λ(j)c and the regularization param-

eter λ affect the accuracy of the final estimate as well as the convergence
speed, and thus it needs to be carefully designed. In particular, the stepsizes

λ(j)ξ and µ(j)
c as well as λ govern the dictionary size and thus the efficiency

of the final estimate. We present efficient designs of λ(j)ξ and λ(j)c in the
following subsections.

Design of λ(j)c

To ensure the monotone decreasing property in Theorem 4.1, an appropriate

stepsize depends on the Lipschitz constant γ(c)j,n. Unfortunately, γ
(c)
j,n in (4.21)

is defined with ξ(j)n+1, ďn, and h(j)n+1, which are unavailable for designing λ(j)c

prior to adaptation as no prior knowledge is assumed available about the
structure of the target system (see Section 4.2). Fortunately, the initial scale

ξ(q)init could be used as an alternative of ξ(j)n+1, since the current ξ
(j)
n+1 is expected

to be closer to ξ(q)init than (at least most of) the others ξ(q̃)init, q̃ = 1, · · · , q −
1, q+1, · · · , Q. Replacing ξ(j)n+1 by ξ

(q)
init, γ

(c)
j,n is inversely proportional to ξ(q)init,

and an appropriate stepsize is thus proportional to ξ(q)init. Based on the above

discussion, below is a design scheme for the stepsize λ(j)c .

Example 4.1 (Design scheme for λ(j)c) Set λc > 0. For the Gaussians

initialized by ξ(1)init, set the stepsize to λ(j)c = λc. For the Gaussians initialized

by each ξ(q)init, q = 2, · · · , Q, set the stepsize to λ(j)c =
ξ(q)init

ξ(1)init

λc.

Design of λ(j)ξ

In contrast to λ(j)c , one can employ the same value for all λ(j)ξ due to the

following reason. Since γ(ξ)j,n(t) is monotonically increasing in
∥

∥

∥
un − č

(j)
n

∥

∥

∥

2

with lim∥

∥

∥
un−č

(j)
n

∥

∥

∥

2
→∞

γ(ξ)j,n(t) = ∞, we need to set an upper bound for

∥

∥

∥un − č
(j)
n

∥

∥

∥

2
to design λ(j)ξ based on γ(ξ)j,n(t). Meanwhile, a large

∥

∥

∥un − č
(j)
n

∥

∥

∥

2

100

Chapter 4

implies a small output of the Gaussian exp

(

−
∥

∥

∥
un−č

(j)
n

∥

∥

∥

2

2ξ̌(j)n

)

. This means

that the Gaussian gives a negligible impact on the estimation in the vicin-

ity of un when
∥

∥

∥
un − č

(j)
n

∥

∥

∥

2
is sufficiently large. Due to the above dis-

cussions, we now make an upper bound as
∥

∥

∥
un − č

(j)
n

∥

∥

∥

2
≤ −2ξ̌(j)n log a

for some small constant 0 < a @ 1 so that exp

(

−
∥

∥

∥
un−č

(j)
n

∥

∥

∥

2

2ξ̌
(j)
n

)

≥ a.

In the same way as the design scheme for λ(j)c , we replace ξ̌(j)n in (4.20)

by the initial scale ξ(q)init as in the design of λ(j)c with t := log ξ(q)init (see

also (4.24)). Substituting
∥

∥

∥
un − č

(j)
n

∥

∥

∥

2
= −2ξ(q)init log a to (4.20), we ob-

tain γ(ξ)j,n(η
(q)
init)|∥∥

∥
un−č

(i)
n

∥

∥

∥

2
=−2ξ(q)init log a

= − log a
∣

∣

∣
h(j)n+1

∣

∣

∣

(
∣

∣

∣
d̂(j)n

∣

∣

∣
+
∣

∣

∣
h(j)n+1

∣

∣

∣

)

which

no longer depends on ξ(q)init. It is thus reasonable to use the same stepsizes
for all js.

Design of Initial Gaussian Scales

If the components of the target function were known, one could select the

initial Gaussian scales ξ(q)init that are appropriate for those components. In
many applications, however, the target components are unknown prior to
estimation. In such a case, one may want to use a set of Gaussians with a
variety of scales which are regular in a certain sense. As the set of inflection
points of each Gaussian forms a hypersphere of radius

√

ξ(j), the idea is to
place the hyperspheres in a regular fashion. We present a selection example
of the initial Gaussian scales.

Example 4.2 (Initial Gaussian scales) The user sets the largest and small-

est scales ξ(1)init and ξ
(Q)
init to some appropriate values. The other scales are then

set to ξ(q)init :=
√

ξ(1)init − (q − 1)

√

ξ(1)init−
√

ξ(Q)
init

Q−1 , q = 2, · · · , Q− 1.

The one-dimensional case is illustrated in Figure 4.3. Here, the scales ξ(2)init

and ξ(3)init are determined so that the inflection points
√

ξ(q)init of all Gaussians

g(·; ξ(q)init, 0), q = 1, 2, 3, 4, are equally spaced in the interval

[

√

ξ(4)init,
√

ξ(1)init

]

.

The parameter design scheme presented in Example 4.2 works well in prac-
tice as shown in Section 4.5.

4.4.4 Computational Complexity

The computational complexity of ONEGAP at each time instant n is gen-
erally given in terms of the dictionary size rn as well as the input dimension

101

Chapter 4

√

ξ(1)init

√

ξ(3)init

√

ξ(2)init

√

ξ(4)init0

g(·; ξ(1)init, 0)

g(·; ξ(2)init, 0)

g(·; ξ(3)init, 0)

g(·; ξ(4)init, 0)

U

Figure 4.3: An example of initial Gaussian scales for Q = 4.

L. The computational complexity of ONEGAP depends also on s(NC), s(ξ),
s(c), and Q which are supposed to be constant during the adaptation.

Table 4.1 summarizes the overall complexities (the number of real mul-
tiplications) per iteration of ONEGAP and the related algorithms. Here,
the KNLMS algorithm [27], which is a kernelized version of the normal-
ized least mean square [31] algorithm, is a benchmark algorithm in the
kernel adaptive filtering. The quantized kernel least mean square algorithm
with adaptive kernel size (QKLMS-AKS) [53] and the kernel algorithm with
adaptive width (KAW) [98] are kernel adaptive filtering algorithms which
adapt the Gaussian scales. The complexity contains all the multiplications
required at each time n including those for dictionary growing and param-
eter updating. For ONEGAP , the case of the non-selective update (i.e.,
s(NC) = s(ξ) = s(c) = rn) is also considered to show the effectiveness of the
selective update.

Figure 4.4.4 illustrates the complexities as a function of the dictionary
size rn for L = 6 and Q = 3. The figure shows that the complexity of
ONEGAP (s(NC) = 3, s(ξ) = s(c) = 5) is lower than those of ONEGAP
(non-selective update) and RAN. This is due to the selection strategy for
dictionary growing and parameter updating. Although ONEGAP (s(NC) =
3, s(ξ) = s(c) = 5) requires the slightly higher complexity than QKLMS-
AKS, it enjoys significant gains in MSE, as shown in the next section.

102

Chapter 4

Table 4.1: Computational complexities of the proposed and related algo-
rithms.

ONEGAP (L+ 5)rn + 8s(ξ) + (2L+ 4)s(c) +Q(L/4 + 4)s(NC)

QKLMS-AKS rn(L+ 2)
KAW rn(L+ 4) + (rn − 1)2

RAN rn(2L+ 6)
KNLMS rn(L+ 3)
NLMS 2L

4.5 Simulation Results

We show the efficacy of ONEGAP for system identification problems with
two sets of synthetic data and time-series prediction problems with two
benchmark data. For ONEGAP , the dictionaries are constructed by the
multiscale screening method presented in Section 4.3.1. For the weighted

-1 norm, w(j)
n = 1

∣

∣

∣
h
(j)
n

∣

∣

∣
+β

[99] with β = 10−4 is employed. The numbers of

checked/updated Gaussians are set to s(NC)
n = s(ξ)n = s(c)n = 5 in Experiment

1 and 2, and s(NC)
n = s(ξ)n = s(c)n = 4 in Experiment 3, for all n ∈ N. We

remark that those parameters require any strict tuning to obtain reasonable
performances for ONEGAP. The stepsizes and the regularization parameter
require, on the other hand, strict tuning to control the performance or the
dictionary sizes of ONEGAP. The detailed tunings of those parameters are
presented in each of experiments.

