
Mapping Optimization Techniques
for Coarse-Grained Reconfigurable Architectures

Takuya Kojima

A thesis for the degree of Ph.D. in Engineering
Under the supervision of Prof. Hideharu Amano

Graduate School of Science and Technology
Keio University February 2021

Acknowledgement

Before anything, I am deeply grateful to my supervisor, Professor Hideharu
Amano. His persistent support and guidance gave a scientific perception and
thinking to me.

Besides, I would like to thank Professor Hiroaki Nishi, Associate Professor
Hiroki Matsutani, Associate Professor Masaaki Kondo, Associate Professor
Takahiro Yakoh. Without their careful reviews and invaluable advice, I could
not have finished writing this thesis.

Special thanks also to all of the collaborators on my research and my
labmates. Abobe all, Dr. Akram Ben Ahmed, Dr. Nguyen Anh Vu Doan,
and Dr. Hayate Okuhara encouraged me to go to the doctoral course at Keio
University. Besides, I could enhance the qualities of my studies, including
research in this thesis, thanks to their constructive advice and interesting
discussion with them.

Last but not least, I would like to express my deepest gratitude to my
family, who have continuously helped and supported me.

Takuya Kojima
Yokohama, Japan

February 2021

i

Abstract

Coarse-grained reconfigurable architectures (CGRAs) provide high energy effi-
ciency with word-level programmability rather than bit-level ones such as Field
Programmable Gate Arrays (FPGAs). Therefore, the CGRAs are expected
to be used for embedded systems, IoT (Internet of Things) devices, and edge-
computing. In essence, a CGRA is an array of numerous processing elements
(PEs). In order to exploit this abundant computation resource, a compiler for
CGRAs has to fulfill more tasks compared that for general-purpose proces-
sors. Thus, many studies have proposed optimization methods, especially for
application mapping, because the performance and energy efficiency strongly
depend on optimization at compile time. However, most work focuses only
on performance improvement or resource minimization, although such opti-
mization objectives are not always appropriate when considering various use
cases.

In this thesis, an application mapping framework using multi-objective op-
timization based on a genetic algorithm (GenMap) is proposed. The proposed
framework does not depend on any specific architecture and can consider vari-
ous optimization objectives. Thus, users can easily customize fitness functions
for optimization. Firstly, this thesis defines the mapping problem to be ad-
dressed by the proposed method. Then, a novel formulation of this problem
for the genetic algorithm is presented. However, if the whole of the problem
is solved by only the genetic algorithm, it needs prohibitive optimization time
to obtain reasonable solutions. Therefore, several heuristics are also proposed
and integrated into the framework. Furthermore, this thesis provides aggres-
sive power optimization methods based on a dynamic power model and integer
linear program (ILP) formulation for leakage minimization.

Three fabricated CGRA chips are evaluated using the proposed framework.
Experimental results show that 15.7% of the wire length is reduced while keep-
ing PE utilization compared to conventional methods. In addition, according
to real chip experiments, 12.1-46.8% of energy consumption is reduced, and
up to 2x speed-up is archived for several architectures compared to the other
two approaches.

iii

Contents

Acknowledgement i

Abstract iii

1 Introduction 1

1.1 Demands for novel architectures 1

1.2 Challenges for efficient compilation of CGRAs 3

1.3 Scope of this thesis and contributions 4

1.4 Structure of this thesis . 5

2 Background 9

2.1 CGRA: Coarse-Grained Reconfigurable Architecture 9

2.1.1 A taxonomy of CGRAs 9

2.1.2 Advantage of CGRAs over FPGAs 12

2.2 Power consumption of CMOS VLSI 14

2.2.1 Dynamic power . 14

2.2.2 Static power . 14

2.3 Body bias control . 16

2.4 Recent CMOS technology . 17

2.4.1 SOTB: a case of FD-SOI 18

3 Motivation 21

3.1 Related work on optimization techniques for CGRAs 21

3.1.1 Design-time optimization 21

3.1.2 Runtime optimization 22

3.1.3 Compile-time optimization 22

3.2 Cool mega array: a case of CGRA 25

3.2.1 Architecture overview 25

3.2.2 Existing implementations 27

3.2.3 Combination of body bias control and variable pipeline 29

3.3 Challenges in the previous optimization approaches 31

v

vi Abstract

4 Body bias optimization 33

4.1 Problem definition . 34

4.2 Preliminary analysis . 35

4.3 ILP model . 38

4.4 Evaluation . 39

4.4.1 Optimization results . 39

4.4.2 Performance and energy reduction 41

4.4.3 Comparison of VDD control 43

4.5 Summary . 44

5 Dynamic power estimation technique 47

5.1 Glitch propagation on PE array 47

5.2 Preliminary analysis of glitch propagation 48

5.3 Dynamic power model . 50

5.4 Evaluation . 52

5.4.1 Obtaining model parameters 52

5.4.2 Accuracy of the proposed model 53

5.4.3 Comparision with a post-layout simulation 54

5.5 Summary . 54

6 GenMap: mapping optimization with genetic algorithm 55

6.1 Problem Definition . 55

6.2 Proposed framework: GenMap 57

6.2.1 Multi-Objective Optimization with NSGA-II 58

6.2.2 Gene coding and crossover 61

6.2.3 Mutation . 62

6.2.4 Population Initialization 62

6.2.5 Routing Method . 65

6.2.6 Constants and IO mapping 66

6.3 Model and Objectives . 69

6.3.1 Wire Length . 69

6.3.2 Mapping Width . 69

6.3.3 Power Consumption . 70

6.3.4 Time Slack . 70

6.4 Evaluation . 71

6.4.1 Evaluation Setup . 71

6.4.2 Quality of Optimization 72

6.4.3 Mapping Ability . 74

6.4.4 Energy Consumption and Speed Up 77

6.5 Summary . 80

vii

7 Conclusion and future work 81
7.1 Conclusion . 81
7.2 Future work . 82

Bibliography 83

Appendicies 97
A Full results of the simulated delay time 97
B Full results of body bias optimization 99
C Analysis of the crossover and mutation probabilities 103
D Measurement results of power optimization with GenMap . . . 105
E Effect of time slack objective 108

Publications 111

List of Figures

1.1 Historical trends of processor improvement(source: [1]) 2

1.2 PE array of general CGRAs . 3

1.3 Thesis structure . 7

2.1 Reconfiguration of CGRAs . 10

2.2 Overview of SF-CGRAs . 11

2.3 Comparison of compilation flow between FPGAs (left) and CGRAs
(right) . 13

2.4 Mechanisms of leakage current 15

2.5 Transistor structure for each technology 18

2.6 Cross-sectional view of the SOTB MOSFET 19

3.1 CMA architecture and PE interconnections 26

3.2 3-cycle execution on non-pipelined PE array 27

3.3 Connectivity of constant registers 28

3.4 Implementation of pipelined PE array on CC-SOTB2 28

3.5 8-cycle execution on 4-stage pipelined PE array 29

3.6 Row-level body bias control with pipeline registers (2 and 4
stages) . 30

4.1 Examples of simulation results 37

4.2 Algorithm flow-chart to find an optimal body bias assignment
and pipeline structure . 39

4.3 Minimized power for each pipeline stages 40

4.4 Comparisons between each method (VDD = 0.55 V) 41

4.5 Energy reduction ratio by the row-level control for each appli-
cation (V DD = 0.55 V) . 42

4.6 Static power reduction ratio by the row-level control (V DD =
0.55 V, gray) . 43

4.7 Optimization result considering VDD control (gray) 44

ix

x Abstract

5.1 An example of glitch generation 48

5.2 Simulated energy consumption of the combinational circuit . . 49

5.3 An example of the glitch propagation model 51

5.4 Chip photograph . 52

6.1 Optimization flow of GenMap 57

6.2 Examples of dominance relationship and Pareto rank for a bi-
objective optimization problem 59

6.3 Selection flow of the NSGA-II [2] 60

6.4 Examples of crowding distance calculation [2] 60

6.5 Gene coding and example of crossover 61

6.6 Example of a mutation . 62

6.7 Examples of mapping initialization 64

6.8 Impact of path-sharing . 66

6.9 Different mapping strategy for constant registers 68

6.10 Measured leakage power per PE 71

6.11 Hypervolume indicator for each generation in the case of af
application . 73

6.12 Optimized wire length for each architecture and for each method 76

6.13 Optimized mapping width for each architecture and for each
method . 76

6.14 Comparison of power consumption for each architecture in the
case of gray application . 78

6.15 Average energy reduction by GenMap 78

6.16 Peak Performance for each method 79

A.2 Delay time of ALU for each operation and SE simulated with
Synopsys HSIM (CC-SOTB2) 98

B.1 Comparison between the row-level body bias control and the
other policies for each application (CC-SOTB2) 100

B.2 Comparison between the row-level body bias control and the
uniform control considering VDD control for each application
(CC-SOTB2) . 102

C.1 Comparison of the hypervolume evolution (sample #0) 103

D.1 Comparison of optimization result regarding power consump-
tion for each application (CC-SOTB) 105

D.2 Comparison of optimization result regarding power consump-
tion for each application (CC-SOTB2) 106

D.3 Comparison of optimization result regarding power consump-
tion for each application (NVCMA) 107

E.1 Effect of time slack consideration 109

List of Tables

2.1 Effect of body bias control . 19

3.1 Summary of mapping algorithms 24
3.2 Architectural and implementation features 27

4.1 Trade-off between performance and power associated with body
bias control and variable pipeline 33

4.2 Simulation environments for preliminary evaluation 36
4.3 Simulated applications . 37
4.4 Examples of optimization results (gray) 40
4.5 Optimized V BNi in the case of 5.46 ×109 operations/sec (gray) 42

5.1 Average switching counts of each operation in a PE 53
5.2 The results of model fitting . 53

6.1 Experimental conditions & means 71
6.2 Selected application kernels . 72
6.3 Comparison of wire length for each method 74
6.4 Comparison of mapping with for each method 75

C.1 Generation count reaching hvref 104
C.2 Difference in the generation count from the case of 0.7 crossover

probability . 104

xi

1
Introduction

The performance of microprocessors has been enhanced as the feature size
of CMOS transistors is shrunk continuously (see Fig. 1.1). The number of
transistors in integrated circuits had doubled every 18 months for about five
decades. This trend is known as Moore‘s Law. Besides, Dennard‘s scaling
rule [3] had led the designers to increase the performance and the function-
ality in a single LSI chip while keeping the power consumption. This rule is
based on the fact that the shrinking of the feature size of transistors results in
reduced supply voltage and higher operational frequency. However, it ignores
the presence of the leakage current of the transistors. Then, the scaling was
ended around 2005 when the power consumption due to the leakage current
cannot be ignored, and the scaling-down of the voltage reaches the limit to
ensure a correct operation. Thus, the industry moved into the multi-core era,
where the number of cores in a single LSI is increased instead of improving the
single-core performance and the operational frequency. Although the scaling
of transistor size is kept up even now, it is becoming slowdown compared to
Moore‘s Law, and the ending of the scaling cannot be avoided. Thus, innova-
tions not depending on the transistor scaling are urgent.

1.1 Demands for novel architectures

Recently, many architects are moving toward domain-specific architectures
(DSAs) to tackle the ending of the scaling law. The DSAs do not provide
general-purpose computing but rather a highly efficient one for a limited com-

1

2 Introduction

Figure 1.1: Historical trends of processor improvement(source: [1])

putation part such as matrix multiplication. For instance, accelerators for
Deep Neural Networks (DNNs) such as Google TPU [4], Intel Spring Crest [5],
and Gyrfalcon lightspeeur[6] came out in the market. Each DSA should ide-
ally be implemented as an application-specific integrated circuit (ASIC) chip.
However,　 such killer applications paying off the massive non-recurring engi-
neering (NRE) cost are rare. Besides, the cost, including the designing expense
and creating a photomask, becomes increasingly expensive for the recent ad-
vanced technologies. In this respect, reconfigurable computing is an essential
hardware platform for the DSAs with a smaller NRE cost than the ASIC [7].

Field programmable gate arrays (FPGAs) are the most commonly used
reconfigurable device. The major FPGAs are composed of a number of logic
blocks consisting of lookup tables (LUTs) and flip-flops [8]. Any logic equa-
tions can be realized by using the LUTs. Therefore, users can implement any
combinational and sequential circuits on the reconfigurable fabrics as far as
they do not require more than the available resources. In addition, digital sig-
nal processing (DSP) units and memory blocks are installed even in low-end
models for a more efficient computing platform.

Although they can accommodate various kinds of application domains such
as database [9] and neural network [10] thanks to their bit-wise reconfig-
urability, such flexible programmability brings considerable power- and area-
overhead. This is because each component is connected with rich interconnec-
tions to realize the fine-grained reconfigurability, and the large configuration
data has to be stored in memory like on-chip SRAM. Furthermore, the com-
pilation flow is time-consuming, like taking a few days since it contains some
complicated steps such as logic synthesis and place-and-route, similar to the

1.2. Challenges for efficient compilation of CGRAs 3

VLSI design process. It causes inefficient application development, resulting
in high designing costs.

PE PE PE PE

Data from neighbors/Data memory

D
a

ta
 M

e
m

o
ry

Register
file

ALU

SEL SEL

PE Array

PE PE PE PE

PE PE PE PE

PE PE PE PE

Output Register

Data to neighbors/Data memory

Figure 1.2: PE array of general CGRAs

Coarse-grained reconfigurable architectures (CGRAs) is an alternative so-
lution for the DSAs. CGRAs are optimized in performance and power con-
sumption by supporting data-flow level reconfigurability. In general, they
have an array of reconfigurable processing elements (PEs) connected to each
other, as shown in Fig. 1.2. The operation for each PE and the interconnec-
tion are changed depending on a target application kernel. The PE array is
implemented as a part of a well-optimized LSI chip so that CGRAs archive
near-ASIC1 energy efficiency with the programmability. Besides, the coarser
reconfigurability contributes to the reduction of configuration data. The re-
configuration time of CGRAs is, therefore, about three orders of magnitude
faster than FPGAs [11]. The coarser reconfigurability also relieves heavy com-
pilation tasks of the EDA tool. Thus, CGRA-based designs are often employed
as an overlay of FPGAs [12–18].

1.2 Challenges for efficient compilation of CGRAs

The target application kernel can be represented as a data-flow-graph (DFG).
The PE array can also be described as a directed graph. The DFG can then
be mapped into the PE array graph. The problem of finding a graph-to-
graph mapping is known to be NP-complete [19]. Nonetheless, the quality
of mapping, including throughput, latency, and energy consumption, strongly
depends on the optimization techniques. Therefore, several heuristics have
been proposed to optimize the mapping effectively [20, 21]. However, most of
them attempt either to improve the speed-up of computation or to save the

1application-specific integrated circuit

4 Introduction

utilized resources. Therefore, it is impossible to treat a wide variety of use
cases by using these uni-objective optimization methods. For instance, there
exist unique implementations of CGRAs combined with dynamic voltage and
frequency scaling (DVFS) [22,23], body biasing [24–26], emerging non-volatile
memory technologies [27–29], and approximate computing [30]. To exploit
the advantages of these implementations, a novel optimization technique not
dedicated to a specific objective is needed.

1.3 Scope of this thesis and contributions

In order to address the above issue, we propose GenMap, a framework provid-
ing a flexible optimization for the CGRA mapping. It searches and optimizes
mappings by using a multi-objective genetic algorithm called NSGA-II (Non-
dominated Sorting Genetic Algorithm-II) [2]. Thanks to NSGA-II, users can
easily customize the optimization objectives, i.e., introducing new ones or re-
move unnecessary ones depending on their use case. We also present an integer
linear program (ILP) formulation to solve a body bias optimization problem
to minimize the leakage current. Besides, we develop a dynamic power model
considering the glitch propagation effect. For optimizing dynamic power con-
sumption, such a novel model is needed to estimate the power consumption
quickly. Then, both the ILP formulation and the dynamic power model are
integrated into GenMap. GenMap is agnostic to the specific structure of PE
arrays, such as the size of the array, interconnection topology, and fabrica-
tion technology. Therefore, it is useful not only for compile-time optimization
but also for architecture exploration. However, this thesis focuses only on
compile-time optimization.

The contributions of this thesis are as follows:

1. A generalized ILP formulation for body biasing: For CGRAs enabling the
body biasing, we generalize the optimization problem. It determines the
body bias voltages to minimize the leakage power as far as the timing
constants are satisfied. As a result of preliminary evaluations, we demon-
strate, on average, 17.75% reduced energy consumption compared to the
cases without body biasing. (Chapter 4)

2. Fast estimation of power consumption: Post-layout simulation is too time-
consuming to estimate the power consumption for exploring an optimal
mapping. We introduce a simple power model, which is accurate enough to
judge which mapping is better. Experiments show that the relative mean
error of the model is 10.67-12.91% for different CMOS technologies using
parameters fitted based on real chip measurements. Besides, it is more than
10000 times faster than the post-layout simulation. (Chapter 5)

1.4. Structure of this thesis 5

3. A practical optimization for different architectures: The target architecture
of GenMap can be customized so that we demonstrate our approach can be
applied to several different architectures. Compared to the SPKM-based
one presented in [31], GenMap achieves 19.8% shorter wire length and needs
20.8% fewer PE columns. In comparison with one of the state-of-the-art
mapping tool, CGRA-ME [21], GenMap reduces 15.7% of wire length while
keeping the same PE size. In addition, two large DFGs of benchmarks can
be mapped by the GenMap, whereas the other two methods fail. (Chap-
ter 6)

4. An enhancement of routing and other resource mappings: GenMap includes
a routing method based on the A∗ algorithm with a semi-greedy approach.
However, unlike the previous works, we pay attention to path-sharing and
routing order to save routing resources. Furthermore, mapping of constant
registers and binding of IO ports are formulated as a simple ILP. In this
way, the mappability of GenMap is enhanced compared to our previous
work. (Chapter 6)

5. An effective initialization method to generate the first population: In gen-
eral, the optimization quality of a genetic algorithm depends on the di-
versity of the initial population. For that reason, completely randomized
initialization is preferred while it can cause slow convergence. In this work,
we propose to use a graph-drawing algorithm for the initial set of mappings
to improve both the solution quality and convergence speed. (Chapter 6)

6. Power reduction proven by real chip experiments: We conduct prelimi-
nary experiments to decide some parameters in the power model with
the fabricated chips. According to the results, the model can estimate
the power consumption with an acceptable deviation from the measured
values. Thanks to this model and body biasing, the power optimization
achieves 23.4∼46.8% and 12.1∼41.3% of reduction for the energy consump-
tion, 1.54x and 2x of speed-up compared to CGRA-ME and SPKM, respec-
tively. (Chapter 6)

1.4 Structure of this thesis

The rest of this thesis is organized, as shown in Fig. 1.3. In Chapter 2, basic
knowledge related to the CGRAs, and the power consumption of CMOS VLSI
are explained. Chapter 3 describes the motivation of this work, introducing
some related work for mapping methods. Then, the ILP formulation of body
bias optimization is presented, and the impact of the body bias control is
emphasized in Chapter 4. Chapter 5 shows the effect of glitch propagation
in CGRAs, which should be taken into account and presents the estimation

6 Introduction

model. In Chapter 6, the proposed mapping algorithm based on the genetic
algorithm is described, and a comparison with the other methods is given.
Lastly, Chapter 7 summarizes this thesis.

1.4. Structure of this thesis 7

Chapter 1: Introduction
• Situation, Scope, and Contributions
• Thesis structure

Chapter 2: Background
• Coarse-Grained Reconfigurable Architectures
• Basic Knowledge of CMOS VLSI

Chapter 3: Motivation
• Related Work on CGRAs
• A case of CGRA: CMA architecture
• Challenges in Existing Approaches

Chapter 4:
Body Bias Optimization

• Problem Definition of Leakage
Current Minimization for CGRAs

• ILP formulation

Chapter 5:
Dynamic Power Estimation

• Analysis of Glitch Propagation
• Dynamic Power Model

Chapter 6:
GenMap: Mapping Optimization

• Problem Definition of Mapping Optimization
• Solution by a Multi-Objective Genetic

Algorithm

Chapter 7: Conclusion
• Summary of this thesis
• Future Work

Proposal in this thesis

Integrated Integrated

Figure 1.3: Thesis structure

2
Background

First, this chapter presents the basic knowledge related to this work. Sec-
tion 2.1 explains an overview of CGRAs, on which this thesis focuses. Espe-
cially, the mapping of CGRAs is described in detail. Then, Section 2.2 shows
how the power consumption of CMOS VLSI is modeled. The body bias effect
is explained in Section 2.3, and the current CMOS technologies are introduced
briefly in Section 2.4.

