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Abstract

To realize quantum information technologies, a technique of quantum control for

preparing a desired quantum state used for an information resource plays an important

role. For example, the measurement-based feedback control is a powerful method and

many notable experiments have been demonstrated in superconducting qubit. However,

in spite of the large impacts and development of those technologies, decoherence, which

is the loss of quantum properties, is the fundamental and biggest obstacle. Due to it,

the quantum state collapses to the classical state and the actual control performance is

sometimes far away from the ideal one. Therefore, in considering the practical quantum

control under decoherence, the following two questions arise: (i) How close the controlled

quantum state can be steered to a target state under decoherence? (ii) How long can we

preserve the controlled system around at the target state? These questions can be formu-

lated as problems analyzing distance and time respectively; fortunately, these problems

are qualitatively evaluated by useful tools; reachability and quantum speed limit (QSL).

Reachability is a measure of the reachable set of quantum state. To clarify and charac-

terize the reachability of the controlled systems under decoherence is essential to evaluate

the practical effectiveness of control methods and gives a direct answer to the question

(i). However, there has been no general approach for giving an estimate of the reacha-

bility under decoherence, and also no research for giving an insight into the further basic

questions for quantum engineering; what state should be set to the target, or what the

desired structure of open quantum system under given decoherence is.

The question (ii) boils down to the problem analyzing the time for the quantum state

maintaining its coherence against decoherence. The QSL, which is defined as a lower

bound of the evolution time of a quantum system from an initial state to a final state,

is a useful tool for studying this problem. The QSL gives not only a trade-off relation

between energy and time but also the shortest time of the state evolution, and thus the

investigations of the QSL are significantly important from the viewpoints of fundamentals

and engineering.

The goal of this thesis is to give answers to the above fundamental questions. This

thesis is organized as follows. Chapter 1 provides some backgrounds and outline of this

thesis. Chapter 2 provides some basic topics for describing the framework of quantum

mechanics; quantum state, quantum measurement, and quantum dynamics. Chapter 3
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presents a limit for the reachability of the controlled states under decoherence and the

target state. This limit is applicable for general Markovian open quantum systems and

straightforwardly calculated and used as a guide for choosing the target state that is not

largely affected by decoherence. Chapter 4 presents a new tractable QSL and exploits new

application of the QSL; Hamiltonian engineering for preparing robust states and charac-

terizing the reachability in a given time. Chapter 5 concludes this thesis and discusses

future works.
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Chapter 1

Introduction

1.1 Motivation

It is no doubt that the development of quantum mechanics is one of the great achieve-

ment in modern physics. Interesting properties of quantum systems, e.g., superposition

or entanglement, make it possible to realize the quantum information processing that

outperforms the classical one. In recent years, there have been considerable interests in

quantum information technologies, e.g., quantum computing, communication, teleporta-

tion, metrology, and cryptography. In order to realize these technologies, it is necessary

to prepare a desired quantum state for an information resource. Therefore, a technique of

quantum control, preparing a desired quantum state, plays an important role in quantum

information technology.

Here we give a brief introduction to quantum control scheme; let us consider a quantum

state ρ, where ρ is the self-adjoint operator acting on the state space HS . ρ is dynamical

and open to the external control system (modeled by an environment or a reservoir) act-

ing on the another space HE . The controlled system is characterized by the shorthand

G(u,H,L), where u is the scalar function representing the control sequence; also H and

L are the operators representing the control energy and the interaction between the sys-

tem and the environment, respectively. By suitably designing G(u,H,L), we can steer

the quantum system towards a target. The concept of quantum control is analogous to

ideally controlling the system dynamics. Mathematically, the quantum control problem

is modeled in terms of differential equations, e.g., Schrödinger equation, master equation,

stochastic master equation, and so on. For example, the quantum dynamics under the

continuous measurement and control is described by the stochastic master equation:

dρ = −i[uH, ρ]dt+D[L]ρdt+H[L]ρdW. (1.1)

The meanings of each terms will be explained in Chapter 2. Equation (1.1) is nonlinear

and stochastic, and hence in general we cannot obtain its exact solution. Therefore, these

tools enable us to develop the techniques of quantum control, although the analysis of the
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dynamics under the control is a hard task.

Now let us see several techniques of quantum control: First the open-loop (i.e., non-

feedback) control theory [1, 2, 3, 4, 5, 6, 7, 8] offers some powerful means, for example

for implementing an efficient quantum gate operation. Second, reservoir engineering tech-

niques including the measurement-based feedback (MBF) [9, 10, 11, 12, 13, 14, 15, 16] and

coherent feedback [17, 18, 19, 20, 21, 22, 23] are also well-established methodologies that

can be used for generating and protecting a desirable quantum state. Recently, many no-

table experiments realizing those control techniques have been extensively demonstrated

in superconducting qubit system [24, 25, 26, 27, 28, 29].

However, in spite of the large impacts and the development of quantum technologies,

there are a lot of problem to be dealt with for their realization; decoherence is one of

the most fundamental obstacle. Decoherence is the loss of quantum properties induced

by the interaction between the quantum system and its environments. Due to this fun-

damental phenomenon, the quantum state collapses to the classical one and the actual

control performance is sometimes far away from the ideal one. For example, the quantum

computer must prepare a coherent pure state and preserve it for a long time, in order to

realize higher computational performance than classical one. This is why, in considering

the practical quantum control under decoherence, the following two questions arise: (i)

How close the controlled quantum state can be steered to a target state under decoher-

ence? (ii) How long can we preserve the controlled system around at the target state?

These questions can be formulated as problems analyzing distance and time respectively;

fortunately these problems can be evaluated by useful tools; reachability and quantum

speed limit.

1.2 Reachability

The question (i) can be rephrased as follows; how much the reachability of the controlled

states under decoherence is. Now suppose that the state ρt with its initial state ρ0 evolves

to the final state ρT . According to the control system, ρT can take several states in

the Hilbert space. The set of all ρT is called the reachable set and reachability is a

measure of this set. In the literature, the reachability is often defined as the fidelity-

based distance [33], the efficiency of coherence transfer [3], or the Lie algebraic structure

[36, 37, 38, 39]. The analysis of reachability, which is in our scenario to clarify and

characterize the reachability of the controlled quantum systems under decoherence, is

essential to evaluate the practical effectiveness of control methods and gives a direct answer

to the question (i). The concept of reachability analysis is usually based on numerical

simulations that investigate how much the ideal state control is disturbed by decoherence;

for example, generation of a nanoresonator superposition state via open-loop control [5, 6],

an optical Fock state via MBF [11, 63], and an optomechanical cat state via reservoir
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engineering [20, 65]. The optimal control method, which numerically designs a time-

dependent control input for steering the state closest to the target one under decoherence

[3, 30], is also often used. However, the above computational approaches do not give

us deep insight into the further practical questions for quantum engineering; what state

should be assigned to the target, and what the desired structure of open quantum system

under given decoherence is. A few exceptions are found for specific types of open-loop

control [31] and MBF [32, 33], but there has been no general approach. Therefore, the

realistic analysis of the reachability under decoherence is one of the most challenging and

exciting research area in quantum engineering.

1.3 Quantum speed limit

The question (ii) boils down to the problem analyzing the time for the quantum state

maintaining its coherence against decoherence. Time is of course an essential factor that

should be carefully treated in quantum engineering, because the change of quantum states

often occurs in a very small time interval. Towards this problem, for example, several ap-

proaches for finding the time-optimal evolution of quantum states, e.g., quantum brachis-

tochrone, have been proposed [40, 41, 42, 43]. However, it is generally impossible to steer

the state to the target state in the presence of decoherence. That is, it is unrealistic to

consider the perfect state generation. This is why, in order to treat the question (ii), we

focus on the decohering time of quantum states. The quantum speed limit (QSL) is a

useful tool for studying this problem.

The QSL is defined as a lower bound of the evolution time T of a quantum system from

an initial state to a final state. The general expression of the QSL is given as follows:

T ≥ TQSL(D(ρ0, ρT )), (1.2)

where D(ρ0, ρT ) is a distance function of the initial state ρ0 and the final state ρT .

D(ρ0, ρT ) is usually given by the relative purity [88, 91], Bures angle [87, 89], or Hilbert-

Schmidt norm [94]. The study of the QSL started on closed systems; Mandelstam and

Tamm derived the QSL between orthogonal basis, which is given by the variance of the

Hamiltonian [75]. Margolus and Levitin derived another QSL depending on the mean en-

ergy [76]. Moreover, important generalizations to mixed states [80], nonorthogonal states

[81], and time-dependent driven systems [83, 84, 85, 86] were provided later. In recent

years, in particular, some types of QSLs for open quantum systems [87, 88, 89, 90, 91,

92, 93, 94, 95, 96, 97, 98, 99] have been extensively investigated. The QSLs give not

only a trade-off relation between energy and time but also the shortest time of the state

evolution, and thus the investigations of the QSL are significantly important from the

viewpoints of fundamentals and engineering. Actually, it has numerous application in

quantum computation [66, 67], metrology [68, 69], optimal control [70, 71, 72, 73, 74], and
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so on. Note that, in this scenario, the QSL is often used as a tool for characterizing the

potential for speeding up the time evolution toward a target state [91, 95, 96, 97, 98, 99].

That is to say, let us consider the problem of transferring an initial state ρ0 to a target

final state ρT . If the QSL from ρ0 to ρT under a control system G is smaller than that

of another system G′, then G is preferable in order to do this task. In this way, the

development of an application of the QSL to engineering is an interesting and meaningful

field of the QSL.

1.4 Outline

Motivated by the two questions posed above, this thesis explores a fundamental limit for

dynamical quantum systems under decoherence in terms of distance and time. The main

results of this thesis are given in Chapter 3 and 4. The structure of this thesis is as follows:

Chapter 2 reviews some important topics for describing the framework of quantum

mechanics including quantum state, quantum measurement, and quantum dynamics.

Chapter 3 aims to develop a distance limit for the controlled quantum system un-

der decoherence. Section 3.1 demonstrates the performance of the MBF control in the

imperfect setting. Section 3.2 presents a theoretical limit for the reachability of any con-

trolled quantum systems. More specifically, we present a lower bound of the fidelity-based

distance between a target state and the controlled state in the presence of decoherence.

Importantly, it is universally applicable for a Markovian open quantum system driven

by the decoherences and any types of control. Also the lower bound can be straightfor-

wardly computed without solving any equation. Moreover, thanks to its generic form, the

limit gives a characterization of target states that is largely disturbed by the decoherence.

Therefore, it provides a useful guide for choosing the target, as demonstrated in several

examples.

Chapter 4 explores the time limit (i.e., QSL) for state evolution of the open quantum

system. The main contribution of this chapter is to exploit applications of the QSL. First,

we propose a new usage of QSL as a measure of robust quantum states of Markovian

open quantum systems. In contrast to the above-mentioned view for speeding up the

evolution, we consider an undesired state transition driven by decoherence. Namely, we

consider a QSL from ρ0 to the final state ρT such that the distance between ρ0 and ρT

is bigger than a certain fixed value. If this QSL is large, the decoherence needs a lot of

time to drive the initial state ρ0 toward ρT . In other words, such ρ0 is less affected by

the decoherence, and therefore, in this view, ρ0 with a larger QSL can be regarded to

be robust against the noise process. Based on this idea, in this chapter we establish the

following optimization problem; the purpose is to engineer the system Hamiltonian that

maximizes the QSL for a given ρ0 and the decoherence. Here, it is important that the

QSL has an explicit form in terms of the parameters characterizing the quantum system
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in order to make this optimization problem tractable. Actually, in Section 4.2 we derive

a new tractable (i.e., easily computable) QSL, which is applicable to a general Markovian

open quantum system and prove that it is tighter than another explicit QSL given in [88],

in the setup where the decoherence strength and the distance are both small. Moreover,

it is shown that the Hamiltonian engineering problem based on the new explicit QSL is

a quadratic convex optimization problem, which is efficiently solvable. Second, we apply

the QSL to the characterization of the reachable set of quantum systems in a given time.

This approach is based on that the general expression of the QSL (1.2) can be regard as

the inequality of D(ρ0, ρT ) with respect to the evolution time T . Based on it, we derive

the time-dependent distance limit for open quantum systems under decoherence and in-

vestigate its performance in the qubit case.

Finally, Chapter 5 concludes this thesis and discusses future works.
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Chapter 2

Quantum mechanics

This chapter provides some important topics in quantum mechanics; quantum state, quan-

tum measurement, and quantum dynamics, which are necessary for understanding enough.

Section 2.1 reviews a formalism of quantum state describing a quantum system with the

introduction of key tools; the density operator and the fidelity. Section 2.2 formulates the

concept of quantum measurement from general class to special one. Section 2.3 provides

several mathematical tools for describing evolution of quantum systems, e.g., Schrödinger

equation, master equation, and stochastic master equation. They play a central role in

developing quantum control strategy and deriving the results of this thesis.

2.1 Quantum state

2.1.1 Density operator

Quantum mechanics is largely different from the classical mechanics in many aspects.

One of the biggest difference of quantum mechanics from classical one is that a quantum

system is probabilistic; that is, in principle, physical properties of quantum systems are

not deterministic. In general, a state of a quantum system is composed of a number of

states |ψi⟩ with probability pi. Therefore, the quantum state is given by the statistical

ensemble described by the self-adjoint operator:

ρ =
N∑
i=1

pi |ψi⟩ ⟨ψi| , (2.1)

which is called density operator (the notation |ψ⟩ and dual of it ⟨ψ| are called ket and bra,

respectively). ρ is defined in the finite-dimensional complex space called Hilbert space H,

and the set {|ψi⟩} is the orthonormal basis of H. Note that ρ has the following properties:

ρ† = ρ, ρ ≥ 0, Tr(ρ) = 1. (2.2)

In particular, due to Tr(ρ) = 1,
∑N

i=1 pi = 1, meaning that the total probability of the

measurement on the state is one (we will explain later). When the rank of ρ is one, (i.e.,
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ρ = |ψ⟩ ⟨ψ|), the state is called pure state. On the other hand, when the rank of ρ is more

than two, the state is called mixed state.

2.1.2 Measure of quantum state

How much the state is pure is quantified by Purity P (ρ) defined by

P (ρ) = Tr(ρ2), (2.3)

which is bounded as 1/N ≤ P (ρ) ≤ 1. This upper bound is achieved if and only if the

system is pure, and the lower one is achieved if and only if ρ = (1/N)I, which is called

maximally mixed state.

Proof of the bound for Purity From the definition (2.1),

ρ2 =

N∑
i=1

N∑
j=1

(|ψi⟩ ⟨ψi|) (|ψj⟩ ⟨ψj |) =
N∑
i=1

p2i |ψi⟩ ⟨ψi| ,

then we have

P (ρ) = Tr(ρ2) =

N∑
i=1

p2i .

Due to
∑N

i=1 pi = 1,

1 =

(
N∑
i=1

pi

)2

≥
N∑
i=1

p2i = P (ρ).

This bound is achieved if and only if the state is pure ρ = |ψ⟩ ⟨ψ|. With respect to the

lower bound, from inequality of arithmetric-geometric mean
∑N

i=1 xi ≥ N(
∏N

i=1 xi)
1/N ,

P (ρ) =

N∑
i=1

p2i ≥ N

(
N∏
i=1

p2i

) 1
N

.

The lower bound is achieved if and only if p1 = · · · = pN = 1/N , that is

ρ = (1/N)
∑N

i=1 |ψi⟩ ⟨ψi|, then

P (ρ) =

N∑
i=1

p2i ≥ N

(
N∏
i=1

p2i

) 1
N

= N

(
1

N2
N

) 1
N

≥ 1

N
. (Q.E.D)

When the quantum system ρ is composed of N subsystems ρi ∈ Hi (1 ≤ i ≤ N), ρ is

described as the tensor product

ρ = ρ1 ⊗ · · · ⊗ ρN ∈ H1 ⊗ · · · ⊗ HN , (2.4)
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If a composite state ρAB can be represented by ρAB = ρA ⊗ ρB , ρAB is called separable

state. Otherwise, if ρAB ̸= ρA ⊗ ρB , ρAB is called entangled state.

To evaluate the distance between two quantum states, Fidelity is known as a useful mea-

sure. For the two quantum states ρ and σ, the fidelity F (ρ, σ) is defined as follows:

F (ρ, σ) =
(
Tr
[√

ρ1/2σρ1/2
])2

, (2.5)

where, for any ρ and σ, 0 ≤ F (ρ, σ) ≤ 1 This upper bound is achieved if and only if ρ = σ,

and the lower one is achieved if and only if ρ and σ are orthogonal. If one of the state is

pure, σ = |ψ⟩ ⟨ψ|, the fidelity reduces to F (ρ, |ψ⟩ ⟨ψ|) = ⟨ψ|ρ|ψ⟩. Moreover, if the another

one is also pure ρ = |ϕ⟩ ⟨ϕ|, F (|ϕ⟩ , |ψ⟩) = | ⟨ψ|ϕ⟩ |2.

2.1.3 Qubit

Here we give a simple example explaining the quantum state; a qubit system composed of

the excited state |0⟩ = [1, 0]⊤ and the ground state |1⟩ = [0, 1]⊤, where |0⟩ and |1⟩ represent
“spin-up” and “spin-down”, respectively. A pure qubit state |ψ⟩ is parametrized as

|ψ⟩ = cos θ |0⟩+ eiφ sin θ |1⟩ , (2.6)

where 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ π. This special coordination is known as the Bloch

representation. Thereby, the pure state of the qubit system is defined on the surface

of a unit sphere. For instance, when θ = π/4, the state is the superposition |ψ⟩ =

(|0⟩ + eiφ |1⟩)/
√
2 on the equator of the sphere. On the other hand, a mixed state ρ is

parametrized by

ρ =
1

2

[
1 + z x− iy

x+ iy 1− z

]
, (2.7)

where x, y z are real numbers satisfying 0 ≤ x2 + y2 + z2 ≤ 1, which corresponds to

(1/2) ≤ P (ρ) ≤ 1. The points on the surface of the sphere correspond to the pure states

of the system, whereas the inside points correspond to the mixed states, and especially

the origin corresponds to the maximally mixed state. For the qubit system, angular

momentum operators of spin 1/2 system along the x, y, z axis are denoted by the Pauli

operators:

σx =

[
0 1

1 0

]
= |1⟩ ⟨0|+ |0⟩ ⟨1| ,

σy =

[
0 −i
i 0

]
= i |1⟩ ⟨0| − i |0⟩ ⟨1| ,

σz =

[
1 0

0 −1

]
= |0⟩ ⟨0| − |1⟩ ⟨1| .
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These satisfy the canonical commutation relation (CCR):

[σi, σj ] = 2iϵi,j,kσk,

where ϵi,j,k denotes the Levi-Civita symbol.