Experiment 1: Effectiveness of the Adaptation of Gaussian
Scales and Centers

We consider the following nonlinear function ψ(u) = exp

(

−‖u−0.751‖2

2ξ(1)∗

)

−

3 exp

(

−‖u−1.51‖
2ξ

(2)
∗

2
)

+ 2exp

(

−‖u−2.251‖2

2ξ
(3)
∗

)

, u ∈ R5, which is the sum of

three Gaussian functions with ξ(1)∗ = 1, ξ(2)∗ = 5, and ξ(3)∗ = 0.25, where
1 = [1, · · · , 1]T ∈ R5. The observed signal is generated as dn := ψ(un)+ vn,
n ∈ N, where un is the input data of which each element is randomly
generated from a uniform distribution over [0, 3]5 and vn ∼ N (0, 1.0×10−2)
is the additive white Gaussian noise.

To show that ONEGAP adapts the Gaussian scale and center efficiently,
the performance of ONEGAP is compared with the performance of ONE-

GAP without the adaptation of the Gaussian scales ξ and centers c (λ(j)ξ =

λ(j)c = 0). For ONEGAP , the initial Gaussian scales are selected according

103

Chapter 4

0 100 200 300 400 500
10

0

10
2

10
4

KAW

ONEGAP (s(NC) = 3, s(ξ) = s(c) = 5)

Proposed (non-selective)

QKLMS-AKS
KNLMS

RAN

NLMS

Dictionary size rn

C
om

p
le
xi
ty

Figure 4.4: Computational complexities of the proposed and related algo-
rithms.

to Example 4.2 with ξ(1)init = 100.5 and ξ(3)init = 10−0.5; the stepsizes λ(j)c for the
Gaussian scales are according to Example 4.1 with λc = 0.1; and the other

stepsizes are set to λh = 0.1 and λ(j)ξ = 0.1. The regularization parameter

τ = 10−3 and the parameters of the multiscale screening method are chosen
so that the dictionary size is close to the number of Gaussians contained in
the target and the MSE becomes as low as possible at the steady state. To

show the effectiveness of the design scheme for λ(j)c , we test the performance

of ONEGAP with the constant stepsizes λ(j)c = 0.05, j = 1, · · · , rn+1. For

ONEGAP (λ(j)ξ = λ(j)c = 0), ξ(1)init = 2.5, ξ(2)init = 0.75, and ξ(3)init = 0.1 are
chosen so that the algorithm achieves the best performance. We empiri-
cally found that the use of a large number of Gaussians with small scales
yields small errors when adequate Gaussian parameters are unknown. Even
if the scales of the target function is known, the estimation errors may be-
come large when the centers are located at inadequate positions. For the

algorithm (λ(j)ξ = λ(j)c = 0), the best parameters are chosen such that the
maximal dictionary size is as close as possible to that of ONEGAP .

Figures 4.5, 4.6, and 4.7 depict the normalized minimum differences
of the Gaussian scales between the target function and the estimate, i.e.,

minj=1,··· ,rn

∣

∣

∣
ξ(i)∗ −ξ(j)n

∣

∣

∣

ξ(i)∗

, i = 1, 2, 3, the MSE, and the dictionary size, respec-

tively. All results are averaged over 200 runs.
From Figure 4.5, one can see that the errors of the Gaussian scales are

104

Chapter 4

0 1 2 3 4 5 6 7

10
5

10
-2

10
-1

m
in

j=
1,
···

,r
n

∣ ∣ ∣
ξ(

i)
∗

−
ξ(

j
)

n

∣ ∣ ∣

ξ(
i)

∗

ξ(3)∗ = 0.25ξ(2)∗ = 5

ξ(1)∗ = 1

Iteration number n

Figure 4.5: Results of Experiment 1: the minimum difference of the Gaussian
scales between the target function and the atoms.

reasonably small. Furthermore, Figures 4.6 and 4.7 show that the dictio-
nary size of ONEGAP at the steady state is nearly identical to the number
of Gaussians of the target function, and also ONEGAP is superior to the

algorithm (λ(j)ξ = λ(j)c = 0) in the sense of MSE. ONEGAP achieves the
considerably small steady-state MSE (−41 dB) which is 20 dB lower than

the algorithm (λ(j)ξ = λ(j)c = 0), thanks to the adaptations of the Gaussian

scales and centers. The algorithm (const. λ(j)c) requires many iterations to

reach the steady-state MSE. The proposed design scheme for λ(j)c enables
to use adequate stepsizes for each of Gaussians and consequently ONEGAP
achieves the fast convergence. These results show that ONEGAP quickly
yields the ‘efficient’ estimates by adapting the Gaussian scales and centers

with adequate stepsizes λ(j)c , although ONEGAP has no guarantee to yield
perfectly efficient estimates.

Experiment 2: Effectiveness of the Multiscale Screening

To show the effectiveness of the multiscale screening method presented in
Section 4.3.1, estimation performances of ONEGAPs are studied for such
functions that consist of extremely large and small Gaussians. Specifically,

105

Chapter 4

0 1 2 3 4

10
5

-45

-40

-35

-30

-25

-20

-15

-10

Iteration number n

M
S
E

d
B

ONEGAP

constant µ(j)
c

µ(j)
ξ = µ(j)

c = 0

Figure 4.6: Results of Experiment 1: MSEs.

we consider the nonlinear function

ψ(u) =
5
∑

i

h(i)∗ exp

(

−
∥

∥u− c(i)
∥

∥

2

2ξ(i)∗

)

, u ∈ R3. (4.26)

Here c(i) ∈ R3 is generated from a uniform distribution over [0, 1]3, h(1) = 1,

h(i) = 5, i = 2, · · · , 5, and ξ(i)∗ is generated as ξ(i)∗ =

∣

∣

∣

∣

˜
ξ(i)∗

∣

∣

∣

∣

with

˜
ξ(i)∗ ∼

{

N (100, 10.0), i = 1

N (1× 10−2, 5.0 × 10−3), i = 2, · · · , 5.
(4.27)

The observed signal is generated as dn := ψ(un) + vn, n ∈ N, where un is
the input data of which each element is randomly generated from a uniform
distribution over [0, 1]3 and vn ∼ N (0, 1.0 × 10−2) is the additive white
Gaussian noise. ONEGAP is tested with (i) the multiple initial scales (Q =
3) and (ii) the single initial scale (Q = 1). The results are averaged over 500
independent trials.

For ONEGAP, the initial Gaussian scales are selected according to Ex-

ample 4.2 with ξ(1)init = 102 and ξ(3)init = 10−2; the stepsizes λ(j)c for the Gaus-
sian scales are according to Example 4.1 with λc = 0.1; and the other

stepsizes are set to λh = 0.1 and λ(j)ξ = 0.1. The other stepsizes are set to

λh = 0.1 and λ(j)ξ = 0.1, j = 1, · · · , rn+1. The regularization parameter and

106

Chapter 4

0 1 2 3 4

10
5

0

5

10

15

20

25

30

Iteration number n

d
ic
ti
on

ar
y
si
ze

ONEGAP

constant µ(j)
c

µ(j)
ξ = µ(j)

c = 0

Figure 4.7: Results of Experiment 1: dictionary sizes.

the parameters of the multiscale screening method are chosen in the same
way as in Experiment 1.

For ONEGAP (Q = 1), the two settings for the initial scales are tested:

the large initial-scale ξinit = ξ(1)init = 102 and the small initial-scale ξinit =

ξ(3)init = 10−2. For the small initial-scale, we consider two cases: (i) small
dictionary for the same maximal dictionary size, and (ii) large dictionary
for the same steady-state MSE, as ONEGAP . For the large initial-scale
ξinit = 102, the parameters are selected so that the lowest MSE is attained.