2.1 CGRA: Coarse-Grained Reconfigurable Archi-
tecture

2.1.1 A taxonomy of CGRAs

CGRAs are generally utilized as accelerators to execute computational inten-
sive loops instead of general-purpose processors, achieving high energy effi-
ciency. As described in Section 1.2, both the target application and the PE
array are represented as directed graphs. The DFG for the application ker-
nel contains nodes, which indicate operations (e.g., addition, multiplication,
bit-wise OR, etc.), and the edges, which mean data dependencies between the
operational nodes. The compiler has to place the operational nodes on specific
PEs and route connections between dependent PEs. This process is formu-
lated as a problem to find an epimorphic subgraph of the PE array graph onto
the application DFG [19].

Reconfiguration strategies for CGRAs can be classified into 1) temporal

9

10 Background

A B

C D

E

(a) Example of
DFG

Time

Cycle 0

Cycle 1

Cycle 2

A
B

C

D

E

E'

A''
B''

(b) Temporal Mapping

A B

C D

E

(c) Spatial Mapping

Figure 2.1: Reconfiguration of CGRAs

mapping and 2) spatial mapping. In the case of temporal mapping, the PE
array graph is extended for several cycles, called time-extended CGRA (TEC).
Then, the DFG is mapped into the TEC, as illustrated in Fig. 2.1(b). This
style of CGRAs needs to change the configuration of the PE array cycle-by-
cycle. A family of CGRAs, such as DRRA [34], MorphoSys [35], ADRES [36],
and FloRA [37], follows this mapping policy. In general, multiple DFGs are
executed in a software pipeline manner to utilize the PE array efficiently. For
the software pipeline, the throughput is determined by the initial interval
(II), which is an interval cycle between two iterations. In Fig. 2.1(b), E

′

represents a node in the previous iteration, and A
′′
and B

′′
are those in the

next iteration so that II is equal to 2. Therefore, temporal mapping algorithms
usually attempts to minimize the II.

However, this reconfiguration style consumes a large amount of dynamic
power. Fig. 2.2(a) shows power breakdown for a temporal mapping CGRA
reported in [32]. Around a quarter of the power is consumed for the dynamic
reconfiguration. The CGRAs have grown for a few decades, reducing the
power consumption seen in Fig. 2.2(b). In contrast to the CGRAs, GPUs
have increased the power consumption to boost the clock frequency, that is,
computing performance. Although the clock frequency of CGRAs has also
been increased, it is no so much as the GPUs. The CGRAs, therefore, focuses
on energy efficiency rather than computing performance.

Nevertheless, the improvement of energy efficiency is mostly assisted by
the scaling of transistors. Now that we are reaching the limit of transistor
scaling, an architectural breakthrough to archive higher energy efficiency is

2.1. CGRA: Coarse-Grained Reconfigurable Architecture 11

Operation
30%

Reconfiguration

25%

Clock
Tree
15%

Others
30%

(a) Power breakdown for a temporal mapping
CGRA [32]

(b) Trend of power consumption
(source: [33])

needed to keep the growing trend of CGRAs. In this respect, another type
of CGRAs based on spatial mapping is promising. It performs a task-by-
task reconfiguration to cut down the dynamic power overhead. In contrast to
the temporal mapping, the spatial mapping does not switch the configuration
while handling a task in an application, as Fig. 2.1(c) describes.

MEM

MEM

MEM

MEM

MEM

MEM

MEM

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

........

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r
s

P
e
r
m
u
t
a
t
i
o
n

N
e
t
w
o
r
k

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r
s

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

....

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r
s

P
i
p
e
l
i
n
e

R
e
g
i
s
t
e
r
s

P
e
r
m
u
t
a
t
i
o
n

N
e
t
w
o
r
k

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

Figure 2.2: Overview of SF-CGRAs

Straight Forward CGRAs (SF-CGRAs), which belong to the spatial map-
ping CGRAs, contains a simplified PE array for high energy efficiency. SF-
CGRAs are designed to make the dataflow on their PE array straightforward,
as shown in Fig. 2.2. During a single task of an application, the PE array con-
figuration is static so that computation is driven by sending input data to the
PE array. Registers in the PE array behave as pipeline registers. Permutation
networks (e.g., crossbar) between the data memory and the input/output of
the PE array provide flexible data transfer. For instance, Piperench [38], Kilo-
core [39], XPP [40], S5 engine [41], REMUS [42], RSPA [43], DT-CGRA [44],

12 Background

and RHP-CGRA [45] are classified into SF-CGRAs.

Unlike the temporal mapping CGRAs, when the target DFG contains more
operational nodes than the size of PEs, the compiler for SF-CGRAs has to
divide the application kernel into sub-tasks, each of which fits the PE array.
It causes extra reconfiguration overhead in the execution time due to context
switching. Thus, fast reconfiguration techniques like [46] are employed to mit-
igate the overhead. Besides, optimizing task partitioning is another research
topic for SF-CGRAs, and some heuristics are proposed [47,48]. General graph
partitioning algorithms for directed acyclic graphs (DAGs) like [49,50] can also
be utilized for this purpose. This thesis focuses on spatial mapping towards
more energy-efficient computing, combined with aggressive power optimiza-
tion.

2.1.2 Advantage of CGRAs over FPGAs

As introduced in Section 1.1, the CGRAs sacrifice such a fine granularity of
reconfiguration as FPGAs. Instead, the CGRAs has the definite advantage
of the smaller reconfiguration overhead in terms of area, power consumption,
and reconfiguration time, compared to the FPGAs. Moreover, the coarser
reconfigurability contributes to a more simplified compilation.

Fig. 2.3 explains the difference in the general compilation flow between the
FPGAs and the CGRAs. The target application for the FPGAs is designed
with either a hardware description language (HDL) such as Verilog HDL or
a high-level language such as C/C++ and OpenCL. In the latter case, the
source codes specify the behavior and algorithm of the circuit, and then, they
are compiled into HDL codes (a.k.a. high-level synthesis). The HDL code is
translated into an optimized gate-level netlist (i.e., logic synthesis), similarly
to VLSI design flow. A combinational circuit on most FPGAs is realized with
a number of k-input LUTs [8]. Therefore, the logic gates of netlist are grouped
for each group to fit in the k-input. This process is called technology mapping
and is usually based on a cut-enumeration algorithm [51]. Likewise, the
grouped netlist (i.e., LUT-level netlist) is clustered because recent FPGAs are
composed of logic blocks (LBs) containing the multiple LUTs. Then, each node
of the clustered netlist (i.e., LB-level netlist) is placed onto a corresponding
LB, and dependent LBs are routed through the interconnection network of the
FPGAs. It is not rare that this compilation flow takes several days for a large-
scale circuit. Besides, if the generated implementation violates any design
rules or timing-constraints, the user has to modify the design. Hence, this
complicated compilation flow causes inefficient application development. The
efficiency is crucial, especially for an application domain where the requirement
is updated constantly.

2.1. CGRA: Coarse-Grained Reconfigurable Architecture 13

High-Level
Synthesis

HDL

C/C++
etc.

Logic Synthesis

Technology mapping

Clustering

Place&Route

Configuration
data

Gate level netlist

LUT level netlist

LB level netlist

C/C++
etc.

DFG extraction

Mapping
Place&Route(+Sheduling)

Sequential part
for CPU

Loop kernel

DFG

Configuration
data

Figure 2.3: Comparison of compilation flow between FPGAs (left) and CGRAs
(right)

On the contrary, the CGRAs need fewer compilation steps than FPGAs
because of the coarser granularity of reconfiguration. Like the high-level syn-
thesis of FPGAs, the application is written in C-based description language
[52], C language with pragma directives [53], and OpenCL [54]. The target
kernel to be executed on the PE array is extracted as the DFG like in [55].
As mentioned above, the CGRAs are usually used as an accelerator so that
the other part of the program, including control of the CGRA, is handled
by a host processor. The extracted DFG is mapped into the PE array. For
the temporal mapping CGRAs, the compiler has to determine the time-slot
for each operational node (i.e., scheduling) as well as placement and routing.
Various kinds of mapping algorithms are proposed. They are introduced in
Chapter 3 as the related work of this thesis.

CGRA-based designs are often implemented on the FPGAs [12–18], and
the target applications are compiled for the CGRAs. This approach is called
an overlay of the FPGAs. Even for a domain-specific use such as deep learning,
an FPGA vendor provides sophisticated hardware designs like CGRAs with
a software stack including compiler and libraries [56]. Therefore, the CGRAs

14 Background

are increasingly promising.

2.2 Power consumption of CMOS VLSI

For understanding energy-efficient computing, we have to figure out how power
is consumed in the CMOS VLSI and know the fundamental property of the
power dissipation. Generally, the power consumption can be classified into
two types: 1) dynamic power (Pdyn) and 2) static power (Pst). Therefore, the
total power consumption is denoted by the following equation.

Ptotal = Pdyn + Pst (2.1)

2.2.1 Dynamic power

The dynamic power is attributed to the switching of signals. When a transition
of a gate output from low to high (rising) or from high to low (falling), the
parasitic capacitance of the transistor is charged or discharged, and then,
the power is dissipated. The amount of power (called switching power) is
calculated as follows.

Pswitching = αCfV 2
DD (2.2)

where α is switching activity, C is the capacitance, f is clock frequency, and
VDD is the power supply voltage.

In addition to the switching power, short circuit current between supply
and ground is another factor of the dynamic power consumption. It is also
caused when the transistor switches.

Eq. (2.2) suggests that lowering the supply voltage VDD contributes to the
reduction of dynamic power consumption drastically. However, it degrades
the speed of signal transition. DVFS leverages the trade-off between power
consumption and performance while considering the status of workloads.

2.2.2 Static power

The static power is consumed regardless of the circuit switching. For pro-
cess technologies larger than the 90-nm node, the static power consumption
can be neglected since the dynamic power is the dominant component of the
total power consumption. However, the static power consumption had been
increased exponentially beyond the 65-nm process. It consequently became an
obstacle to Dennard‘s scaling rule [57].

2.2. Power consumption of CMOS VLSI 15

Substrate

Gate

DrainSource
Oxide

Isub

Igate
Ijunction

IGIDL

Figure 2.4: Mechanisms of leakage current

The static power is mainly caused by four kinds of leakage current: 1) sub-
threshold leakage (Isub), 2) gate leakage (Igate), 3) junction leakage (Ijunction),
and 4) gate-induced-drain-leakage GIDL (IGIDL), as illustrated in Fig. 2.4.
Then, static power is described as follows:

Pst = (Isub + Igate + Ijunction + IGIDL)VDD (2.3)

Subthreshold leakage

The subthreshold leakage is the major contributor to the total static power
consumption. This current is passed between the source and drain of the
CMOS transistor. Its characteristic is explained by the following equation:

Isub = Ioff10
Vgs+η(Vds−VDD)−kγVsb

S (1− e
−Vds
vT) (2.4)

where Ioff is the subthreshold current at Vgs = 0 and Vds = VDD, Vgs, Vds, Vsb

are respectively gate-source, drain-source, and source-body (substrate) volt-
ages, η and kγ are respectively coefficients related to the DIBL (drain-induced
barrier lowering) and body bias effect, and S is the subthreshold slope [58]. As
the threshold voltage decreases, the subthreshold current increases exponen-
tially. In Dennard‘s scaling rule, the threshold voltage was reduced linearly so
that the subthreshold current brought about a serious problem for the short
channel transistors. However, it can be reduced by the body bias effect, which
controls the threshold voltage by changing the voltage between source and
body (Vsb). It is described in Section 2.3.

Gate leakage

In addition to the subthreshold leakage, the short channel transistors face the
challenge of growing gate leakage current. This current is associated with

16 Background

electron tunneling through the gate oxide. It is modeled as the following
equation:

Igate = WA

(
VDD

tox

)
e
−B tox

VDD (2.5)

where W is the gate width, A and B are parameters depending on the pro-
cess technology, and tox is the thickness of the gate oxide. As the equation
indicates, its effect strongly depends on the thickness of the oxide. As scaling
the process technologies, the thickness is also reduced. However, the thickness
below 20 Å results in a significant increase in the gate leakage current. It
can be suppressed by introducing high-k dielectrics for the insulator instead
of SiO2 gate oxide [59] while the manufacturing complexity is increased.

Junction leakage and GIDL

Even though the p-n junctions between the substrate and the source/drain
are reverse-biased in normal operation, it still causes a small leakage current.
Especially if both the drain and source are heavily doped, band-to-band tun-
neling (BTBT) accounts for a large amount of the junction leakage [60].

GIDL is attributed to the high field effect in a gate-drain overlap region
due to the biased gate. As the thickness of the oxide decreases or VDD becomes
high, the electric field is enhanced, and then, GIDL is also increased [60].

2.3 Body bias control

As explained in the previous section, the subthreshold leakage depends on the
threshold voltage (Vt). In order to control the threshold voltage, body bias
control can be available. The effect of body bias is explained by the following
equation:

Vt = Vt0 + γ(
√
ϕs + Vsb −

√
ϕs) (2.6)

where Vt0 is the threshold voltage at Vsb = 0, γ is a coefficient of body bias,
and ϕs is the surface potential at threshold [58].

Changing threshold voltage has an impact on the gate dealy as well as the
subthreshold leakage. α-Power law [61] estimates the gate delay τ as follows.

τ = k
CVDD

(VDD − Vt)α
(2.7)

As the source-body voltage Vsb becomes higher than zero, the threshold voltage
is increased, resulting in the reduction of subthreshold leakage, whereas the

2.4. Recent CMOS technology 17

gate delay is increased, that is, degrades the operational frequency of the
circuit. This status is called the reverse body bias. On the contrary, in the
case of Vsb < 0, the transistor works at a higher operational frequency at
the expense of the subthreshold leakage. This situation is referred to as the
forward bias. Likewise, the state without such a control of the body bias (i.e.,
Vsb = 0) is called the zero bias and provides a regular operation. In this way,
the possibility of a trade-off between the performance and the leakage current
can be exploited after the chip fabrication.

However, the control range for the bulk CMOS is limited because a strong
reverse bias instead causes an increase in the junction leakage. Silicon on
insulator (SOI) overcomes this drawback, as explained later.

Some studies present multiple body bias domains in a single LSI chip [62,
63]. In other words, different domains can respectively operate with different
threshold voltages. Thereby, the reverse bias is available for domains not
including time-critical modules as far as the timing constraints are satisfied.
Conversely, the forward bias to boost the operational frequency can be applied
only to time-critical modules, minimizing the cost of leakage increase. Some
FPGAs [64–66] and CGRAs [26, 67] change the body bias voltage for each
domain depending on the configuration to save the power consumption.

In the case of multi-VDD design to use low voltage (VDDL) and high
voltage (VDDH), level shifters are needed between the voltage domains. In
contrast, body bias domain partitioning does not require them since the high
level of signals is common for each body bias domain. Thus, power- and
area-overheads regarding the domain partitioning is small.

2.4 Recent CMOS technology

The typical bulk CMOS has several challenges in the transistor scaling. As
introduced previously, an issue regarding the leakage power consumption is
a factor of them. Besides, the short channel transistor needs a highly doped
channel in the traditional scaling, whereas it causes a variation of electrical
properties such as the threshold voltage. It loses the possibility of performance
scaling since lowering VDD is restricted by the worst case of the threshold
voltage. Therefore, a couple of innovations taking the place of the bulk CMOS
has occurred.

Fig.2.5 shows the novel transistor structures. The first (Fig. 2.5(b)) is
called a fully depleted silicon on insulator (FD-SOI). The transistor layer of
FD-SOI is the same as the bulk CMOS. However, it is isolated from the sub-
strate by a thin buried oxide (BOX) layer. Thanks to the BOX layer, the
junction leakage due to BTBT can be eliminated. As a result, better control

18 Background

Drain

Substrate

Source

Gate

(a) Bulk CMOS

Drain

Substrate

Source

Gate

BOX

(b) Planar FD-SOI

Oxide

Substrate

Gate

S

D

Fin

(c) Bulk FinFET

BOX

Substrate

Gate

S

D

Fin

(d) SOI-FinFET

Figure 2.5: Transistor structure for each technology

of the body bias effect is provided compared to the bulk CMOS. The BOX
layer can reduce the parasitic capacitance between the source and drain. More-
over, the transistor layer is thin enough to fully deplete the channel under the
gate. Thus, the short channel effect, which the bulk CMOS suffers from can
be mitigated. ST Microelectronics 28-nm [68], GlobalFoundries 22-nm [69],
and Renesas SOTB 65-nm[70] process technologies are categorized into the
FD-SOI.

The second (Fig. 2.5(c)) is a multi-gate transistor, so-called FinFET. This
type of transistor has a thin vertical fin, and it forms the channel. The gate
is wrapped around the channel, that is, multiple gates are formed around the
channel, as shown in this figure. It contributes to a fully depleted channel and
offers better electrostatic control of the channel compared to the bulk CMOS.
Consequently, faster switching and smaller leakage current are archived.

Intel’s 22-nm FinFET called Tri-Gate transistor is the first one for a com-
mercial CPU [71]. Then, most of the advanced process technologies below
22-nm, including the latest node, TSMC 5-nm [72] and Samsung 5-nm [73],
belong to a family of FinFET. Besides, a hybrid type integrating the FinFET
structure on SOI like Fig. 2.5(d) as in [74] is proposed. Although the body
bias control can work for the bulk FinFET and SOI-FinFET, the possibility
of the trade-off is limited compared to the FD-SOI [75].

2.4.1 SOTB: a case of FD-SOI

A part of the studies in this thesis is based on some chips implemented with the
SOTB process, which is an FD-SOI technology. As illustrated in Fig. 2.6, the
transistor of SOTB forms a triple-well structure. Besides VDD and VSS , it has
two additional terminals, V BN and V BP , for body bias voltages of NMOS
transistor and PMOS transistor, respectively. V BN for NMOS transistors is
given to p-well. That is, if V BN = 0, the transistor works with a normal
threshold level since Vsb is equal to 0. If a reverse bias (V BN < 0) is given,
the threshold voltage increases, and thus, the leakage current is reduced while

2.4. Recent CMOS technology 19

Figure 2.6: Cross-sectional view of the SOTB MOSFET

the delay time is extended, as explained in Section 2.3. On the contrary, a
forward bias (V BN > 0) decreases the threshold voltage, which boosts the
operational frequency with an increase in the leakage current. In the case
of PMOS transistors, V BP is given to the n-well. Here, the transistors are
formed on a thin BOX layer, as shown in Fig. 2.6. Therefore, in this case,
V BP = VDD means the zero bias. When V BP > VDD, this corresponds to
the reverse bias, while V BP > VDD is for the forward bias.

Here, the bias voltage is equally given to both the NMOS and PMOS so
that V BP + V BN = VDD is satisfied. Hereinafter, we, therefore, express the
level of body bias solely with the value of V BN . Table 2.1 summarizes the
body bias effect on the SOTB process.

Table 2.1: Effect of body bias control

V BN V BP Performance Leakage
Reverse bias < 0 > VDD Degraded Decreased
Zero bias = 0 = VDD Normal Normal

Forward bias > 0 < VDD Enhanced Increased

3
Motivation

This chapter discusses previous studies related to the optimization method
for CGRAs. Then, we explain the details of a CGRA chosen as a case study
in this thesis. Finally, we conclude few studies can provide general-purpose
optimization.

3.1 Related work on optimization techniques for
CGRAs

There are several possibilities of optimization in CGRAs, and various kinds
of techniques have been proposed to date. They can be classified into three
categories depending on the phase when the optimization is applied: 1) design-
time, 2) runtime, and 3) compile-time.