2.2 Quantum measurement

2.2.1 General measurement

Because a quantum system is probabilistic, the measurement outcome varies every time. If

the measurement on the quantum system is directly performed, the state collapses to the

classical one. Therefore, it is necessary to introduce a special formalism of quantum mea-

surement. Now, we begin with a general measurement modeled by a set of measurement

operators {Mi} acting on the Hilbert space H of a quantum system to be measured. The

index i refers to the possible outcomes of the measurement. The measurement operators

satisfy the completeness relation ∑
i

M†
iMi = I.

For the quantum system ρ, the probability of getting the ith outcome is given by

p(i) = Tr(MiρM
†
i ). (2.8)

Due to the completeness relation, the probabilities of the outcomes sum to one:∑
i

p(i) =
∑
i

Tr(MiρM
†
i ) = Tr(ρ

∑
i

M†
iMi)

= Tr(ρI) = Tr(ρ) = 1.

Note that the change of the state ρ→ ρ′ is brought about by the measurement. The state

after the measurement is given by

ρ′ =
MiρM

†
i

Tr(MiρM
†
i )

=
MiρM

†
i

p(i)
. (2.9)

If the quantum state before measurement is pure, ρ = |ψ⟩ ⟨ψ|, Eqs. (2.8) and (2.9) are

p(i) = ⟨ψ|M†
iMi|ψ⟩ ,

|ψ⟩′ = Mi |ψ⟩√
⟨ψ|M†

iMi|ψ⟩
=
Mi |ψ⟩√
p(i)

.

Here we give a simple example that the measurement on a qubit system. Let the
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measurement operators be M1 = |0⟩ ⟨0| and M2 = |1⟩ ⟨1|. These satisfy the completeness

relation M†
1M1 +M†

2M2 = I. Suppose that the state to be measured is

ρ = 0.6 |0⟩ ⟨0|+ 0.4 |1⟩ ⟨1| .

Then, the probability of obtaining the result “0” is

p(0) = Tr(M1ρM
†
1 ) = 60%,

and the probability of obtaining the result “1” is p(1) = 40%. Also, the state after the

measurement in two cases are

ρ′1 =
M1ρM

†
1

Tr(M1ρM
†
1 )

= |0⟩ ⟨0| ,

ρ′2 =
M2ρM

†
2

Tr(M2ρM
†
2 )

= |1⟩ ⟨1| .

2.2.2 Projective measurement

Here we explain a special class of the general measurement. A measurable physical prop-

erty of the quantum system is called observable. It is represented by a self-adjoint operator

A acting on the state space HS . A has a decomposition

A =
∑
i

ai |ai⟩ ⟨ai| =
∑
i

aiPi,

where |ai⟩ is the eigenstate and ai is the eigenvalue, and the set {|ai⟩} is an orthonormal

basis in HS . Pi = |ai⟩ ⟨ai| represents the projector onto |ai⟩ with ai; that is, the outcome

of the measurement corresponds to ai. Pi satisfies the following properties:

P 2
i = Pi, P ≥ 0, PiPj = Piδi,j ,

∑
i

Pi = I.

This measurements is known as a projective measurement. When the outcome ai is ob-

tained, the quantum state ρ changes to ρ′i = |ai⟩ ⟨ai|. Therefore, the rank of the quantum

state after the measurement is always one. The probability for getting the outcome ai is

given by

p(ai) = ⟨ai|ρ|ai⟩ = Tr(ρPi) = Tr(ρP †
i Pi), (2.10)

and the state after the measurement is

ρ′i =
PiρP

†
i

Tr(ρP †
i Pi)

=
PiρP

†
i

p(ai)
, (2.11)
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If the state is pure, ρ = |ψ⟩ ⟨ψ|, the probability for getting ai and the post-measurement

state are given by

p(ai) = ⟨ψ|P †
i Pi|ψi⟩ ,

|ψi⟩′ =
Pi |ψ⟩√

⟨ψ|P †
i Pi|ψi⟩

=
Pi |ψ⟩√
p(ai)

.

2.2.3 Positive operator valued measure

We consider a slightly general case of projective measurement. Consider a operator set

{Ei}, where Ei is a positive operator Ei ≥ 0 such that
∑

iEi = I, and defines a scalar

function

p(ai) = Tr(ρEi). (2.12)

p(ai) is equal to the probabilistic distribution of the measurement outcomes. In this

case, the measurement modeled by {Em} is known as a positive operator valued measure

(POVM). A difference of POVM from projective measurement is that the measurement

operators of a POVM are not necessarily orthogonal. Consequently, the number of the

measurement operators of the POVM can be larger than the dimension of the Hilbert space

they act on. Conversely, that of the projective measurement is at most the dimension of

the Hilbert space.

In reality, it is difficult to directly measure a quantum system without destroying it,

and thus actual measurements are done through measurement apparatus indirectly. This

physical setting is known as indirect measurement and theoretically formulated as follows;

let HS and HE be a Hilbert space of the quantum system of our interest ρS and the

measurement apparatus ρE . The total system is given by ρS ⊗ ρE ∈ HS ⊗HE . We first

prepare an apparatus in a pure initial state ρE = |ψE⟩ ⟨ψE |. By performing a unitary

transformation USE on the two systems, we cause the interaction between ρS and ρE .

After that, the local measurement on the apparatus described by IS ⊗ Pi,E is performed

(Pi,E is a projective operator acting on HE). In this setting, the probability for getting

the outcome i is

p(i) = Tr
[
USE(ρS ⊗ |ψE⟩ ⟨ψE |)U†

SE(IS ⊗ Pi,E)
]

= Tr
[
(ρS ⊗ |ψE⟩ ⟨ψE |)U†

SE(IS ⊗ Pk,E)USE

]
= TrS(ρSEi,S),
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where TrS is the trace over HS . This operation is called partial trace and indicates to

discard the information on the system ρE . An operator Ei,S is given by

Ei,S = TrE

[
(IS ⊗ |ψE⟩ ⟨ψE |)U†

SE(IS ⊗ Pi,E)USE

]
= ⟨ψE |U†

SE(IS ⊗ Pi,E)USE |ψE⟩

= ⟨ψE |U†
SE |iE⟩ ⟨iE |USE |ψE⟩ ,

where we have written Pi,E = |iE⟩ ⟨iE |. We find that Ei,S satisfies Ei,S ≥ 0 and∑
iE

†
i,SEi,S = IS , and hence {Ei,S} is a realization of a POVM.

We consider a state transition after the measurement. From (2.11) the post-

measurement state becomes

ρ′i,SE =
1

p(i)

[
(IS ⊗ Pi,E)USE(ρS ⊗ |ψE⟩ ⟨ψE |)U†

SE(IS ⊗ Pi,E)
†
]

=
1

p(i)

[
⟨iE |USE |ψE⟩ ρS ⟨ψE |U†

SE |iE⟩ ⊗ |ψE⟩ ⟨ψE |
]
,

and writing Ki := ⟨iE |USE |ψE⟩ yields

ρ′i,SA =
1

p(i)
(KiρSK

†
i )⊗ |iE⟩ ⟨iE | . (2.13)

Therefore after the measurement the system and the environment are separated. Also the

post-measurement state is

ρ′i,S =
KiρSK

†
i

p(i)
. (2.14)

By using Ki,S = K†
iKi, the probability for getting the outcome i is

p(i) = Tr[ρSK
†
iKi]. (2.15)

We can see that the state transition (2.14) and the probability of measurement (2.15) are

generalization of those by (2.10) and (2.11). If the initial state of the quantum system is

pure, i.e., ρS = |ψS⟩ ⟨ψS |, then the post-measurement system’s state is given by

|ψS⟩′ =
Ki |ψS⟩√

p(i)
. (2.16)
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2.3 Quantum dynamics

2.3.1 Schrödinger equation

In general, a quantum system evolves in time. In particular, the dynamics of a closed

system which does not interact with any environment is governed by the system energy.

Let us consider a pure state of the closed system |ψt⟩. The change of |ψt⟩ is

d |ψt⟩ = |ψt+dt⟩ − |ψt⟩ ,

and let |ψt+dt⟩ be

|ψt+dt⟩ = |ψt⟩+A |ψt⟩ dt = (I +Adt) |ψt⟩ .

The state change of the closed system is given as the unitary transformation, and hence

(I +Adt)(I +Adt)† = I ⇔ (A+A†)dt+AA†dt2 = 0.

By ignoring the term of dt2 and setting A = −iH with self-adjoint operator H, we have

d |ψt⟩
dt

= −iH |ψt⟩ . (2.17)

This equation is called Schrödinger equation and H is called Hamiltonian representing the

system energy. The solution of this equation is given by

|ψt⟩ = e−iHt |ψ0⟩ = Ut |ψ0⟩ , (2.18)

where Ut = e−iHt is a unitary operator satisfying U†
t Ut = UtU

†
t = I. This means that

the evolution of the closed system is unitary and the rank of the system is preserved. Ut

obeys the following equation:
dUt

dt
= −iHUt.

When the state is mixed, ρt =
∑

i pi |ψi,t⟩ ⟨ψi,t|, Eq. (2.17) is

dρt
dt

=
∑
i

pi

(
d |ψi,t⟩
dt

⟨ψi,t|+ |ψi,t⟩
d ⟨ψi,t|
dt

)
=
∑
i

pi (−iH |ψi,t⟩ ⟨ψi,t|+ i |ψi,t⟩ ⟨ψi,t|H)

= −i[H, ρt],

and the solution of it is given by

ρt = e−iHtρ0e
iHt = Utρ0U

†
t .
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2.3.2 Quantum stochastic differential equation

So far, we have considered the time evolution of closed systems. However, in reality quan-

tum systems are never completely isolated from their environments. Quantum systems

interacting with their environments are called open quantum systems, which are indis-

pensable for modeling various phenomena in quantum field, e.g., the decay of energy of

an atom. From now on, we consider the dynamics of open quantum systems.

Let us consider a general open quantum system interacting with a single coherent field.

Let at and a
†
t be the annihilation and creation operator representing the quantum white

noise process satisfying the following CCR:

[at, a
†
s] = δ(t− s).

Now, we assume that at is taken the Markovian approximation, that is, it instantaneously

interacts with the system and has no memory of the system. By integrating overall time,

the annihilation and creation process operators are defined by

At =

∫ t

0

asds, A
†
t =

∫ t

0

a†sds,

which satisfy the following Itō rule [44]:

dtdAt = 0, dAtdA
†
t = dt,

dA†
tdAt = dAtdAt = dA†

tdA
†
t = 0.

Now, we derive the time evolution of Ut using these mathematical tools; let dUt be

dUt = (BdAt + CdA†
t +Ddt)Ut, (2.19)

with U0 = I. From Eq. (2.19), the unitary property U†
t Ut = I, and the Itō product rule

d (XtYt) = dXtYt +XtdYt + dXtdYt,

we have

0 = dU†
t · Ut + U†

t dUt + dU†
t dUt,

= U†
t

(
B†dAt + C†dA†

t +D†dt
)
Ut + U†

t

(
BdAt + CdA†

t +Ddt
)
Ut

+ U†
t

(
B†dA†

t + C†dAt +D†dt
)(

BdAt + CdA†
t +Ddt

)
Ut.

By using the quantum Itō rule and multiplying from the left by Ut and from the right by

U†
t , we have

0 = (B + C†)dAt + (C +B†)dA†
t + (D† +D + C†C)dt.
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Then we obtain the equations

B + C† = 0,

B† + C = 0,

D† +D + C†C = 0.

In the same way, from UtU
†
t = I, we have

B† + C = 0,

B + C† = 0,

D† +D + C†C = 0.

Now for satisfying these equations, we set B = −L†, C = L, and D = iH + L†L/2.

Consequently, we end up with the following equation:

dUt =

{
−L†dAt + LdA†

t −
(
iH +

1

2
L†L

)
dt

}
Ut. (2.20)

with U0 = I. This equation is called the quantum stochastic differential equation (QSDE)

[45]. H is the Hamiltonian and L is a system operator representing the coupling with

the field. The open quantum system governed by (2.20) is characterized by shorthand

G = (H,L).

2.3.3 Markovian master equation

Now, for an arbitrary system operator X, let us derive the time evolution of Xt. Let the

unitary evolution of X be Xt = jt(X) = U†
tXUt. Using the Itō product rule and the

above QSDE,

dXt = U†
t+dtXUt+dt − U†

tXUt

= dU†
tXUt + U†

tXdUt + dU†
tXdUt

= jt

(
i[H,X] + L†XL− 1

2
L†LX − 1

2
XL†L

)
dt

+ jt([X,L])dA
†(t) + jt([L

†, X])dA(t). (2.21)

Also, the annihilation process operator At changes to A
′
t = U†

tAtUt = jt (At) and satisfies

the output field

dA′
t = jt(L)dt+ dAt.

We assume that the coupling is a coherent field with amplitude α. Then, taking the

expectation ⟨Xt⟩, due to ⟨dAt⟩ = ⟨dA†
t⟩ = 0, we have

d⟨Xt⟩
dt

=

〈
jt

(
i[H ′, Xt] + L†XtL− 1

2
L†LXt −

1

2
XtL

†L

)〉
,
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where H ′ = H + (αL† − α†L)/2i. In the Schrödinger picture, the expectation ⟨Xt⟩ is

defined using the time-dependent unconditional state ρt as ⟨Xt⟩ = Tr (Xρt). Then it is

easy to find that ρt obeys the following equation:

dρt
dt

= −i[H, ρt] +D[L]ρt, (2.22)

where H ′ has been replaced with H. This dynamical equation is called (Markovian)

master equation and D[L]ρ = LρL† − L†Lρ/2 − ρL†L/2 is the Lindblad super operator

representing the decohere process. When the system is subjected to multiple Hamiltonians

and environments, Eq. (2.22) is generalized to

dρt
dt

= −i
∑
j

[Hj , ρt] +
∑
j

D[Lj ]ρt. (2.23)

2.3.4 Stochastic master equation

In the previous subsection, we have focused on the evolution of open quantum systems

interacting with a coherent field. We further extend the above discussion to the case

where the quantum system is subjected to continuous measurement. We now develop a

dynamical equation for open quantum system in a simple setup; the system is coupled to

a single probe field L in the vacuum state. Recall that the system dynamics is generated

by the following QSDE:

dUt =

{(
−iH − 1

2
L†L

)
dt+ LdA†

t − L†dAt

}
Ut, U0 = I,

and the time evolution of the system observable jt(X) := U†
tXUt is given by

djt(X) = jt(LX)dt+ jt([L
†, X])dAt + jt([X,L])dA

†
t , (2.24)

where

LX := i[H,X] + L†XL− 1

2
L†LX − 1

2
XL†L. (2.25)

Now the real part of the output field operator is measured by a homodyne detector; we

measure the output field operator represented by

yt = Yt + Y †
t = U†

t

(
At +A†

t

)
Ut.

By using the quantum Itō rule, the time evolution of yt can be obtained as

dyt = jt(L+ L†)dt+ dAt + dA†
t .

Note importantly that the output observable yt has the self-non-demolition property:

[ys, yt] = 0, ∀s, t.
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This means that there is sets of measurement result constructed by ys, which is denoted

by Yt = {ys|0 ≤ s ≤ t}. Also, yt satisfies the quantum non-demolition (QND) property,

[ys, jt(X)] = 0, ∀s ≤ t.

for all system observables X. From the self-non-demolition property, the observable of

the probe system are compatible over all time, and hence the continuous measurement

is guaranteed in principle. Further, from the QND property, all probe observables until

time t and the system observable jt(X) are compatible. Therefore, jt(X) can be condi-

tioned on Yt, which means that the optimal estimate is given by the quantum conditional

expectation πt(X) := P (jt(X)|Yt) = Tr (Xρct) defined based on the measurement history.

Let us more deepen this explanation. The goal here is to calculate the best estimate

of the system observable jt(X) based on the history of observations Yt. In particular,

by defining the cost function by the least mean-squared error P[(jt(X) − Z)2], where Z

an element of Yt, we can have an explicit solution; that is, because Yt is a commutative

algebra and jt(X) lives in the commutant of Yt, the mean-squared error is minimized

when Z is given by the quantum conditional expectation:

πt(X) = arg minP[(jt(X)− Z)2] = P (jt(X)|Yt) ,

To derive the system dynamics of πt(X), we here consider the following ansatz:

dπt(X) = Etdt+ Ftdyt,

where Et and Ft are functions of Yt. We wish to derive explicit forms of Et and Ft. Now

we introduce the following function

h̄t = exp

(∫ t

0

hsdys −
1

2

∫ t

0

h2sds

)
,

where ht ∈ Yt and thus h̄t ∈ Yt as well. By using the Itō rule, we find that dh̄t = h̄thtdyt.

To determine Et and Ft, let us calculate dP
(
h̄tjt(X)

)
in two ways as follows.

First, from the Itō product rule we have

dP
(
h̄tjt(X)

)
= P

(
dh̄tjt(X) + h̄tdjt(X) + dh̄tdjt(X)

)
= P

(
h̄thtjt(L+ L†)jt(X) + h̄tjt(LX)dt+ h̄thtdAtjt([X,L])dA

†
t

)
= P

(
h̄thtjt(LX + L†X) + h̄tjt(LX) + h̄thtjt([X,L])

)
dt

= P
(
h̄thtjt(XL+ L†X) + h̄tjt(LX)

)
dt,

where P (dAt) = P(dA†
t) = 0 and dAtdA

†
t = dt are used. Now, using the tower property

of the quantum conditional expectation, the above equation can be further calculated as

d

dt
P
(
h̄tjt(X)

)
= P

[
P
(
h̄thtjt(XL+ L†X) + h̄tjt(LX)|Yt

)]
= P

[
h̄thtP

(
jt(XL+ L†X)|Yt

)
+ h̄tP (jt(LX)|Yt)

]
= P

(
h̄thtπt(XL+ L†X) + h̄tπt(LX)

)
.
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In the second way,

dP
(
h̄tjt(X)

)
= dP

[
P
(
h̄tjt(X)|Yt

)]
= dP

(
h̄tP(jt(X)|Yt)

)
= dP

(
h̄tπt(X)

)
= P

(
dh̄tπt(X) + h̄tdπt(X) + dh̄tdπt(X)

)
= P

[
h̄tht

(
πt(L+ L†)πt(X) + Ft

)
+ h̄t

(
Et + Ftπt(L+ L†)

)]
dt.