Figures 4.8 and 4.9 illustrate the results in terms of the MSEs and the
dictionary sizes, respectively. In Figure 4.9, one can see that the algorithms
with Q = 1 yield notably high MSE for ξinit = 102 and ξinit = 10−2 (small
dic.). This is because, with the extremely large initial Gaussian scale ξinit =
102, the adaptation of the Gaussian scales tends to stop at large scales, failing
to capture fine fluctuations caused by small scale Gaussians. In contrast,
in the extremely small initial Gaussian scale ξinit = 10−2, the adaptation
tends to stop at small scales, failing to capture the global structure of the
target. Although the MSEs of ξinit = 10−2 (large dic.) is reasonably small
due to the use of the large number of small Gaussians in the initial phase
of estimation, the maximal dictionary size is unacceptably large and the
redundant Gaussians remain for a while as seen in Figure 4.9. These results
are due to the gradient vanishment caused by the nonconvexity of the cost
function as pointed out in Sections 4.3.1 and 4.4.2. ONEGAP attains the
efficient estimates, preventing from the sharp rise of the dictionary size. This

107

Chapter 4

0 1 2 3 4

10
5

-35

-30

-25

-20

-15

-10

-5

ξinit = 102

ξinit = 10−2 (large dic.)

ξinit = 10−2 (small dic.)

ONEGAP

M
S
E

d
B

Iteration number n

Figure 4.8: Results of Experiment 2: MSEs.

shows the effectiveness the global-to-local order of the multiscale screening
method.

Experiment 3: Application to Prediction of Real and Syn-
thetic Time-Series Data

We demonstrate the performance of ONEGAP in application to online pre-
dictions of (a) the laser data [84] from SantaFe dataset and (b) the sequence
generated by Mackey-Glass equation [100].4 Each datum dn is predicted
with un := [dn−1, dn−2, · · · , dn−L]T ∈ U ⊂ RL for L = 6.

ONEGAP is compared with the following algorithms: (i) NLMS, (ii)
RAN (a benchmark algorithm in RBF network field), (iii) the state-of-the-
art algorithm [101] for online time-series estimation which is based on LSTM
neural network architecture, (iv) the state-of-the-art nonlinear estimation al-
gorithms that adapt the Gaussian scales with single initial values: QKLMS-
AKS [53] and KAW [98], the linear Kalman filter with the state-space model
(3.59). In contrast to ONEGAP which discards redundant atoms from the
dictionary by the -1 norm regularization, QKLMS-AKS has no structure to
discard the atoms, i.e., the dictionary size of QKLMS-AKS increases mono-
tonically. Unlike ONEGAP and QKLMS-AKS, KAW fixes the dictionary
size at some predefined values. To be more precise, the dictionary grows at

4The sequence is generated by dxn

dn = −bxn +
axn−t

1+x10
n−t

. with b = 0.1, a = 0.2 and time

delay t = 30

108

Chapter 4

0.5 1 1.5 2 2.5 3 3.5 4

10
5

10
0

10
1

10
2

ξinit = 102

ξinit = 10−2 (large dic.)

Iteration number n

d
ic
ti
on

ar
y
si
ze

(small dic.)
ξinit = 10−2

ONEGAP

Figure 4.9: Results of Experiment 2: dictionary sizes.

every iteration until the dictionary size reaches the predefined value. If the
dictionary size exceeds the predefined value, one atom is discarded from the
dictionary. For ONEGAP , the initial Gaussian scales are determined by

Example 4.2 with ξ(1)init = 10 and Q = 3. Figures 4.10 and 4.11 depict the
learning curves for (a) Santa-Fe dataset and (b) Mackey-Glass data, respec-
tively. Here, (a) 500- and (b) 200- point moving averages of the results are
taken, respectively. Table 4.2 summarizes the squared errors, computational
complexities, and maximal dictionary sizes averaged over all iterations. The
complexities of ONEGAP , RAN, QKLMS-AKS, and KAW are shown in
Table 4.1 with the dictionary sizes averaged over iterations. The complexi-
ties of NLMS and LSTM are counted as 2L and N(m2 +mp), respectively,
where N , m, p are the numbers of particles, output nodes, and input nodes
of the network, respectively. The dictionary size of QKLMS-AKS is se-
lected so that the complexity of QKLMS-AKS is approximately the same
as that of ONEGAP. The dictionary sizes of KAW and RAN is selected so
that the maximal dictionary sizes of KAW and RAN are approximately the
same as ONEGAP . The particle number N of LSTM is selected so as to
attain the same complexity as KAW, which requires the largest complexity
in these algorithms. Note that the dictionary sizes of all algorithms change
dynamically.

Figures 4.10 and 4.11, and Table 4.2 show that the MSEs of ONEGAP
are smaller than those of the others for both data. Furthermore, it can
be seen from Table 4.2 that ONEGAP requires a lower complexity than

109

Chapter 4

0 2000 4000 6000 8000 10000

-30

-25

-20

-15

-10

LSTM

ONEGAP

QKLMS-AKS

KAWRAN

NLMS Kalman

Iteration number n

sq
u
ar
ed

er
ro
r
d
B

Figure 4.10: Learning curves of Experiment 3: (a) laser data from SantaFe
data set.

KAW, RAN, and LSTM. The performance of NLMS and the Klamn filter
are limited since its model is linear and is thus inadequate for the nonlinear
time-series prediction. Again, the performance of KAW is inferior to the
other nonlinear algorithms due to the use of the same Gaussian scales for
all atoms. Note that KAW and LSTM may achieve lower MSEs, but with
high complexity, if a larger-sized dictionary and many particles are used,
respectively.

4.6 Conclusion

We proposed a learning algorithm, named ONEGAP, which adapts the
model parameters, as well as the coefficients, of a weighted sum of the Gaus-
sians. ONEGAP consisted of two steps: the dictionary growing step and the
parameters updating step. In the dictionary growing step, a novel multiple
initialization scheme was presented as a remedy for the gradient vanishing
problem without serious increases of the dictionary size. In the parame-
ter updating step, the Gaussian parameters were updated as well as the
coefficients by the proximal gradient based algorithm. Due to the use of
the -1 norm regularization, the model efficiency was enhanced. Thanks to
the selection strategy for dictionary growing and scale/center updating, the
complexity of ONEGAP was reasonably low. Computer simulations for the
toy examples showed that ONEGAP successfully attains efficient estimates.

110

Chapter 4

0 1000 2000 3000 4000
-35

-30

-25

-20

-15

-10

LSTM

ONEGAP

QKLMS-AKS

KAW

RAN

NLMS

Kalman

Iteration number n

sq
u
ar
ed

er
ro
r
d
B

Figure 4.11: Learning curves of Experiment 3: (b) Mackey-Glass equation.

In application to the time-series data predictions, ONEGAP achieved ap-
proximately 4.7 dB lower MSE than the state-of-the-art online prediction
algorithm.

111

Chapter 4

Table 4.2: Results of Experiment 3.
squared complexity dictionary
error dB size (max)

ONEGAP (a) Mackey-Glass −28.4 339 18
(b) SantaFe −27.37 355 38

QKLMS (a) Mackey-Glass −25.8 382 52
-AKS [53] (b) SantaFe −26.5 365 49
KAW (a) Mackey-Glass −22.1 2901 50
[98] (b) SantaFe −21.5 2485 46
RAN (a) Mackey-Glass −25.1 579 54
[85] (b) SantaFe −25.0 697 51

LSTM (a) Mackey-Glass −26.2 3040 -
[101] (b) SantaFe −22.7 2560 -
NLMS (a) Mackey-Glass −16.2 12 -
[31] (b) SantaFe −17.9 12 -

Kalman (a) Mackey-Glass −18.2 96 -
(b) SantaFe −20.9 96 -

112

Chapter 5

General Conclusion

This thesis was devoted to algorithms for online nonlinear estimation. The
proposed algorithms addressed the following three issues of conventional
KAF algorithms: (i) convergence speed of algorithms, (ii) increase of the
dictionary size, and (iii) the design of kernel parameters.