3.1.1 Design-time optimization

Design-time optimization usually aims to improve power consumption and
area of the CGRA fabric at an HDL-level and a circuit-level. For instance,
RADISH [76] provides an automated design of more efficient PEs, which con-
sist of fully customized ALUs. It employs a genetic algorithm to reduce power
consumption and area as far as the programmability is kept enough for a tar-
get application domain. In [24], the size of body bias domains on a CGRA has
been analyzed, focusing on leakage power reduction and area overhead. It also
uses a genetic algorithm in order to decide an optimal bias voltage for each

21

22 Motivation

domain. Besides, many works provide CGRA templates to explore the design
space and to find the most energy-efficient architecture [77–80]. Compared to
the other two optimization phase, design-time optimization is more tolerant
regarding simulation duration because it is not needed to be carried out once
the design is fixed. Nonetheless, it cannot take care of the target application
adaptively. Although comprehensive design space exploration is indispensable
for DSAs, too specialized architectures might degrade the flexibility.

3.1.2 Runtime optimization

Runtime optimization is generally a part of just-in-time (JIT) compilation. It
has the advantage of leveraging the runtime status of the CGRA. For multi-
threaded CGRAs like [81], resources on the CGRA such as PE array and
data memory are shared among the multiple applications (threads). In other
words, available resources for an application are different depending on the
time of execution. Thus, an application binary compiled in advance does
not always be executable due to resource conflict. [82] and [83] transform
the pre-build application mapping into another one dynamically to improve
resource efficiency. Although runtime optimization is the most adaptive, it has
to be completed in the order of milliseconds or microseconds. Therefore, the
optimization time is the top priority, and limited optimization is consequently
provided.

3.1.3 Compile-time optimization

Unlike the multi-threaded CGRAs, most of CGRAs assume the PE array is
occupied by a single application. Even in the case of handling multiple ap-
plications, context switching is employed. Therefore, many studies, including
this thesis, focus on compile-time optimization, that is, offline mapping opti-
mization. This is because the efficiency of the CGRAs strongly depends on
the quality of the mapping.

As explained in Section 2.1, the temporal mapping includes scheduling as
well as placement and routing. However, the graph representation, TEC in
Fig. 2.1(b), integrates the scheduling problem into the placement and routing.
Then, most methods are based on Iterative modulo scheduling (IMS) [84],
which is a software pipelining technique to schedule the instructions with as
a small initial interval as possible. These algorithms start with minimum
II (MII), which is a lower bound of II due to resource constraint and data
dependencies between iterations. If it fails in the scheduling, then the target
II is incremented. It is repeated until a valid scheduling is obtained. Thereby,
they attempt to minimize the II.

3.1. Related work on optimization techniques for CGRAs 23

For the temporal mapping CGRAs, a classical approach using simulated
annealing (SA) has been proposed with DRESC [85]. However, the simulated
annealing causes a long compilation time. EMS [86] addresses the long com-
pilation time by efficient routing strategy and also improves the performance.
Since temporal mapping usually suffers from routing between PEs which de-
pend on each other, many sophisticated routing methods have been proposed.
EPIMap [19] formulates the problem generally and enhances the routing ability
considering re-computation. REGIMap [87] extends EPIMap [19] to exploit
register files distributed over the PE array as routing resources. MEMMap [88]
utilizes memory units as well as the register files. Then, RAMP [20] adaptively
finds routing by taking every routing resources into account. TAEM [89] is
similar to RAMP but improves the compilation time significantly.

However, Zhao et al. [90] argue that there still exists an inefficient process
of mapping attributed to the integration of scheduling into the placement and
routing. Then, they propose a reorganized algorithm to reduce the compilation
time and also to improve the II.

The above methods, except for DRESC, are deterministic approaches so
that they tend to get stuck in local optima. CRIMSON [91] is a randomized
approach of IMS to tackle the issue. Despite a simplified algorithm to be
completed within a millisecond, it can obtain mappings with almost the same
II as RAMP.

In addition to the above methods, various heuristics are employed like a
force-directed approach [92], quantum-inspired evolutionary algorithm [93], a
formulation based on graph minor theory [94]. HyCUBE [95] is a CGRA which
has an enhanced interconnection network, and a novel routing algorithm to
leverage the rich network has also been presented.

However, they all do not attempt to reduce power consumption. Although
the researches presented in [22, 96] consider dual-VDD to reduce unnecessary
power consumption, they give priority to improve the performance (II).

Instead of performance improvement, optimization for spatial mapping
usually aims at saving utilized resources since it is supposed to improve the
possibility of obtaining a valid mapping and shorten the computation latency.
SPKM [31] is a graph drawing based approach to save the number of PE rows.
It suggests applying power gating to unused rows. It solves two types of ILP,
1) column-wise scattering and 2) row-wise scattering, iteratively until a valid
mapping is found while increasing the number of used rows. DFGNet [97] and
RLMap [98] are based on deep learning. The former employs CNN (Convo-
lutional Neural Network) only to reduce the compilation time, whereas the
latter aims to save rectangular area covering the utilized PEs by using Deep
Q-Network (DQN). PolyMap [99] employs a genetic algorithm to search for
good loop tiling and optimizes the mapping in the same way as SPKM.

24 Motivation

Table 3.1: Summary of mapping algorithms

Methods Reconf. Objective Category
Power

reduction

DRESC[85] Temporal min. II SA ×
EMS[19]

Temporal min. II Deterministic ×

EPIMap[87]
REGIMap[87]
MEMMap[88]
HyCUBE[95]
RAMP[20]
TAEM[89]

Zhao et al.[90]
Chen et al.[94]
Fell et al.[92]

CRIMSON[91] Temporal min. II Randomized IMS ×
Gu et al.[22]

Temporal min. II Deterministic Dual-VDD
1

Xu et al.[96]

Lee et al.[93] Temporal min. latency QEA ×
CGRA-ME Temporal min. routing SA a

2

[102–104] or Spatial resources or ILP

Canesche et al.[105]
Temporal

min. buffer
Graph-based ×

or Spatial traversal

SPKM[31] Spatial min. PE rows ILP
a

3

Zhou et al.[101]4 Spatial min. wire len. ACO ×

DFGNet[97] Spatial
success in

CNN ×
mapping

RLMap[98] Spatial min. used PE DQN ×
1 Higher priority to improvement of performance (II) than power consumption
2 The authors imply the power reduction depending on the used parameters.
3 The authors assume the power supply to unused PEs is gated
4 Placement algorithm is not included

In general, the routing problem of CGRAs is defined as Steiner tree prob-
lem similar to VLSI design [100]. The Steiner tree problem is also known
as the NP-complete problem so that Zhou et al.[101] have proposed a rout-
ing algorithm for the spatial mapping CGRAs based on a metaheuristic, ant
colony optimization (ACO). However, it contributes to up to 6% of wire length
reduction compared to a greedy approach.

CGRA-ME [102] is a framework that can model a wide range of CGRAs
and able to evaluate them. Besides, it includes application mappers using

3.2. Cool mega array: a case of CGRA 25

simulated annealing [102] and with ILP formulation [21]. They can treat both
temporal and spatial mapping for minimizing the utilized resources. Nowatzki
et al.[106] provides a similar ILP formulation with a more general architecture
description than CGRA-ME. Although such ILP formulations guarantee an
optimal solution, the optimization time increases exponentially for large scale
problems. Thus, for large application DFGs and large PE arrays, it is difficult
to solve the ILP within an acceptable compilation time. Instead of the optimal
solution, Canesche et al. [105] have proposed a sophisticated graph traversal
method to find a mapping efficiently. It also supports both temporal and
spatial mappings. It makes hundreds of instances, each of which traverses
the graph in a different order. Then, it picks the best solution from these
instances. Therefore, in spite of its greedy heuristic, it can archive the same
mapping quality as CGRA-ME within a millisecond.

Table 3.1 summarize the mapping algorithms. In the case of the spatial
mapping CGRAs, the reduction of resources like SPKM, RLMap, and CGRA-
ME’s mappers leads to energy saving implicitly. There still exist possibilities
to reduce power consumption further by applying power reduction techniques
such as body biassing. Nevertheless, all of them cannot consider such aggres-
sive power optimization.

3.2 Cool mega array: a case of CGRA

3.2.1 Architecture overview

Cool mega array (CMA) is one of SF-CGRAs and the target architecture
of this thesis. Like other CGRAs, CMA has a PE array, as illustrated in
Fig. 3.1(a), and it works following the spatial mapping fashion. However, un-
like others, each PE does not have a register file to hold intermediate results.
In summary, the PE array is composed of a combinational circuit to cut down
the dynamic power consumption drastically since a clock signal for the PE
array is not needed. According to [67], it achieves a quite high energy effi-
ciency: more than 700 MOPS (Million Operations Per Second) per milliwatt.
Such a PE array brings about a long critical path delay, and thereby system
clock frequency would be degraded. In order to prevent it, the PE array of
CMA is designed to be a multi-cycle execution unit. The number of cycles is
programmable, depending on the target application.

Fig. 3.1(a) shows the other modules of the CMA. The micro-controller is
a 16-bit tiny RISC micro-controller, which manages the data transfer between
the PE array and the multi-bank data memory according to the instruction
codes. A data manipulator is placed between the PE array and the data
memory. It is composed of several multiplexers to support a flexible data

26 Motivation

PE Array

PE PE PEPE

PE PE PEPE

PE

PE PE

PEPE PE

PE PE

.....

.....

Configuration

Registers

Constant

Registers

Micro

Controller

Instruction

Memory

Data

Manipulator

Multi-bank

Memory

(a) Diagram of CMA architecture

SE

SE

SE SESE

SE

(b) Interconnection of CC-
SOTB

SE

SE

SE

SESE

SESE

Configurable

Pipeline Register

(c) Interconnection of CC-SOTB2

SE

SE

SE

SESE

SE

SE

SE

SESE

(d) Interconnection of NVCMA

Figure 3.1: CMA architecture and PE interconnections

transfer. When multiple data from the data memory are sent with interleaving
access to the input of the data manipulator, it transfers each data to a specified
output port according to a transfer table. In general, the spatial mapping is
less flexible than the temporal mapping, yet CMA can execute various types
of computation thanks to the flexible control by the micro-controller and the
data manipulator.

When the micro-controller sends input data from the data memory to the
PE array, computation on the PE array starts automatically. After a few
cycles, the micro-controller writes the computation result back to the data
memory. In this thesis, we refer to the former operation as “fetch” and to
the latter one as “gather.” Fig. 3.2 explains how the micro-controller controls
the execution on the PE array. In this example, the execution cycle is set to

3.2. Cool mega array: a case of CGRA 27

DELAY 3

SET_LD #0x0, #0x6

SET_ST #0x30, #0x6

LDI r1, #6

LOOP:

LDST_ADD #0, #0

NOP 2

BNZD r1, LOOP

DONE

Instruction codes

. . .

fetch gathercomputation

branch fetch gathercomputation

branch fetch gathercomputation

Figure 3.2: 3-cycle execution on non-pipelined PE array

three by the “DELAY” instruction. “SET LD” and “SET ST” instructions
respectively set configurations such as memory address for the fetch and gather
operations. The fetch and gather operations fuse together into an instruction
“LDST ADD.” The fetch operation is executed as soon as the “LDST ADD”
is issued. In contrast, execution of the gather operation is delayed like Fig. 3.2.
Besides, the micro-controller supports several instructions commonly used in
general-purpose RISC processors, such as branch instructions and arithmetic
instructions.

3.2.2 Existing implementations

Table 3.2: Architectural and implementation features

Chip CC-SOTB[24] CC-SOTB2[107] NVCMA[28]

Array size 12×8 12×8 8×8
Channel of SE 1ch 1ch 2ch

Direct link Included Included Not included

Pipeline None Variable pipeline None

Body bias Controlled Controlled
Not controlled

control (3 domains) (5 domains)

Fabrication
Renesas Renesas Bulk CMOS

SOTB 65-nm SOTB 65-nm Smaller than 65-nm

Several types of CMA architectures have been proposed and fabricated us-
ing different process technologies listed in Table 3.2. In this work, we consider
three chips: 1) CC-SOTB [24], 2) CC-SOTB2 [107] and 3) NVCMA [28]. Each
of them has different features in the PE array. Table 3.2 describes the differ-
ences, and the interconnection topology for each architecture is illustrated in
Fig. 3.1. PEs for each architecture includes at least one switching element
(SE) for an island-style interconnection network. The PEs of NVCMA have
two SEs so that two channels of interconnections are available, while those

28 Motivation

of CC-SOTB and CC-SOTB2 provide a single channel. Instead, they have
another type of interconnection called a direct link. Neighboring PEs are con-
nected by the direct link like, as shown with dashed lines in Fig. 3.1(b) and
Fig. 3.1(c).

......

Const reg. Const reg.

PE row

Figure 3.3: Connectivity of constant registers

Constant registers supply constant values used for the computation to the
PE array. For all the architectures, sixteen of them are available. However,
connectivity between the constant registers and the PEs is restricted. As
shown in Fig. 3.3, two constant values are provided for each PE row. If a
PE row requires more than two constant values, it needs to borrow unused
constant registers from other rows through the interconnection network.

MUX MUX MUX MUX

REG REG REG REG

Northwest PE North PE Northeast PE

East PEPEWest PE

Pipeline
 Register

Configuration
Data

Gated
Clock

(a) Configurable pipeline registers

stage1 stage2 stage3 stage4

1
s
t P

E
 ro

w

2
n
d
 P

E
 ro

w

3
rd

 P
E
 ro

w

4
th

 P
E
 ro

w

5
th

 P
E
 ro

w

6
th

 P
E
 ro

w

7
th

 P
E
 ro

w

8
th

 P
E
 ro

w

(b) Example of a pipeline structure

Figure 3.4: Implementation of pipelined PE array on CC-SOTB2

CC-SOTB2 has a limited number of configurable pipeline registers placed
between every PE row. The pipeline registers yield a variable pipeline struc-
ture according to their configuration, as illustrated in Fig. 3.4(a). When a
pipeline register is activated, it works as a usual flip-flop. On the contrary, a
deactivated register just passes the input data to the upper PE row without
latching. Such a register bypassing is commonly used in CGRAs[14, 98, 108,
109]. In this case, the clock signal for the unused flip-flops is gated to reduce
unnecessary dynamic power dissipation. Fig. 3.4(b) shows an example of a
pipeline structure configuration. In this example, three pipeline registers are
activated, and thus, a 4-stage pipeline is formed. Note that each pipeline stage
can also be assumed as a multi-cycle unit.

Fig 3.5 describes the execution control for the 4-stage pipelined PE array.
In this example, each stage takes two cycles so that the computation results

3.2. Cool mega array: a case of CGRA 29

fetch gatherstage2stage1 stage3 stage4

fetch gatherstage2stage1 stage3 stage4

fetch gatherstage2stage1 stage3 stage4

DELAY 8

SET_LD #0x0, #0x6

SET_ST #0x30, #0x6

LDI r1, #2

LOOP:

LDST_ADD #0, #0

NOP 1

LDST_ADD #0, #0

NOP 1

LDST_ADD #0, #0

BNZD r1, LOOP

DONE

Instruction codes

fetch gatherstage2stage1 stage3 stage4. . .

branch

Figure 3.5: 8-cycle execution on 4-stage pipelined PE array

are yielded after eight cycles. Compared to non-pipelined PE arrays like CC-
SOTB and NVCMA, it contributes to higher throughput and shorter critical
path length on the PE array. However, too many activated pipeline registers
bring about a large amount of dynamic power consumption. Therefore, the
pipeline structure should be optimized, considering the target application,
operational frequency, and performance requirements.

CC-SOTB and CC-SOTB2 have been fabricated with Renesas SOTB in-
troduced in Section 2.4. Besides, circuits of both fabricated chips are divided
into several body bias domains. As described in Table 3.2, CC-SOTB and
CC-SOTB2 have three and five domains, respectively. The PE array of CC-
SOTB2 is divided into four domains, as follows: 1-5th, 6th, 7th, and 8th PE
rows. For CC-SOTB, it is merged into one single domain.

Since the data transfer with the micro-controller and the computation in
the PE array are executed in an overlapped manner, as shown in Fig. 3.2, their
performance should be balanced. In order to keep the balance, other parts of
CC-SOTB2, including the micro-controller, belongs to a different domain from
the PE array. Besides, the configuration registers of CC-SOTB is separated
from the domain of the micro-controller. However, this thesis focuses only on
controlling the body bias voltages of the PE array.

As for NVCMA, it has been fabricated with another technology. How-
ever, the details of the technology are confidential due to the industry secrecy
of our collaborator. Although the NVCMA contains non-volatile memories,
considering them is out of the scope of this work.

3.2.3 Combination of body bias control and variable pipeline

For the variable pipelined PE array, the delay time for each stage should
be balanced since the throughput is determined by the longest stage delay.
Therefore, even if the other stages complete the computation in a shorter delay
time, it does not increase the throughput. Although the variable pipeline can
roughly adjust the balance of the delay time, there still remains a variation of

30 Motivation

delay time between each stage. The body bias control offers a possibility to
eliminate such a variation, that is, to reduce the leakage power consumption by
leveraging the trade-off, as explained in Section 2.3. When a timing constraint
from users is not severe, it also brings more reduction of the leakage power.
This is because the reverse bias can be applied even to the slowest stage. In
contrast, the forward bias can improve the delay time of the bottleneck stage
to satisfy a strict time constraint when high performance is required.

Figure 3.6: Row-level body bias control with pipeline registers (2 and 4 stages)

Nevertheless, a uniform bias on the whole PE array, such as CC-SOTB,
produces a limited effect. Fig. 3.6 explains the limitation of the uniform con-
trol. It shows two examples of pipeline structure for the same application
mapping. The length for each arrow indicates the delay time of the corre-
sponding PE. In the case of the 2-stage pipeline, the uniform bias can reduce
the leakage power for both stages, compared to the zero bias (i.e., without
body bias control). However, it misses the possibility of more reduction for
the second stage since a more strong reverse bias causes a timing violation in
the first stage. To make matters worse, the uniform control cannot adjust the
balance of delay time due to the second stage.

To alleviate the limitation, we consider a row-level body bias domain for
the PE array, as also shown in Fig. 3.6, to finely balance the delay time of
each pipeline stage. This can allow more flexible choices on the bias voltages
compared to a uniform bias. With a row-level design, each row is implemented
with its own body bias domain and receives its own bias voltage. Since all

3.3. Challenges in the previous optimization approaches 31

the pipeline registers are outside of the PE array domain and implemented in
the same domain as the micro-controller, they can work at the same clock fre-
quency. The delay scaling problem in the clock tree does not have to be taken
into account since all the flip-flops and the whole clock tree are implemented
in a single body bias domain. From the layout point of view, the overhead of
separating the body bias domains is negligible because the same macro cor-
responding to a single row is used regardless of whether body bias domains
are separated or not because of a common layout policy. For the use of macro
cells, isolation cells, and well separation are needed in any case. Therefore, the
eventual overhead to consider would come from a generator which can deliver
multiple body bias voltages. Although each PE row needs its own body bias
generator, we can employ significantly low overhead on-chip generators like
[110,111].

Using a row-level body bias control, we can apply a reverse body bias to
every stage whose delay is shorter than the largest one until they become
(nearly) equal. Conversely, a forward body bias can be supplied only to stages
whose delay is longer than the shortest one. Even if the delay of each stage is
not exactly the same, the row-level control leads to a more balanced pipeline
compared to the uniform case.

Though CC-SOTB2 is based on the same concept as the row-level body
bias, the domains of the actually fabricated chip are not row-level due to a
restriction on the number of I/O pins. However, in order to study the benefit
of the row-level control, Chapter 4 considers generalized body bias domains,
including the row-level and the uniform control. Then, the real chip evaluation
in Chapter 6 is based on the actually implemented domains.

3.3 Challenges in the previous optimization approaches

As introduced previously, most mapping algorithms are based on a specific
optimization objective, such as computation performance. Nonetheless, con-
sidering the fact that some CGRAs, including CMA, have unique characteris-
tics, these mapping algorithms lose a generality of optimization. As a result,
they can not exploit such a unique characteristic. Besides, users do not always
require maximum performance. Thus, the optimization objectives should be
customizable by the users. Moreover, only a few methods [21, 95] treat the
dedicated switching elements inside PEs, and the others ignore it.