By comparing the above two equations, we end up with

πt(L+ L†)πt(X) + Ft = πt(XL+ L†X),

Et + Ftπt(L+ L†) = πt(LX).

Consequently, the dynamics of the conditional expectation πt(X) is given as follows:

dπt(X) = πt(LX)dt+
{
πt(XL+ L†X)− πt(X)πt(L+ L†)

} (
dyt − πt(L+ L†)dt

)
.

(2.26)

This is called the quantum filtering equation. The last term dyt − πt(L + L†)dt is the

Wiener increment. In the classical control literature, it is called the innovation process

representing the update of the estimate based on the output. Here, we turn attention to

the Schrödinger picture from the Heisenberg picture to derive the time evolution of the

conditional state ρct . By applying the relation πt(X) = Tr (Xρct) to (2.26), we immediately

obtain the time evolution of ρct as follows:

dρct = −i[H, ρct ]dt+D[L]ρct +H[L]ρctdWt, (2.27)

where H[L]ρ = Lρ+ρL†−Tr(Lρ+ρL†)ρ and dWt = dyt−Tr(Lρ+ρL†)dt. This equation is

called the stochastic master equation (SME). It is the stochastic partial differential equa-

tion describing the dynamics of the conditional density operator of a stochastic system.

Note that dWt is the mean-zero Wiener increment, i.e., E (dWt) = 0. Now, by averaging

the SME, we obtain the dynamics of the ensemble system ρt := E (ρct):

dρt
dt

= −i[H, ρt] +D[L]ρt, (2.28)

which is analogous to the master equation. Therefore, the master equation describes

the unconditional evolution of the quantum system interacting with a coherent field.

Furthermore, if L = 0, the master equation (2.28) becomes the Schrödinger equation

for the mixed state. Therefore, the SME is the most general equation for describing the

dynamics of the quantum system. Finally, the SME (2.27) is generalized to the multi-input

and multi-probe setup:

dρct = −i
∑
j

[Hj , ρ
c
t ]dt+

∑
j

D[Lj ]ρ
c
tdt+

∑
j

H[Lj ]ρ
c
tdWt.
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Chapter 3

Distance limit

In practical situation, the biggest obstacle for quantum control is of course decoherence.

The actual performance of quantum control under decoherence is sometimes far away

from the ideal one. Therefore, quantifying the reachability, that is how close the controlled

quantum system can be steered to a target state under decoherence, is of great importance.

Towards this problem, in this chapter we develop a limit for reachability of the controlled

system under decoherence; more precisely, we present a lower bound of the fidelity-based

distance for open quantum system driven by any types of decohering process and control.

Note that this bound is straightforward to calculate and can be used as a guide for choosing

the target state. Some examples showing this effectiveness will be given. The topics of

this chapter is mainly based on [104].

3.1 Quantum control

3.1.1 Mathematical description of quantum control

In Section 2.3, we have presented several dynamical equations, i.e., Schrödinger equation,

master equation, and SME. These are essential to establish control strategies, because the

concept of quantum control is to design the controlled dynamics of the quantum system so

that the state reaches the target. In this section, we develop a mathematical description

of several types of quantum control based on these mathematical tools.

Now, we begin with a simple setting of open-loop control and reservoir engineering; let

us assume that the quantum state ρt obeys the master equation:

dρt
dt

= −i[utH, ρt] +D[L]ρt, (3.1)

where ut is the control sequence. H and L are system operators that can be engineered.

The standard open-loop control problem is to design a time-dependent sequence ut that

steers ρt towards a target state. Also the aim of the standard reservoir engineering method

is to design L, with constant sequense ut = u so that ρt autonomously converges to a
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target. In particular, the MBF control setting can also be included in the theory. In this

case, the dynamics of the conditional quantum state ρct based on the measurement result

yt obeys the SME [46, 47, 48]

dρct = −i[utH, ρct ]dt+D[L]ρctdt+H[L]ρctdWt. (3.2)

The goal of MBF is to design the control input ut as a function of ρct , to accomplish

a certain goal. Particularly, L represents the probe field for measurement and satisfies

L = L†, there are typical types of MBF controls that selectively steer the state to an

eigenstate of L.

By focusing on the unconditional state ρt = E (ρct), which is the ensemble average of

ρct over all the measurement results, Eq. (3.2) becomes the master equation:

dρt
dt

= −i[H,E (utρ
c
t)] +D[L]ρt +D[M ]ρt. (3.3)

Note in particular that ut is a function of ρct , and hence Eq. (3.3) is a non-linear

equation with respect to ρt. In the open-loop control or reservoir engineering setting,

ut is independent of ρct . Then Eq. (3.3) is reduced to the linear equation due to

E (utρ
c
t) = utE (ρct) = utρt:

dρt
dt

= −i[utH, ρt] +D[L]ρt +D[M ]ρt. (3.4)

Therefore, as mentioned above, the SME includes any types of quantum control setting.

Probe Laser

Actuator

Detector

Feedback
Controller

Quantum
System

Control Input

Measurement
Date

𝐻

𝑦𝑡
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𝐿
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Fig. 3.1: Schematic of MBF.
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3.1.2 MBF for ideal case

As an important application of the SME, here we study the MBF control. In fact, the MBF

is a versatile and powerful method and some notable experiments have been extensively

demonstrated [24, 25, 26, 27, 28, 29]. Here we give a physical implementation of a typical

MBF setting (Fig. 3.1). The system of our interest is a cloud of atoms trapped into the

optical cavity. Our aim is to control a collective angular momentum of the system. To

obtain the information on the system, we scatter a probe laser off the system and cause

the interaction between the system and the probe field (the interaction strength can be

adjusted by the optical cavity). After the interaction, we measure the output field which

carries any information on the system by a photodetector known as a homodyne detector.

The information given by the classical output data yt is processed to continuously update

the conditional state, and the state is fed into a controller to calculate the control signal

ut to control the system through actuators implemented by magnetic coils. By repeating

this process in continuous time, we end up with a desired quantum state.

We now demonstrate the performance of the MBF in the qubit example; the goal is

to stabilize the spin state driven by the SME (3.2) into the excited state, in other words

to realize the deterministic convergence zt = Tr (σzρ
c
t) → 1. In this case, the system

operators and the feedback control ut that achieves the goal is given by

H = σy, L =
√
κσz, ut = −2κxt, (3.5)

where xt = Tr (σxρ
c
t).

Proof of the setup (3.5) For the system operators Eq. (3.5), (H,L) = (σy,
√
κσz),

the conditional state ρct obeys the SME:

dρct = −i[utσy, ρct ]dt+D[
√
κσz]ρ

c
tdt+H[

√
κσz]ρ

c
tdWt, (3.6)

which leads to the dynamics

dzt = −2utxtdt+ 2
√
κ
(
1− z2t

)
dWt.

Let us consider the cost function

Vt = E
[
(zt − 1)2

]
.
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The infinitesimal change of Vt is given by

dVt = E
[
(zt + dzt − 1)2

]
− E

[
(zt − 1)2

]
= 2E [(zt − 1)dzt] + E

[
(dzt)

2
]

= 2E
[
(zt − 1)(−2utxtdt+ 2

√
κ(1− z2t )dWt)

]
+ E

[
{−utxtdt+ 2

√
κ(1− z2t )dWt}2

]
= 4E [(1− zt)utxt] dt+ 4E

[
κ(1− z2t )

2
]
dt

= 4E
[
(1− zt){utxt + κ(1 + zt)x

2
t}
]
dt,

where we have used the relation x2t + z2t = 1. Now choosing ut = −2κxt, we have

dVt

dt
= −4κE

[
x2t (1− zt)

2
]
≤ 0.

Hence, the feedback law ut = −2κxt makes sure that Vt monotonically decreases, and

thus the deterministic convergence zt → 1 is accomplished. (Q.E.D)

Figure 3.2 illustrates the sample paths of zt. If the feedback is not performed, zt takes

±1 stochastically. Meanwhile, we can eventually prepare the target zt = 1 by performing

the feedback control.

t

zt

(a)

t

(b)

Fig. 3.2: The sample paths of zt (a) without, (b) with MBF.

3.1.3 MBF in the imperfect setting

Above, we have seen the effectiveness of the MBF in the ideal setup. However, in prac-

tical situation, the quantum system is subjected to decoherence process induced by the



Chapter 3 Distance limit 23

environments. Due to it, unfortunately, there is a gap between the target state and the

controlled states. Here we add the Lindblad term generated by the decohering operator

D[M ] to the SME (3.6):

dρct = −i[utσy, ρct ]dt+D[
√
κσz]ρ

c
tdt+D[M ]ρctdt+H[

√
κσz]ρ

c
tdWt. (3.7)

Eq. (3.7) describes the dynamics under the realistic MBF setting. As an example, we

consider the energy decay M =
√
γσ−. Figure 3.3 (a) shows the sample path of zt;

clearly the performance of the control severely degrades as the strength of decoherence γ

increases. For simplicity, here we focus on the unconditional state ρt = E (ρct) obtained

by averaging over the measurement results. As shown in Fig. 3.3 (b), for instance, when

γ = 0.1, the reachability of E (zt) is less than 0.7. In this way, taking the ensemble average

of the quantum system allows for an analytical approach for finding the reachability of

the controlled dynamics.

γ=10

γ=0.1
γ=1

t

zt

(a)

γ=10
γ=1
γ=0.1

t

(b)

Fig. 3.3: (a) The sample paths of zt and (b) averaging path E (zt) under decoherence.

3.2 Derivation of the distance limit

Let us consider the master equation for the unconditional state ρt = E(ρct):

dρt
dt

= −i[H,E(utρct)] +D[L]ρt +D[M ]ρt. (3.8)

Now we wish to minimize the cost function

Jt = 1− Tr (Qρt) , Q = |ψ⟩ ⟨ψ| (3.9)
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where |ψ⟩ is the target pure state and ρt is the state driven by Eq. (3.8). Jt represents

the fidelity-based distance of ρt from the target state. As seen above, in the presence of

decoherence term D[M ], in general we cannot deterministically achieve Jt = 0 at some

time t. The main result of this chapter is to present a lower bound of the cost (3.9) in an

explicit form as follows.

Theorem 3.1 For the conditional quantum state ρct obeying Eq. (3.8), the cost (3.9) has

the lower bound at the steady state

J∞ ≥ J∗(|ψ⟩) :=
(

E
A+ U

)2

, (3.10)

where

A =
√
2(∥L† |ψ⟩ ∥2 + ∥L†L |ψ⟩ ∥+ ∥M† |ψ⟩ ∥2 + ∥M†M |ψ⟩ ∥),

U = 2ū

√
⟨ψ|H2|ψ⟩ − ⟨ψ|H|ψ⟩2, ū = max{|ut|},

E = ∥L |ψ⟩ ∥2 − | ⟨ψ|L|ψ⟩ |2 + ∥M |ψ⟩ ∥2 − | ⟨ψ|M |ψ⟩ |2.

Proof of Theorem 3.1 As a control model, here we take the MBF setting described by

the SME, because the open-loop control and reservoir engineering are included by simply

setting the control sequence ut to be independent of the conditional state ρct . First, we

take the infinitesimal change of the random variable

jt = 1− Tr (Qρct) , Q = |ψ⟩ ⟨ψ| , (3.11)

as follows:

djt = −Tr (Qdρct)

= −Tr {Q (−i[utH, ρct ]dt+D[L]ρctdt+D[L]ρctdt+H[L]ρctdWt)}

= Tr (iut[Q,H]ρct) dt− Tr (QD[L]ρct) dt− Tr (QD[M ]ρct) dt− Tr (QH[L]ρct) dWt.

(3.12)

The Wiener process (i.e., the classical stochastic process), Wt satisfies the Itō rule dW 2
t =

dt and E (Wt) = 0. The ensemble average of this dynamics with respect to Wt is given by

dE(jt)
dt

= Tr {i[Q,H]E(utρct)} − Tr {QD[L]E(ρct)} − Tr {QD[M ]E (ρct)} . (3.13)

Note again that ut is a function of ρct in the context of MBF control.

To give a proof, we often use the Schwarz inequality for matrices X and Y ,

∥X∥F∥Y ∥F ≥ 1

2
|Tr(X†Y + Y †X)|.
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In particular, ∥X∥F∥Y ∥F ≥ |Tr(XY )| holds if and only if X and Y are self-adjoint. The

following inequality is also often used:

∥ρct −Q∥F =
√

Tr[(ρct −Q)2]

=
√

Tr[(ρct)
2 − 2ρctQ+Q2]

≤
√

2− 2Tr(ρctQ)

=
√

2jt,

where Tr
[
(ρct)

2
]
≤ 1 and Tr(Q2) = Tr(Q) = 1 are used.

We begin with calculating a lower bound of the first term on the rightmost side of Eq.

(3.12) as

Tr (iut[Q,H]ρct) ≥ −ū|Tr (i[Q,H]ρct) |

= −ū|Tr{i[Q,H](ρct −Q)}|

≥ −ū∥i[H,Q]∥F∥ρct −Q∥F

= −ū
√
Tr{(iHQ− iQH)2}

√
2jt

≥ −2ū

√
⟨ψ|H2|ψ⟩ − ⟨ψ|H|ψ⟩2

√
jt,

where ū := max{|ut|} is the upper bound of the control input. Then, by focusing on the

ensemble average of this equation with respect to Wt, we have

Tr{i[Q,H]E (utρ
c
t)} ≥ −2ū

√
⟨ψ|H2|ψ⟩ − ⟨ψ|H|ψ⟩2E

(√
jt

)
≥ −2ū

√
⟨ψ|H2|ψ⟩ − ⟨ψ|H|ψ⟩2

√
E(jt),

where E
(√
jt
)
≤
√
E (jt) is used. Next the second term on the rightmost side of Eq.

(3.12) can be bounded as

−Tr(QD[L]ρct) = −Tr[Q(LρctL
† − 1

2
ρctL

†L− 1

2
ρctLL

†)]

= −Tr[L†QL(ρct −Q)]− Tr(L†QLQ) + Tr(QL†LQ)

− 1

2
Tr[(Q− ρct)L

†LQ+ (L†LQ)(Q− ρct)]

≥ −∥L†QL∥F∥ρct −Q∥F − ∥L†LQ∥F∥ρct −Q∥F +Tr(L†LQ)− Tr(L†QLQ)

≥ −
(√

Tr[(L†QL)2] +
√
Tr[(L†LQ)†(L†LQ)]

)√
2jt +Tr(L†LQ)− Tr(L†QLQ)

= −
√
2

(
⟨ψ|LL†|ψ⟩+

√
⟨ψ|(L†L)2|ψ⟩

)√
jt + ⟨ψ|L†L|ψ⟩ − | ⟨ψ|L|ψ⟩ |2

= −
√
2(∥L† |ψ⟩ ∥2 + ∥L†L |ψ⟩ ∥)

√
jt + ∥L |ψ⟩ ∥ − | ⟨ψ|L|ψ⟩ |2.

Hence again it follows from E
(√
jt
)
≤
√

E (jt) that

−Tr{QD[L]E (ρct)} ≥ −
√
2
(
∥L† |ψ⟩ ∥2 + ∥L†L |ψ⟩ ∥

)√
E(jt) + ∥L |ψ⟩ ∥ − | ⟨ψ|L|ψ⟩ |2.
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By replacing L with M , the same inequality as above holds for M . Hence, combining the

above inequalities with Eq. (3.12) and using the definition

Jt = E(jt) = 1− Tr{QE (ρct)} = 1− Tr (Qρt) ,

we end up with

dJt
dt

≥ −U
√
Jt −A

√
Jt + E , (3.14)

where

A =
√
2
(
∥L† |ψ⟩ ∥2 + ∥L†L |ψ⟩ ∥+ ∥M† |ψ⟩ ∥2 + ∥M†M |ψ⟩ ∥

)
,

U = 2ū

√
⟨ψ|H2|ψ⟩ − ⟨ψ|H|ψ⟩2, ū := max{|ut|},

E = ∥L |ψ⟩ ∥2 − | ⟨ψ|L|ψ⟩ |2 + ∥M |ψ⟩ ∥2 − | ⟨ψ|M |ψ⟩ |2.

To have the lower bound of Jt in the limit t→ ∞, let us consider the function

f(x) = −U
√
x−A

√
x+ E

for ∀x ∈ [0, 1]. Clearly, f(x) is a monotonically decreasing function with respect to x. Also,

from the Schwarz inequality ∥L |ψ⟩ ∥2 − | ⟨ψ|L|ψ⟩ |2 ≥ 0, and then we have f(0) = E ≥ 0.

Moreover, f(1) = E − A− U ≤ 0 holds because

∥L |ψ⟩ ∥2 = Tr(L†LQ) =
1

2
{Tr[(L†LQ)†Q] + Tr[Q†(L†LQ)]}

≤ ∥L†LQ∥F∥Q∥F = ∥L†LQ∥F = ∥L†L |ψ⟩ ∥,

which clearly leads to E − A ≤ 0 and hence E − A− U ≤ 0. In what follows, we consider

the case E > 0. Then, from the above properties of f(x), the equation f(J∗) = 0 has a

unique solution J∗ in (0.1]. Now suppose that Jτ < J∗ at a given driving time τ , and then

the inequality (3.14) leads to

dJt
dt

∣∣∣∣
t=τ

≥ −U
√
Jt −A

√
Jt + E

> −U
√
J∗ −A

√
J∗ + E = 0.

This inequality means that Jt locally increases in time for t ≥ τ . Because this argument

is true for any τ such that the inequality Jτ < J∗ holds, Jt increases until Jt coincides

with J∗, i.e., limt→∞ Jt = J∗. On the other hand, for the range such that Jτ ≥ J∗,

the inequality (3.14) is nothing to do with the local time evolution of Jt for t ≥ τ .

Consequently, in the long-time limit we have

lim
t→∞

Jt ≥ J∗ =

(
E

A+ U

)2

.
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Note that the inequality is valid for the case E = 0 as well.

Next we prove that Jt ≥ J∗ holds for all t ∈ [t0,∞) if the initial value Jt0 is bigger

than J∗. For the proof we use the following Lemma; see e.g., [64].

Lemma 3.1: Consider the real-valued one-dimensional ordinary differential equation

dx(t)

dt
= f(x(t)), t ∈ [t0,∞).

If dx1(t)/dt ≤ f(x1(t)) and f(x2(t)) ≤ dx2(t)/dt for ∀t ∈ [t0,∞) hold for the initial values

satisfying x1(t0) ≤ x2(t0), then x1(t) ≤ x2(t) holds for all t ∈ [t0,∞).