First, we proposed an efficient kernel adaptive filtering algorithm, called
the Φ-PASS algorithm. The key ideas were projection-along-subspace, se-
lective update, and parallel projection. The projection-along-subspace sys-
tematically eliminated the limitation of updates, yielding excellent perfor-
mances with small dictionary sizes. The selective update effectively reduced
the complexity without any serious degradation of performance, as justified
by a geometric interpretation. The parallel projection yielded fast con-
vergence/tracking accompanied by noise robustness. Numerical examples
demonstrated the benefits from the three ideas as well as the advantages of
the proposed algorithm over the state-of-the-art algorithms.

Second, we proposed the DR-Φ-PASS algorithm. DR-Φ-PASS was ba-
sically the APFBS method, but it performed the gradient step with the
dictionary-dependent inner product and the proximal step with the canon-
ical inner product. It was shown that the sequence of coefficient vectors
generated by the proposed algorithm monotonically approaches, in the Gn-
norm sense, the set of minimizers of the weighted squared-distance cost
function penalized by the -1 norm with the modified weights. The numeri-
cal examples showed that the proposed algorithm achieved effective dictio-
nary refinements as well as fast convergence/tracking under possible data-
nonstationarity with low computational complexity.

Third, we proposed an online nonlinear estimation algorithm, named
ONEGAP, which adapted the Gaussian parameters (scales and centers) as
well as the coefficients to obtain efficient estimates. ONEGAP consisted of
two steps: the dictionary growing step and the parameters updating step. In
the dictionary growing step, a novel multiple initialization scheme was pre-
sented as a remedy for the gradient vanishing problem without increasing the

113

Chapter 5

dictionary size undesirably. In the parameter updating step, the Gaussian
parameters and the coefficients were updated by the proximal gradient-based
algorithm. Due to the use of the -1 norm regularization, the efficiency of the
model enhanced. The Proposed algorithm enjoyed the reasonable compu-
tational complexity thanks to the selection strategy for dictionary growing
and scale/center updating.
Future Work: The final goal of this study is constructing online nonlin-
ear estimation algorithms that have the following desirable properties: (a)
guarantee of convergence, (b) obtainability of an efficient model, and (c)
parameter-free nature (including hyper-parameters).

A more in-depth analysis is required to learn the behavior and the per-
formance of the proposed algorithms. Of particular importance is the con-
vergence analysis and the parameter design of ONEGAP, of which no con-
vergence result is presented in this thesis. A certain notion of convergence
of ONEGAP would be guaranteed based on the knowledge of the nonconvex
optimization in future work.

Our future work moreover concerns (i) applications of the proposed al-
gorithms to online nonlinear estimation tasks, (ii) applications of the pro-
posed multiscale screening method to other nonlinear estimation methods
with Gaussian functions, and (iii) construction of a fast algorithm to track
time-varying systems with the adaptations of model parameters. The details
are given below:

• Many problems in signal processing and machine learning can be cast
as online estimations of unknown nonlinear functions. The main focus
of this thesis is on the algorithm itself. Although the efficacy of the
proposed algorithms is demonstrated in the applications for time-series
data predictions, more tests and experiments are required to show the
effectiveness of the proposed algorithms in a range of fields.

• Designing Gaussian parameters has been recognized as a critical issue
to be resolved [102] not only in the field of KAF but also RBF network,
Gaussian process, and so on. I would like to validate the performance
of the proposed multiscale screening method and show its efficacy,
applying it to other online nonlinear estimation algorithms.

• Estimating time-varying systems is an important issue in many fields.
It is expected that ONEGAP yields reasonable performances by adapt-
ing the Gaussian parameters to track the change of systems. In Chap-
ter 4, time-invariant systems are assumed to focus on obtaining effi-
cient estimates of the target, and no performance verification is pre-
sented for time-varying systems. Further experiments are required to
construct a fast algorithm that tracks time-varying systems.

I believe that the outcomes provided by this study will contribute to
developments for a wide range of applications in a variety of fields.

114

Appendix A

Sketch of the Derivation of
(4.8)

The inner product 〈·, ·〉H between the two normalized Gaussians under the
uniform distribution with infinite interval is given as [79]

〈

g̃(·; ξ(u),u), g̃(·; ξ(v),v)
〉

H
=

1
(

2π(ξ(u) + ξ(v))
)L/2

exp

(

− ‖u− v‖2

2(ξ(u) + ξ(v))

)

,

(A.1)

where g̃(·; ξ, c) := 1
(2πξ)L/2 exp

(

−‖·−c‖2
2ξ

)

, c ∈ RL, and ξ > 0. Meanwhile,

the inner product can be written as

〈

g̃(·; ξ(u),u), g̃(·; ξ(v),v)
〉

H
=

1
(

2π
√

ξ(u)ξ(v)
)L

〈

g(·; ξ(u),u), g(·; ξ(v) ,v)
〉

H
.

(A.2)
We can also easily verify the followings:

〈

g(·; ξ(u),u), g(·; ξ(v),v)
〉

H
=

(

2π
ξ(u)ξ(v)

ξ(u) + ξ(v)

)L/2

exp

(

− ‖u− v‖2

2(ξ(u) + ξ(v))

)

(A.3)
and

∥

∥

∥
g(·; ξ(u),u)

∥

∥

∥

H
=
√

〈

g(·; ξ(u),u), g(·; ξ(u),u)
〉

H =
(

πξ(u)
)L/4

. (A.4)

By using the above inner product and the norm, the coherence (4.8) is
obtained.

115

Appendix B

Proof of (4.20)

For brevity, we let ρ(j)n :=
∥

∥

∥
un − č

(j)
n

∥

∥

∥

2
≥ 0. The function J (ξ(j))

n of ξ(j) can

then be written as

J (ξ(j))
n

(

ξ(j)
)

=
1

2

(

d̂(j)n − h(j)n+1 exp

(

− ρ(j)n

2ξ(j)

))2

. (B.1)

Using the chain rule, the partial derivative of J (ξ(j))
n with respect to η(j) =

log ξ(j) is then given by

∂J (ξ(j))
n

(

ξ(j)
)

∂η(j)
= −

h(j)n+1ρ
(j)
n

2ξ(j)
exp

(

− ρ(j)n

2ξ(j)

)(

d̂(j)n − h(j)n+1 exp

(

− ρ(j)n

2ξ(j)

))

.

(B.2)

For ξ(j), ξ̃(j) > 0, one can verify by the triangle inequality that

∣

∣

∣

∣

∣

∂J (ξ(j))
n (ξ(j))

∂η(j)
− ∂J (ξ(j))

n (ξ̃(j))

∂η(j)

∣

∣

∣

∣

∣

≤
∣

∣

∣
h(j)n+1

∣

∣

∣

[

∣

∣

∣
d̂(j)n

∣

∣

∣

∣

∣

∣

∣

∣

ρ(j)n

2ξ(j)
exp

(

− ρ(j)n

2ξ(j)

)

− ρ(j)n

2ξ̃(j)
exp

(

− ρ(j)n

2ξ̃(j)

)
∣

∣

∣

∣

∣

+
∣

∣

∣
h(j)n+1

∣

∣

∣

∣

∣

∣

∣

∣

ρ(j)n

2ξ(j)
exp

(

−ρ
(j)
n

ξ(j)

)

− ρ(j)n

2ξ̃(j)
exp

(

−ρ
(j)
n

ξ̃(j)

)∣

∣

∣

∣

∣

]

. (B.3)

116

Chapter B

Letting x := ρ(j)n

2ξ(j)
and x̃ := ρ(j)n

2ξ̃(j)
> 0 in (B.3) yields

∣

∣

∣

∣

∣

∂J (ξ(j))
n (ξ(j))

∂η(j)
− ∂J (ξ(j))

n (ξ̃(j))

∂η(j)

∣

∣

∣

∣

∣

≤
∣

∣

∣
h(j)n+1

∣

∣

∣

(∣

∣

∣
d̂(j)n

∣

∣

∣

∣

∣xe−x − x̃e−x̃
∣

∣+
∣

∣

∣
h(j)n+1

∣

∣

∣

∣

∣xe−2x − x̃e−2x̃
∣

∣

)

.