In Chapter 4, this thesis first proposes an algorithm to adaptively decide
an optimal body bias voltage for each domain according to the performance
required from the users. In addition, it emphasizes the impact of the row-
level body bias control with evaluation results. Then, for more aggressive

32 Motivation

power optimization, a dynamic power estimation technique is needed. Thus,
Chapter 5 presents a dynamic power model and demonstrates its accuracy for
the three different chips of CMA as described above. Finally, in Chapter 6,
this thesis proposes GenMap, an optimization framework not depending on
a specific optimization objective. GenMap provides a multi-objective opti-
mization, that is, optimizing different objectives simultaneously by using a
multi-objective genetic algorithm called NSGA-II. As a case study, this thesis
shows the above power optimization techniques can be deployed in GenMap
thanks to the generality of optimization objectives, and the energy reduction
is archived compared to the previous approaches.

4
Body bias optimization

In this chapter, we propose a body bias optimization method, considering the
variable pipeline structure like CC-SOTB2 to save power consumption. As-
suming that the pipeline structure and the body bias voltages are controlled
simultaneously, there are several possibilities of trade-offs, as shown in Ta-
ble 4.1.

Table 4.1: Trade-off between performance and power associated with body
bias control and variable pipeline

Number of pipelined stage
large small

Performance high low

Dynamic power
of register increases decreases

and clock tree

Dynamic power
decreases increases

of the glitches

Body bias voltage
forward bias reverse bias

Performance low high

Static power decreases increases

For instance, we can observe that the power consumption induced by

33

34 Body bias optimization

glitches decreases as the number of activated pipeline registers increases. Glitches
are unneeded signal transitions caused by the different delay times between
inputs of the PEs. Without pipeline registers, they are propagated to the PEs
in the upper rows and will therefore imply an increase in consumption. Using
pipeline registers allows to limit this propagation, and thus the induced power
consumption, but at the cost of an overhead related to the registers and the
associated clock tree. This propagation effect is detailedly discussed in Chap-
ter 5. This example shows that more advanced analyses are required to assess
the trade-off possibilities between performance and power consumption, which
both depend differently on the pipeline registers configuration and the body
bias control.

4.1 Problem definition

On the basis of the aforementioned trade-off information, we can define the
problem as the following bi-objective optimization problem: given an applica-
tion, how to optimize the power consumption and the performance of the PE
array with choices on simultaneously the body bias voltages and the pipeline
structure.

The equations required to model this problem can be formulated as follows:

Pst =

Ndomain−1∑
i=0

Pleak,i(V BNi)

+Pleak,reg + Pleak,clk (4.1)

preg = {preg0, preg1, ..., pregNreg−1} (4.2)

pregk =

1 if the k-th

pipeline register is activated
0 otherwise

(4.3)

Pdyn = freq ×

(
Ecomb(preg)

+

Nreg−1∑
k=0

(Ereg + Eclk)pregk

)
(4.4)

Dl =
∑

v ∈ l-th
datapath

Dv(V BN) (4.5)

where:

4.2. Preliminary analysis 35

• V BNi is the body bias voltage supplied to i-th domain,

• Pleak,i(V BN), Pleak,reg, and Pleak,clk are the leak power of respectively
PEs in the i-th domain on V BN , a pipeline register, and the clock tree,

• pregk represents the configuration of the k-th pipeline register,

• preg is a vector whose elements are pregk and expresses the pipeline
structure of the PE array, assuming the PE array has totallyNreg pipeline
registers,

• Pdyn and Pst are respectively the dynamic and static power of the PE
array (considering body bias control and pipeline structure),

• Ecomb(preg), Ereg, and Eclk are the dynamic energy consumption of
respectively the combinational circuits (PEs), a pipeline register, and
clock tree, and

• Dl and Dv(V BN) are the delay time of respectively the l-th datapath
and the node v (ALU or SE) supplied with V BN ; Dl is therefore cal-
culated as the sum of the delays caused by the nodes located in the l-th
datapath.

Then, the optimization problem is to minimize the sum of Pdyn and Pst. Note
that Ecomb depends on the pipeline structure (i.e., preg) because of the glitch
propagation effect. Besides, the static power is regarded as the subthreshold
leakage since the body bias basically affects only the subthreshold current.
This thesis assumes implementations with FD-SOI technologies so that other
types of leakage current are negligible. In the case of the other CMOS tech-
nologies, the amount of the other leakage currents is constant. Thus, even if
these values are not negligible size, this problem formulation is valid.

Although this chapter focuses on the PE array with multiple body bias
domains and variable pipeline, this formulation can be applied to the non-
pipelined PE array (e.g., CC-SOTB) as a case of Nreg = 0, Ereg = 0, Eclk = 0.
Likewise, it is also valid for the uniform body bias domain (i.e., Ndomain = 1).

4.2 Preliminary analysis

The parameters in the above model, such as Pleak or Pcomb(preg), are obtained
by several simulations. The used environments are shown in Table 4.2. The
design used in the simulations is based on a chip layout of CC-SOTB2. It is a
6mm×3mm chip designed with the same environments as shown in the table.

36 Body bias optimization

Table 4.2: Simulation environments for preliminary evaluation

Design Verilog HDL

Process Renesas 65-nm
Library name LPT-8

Synthesis
Synopsys Design Compiler

2016.03-SP4

Place and route
Synopsys IC Compiler

2016.03-SP4

Temperature 25 ◦C

Delay and leak power
Synopsys HSIM
2012.06-SP2

simulation VDD: 0.55, 0.65, 0.75, 0.85 V

Dynamic power
Synopsys Prime Time

2012.06-SP2
simulation V DD: 0.55 V

Behavioral Cadence NC-Verilog
simulation 10.20-s131

Considering the row-level body bias control, Pleak,i corresponds to the leak-
age power of a PE row, and the number of domains Ndomain is equal to that of
rows, that is, eight for CC-SOTB2. All PE rows are considered to be imple-
mented with the same macro. Therefore, each Pleak,i(0 ≤ i ≤ 7) is regarded
as an identical value. Hereinafter, Pleak,row is used for all PE row instead of
Pleak,i.

Pleak,row and Dv are simulated for each value of VDD (0.55, 0.65, 0.75,
and 0.85 V) with HSIM by changing the body bias voltages (V BN) every 0.2
V from -2.0 V to 0.4 V. Here, we treat V BN as a discrete value. This is
because typical body bias generators like [111] are based on a digital-analog-
converter so that available voltages are discrete. Hence, we assume Nbb types
of body bias voltages (in the above case, Nbb = 13). Pleak,row is calculated
as an average of two input patterns, all inputs being set either to low level
or high level. The simulated Pleak,row for each V BN with VDD =　 0.55 V is
shown in Fig 4.1(a). For an ALU, Dv depends on an assigned operation. For
example, the delay time of integer multiplication is generally longer than the
bit-wise logic operations such as bit-wise AND. It also depends on its input
values. Hence, the input values which can provide the critical path for each
operation are determined using the reports from IC compiler. The Dv for
each V BN with ADD operation and VDD =　 0.55 V is shown in Fig 4.1(b).
Both results clearly demonstrate the trade-off between the performance and

4.2. Preliminary analysis 37

Table 4.3: Simulated applications

Application Description

gray 24 bit (RGB) gray scale

sepia 8 bit sepia filter

af 24 bit (RGB) alpha blender

sf 24 bit (RGB) sepia filter

dct 8-point DCT

static power described in Table 4.1. Similar tendencies of the delay time for
the other operations are observed (the full results are shown in Appendix A).

(a) Leak power per PE row (VDD=0.55 V) (b) Delay time of PE (ADD operation,
VDD=0.55 V)

Figure 4.1: Examples of simulation results

Ecomb, Ereg, and Eclk depend on the running application. Five applications
are simulated, as shown in Table 4.3. For each of them, the dynamic power (at
the combinational circuit, registers, and clock tree) are simulated at a certain
frequency and a VDD of 0.55 V using PrimeTime, and Ecomb, Ereg, and Eclk

are obtained dividing each dynamic power by the frequency. The values for
other VDD voltages used in our simulation (0.65, 0.75, or 0.85 V) are scaled
from those of 0.55 V based on Eq. (2.2).

An analysis of the solution space shows that its size is 27 × 138. Indeed,
CC-SOTB2 can configure 2Nreg = 27 = 128 patterns of pipeline structure since
it is possible to choose to use it or not for each of the seven registers. For the
row-level body bias, given that each of the eight rows in the PE array can
select among thirteen possible voltages, there are NNdomain

bb = 138 possibilities
of body bias assignment. As a test, for one pipeline structure, it takes 3 hours
to elicit and simulate all these possibilities on a 1.6GHz dual-core Intel Core
i5 with 8GB of DDR3 RAM.

38 Body bias optimization

Given the size of the solution space and the complex formulation of some
equations (e.g., Pdyn), techniques such as metaheuristics could be applied since
they have been used successfully for similar cases, providing interesting solu-
tions in an acceptable amount of time. However, a close examination of the
problem shows that it is possible to formulate this problem as an 0-1 ILP (0-1
Integer Linear Problem), which guarantees optimality, unlike metaheuristics.
Indeed, when the pipeline structure is fixed, that is, preg is fixed, Pdyn is
constant. Therefore, with the remaining equations being linear, it is possible
to formulate this problem as only 128 ILPs (one for each pipeline structure).
Moreover, its bi-objective nature can be simplified by considering the perfor-
mance as a timing constraint. Since the design focus of the CMA is low power,
the problem can be re-formulated as follows: given an application and a fixed
pipeline structure, how to optimize the power consumption of the PE array
while reaching required performance with choices on the body bias voltages.
This methodology is then repeated for each pipeline structure, as summarized
in Fig. 4.2. The leak power is minimized by an ILP, while the dynamic power
is optimized by the ILP iterations.

4.3 ILP model

The ILP can then be formulated as follows:

isV BNij =

1 if the i-th domain

is set with j-th V BN
0 otherwise

(4.6)

minPst =

Ndomain−1∑
i=0

Nbb−1∑
j=0

Pleak,i,j isV BNij (4.7)

subject to

Nbb−1∑
j=0

isV BNij = 1 ∀j = {0, 1, . . . , Ndomain − 1} (4.8)

Dl =
∑

v ∈ l-th
datapath

Nbb−1∑
j=0

Dv,j isV BNij (4.9)

Dl ≤ Dreq, ∀ datapath l (4.10)

isV BNij = {0, 1}, ∀i = {0, 1, . . . , Ndomain − 1}, (4.11)

∀j = {0, 1, . . . , Nbb − 1}

4.4. Evaluation 39

Stop

Figure 4.2: Algorithm flow-chart to find an optimal body bias assignment and
pipeline structure

where a set of isV BNij are decision variables, the constraint (4.8) ensures
that the same body bias voltage is supplied to the PEs belonging to the
same domain, Dreq is the inverse of the required frequency f so that the
constraint (4.10) guarantees that any timing violation does not occur. It is
worth noting that Pleak,reg, and Pleak,clk are constant (not controlled by body
bias) and therefore do not have to be included in the objective function.

4.4 Evaluation

4.4.1 Optimization results

To analyze the possibilities of the proposed method, we perform the leakage
power optimization assuming several different performance requirements and
for each application described in Section 4.2. Two examples of results are
presented in Table 4.4 and Fig. 4.3, where the performance is described as

40 Body bias optimization

the number of executed operations per second, the simulated application is
gray, and VDD is set at 0.55 V. These results clearly demonstrate that the
optimal pipeline structure and body bias voltages are different depending on
the requirement, and the proposed method can solve them exactly. Each ILP
can be solved within 0.1 seconds. Thus, compared to the Brute-force search
as in the preliminary analysis in Section 4.2, the proposed method reduces the
optimization time by six orders of magnitude.

Table 4.4: Examples of optimization results (gray)

Requirement of 7.8 ×108 ops/s

Pipeline register i 0 1 2 3 4 5 6

pregi 0 0 1 1 0 0 0

Row number 0 1 2 3 4 5 6 7

V BN -0.8 -0.8 -1.0 -0.6 -1.2 -1.2 -1.4 -1.4

Requirement of 3.9 ×109 ops/s

Pipeline register i 0 1 2 3 4 5 6

pregi 0 0 1 1 1 0 0

Row number 0 1 2 3 4 5 6 7

V BN 0.0 0.0 -0.2 0.2 0.2 0.0 0.0 -0.2

(a) Req. of 7.8× 108 ops/s (b) Req. of 3.9× 109 ops/s

Figure 4.3: Minimized power for each pipeline stages

In the case of 7.8 ×108 operations/sec, the result of pregi indicates that
the number of an optimal pipeline is three. As shown in Fig. 4.3(a), when
low performance such as 7.8 ×108 operations/sec is requested, static power is
extremely low due to a strong reverse bias such as -1.0 V, and the dynamic
power accounts for most of the consumption. The single-stage structure im-
plies a large dynamic power because of the glitch propagation due to the large

4.4. Evaluation 41

combinational circuit.
On the contrary, when high performance such as 3.9 ×109 operations/sec is

requested (Fig. 4.3(b)), static power is not as small as in the low-performance
case. Indeed, in order to achieve the requirement, the third and fourth PE
rows are given a forward bias such as 0.2 V, which causes an increase in static
power. In Fig. 4.3(b), the power when the number of pipeline stages is 1, 2, and
3 is not shown since such a low stage pipeline cannot satisfy the performance
requirement even if a strong forward bias is applied.

4.4.2 Performance and energy reduction

Next, we analyze the impact of the row-level body bias control. To evaluate the
energy reduction achieved by the row-level control, we simulate other policies
of body bias control as a comparison basis:

• control for the whole PE array (uniform)

• without body bias control (zero bias)

Fig. 4.4 shows that using the body bias control allows reaching higher
achievable performance for gray application thanks to applying the forward
bias. For instance, without body bias control (zero bias), the performance
cannot exceed 3.12 × 109 operations/sec, whereas both the uniform control
and the proposed method allow higher performance values. The results of the
other application can be found in Appendix B.

Figure 4.4: Comparisons between each method (VDD = 0.55 V)

Furthermore, unlike the uniform control, the row-level control can keep a
steady increase in the power even at high performance. This can be explained

42 Body bias optimization

by the need to apply a forward bias to the whole PE array in order to meet
the requirement in the uniform case, which results in a drastic power increase.
On the contrary, with the row-level control, the forward bias has to be applied
only to the row which causes a bottleneck in the critical path. In Table 4.5,
optimized values of V BN with both controls at the highest performance point
are shown. By using values of leakage power, which are shown in Fig 4.1(a),
the leakage power of the row-level control is calculated to be 0.6270 mW, while
in the uniform case, the leakage power is 1.373 mW. However, the dynamic
power of the proposed method and uniform control are 1.951 mW and 1.724
mW, respectively. Therefore, the power reduction due to the row-level control
reaches about 500 µW.

Table 4.5: Optimized V BNi in the case of 5.46 ×109 operations/sec (gray)

Uniform control
i 0 1 2 3 4 5 6 7

V BNi (V) 0.4

Row-level control
i 0 1 2 3 4 5 6 7

V BNi (V) 0.2 0.4 0.0 0.4 0.4 -0.2 0.0 -0.8

Figure 4.5: Energy reduction ratio by the row-level control for each application
(V DD = 0.55 V)

To compare the energy between different methods, the average energy of all
performances is calculated for each application and for each method. Fig. 4.5
illustrates the reduction ratio of the energy between the row-level control and
the other two policies. With the row-level control, it is possible to achieve
an energy consumption of up to 24.5% and 16.1% lower than respectively the
zero bias and the uniform cases (the best reduction with gray application).

4.4. Evaluation 43

On average, the consumption is 17.75% and 10.49% lower than respectively
the zero bias and the uniform cases.

Figure 4.6: Static power reduction ratio by the row-level control (V DD =
0.55 V, gray)

To discuss the effectiveness of the row-level body bias control, we also
focus on the static power. Fig. 4.6 shows the reduction ratio of the static
power where the gray application is simulated. The row-level control results
in a reduction of 91.9% and 65.8% when compared with respectively the zero
bias and uniform cases. Fig. 4.6 also reveals that the static power is not always
lower than the uniform case. For example, when 1.56×109 operations/sec is
requested, the static power in the case of row-level control is higher by 90.9%.
Nevertheless, the total power with the proposed method is always lower. At
such performance, as an increase in the static power occurs, a change in the
optimal pipeline structure is also observed. If the pipeline structure or the
body bias control are considered independently, it is then impossible to adjust
the balance between the static and the dynamic powers and consequently
misses such an optimal solution.

4.4.3 Comparison of VDD control

When the focus is on high performance, there are two ways to achieve it: using
a forward bias or increasing VDD. Fig. 4.7 explains that the row-level control

44 Body bias optimization

Figure 4.7: Optimization result considering VDD control (gray)

with the forward bias is better than using a higer VDD. However, in the case
of uniform control, a higher VDD is sometimes more suitable than using the
forward bias. In the uniform policy, we can observe ranges of frequencies
where a higher VDD implies a lower total power. Even if a higher VDD will
increase both static and dynamic powers, it will also improve the switching
speed so reverse a bias can be used to decrease the total power. Furthermore,
in the range such as [4.29× 109,5.46× 109], lower VDD has to use forward bias
to satisfy the performance requirement, which causes a large increase in the
leakage power. For instance, between 4.29×109 operations/sec and 4.68×109

operations/sec, it is more interesting to supply VDD with 0.65 V rather than
0.55 V. On the contrary, a similar phenomenon is not observed regarding the
row-level control, which suggests using a VDD as low as possible depending
on the requirement. Thus, the row-level control is effective, even with VDD

control.

4.5 Summary

In this chapter, we define the leakage power optimization problem for CGRAs.
At first glance, it is difficult to find an optimal solution because there exist too
complicated trade-offs associated with body bias control and variable pipeline
structure. However, detailed examination reveals this problem can be re-
formulated as an ILP, which guarantees an optimal solution. Although ILP
takes a long time to be solved for large-scale problems because of its NP-
hardness [112], our formulation can be solved in an acceptable time. Then,

4.5. Summary 45

the optimization results for the row-level body bias control demonstrate up
to 24.5% and 16.1% of energy reduction, compared to respectively the case
without body bias control and the uniform control. It clearly suggests that
CGRA with multiple body bias domains is a promising implementation, and
the proposed optimization method is essential to leverage these features.

5
Dynamic power estimation
technique

In this chapter, we first explain the influence of glitch propagation for CGRAs,
introducing a quantitative analysis. Then, this chapter presents a model to
estimate dynamic power consumption quickly and accurately. Lastly, the ac-
curacy of the proposed model is evaluated based on real chip measurements.

5.1 Glitch propagation on PE array

A glitch is an undesired switching caused by two signals deriving with different
delays, which consumes a certain power by switching without contribution to
the computation. They can be generated by every gate, but especially XOR
gates often become a source. Fig. 5.1 shows an example of glitch generation at
an XOR gate. In an ideal case, ”OUT” does not transit from ”0”. However,
because of the delay of ”IN B,” short pulses are generated on ”OUT.” These
unnecessary switchings are called glitches. It is propagated until it reaches
registers, so larger combinational circuits, which produce more switching, leads
to a larger number of glitches.

Likewise, the different delay times between inputs of the PEs results in
such glitches. In the case of the pipelined PE array, such as CC-SOTB2, if a
pipeline register is bypassed, they are propagated to the concatenated PEs and
then increase the power consumption. In contrast, although activating pipeline
registers restrict the propagation, it requires the power for clock distribution

47

48 Dynamic power estimation technique

IN_A

IN_B
OUT

IN_A

IN_B

OUT

IN_A

IN_B

OUT

Ideal Signals

Real Signals

Figure 5.1: An example of glitch generation

and storing data into registers. Therefore, we have to find an optimal pipeline
structure, as discussed in Chapter 4. The effect of glitches is more serious
for non-pipelined PE arrays, such as CC-SOTB and NVCMA, compared to
the pipelined ones since they have no pipeline register. Thus, an application
mapping which mitigates the glitch propagation is needed.