Proof of Lemma 3.1 A contradiction argument will be used. Suppose that there exists

t ∈ [t0,∞) such that x1(t) > x2(t). Then, because x1(t0) ≤ x2(t0), there exists T ≥ t0

satisfying x1(T ) = x2(T ). Moreover, there exists h > 0 such that x1(T + h) > x2(T + h)

holds. Hence,

dx1(t)

dt

∣∣∣∣
T+0

= lim
h→+0

x1(T + h)− x1(T )

h

> lim
h→+0

x2(T + h)− x2(T )

h
=
dx2(t)

dt

∣∣∣∣
T+0

.

Then, from the assumption of Lemma 3.1

f(x1(T )) ≥
dx1(t)

dt

∣∣∣∣
T+0

>
dx2(t)

dt

∣∣∣∣
T+0

≥ f(x2(T )).

This is a contradiction to x1(T ) = x2(T ). Therefore, x1(t) ≤ x2(t) holds for all t ∈ [t0,∞).

(Q.E.D)

Let us apply Lemma 3.1 to the case f(x) = −U
√
x − A

√
x + E . Assuming that

x1(t0) = J∗ = {E/(A + U)}2, we have dx1(t)/dt = f(x1(t)) = 0 and x1(t) = x1(t0) = J∗

for all t ∈ [t0,∞). Also, we take x2(t) = J(t), which satisfies the inequality (3.12), i.e.,

dx2(t)/dt ≥ f(x2(t)). Thus, from Lemma 3.1, if J∗ = x1(t0) ≤ x2(t0) = J(t0), then

J∗ = x1(t) ≤ x2(t) = Jt for all t ∈ [t0,∞). That is, we obtain

Jt ≥ J∗ =

(
E

A+ U

)2

, ∀t ∈ [t0,∞).

This is end of the proof of Theorem 3.1. (Q.E.D)

That is to say, J∗ gives a fundamental lower bound on how close the controlled quantum

state can be driven to or preserved around a target state under decoherence. Below we

list some notable features of J∗.
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Remark 3.1: Theorem 3.1 is applicable to a general Markovian open quantum system

driven by any types of control method such as the MBF or reservoir engineering.

Remark 3.2: J∗ is explicitly conputable, once the system operators and the target state

|ψ⟩ are assigned. Thus, there is no need to solve any equation.

Remark 3.3: J∗ is monotonically decreasing with respect to the control magnitude ū.

Remark 3.4: If |ψ⟩ is far away from the eigenstate of the operators L and M , then J∗

becomes bigger. Conversely, if and only if |ψ⟩ is identical to a common eigenvector of L

andM , J∗ = 0. It is an important fact is that J∗ can be used to characterize a target state

that is easy (or hard) to approach by some control under decoherence. Namely, a state

|ψ⟩ with relatively small value of J∗ can be a better candidate as the target, although in

general J∗ is not achievable. In contrast, we can say that the state |ψ⟩ with a large value

of J∗ should not be chosen as the target. In the next section, we study several control

problems with special notion with respect to this point.

Remark 3.5: Theorem 3.1 can be generalized to the case where the system is driven

by multiple environment channels, measurement probes, and control Hamiltonian; If the

system dynamics is validity modeled by the SME

dρct = −i

∑
j

uj,tHj , ρ
c
t

 dt+∑
j

D[Lj ]ρ
c
tdt+

∑
j

D[Mj ]ρ
c
tdt+

∑
j

H[Lj ]ρ
c
tdWt,

we find that the lower bound is given by J∗ = E2/(A+ U)2 with

A =
√
2
∑
j

(∥L†
j |ψ⟩ ∥

2 + ∥L†
jLj |ψ⟩ ∥) +

√
2
∑
j

(∥M†
j |ψ⟩ ∥

2 + ∥M†
jMj |ψ⟩ ∥),

U = 2
∑
j

ūj

√
⟨ψ|H2

j |ψ⟩ − ⟨ψ|Hj |ψ⟩2, ūj = max{|uj,t|},

E =
∑
j

(∥Lj |ψ⟩ ∥2 − | ⟨ψ|Lj |ψ⟩ |2) +
∑
j

(∥Mj |ψ⟩ ∥2 − | ⟨ψ|Mj |ψ⟩ |2).

Remark 3.6: Theorem 3.1 can be extended to the case where the target state is mixed

by redefining the cost (3.9) as j′t = 1−Tr (Qρct) /Tr(Q
2). Then we obtain the generalized

lower bound:

J ′
∞ ≥ J ′

∗(Q) :=
1

2Tr(Q2)

{
2

(
E ′

A′ + U ′

)2

+Tr(Q2)− 1

}
, (3.15)
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where

A′ =
√
2

(√
Tr[(L†QL)2] +

√
Tr[(L†L)2Q2] +

√
Tr[(M†QM)2] +

√
Tr[(M†MQ)2]

)
,

U ′ = 2ū
√

Tr(H2Q2)− Tr[(HQ)2], ū = max{|ut|},

E ′ = Tr(L†LQ2)− Tr(L†QLQ) + Tr(M†MQ2)− Tr(M†QMQ).

Proof of Remark 3.6 By replacing jt in the proof of Theorem 3.1 with j′t, (3.15) can

be proved. The infinitesimal change of j′t is given by

dj′t =
1

Tr(Q2)
(Tr (iut[Q,H]ρct) dt− Tr [QD[L]ρct ] dt− Tr [QD[M ]ρct ] dt− Tr [QH[L]ρct ] dWt) .

(3.16)

Taking the expectation,

dE (j′t)

dt
=

1

Tr(Q2)
(Tr{i[Q,H]E (utρ

c
t)} − Tr{QD[L]E (ρct)} − Tr{QD[M ]E (ρct)}) .

(3.17)

To bound the rightmost side of Eq. (3.16), we introduce the distance between ρct and Q:

∥ρct −Q∥F =

√
Tr[(ρct −Q)

2
]

=
√

Tr[(ρct)
2 − 2ρctQ+Q2]

≤
√

1− 2Tr (ρctQ) + Tr(Q2)

≤
√

1− Tr(Q2) + 2Tr(Q2)j′t. (3.18)

Setting ū := max{|ut|}, the first term of the rightmost side of Eq. (3.16) is bounded as

Tr (iut[Q,H]ρct) ≥ −ū∥i[H,Q]∥F∥ρct −Q∥F

= −ū
√

Tr{(iHQ− iQH)2}
√
1− Tr(Q2) + 2Tr(Q2)j′t

= −2ū
√
Tr(H2Q2)− Tr[(HQ)2]

√
1− Tr(Q2) + 2Tr(Q2)j′t.

Then, due to the relation E(
√
a+ bjt) ≤

√
E(a+ bjt) (a, b > 0) we have

Tr{i[Q,H]E (utρ
c
t)} ≥ −2ū

√
Tr(H2Q2)− Tr[(HQ)2]

√
1− Tr(Q2) + 2Tr(Q2)E(j′t).

Next, the second term on the rightmost side of Eq. (3.16) can be bounded as

−Tr (QD[L]ρct) ≥ −∥L†QL∥F∥ρct −Q∥F − ∥L†LQ∥F∥ρct −Q∥F +Tr(L†LQ2)− Tr(L†QLQ)

≥ −
(√

Tr[(L†QL)2] +
√

Tr[(L†LQ)†(L†LQ)]

)√
1− Tr(Q2) + 2Tr(Q2)j′t

+Tr(L†LQ2)− Tr(L†QLQ)

≥ −
(√

Tr[(L†QL)2] +
√

Tr[(L†L)2Q2]

)√
1− Tr(Q2) + 2Tr(Q2)j′t

+Tr(L†LQ2)− Tr(L†QLQ).
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Then,

−Tr{QD[L]E (ρct)} ≥ −
(√

Tr[(L†QL)2] +
√
Tr[(L†L)2Q2]

)√
1− Tr(Q2) + 2Tr(Q2)E (j′t)

+ Tr(L†LQ2)− Tr(L†QLQ).

The same inequality also holds for M . From the above inequalities, the differential of the

cost function J ′
t = E (j′t) = 1−Tr{QE (ρct)}/Tr(Q2) with respect to time is bounded from

below as

dJ ′
t

dt
≥ 1

Tr(Q2)

(
−U ′

√
1− Tr(Q2) + 2Tr(Q2)J ′

t −A′
√

1− Tr(Q2) + 2Tr(Q2)J ′
t + E ′

)
,

(3.19)

where

A′ =
√
2

(√
Tr[(L†QL)2] +

√
Tr[(L†L)2Q2] +

√
Tr[(M†QM)2] +

√
Tr[(M†MQ)2]

)
,

U ′ = 2ū
√

Tr(H2Q2)− Tr[(HQ)2], ū = max{|ut|},

E ′ = Tr(L†LQ2)− Tr(L†QLQ) + Tr(M†MQ2)− Tr(M†QMQ).

The inequality (3.19) has the same form as (3.14), and hence we have

dJ ′
t

dt
≥ 1

Tr(Q2)

(
−U ′

√
1− Tr(Q2) + 2Tr(Q2)J ′

t −A′
√

1− Tr(Q2) + 2Tr(Q2)J ′
t + E ′

)
≥ 1

Tr(Q2)

(
−U ′

√
1− Tr(Q2) + 2Tr(Q2)J ′

∗ −A′
√

1− Tr(Q2) + 2Tr(Q2)J ′
∗ + E ′

)
= 0.

Consequently, the derivation of (3.15) is completed. (Q.E.D)

3.3 Examples

3.3.1 Qubit

The first example is a qubit system. Let the target be a Bloch representation

|ψ⟩ = [cos θ, eiφ sin θ]⊤, (0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π). (3.20)

Here we consider the system operators

H = σy, L =
√
κσz, M =

√
γσ−. (3.21)

This is a typical characterization of MBF control [10, 24, 25, 26, 27]; L represents the

controllable dispersive coupling between the qubit and the probe field, which allows for

continuous measurement the qubit state by monitoring the output field, and thus per-

forming a MBF control through the Hamiltonian utH. In the ideal setting (i.e., γ = 0),
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this MBF realizes deterministic and selective steering of the spin state to |0⟩ or |1⟩ for a
two-level system. In this setting, the lower bound is given as follows:

A =
√
2
(
∥L† |ψ⟩ ∥2 + ∥L†L |ψ⟩ ∥+ ∥M† |ψ⟩ ∥2 + ∥M†M |ψ⟩ ∥

)
=

√
2
(
κ+ γsin2θ + γcosθ

)
,

U = 2ū

√
⟨ψ|H2|ψ⟩ − ⟨ψ|H|ψ⟩2

= 2ū

√
1− sin22θsin2φ,

E = ∥L |ψ⟩ ∥2 − | ⟨ψ|L|ψ⟩ |2 + ∥M |ψ⟩ ∥2 − | ⟨ψ|M |ψ⟩ |2

= κ sin2 2θ + γ cos4 θ.

Then we obtain the lower bound

J∗(|ψ⟩) =
1

2

[
κ sin2 2θ + γ cos4 θ

2κ+ γ(sin2 θ + cos θ) + ū
√

2− 2 sin2 2θ sin2 2φ

]2
. (3.22)

First, we consider the case κ = 0. In this case, the system obeys the master equation

dρt/dt = −i[utσy, ρt] + D[
√
γσ−]ρt driven by the open-loop control input ut satisfying

|ut| ≤ ū and the energy decay. Figure 3.4 (a) shows the above lower bound J∗ when

γ = 1 and φ = 0. Clearly, J∗ takes maximum at |ψ⟩ = |0⟩ and zero at |ψ⟩ = |1⟩. This

implies that |0⟩ is the most difficult state to stabilize, while |1⟩ can be stabilized exactly.

Actually, these implications are true, as can be analytically verified by solving the above

master equation; that is, |1⟩ corresponds to the steady state of the evolution. On the

other hand, if κ = 1, as depicted in Fig. 3.4 (b), J∗ at around θ = 0 drastically decreases

compared to the case κ = 0. This result is reasonable because, as demonstrated in Section

3.1, the dispersive coupling represented by L =
√
κσz in the ideal setting of MBF makes

possible to deterministically stabilize |0⟩. As a result, J∗ takes the maximal value at

around θ = 0.6, implying that |+⟩ is the most difficult to stabilize.

It is also an interesting problem how the actual tightness of the lower bound J∗ is. Here

we compare J∗ to the actual distance; the steady value J∞ and the minimal value Jmin

achieved by a special type of MBF control. We here take the control input ut = −2κxt

given in Section 3.1 in the numerical simulation. We compute J∞ and Jmin by averaging

300 sample points of conditional state ρct for the case |ψ⟩ = |0⟩ with several value of the

ratio γ/κ. Figure 3.4 (c) shows that the gap between J∗ and J∞ is large and hence J∗ is

not tight in this case. This is maybe because J∗ works as a lower bound for Jmin, as shown

in Fig. 3.4 (d). Thereby, a control strategy to reduce the gap and eventually prepare a

state close to |0⟩ is a remaining work.

3.3.2 Two-qubits

Here we study a two-qubit system under decoherence. First, we introduce the following

Bell states, which are particularly used in the scenario of quantum information science
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Fig. 3.4: Lower bound J∗ as a function of θ for (a) κ = 0, and (b) κ = 1 in units of γ = 1.

Plots of (c) J∗ and J∞ and (d) J∗ and Jmin as a function of γ/κ with ut a special type

of MBF control input. Reprinted figure from [104, DOI: 10.1103/PhysRevA.99.052347].

Creative Commons Attribution 4.0 International license. Copyright 2019 by K. Kobayashi

and N. Yamamoto.

[49]:

|Φ±⟩ = 1√
2
(|0⟩ |0⟩ ± |1⟩ |1⟩),

|Ψ±⟩ = 1√
2
(|1⟩ |0⟩ ± |0⟩ |1⟩).

The question here is which states is the best one controllable by any open-loop control

unde the assumption thatM = 0. As discussed in the qubit case, the lower bound J∗ gives

a rough answer to this question. In particular, we employ the collective decay process

modeled by

M =
√
γ(σ− ⊗ I + I ⊗ σ−), (3.23)
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which globally acts two-atoms. Then, for instance, for the case |Φ+⟩,

A =
√
2(∥L† |Φ+⟩ ∥2 + ∥L†L |Φ+⟩ ∥) = (2 +

√
2)γ,

E = ∥M |Φ+⟩ ∥2 − | ⟨Φ+|M |Φ+⟩ |2 = γ.

Thereby, together with the other Bell states, the lower bounds are calculated as

J∗(|Φ±⟩) = γ2

[(2 +
√
2)γ + U ]2

,

J∗(|Ψ+⟩) = 4γ2

(4
√
2γ + U)2

,

J∗(|Ψ−⟩) = 0.

Now, for fair comparison, we assumed that a control Hamiltonian H has the same mag-

nitude of U appearing in each J∗ for each states. Hence, the Bell states have different

reachability properties under realistic decoherence, although their amount of entangle-

ment are same. Clearly, |Ψ−⟩ is the best target state in our case. In fact, |Ψ−⟩ is identical
to the dark state ofM and is accessible. Also, for all γ and U , J∗(|Φ±⟩) < J∗(|Ψ+⟩) holds.
This means that |Ψ+⟩ is the most fragile state against the collective decay process. On

the other hand, if each qubit is subjected to a local decay modeled by

M1 =
√
γσ− ⊗ I, M2 =

√
γI ⊗ σ−, (3.24)

we have the same bound for all Bell states as

J∗ =

(
γ

(2 +
√
2)γ + U

)2

.

That is, in this case there is no difference between the Bell states, in terms of the reacha-

bility property.

Next, we focus on an interesting example of MBF setup; suppose that two qubits are

symmetric, which is identical to a qutrit system composed of three distinguishable states

|E⟩ =


1

0

0

 , |S⟩ =


0

1

0

 , |G⟩ =


0

0

1

 , (3.25)

where |S⟩ corresponds to the entangled state between two qubits. Here the target state

is described by the pure state

|ψ⟩ = [sin(θ/2) cos(φ/2), cos(θ/2), sin(θ/2) sin(φ/2)]⊤,

where 0 ≤ θ, φ ≤ π. The MBF setup considered here is given by

H =
1√
2


0 −i 0

i 0 −i
0 i 0

 , L =
√
κ


1 0 0

0 0 0

0 0 −1

 , M =
√
γ


0 0 0

1 0 0

0 1 0

 .
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The continuous measurement through the system-probe coupling represented by L ideally

induces the probabilistic state change to |E⟩, |S⟩, or |G⟩. The decoherence process M

represents the ladder-type decay |E⟩ → |S⟩ → |G⟩. In the setting the lower bound

J∗(|ψ⟩) = E2/(A+ U)2 can be explicitly given with

A =
√
2κ

(
sin2

θ

2
+ sin

θ

2

)
+
√
2γ

(
cos2

θ

2
+ sin2

θ

2
sin2

φ

2
+

√
sin2

θ

2
cos2

φ

2
+ cos2

θ

2

)
,

U =
√
2ū

√
1 + cos2

θ

2
− sin2

θ

2
sinφ,

E = κ

(
sin2

θ

2
+ sin

θ

2

)
+ γ

(
sin2

θ

2
sin2

φ

2
+ cos2

θ

2
+

√
sin2

θ

2
cos2

φ

2
+ cos

θ

2

)
.

Figure 3.5 illustrates J∗ as a function of (θ, φ). As in the qubit case, J∗(|ψ⟩) takes the

maximum at |E⟩ when κ = 0 [Fig. 3.5 (a)], while J∗(|E⟩) can be drastically lowered when

κ > 0 [Fig. 3.5 (b)]; that is the measurement allows for combating the decoherence and

have a chance to closely approach |E⟩ via MBF. However, this strategy does not work for

the case of |S⟩, because J∗(|ψ⟩) is independent of κ at θ = 0. In general, if the target |ψ⟩ is
an eigenstate of L = L† with a small eigenvalue, then the term related to M takes a small

value as well in A and zero in E . In particular, for the dark state satisfyingM |ψ⟩ = 0, the

lower bound J∗(|ψ⟩) is independent of M . Hence, the measurement does not at all work

for decreasing J∗ in this case. In contrast, for an eigenstate of M with a large eigenvalue,

i.e., the excited state |E⟩, the term related to L in A takes a large value and eventually

J∗ becomes small. This implies that we may closely approach such a state via some MBF

control even under decoherence.

3.3.3 N-qubits

Here we study an atomic ensemble composed of N identical qubits. The basic operators

for describing this system are the angular momentum operator Ji (i = x, y, z) satisfying

the CCR, e.g., [Jx, Jy] = iJz, the magnitude J2 = J2
x + J2

y + J2
z , and the ladder-type

operator J− = Jx − iJy. Here we focus on the Dicke state |l,m⟩, which are the common

eigenstates of Jz and J defined by

Jz |l,m⟩ = m |l,m⟩ ,

J2 |l,m⟩ = l(l + 1) |l,m⟩ .