(B.4)

Considering the maximal magnitude of the gradient, the following inequali-
ties are readily verified:

∣

∣xe−ax − x̃e−ax̃
∣

∣ ≤ |x− x̃| , a > 0. (B.5)

Combining (B.4) and (B.5), we obtain
∣

∣

∣

∣

∣

∂J (ξ(j))
n (ξ(j))

∂η(j)
− ∂J (ξ(j))

n (ξ̃(j))

∂η(j)

∣

∣

∣

∣

∣

≤
∣

∣

∣
h(j)n+1

∣

∣

∣

(
∣

∣

∣
d̂(j)n

∣

∣

∣
+
∣

∣

∣
h(j)n+1

∣

∣

∣

)

|x− x̃| . (B.6)

On the other hand, by using ξ(j) = eη
(j)
, |x− x̃| is rewritten as

|x− x̃| =

∣

∣

∣

∣

∣

ρ(j)n

2ξ(j)
− ρ(j)n

2ξ̃(j)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ρ(j)n

2

∣

∣

∣

∣

∣

∣

∣

∣
e−η(j) − e−η̃(j)

∣

∣

∣ . (B.7)

Here, due to the convexity of e−η , η ∈ R, one can verify that
∣

∣

∣
e−η(j) − e−η̃(j)

∣

∣

∣
≤

e−t
∣

∣η(j) − η̃(j)
∣

∣ , ∀η(j), η̃(j) ≥ t ∈ R, from which (B.7) leads to

|x− x̃| ≤

∣

∣

∣

∣

∣

ρ(j)n

2

∣

∣

∣

∣

∣

e−t
∣

∣

∣
η(j) − η̃(j)

∣

∣

∣
, ∀η(j), η̃(j) ≥ t. (B.8)

Combining (B.6) and (B.8) yields

∣

∣

∣

∣

∣

∂J (ξ(j))
n (ξ(j))

∂η(j)
− ∂J (ξ(j))

n (ξ̃(j))

∂η(j)

∣

∣

∣

∣

∣

≤

∣

∣

∣
h(j)n+1ρ

(j)
n

∣

∣

∣

2

(∣

∣

∣
d̂(j)n

∣

∣

∣
+
∣

∣

∣
h(j)n+1

∣

∣

∣

)

e−t
∣

∣

∣
η(j) − η̃(j)

∣

∣

∣
, ∀η(j), η̃(j) ≥ t.

117

Appendix C

Proof of (4.21)

We first prove the following lemma.

Lemma C.1 For f(c) := c exp
(

−c2

ξ

)

, c ∈ R, ξ > 0, the following inequal-

ity holds:

|f(c)− f(c̃)| ≤ |c− c̃| . (C.1)

The first and second derivatives of f are given by f ′(c) = exp
(

−c2

ξ

)

−
2c2

ξ exp
(

−c2

ξ

)

and f ′′(c) = 4c
ξ2
(

−3
2ξ + c2

)

exp
(

−c2

ξ

)

, respectively. By solv-

ing f ′′(c) = 0, we obtain the inflection points c = 0 and c = ±
√

3
2ξ of f , and

at those points f ′ has the following values: f ′(0) = −1 and f ′
(

±
√

3
2ξ
)

=

−2e−
3
2 , respectively. Since |f ′(0)| >

∣

∣

∣
f ′
(

±
√

3
2ξ
)∣

∣

∣
and limc→±∞ f ′(c) = 0,

we obtain (C.1).

Proof of (4.21): For brevity, we drop the time index n. We shall then
prove the following inequality:

∥

∥

∥

∥

∥

∂J (c(j))(c)

∂c(j)
− ∂J (c(j))(c̃)

∂c(j)

∥

∥

∥

∥

∥

≤δ∗
∣

∣h(j)
∣

∣

ξ(j)

(
∣

∣

∣
ď(j)
∣

∣

∣
+ δ∗

∣

∣

∣
h(j)

∣

∣

∣

)

‖c− c̃‖ ,

c, c̃ ∈ RL. (C.2)

(Note that the inequality in (4.21) can readily be verified by δ∗ ≤ 1.) The

function J (c(j)) of c(j) can be written as

J (c(j))
(

c(j)
)

=
1

2

(

ď(j) − h(j) exp

(

−
∥

∥u− c(j)
∥

∥

2

2ξ(j)

))2

, (C.3)

118

Chapter C

and the ith component its partial derivative is given as

[

∂J (c(j))(c)

∂c(j)

]

i

= −h(j)

ξ(j)
(u(i) − c(i))

(

ď(j) − h(j) exp

(

−‖u− c‖2

2ξ(j)

))

exp

(

−‖u− c‖2

2ξ(j)

)

,

(C.4)

where u(i) and c(i) denote the ith components of u and c, respectively.

By (C.4) and exp
(

−‖u−c‖2

2ξ(j)

)

= δ(i) exp
(

− (u(i)−c(i))2

2ξ(j)

)

, we can verify, for

c, c̃ ∈ RL, that
∣

∣

∣

∣

∣

[

∂J (c(j))(c)

∂c(j)

]

i

−
[

∂J (c(j))(c̃)

∂c(j)

]

i

∣

∣

∣

∣

∣

≤
∣

∣h(j)ď(j)δ(i)
∣

∣

∣

∣ξ(j)
∣

∣

∣

∣

∣

∣

∣

(u(i) − c(i)) exp

(

−(u(i) − c(i))2

2ξ(j)

)

−(u(i) − c̃(i)) exp

(

−(u(i) − c̃(i))2

2ξ(j)

)
∣

∣

∣

∣

∣

+

∣

∣h(j)δ(i)
∣

∣

2

∣

∣ξ(j)
∣

∣

∣

∣

∣

∣

∣

(u(i) − c(i)) exp

(

−(u(i) − c(i))2

ξ(j)

)

−(u(i) − c̃(i)) exp

(

−(u(i) − c̃(i))2

ξ(j)

)
∣

∣

∣

∣

∣

.

(C.5)

Direct applications of Lemma C.1 to the two terms in the right side of (C.5)

for c = (u(i) − c(i)) and c = (u(i)−c(i))√
2

yields

∣

∣

∣

∣

∣

[

∂J (c(j))(c)

∂c(j)

]

i

−
[

∂J (c(j))(c̃)

∂c(j)

]

i

∣

∣

∣

∣

∣

≤
∣

∣h(j)ď(j)δ(i)
∣

∣

∣

∣ξ(j)
∣

∣

∣

∣

∣
c(i) − c̃(i)

∣

∣

∣
+

∣

∣h(j)δ(i)
∣

∣

2

∣

∣ξ(j)
∣

∣

∣

∣

∣
c(i) − c̃(i)

∣

∣

∣

=
δ(i)
∣

∣h(j)
∣

∣

ξ(j)

(∣

∣

∣
ď(j)
∣

∣

∣
+ δ(i)

∣

∣

∣
h(j)

∣

∣

∣

) ∣

∣

∣
c(i) − c̃(i)

∣

∣

∣
. (C.6)

119

Chapter C

By (C.6), we finally obtain the following bound:

∥

∥

∥

∥

∥

∂J (c(j))(c)

∂c(j)
− ∂J (c(j))(c̃)

∂c(j)

∥

∥

∥

∥

∥

2

=
L
∑

i=1

(

δ(i)
∣

∣h(j)
∣

∣

ξ(j)

(∣

∣

∣
ď(j)
∣

∣

∣
+ δ(i)

∣

∣

∣
h(j)

∣

∣

∣

) ∣

∣

∣
c(i) − c̃(i)

∣

∣

∣

)2

≤
(

δ∗
∣

∣h(j)
∣

∣

ξ(j)

(∣

∣

∣
ď(j)
∣

∣

∣
+ δ∗

∣

∣

∣
h(j)

∣

∣

∣

)

)2 L
∑

i=1

∣

∣

∣
c(i) − c̃(i)

∣

∣

∣

2

=

(

δ∗
∣

∣h(j)
∣

∣

ξ(j)

(∣

∣

∣
ď(j)
∣

∣

∣
+ δ∗

∣

∣

∣
h(j)

∣

∣

∣

)

)2

‖c− c̃‖2 , (C.7)

where δ∗ := maxi=1,··· ,L δ(i).