The leakage optimization in Chapter 4 assumes the application mapping
is fixed, and the dynamic power consumption is obtained by a post-layout
simulation to estimate the glitch effect. Nevertheless, such a time-consuming
simulation prevents mapping algorithms from exploring the solution space ef-
ficiently. That is why a fast and accurate power model is required for mapping
optimization. Likewise, FPGAs sometimes produce such a large combinational
circuit and suffer from the glitch effect. Hence, some glitch-aware power mod-
els for FPGAs have been presented in [113–115]. However, they cannot be
applied to CGRAs because of the different granularity of reconfigurable ele-
ments between CGRAs and FPGAs.

5.2 Preliminary analysis of glitch propagation

To model the dynamic power consumption considering the glitch effect, sev-
eral simulations are carried out to obtain the trend of the glitch in the same
way in Chapter 4. Fig. 5.2 shows the simulated dynamic power consumption
of gray application by using the chip layout of CC-SOTB2 under the same

5.2. Preliminary analysis of glitch propagation 49

(a) Glitch power for each pipeline structure (b) Relationship between path length and glitch
effect

Figure 5.2: Simulated energy consumption of the combinational circuit

condition as Table 4.2 in Chapter 4. Note that they contain only the energy
of combinational circuits, and one for clock tree and registers are excluded.

Fig. 5.2(a) explains how the activated pipeline registers avoid glitch prop-
agation. With the 8-stage pipeline structure, each PE is divided with the
pipeline registers, and thus, the propagation of glitches is minimized. This re-
sult is shown with the blue part of the bar, and the pink part is the difference
of the energy when some PE rows are unified into a single pipeline stage. That
is, it represents the energy consumption due to propagating glitches. In the
non-pipelined case (i.e., single-stage), more than 80% of the dynamic power is
caused by the glitches.

Fig. 5.2(a) also shows the difference in energy in the log-scale. In this
example, it increases over linearly to the increasing number of unified stages,
yet the increase is not exactly exponential. For further examination, more
samples of pipeline structure are obtained. They are shown in Fig. 5.2(b).
The x-axis represents the average data path length on the PE array. Here, we
enumerate all paths from any register outputs to any register inputs for each
sample of pipeline structure. Then, the average path length is calculated. As
the activated pipeline registers are increased, the average path length usually
becomes shorter. The longer paths are formed on the PE array, the more
switching due to glitch propagation is caused. In the range of the path length
shorter than six, the glitches increase exponentially. However, it becomes
linear growth beyond the range. It is expected a part of propagated glitches
are decayed through PEs and interconnection networks.

50 Dynamic power estimation technique

5.3 Dynamic power model

For mapping and pipeline structure optimization, a model which can estimate
the dynamic power consumption even for inexperienced application mappings
is needed. Besides, it should be simple to calculate the power quickly while
keeping the estimation accuracy. Then, we simplify Eq. (2.2) in Chapter 2 as
follows.

Pdyn = EswStotalf + Pdyn,reg ×Nacitve preg (5.1)

where Esw is the average energy consumption per switching of PEs, and Stotal

is the switching count of the whole PE array with glitches. Esw is regarded as
a constant value and depends on the process technology and logic synthesis of
the PE, Pdyn,reg is the dynamic power of both the pipeline registers and their
clock trees, and Nacitve preg is the number of activated pipeline registers. As
explained in Section 3.2, clock-gating is applied to the deactivated registers.
Thus, they are assumed not to consume dynamic power consumption. Hence,
only Stotal depends on the application mapping. Stotal is, therefore, modeled
by the following equations:

Stotal =
∑

v∈Valu∪Vse

S(v) (5.2)

S(v) =

If v is an ALU:

Salu(op) + βγlength max
u∈Preds(v)

S(u) (5.3)

If v is a SE:

ζS(Preds(v)) (5.4)

where S(v) is the switching count of node v in a set of ALUs (Valu) or a set
of SEs (Vse), Salu(op), and Sse are respectively that of ALU configured with
an operation op and switching element (SE). β and γ are propagation factors,
length is the hop count from the nearest active pipeline register, and Preds(v)
represents the predecessor nodes of v. If u ∈ Preds(v) indicates an activated
pipeline register, S(u) is regarded as 0 since the pipeline register prevents the
glitch propagation. Considering the analyzed trend of glitch propagation, a
degree of the glitch propagation can be estimated based on a non-linear fitting
function like βγlength. The model calculates the switching count node-by-
node. In this way, it can be applied to the different PE designs, which have a
different number of SEs, and different interconnection topologies. Compared
to the ALUs, the circuit of the SE is more simple, and its latency is, therefore,

5.3. Dynamic power model 51

much lower. That is why this model considers the SE to generate no more
glitches, that is, to transit a part of switching brought from its input signal.
ζ denotes a coefficient of the switching transfer of SEs. Please note that each
SE has only a single predecessor node.

SE

ADD

Salu(ADD)=20

Sse= 0.5 × 20

 = 10

OR

Salu(OR)=5

SE

MULT

Salu(MULT)=25

length=1

S(v) = 25+0.2×0.9 max {20, 5}

 = 28.6

AND

Salu(AND)=6

length=2

S(v) = 6+0.2×0.92 max {5, 28.6}

 = 10.6332

 = 0.2, γ = 0.9, = 0.5

Sse= 0.5 × 10

 = 5

Figure 5.3: An example of the glitch propagation model

Fig. 5.3 shows an example of calculating Stotal with the model. A blue
square in the figure represents a PE containing an ALU and a SE like CC-
SOTB2. Let the propagation factor β be 0.2, and γ be 0.9, respectively.
Then, all pipeline registers are deactivated so that they are omitted in this
figure. Since ALUs in the bottom PEs have no input propagated glitches,
Sv = Salu(op). On the contrary, the successor ALU in the second row has
two data inputs from two different ALUs, which generate glitches. Here, the
biggest switching count is adopted by the max function, and thus the switching
count Sv for the ALU is calculated, as shown in the figure. The last ALU is
treated in the same way. On the other hand, SEs do not yield more glitches
in this model, as described above. In this example, an SE transits 50% of
inputted switching. Then, the total switching count Stotal becomes (20 +
10) + 5 + (28.6 + 5) + 10.6332 = 79.2332.

Here, we assume that Esw, β, γ, and ζ are fixed parameters independent
from the application programs and obtained with the simulation results or real
chip measurements. Besides, given the target application and its mapping,
the other parameters are fixed as well. Thus, the total switching count can be
estimated when an application program and its mapping are fixed.

52 Dynamic power estimation technique

5.4 Evaluation

In this section, we carry out several experiments for the three architectures,
CC-SOTB, CC-SOTB2, and NVCMA, to evaluate the accuracy of the pro-
posed model. Then, we demonstrate the model can be applied to any PE
array architectures regardless of different implementation technologies.

PE Array

TCI
(wireless interface)

Micro
Controller

(a) CC-SOTB

PE Array

TCI
(wireless interface)

(b) CC-SOTB2

Figure 5.4: Chip photograph

5.4.1 Obtaining model parameters

All three architectures were designed with Verilog HDL and synthesized by
Synopsys Design Compiler using process libraries of the technologies listed in
Table 3.2 in Chapter 3. They were then placed and routed with Synopsys
IC compiler. Fig. 5.4(a) and Fig. 5.4(b) are the photographs of CC-SOTB
and CC-SOTB2 chips, respectively. The size of both chips is 3mm × 6mm.
Although both of them include an inter-chip wireless communication inter-
face[116], it will not be discussed as this falls out of the scope of this work. A
photograph of the NVCMA chip is omitted due to confidentiality reasons.

The switching count of the ALU (Salu) is obtained by gate-level simulation
with Cadence NC-Verilog. For each ALU operation, the simulation is carried
out 3000 times while changing input values randomly. Then, the average
switching counts at the output of ALU are recorded. The results are shown
in Table 5.1. In comparison with shift operations (SL, SR, and SRA), logical
operations (AND, OR, and NOT) bring more switching counts. The switching
counts of arithmetic operations (ADD, SUB, and MULT) are the largest and
about three times as much as those of shift operations. Both CC-SOTB and
CC-SOTB2 are implemented with the same process technology while they are
respectively based on different libraries. Thus, even for the same operation, the
switching counts of both architectures are different. The netlist of NVCMA is
confidential so that we cannot conduct the gate-level simulation. Therefore,
the values of CC-SOTB2 is substituted for that of NVCMA.

5.4. Evaluation 53

Table 5.1: Average switching counts of each operation in a PE

Opcode
Salu

CC-SOTB CC-SOTB2

ADD 15.80 17.17
SUB 24.47 20.02
MULT 24.04 31.46
SL 8.762 6.791
SR 6.398 4.973
SRA 8.236 7.318
AND 5.171 5.217
OR 17.11 16.92
NOT 11.12 11.13
XOR 20.71 21.00
CAT 10.99 11.14
SEL 12.75 11.99
GT 18.68 18.66
LT 18.37 18.31
EQL 28.97 28.61

5.4.2 Accuracy of the proposed model

Table 5.2: The results of model fitting

Architecture # of samples Esw (pJ/sw) β γ ζ ME (%)

CC-SOTB 72 0.0263 0.9507 1.0104 0.9372 12.91

CC-SOTB2 1536 0.0836 0.3394 1.0999 0.06879 12.85

NVCMA 111 0.0472 0.5819 1.0515 0.8508 10.67

Lastly, we measure the dynamic power consumption for various kinds
of DFGs and mappings to determine the parameters Esw, β, γ, and ζ in
this dynamic power model. The supply voltages for CC-SOTB, CC-SOTB2,
and NVCMA are respectively 0.55 V, 0.55 V, and 1.20 V. We employ the
Levenberg-Marquardt least-squares method to fit these parameters. Table 5.2
describes the results of fitting and mean relative error (ME) for each architec-
ture. CC-SOTB2 needs more samples than the other two architectures because
the dynamic power consumption depends on the pipeline structure as well as
the mapping. In the case of CC-SOTB2, at most 27 = 128 patterns of pipeline
structures are available. Regardless of the process technologies, the model
can estimate the dynamic power consumption, as shown in the results of ME.
The purpose of the model is to compare solutions from a qualitative point of

54 Dynamic power estimation technique

view rather than to estimate the power consumption exactly. Therefore, these
errors are acceptable.

5.4.3 Comparision with a post-layout simulation

When a post-layout simulation with Synopsys PrimeTime is employed, it takes
about six minutes to evaluate the dynamic power consumption for a specific ap-
plication mapping and a pipeline structure on Intel Xeon E5-2667. In contrast,
this model requires less than one millisecond. Thanks to the fast estimation,
we can widely explore the solution space of mapping optimization.

5.5 Summary

The effect of glitch on LSI chips should be taken into account since it some-
times causes a prohibitive increase in dynamic power consumption. How-
ever, it generally takes much time to estimate the number of glitches with a
post-layout simulation. Therefore, a fast estimation technique is essential for
power optimization. This chapter proposes a dynamic power model specialized
for CGRAs considering the glitch propagation effect. Despite the simplified
model, it can calculate the dynamic power consumption with around 10% of
error, compared to the actual measurement results. Besides, it reduces the
calculation time by five orders of magnitude. Such a fast estimation model
contributes to more efficient mapping optimization.

6
GenMap: mapping
optimization with genetic
algorithm

In this chapter, we first define the application mapping problem and describe
the used notations. Then, it shows the solution space of the mapping optimiza-
tion is extremely large, especially when leveraging the body bias optimization
and variable pipeline structure. In order to explore such a huge solution space
efficiently, this chapter presents GenMap, which is an optimization framework
based on a multi-objective genetic algorithm, NSGA-II [2]. Thanks to the
genetic algorithmic approach, there is no limitation regarding the objective
functions to evaluate fitness for each solution. Therefore, we integrate the
body bias optimization technique in Chapter 4 and the dynamic power model
in Chapter 5 into GenMap for a case study. Besides, the benefit of the aggres-
sive optimization by GenMap is demonstrated by comprehensive experiments
with the fabricated chips.

6.1 Problem Definition

As introduced in Section 2.1, a data flow graph (DFG), denoted G(Vd, Ed), is
given as a target application kernel. The DFG is a directed graph, which con-
sists of nodes indicating operations and edges representing data dependencies
between operational nodes. The nodes include constant values and memory

55

56 GenMap: mapping optimization with genetic algorithm

access as well. Therefore, the set of nodes Vd is divided into a few subsets as
follows: Vd = Vop ∪ Vconst ∪ Vinput ∪ Voutput. Vop, Vconst, Vinput, and Voutput are
the set of computation nodes, constant values, loaded values from the mem-
ory, and values to be stored in the memory, respectively. Likewise, the set of
edges defined as follows: Ed = Eop ∪ Econst ∪ Einput ∪ Eoutput. Eop, Econst,
Einput, and Eoutput are the set of edges associated with Vop, Vconst, Vinput, and
Voutput, respectively. An edge in Eop means a simple data dependency between
two computational operations, whereas an edge in Econst is connected from a
constant value to a computational operation. Einput and Eoutput are similar
to Econst.

The PE array is also modeled as a directed graph, denoted H(Vr, Er),
where Vr is denoted as a set of hardware units, and Er is the connectivity for
each unit. In this work, the PE array includes ALUs, SEs, constant registers,
input ports, and output ports. Thus, Vr = Valu∪Vse∪Vconst reg∪Viport∪Voport.

The problem that we address in this work is to find a valid mapping M :
G→ H ′ ⊂ H. The valid mapping satisfies the following conditions.

1. M(Vop) ⊂ Valu

2. M(Vconst) ⊂ Vconst reg

3. M(Vinput) ⊂ Viport

4. M(Voutput) ⊂ Voport

5. ∀e ∈ Ed: M(e) makes a path between M(u) and M(v)

6. ∀(u, v), (w, x) ∈ Ed:
u ̸= w ⇒M(u, v) ∩M(w, x) = ∅

The conditions 1 to 4 are associated with the correct placement for each
DFG node. The last two ones guarantee the routing is accomplished consider-
ing path-sharing. Assuming two edges driving the same data, they can share
some routing resources.

In general, if a PE array can accommodate a target DFG, there exists
more than one valid mapping. Therefore, we have to optimize the mapping
as well as just finding a valid one. As mentioned in Section 3.3, the quality
of the mapping should be evaluated from various viewpoints. Section 6.3 will
explain the criteria of evaluation used in this thesis for the case study.

The search space of this optimization problem is huge, approximately
O(|Vr||Vd|). Furthermore, when the body bias control and variable pipeline
are considered, it is expanded up to O(|Vr||Vd| × 2Np × NNdomain

bb) where Np

is the number of pipeline registers, Nbb is the size of the set of body bias

6.2. Proposed framework: GenMap 57

voltages, and Ndomain is the number of body bias domains in the PE array.
Therefore, there are few hopes to find an exact solution, so we choose to em-
ploy a genetic algorithmic approach to tackle the huge search space. In our
case, CC-SOTB2 brings the largest search space due to the variable pipeline
and the four-divided body bias domains.

6.2 Proposed framework: GenMap

Target Frequency

Architecture

Definition

・Array Size

・Topology

・Pipeline
etc.

Parameters

for evaluation

Initialize
mapping population

Update Population

Routing &
Const/IO mapping

Evaluation

NSGA-II

......

Selection

Crossover

Mutation

Condition
satisfied?

Pareto Front of
Mapping

GenMapShell
Interactive

Configuration Generator

Optimized

Configuration Data

Yes
No

DFG

(App. kernel)

Criteria n

Criteria2

Wire-Length (Essential)

Figure 6.1: Optimization flow of GenMap

In this section, we propose an application mapping framework called Gen-
Map. GenMap introduces a flexible optimization for both architects and pro-
grammers. As shown in Fig. 6.1, the overall flow of optimization is based on
NSGA-II (Non-dominated Sorting Genetic Algorithm-II) [2], a multi-objective
genetic algorithm. In addition to the target application kernel, a target fre-
quency, architecture definition, and parameters such as power consumption
and timing information are given to GenMap. The mapping of the applica-
tion is optimized as far as any timing violation does not occur at the specified
frequency. The optimization stops when it reaches the last generation or does
not yield any improvement for a fixed number of generations. These condi-
tions are parameterized in GenMap. The architecture definition contains the
size of the PE array, interconnection topology, and whether the pipeline struc-
ture and body bias voltages can be controlled. The parameters are necessary
to calculate the fitness for each criterion. In addition, they depend on the
chip implementation of the target architecture. They are obtained from either
post-layout simulations or real chip experiments.

58 GenMap: mapping optimization with genetic algorithm

6.2.1 Multi-Objective Optimization with NSGA-II

Similar to a general genetic algorithm, NSGA-II iteratively improves a popu-
lation of solutions as follows:

Step 1: Create an initial population

Step 2: Evaluate fitness values for each individual

Step 3: Select parents

i: Perform non-dominated sorting and assign Pareto rank to each in-
dividual

ii: Sort individuals for each rank

iii: Select individuals based on Binary Tournament Selection [117]

Step 4: Crossover the selected pairs of parents to produce children

Step 5: Mutate the selected individuals

Step 6: Evaluate the new individuals as in Step 2

Step 7: Select individuals for the next generation

Step 8: Go to Step 3 if the termination condition is not met.

At each iteration (generation), some individuals are selected as parents. An
individual with better fitness is more likely to be selected. Then, children for
the next generation are produced based on the selected parents. In the case
of the crossover operation, two children are born, combining a pair of parents,
while in the case of the mutation operation, the gene of a parent is partially
modified.

NSGA-II is an extended algorithm for multi-objective optimization. Par-
ticularly, the selection strategy is improved to be able to consider multiple
objectives simultaneously based on the Pareto rank and the crowding dis-
tance. Multi-objective optimization is generally based on the concept of the
dominance relationship between solutions. This relationship is defined as fol-
lows:

Definition 6.1 (Dominance). A solution x dominates a solution y if:

• The optimization problem: maxF (x) = {f1(x), f2(x), ..., fn(x)}

• fk(x) > fk(y),∀k ∈ {1, 2, ..., n}

where n objective functions to be maximized are considered.

6.2. Proposed framework: GenMap 59

Fig. 6.2(a) shows examples of the dominance relationship. In this case, the so-
lution x dominates the solution z. In contrast, the solution y is not dominated
by x since f2(y) > f2(x).

The Pareto rank is calculated based on the dominance between the solu-
tions as follows:

Definition 6.2 (Pareto rank). First, the solutions non-dominated by any
other ones are treated as rank 1, and they are eliminated from the population.
Then, rank 2 is assigned to the solutions non-dominated in the remaining
population. Likewise, rank i > 2 is assigned to solutions by repeating the
above procedure.

Fig. 6.2(b) illustrates an example of the rank assignment.

f2:Maximization

f 1:
M
ax
im
iz
at
io
n

0

𝑭(𝑥)	
・

𝑭(𝑧)	
・ 𝑭(𝑦)	

・

(a) Dominance relationship

f2:Maximization

f 1:
M
ax
im
iz
at
io
n

0

Rank 1

Rank 2

Rank 3

(b) Pareto rank

Figure 6.2: Examples of dominance relationship and Pareto rank for a bi-
objective optimization problem

The selection process for the next generation is described in Fig. 6.3. The
first criterion is the Pareto rank, and the second one is the crowding distance.
First, solutions are selected in the order of their rank. If the size of solutions
of rank i (in this example, rank 3) exceeds the remaining capacity of the
next population, the solutions are sorted based on the crowding distance.
Then, the solutions with larger crowding distances are chosen as the remaining
individuals. The other solutions are dismissed.

The crowding distance is used to preserve the diversity of the solutions.
It indicates how close an individual to the nearest neighbors. Therefore, a
solution with a large crowding distance means a unique solution and should
be survived for the next generation. Fig. 6.4 explains how to calculate the
crowding distance for a bi-objective optimization problem. The crowding dis-
tance of the i-th solution is calculated as the average side length of the cuboid

60 GenMap: mapping optimization with genetic algorithm

Generated individuals
with the crossover & mutation

Population
at the i-th generation

Rank 1 Rank 2 Rank 3
Non-dominated sorting

Crowding distance sorting

Population at the (i+1)-th generation

Dismissed

Figure 6.3: Selection flow of the NSGA-II [2]

formed by the nearest solutions. Algorithm 1 describes the calculation more
detailedly.

f2:Maximization

f 1:
M
ax
im
iz
at
io
n

0

i

i - 1

i + 1 Cuboid

Figure 6.4: Examples of crowding distance calculation [2]

The crossover and mutation occur stochastically, and the probabilities are
important parameters in the genetic algorithms. In this work, the crossover
and mutation probabilities are respectively 0.7 and 0.3 since they are commonly-
used values [118]. In our preliminary analysis (reported in Appendix C), such
a condition shows the most stable optimization for GenMap.