In quantum physics, m and l are magnetic quantum number and azimuthal quantum num-

ber, respectively, and hence |m| ≤ l ≤ N/2 holds [57]. Recall, if N is even, that |N/2, N/2⟩
corresponds to the coherent spin state (CSS) |0⟩⊗N

, i.e., the separable state with all the

spins pointing along the z axis, while |N/2, 0⟩ is highly entangled. It was proven in [9, 15]

that, for the ideal system subjected to the SME (3.2) with (H,L,M) = (Jy,
√
κJz, 0), the

Dicke state |N/2, 0⟩ for arbitrary m ∈ [−N/2, N/2] can be deterministically prepared by
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Fig. 3.5: Lower bound J∗(|ψ⟩) as a function of (θ, φ) for (a) κ = 0 and (b) κ = 1, in

units of γ = 1. In both cases the curved surface corresponds to ū = 0, 1, 5 from top

to bottom. Reprinted figure from [104, DOI: 10.1103/PhysRevA.99.052347]. Creative

Commons Attribution 4.0 International license. Copyright 2019 by K. Kobayashi and N.

Yamamoto.

an appropriate MBF control. Now using the lower bound J∗, we can evaluate how much

this MBF control could work effectively under decoherence. Let M =
√
γJ−, where

J± |l,m⟩ =
√

(l ∓m)(l ±m+ 1) |l,m± 1⟩

and

J+J− = (Jx + iJy)(Jx − iJy)

= J2
x + J2

y − iJxJy + iJyJx

= J2 − J2
z − i[Jx, Jy]

= J2 − J2
z + Jz,

and likewise J−J+ = J2 − J2
z − Jz. Then we have

A =
√
2
(
κ∥Jz |l,m⟩ ∥2 + κ∥J2

z |l,m⟩ ∥+ γ∥J†
− |l,m⟩ ∥2 + γ∥J†

−J− |l,m⟩ ∥
)

=
√
2[κm2 + κm2 + γ{l(l + 1)−m2 −m}+ γ{l(l + 1)−m2 +m}]

=
√
2{2κm2 + 2γ(l2 + l −m2)},

U = ū

√
∥(J†

− − J−) |l,m⟩ ∥2 − | ⟨l,m|(J†
− − J−|l,m⟩ |2,

= ū
√
{(l −m)(l +m+ 1) + (l +m)(l −m+ 1)}

=
√
2ū
√
l2 + l −m2,

E = κ∥Jz |l,m⟩ ∥2 − κ| ⟨l,m|Jz|l,m⟩ |2 + γ∥J− |l,m⟩ ∥2 − γ| ⟨l,m|J−|l,m⟩ |2

= κm2 − κm2 + γ(l +m)(l −m+ 1)

= γ(l2 + l −m2 +m).
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Then the lower bound for |ψ⟩ = |l,m⟩ is

J∗(|l,m⟩) = 1

2

[
γ(l2 + l −m2 +m)

2κm2 + 2γ(l2 + l −m2) + ū
√
l2 + l −m2

]2
.

Figure 3.6 (a) shows the case of N = 20 atoms, for the target ideal Dicke state |ψ⟩ =
|10,m⟩. As in the above examples, we find that the measurement remarkably decreases J∗

especially for the state with large |m|, for instance, the CSS |10, 10⟩ is almost unaffected

by the measurement. In fact, in general, for a Dicke state with large |m| ≲ l = N/2, such

as the CSS, the measurement term proportional to κ is dominant in the denominator of

J∗, while for highly entangled Dicke states with m ∼ 0 the decoherence term proportional

to γ becomes dominant. Note in particular that

J∗(|N/2, N/2⟩) =

[ √
2γN

κN2 + 2γN + ū
√
2N

]2
,

J∗(|N/2, 0⟩) =
1

2

[
γ(N2 + 2N)

2γN2 + 4γN + 2ū
√
N2 + 2N

]2
.

Hence, if an ensemble is sufficiently large N → ∞, we have J∗(|N/2, N/2⟩) → 0 and

J∗(|N/2, 0⟩) → 1/8. Here we emphasize that this fundamental bound J∗ = 1/8 is applied

to all highly entangled Dicke states satisfying m ∼ 0 and l ≲ N/2 ≫ 1. That is, while

no limitation appears for the case of the CSS due to the measurement effect, preparing

those highly entangled Dicke states is severely prohibited, without respect to the use

of measurement and control. This result means that, in practice, there exists a strict

limitation in quantum magnetmetry that utilizes a highly entangled Dicke states [52].

Another important subject in quantum metrology is the frequency standard, where as

a resource the Greenberger-Horne-Zeilinger (GHZ) state

|GHZ⟩ = |0⟩⊗N
+ |1⟩⊗N

√
2

(3.26)

is used for estimating the atomic frequency, over the standard quantum limit attained by

employing the product state [58]

|+⟩⊗N
=

(
|0⟩+ |1⟩√

2

)⊗N

. (3.27)

The essential issue of this technique is that the estimation performance is severely limited

due to the dephasing noise [59, 60], which affects both the state preparation process and

the free-precession process. Now, using the lower bound J∗, we can characterize the

performance degradation occurring in the former process. In the usual setup where no

continuous monitoring is performed, the actual system is driven by the master equation
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dρt/dt = −i[H, ρt] +D[M ]ρt, where the dephasing noise M is represented by

M =
√
γJz =

√
γ

N∑
j=1

σ(j)
z

=
√
γ
(
σ(1)
z ⊗ I ⊗ I · · · I + · · ·+ I ⊗ I ⊗ · · ·σ(N)

z

)
.

H is a system Hamiltonian representing an appropriate open-loop control. Now, as for

the product state

M |+⟩⊗N
=

√
γ

N∑
j=1

|+⟩ · · · |+⟩ |−⟩ |+⟩ · · · |+⟩

holds, where |−⟩ = (|0⟩ − |1⟩)/
√
2 appears in the jth component. This leads to

⟨+|⊗NM |+⟩⊗N = 0 and thus

E = ∥M |+⟩⊗N ∥2 − |⟨+|⊗NM |+⟩⊗N |2 = γN.

Also, we have

M†M |+⟩⊗N
= γ

N |+⟩⊗N
+ 2

∑
i ̸=j

|+⟩ · · · |−⟩ · · · |−⟩ · · · |+⟩

 ,

where |−⟩ appears only in the ith and jth components (i ̸= j). Therefore

A =
√
2
(
∥M† |+⟩⊗N ∥2 + ∥M†M |+⟩⊗N ∥

)
=

√
2γN +

√
6N2 − 4Nγ.

On the other hand, with respect to the GHZ state,

M |GHZ⟩ =M† |GHZ⟩ = γN(|0⟩⊗N − |1⟩⊗N
)√

2
,

M†M |GHZ⟩ = γN |GHZ⟩ ,

and ⟨GHZ|M |GHZ⟩ = 0, and thus

A =
√
2
(
∥M† |GHZ⟩ ∥2 + ∥L†M |GHZ⟩ ∥

)
=

√
2
(
γN2 + γN2

)
= 2

√
2γN2,

E = ∥M |GHZ⟩ ∥2 − | ⟨GHZ|M |GHZ⟩ |2

=
γ

2
N2∥ |0⟩⊗N − |1⟩⊗N ∥2 − 0 = γN2.

Consequently, we end up with

J∗(|+⟩⊗N
) =

(
γN√

2γN + γ
√
6N2 − 4N + U

)2

,

J∗(|GHZ⟩) =
(

γN2

2
√
2γN2 + U

)2

.
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Hence, under the assumption that U is of the order at most
√
N and N , J∗(|+⟩⊗N

) →
1/(8 + 4

√
3) and J∗(|GHZ⟩) → 1/8 in the limit N → ∞, respectively, regardless of the

control techniques. From this, it is more difficult to prepare the GHZ state than the

product state, and this gap would erase the quantum advantage realized by employing

the GHZ state in the ideal setting. In both cases, the estimation performance must be

severely limited under decoherence, if the total time taken for state preparation and free-

precession process becomes longer; this is why these two processes have to be conducted

in as short a time as possible.

3.3.4 Fock state

The last example in this section is the problem of generating an arbitrarily Fock state

in an optical cavity. In the setup, in [11, 12, 14], the conditional cavity state obeys the

master equation Eq. (3.8) with

H = i(a† − a), L =
√
κa†a, M =

√
γa,

where a and a† are the annihilation and creation operator, respectively. H is known

as a displacement operator moving the state. L is known as the cross Kerr coupling

between the cavity field and the probe field. This coupling induces a phase shift on the

output probe field that is proportional to the number of photons in the cavity. Hence,

by measuring the output probe field, we can obtain the information on the number of

photons and get one of the eigenstates of L, that is, a conditional Fock state. In fact, it

was proven in the ideal case (i.e., M = 0) that one can deterministically steer the state to

a target Fock state |n⟩ by choosing a suitable MBF input ut. M is a typical dissipative

process representing the photon leakage caused by the interaction between the probe field

and the optical cavity.

Now the lower bound J∗ can be used to evaluate the performance of this MBF control

under decoherence. Using the relation a |n⟩ =
√
n |n− 1⟩ and a† |n⟩ =

√
n+ 1 |n+ 1⟩, we

have

A =
√
2
(
κ∥a†a |n⟩ ∥2 + κ∥a†aa†a |n⟩ ∥+ γ∥a† |n⟩ ∥2 + ∥a†a |n⟩ ∥

)
= 2

√
2κn2 +

√
2γ(2n+ 1),

U = 2ū

√
∥i(a† − a) |n⟩ ∥2 − ⟨n|i(a† − a)|n⟩2

= 2ū
√
2n+ 1,

E = κ∥a†a |n⟩ ∥2 − κ| ⟨n|a†a|n⟩ |2 + γ∥a |n⟩ ∥2 − γ| ⟨n|a|n⟩ |2

= γn.
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Fig. 3.6: Lower bound J∗ for (a) the atomic Dicke state as a function of m and (b) the

optical Fock states, in unit of γ = 1. Reprinted figure from [104, DOI: 10.1103/Phys-

RevA.99.052347]. Creative Commons Attribution 4.0 International license. Copyright

2019 by K. Kobayashi and N. Yamamoto.

Therefore, J∗ is calculated as

J∗(|n⟩) =
1

2

(
γn

2κ2 + γ(2n+ 1) + ū
√
4n+ 2

)2

.

Figure 3.6 (b) plots J∗ when γ = 1. As seen in the previous studies, the measurement

effect notably decreases J∗. However, in this case J∗ ∼ 0 for large Fock states |n⟩ (n ≳ 5)

does not necessarily mean that these states can be exactly stabilized via MBF, because it

is known that a large Fock state might be harder to prepare than a small one such as a

single-photon state |1⟩. Thus, the lower bound only for small Fock states |n⟩ (n ≲ 4) has

a practical meaning.

3.4 Summary

Quantum control offers a powerful means for generating a desired quantum state, although

the actual performance of quantum control severely degrades in the presence of decoher-

ence. Therefore, to clarify the reachability, which in our scenario the distance between

the controlled state in the presence of decoherence and the target state, is of significant

importance to evaluate the actual performance of those technologies. In this chapter, we

have presented the fundamental lower bound J∗ of the distance between the controlled

quantum state under decoherence and an arbitrary target state. The notable points of J∗

is the following two; (i) J∗ is applicable to a general Markovian open quantum system;

it is not necessary for specifying the control setup. (ii) J∗ is directly computable and

used as a useful guide for engineering open quantum systems; that is, for example, the

system operators should be configured so that J∗ takes the minimum for a given target

state in the reservoir engineering scenario. In particular, from the practical viewpoint, it
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is noted that the lower bound is used to derive a theoretical limit in quantum metrology;

for a typical large-size atomic ensemble under control and decoherence, the fidelity to the

target GHZ state must be less than 0.875, irrespective to the control strategy.
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Chapter 4

Quantum speed limit

In the previous chapter, we have presented the distance limit to the target state. In this

chapter, we turn our attention to time, which is a dual concept of distance. Actually,

the time is an important factor to be delicately dealt with in the quantum mechanics,

because the change of quantum states occurs in very small time interval. In particular, in

the presence of decoherence, quantum states loss its coherence immediately. Towards the

problem of evaluating the decohering time, Quantum speed limit (QSL) offers a powerful

mean.

The QSL is defined as a lower bound on the evolution time of a quantum system

evolving from the initial state to the final state. The QSL gives not only a trade-off

relation between energy and time but also the shortest time for the state change. Thus,

the investigation of the QSL is of great importance from both fundamental and practical

sides. The purpose of this chapter is to exploit applications of the QSL. The first is to

propose a new use of QSL as a measure of robust states, viewing a state with a bigger

QSL to be more robust. From this perspective, we can formulate an engineering problem

of the Hamiltonian that makes a target state robust against a decoherence. In order to

efficiently solve this problem, we present a general and explicitly computable QSL. The

second is the use for characterization of the reachable set. This approach is based on that

evolution time and distance are correlated by the QSL. As a consequence, we present a

time-dependent limit for the distance of the controlled quantum system under decoherence

with some notable examples. The topics provided in Section 4,2, 4.3, and 4.4 are based

on [105].
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4.1 Quantum speed limit for closed system

4.1.1 Mandelstam-Tamm bound and Margolus-

Levitin bound

We begin with a brief overview of the field of QSL. The first treatment of QSLs was given

by Mandelstam and Tamm [75]; suppose that a pure state in a closed system |ψt⟩ is driven
by the time-independent Hamiltonian H. In this case, the evolution time T needed for

evolving to its orthogonal state is bounded as follows:

T ≥ TMT :=
πℏ
2∆E

, (4.1)

where ∆E :=

√
⟨ψt|H2|ψt⟩ − ⟨ψt|H|ψt⟩2 is the energy variance. TMT is called

Mandelstam-Tamm bound. This inequality implies that quantum mechanics sets a

fundamental limit on the evolution time characterized by the energy variance and ℏ.
Here we introduce another famous result in the same assumption; the Margolus-Levitin

bound [76]:

T ≥ TML :=
πℏ
2E

, (4.2)

where E := ⟨ψt|H|ψt⟩ (we set ℏ = 1 in the following).

Proof of Mandelstam-Tamm bound and Margolus-Levitin bound There are

several approach to deriving the Mandelstam-Tamm bound and Margolus-Levitin bound

[75, 76, 77, 78, 79, 82]. Here we employ the technique provided in [81] including the

general case that the initial state and the final state are not orthogonal. We first derive

the Mandelstam-Tamm bound. Let a given initial state |ψ0⟩ be expanded with the energy

eigenbasis,

|ψ0⟩ =
∑
n

cn |n⟩ ,

and |n⟩ satisfies the eigenequation

H |n⟩ = En |n⟩ ,

where En is the energy eigenvalue. The solution of the Schrödinger equation is given by

|ψt⟩ =
∑
n

cne
−iEnt |n⟩ .

Now the fidelity between |ψ0⟩ and |ψt⟩ is

Ft = | ⟨ψ0|ψt⟩ |2 =

∣∣∣∣∣∑
n

|cn|2e−iEnt

∣∣∣∣∣
2

.
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The derivative of Ft with respect to t is calculated as follows:

dFt

dt
=
∑
m

∑
n

|cm|2|cn|2(−iEn + iEm)eiEmt−iEnt

=
∑
m

∑
n

|cm|2|cn|2(−iEn)(e
iEmt−iEnt − e−iEmt+iEnt)

= 2
∑
m

∑
n

|cm|2|cn|2En sin(Emt− Ent)

= 2
∑
m

∑
n

|cm|2|cn|2(En − E) sin(Emt− Ent). (4.3)

Then, taking the absolute value of the both-side of (4.3), we have∣∣∣∣dFt

dt

∣∣∣∣ = 2

∣∣∣∣∣∑
m

∑
n

|cm|2|cn|2(En − E)sin(Emt− Ent)

∣∣∣∣∣
≤ 2

∣∣∣∣∣∑
m

∑
n

|cm|2|cn|2(En − E)e−iEnt−iEmt

∣∣∣∣∣
≤ 2

∣∣∣∣∣∑
n

c∗n(En − E)

{
cn

(∑
m

|cm|2e−iEnt−iEmt − Ft

)}∣∣∣∣∣
≤ 2

√∑
n

|c∗n(En − E)|2

√√√√∑
n

∣∣∣∣∣cn
(∑

m

|cm|2e−iEnt+iEmt − Ft

)∣∣∣∣∣
2

= 2∆E
√
Ft (1− Ft), (4.4)

where we have used the Schwarz inequality. Finally, due to the relation

d

dt
arccos(

√
x) =

1

2
√
x(1− x)

,

the inequality (4.4) is

d

dt
arccos(

√
Ft) = ∆E. (4.5)

Therefore, we end up with

T ≥ arccos(
√
FT )

∆E
. (4.6)

When FT = 0, the rightmost side of (4.6) becomes Mandelstam-Tamm bound.

Next, we derive the Margolus-Levitin bound. Setting the fidelity Ft = | ⟨ψ0|ψt⟩ |2 = ϵ

with the positive constant ϵ, the overlap | ⟨ψ0|ψt⟩ | is

| ⟨ψ0|ψt⟩ | =
√
ϵeiθ =

∑
n

|cn|2e−iEnt, (4.7)
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where 0 ≤ θ ≤ π/2. By comparing the real and imaginary part of (4.7), we have

Re [| ⟨ψ0|ψt⟩ |] =
∑
n

|cn|2 cos(Ent) =
√
ϵ cos θ,

Im [| ⟨ψ0|ψt⟩ |] =
∑
n

|cn|2 sin(Ent) = −
√
ϵ sin θ.

Now we consider the following inequality

cosx+ q sinx ≥ 1− ax (x, q ≥ 0), (4.8)

where a and q are implicitly related as follows:

a =
y +

√
y2(1 + q2) + q2

1 + y2
,

siny =
a(1− qy) + q

1 + q2
,

where y ∈ [π − arctan(1/q), π + arctan(q)]. With respect to (4.8), setting x = Ent and

multiplying |cn|2 and summing over n, we have

√
ϵ cos θ − q

√
ϵ sin θ ≥ 1− aEt,

where the mean energy E = ⟨ψ|H|ψ⟩ =
∑

n |cn|2En. Then

t ≥ 1−
√
ϵ(cos θ − q sin θ)

aE
=
α(ϵ)

aE
.