120

Bibliography

[1] Mohinder Grewal and Angus Andrews, “Kalman filtering: Theory
and applications,” Jan. 1985.

[2] Simon J. Julier and Jeffrey K. Uhlmann, “New extension of the
Kalman filter to nonlinear systems,” in Signal Processing, Sensor
Fusion, and Target Recognition VI, Ivan Kadar, Ed. International So-
ciety for Optics and Photonics, 1997, vol. 3068, pp. 182 – 193, SPIE.

[3] Y. Shi, K. Sun, L. Huang, and Y. Li, “Online identification of perma-
nent magnet flux based on extended Kalman filter for IPMSM drive
with position sensorless control,” IEEE Transactions on Industrial
Electronics, vol. 59, no. 11, pp. 4169–4178, 2012.

[4] E. Laroche, E. Sedda, and C. Durieu, “Methodological insights for
online estimation of induction motor parameters,” IEEE Transactions
on Control Systems Technology, vol. 16, no. 5, pp. 1021–1028, 2008.

[5] E. Ghahremani and I. Kamwa, “Dynamic state estimation in power
system by applying the extended Kalman filter with unknown inputs
to phasor measurements,” IEEE Transactions on Power Systems, vol.
26, no. 4, pp. 2556–2566, 2011.

[6] E. Ghahremani and I. Kamwa, “Online state estimation of a syn-
chronous generator using unscented Kalman filter from phasor mea-
surements units,” IEEE Transactions on Energy Conversion, vol. 26,
no. 4, pp. 1099–1108, 2011.

[7] M. Partovibakhsh and G. Liu, “An adaptive unscented Kalman filter-
ing approach for online estimation of model parameters and state-of-
charge of lithium-ion batteries for autonomous mobile robots,” IEEE
Transactions on Control Systems Technology, vol. 23, no. 1, pp. 357–
363, 2015.

[8] C. Wang, Z. Wang, L. Zhang, D. Cao, and D. G. Dorrell, “A vehi-
cle rollover evaluation system based on enabling state and parameter
estimation,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2020.

121

BIBLIOGRAPHY

[9] X. Ding, Z. Wang, L. Zhang, and C. Wang, “Longitudinal vehicle
speed estimation for four-wheel-independently-actuated electric vehi-
cles based on multi-sensor fusion,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 11, pp. 12797–12806, 2020.

[10] V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal Processing
Magazine, vol. 8, no. 3, pp. 10–26, 1991.

[11] Li Tan and J. Jiang, “Adaptive volterra filters for active control of
nonlinear noise processes,” IEEE Transactions on Signal Processing,
vol. 49, no. 8, pp. 1667–1676, 2001.

[12] Taiho Koh and E. Powers, “Second-order volterra filtering and its
application to nonlinear system identification,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 33, no. 6, pp. 1445–
1455, December 1985.

[13] H. Al-Duwaish, M. N. Karim, and V. Chandrasekar, “Use of multilayer
feedforward neural networks in identification and control of wiener
model,” in Proc. IEEE Control Theory Appl., 1996, vol. 143, pp.
255–258.

[14] Kurt Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4, no. 2, pp. 251 – 257, 1991.

[15] M. Gori and A. Tesi, “On the problem of local minima in back-
propagation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 1, pp. 76–86, 1992.

[16] Balázs Csanád Csáji et al., “Approximation with artificial neural net-
works,” Faculty of Sciences, Etvs Lornd University, Hungary, vol. 24,
no. 48, pp. 7, 2001.

[17] B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press,
Cambridge, MA, 2001.

[18] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic,
New York, 4th edition, 2008.

[19] Carl Edward Rasmussen and Christopher K. I. Williams, Gaussian
Processes for Machine Learning (Adaptive Computation and Machine
Learning), The MIT Press, 2005.

[20] A. O’Hagan, “Curve fitting and optimal design for prediction,” Jour-
nal of the Royal Statistical Society. Series B (Methodological), vol. 40,
no. 1, pp. 1–42, 1978.

122

BIBLIOGRAPHY

[21] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Processing, vol. 52, no. 8, pp. 2165–2176,
Aug. 2004.

[22] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” IEEE Trans. Signal Processing, vol. 52, no. 8, pp. 2275–
2285, Aug. 2004.

[23] A. V. Malipatil, Y.-F. Huang, S. Andra, and K. Bennett, “Kernel-
ized set-membership approach to nonlinear adaptive filtering,” in
Proc. IEEE ICASSP, 2005, pp. 149–152.

[24] W. Liu and J. Pŕıncipe, “Kernel affine projection algorithms,”
EURASIP J. Adv. Signal Process., vol. 2008, pp. 1–12, 2008.

[25] W. Liu, P. P. Pokharel, and J. C. Pŕıncipe, “The kernel least-mean-
square algorithm,” IEEE Trans. Signal Processing, vol. 56, no. 2, pp.
543–554, Feb. 2008.

[26] K. Slavakis, S. Theodoridis, and I. Yamada, “Online kernel-based clas-
sification using adaptive projection algorithms,” IEEE Trans. Signal
Processing, vol. 56, no. 7, pp. 2781–2796, July 2008.

[27] C. Richard, J.-C. M. Bermudez, and P. Honeine, “Online prediction
of time series data with kernels,” IEEE Trans. Signal Processing, vol.
57, no. 3, pp. 1058–1067, Mar. 2009.

[28] M. Yukawa, “Multikernel adaptive filtering,” IEEE Trans. Signal
Processing, vol. 60, no. 9, pp. 4672–4682, Sep. 2012.

[29] B. Chen, S. Zhao, P. Zhu, and J. C. Pŕıncipe, “Quantized kernel least
mean square algorithm,” IEEE Trans. Neural Networks and Learning
Systems, vol. 23, no. 1, pp. 22–32, Dec. 2012.

[30] Steven Van Vaerenbergh, Miguel Lázaro-Gredilla, and Ignacio Santa-
maŕıa, “Kernel recursive least-squares tracker for time-varying regres-
sion,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 8, pp. 1313–1326, Aug. 2012.

[31] A. H. Sayed, Adaptive Filters, John Wiley & Sons, 2008.

[32] S. Haykin, Adaptive Filter Theory, Prentice Hall, India, 1996.

[33] W. Liu, J. C. Pŕıncipe, and S. Haykin, Kernel Adaptive Filtering,
Wiley, New Jersey, 2010.

[34] W. Liu, I. Park, and J. Pŕıncipe, “An information theoretic approach
of designing sparse kernel adaptive filters,” IEEE Trans. Neural Net-
work and Learning Systems, vol. 20, no. 12, pp. 1950–1961, Dec. 2009.

123

BIBLIOGRAPHY

[35] M. Yukawa, “On use of multiple kernels in adaptive learning —
Extended reproducing kernel Hilbert space with Cartesian product,”
in Proc. IEICE Signal Processing Symposium, Nov. 2010, pp. 59–64.

[36] M. Yukawa, “Nonlinear adaptive filtering techniques with multiple
kernels,” in Proc. EUSIPCO, 2011, pp. 136–140.

[37] Michael Elad, Sparse and Redundant Representations: From Theory
to Applications in Signal and Image Processing, Springer Publishing
Company, 2010.

[38] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse
representation: Algorithms and applications,” IEEE Access, vol. 3,
pp. 490–530, 2015.

[39] J. Lesouple, T. Robert, M. Sahmoudi, J. Tourneret, and W. Vigneau,
“Multipath mitigation for GNSS positioning in an urban environment
using sparse estimation,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 20, no. 4, pp. 1316–1328, 2019.

[40] D. Meng, X. Wang, M. Huang, L. Wan, and B. Zhang, “Robust
weighted subspace fitting for DOA estimation via block sparse recov-
ery,” IEEE Communications Letters, vol. 24, no. 3, pp. 563–567, 2020.