6.2. Proposed framework: GenMap 61

Algorithm 1 Pseudo code of crowding distance calculation

Input: A set of individuals to be sorted I
Output: Crowding distance for each individual CD
1: l← |I| /* set # of individuals */
2: for i = 1 . . . |I| do
3: CD[I[i]]← 0
4: end for
5: for each objective function fm ∈ F do
6: sort(I, fm) /* sort individuals in the order of their fitness value of fm */
7: CD[I[1]] = CD[I[l]]←∞ /* boundary solutions */
8: fmax

m ← I[l].m
9: fmin

m ← I[1].m
10: for i = 2 . . . |I| − 1 do
11: CD[I[i]]+ = (I[i+ 1].m− I[i− 1].m)/(fmax

m − fmin
m)

12: end for
13: end for

6.2.2 Gene coding and crossover

A B

C

E

D

A B

C E

D

Gene
{A, (0,0)}
{B, (1,0)}
{C, (0,1)}
{D, (1,1)}
{E, (0,2)}

Gene
{A, (0,0)}
{B, (2,0)}
{C, (0,1)}
{D, (1,0)}
{E, (1,1)}

Crossover

Point

(a) Example of parents

A B

C

E

D

A
B

B

C E

D

Gene
{A, (0,0)}
{B, (1,0) (2,0)}
{C, (0,1)}
{D, (1,0)}
{E, (1,1)}

Gene
{A, (0,0)}
{B, (2,0)}
{C, (0,1)}
{D, (1,1)}
{E, (0,2)}

(b) Born children

Figure 6.5: Gene coding and example of crossover

To solve the optimization problem with NSGA-II, a mapping has to be
represented as a gene. For GenMap, only the mapping of operation nodes
(M(Vop)) and the pipeline structure (if necessary) are coded as the gene. If
the gene includes other information such as routing, the crossover and muta-
tion would be too complicated. Thus, every time a new individual is gener-
ated, the mapping of the constant registers (M(Vconst)) and binding IO ports

62 GenMap: mapping optimization with genetic algorithm

(M(Vinput), M(Voutput)) are determined separately, and then, routing is car-
ried out. Each of them will be explained later in this section. Besides, the
assignment of the body bias voltage for each domain is carried out as a part
of the power evaluation explained in the next section.

The mapping of operation nodes is represented as a list of PE coordinates,
as shown in Fig. 6.5(a). After two parents are selected, a single crossover point
is randomly chosen. Then, parts beyond the point are swapped to create the
genes of children, as shown in Fig. 6.5. However, such a simple crossover
often causes duplicated nodes, such as in the left side of Fig. 6.5(b). In this
case, a repair mechanism is performed by randomly moving these nodes to
neighboring PEs until the duplication is eliminated.

Regarding the pipeline structure, a bit-vector expression is employed. As-
suming the example of Fig. 3.4(b), its genetic description is {0, 1, 0, 1, 0, 0, 1}
where 1 represents an activated register. The crossover is simpler than that
for the operation mapping because duplication does not occur.

6.2.3 Mutation

A BC

E D

(a) Selected parent gene

A B

E D

C

(b) mutation (swap)

A B

C E D

(c) mutation (move)

Figure 6.6: Example of a mutation

We defined two types of mutation: 1) swap and 2) move. When the swap
mutation is applied, any two nodes to be swapped are randomly chosen. On
the other hand, in the case of the move mutation, a randomly selected node is
moved to a free PE. The bit-vector of the pipeline structure is also modified
by flipping a randomly selected bit.

6.2.4 Population Initialization

Even though a genetic algorithm attempts to avoid local optima by using
mutation, it might take a long time to converge, especially when starting with
a fully randomized initial population. Additionally, the diversity of the initial
population is important to avoid the algorithm being stuck in a local optimum.

6.2. Proposed framework: GenMap 63

Therefore, the initial population should maintain enough both quality and
diversity to ensure fast and good convergence.

Algorithm 2 Initialization of the population

Input: Application DFG, Gop(Vop, Eop)
Output: Mapping for each node, M(Vop)
1: Calculate pos(Vop) by graphviz layout(Gop)
2: Normalize pos(Vop)
3: Randomly choose the size of mapped rectangle (W ×H)
4: for each node of Vop do
5: Set coordinate (x, y) = pos[Vop]
6: Expand pos[Vop] = (x×H, y ×H)
7: end for
8: Randomly flip pos(Vop) horizontally
9: for each node of Vop do

10: Round pos[Vop] to neighboring grid point randomly
11: end for
12: for each grid point do
13: if more than one node is placed then
14: while Only one node is placed do
15: Randomly selected node is moved to neighboring free grid point
16: end while
17: end if
18: end for

For the initialization, GenMap employs the dot’s algorithm from the open-
source graph visualization software, Graphviz [119]. In general, graph layout
algorithms aim at reducing the number of crossing edges and keeping each
edge length as equal as possible. For the mapping problem, such an algorithm
can decrease the congestion of wiring among PEs. A few methods are based
on the graph drawing algorithm [31, 92]. Besides, dot’s algorithm maintains
the hierarchical structure of a directed graph, which is especially suitable for
SF-CGRAs.

The procedure of making a mapping for the initial population is described
in Algorithm 2. In the beginning, the position for each node is laid out by
the dot’s algorithm. Then, they are normalized, as shown in Fig. 6.7(b). The
normalized positions are expanded to a PE rectangle big enough to contain
each node, the size being randomly chosen. For instance, for a size of 4 x 6 PEs,
the position for each node is changed, as shown in Fig. 6.7(c). In addition, the
layout is stochastically flipped horizontally. For another example, Fig. 6.7(e)
indicates a modified layout for a size of 2x7 PEs with such flipping. Each

64 GenMap: mapping optimization with genetic algorithm

F

DE

A B

C

G

H

(a) Example of application
DFG

(b) Normalized layout by dot’s algorithm

(c) Expanded to 4x6 PEs (d) Rounded to 4x6 PEs

(e) Expanded to 2x7 PEs with horizon-
tal flipping

(f) Rounded to 2x7 PEs

Figure 6.7: Examples of mapping initialization

grid point corresponds to one PE. Each node is moved to the adjacent grid
point randomly, that is, four options: 1) upper left, 2) upper right, 3) lower

6.2. Proposed framework: GenMap 65

left, and 4) lower right. Due to such a randomized rounding, PE rectangles of
the same size can provide different mappings. If there exists any duplicated
node at the same grid point, they are moved again, in the same manner as
duplications are removed in the crossover operation of genes (Fig. 6.5(b)). The
initial population is made by repeating this procedure.

6.2.5 Routing Method

Waste of the resources by unoptimized routing can cause a lower probability
of valid mapping so that effective heuristics are essential. However, for our
approach, routing between dependent PEs has to be performed each time a
new mapping is generated. Therefore, time-consuming heuristics cannot be
applied. That is why our routing algorithm is based on a greedy search using
the A∗ algorithm [120] iteratively. Although such a greedy approach can-
not guarantee the global optimum, using an Ant Colony Optimization would
reduce the total wire length by only a few percent compared to the greedy
heuristics [101].

Algorithm 3 Overall flow of routing

Input: Application DFG, G(Vd, Ed)
Model of PE array, H(Vr, Er)
Mapping for each node, M(Vop)

1: computation routing(Gop(Vop, Eop),H,M(Vop))
2: M(Vconst)← const reg mapping()
3: const routing(Gconst(Vconst, Econst),H,M(Vconst))
4: M(Vinput)← input port mapping()
5: input routing(Ginput(Vinput, Einput),H,M(Vinput))
6: M(Voutput)← output port mapping()
7: output routing(Goutput(Voutput, Eoutput),H,M(Voutput))

As shown in Algorithm 3, our routing method is composed of four steps:
1) computation routing, 2) constant routing, 3) input routing, and 4) out-
put routing. They are associated with the routing of Eop, Econst, Einput, and
Eoutput, respectively. Each gene has the only mapping of (Vop) so that mapping
of other resources such as constant registers is carried out in this phase. De-
tails of these mapping are explained later. Our preliminary analysis indicates
this routing order brings good results in many cases.

Algorithm 4 describes the computation routing procedure in Algorithm 3.
Other routings, including const routing, are almost the same. Thus, their
pseudo codes are omitted. In order to save the routing resources, path-sharing
has to be considered, even with the greedy approach. This method induces

66 GenMap: mapping optimization with genetic algorithm

Src

Dst0 Dst1 Dst2

(a) No path-sharing

Src

Dst0 Dst1 Dst2

(b) Bad path-sharing

Src

Dst0 Dst1 Dst2

(c) Better path-sharing

Figure 6.8: Impact of path-sharing

path-sharing by changing routing cost adaptively. Without path-sharing, the
routing resources can be wasted, as illustrated in Fig. 6.8(a). Even though
such a data path can be shared, the three outgoing edges are routed along
separated routes.

Initially, the routing cost of all edges in the PE array (Er) is set to 1.
Routed dependencies in Eop are classified by their source nodes. Edges from
the same source node are grouped. Then, the smaller group is routed with
the higher priority, such as in [86]. If a node has only an outgoing edge and
is routed with a lower priority, it causes a roundabout routing due to the lack
of resources. However, in the case of a high fan-out node, such a roundabout
way is utilized by sharing it with other successor nodes.

While edges from the same source node are routed, the cost of routing
resources already utilized for these edges is temporarily set to 0. In this way,
path-sharing is encouraged. Each edge in the same group is routed depending
on the Manhattan-distance in order to avoid bad path-sharing, as shown in
Fig. 6.8(b). In the case of Fig. 6.8(b), Src→ Dst0 is routed ahead of Src→
Dst1 so that other paths are influenced by the first routing way. On the other
hand, by sorting the edges based on the Manhattan-distance, a good path-
sharing such as in Fig. 6.8(c) is provided. Npenalty is a high penalty cost of
routing defined to already used resources to avoid overuse. Therefore, if the
A∗ algorithm cannot find any path, or the length of a found path is larger
than the penalty cost, then the routing process is considered as failed.

6.2.6 Constants and IO mapping

The mapping of the constant registers has to be treated differently from the
mapping of operation nodes. As illustrated in Fig. 6.9, when several nodes (A○
and C○) require the same constant value (“1”), a single mapping (Fig. 6.9(a)),

6.2. Proposed framework: GenMap 67

Algorithm 4 Routing method in GenMap

Input: Application DFG, Gop(Vop, Eop)
Model of PE array, H(Vr, Er)
Mapping for each node, M(Vop)

1: Elist ← ∅
2: set routing cost(Er, 1)
3: for each v ∈ Vop ⊂ Vd such that outdeg(v) > 0 do
4: Efrom,v = (v, w)|w ∈ Successors(v)
5: Append Efrom,v to Elist

6: end for
7: Sort Elist by ascending size of |Efrom,v|
8: for each Efrom,v of Elist do
9: Sort Efrom,v by ascending Manhattan-distance between M(v) and

M(w), (v, w) ∈ Efrom,v

10: Rused ← ∅
11: for each e ∈ Efrom,v do
12: Set (v, w) = e
13: p = find astar path(H,M(v),M(w))
14: if Path not found or p > Lpenalty then
15: return Fail in routing
16: else
17: set routing cost(p, 0)
18: Append p to Rused

19: end if
20: end for
21: set routing cost(Rused, Lpenalty)
22: end for

which assigns each constant value only to one constant register, would waste
routing resources. On the other hand, if that constant value is allowed to be
mapped multiple times onto different constant registers, such as in Fig. 6.9(b),
it could result in a more appropriate constant mapping.

Assigning different constant registers for each operation node remains nev-
ertheless a difficult task due to the limited number of constant registers, as
explained in Section 3.2. Therefore, the multi-mapping is determined while
considering the resource limitation. We formulate this problem with a simple
integer linear program as follows:

68 GenMap: mapping optimization with genetic algorithm

C D

B

A

1

2

3

(a) In the case of single mapping

C D

B

A

1

2

1 3

(b) In the case of multi-mapping

Figure 6.9: Different mapping strategy for constant registers

isMape,creg =

1 if the constant register creg

is utilized for edge e
0 otherwise

(6.1)

min
∑

e∈Econst
creg∈Vconst reg

isMape,creg × diste,creg (6.2)

subject to

∀e ∈ Econst :
∑

creg∈Vconst reg

isMape,creg = 1 (6.3)

For any pair: e1 = (u1, v1), e2 = (u2, v2) ∈ E2
const

If u1 is equal to u2, ∀creg ∈ Vconst reg :

isMape1,creg + isMape2,creg ≤ 2 (6.4)

else,∀creg ∈ Vconst reg :

isMape1,creg + isMape2,creg ≤ 1 (6.5)

where isMape,creg is a decision variable indicating whether a constant register
creg is assigned for the routing of an edge e. diste,creg is the distance between
creg and the successor nodes of e, and is calculated with the A∗ algorithm.
Constraint (6.3) ensures that each constant value is mapped onto a constant

6.3. Model and Objectives 69

register. Constraint (6.4) allows a constant register to be shared with two
operation nodes if possible. Finally, constraint (6.5) guarantees that different
constant values are not mapped onto the same constant register.

Similarly to the constant mapping, input port mapping is decided with the
same formulation, whereas output ports are bound by choosing the nearest
port in a greedy manner.

6.3 Model and Objectives

After the routing is performed, each mapping is evaluated with respect to sev-
eral objectives. The NSGA-II supports both minimization and maximization.
This thesis considers four evaluation functions: 1) wire length, 2) mapping
width, 3) power consumption, and 4) time slack for our case study. This
section will describe each of them. Another work of ours [121] gives more
examples of the objectives for readers interested in fault tolerance for a non-
volatile CGRA.

6.3.1 Wire Length

Although the objectives can be customized in GenMap, the wire length is
an important objective that cannot be omitted since finding a valid mapping
depends on it. After all the routing steps are completed, unused resources are
eliminated. Then, the total length of the resource graph is calculated as the
wire length. That is, the obtained value of wire length is not the physical wire
length on the LSI chip but rather an estimation. The objective function is
formulated as follows, considering failure in routing at any step:

minLwire = Lsuccess +Npenalty × |Eunrouted| (6.6)

where Lsuccess is wire length routed so far, Npenalty is the same value as in
Algorithm 4, and Eunrouted is the set of unrouted edges.

Thereby, the optimization reduces the number of unrouted edges at an
early stage. After it finds a valid mapping, that is, the second term in Equa-
tion 6.6 is equal to 0, it seeks mappings with a shorter wire length by reducing
Lsuccess.

6.3.2 Mapping Width

Mapping width is also crucial from the viewpoint of throughput. In many
cases, application kernels offloaded to CGRAs have data-level parallelism so

70 GenMap: mapping optimization with genetic algorithm

that the mapping can be duplicated horizontally by loop unrolling. For in-
stance, assuming a mapping width of 3 and 12 columns of PE array, the
unrolling factor for the mapping is ⌊12/3⌋ = 4. The mapping width can be
obtained by analyzing which utilized PE is the rightmost PE like Equation 6.7,
where “x coord(r)” returns zero-based x-coordinate of the PE containing r.
The objective is to minimize the width in order to increase the unrolling factor,
that is, the throughput.

Wmap = max{x coord(r) | ∀ used r ∈ Valu ∪ Vse} (6.7)

6.3.3 Power Consumption

Power consumption is one of the most considerable concerns in this thesis.
Here, we focus on the power consumption of the PE array since that of other
modules is mostly the same regardless of the mapping. As Eq. (2.1) describes,
total power consumption is the sum of the dynamic power Pdyn and the static
power Pst. At the evaluation phase of GenMap, mapping for each individual
is already fixed. Besides, the pipeline structure is included in the gene code
(if the PE array is pipelined). Therefore, the best body bias voltage for each
domain can be obtained by using the ILP formulation in Chapter 4. In this
way, the optimal static power consumption for each individual is evaluated.
The dynamic power consumption is also evaluated with the dynamic power
model in Chapter 5. Then, the sum of both evaluated power is employed as
the fitness value regarding power consumption.

6.3.4 Time Slack

Unlike the other objectives, the time slack is to be maximized. At first glance,
this seems meaningless since the timing constraint only has to be met. Never-
theless, in the case of timing violation due to long wire length, the time slack
takes a negative value, which is a behavior often observed at the early stages
of the optimization with a severe timing constraint (the detailed analysis is de-
scribed in Appendix E). When any mapping satisfying the timing constraint is
still not found, the closer to zero the time slack of mapping is, the more likely
it is to be selected for the next generation. Consequently, a valid mapping can
be obtained efficiently and quickly, thanks to this objective. It is formulated
as follows:

maxTslack = Dreq − max
l∈datapaths

Dl (6.8)

where Dreq and Dl are defined as in the equation. (4.10).

6.4. Evaluation 71

6.4 Evaluation

In this section, we carry out several experiments for the three architectures to
evaluate the benefit of optimization in GenMap. Some of them are based on
real chip measurements with the same fabricated chips as in chapter 5. Then,
we demonstrate that our approach is effective and practical regardless of the
PE array architectures and their implementations.

6.4.1 Evaluation Setup

Table 6.1: Experimental conditions & means

CC-SOTB CC-SOTB2 NVCMA

VDD 0.55 V 1.2 V

V BN -0.8∼+0.4 V by 0.2 V steps N/A

Delay time Synopsys HSIM Scaled

Switching count Cadence NC-Verilog N/A

Power consumption Real chip measurement

Figure 6.10: Measured leakage power per PE

Before performing the optimization with GenMap, we have to first deter-
mine some of the parameters which have appeared in Section 6.3. The delay
time of an ALU for each operation and that of an SE (Dv) are simulated using
Synopsys HSIM under the conditions listed in Table 6.1, similar to Chapter 4.
The delay of NVCMA is estimated by scaling that of CC-SOTB2 since the sim-
ulation for NVCMA is not available for the same reason as Section 5.4. For

72 GenMap: mapping optimization with genetic algorithm

Table 6.2: Selected application kernels

Kernel Description # of nodes # of edges

af 24-bit alpha blender 24 49
gray 24-bit gray scale 13 27
sepia 8-bit sepia filter 12 27
sf 24-bit sepia filter 20 41
dct 4-point discrete cosine transform 18 40
fft Radix-4 fast Fourier transform 38 84
aes Advanced encryption standard 45 94

the dynamic power model, we use the same parameters as the fitting results
in Section 5.4.

For CC-SOTB and CC-SOTB2, body bias control is applied so that we
measure the leakage power of both chips for each body bias voltage. Fig. 6.10
shows the leakage power per PE for each chip. Although they are implemented
with the same Renesas SOTB technology, the used libraries and synthetic
conditions of both implementations are different from each other. Therefore,
the leakage power is also different.

Benchmark applications

We choose seven application kernels of various sizes from image, signal, and
cryptographic processing, as summarized in Table 6.2.

Comparative approaches

In order to define a comparison basis for our proposed method, mappings for
each kernel and for each architecture are also obtained by using two other
methods: 1) SPKM [31] and 2) the ILP version of CGRA-ME mapper [21].
Though CGRA-ME supports another version of mapper using simulated an-
nealing [102], in all cases of our experiments, the ILP one is much faster and
better quality. CGRA-ME can express a wide range of CGRAs so that the
three target architectures are also supported. On the contrary, SPKM cannot
perform routing considering SEs within the PEs. Therefore, only the mapping
for each node is decided by the two types of ILP: 1) column-wise scattering
and 2) row-wise scattering. Then, routing is carried out by using our method.