This is the Margolus-Levitin bound including the case that the two states are not or-

thogonal. Then, the inequality means that the minimal time TQSL(ϵ) needed for ϵ is

limited

TQSL(ϵ) =
α(ϵ)

E
,

α(ϵ) = minθ

{
maxq

{
1−

√
ϵ(cos θ − q sin θ)

1

a

}}
.

When ϵ = 0, the Margolus-Levitin bound is obtained. (Q.E.D)

4.1.2 Quantum speed limit for open quantum system

A recent interest in the field of QSL is the generalization to open quantum systems [87, 88,

89]. In particular, Del Campo has derived an explicit QSL for Markovian open quantum

systems based on the angle between two states

Θt := arccos {Tr (ρ0ρt)} .

Suppose that ρt is driven by the master equation

dρt
dt

= −i[H, ρt] +D[M ]ρt.
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Under the assumption that H andM are time-independent, the evolution time is bounded

as follows:

T ≥ TDC :=
1− cosΘT

∥i[H, ρ0] +D†[M ]ρ0∥F
. (4.9)

In this thesis we call TDC the Del Campo’s bound.

Proof of the Del Campo’s bound The time evolution of Θt is given as follows:

dΘt

dt
=

−1√
1− Tr (ρ0ρt)

2
Tr

(
ρ0 ·

dρt
dt

)

=
−1

sinΘt
Tr {ρ0 (−i[H, ρt] +D[M ]ρt)}

=
1

sinΘt
Tr
{
(i[H, ρ0] +D†[M ]ρ0)ρt

}
≤ 1

sinΘt
∥i[H, ρ0] +D†[M ]ρ0∥F∥ρt∥F

≤ 1

sinΘt
∥i[H, ρ0] +D†[M ]ρ0∥F.

Then, integrating the above inequality from t = 0 to T yields TDC. (Q.E.D)

When the system is closed, M = 0, the denominator of TDC is given

∥i[H, ρ0]∥F =
√
2

√
⟨ψ0|H2|ψ0⟩ − ⟨ψ0|H|ψ0⟩2,

which is the energy variance in the initial state. Thereby, we can say that TDC is a certain

kind of a form of the Mandelstam-Tamm bound. In the next section, we will analytically

compare TDC with our bound that will be presented in the next section.

4.2 New explicit QSL

4.2.1 Setup and derivation

In Chapter 3, we have employed the SME for deriving the lower bound J∗. However,

in general it is difficult to treat the stochastic term dWt for analyzing the time of state

evolution. Hence, in this chapter we consider the master equation:

dρt
dt

= −i[H, ρt] +D[M ]ρt. (4.10)

Now for simplicity suppose that the Hamiltonian H and decoherence M are time-

independent, and the initial state is pure ρ0 = |ψ0⟩ ⟨ψ0|. Next, we employ the

fidelity-based distance from the initial state as a cost function:

Vt = 1− Tr (ρ0ρt) . (4.11)



Chapter 4 Quantum speed limit 46

This takes the maximum when ρt is orthogonal to ρ0, and the minimum is achieved only

when ρt = ρ0. This is why, a new lower bound, that is, the minimum time of the time

T needed for the cost (4.11) to evolve from V0 = 0 to a given VT ∈ [0, 1], is given by the

following:

Theorem 4.1 For the quantum state ρt obeying the master equation (4.10), the cost

(4.11) has the lower bound:

T ≥ T∗ :=
2λ

K
+

2C
K2

ln

[
C

C +Kλ

]
, (4.12)

with

K =
√
2∥i[H, ρ0] +D†[M ]ρ0∥F,

C = ∥M |ψ0⟩ ∥2 − | ⟨ψ0|M |ψ0⟩ |2,

λ =
√
VT .

Proof of Theorem 4.1 The dynamics of Vt is given by

dVt
dt

= −Tr

(
ρ0
dρt
dt

)
= −Tr {ρ0 (−i[H, ρt] +D[M ]ρt)}

= Tr
{(
i[ρ0,H]−D†[M ]ρ0

)
ρt
}
. (4.13)

To derive an upper bound of the rightmost side of Eq. (4.13), we use two inequalities; the

Schwarz inequality ∥X∥F∥Y ∥F ≥ |Tr(XY )| and

∥ρt − ρ0∥F =

√
Tr
[
(ρt − ρ0)

2 ]
=
√

Tr [ρ2t − 2ρtρ0 + ρ20]

≤
√

2− 2Tr (ρtρ0)

=
√

2Vt.

Using these, the rightmost side of Eq. (4.13) is upper bounded as follows:

Tr
{(
i[ρ0,H]−D†[M ]ρ0

)
ρt
}

= Tr
{(
i[ρ0,H]−D†[M ]ρ0

)
(ρt − ρ0)

}
− Tr

(
ρ0D†[M ]ρ0

)
= Tr{

(
i[H, ρ0] +D†[M ]ρ0

)
(ρ0 − ρt)}+Tr

(
M†Mρ0

)
− Tr

(
M†ρ0Mρ0

)
≤ ∥i[H, ρ0] +D†[M ]ρ0∥F · ∥ρt − ρ0∥F + ∥M |ψ0⟩ ∥2 − | ⟨ψ0|M |ψ0⟩ |2

≤
√
2∥i[H, ρ0] +D†[M ]ρ0∥F

√
Vt + ∥M |ψ0⟩ ∥2 − | ⟨ψ0|M |ψ0⟩ |2,
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Combining these with (4.13), we have

dVt
dt

≤ K
√
Vt + C, (4.14)

where

K =
√
2∥i[H, ρ0] +D†[M ]ρ0∥F,

C = ∥M |ψ0⟩ ∥2 − | ⟨ψ0|M |ψ0⟩ |2.

Then by integrating the inequality (4.14), from 0 to T , we end up with Theorem 4.1.

(Q.E.D)

Likewise the distance limit J∗, T∗ also gives a fundamental lower bound on the evolution

time. Here we list some notable points of T∗.

Remark 4.1: T∗ has an explicit form in terms of (ρ0,H,M, λ). Thanks to this, T∗ is

straightforwardly calculated once those parameters are given, and thus it is not necessary

for solving any equation.

Remark 4.2: T∗ is monotonically decreasing with respect to the magnitude of the

decoherenceM . This means that, the state evolution can become faster as the decoherence

becomes bigger.

Proof of Remark 4.2 Let us show that T∗ is monotonically decreasing with respect to

the strength of the decoherence, γ, which is defined by setting M =
√
γM ′ with fixed M ′.

In terms of γ, we can express K and C as K =
√
aγ2 + bγ + c and C = dγ, where (a, c, d)

are non-negative constants and b is a constant. Then T∗ can be expressed as

T∗ =
2λ√

aγ2 + bγ + c
+

dγ

aγ2 + bγ + c
ln

[
dγ

dγ + λ
√
aγ2 + bγ + c

]
,

and ∂T∗/∂γ is calculated as

∂T∗
∂γ

= − (2aγ + b)λ

K3
+

2d(aγ2 − c)

K4
ln

[
1 +

Kλ
C

]
+
d(bγ + 2c)λ

K3(C +Kλ)
.

The goal here is to show ∂T∗/∂γ ≤ 0. The proof is divided into three cases: aγ2 > c,

aγ2 = c, and aγ2 < c. First, for the case aγ2 > c we have

∂T∗
∂γ

≤ − (2aγ + b)λ

K3
+

2d(aγ2 − c)

K4

Kλ(Kλ+ 2C)
2C(Kλ+ C)

+
d(bγ + 2c)λ

K3(C +Kλ)

=
−λ2

γ(C +Kλ)
≤ 0,
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where the inequality ln(1+ x) ≤ x(x+2)/{2(x+1)} for x ≥ 0 is used. Next, for the case

aγ2 = c,

∂T∗
∂γ

= − λ2

γ(C +Kλ)
≤ 0.

Lastly, for the case aγ2 < c, we have

∂T∗
∂γ

= − (2aγ + b)λ

K3
+

2d(aγ2 − c)

K5λ
Kλ ln

(
C +Kλ

C

)
+
d(bγ + 2c)λ

K3(C +Kλ)

≤ − (2aγ + b)λ

K3
+

2d(aγ2 − c)

K5λ

2K2λ2

2C +Kλ
+
d(bγ + 2c)λ

K3(C +Kλ)

=
−λ2

K2(C +Kλ)

(
2aγ + b+

2d(c− aγ2)

2C +Kλ

)
,

where the inequality 2(α − β)2/(α + β) ≤ (α − β) ln(α/β) for α, β ≥ 0 is used. Now,

2aγ + b > 0 immediately leads to ∂T∗/∂γ ≤ 0. If 2aγ + b ≤ 0, the above inequality can

be further calculated as

∂T∗
∂γ

≤ −λ2(2aγ2 + bγ)(2C +Kλ)
γK2(C +Kλ)(2C +Kλ)

+
2λ2(aγ2 − c)

γK2(C +Kλ)(2C +Kλ)

=
−λ2{2CK2 − (4C +Kλ)(2aγ2 + bγ)}

γK2(C +Kλ)(2C +Kλ)
≤ 0. (Q.E.D)

Remark 4.3: T∗ is monotonically decreasing with respect to K for a fixed C.

Proof of Remark 4.3 Let us calculate ∂T∗/∂K:

∂T∗
∂K

= − 2

K2

{
λ+

C
K

ln

[
C

C +Kλ

]}
− 2C

K2

{
1

K
ln

[
C

C +Kλ

]
+

λ

C +Kλ

}
= − 2

K2

{
λ+

kλ

k + λ
− 2k ln

[
1 +

λ

k

]}
,

where k = C/K. Then from the inequality ln(1 + x) ≤ x(2 + x)/2(1 + x) for x ≥ 0, we

have

∂T∗
∂K

≤ − 2

K2

{
λ+

kλ

k + λ
− 2k

(λ/k)(2 + λ/k)

2(1 + λ/k)

}
= 0. (Q.E.D)

In general, a closed system with bigger Hamiltonian H evolves faster, although this

dynamics can be changed by the decoherence effect M in the case of open quantum

systems. Intuitively, K corresponds to the amplitude of such an effective Hamiltonian. In

Section 4.4, we will see that the monotonically decreasing property of T∗ with respect to

K is the key point for formulating the Hamiltonian engineering problem for robust state

preparation.
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Remark 4.4: T∗ can be straightforwardly generalized to the case where the system is

subjected to multiple decoherence channels and Hamiltonians. In this case T∗ is given by

(4.12) with

K =
√
2

∥∥∥∥∥∥
∑
j

i[Hj , ρ0] +
∑
j

D†[Mj ]ρ0

∥∥∥∥∥∥
F

,

C =
∑
j

(
∥Mj |ψ0⟩ ∥2 − | ⟨ψ0|Mj |ψ0⟩ |2

)
.

Remark 4.5: T∗ can be extended to the case where the initial state ρ0 is mixed. By

redefining the cost (4.11) as V ′
t = 1 − Tr (ρ0ρt) /Tr

(
ρ20
)
, we can derive the generalized

QSL:

T ≥ T ′
∗ :=

2(λ′T − λ′0)

K′ +
2C′

K′2 ln

[
C′ +K′λ′0
C′ +K′λ′T

]
, (4.15)

where

K′ =
√
2∥i[H, ρ0] +D†[M ]ρ0∥F,

C′ = Tr
(
M†ρ0Mρ0

)
− Tr

(
M†Mρ20

)
,

λ′t =
√

1− Tr (ρ20) + 2Tr (ρ20)Vt/
√
2.

Note that if ρ0 is pure, the lower bound (4.15) is equivalent to (4.12).

Proof of Remark 4.5 By replacing Vt with V
′
t , T

′
∗ can be derived in the same manner

as the derivation of T∗. The distance between ρ0 and ρt is

∥ρt − ρ0∥F =

√
Tr
[
(ρt − ρ0)

2
]

=
√
Tr [ρ2t − 2ρtρ0 + ρ20]

≤
√
Tr (ρ2t )− 2Tr (ρtρ0) + Tr (ρ20)

≤
√
1− Tr(ρ20) + 2Tr(ρ20)V

′
t .

Also, the upper bound of dV ′
t /dt is given as

dV ′
t

dt
=

−1

Tr(ρ20)
Tr

(
ρ0
dρt
dt

)
=

1

Tr(ρ20)
Tr [ρ0 (−i[H, ρt] +D[M ]ρt)]

=
1

Tr(ρ20)

(
Tr
[(
i[H, ρ0] +D†[M ]ρ0

)
(ρt − ρ0)

]
− Tr

(
M†Mρ20

)
+Tr

(
M†ρ0Mρ0

))
≤ 1

Tr(ρ20)

(
∥i[H, ρ0] +D†[M ]ρ0∥F∥ρt − ρ0∥F + C′)

≤ 1

Tr(ρ20)
(K′λ′ + C′) , (4.16)
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where

K′ =
√
2∥i[H, ρ0] +D†[M ]ρ0∥F,

C′ = Tr
(
M†ρ0Mρ0

)
− Tr

(
M†Mρ20

)
,

λ′ =
√

1− Tr(ρ20) + 2Tr(ρ20)V
′
t /

√
2.

By integrating the above inequality (4.16), we end up with the speed limit extended to

the mixed state:

T ≥ T∗ :=
2

K′

(
λ′T − λ′0 +

C′

K′ ln

[
C′ +K′λ′0
C′ +K′λ′T

])
, (4.17)

with

K′ =
√
2∥i[H, ρ0] +D†[M ]ρ0∥F,

C′ = Tr
(
M†ρ0Mρ0

)
− Tr

(
M†Mρ20

)
. (Q.E.D)

4.2.2 Comparison to the previous QSL

Recall the Del Campo’s bound provided in Section 4.1:

T ≥ TDC :=
1− Tr (ρ0ρT )

∥i[H, ρ0] +D†[M ]ρ0∥F
=

√
2λ2

K
(4.18)

Likewise T∗, TDC is also explicitly expressed once the parameters (ρ0,H,M, λ) are given.

This fact is indeed the key point for engineering a system having a robust initial state

ρ0 in terms of QSL. Note that, to our best knowledge, no explicit expression of QSL for

open quantum systems has been developed, except for T∗ and TDC. Thereby, it has an

important meaning to compare the tightness of T∗ and TDC. Let us examine the following

ratio:

T∗
TDC

=

{
2λ

K
+

2C
K2

ln

[
C

C +Kλ

]}
K√
2λ2

=

√
2

λ
+

√
2k

λ2
ln

[
k

k + λ

]
,

where k = C/K. Note that from Schwarz inequality we have

K =
√
2∥i[H, ρ0] +D†[M ]ρ0∥F · ∥ρ0∥F

≥
√
2|Tr

{(
i[H, ρ0] +D†[M ]ρ0

)
ρ0
}
| =

√
2C,

hence 0 ≤ k ≤ 1/
√
2. First, T∗/TDC is a monotonically decreasing function with respect

to k, because

∂

∂k

(
T∗
TDC

)
=

√
2

λ

{
− 1

λ
ln

[
1 +

λ

k

]
+

1

k + λ

}
≤

√
2

λ

(
− 1

λ

λ

k + λ
+

1

k + λ

)
= 0,
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Fig. 4.1: The 3-dimensional plot of the ratio of bounds, T∗/TDC, as a function of k ∈
[0, 1/

√
2] and λ ∈ [0, 1]. Reprinted figure from [105, DOI: 10.1103/PhysRevA.102.042606].

Creative Commons Attribution 4.0 International license. Copyright 2020 by K. Kobayashi

and N. Yamamoto.

where we used ln(1 + x) ≥ x/(1 + x) for x ≥ 0. Now, when k = 0 or equivalently when

the system is closed (i.e., C = 0), then T∗/TDC ≥
√
2/λ > 1. Together with the above

monotonically decreasing property of T∗/TDC with respect to k, hence, T∗ is tighter than

TDC if the decoherence is small. Next, T∗/TDC decreases with respect to λ, because

∂

∂λ

(
T∗
TDC

)
= −

√
2

λ2
+

2
√
2k

λ3
ln

[
1 +

λ

k

]
−

√
2k

λ2
1

k + λ

≤
√
2

λ2

{
−1 +

2k + λ

k + λ
− k

k + λ

}
= 0,

where we used ln(1 + x) ≤ x(2 + x)/{2(1 + x)} for x ≥ 0. From this inequality, T∗

works as a tighter bound than TDC, in the region Rλ (ρ0) with small radius λ, which can

be quantitatively seen in Fig. 4.1, which plots T∗/TDC as a function of k ∈ [0, 1/
√
2]

and λ ∈ [0, 1]. The yellow-colored region shows the set of parameters (λ, k) such that

T∗ > TDC. Note that, when the decoherence is weak (i.e., k is small) and Rλ (ρ0) is small

(i.e., λ is small), then T∗ works as a much bigger lower bound for the escape time T , than

TDC.
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4.3 Examples

4.3.1 Qubit

The first example is a qubit system consisting of the excited state |0⟩ = [1, 0]⊤ and the

ground state |1⟩ = [0, 1]⊤. Let the initial state ρ0 = |ψ0⟩ ⟨ψ0| be

|ψ0⟩ = [cos θ, eiφ sin θ]⊤, (0 ≤ θ < π/2, 0 ≤ φ < 2π).

Here we assign the system operators

H = ωσz, M =
√
γσx.

H rotates the state vector along the z axis with driving frequency ω > 0. M represents

the dephasing noise with decay rate γ > 0. In this setup, the QSL is given by (4.12) with

K =
√
2∥iω[σz, ρ0] + γD†[σx]ρ0∥F

= 2

√
γ2(cos2 2θ + sin2 2θ sin2 φ) + 4ω2 sin2 2θ + 4ωγ sin2 2θ sin 2φ,

C = γ∥σx |ρ0⟩ ∥2 − γ| ⟨ψ0|σx|ψ0⟩ |2

= γ − γ sin2 2θ cos2 φ.

Figure 4.2 (a) shows T∗ for the initial state satisfying φ = 0, as a function of θ, for a

fixed value λ = 0.1. That is, this figure shows the lower bound of the escape time when

the state starting from |ψ0⟩ = [cos θ, sin θ]⊤ first exits from the region Rλ(ρ0). If γ = 0,

T∗ = λ/(ω| sin 2θ|), which is plotted with the red solid line; in this case the state simply

rotates along the z axis, and thus the state near |0⟩ or |1⟩ remains inside Rλ(ρ0) for all

time, then T∗ → ∞ holds. Also T∗ takes the minimum at θ = π/4, simply because the

state on the equator of the Bloch sphere, i.e., |+⟩ := (|0⟩ + |1⟩)/
√
2, changes the most.