[41] W. Gao, J. Chen, C. Richard, and J. Huang, “Online dictionary
learning for kernel LMS,” IEEE Trans. Signal Processing, vol. 62, no.
11, pp. 2765–2777, June 2014.

[42] B. Chen, S. Zhao, P. Zhu, S. Seth, and J. C. Pŕıncipe, “Online
efficient learning with quantized KLMS and L1 regularization,” in
Proc. Int. Joint Conf. Neural Networks, 2012.

[43] Songlin Zhao, Badong Chen, Pingping Zhu, and José C. Pŕıncipe,
“Fixed budget quantized kernel least-mean-square algorithm,” Signal
Processing, vol. 93, no. 9, pp. 2759–2770, 2013.

[44] I. Yamada and N. Ogura, “Adaptive projected subgradient method
for asymptotic minimization of sequence of nonnegative convex func-
tions,” Numer. Funct. Anal. Optim., vol. 25, no. 7&8, pp. 593–617,
2004.

[45] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, “Multi-
ple kernel learning, conic duality, and the smo algorithm,” in
Proc. Int. Conf. Machine Learning. 2004, ACM.

[46] M. Yukawa, “Adaptive learning in cartesian product of reproducing
kernel Hilbert spaces,” IEEE Trans. Signal Processing, vol. 63, no. 22,
pp. 6037–6048, Nov. 2015.

124

BIBLIOGRAPHY

[47] M. Kasparick, R. L. G. Cavalcante, S. Valentin, S. Stańczak, and
M. Yukawa, “Kernel-based adaptive online reconstruction of cover-
age maps with side information,” IEEE Transactions on Vehicular
Technology, vol. 65, no. 7, pp. 5461–5473, July 2016.

[48] D. A. Awan, R. L. G. Cavalcante, M. Yukawa, and S. Stanczak, “De-
tection for 5g-noma: An online adaptive machine learning approach,”
in 2018 IEEE International Conference on Communications (ICC),
May 2018, pp. 1–6.

[49] B. Shin, M. Yukawa, R. L. G. Cavalcante, and A. Dekorsy, “Dis-
tributed adaptive learning with multiple kernels in diffusion networks,”
IEEE Transactions on Signal Processing, vol. 66, no. 21, pp. 5505–
5519, Nov 2018.

[50] D. A. Awan, R. L. G. Cavalcante, M Yukawa, and S. Stanczak, Adap-
tive Learning for Symbol Detection: A Reproducing Kernel Hilbert
Space Approach, chapter 11, pp. 197–211, Machine Learning for Fu-
ture Wireless Communications. Wiley, New York, 2020.

[51] M. Yukawa and R. ishii, “Online model selection and learning by
multikernel adaptive filtering,” in Proc. EUSIPCO, 2013, pp. 1–5.

[52] O. Toda and M. Yukawa, “Online model-selection and learning for
nonlinear estimation based on multikernel adaptive filtering,” IEICE
Trans. Fundamentals, vol. 1, no. E100-A, pp. 236–250, Jan. 2017.

[53] B. Chen, J. Liang, N. Zheng, and J. C. Principe, “Kernel least mean
square with adaptive kernel size,” Neurocomputing, vol. 191, pp. 95–
105, 2013.

[54] T. Wada and T. Tanaka, “Doubly adaptive kernel adaptive filtering,”
in Proc. APSIPA, 2017, TA-P3.6.

[55] T. Wada, K.Fukumori, and T. Tanaka, “Dictionary learning for Gaus-
sian kernel adaptive filtering with variable kernel center and width,”
in Proc. IEEE ICASSP, April 2018.

[56] C. Saide, R. Lengelle, P. Honeine, C. Richard, and R. Achkar, “Dictio-
nary adaptation for online prediction of time series data with kernels,”
in Proc. IEEE Statistical Signal Process- ing Workshop (SSP), 2012,
pp. 604–607.

[57] C. Saide, R. Lengelle, P. Honeine, and R. Achkar, “Onlinekernel adap-
tive algorithms with dictionary adaptation for mimo models,” IEEE
Signal Processing Letter, vol. 20, no. 5, pp. 535–538, 2013.

125

BIBLIOGRAPHY

[58] H. Chen, Y. Gong, X. Hong, and S. Chen, “A fast adaptive tun-
able rbf network for nonstationary systems,” IEEE Transactions on
Cybernetics, vol. 46, no. 12, pp. 2683–2692, Dec 2016.

[59] M. Takizawa and M. Yukawa, “Steepening squared error function fa-
cilitates online adaptation of Gaussian scales,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 5450–5454.

[60] Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, “A sparse
adaptive filtering using time-varying soft-thresholding techniques,” in
Proc. IEEE ICASSP, 2010, pp. 3734–3737.

[61] Ingo Steinwart, “On the influence of the kernel on the consistency of
support vector machines,” Journal of machine learning research, vol.
2, no. Nov, pp. 67–93, 2001.

[62] Yurii Nesterov, Introductory lectures on convex optimization: A basic
course, vol. 87, Springer Science & Business Media, 2013.

[63] I. Yamada, K. Slavakis, and K. Yamada, “An efficient robust adap-
tive filtering algorithm based on parallel subgradient projection tech-
niques,” IEEE Trans. Signal Processing, vol. 50, no. 5, pp. 1091–1101,
May 2002.

[64] M. Yukawa and I. Yamada, “Pairwise optimal weight realization —
Acceleration technique for set-theoretic adaptive parallel subgradient
projection algorithm,” IEEE Trans. Signal Processing, vol. 54, no. 12,
pp. 4557–4571, Dec. 2006.

[65] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in
a world of projections: a unifying framework for linear and nonlinear
classification and regression tasks,” IEEE Signal Processing Magazine,
vol. 28, no. 1, pp. 97–123, Jan. 2011.

[66] P. L. Combettes, “The foundations of set theoretic estimation,”
Proc. IEEE, vol. 81, no. 2, pp. 182–208, Feb. 1993.

[67] M. Yukawa, K. Slavakis, and I. Yamada, “Adaptive parallel quadratic-
metric projection algorithms,” IEEE Trans. Audio, Speech and Lan-
guage processing, vol. 15, no. 5, pp. 1665–1680, July 2007.

[68] M. Yukawa and I. Yamada, “A unified view of adaptive variable-
metric projection algorithms,” EURASIP Journal on Advances in
Signal Processing,, vol. 2009, no. 34, pp. 1–13, July 2009.

[69] D. G. Luenberger, Ed., Optimization by Vector Space Methods, New
York: Wiley, 1969.

126

BIBLIOGRAPHY

[70] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University
Press, New York, 1985.

[71] T. J. Dodd, V. Kadirkamanathan, and R. F. Harrison, “Function
estimation in Hilbert space using sequential projections,” in IFAC
Conf. Intell. Control Syst. Signal Process., 2003, pp. 113–118.

[72] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile, “Tracking the best
hyperplane with a simple budget perceptron,” Journal of Machine
Learning Research, vol. 69, no. 2-3, pp. 143–167, 2007.

[73] Francesco Orabona, Joseph Keshet, and Barbara Caputo, “The pro-
jectron: A bounded kernel-based perceptron,” in Proc. ICML, 2008,
pp. 720–727.

[74] Peilin Zhao, Jialei Wang, Pengcheng Wu, Rong Jin, and Steven C. H.
Hoi, “Fast bounded online gradient descent algorithms for scalable
kernel-based online learning,” in Proc. ICML, 2012.

[75] I. Steinwart, “On the influence of the kernel on the consistency of
support vector machines,” J. Mach. Learn. Res., vol. 2, pp. 67–93,
2001.

[76] M. Yukawa and I. Yamada, “A deterministic analysis of linearly con-
strained adaptive filtering algorithms,” in Proc. EUSIPCO, 2011, pp.
131–135.

[77] Masahiro Yukawa, Youngchul Sung, and Gilwon Lee, “Dual-domain
adaptive beamformer under linearly and quadratically constrained
minimum variance,” IEEE Trans. Signal Process., vol. 61, no. 11,
pp. 2874–2886, June 2013.

[78] M. Yukawa and Y. Saito, “Widely linear LQCMV beamformer and
augmented dual-domain adaptive algorithm,” in Proc. IEEE ICICS,
2013, pp. 1–5.