6.4.2 Quality of Optimization

First, we analyze the convergence of the optimization. The af application is
chosen for the evaluation, which contains a medium-sized DFG in the bench-

6.4. Evaluation 73

(a) Result of CC-SOTB

(b) Result of CC-SOTB2 (c) Result of NVCMA

Figure 6.11: Hypervolume indicator for each generation in the case of af ap-
plication

marks. The hypervolume indicator [122] is used for assessing the quality of the
optimization. It can evaluate both the convergence and the diversity of the
population by calculating the volume of objective space that is dominated. In
order to demonstrate the effectiveness of the proposed initialization method,
the other two methods are also evaluated. The first one is a fully random-
ized initialization (random), and in the second one, utilized PEs are selected
randomly, while the PEs are assigned in topological order of the kernel DFG
(tsort). The analysis results are shown in Fig. 6.11. The hypervolumes until
the five hundredth generation are reported for each architecture and for each
method. In the case of CC-SOTB2 (Fig. 6.11(b)), which has the largest search
space, the proposed method can quickly improve the quality and the diversity
of solutions when compared to the other two methods. Although the random
method would still improve the population, the convergence speed is slower.
The tsort version mostly stops the evolution after two hundred generations.
The proposed method does work effectively for CC-SOTB (Fig. 6.11(a)). How-
ever, even the random method can reach the same mapping quality as the pro-
posed one since the search space of CC-SOTB is not so large as CC-SOTB2.
On the contrary, there is little difference between these three methods for
NVCMA (Fig. 6.11(c)) since it has the smallest search space. The proposed

74 GenMap: mapping optimization with genetic algorithm

method is, therefore, effective for a wide range of PE array architectures. Be-
sides, from these results, the size of generations seems to be enough at around
two hundred for all cases. Considering more complicated kernels such as aes,
we set the maximum generation size to three hundred in the subsequent eval-
uations.

6.4.3 Mapping Ability

Next, we compare the quality of the obtained mappings between GenMap and
two other methods. Fig. 6.12 and Table 6.3 present a comparison of the opti-
mized wire length. GenMap produces several optimized solutions so that we
can choose from two types of solutions: 1) GenMapwire and 2) GenMapwidth.
The first one yields the shortest wire length, and the second is mapped with
the smallest width. If the mapping process does not finish within 24 hours, it
is regarded as a timeout. TO and F in Table 6.3 mean the timeout and failure
to map the kernel, respectively. Likewise, a comparison of the optimized map
width is shown in Fig. 6.13 and Table 6.4.

Table 6.3: Comparison of wire length for each method

CC-SOTB

af gray sepia sf dct fft aes

GenMapwire 41 24 28 35 44 167 132
GenMapwidth 53 24 30 35 67 167 132
CGRA-ME 45 43 35 46 66 TO TO
SPKM 57 34 32 F 50 TO F

CC-SOTB2

af gray sepia sf dct fft aes
GenMapwire 38 27 32 34 44 160 167
GenMapwidth 56 27 32 34 65 174 172
CGRA-ME 69 40 38 43 64 TO TO
SPKM 62 29 41 48 57 TO F

NVCMA

af gray sepia sf dct fft aes

GenMapwire 71 38 41 56 61 212 232
GenMapwidth 83 39 42 56 64 212 235
CGRA-ME 103 53 45 61 88 TO TO
SPKM 79 40 44 64 85 TO F

6.4. Evaluation 75

Table 6.4: Comparison of mapping with for each method

CC-SOTB

af gray sepia sf dct fft aes

GenMapwire 5 2 4 3 6 8 10
GenMapwidth 3 2 3 3 4 8 10
CGRA-ME 3 2 3 3 4 TO TO
SPKM 4 3 4 F 5 TO F

CC-SOTB2

af gray sepia sf dct fft aes
GenMapwire 6 2 3 3 6 9 12
GenMapwidth 3 2 3 3 4 8 11
CGRA-ME 3 2 3 3 4 TO TO
SPKM 3 3 3 4 5 TO F

NVCMA

af gray sepia sf dct fft aes

GenMapwire 4 6 4 3 7 8 8
GenMapwidth 3 2 3 3 4 8 7
CGRA-ME 3 2 3 3 4 TO TO
SPKM 3 3 4 4 5 TO F

76 GenMap: mapping optimization with genetic algorithm

F
ig
u
re

6.
12

:
O
p
ti
m
iz
ed

w
ir
e
le
n
gt
h
fo
r
ea
ch

ar
ch
it
ec
tu
re

an
d
fo
r
ea
ch

m
et
h
o
d

F
ig
u
re

6.
13

:
O
p
ti
m
iz
ed

m
ap

p
in
g
w
id
th

fo
r
ea
ch

ar
ch
it
ec
tu
re

an
d
fo
r
ea
ch

m
et
h
o
d

6.4. Evaluation 77

For all three architectures, GenMap can map all seven kernels within a
few hours. CGRA-ME and SPKM can map small DFGs quickly (e.g., within
10 seconds for gray). Nevertheless, they cannot find a valid mapping of both
fft and aes for all architectures within 24 hours due to less scalability of the
ILP-based methods. In addition, the SPKM fails to map the sf kernel for CC-
SOTB and aes for all architectures. In contrast, GenMap is robust against an
increase in the complexity and the size of DFGs by using a genetic algorithm.
Our approach, therefore, demonstrates a higher mapping ability than the other
two methods.

CGRA-ME is good at resource saving thanks to its sophisticated ILP
formulation so that it can map the five kernels with the smallest width for
all cases. In the case of GenMap, if we give priority to the mapping width
(choosing GenMapwidth), the same mapping width is also achieved, as shown
in Fig. 6.13. Moreover, GenMapwidth shows an average reduction of 15.7%
wire length compared to the CGRA-ME since NSGA-II optimizes all objec-
tives simultaneously. Although SPKM succeeded in mapping the same kernels
as CGRA-ME except for the CC-SOTB architecture, it shows around 20%
larger width than CGRA-ME and GenMapwidth. Focusing on GenMapwire,
it achieves the shortest wire length for all cases. Compared to CGRA-ME and
SPKM, on average, 26.8% and 19.8% of wire lengths are saved, respectively.

6.4.4 Energy Consumption and Speed Up

Lastly, we discuss the power reduction achieved by GenMap. Power optimiza-
tion of GenMap depends on the target frequency, as explained in Section 6.3.
In order to evaluate this effect, the benchmark applications are optimized at
various kinds of target frequencies. Please note that the frequency here means
the time interval of data input to the PE array and is not the operating fre-
quency for the system, including the micro-controller. Among the obtained
mappings, we choose the best case for estimated power consumption and then
measure the actual power consumption. Unfortunately, the fabricated chip
of CC-SOTB contains a defect in the PE array, and the upper two PE rows
do not work properly. Thus, the number of PE row is limited to be six for
CC-SOTB in this power evaluation. CGRA-ME and SPKM cannot determine
the pipeline structure for CC-SOTB2 by themselves. Hence, two types of com-
position — 1) non-pipelined and 2) fully-pipelined — are employed for their
evaluations. The first does not use any pipeline registers, while the second ac-
tivates all of them. Then, one with the smallest power consumption is picked
up.

Fig. 6.14 shows the power consumption for each architecture when the gray
kernel is mapped. The x-axis represents the performance defined in MOPS

78 GenMap: mapping optimization with genetic algorithm

(a) Result of CC-SOTB

(b) Result of CC-SOTB2 (c) Result of NVCMA

Figure 6.14: Comparison of power consumption for each architecture in the
case of gray application

Figure 6.15: Average energy reduction by GenMap

(Million Operations Per Second), instead of the target frequency. This is be-
cause each method could generate a mapping with different width and thereby
achieve different throughput due to loop unrolling count. Both CGRA-ME
and SPKM do not consider the target frequency. Therefore, in both cases, the
power consumption increases linearly according to the increase in performance.

6.4. Evaluation 79

On the other hand, GenMap does cut down unnecessary power consumption,
especially when low performance is required since its optimization focuses not
only on the mapping but also the body bias effect (CC-SOTB and CC-SOTB2)
and the pipeline structure (CC-SOTB2). Among the other benchmarks, sim-
ilar trends are observed (the full results are shown in Appendix D).

Average energy reduction for each application across various performance
levels is summarized in Fig. 6.15. In the case of CC-SOTB, 46.8% and 41.3%
of energy consumption are reduced on average, compared to CGRA-ME and
SPKM, respectively. If the body bias is not controlled adaptively, the leakage
current accounts for around 40∼60% of power consumption in the CC-SOTB.
Thus, the mapping with body bias optimization contributes to considerable
energy reduction. For CC-SOTB2, GenMap archives 23.4% and 16.0% smaller
energy consumption than CGRA-ME and SPKM, respectively, thanks to opti-
mizing the pipeline structure and the body bias simultaneously. Although un-
like the other two architectures, NVCMA has no opportunity for optimization
other than the mapping, GenMap demonstrates 25.1% and 12.1% of energy
saving compared to CGRA-ME and SPKM, respectively.

Figure 6.16: Peak Performance for each method

Furthermore, GenMap can satisfy more severe timing constraints than the
other two methods. For instance, it results from a forward bias at the expense
of increased leakage power. Thereby, GenMap presents 2.0x and 1.55x av-
erage speedups for CC-SOTB over CGRA-ME and SPKM, respectively. The
pipeline optimization of GenMap also helps CC-SOTB2 to work at higher per-
formance, and consequently, the peak performance is improved by 1.37x and
1.50x than CGRA-ME and SPKM, respectively. On the other hand, GenMap
and CGRA-ME archive the same performance for NVCMA since they provide
the same mapping width, i.e., loop unrolling count. However, SPKM maps

80 GenMap: mapping optimization with genetic algorithm

gray and dct kernels into larger widths of PEs than the other methods. This
is why SPKM shows lower peak performance for NVCMA.

6.5 Summary

This chapter has introduced GenMap, which is a new mapping optimization
method for CGRAs. GenMap is based on a multi-objective genetic algorithm
called NSGA-II so that it can optimize the mapping from various kinds of
viewpoints, including power consumption. The flexibility in the objective
functions enables GenMap to provide any kind of optimization associated with
the mapping. As the results of experiments conducted with three fabricated
chips, GenMap contributes to a 15.7% reduction of wire length compared to
conventional methods. Moreover, GenMap shows energy-saving mappings as
well as higher peak performance.

7
Conclusion and future work

7.1 Conclusion

CGRAs are promising hardware accelerators with a reconfigurable PE array.
In particular, SF-CGRAs, such as CMA, bring high energy efficiency by em-
ploying spatial mapping strategies. However, only a few mapping methods for
SF-CGRAs attempt to reduce the power consumption aggressively since the
transistor scaling by itself has made a sufficient improvement of the energy
efficiency for a few decades. Towards the Post-Moore Era, the mapping opti-
mization combined with some low power techniques, such as body biasing, is
needed.

This thesis first proposes two important techniques in power optimiza-
tion for CGRAs: 1) body bias optimization method based on Integer Linear
Program to minimize the leakage current and 2) dynamic power estimation
method. Then, GenMap, a general optimization framework for CGRAs based
on a multi-objective genetic algorithm, is proposed. For a case study, the
above two techniques are integrated into GenMap as an objective function of
optimization. The experimental results show the well-formulated search space
exploration of GenMap achieves shorter total wire length and better utiliza-
tion of PE array compared to the existing two approaches. Besides, up to
46.8% of energy saving is offered by the integrated techniques for aggressive
power optimization. In addition, the body bias control contributes to up to
2× speed up of performance thanks to the forward biassing.

81

82 Conclusion and future work

7.2 Future work

The evaluation results about GenMap are obtained with the real chip ex-
periments to demonstrate the effectiveness for practical use. However, the
tested chips are fabricated with older generation technology than the latest
one. Thus, the question remains whether the proposed techniques are also
useful for the latest technology nodes such as FinFETs. Although the fabri-
cation cost is prohibitively expensive, we can use some free process design kits
such as FreePDK15 [123] and ASAP 7nm [124]. For further investigation on
the benefit from the proposed method, we should implement the CGRAs with
such advanced processes and evaluate our method for these implementations.

Besides, the proposed method has been applied only to a family of CMA
so that enough study on other CGRAs is not undertaken yet. Nonetheless, it
already turned out that GenMap can be used for some spatial mapping CGRAs
like [45]. We, therefore, have to extend our evaluation to other CGRAs.

As argued in Section 2.1, task partitioning in advance of the mapping is
sometimes needed due to the limited size of the PE array. Considering that
the target application is represented as a directed graph, the problem of find-
ing an optimal task partitioning is defined as a graph partitioning problem.
However, finding a good quality partitioning is also an NP-complete problem
[50]. The optimization of both mapping and partitioning are tightly depen-
dent. Therefore, we had no choice but to sacrifice an opportunity to optimize
either mapping or partitioning. For instance, partitioning of the kernel is
solved with a sophisticated heuristic, whereas the mapping is handled by a
greedy algorithm as in [48]. For future work, a novel method without loss of
optimality in both mapping and partitioning for CGRA is required.

Bibliography

[1] C. Moore, “Data processing in exascale-class computer systems,” in
The Salishan Conference on High Speed Computing. sn, 2011. [Online].
Available: https://www.lanl.gov/conferences/salishan/salishan2011/
3moore.pdf

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and eli-
tist multiobjective genetic algorithm: NSGA-II,” IEEE transactions on
evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[3] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous,
and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5,
pp. 256–268, 1974.

[4] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture, 2017, pp.
1–12.

[5] A. Yang, “Deep Learning Training at Scale Spring Crest Deep Learning
Accelerator (Intel® Nervana™ NNP-T),” in 2019 IEEE Hot Chips 31
Symposium (HCS). IEEE, 2019, pp. 1–20.

[6] S. Ward-Foxton. Gyrfalcon unveils fourth ai accelerator chip — ee
times. [Online]. Available: https://www.eetimes.com/gyrfalcon-unveils-
fourth-ai-accelerator-chip/#

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edi-
tion: A Quantitative Approach, 6th ed. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 2017.

[8] H. Amano, Principles and Structures of FPGAs. Springer, 2018.

83

https://www.lanl.gov/conferences/salishan/salishan2011/3moore.pdf
https://www.lanl.gov/conferences/salishan/salishan2011/3moore.pdf
https://www.eetimes.com/gyrfalcon-unveils-fourth-ai-accelerator-chip/#
https://www.eetimes.com/gyrfalcon-unveils-fourth-ai-accelerator-chip/#

84 Bibliography

[9] P. Papaphilippou and W. Luk, “Accelerating Database Systems Using
FPGAs: A Survey,” in 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), 2018, pp. 125–1255.

[10] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[DL] A survey of
FPGA-based neural network inference accelerators,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 1, pp.
1–26, 2019.

[11] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei, “A Sur-
vey of Coarse-Grained Reconfigurable Architecture and Design: Taxon-
omy, Challenges, and Applications,” ACM Computing Surveys (CSUR),
vol. 52, no. 6, pp. 1–39, 2019.

[12] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Are coarse-grained overlays
ready for general purpose application acceleration on fpgas?” in 2016
IEEE 14th Intl Conf on Dependable, Autonomic and Secure Comput-
ing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl
Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE,
2016, pp. 586–593.

[13] X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy, “A time-multiplexed
FPGA overlay with linear interconnect,” in 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1075–1080.

[14] A. Werner, F. Fricke, K. Shahin, F. Werner, and M. Hübner, “Auto-
matic Toolflow for VCGRA Generation to Enable CGRA Evaluation for
Arithmetic Algorithms,” in International Symposium on Applied Recon-
figurable Computing. Springer, 2019, pp. 277–291.

[15] I. Taras and J. H. Anderson, “Impact of FPGA Architecture on Area and
Performance of CGRA Overlays,” in 2019 IEEE 27th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2019, pp. 87–95.

[16] J. Mandebi Mbongue, D. Tchuinkou Kwadjo, and C. Bobda, “Flexitask:
A flexible fpga overlay for efficient multitasking,” in Proceedings of the
2018 on Great Lakes Symposium on VLSI, 2018, pp. 483–486.

[17] C. Liu, H.-C. Ng, and H. K.-H. So, “QuickDough: A rapid FPGA loop
accelerator design framework using soft CGRA overlay,” in 2015 Inter-
national Conference on Field Programmable Technology (FPT). IEEE,
2015, pp. 56–63.

Bibliography 85

[18] L. B. D. Silva, R. Ferreira, M. Canesche, M. M. Menezes, M. D. Vieira,
J. Penha, P. Jamieson, and J. A. M. Nacif, “READY: A Fine-Grained
Multithreading Overlay Framework for Modern CPU-FPGA Dataflow
Applications,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 5s, pp. 1–20, 2019.

[19] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “EPIMap: Using epimor-
phism to map applications on CGRAs,” in Design Automation Confer-
ence (DAC), 2012 49th ACM/EDAC/IEEE. IEEE, 2012, pp. 1280–
1287.

[20] S. Dave, M. Balasubramanian, and A. Shrivastava, “RAMP: resource-
aware mapping for CGRAs,” in Proceedings of the 55th Annual Design
Automation Conference. ACM, 2018, p. 127.

[21] M. J. Walker and J. H. Anderson, “Generic connectivity-based CGRA
mapping via integer linear programming,” in 2019 IEEE 27th Annual In-
ternational Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM). IEEE, 2019, pp. 65–73.

[22] J. Gu, S. Yin, L. Liu, and S. Wei, “Energy-aware loops mapping on
multi-vdd CGRAs without performance degradation,” in Design Au-
tomation Conference (ASP-DAC), 2017 22nd Asia and South Pacific.
IEEE, 2017, pp. 312–317.

[23] S. M. Jafri, M. A. Tajammul, A. Hemani, K. Paul, J. Plosila, and
H. Tenhunen, “Energy-aware-task-parallelism for efficient dynamic volt-
age, and frequency scaling, in cgras,” in 2013 International Conference
on Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS). IEEE, 2013, pp. 104–112.

[24] Y. Matsushita, H. Okuhara, K. Masuyama, Y. Fujita, R. Kawano, and
H. Amano, “Body bias grain size exploration for a coarse grained recon-
figurable accelerator,” in 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), Aug 2016, pp. 1–4.

[25] N. A. V. Doan, Y. Matsushita, N. Ando, H. Okuhara, and H. Amano,
“Multi-objective optimization for application mapping and body bias
control on a CGRA,” in 2017 IEEE 11th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSOC). IEEE,
2017, pp. 143–150.

[26] J. M. Kühn, A. B. Ahmed, H. Okuhara, H. Amano, O. Bringmann, and
W. Rosenstiel, “MuCCRA4-BB: A fine-grained body biasing capable

86 Bibliography

DRP,” in 2016 IEEE Symposium in Low-Power and High-Speed Chips
(COOL CHIPS XIX). IEEE, 2016, pp. 1–3.

[27] Z. Chen, H. Zhou, and J. Gu, “R-Accelerator: An RRAM-Based CGRA
Accelerator With Logic Contraction,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2655–2667, 2019.

[28] T. Ikezoe, H. Amano, J. Akaike, K. Usami, M. Kudo, K. Hiraga,
Y. Shuto, and K. Yagami, “A Coarse Grained-Reconfigurable Accelera-
tor with energy efficient MTJ-based Non-volatile Flip-flops,” in 2018
International Conference on ReConFigurable Computing and FPGAs
(ReConFig). IEEE, 2018, pp. 1–6.

[29] K. Usami, S. Akiba, H. Amano, T. Ikezoe, K. Hiraga, K. Suzuki, and
Y. Kanda, “Non-Volatile Coarse Grained Reconfigurable Array Enabling
Two-step Store Control for Energy Minimization,” in 2020 IEEE Sym-
posium in Low-Power and High-Speed Chips (COOL CHIPS). IEEE,
2020, pp. 1–3.

[30] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, and M. Shafique,
“PX-CGRA: Polymorphic approximate coarse-grained reconfigurable ar-
chitecture,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 413–418.

[31] J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and Y. Paek,
“SPKM: A novel graph drawing based algorithm for application mapping
onto coarse-grained reconfigurable architectures,” in Proceedings of the
2008 Asia and South Pacific Design Automation Conference. IEEE
Computer Society Press, 2008, pp. 776–782.

[32] N. Ozaki, Y. Yasuda, M. Izawa, Y. Saito, D. Ikebuchi, H. Amano,
H. Nakamura, K. Usami, M. Namiki, and M. Kondo, “Cool Mega-Arrays:
Ultralow-Power Reconfigurable Accelerator Chips,” IEEE Micro, vol. 31,
no. 6, pp. 6–18, Nov 2011.

[33] A. Podobas, K. Sano, and S. Matsuoka, “A Survey on Coarse-Grained
Reconfigurable Architectures From a Performance Perspective,” IEEE
Access, vol. 8, pp. 146 719–146 743, 2020.