Thus, in our definition, |+⟩ is the most fragile state. If γ > 0, the dependence of T∗ on

θ remarkably changes, as depicted with the blue dashed and green dotted lines. Again,

λ = 0.1 is chosen. When (ω, γ) = (0, 1), T∗ → ∞ at θ = π/4; that is, |+⟩ is the most

robust, because in this case |+⟩ is a steady state of the master equation dρt/dt = D[M ]ρt.

This means that |+⟩ does not change under the influence of this decoherence and the state

around |+⟩ remains in Rλ(ρ0) for all time. On the other hand, when (ω, γ) = (1, 1), T∗

takes a finite time for all θ, meaning that the state may escape from Rλ(ρ0) at a certain

time for any ρ0.

Now, recall that T∗ is a lower bound of the exact escape time T . Hence, it is worth

comparing these quantities to evaluate the actual tightness of T∗. For this purpose, here

we set ω = 0 and choose the initial state |ψ0⟩ = |0⟩. In this case the master equation

dρt/dt = D[M ]ρt yields a simple solution Tr (ρ0ρT ) = (1 + e−2γT )/2. As a consequence,
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we obtain T and T∗ as follows:

T = − 1

2γ
ln[1− 2λ2],

T∗ =
λ

γ
− 1

2γ
ln[2λ+ 1].

Figure 4.2 (b) shows the plots of T and T∗ in unit of γ = 1, as a function of λ; in particular,

the gap between T and T∗ are close to zero when λ is small, which is reasonable because

the state will take a short time to escape from a small region Rλ(ρ0). However, this gap

becomes bigger, as λ becomes large. This fact suggests us to use T∗, especially when λ is

small.

Next, let us see the ratio T∗/TDC discussed above, especially for the following setup:

H = ωσz, M =
√
γσ−.

The initial state is set to the superposition |ψ0⟩ = |+⟩. In fact, this example demonstrates

the difference of the two lower bounds more drastically than the above setup. We now

have K =
√

48ω2 + 11γ2/4 and C = γ/16, and thus

T∗ =
8√

48ω2 + 11γ2

(
λ+

γ

4
√

48ω2 + 11γ2
ln

[
γ

γ + 4
√
48ω2 + 11γ2

])
,

TDC =
4
√
2λ2√

48ω2 + 11γ2
.

Then T∗/TDC depends on only γ/ω and λ =
√
VT . Figure 4.2 (c) shows the plot of T∗/TDC,

as a function of γ/ω, for each values of λ. As expected from the discussion in Subsection

4.2.2, T∗/TDC increases as γ/ω becomes small for all λ, and also it becomes bigger for

smaller λ. That is, T∗ is a tighter bound than TDC, if the decoherence is relatively small

and the region Rλ(ρ0) is small.

Lastly, we examine the QSL for the mixed initial state. Let the initial state be

ρ0 = p |0⟩ ⟨0|+ (1− p) |1⟩ ⟨1| ,

where 0 ≤ p ≤ 1/2. When p = 0 or 1 the state is pure, whereas when p = 1/2 the state is

maximally mixed. The system operators is assigned as

H = ωσx, M =
√
γσ−.

Then the extended QSL T ′
∗ is given with

K′ =
√
2(1− 2p)

√
γ2 + 2ω2,

C′ = γp(1− 2p),

λ′T =
√
p− p2 +Tr (ρ0ρT ),

λ′0 =
√
p− p2.
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Fig. 4.2: (a) The lower bound T∗ as a function of θ, for several values of (ω, γ). For all

cases, λ = 0.1. (b) Comparison of the exact escape time T and its lower bound T∗ as a

function of λ, where γ = 1 is fixed. (c) The ratio T∗/TDC, as a function of γ/ω, for several

values of λ. (d) The extended bound T ′
∗ as a function of p, for several values of (ω, γ)

and Tr (ρ0ρT ) = 0.9. Reprinted figure from [105, DOI: 10.1103/PhysRevA.102.042606].

Creative Commons Attribution 4.0 International license. Copyright 2020 by K. Kobayashi

and N. Yamamoto.

Figure 4.2 (d) illustrates T ′
∗ as a function of p ( T ′

∗ has a symmetric form with respect

to p = 1/2). In the limit p → 1/2, i.e., ρ0 → (1/2)I, T ′
∗ → ∞. Indeed, the initial state

ρ0 = (1/2)I never changes by any Hamiltonian and decoherence. This means that the

maximally mixed state (i.e., the most classical state) is most robust against the state

change, although it has no advantage in quantum mechanics.
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4.3.2 Two-qubits

Next we study a two-qubits system. Let us reconsider the Bell states defined in Section

3.3 again:

|Φ±⟩ = 1√
2
(|0⟩ |0⟩ ± |1⟩ |1⟩),

|Ψ±⟩ = 1√
2
(|1⟩ |0⟩ ± |0⟩ |1⟩).

In Section 3.3, we have discussed their reachability properties under a specific decoherence.

Now, our interest is which state is the most robust under a given decoherence. As seen

in the above example, comparing T∗ of these states gives a rough answer to this question.

Here we assume that the system is subjected to the collective noise M =
√
γ(σ−⊗ I+ I⊗

σ−) and H = 0. For the state |Φ±⟩ = (|0⟩ |0⟩ ± |1⟩ |1⟩)/
√
2, K =

√
5γ and C = γ. Then,

for the same λ, the QSLs are calculated as

T∗(|Φ±⟩) = 2λ√
5γ

− 2

5γ
ln[1 + λ],

T∗(|Ψ+⟩) = λ

2γ
− 1

4γ
ln[1 + 2λ].

Also T∗(|Ψ−⟩) → ∞ due to K = 0, which is equivalent to that |Ψ−⟩ is identical to an

eigenstate of M . Hence, |Ψ−⟩ is the most robust Bell state in our definition. Moreover,

T∗(|Φ±⟩) > T∗(|Ψ+⟩) always holds, and thus |Ψ+⟩ is the most fragile state to this M .

Together with the result given in Subsection 3.3.2, we can conclude that |Ψ−⟩ is the best

state in terms of reachability and robustness. Note that, for the case of the non-collective

(local) decoherence modeled by M1 =
√
γσ− ⊗ I and M2 =

√
γI ⊗ σ−, we have

T∗ =
2λ√
5γ

− 2

5γ
ln[1 + λ]

for all Bell states. That is, in this case there is no difference of states in robustness, and

especially for |Φ±⟩, the robustness against the collective or non-collective decay does not

change in terms of QSL.

4.3.3 N-qubits

Next we consider an ensemble composed of N identical qubits. Recall the product

state of the superposition |+⟩⊗N
= (|0⟩ /

√
2 + |1⟩ /

√
2)⊗N and the GHZ state |GHZ⟩ =

(|0⟩⊗N
+ |1⟩⊗N

)/
√
2. As mentioned in Chapter 3, |GHZ⟩ is a powerful resource in quan-

tum metrology such as the frequency standard and enables us to estimate the atomic

frequency with error of the order 1/N , while 1/
√
N is the best order in the case of |+⟩⊗N

[58]. However, in a realistic situation, the system is always subjected to decoherence such

as the dephasing noise M =
√
γ
∑N

j=1 σ
(j)
z , which erases the advantage of using |GHZ⟩

[59]. In Chapter 3, we have concluded that the GHZ state is harder to prepare than the
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product state by comparing of J∗ for two states. To evaluate the undesired effect caused

by the dephasing noise in the language of QSL, here we examine T∗ of those two states.

Now, for simplicity, suppose that the magnitude of the system Hamiltonian H is much

smaller than the decoherence strength γ. Using the relation given in Subsection 3.3.3

M |+⟩⊗N
=M† |+⟩⊗N

=
√
γ

N∑
j=1

|+⟩ · · · |+⟩ |−⟩ |+⟩ · · · |+⟩ ,

M†M |+⟩⊗N
= γ

N |+⟩⊗N
+ 2

∑
i ̸=j

|+⟩ · · · |−⟩ · · · |−⟩ · · · |+⟩

 ,

M |GHZ⟩ =M† |GHZ⟩ = γN(|0⟩⊗N − |1⟩⊗N
)√

2
,

M†M |GHZ⟩ = γN |GHZ⟩ ,

we can obtain the pairs of (K, C) as

(K, C)(|+⟩⊗N
) ≈

(
γ
√
6N2 − 2N, γN

)
,

(K, C)(|GHZ⟩) ≈
(
2γN2, γN2

)
.

These expressions lead to T∗(|+⟩⊗N
) ∼ O(1/N) and T∗(|GHZ⟩) ∼ O(1/N2), for fixed

λ and γ. Therefore, although |GHZ⟩ can ideally improve the estimation accuracy, it is

harder to prepare and more fragile than |+⟩⊗N
.

4.3.4 Fock state

Finally, we see the behavior of T∗ in the case of ideal Fock state with n photons under the

photon leakage modeled by M =
√
γa. Following the example in Chapter 3, we set the

initial state to be ρ0 = |n⟩ ⟨n| and the system Hamiltonian to be H = iω(a† − a). Then,

K =
√
2∥ − ω[a† − a, ρ0] + γD†[a]ρ0∥F =

√
ω2(8n+ 4) + γ2(4n2 + 4n+ 2),

C = γ∥a |n⟩ ∥2 − γ| ⟨n|a|n⟩ |2 = γn,

and thus we obtain the QSL

T∗(|n⟩) =
λ√

ω2(2n+ 1) + γ2(n2 + n+ 1/2)

+
γn

ω2(4n+ 2) + γ2(2n2 + 2n+ 1)
ln

[
γn

γn+
√
ω2(8n+ 4) + γ2(4n2 + 4n+ 2)λ

]
.

Figure 4.3 shows T∗(|n⟩) for each pair of (ω, γ). As the initial photon number n increasing,

T∗ decreases, implying the natural fact that a large Fock state is fragile to the photon

leakage. When n = 0, i.e., the vacuum state, each lower bounds takes 0.1, because there

is no photon to be leaked.
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Fig. 4.3: T∗ as a function of n for each (ω, γ) when λ = 0.1.

4.4 Robust state preparation based on quan-

tum speed limit

4.4.1 Quantum speed limit as a measure of robustness

Let us consider the situation that a pure initial state ρ0 = |ψ0⟩ ⟨ψ0| and a value of radius

λ =
√
VT are specified. This means that we are specified a region Rλ(ρ0), which is the

set of all states whose distance from ρ0 is less than λ. That is, as depicted in Fig. 4.4, λ

can be interpreted as the radius of a circle region Rλ(ρ0). Then the evolution time T of

the cost Vt for evolving from V0 = 0 to VT has the meaning of the time that the state first

exits from Rλ(ρ0). Thus, if T is large for a given λ, the state ρt starting from the initial

state ρ0 takes a long time to exit from Rλ(ρ0). In this case, we can say that ρ0 is robust

against the decoherence M . Conversely, if we choose another initial state ρ′0 and find that

the evolution time T ′ is smaller than T for the same value of λ, this means that the state

faster escapes from Rλ(ρ
′
0) (Fig. 4.4). In this case, the initial state ρ′0 is largely affected

by the decoherence and can be easily changed; that is, ρ′0 is fragile. From this idea, it is

natural that the QSL T∗(ρ0) can be used to characterize a robust initial state ρ0 against

a decoherence M . More precisely, for a certain λ, the state ρ0 with a large value of T∗ is

guaranteed to take a longer time T than T∗ to escape from Rλ(ρ0). Also, in this thesis

we define that ρ0 is more robust than ρ′0 when T∗(ρ0) > T∗(ρ
′
0), although this does not

always lead to T (ρ0) > T (ρ′0). Moreover, for a given ρ0 and a relatively small value of

λ, it has an important meaning to suitably design the system operators such that T∗(ρ0)

becomes larger, to protect ρ0 against the decoherence M . In this section, we discuss this
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engineering problem, especially in the case where H is the design object.

Fig. 4.4: Robustness of the quantum state. (Left) If T∗(ρ0) is large, the quantum state

ρt must take a long time to exit from the region Rλ(ρ0) with fixed radius λ. This means

that ρ0 is robust. (Right) If T∗(ρ
′
0) is small for the same λ, then ρt may quickly exit from

Rλ(ρ
′
0). This means that ρ′0 fragile compared to ρ0. Reprinted figure from [105, DOI:

10.1103/PhysRevA.102.042606]. Creative Commons Attribution 4.0 International license.

Copyright 2020 by K. Kobayashi and N. Yamamoto.

4.4.2 Hamiltonian engineering for robust state prepa-

ration

In the examples given in Section 4.3, we identified a robust state ρ0 = |ψ0⟩ ⟨ψ0|, under
given decoherence and system Hamiltonian by comparing the QSL T∗. In this section, as

an application of this idea, we discuss designing an optimal Hamiltonian that maximizes

T∗, given a fixed initial state ρ0 and decoherence M . More specifically, our purpose is to

find H that protects ρ0 against a given decoherence M by maximizing the lower bound

of the escape time of the state from a region initialized at ρ0.

Here we give a mathematical explanation of this problem; maximizing T∗ with respect

to H is equivalent to minimizing K, because, as verified above, T∗ is a monotonically

decreasing function with respect to K. Now we see the function:

K2/2 = Tr[
(
i[H, ρ0] +D[M ]†ρ0

)2
]

= Tr
(
−[H, ρ0]

2
)
+ 2Tr

(
i[H, ρ0]D[M ]†ρ0

)
+Tr

[
(D[M ]†ρ0)

2
]

= 2
(
Tr
(
H2ρ0

)
− Tr (Hρ0Hρ0)

)
+ 2Tr

(
i[H, ρ0]D†[M ]ρ0

)
+Tr[

(
D†[M ]ρ0

)2
]

Then, we consider the following cost function:

F (H) = Tr
(
H2ρ0

)
− Tr (Hρ0Hρ0) + Tr

(
i[ρ0,D†[M ]ρ0]H

)
,

which is equivalent to K2/4 − Tr[
(
D†[M ]ρ0

)2
]/2. Here it is clear that F (H) is a convex

quadratic function with respect to H, and thus the optimal Hamiltonian Hopt can be

systematically determined. Note that this tractable problem can be formulated due to
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the explicit form of the QSL; recall that this was indeed the motivation to derive T∗ and

compare it to TDC.

In order to have Hopt = argminHF (H), we calculate the matrix derivative of F (H)

with respect to H:

∂F (H)

∂H
= (Hρ0 + ρ0H)

⊤ − 2 (ρ0Hρ0)
⊤
+ i
(
[ρ0,D†[M ]ρ0]

)⊤
,

where we have used the following matrix formulae [100]:

∂

∂X
Tr(XA) = A⊤,

∂

∂X
Tr(X2A) = (XA+AX)⊤,

∂

∂X
Tr(AXAX) = 2(AXA)⊤.

Hence, Hopt satisfies

Hoptρ0 + ρ0Hopt − 2ρ0Hoptρ0 + i[ρ0,D†[M ]ρ0] = 0. (4.19)

This is a simple linear equation with respect to H, for a given ρ0 and M . Thus, Hopt can

be efficiently computed by solving Eq. (4.19).

4.4.3 Example

Let us again consider the dissipative qubit system. We choose the decoherence as M =
√
γσ−, and the initial state to be protected as |ψ0⟩ = [1/2,

√
3/2]. Also, we parametrize

Hopt as

Hopt = u1σx + u2σy + u3σz,

where (u1, u2, u3) are real-constant parameters to be determined. Then by solving the

linear equation (4.19) we have

u2 = −
√
3

16
γ,

u1 = −
√
3u3.

The term u1σx + u3σz always commutes with ρ0 = |ψ0⟩ ⟨ψ0| when u1 = −
√
3u3. Thus,

only the term of u2σy has an effect on the dynamics of Vt given in Eq. (4.11). Figure 4.5

(a) shows the evolution of Vt, in the following three cases: H = Hopt, H = 0 (i.e., the

system is simply decohered), and H = σz. The decoherence strength is chosen as γ = 1.

It is clear that Hopt makes longer the time for the state escaping from Rλ(ρ0) for any

λ =
√
VT , than the other two cases. In particular, when Hopt is applied, the state remains

in the region Rλ(ρ0) with radius λ =
√
1− 0.9, for all time. From a physical viewpoint,

this result is attributed the fact that the anticlockwise rotation around the y axis with the
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driving frequency
√
3γ/16 combats the undesired dynamics caused by the decoherence.

Next, we study a qutrit system. We adopt the decoherence as the ladder-type decay

M =
√
γ


0 0 0

1 0 0

0 1 0

 ,
and the initial state as |ψ0⟩ =

[
1/2, 1/

√
2, 1/2

]
, which corresponds to the vector of

the qutrit with θ = φ = π/4. The control Hamiltonian to be determined can be fully

parametrized as

Hopt =

8∑
i=1

uiΛi, (4.20)

where {Λi}8i=1 are the Gell-Mann matrices defined as

Λ1 =


0 1 0

1 0 0

0 0 0

 , Λ2 =


0 −i 0

i 0 0

0 0 0

 , Λ3 =


1 0 0

0 −1 0

0 0 0

 ,

Λ4 =


0 0 1

0 0 0

1 0 0

 , Λ5 =


0 0 −i
0 0 0

i 0 0

 , Λ6 =


0 0 0

0 0 1

0 1 0

 ,

Λ7 =


0 0 0

0 0 −i
0 i 0

 , Λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .
Note that these matrices form an orthonormal basis set in SU(3). In this setting, using

(4.19), we obtain the condition

2
√
2u1 + 5u3 + 2u4 − 2

√
2u6 +

√
3u8 = 0,

3u3 + 2u4 −
√
3u8 = 0,

3
√
2u2 + 2u5 −

√
2u7 = −γ,

8u5 + 8
√
2u7 = −γ.

Under this parametrization, the terms with coefficients (u1, u3, u4, u6, u8) in Hopt always

commute with ρ0, hence they do not affect on the dynamics of Vt as well as K. Figure 4.5

(b) shows the time evolution of Vt, in the cases of H = Hopt with the parameters

(u2, u5, u7) = (−3
√
2γ/16, 0, −

√
2γ/16)

and compares it to the cases H = 0 and Sz = |E⟩ ⟨E|−|G⟩ ⟨G|. We can find that certainly

H = Hopt makes the escaping time longer, though the advantage over the other two cases
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Fig. 4.5: Time evolution of Vt in the case of (a) qubit driven by H = Hopt (blue solid

line), 0, (red dotted line), and σz (green dashed line). Also the case of (b) qutrit driven

by H = Hopt (blue solid line), 0, (red dotted line), and Sz (green dashed line). Reprinted

figure from [105, DOI: 10.1103/PhysRevA.102.042606]. Creative Commons Attribution

4.0 International license. Copyright 2020 by K. Kobayashi and N. Yamamoto.

is not so big compared to the previous qubit case. It is assumed that, as the dimension of

the system becomes higher, the effect of Hopt against the noise becomes small, although

we cannot say for certain.
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4.5 Time-dependent limit for reachability

In Chapter 3, we have discussed the reachability problem under decoherence and presented

the distance limit for a general open quantum systems. However, the limit works only for

the steady state of the controlled system and the transition time has not been considered.