[79] M. Ohnishi and M. Yukawa, “Online nonlinear estimation via iterative
L2-space projections: Reproducing kernel of subspace,” IEEE Trans.
Signal Processing, vol. 66, 2018.

[80] M. Takizawa, M. Yukawa, and C. Richard, “A stochastic behavior
analysis of stochastic restricted-gradient descent algorithm in repro-
ducing kernel Hilbert spaces,” pp. 2001–2005, 2015.

[81] B. Widrow and M.E. Hoff, “Adaptive switching circuits.,” IRE
WESCON Convention Record, pp. 96–104, Aug. 1960.

[82] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, Springer, New York, 2011.

127

BIBLIOGRAPHY

[83] Jie Chen, Wei Gao, Cédric Richard, and J.-C. M. Bermudez, “Con-
vergence analysis of kernel LMS algorithm with pre-tuned dictionary,”
in Proc. IEEE ICASSP, 2014, pp. 7243–7247.

[84] A. S. Weigend and EDS N. A. Gershenfeld, Eds., Time Series Pre-
diction: Forecasting the Future and Understanding the Past Reading,
MA, Addition-Weasly, 1994.

[85] J. Platt, “A resourse-allocating network for function interpolation,”
Neural comput., vol. 3, no. 2, pp. 213–225, 1991.

[86] Masahiro Yukawa and Klaus-Robert Müller, “Why does a Hilbertian
metric work efficiently in online learning with kernels?,” IEEE Signal
Processing Letters, vol. 23, no. 10, pp. 1424–1428, 2016.

[87] W. Gao, J. Chen, C. Richard, and J. Huang, “Online dictionary
learning for kernel LMS analysis and forward-backward splitting algo-
rithm,” in IEEE Trans. Signal Process., 2013, submitted.

[88] Masaaki Takizawa and Masahiro Yukawa, “Efficient dictionary-
refining kernel adaptive filter with fundamental insights,” IEEE
Trans. Signal Processing, vol. 64, no. 16, pp. 4337–4350, Aug. 2016.

[89] S. J. Wright, Coordinate descent algorithms, Springer Berlin Heidel-
berg, 2015.

[90] Paulo Diniz, Adaptive Filtering: Algorithms and Practical Implemen-
tation, 01 2008.

[91] Wallace A Martins, Markus VS Lima, Paulo SR Diniz, and Tadeu N
Ferreira, “Optimal constraint vectors for set-membership affine pro-
jection algorithms,” Signal Processing, vol. 134, pp. 285–294, 2017.

[92] Andre Flores and Rodrigo C de Lamare, “Set-membership kernel
adaptive algorithms,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp.
2676–2680.

[93] Amaresh V Malipatil, Yih-Fang Huang, Srinivas Andra, and Kristin
Bennett, “Kernelized set-membership approach to nonlinear adaptive
filtering,” in Proceedings.(ICASSP’05). IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, 2005. IEEE, 2005,
vol. 4, pp. iv–149.

[94] K. Chen, S. Werner, A. Kuh, and Y. Huang, “Nonlinear adaptive
filtering with kernel set-membership approach,” IEEE Transactions
on Signal Processing, vol. 68, pp. 1515–1528, 2020.

128

BIBLIOGRAPHY

[95] A. Nemirovski and D. Yudin, Problem complexity and Method Effi-
ciency in Optimization, Wiley, 1983.

[96] M. Takizawa and M. Yukawa, “Online learning with self-tuned Gaus-
sian kernels: Good kernel-initialization by multiscale screening,” in
IEEE ICASSP, 2019, pp. 4863–4867.

[97] Amir Beck, First-order methods in optimization, SIAM, 2017.

[98] H. Fan, Q. Song, and S. B. Shrestha, “Kernel online learning with
adaptive kernel width,” Neurocomputing, vol. 175, pp. 233–242, 2016.

[99] M. Yukawa, Y. Tawara, M. Yamagishi, and I. Yamada, “Sparsity-
aware adaptive filters based on lp-norm inspired soft-thresholding tech-
niqu,” in Proc. IEEE International Symposium on Circuits and Sys-
tems (ISCAS), 2012, pp. 2749–2752.

[100] MC Mackey and L Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, no. 4300, pp. 287–289, 1977.

[101] T. Ergen and S. S. Kozat, “Efficient online learning algorithms based
on LSTM neural networks,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 8, pp. 3772–3783, Aug. 2018.

[102] Christopher M Bishop, Pattern recognition and machine learning,
springer, 2006.

129

Publication Related to Dissertation

Articles in Journals

1. Masa-aki Takizawa and Masahiro Yukawa, “Adaptive nonlinear esti-
mation based on parallel projection along affine subspaces in repro-
ducing kernel Hilbert space”, IEEE Trans. Signal Processing, vol.63,
no.16, pp.4257–4269, August 2015.

2. Masa-aki Takizawa and Masahiro Yukawa, ”Efficient dictionary-refining
kernel adaptive filter with fundamental insight”, IEEE Trans. Signal
Processing, vol.64, no.16, pp.4337–4350, August 2016.

3. Masa-aki Takizawa and Masahiro Yukawa, “Joint learning of model
parameters and coefficients for online nonlinear estimation”, IEEE Ac-
cess, vol.9, pp.24026–24040, January 2021. (Article DOI: 10.1109/AC-
CESS.2021.3053651)

Conference Presentations

4. Masa-aki Takizawa and Masahiro Yukawa, ”An efficient data-reusing
kernel adaptive filtering algorithm based on parallel hyperslab projec-
tion along affine subspaces,” in Proceedings of 38th IEEE ICASSP,
pp.3557–3561, Vancouver: Canada, May 2013.

5. Masa-aki Takizawa and Masahiro Yukawa, ”An efficient sparse kernel
adaptive filtering algorithm based on isomorphism between functional
subspace and Euclidean space,” in Proceedings of 39th IEEE ICASSP,
pp.4541–4545, Florence: Italy, May 2014.

6. Masa-aki Takizawa and Masahiro Yukawa, “Online learning with self-
tuned Gaussian kernels: good kernel-initialization by multiscale screen-
ing” in Proceedings of 44th IEEE ICASSP, pp.4863–4867, Brighton,
U.K., May 2019.

7. Masa-aki Takizawa and Masahiro Yukawa,“Steepening squared error
function facilitates online adaptation of Gaussian scales” in Proceed-
ings of 45th IEEE ICASSP, pp.5450–5454, Barcelona, Spain, May
2020.

130

BIBLIOGRAPHY

Peer-Reviewed Articles in Conference Proceedings

8. Masa-aki Takizawa, Masahiro Yukawa, and Cedric Richard, ”A stochas-
tic behavior analysis of stochastic restricted-gradient descent algo-
rithm in reproducing kernel Hilbert spaces,” in Proceedings of 40th
IEEE ICASSP, pp.2001–2005, Brisbane: Australia, April 2015.

Articles in Domestic Conferences

9. Masa-aki Takizawa and Masahiro Yukawa, An efficient online learning
method based on self-tuned Gaussian kernels, Technical Report of IE-
ICE, vol.118, no.496, IEICE-SIP2018-123, pp.105-111, Iojima island,
March 2019.

10. Masa-aki Takizawa, Masahiro Yukawa, and Cedric Richard, ”Perfor-
mance analysis of the stochastic restricted gradient descent algorithm
in RKHS,” in Proceedings of IEICE SIP Symposium, pp.259-264, Ky-
oto, Nov. 2014.

11. Masa-aki Takizawa and Masahiro Yukawa, ”A note on kernel adap-
tive filtering algorithms : RKHS projection or parameter-space pro-
jection?,” in Proceedings of IEICE SIP Symposium, pp.33-38, Shi-
monoseki, Nov. 2013.

12. Masa-aki Takizawa and Masahiro Yukawa, ”A data-reusing kernel
adaptive filter based on parallel hyperplane projection along subspace,”
in Proceedings of IEICE SIP Symposium, pp.506-510, Ishigaki, Nov.
2012.

131