In general, the reachable set usually depends on the transition time, hence it is natural

to take time constraints into account for rigorously analyzing the reachability problem.

Let us show the QSL T∗ again:

T ≥ T∗ :=
2λ

K
+

2C
K2

ln

[
C

C +Kλ

]
,

where

K =
√
2∥i[H, ρ0] +D†[M ]ρ0∥F,

C = ∥M |ψ0⟩ ∥2 − | ⟨ψ0|M |ψ0⟩ |2.

This inequality means that the evolution time T and the fidelity-based distance λ =√
1− Tr(ρ0ρT ) implicitly correlated. Furthermore, T∗ is monotonically increasing with

respect to λ as

∂T∗
∂λ

=
2

K

(
1− C

K
K

C +Kλ

)
=

2λ

C +Kλ
≥ 0.

From the above facts, if the parameters characterizing the system’s evolution (ρ0,H,M, T )

are specified, λ has a time-dependent limit;

When the system is closed, the explicit upper bound λ∗ is easily obtained:

λ ≤ λ∗ :=
KT
2
.

On the other hand, when the system is open, it is impossible to obtain the explicit

expression of λ∗. Then, we further bound T∗ from below:

T ≥ 2λ

K
− 2C

K2
ln

[
1 +

Kλ
C

]
≥ 2λ

K
− 2C

K2

(Kλ/C)(2 +Kλ/C)
2(1 +Kλ/C)

=
λ2

C +Kλ
,

where the inequality ln(1 + x) ≤ x(2 + x)/{2(1 + x)} (x ≥ 0) has been used. As a result,

λ∗ for open quantum systems is as follows:

λ ≤ λ∗ :=
KT +

√
(KT )2 + 4CT
2

.

4.5.1 Example

We first consider the dynamics of the open qubit system characterized by the following

setting:

|ψ0⟩ = [cos θ, sin θ]⊤, H = ωσz, M =
√
γσ−,
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which leads to

K =

√
2γ2 cos2 2θ + (4ω2 + γ2/4) sin2 2θ,

C = γ cos4 θ.

Figure 4.6 (a) shows λ∗ when γ = 0; in this case λ∗ = ω| sin 2θ|T takes zero at |ψ0⟩ = |0⟩
or |1⟩ for each T . This means that |0⟩ or |1⟩ does not change because those are the steady
state of the equation dρt/dt = −i[H, ρt]. Meanwhile, λ∗ takes maximum at |ψ0⟩ = |+⟩,
corresponding to that T∗ takes minimum at |ψ0⟩ = |+⟩ when (ω, γ) = (1, 0) as shown in

Fig. 4.3 (a). Importantly, in a given evolution time T = 0.5, λ can only take at most 0.5,

i.e., the final fidelity FT = 0.5. Figure 4.6 (b) shows λ∗ when γ > 0; λ∗ takes the maximum

at |ψ0⟩ = |0⟩, implying that |0⟩ is mostly driven by the decoherence. In particular, it is

noted that the state cannot reach its orthogonal state for T = 0.1, 0.3, while the initial

state with θ ≤ 57.3◦ may reach its orthogonal state for the sufficient time T = 0.5.

Next, we study a unitary gate implementation of the qubit system. Let a target 2× 2

unitary gate be followed by

U(α, β) =

[
ei

α
2 cos β

2 ei
α
2 sin β

2

−e−iα
2 sin β

2 e−iα
2 cos β

2

]
, (4.21)

where 0 ≤ α ≤ 2π, 0 ≤ β ≤ π. The control Hamiltonian is chosen as

H = u1σx + u2σz.

Note that U(α, β) can be implemented by suitably choosing u1 and u2 for sufficient time.

Also, let the initial state be = [cos θ, sin θ]⊤ and the final state be |ψT ⟩ = U(α, β) |ψ0⟩.
Now the lower bound T∗(|ψ0⟩) is calculated as follows:

T∗(|ψ0⟩) =
2
√
1− |⟨ψ0|ψT ⟩|2

K

=

√
1− | ⟨ψ0|U |ψ0⟩ |2√

⟨ψ0|H2|ψ0⟩ − ⟨ψ0|H|ψ0⟩2

=

√
1− cos2(α/2) cos2(β/2)− sin2(α/2) cos2(2θ + β/2)

|u1 cos 2θ − u2 sin 2θ|
. (4.22)

Figure 4.6 (c) shows T∗(α, β) in case of θ = 0 for each driving times T = 0.3, 0.5, and 0.8,

and fixed values u1 = 1. The colored area is the all sets satisfying (4.22) and the white

area is the one that does not satisfy (4.22). For instance, when T = 0.5, the inequality

T ≥ T∗(|ψ0⟩) is saturated at β = π/3. In this case, the unitary operator (4.21) is

U(α, β) =
1

2

[ √
3ei

α
2 ei

α
2

−eiα
2

√
3e−iα

2

]
,
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which leads to the final fidelity FT = |⟨ψ0|ψT ⟩|2 = 0.75. This means that we can only

steer the state to that with fidelity 0.75 at most in T = 0.5. Next, if θ = π/4, the lower

bound is

T∗(α, β) =
| sin{(α− β)/2}|

|u2|
.

As depicted in Fig. 4.6 (d), the reachable set is remarkably changed from Fig. 4.6 (c).

Note that T∗(α, β) takes zero at U(0, 0) = U(2π, 0) = I and U(π, π) = iσx. In this

case, the final fidelity is FT = |⟨ψ0|ψT ⟩|2 = |⟨ψ0|U |ψ0⟩|2 = 1, hence there is no difference

between the initial state and the final state in terms of the distance. On the other hand,

T∗(α, β) is maximized at U(0, π) = U(2π, π) = −iσy and U(π, 0) = iσz, and in fact those

gates cannot be prepared even if T = 0.8. Indeed, this result is reasonable because the final

states for each gates are |ψT ⟩ = −iσy |ψ0⟩ = [1,−1]/
√
2 and |ψT ⟩ = iσz |ψ0⟩ = [i,−i]/

√
2,

which are identical to the orthogonal states to |ψ0⟩; that is, those gates are the one that

generates the state that is far from the initial state. In this way, by means of the QSL T∗,

we can characterize the implementable gate in a certain control time.

4.6 Summary

The main contribution of this chapter is to exploit the usage of QSLs. The first is to

propose an idea to use the QSL to characterize robust quantum states of a given open

quantum system. Based on this view, we have formulated the engineering problem of a

Hamiltonian that makes a target states robust against a decoherence. In this engineering

problem, it is important for the QSL to be explicitly computable. In order that, the QSL

derived in Section 4.2 indeed satisfies this requirement and further it is tighter than another

known QSL in a setup where the decoherence is small and the region Rλ(ρ0) is small.

In addition, the Hamiltonian engineering problem is proven to be a convex quadratic

optimization problem, which is efficiently solvable. Several examples have been studied,

in particular showing another view of the fragility of the GHZ state in quantum metrology.

The second is the application to characterization of reachability. This approach is based

on that the fidelity-based distance λ and evolution time T are related by the inequality

T ≥ T∗(λ). As a result, we have obtained the explicit upper bound λ∗ depending on

T . Compared to the control limit J∗ given in Chapter 3, the advantage of λ∗ is that λ∗

can take a meaningful value except even if the system is closed. Due to this, λ∗ can be

used for characterizing the implementable gate in a given control time, as illustrated in

Subsection 4.5.2.
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Fig. 4.6: λ∗ as a function of θ for each evolution time T when (a) γ = 0 and (b) γ = 1,

in unit of ω = 1. Reachable set of the unitary dynamics of the qubit when (c) θ = 0 and

(d) θ = π/4 for T = 0.3 (green area), T = 0.5 (red area), and T = 0.8 (blue area).
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Chapter 5

Conclusion

5.1 Conclusion

This thesis is motivated by the two questions posed in Chapter 1: (i) How close the

controlled quantum state can be steered to a target state under decoherence? (ii) How

long can we preserve the controlled system around at the target state? Aiming to give

answers to these fundamental questions, we have provided the distance and time limits

for a dynamical quantum system under decoherence by means of reachability and QSL.

Chapter 3 has studied the distance limit for a controlled open quantum system under

decoherence. First, Section 3.1 has shown the performance of the quantum control (i.e.,

MBF) for the imperfect case under the decoherence and presented the idea of analyzing

the problem. Based on it, Section 3.2 has derived a fundamental limit for the reachability

under decoherence; more specifically, we present a lower bound of the fidelity-based dis-

tance between the controlled quantum state under decoherence and the target state. This

lower bound has advantages in generality and computability; that is, it can not only be

applied for a general open Markovian quantum system driven by the decoherence process

and some types of control method, e.g., the open-loop and MBF controls and reservoir

engineering, but also is straightforward to calculate without solving any equation. More-

over, thanks to its generic form, the lower bound gives a characterization of the target

state that is largely influenced by the decoherence. Thereby, as demonstrated in some

example, the lower bound provides a useful guide for choosing the target. Importantly,

providing deep insight into quantum engineering, the lower bound is used to derive a the-

oretical limit in quantum metrology; for instance, for a typical large-size atomic ensemble

under open-loop control and dephasing noise, the fidelity to the target (the GHZ state or a

highly entangled Dicke state) must be less than 0.875, irrespective of the control strategy.

Chapter 4 has studied a limit on the evolution time of a Markovian open quantum sys-

tem driven by the decoherence in terms of the QSL. The main contribution of this chapter

is twofold; First, we have proposed to use the QSL as a measure of robust quantum states;

that is, for an undesirable state evolution driven by decoherence, we consider the initial
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state ρ0 with a larger QSL to be robust against a decoherence. Based on this idea, we

have formulated the engineering problem of the control Hamiltonian that protect an ideal

initial state against a given decoherence. In this engineering problem, it is important

for the QSL to be explicitly computable; the QSL derived in Section 4.2 indeed satisfies

this condition and further it is tighter than another known QSL in the setup where the

decoherence is small and the region Rλ(ρ0) is small. In addition, the Hamiltonian engi-

neering problem is proven to be a convex quadratic optimization problem. Thanks to this,

the problem is efficiently solvable. Some examples have been investigated, in particular

showing another view of the fragility of the GHZ state in quantum metrology. Second, we

have applied the QSL to the characterization of the reachability for a decohering quantum

system; that is to say, we have derived the time-dependent upper bound of the distance

from the initial state based on the QSL presented in Section 4.2. The notable points of

this approach are the following two: (i) It is possible to take the control time into account

for the reachability analysis. (ii) A meaningful bound can be obtained even if the system

is closed. A particular interesting example characterizing the gate implementation in a

given control time has been given. We believe that the results given in this paper will

provide a new perspective of the QSL as a tool in quantum engineering.

5.2 Future work

For the result given in Chapter 3, an important remaining work is to explore an achievable

lower bound and develop an efficient strategy for synthesizing the controller (e.g., MBF

control input) that achieves it. We have not found the condition to reach the bound. If

the amount of energy usable for control ū increases, we expect that the distance between

the state and the target becomes smaller. However, U increases and as a result the lower

bound J∗ also becomes smaller. Hence there is no guarantee that the gap between the

actual distance and its lower bound J∗ becomes exactly zero. A similar result is obtained

for the case of decoherence strength, as demonstrated in Fig. 3.4 (c); if the strength

of decoherence decreases, then both the actual distance via some control and the lower

bound J∗ becomes smaller, but we cannot say these values coincide at some point of time.

For the result given in Chapter 4, the derivation of the QSL T∗ is based on the

assumption that the system operators (H,M) are time-independent. To develop more

strategic Hamiltonian engineering, the extension to the case that the system dynamics

has a time dependent Hamiltonian Ht is an interesting work. That is, the state ρt obeys

the master equation

dρt
dt

= −i[Ht, ρt] +D[M ]ρt,
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to have the QSL T∗(ρ0), from the inequality (4.14)

dVt
dt

= Kt

√
Vt + C, (5.1)

where Kt =
√
2∥i[Ht, ρt] +D†[M ]ρt∥F. In this case we can possibly make Kt smaller than

the case time-independent H by suitably designing Ht, instead of not being able to have a

general explicit bound. Another important work is the generalization to the case that the

system is under the continuous measurement. In fact, the time required for the continuous

measurement has not been carefully considered, especially in the MBF scheme. Also, few

works of the QSL related to the MBF has been proposed, except for [101]. Therefore, the

QSL including the continuous measurement is the important work in the field.
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Appendix A: Proof of Some Inequali-
ties

Here we prove the following inequalities used in Chapter 4:

x

1 + x
≤ ln(1 + x) ≤ x(x+ 2)

2(x+ 1)
(x ≥ 0), (A.1)

and

2(α− β)2

α+ β
≤ (α− β) ln

(
α

β

)
, (α, β ≥ 0). (A.2)

First, we prove the inequality (A.1). The lower bound is simply proved by considering

the inequality ln(1 + x) ≤ x for x ≥ 0. By replacing 1 + x with 1/(1 + x), we have

x/(1 + x) ≤ ln(1 + x). The upper bound is proved by using the Schwarz inequality for

x ≥ 1 as follows:

ln(x) =

∫ x

1

du

u
≤

√∫ x

1

du

∫ x

1

du

u2
=

√
x− 1√

x
≤ x2 − 1

2x
.

Then, by replacing x with 1 + x, we have the upper bound.

Next, to prove the inequality (A.2), we introduce the following relation:

2(x− 1)

x+ 1
≤ ln(x) (x ≥ 1). (A.3)

Now consider the function

F (α, β) = (α− β)

{
ln

(
α

β

)
− 2(α− β)

α+ β

}
.

When α > β,

F (α, β) = (α− β)

{
ln

(
α

β

)
− 2(α− β)

α+ β

}
≥ (α− β)

{
2(α/β − 1)

α/β + 1
− 2(α− β)

α+ β

}
= 0.

When α < β,

F (α, β) = (β − α)

{
ln

(
β

α

)
+

2(α− β)

α+ β

}
≥ (β − α)

{
2(β/α− 1)

β/α+ 1
− 2(β − α)

α+ β

}
= 0.
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Therefore, the inequality (A.2) holds for all α, β ≥ 0.

Figure A.1 (a) and Figure A.1 (b) illustrate the tightness of Eq. (A.1) and Eq. (A.2),

respectively. The gap of (A.1) becomes small if x is small [Fig. A.1 (a)]. Figure A.1 (b)

shows that the (A.2) is tight over all (α, β), and thus it gives a better estimate on the

analysis.
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x

(a)

Fig. A.1. Plots of (A.1) and (A.2).
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Appendix B: QSL based on J∗

Actually, the lower bound J∗ given in Chapter 3 is related to a QSL. We consider the

evolution time T such that, for the cost function Jt = 1 − Tr(ρ0ρt), an initial cost J0

changes to a final cost JT ; both J0 and JT are specified, e.g., J0 = 1 and JT = 0.1. As

proven in Chapter 3, the cost function Jt satisfies

dJt
dt

≥ −(A+ U)
√
Jt + E . (B.1)

Because we are interested in the decrease of the cost, we assume J0 > JT > J∗ (as J∗ is

not generally achievable under decoherence). Then, by integrating the above inequality

(B.1) from JT to J0, we have

T ≥ T∗ :=
2

A+ U

{√
J0 −

√
JT +

√
J∗ ln

(√
J0 −

√
J∗√

JT −
√
J∗

)}
. (B.2)

T∗ is the QSL that gives a lower bound of the evolution time of the cost function. Likewise

J∗, the lower bound T∗ is applicable to several control setting including feedback and

reservoir engineering. The lower bound T∗ is different from other QSLs for open quantum

systems such as Del Campo’s bound TDC. Also, for a closed system, (i.e., the case A =

E = 0), the lower bound takes the form T∗ = {2(
√
J0−

√
JT )}/U , which has the same form

of some known QSLs such as the Mandelstam-Tamm bound and Margolus-Levitin bound.

Finally, for the case of qubit control problem that aims to change the ground state |1⟩ to
the excited state |0⟩ under decoherenceM =

√
γσz and the driving Hamiltonian H = uσx

with (u, γ) constant, the lower bound T∗ is calculated as T∗ = (2−2
√
JT )/(

√
2γ+u). For

instance when γ = u = 1 MHz and JT = 0.1, then T∗ ≃ 0.566µs.
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Appendix C: Application of QSL to
Glover’s Problem

The Grover’s problem is the database search problem developed in [102]. The purpose here

is to find the target state |M⟩ among theN orthonormal state |0⟩ , |1⟩ , · · · |M⟩ , · · · |N − 1⟩.
Classically, the computational time is N steps in average T ∼ O(N). On the other hand,

the quantum algorithm outperforms the classical one and we find speeding up T ∼ O(
√
N).

Here we verify that the minimal time for required for the Glover’s algorithm is order

O(
√
N) by using our QSL T∗. We consider the total Hamiltonian

Ht = (1− ft)HI + ftHP ,

HI = I − |g⟩ ⟨g| ,

HP = I − |M⟩ ⟨M | , (C.1)

where 0 ≤ ft ≤ 1, f0 = gT = 1 and fT = g0 = 0. In the Grover problem, we start from

|g⟩ which is the ground state of HI at t = 0, and the state is driven to |M⟩ which is the

ground state of HP at terminal time t = T . The relation of |g⟩ and |M⟩ is

⟨g|M⟩ = 1√
N
. (C.2)

In this setting

⟨g|H2
t |g⟩ = f2t

(
⟨g| − 1√

N
⟨M |

)(
|g⟩ − 1√

N
|M⟩

)
= f2t

(
1− 1

N

)
, (C.3)

⟨g|Ht|g⟩2 = ⟨g|ft
(
|g⟩ − 1√

N
|M⟩

)
= f2t

(
1− 1

N

)2

(C.4)
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Therefore, the lower bound T∗ is calculated as

T∗ =

√
1− |⟨g|M⟩|2√

⟨g|H2
t |g⟩ − ⟨g|Ht|g⟩2

,

=

√
1− 1

N

ft

√
1
N

(
1− 1

N

) ∼ O(
√
N). (C.5)

As a result, we find that the computational time scales with O(
√
N).
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