[34] M. A. Shami and A. Hemani, “Partially reconfigurable interconnec-
tion network for dynamically reprogrammable resource array,” in ASIC,
2009. ASICON’09. IEEE 8th International Conference on. IEEE, 2009,
pp. 122–125.

Bibliography 87

[35] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M.
Chaves Filho, “MorphoSys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE transac-
tions on computers, no. 5, pp. 465–481, 2000.

[36] B. Mei, F.-J. Veredas, and B. Masschelein, “Mapping an H. 264/AVC
decoder onto the ADRES reconfigurable architecture,” in Field Pro-
grammable Logic and Applications, 2005. International Conference on.
IEEE, 2005, pp. 622–625.

[37] D. Lee, M. Jo, K. Han, and K. Choi, “FloRA: Coarse-grained reconfig-
urable architecture with floating-point operation capability,” in Field-
Programmable Technology, 2009. FPT 2009. International Conference
on. IEEE, 2009, pp. 376–379.

[38] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor,
“PipeRench: A virtualized programmable datapath in 0.18 micron tech-
nology,” in Custom Integrated Circuits Conference, 2002. Proceedings of
the IEEE 2002. IEEE, 2002, pp. 63–66.

[39] B. Levine, “Kilocore: Scalable, High Performance and Power Efficient
Coarse Grained Reconfigurable Fabrics,” in Proc. of International Sym-
posium on Advanced Reconfigurable Systems, 2005, pp. 129–158.

[40] M. Petrov, T. Murgan, F. May, M. Vorbach, P. Zipf, and M. Glesner,
“The XPP architecture and its co-simulation within the simulink en-
vironment,” in International Conference on Field Programmable Logic
and Applications. Springer, 2004, pp. 761–770.

[41] J. M. Arnold, “S5: The Architecture and Development Flow of a Soft-
ware Configurable Processor,” in Proc. of the 4th IEEE Int’l Conf. on
Field Programmable Technology (ICFPT2005), December 2005, pp. 120–
128.

[42] L. Liu, D. Wang, M. Zhu, Y. Wang, S. Yin, P. Cao, J. Yang, and S. Wei,
“An energy-efficient coarse-grained reconfigurable processing unit for
multiple-standard video decoding,” IEEE Transactions on Multimedia,
vol. 17, no. 10, pp. 1706–1720, 2015.

[43] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi, “Resource sharing
and pipelining in coarse-grained reconfigurable architecture for domain-
specific optimization,” in Design, Automation and Test in Europe.
IEEE, 2005, pp. 12–17.

88 Bibliography

[44] X. Fan, H. Li, W. Cao, and L. Wang, “DT-CGRA: Dual-track coarse-
grained reconfigurable architecture for stream applications,” in Field
Programmable Logic and Applications (FPL), 2016 26th International
Conference on. IEEE, 2016, pp. 1–9.

[45] A. Podobas, K. Sano, and S. Matsuoka, “A template-based framework
for exploring coarse-grained reconfigurable architectures,” in 2020 IEEE
31st International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP). IEEE, 2020, pp. 1–8.

[46] T. Kojima and H. Amano, “A Configuration Data Multicasting Method
for Coarse-Grained Reconfigurable Architectures,” in 2018 28th Interna-
tional Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2018, pp. 239–2393.

[47] I. B. Mahapatra, U. Agarwal, and S. Nandy, “DFG partitioning al-
gorithms for coarse grained reconfigurable array assisted RTL simula-
tion accelerators,” in 2018 IEEE International Conference on Electron-
ics, Computing and Communication Technologies (CONECCT). IEEE,
2018, pp. 1–6.

[48] W. Sheng, W. He, J. Jiang, and Z. Mao, “Pareto optimal temporal
partition methodology for reconfigurable architectures based on multi-
objective genetic algorithm,” in 2012 IEEE 26th International Paral-
lel and Distributed Processing Symposium Workshops & PhD Forum.
IEEE, 2012, pp. 425–430.

[49] J. Herrmann, J. Kho, B. Uçar, K. Kaya, and Ü. V. Çatalyürek, “Acyclic
partitioning of large directed acyclic graphs,” in 2017 17th IEEE/ACM
international symposium on cluster, cloud and grid computing (CC-
GRID). IEEE, 2017, pp. 371–380.

[50] O. Moreira, M. Popp, and C. Schulz, “Evolutionary multi-level acyclic
graph partitioning,” Journal of Heuristics, pp. 1–29, 2020.

[51] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling
a general and efficient FPGA mapping solution,” in Proceedings of
the 1999 ACM/SIGDA seventh international symposium on Field pro-
grammable gate arrays, 1999, pp. 29–35.

[52] V. Tunbunheng and H. Amano, “Black-Diamond: a Retargetable Com-
piler Using Graph with Configuration Bits for Dynamically Reconfig-
urable Architectures,” in Proc. of The 14th SASIMI, 2007, pp. 412–419.

Bibliography 89

[53] S. Dave and A. Shrivastava, “CCF: A CGRA Compilation Framework.”
[Online]. Available: https://github.com/MPSLab-ASU/ccf

[54] H.-S. Kim, M. Ahn, J. A. Stratton, and W. H. Wen-mei, “Design eval-
uation of opencl compiler framework for coarse-grained reconfigurable
arrays,” in 2012 International Conference on Field-Programmable Tech-
nology. IEEE, 2012, pp. 313–320.

[55] M. Mukherjee, A. Fell, and A. Guha, “DFGenTool: A dataflow graph
generation tool for coarse grain reconfigurable architectures,” in 2017
30th International Conference on VLSI Design and 2017 16th Interna-
tional Conference on Embedded Systems (VLSID). IEEE, 2017, pp.
67–72.

[56] M. S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. O’Connell,
N. Shanker, J. Chu, I. Prins, J. Fender, A. C. Ling et al., “DLA: Com-
piler and FPGA overlay for neural network inference acceleration,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2018, pp. 411–4117.

[57] M. B. Taylor, “A landscape of the new dark silicon design regime,” IEEE
Micro, vol. 33, no. 5, pp. 8–19, 2013.

[58] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems
perspective. Pearson Education India, 2015.

[59] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law
meets static power,” computer, vol. 36, no. 12, pp. 68–75, 2003.

[60] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leak-
age current mechanisms and leakage reduction techniques in deep-
submicrometer CMOS circuits,” Proceedings of the IEEE, vol. 91, no. 2,
pp. 305–327, 2003.

[61] T. Sakurai and A. R. Newton, “Alpha-power lawMOSFETmodel and its
applications to CMOS inverter delay and other formulas,” IEEE Journal
of solid-state circuits, vol. 25, no. 2, pp. 584–594, 1990.

[62] J. M. Kühn, H. Amano, W. Rosenstiel, and O. Bringmann, “Leverag-
ing FDSOI through body bias domain partitioning and bias search,” in
Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE.
IEEE, 2016, pp. 1–6.

https://github.com/MPSLab-ASU/ccf

90 Bibliography

[63] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini, “Energy-efficient
vision on the PULP platform for ultra-low power parallel computing,”
in Signal Processing Systems (SiPS), 2014 IEEE Workshop on. IEEE,
2014, pp. 1–6.

[64] M. Hioki, T. Sekigawa, T. Nakagawa, H. Koike, Y. Matsumoto,
T. Kawanami, and T. Tsutsumi, “Fully-functional fpga prototype
with fine-grain programmable body biasing,” in Proceedings of the
ACM/SIGDA international symposium on Field programmable gate ar-
rays. ACM, 2013, pp. 73–80.

[65] M. Hioki and H. Koike, “Low Overhead Design of Power Reconfigurable
FPGA with Fine-Grained Body Biasing on 65-nm SOTB CMOS Tech-
nology,” IEICE TRANSACTIONS on Information and Systems, vol. 99,
no. 12, pp. 3082–3089, 2016.

[66] Lewis, David and Ahmed, Elias and Cashman, David and Vander-
hoek, Tim and Lane, Chris and Lee, Andy and Pan, Philip, “Architec-
tural enhancements in stratix-iii™and stratix-iv™,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. ACM, 2009, pp. 33–42.

[67] K. Masuyama, Y. Fujita, H. Okuhara, and H. Amano, “A
297mops/0.4mw ultra low power coarse-grained reconfigurable acceler-
ator CMA-SOTB-2,” in 2015 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig), Dec 2015, pp. 1–6.

[68] FD-SOI Technology Platform - STMicroelectronics. [Online]. Avail-
able: https://www.st.com/content/st com/en/about/innovation---
technology/FD-SOI/fd-soi-technology-platform.html

[69] Highly integrated 5G mmWave mobile FEMs& TRXs using 22FDX RF.
[Online]. Available: https://www.globalfoundries.com/sites/default/
files/product-briefs/highly integrated 5g mmwave mobile fems and
trxs using 22fdx rf 10jun2020.pdf

[70] Ishigaki, Takashi and Tsuchiya, Ryuta and Morita, Yusuke and Sugii,
Nobuyuki and Kimura, Shin ’ichiro, “Ultralow-power LSI Technology
with Silicon on Thin Buried Oxide (SOTB) CMOSFET,” Solid State
Circuits Technologies, Jacobus W. Swart (Ed.), ISBN: 978-953-307-045-
2, InTech, pp. 146–156, 2010.

[71] M. Bohr and K. Mistry, “Intel ’s revolutionary 22 nm transistor tech-
nology,” Intel website, 2011.

https://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI/fd-soi-technology-platform.html
https://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI/fd-soi-technology-platform.html
https://www.globalfoundries.com/sites/default/files/product-briefs/highly_integrated_5g_mmwave_mobile_fems_and_trxs_using_22fdx_rf_10jun2020.pdf
https://www.globalfoundries.com/sites/default/files/product-briefs/highly_integrated_5g_mmwave_mobile_fems_and_trxs_using_22fdx_rf_10jun2020.pdf
https://www.globalfoundries.com/sites/default/files/product-briefs/highly_integrated_5g_mmwave_mobile_fems_and_trxs_using_22fdx_rf_10jun2020.pdf

Bibliography 91

[72] TSMC and OIP Ecosystem Partners Deliver Industry’s First Complete
Design Infrastructure for 5nm Process Technology. [Online]. Available:
https://pr.tsmc.com/english/news/1987

[73] Samsung Successfully Completes 5nm EUV Development to
Allow Greater Area Scaling and Ultra-low Power Ben-
efits – Samsung Global Newsroom. [Online]. Available:
https://news.samsung.com/global/samsung-successfully-completes-
5nm-euv-development-to-allow-greater-area-scaling-and-ultra-low-
power-benefits

[74] C. Lin, B. Greene, S. Narasimha, J. Cai, A. Bryant, C. Radens,
V. Narayanan, B. Linder, H. Ho, A. Aiyar et al., “High performance
14nm soi finfet cmos technology with 0.0174 µm 2 embedded dram and
15 levels of cu metallization,” in 2014 IEEE International Electron De-
vices Meeting. IEEE, 2014, pp. 3–8.

[75] W.-T. Chang, C.-T. Shih, J.-L. Wu, S.-W. Lin, L.-G. Cin, and W.-K.
Yeh, “Back-biasing to performance and reliability evaluation of UTBB
FDSOI, bulk FinFETs, and SOI FinFETs,” IEEE Transactions on Nan-
otechnology, vol. 17, no. 1, pp. 36–40, 2017.

[76] M. Willsey, V. T. Lee, A. Cheung, R. Bod́ık, and L. Ceze, “Iterative
Search for Reconfigurable Accelerator Blocks With a Compiler in the
Loop,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 38, no. 3, pp. 407–418, 2018.

[77] G. Ansaloni, P. Bonzini, and L. Pozzi, “Heterogeneous coarse-grained
processing elements: A template architecture for embedded processing
acceleration,” in 2009 Design, Automation & Test in Europe Conference
& Exhibition. IEEE, 2009, pp. 542–547.

[78] B. Mei, A. Lambrechts, J.-Y. Mignolet, D. Verkest, and R. Lauwereins,
“Architecture exploration for a reconfigurable architecture template,”
IEEE Design & Test of Computers, vol. 22, no. 2, pp. 90–101, 2005.

[79] A. Lambrechts, P. Raghavan, M. Jayapala, F. Catthoor, and D. Verkest,
“Energy-aware interconnect-exploration of coarse grained reconfigurable
processors,” in Proc. of Workshop on Application Specific Processors,
vol. 23, 2005.

[80] D. Suh, K. Kwon, S. Kim, S. Ryu, and J. Kim, “Design space exploration
and implementation of a high performance and low area coarse grained

https://pr.tsmc.com/english/news/1987
https://news.samsung.com/global/samsung-successfully-completes-5nm-euv-development-to-allow-greater-area-scaling-and-ultra-low-power-benefits
https://news.samsung.com/global/samsung-successfully-completes-5nm-euv-development-to-allow-greater-area-scaling-and-ultra-low-power-benefits
https://news.samsung.com/global/samsung-successfully-completes-5nm-euv-development-to-allow-greater-area-scaling-and-ultra-low-power-benefits

92 Bibliography

reconfigurable processor,” in 2012 International Conference on Field-
Programmable Technology. IEEE, 2012, pp. 67–70.

[81] D. Voitsechov, O. Port, and Y. Etsion, “Inter-thread communication in
multithreaded, reconfigurable coarse-grain arrays,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 42–54.

[82] X. Man, L. Liu, J. Zhu, and S. Wei, “A General Pattern-Based Dy-
namic Compilation Framework for Coarse-Grained Reconfigurable Ar-
chitectures,” in Proceedings of the 56th Annual Design Automation Con-
ference 2019, 2019, pp. 1–6.

[83] S. M. Jafri, G. Serrano, M. Daneshtalab, N. Abbas, A. Hemani, K. Paul,
J. Plosila, and H. Tenhunen, “Transpar: Transformation based dynamic
parallelism for low power CGRAs,” in 2014 24th International Confer-
ence on Field Programmable Logic and Applications (FPL). IEEE,
2014, pp. 1–8.

[84] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” in Proceedings of the 27th annual international sym-
posium on Microarchitecture, 1994, pp. 63–74.

[85] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Ex-
ploiting loop-level parallelism on coarse-grained reconfigurable architec-
tures using modulo scheduling,” IEEE Proceedings-Computers and Dig-
ital Techniques, vol. 150, no. 5, pp. 255–261, 2003.

[86] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques. ACM, 2008, pp. 166–176.

[87] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “REGIMap: register-
aware application mapping on coarse-grained reconfigurable architec-
tures (CGRAs),” in Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE. IEEE, 2013, pp. 1–10.

[88] S. Yin, X. Yao, D. Liu, L. Liu, and S. Wei, “Memory-aware loop mapping
on coarse-grained reconfigurable architectures,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1895–
1908, 2016.

Bibliography 93

[89] M. Kou, J. Gu, S. Wei, H. Yao, and S. Yin, “TAEM: fast transfer-aware
effective loop mapping for heterogeneous resources on CGRA,” in 2020
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020,
pp. 1–6.

[90] Z. Zhao, W. Sheng, Q. Wang, W. Yin, P. Ye, J. Li, and Z. Mao, “To-
wards Higher Performance and Robust Compilation for CGRA Modulo
Scheduling,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 9, pp. 2201–2219, 2020.

[91] M. Balasubramanian and A. Shrivastava, “CRIMSON: Compute-
Intensive Loop Acceleration by Randomized Iterative Modulo Schedul-
ing and Optimized Mapping on CGRAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, pp. 3300–3310, 2020.

[92] A. Fell, Z. E. Rákossy, and A. Chattopadhyay, “Force-directed schedul-
ing for data flow graph mapping on coarse-grained reconfigurable archi-
tectures,” in ReConFigurable Computing and FPGAs (ReConFig), 2014
International Conference on. IEEE, 2014, pp. 1–8.

[93] G. Lee, S. Lee, K. Choi, and N. Dutt, “Routing-aware application map-
ping considering steiner points for coarse-grained reconfigurable archi-
tecture,” in International Symposium on Applied Reconfigurable Com-
puting. Springer, 2010, pp. 231–243.

[94] L. Chen and T. Mitra, “Graph minor approach for application mapping
on cgras,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 7, no. 3, p. 21, 2014.

[95] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “HyCUBE:
A CGRA with reconfigurable single-cycle multi-hop interconnect,” in
Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE.
IEEE, 2017, pp. 1–6.

[96] B. Xu, S. Yin, L. Liu, and S. Wei, “Low-Power Loop Parallelization
onto CGRA Utilizing Variable Dual VDD,” IEICE TRANSACTIONS
on Information and Systems, vol. 98, no. 2, pp. 243–251, 2015.

[97] S. Yin, D. Liu, L. Sun, L. Liu, and S. Wei, “DFGNet: Mapping dataflow
graph onto CGRA by a deep learning approach,” in Circuits and Systems
(ISCAS), 2017 IEEE International Symposium on. IEEE, 2017, pp. 1–
4.

94 Bibliography

[98] D. Liu, S. Yin, G. Luo, J. Shang, L. Liu, S. Wei, Y. Feng, and S. Zhou,
“Data-Flow Graph Mapping Optimization for CGRA with Deep Rein-
forcement Learning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2018.

[99] D. Liu, S. Yin, Y. Peng, L. Liu, and S. Wei, “Optimizing spatial mapping
of nested loop for coarse-grained reconfigurable architectures,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 11, pp. 2581–2594, 2014.

[100] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI physical design:
from graph partitioning to timing closure. Springer Science & Business
Media, 2011.

[101] L. Zhou, J. Zhang, and H. Liu, “Ant Colony Algorithm for Steiner Tree
Problem in CGRA Mapping,” in Information Science and Control Engi-
neering (ICISCE), 2017 4th International Conference on. IEEE, 2017,
pp. 198–202.

[102] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi,
and J. Anderson, “CGRA-ME: A unified framework for CGRA mod-
elling and exploration,” in Application-specific Systems, Architectures
and Processors (ASAP), 2017 IEEE 28th International Conference on.
IEEE, 2017, pp. 184–189.

[103] S. A. Chin, K. P. Niu, M. Walker, S. Yin, A. Mertens, J. Lee, and J. H.
Anderson, “Architecture exploration of standard-cell and fpga-overlay
cgras using the open-source cgra-me framework,” in Proceedings of the
2018 International Symposium on Physical Design. ACM, 2018, pp.
48–55.

[104] S. A. Chin and J. H. Anderson, “An architecture-agnostic integer linear
programming approach to CGRA mapping,” in Proceedings of the 55th
Annual Design Automation Conference. ACM, 2018, p. 128.

[105] M. Canesche, M. Menezes, W. Carvalho, F. Torres, P. Jamieson, J. A.
Nacif, and R. Ferreira, “TRAVERSAL: A Fast and Adaptive Graph-
based Placement and Routing for CGRAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2020.

[106] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan,
and B. Robatmili, “A General Constraint-Centric Scheduling Framework
for Spatial Architectures,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.

Bibliography 95

PLDI ’13. New York, NY, USA: Association for Computing Machinery,
2013, p. 495–506.

[107] T. Kojima, N. Ando, Y. Matshushita, H. Okuhara, N. A. V. Doan, and
H. Amano, “Real chip evaluation of a low power CGRA with optimized
application mapping,” in Proceedings of the 9th International Sympo-
sium on Highly-Efficient Accelerators and Reconfigurable Technologies.
ACM, 2018, p. 13.

[108] Y. Park, H. Park, and S. Mahlke, “CGRA express: accelerating ex-
ecution using dynamic operation fusion,” in Proceedings of the 2009
international conference on Compilers, architecture, and synthesis for
embedded systems. ACM, 2009, pp. 271–280.

[109] G. Ansaloni, L. Pozzi, K. Tanimura, and N. Dutt, “Slack-aware schedul-
ing on coarse grained reconfigurable arrays,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2011. IEEE, 2011,
pp. 1–4.

[110] Hiroki Nagatomi, et. al., “A 361nA Thermal Run-away Immune VBB
Generator using Dynamic Substrate Controlled Charge Pump for Ultra
Low Sleep Current Logic on 65nm SOTB,” in Proceedings of the SOI-
3D-Subthreshold Microelectronics Technology Unified Conference, Oct.
2014, pp. 1–2.

[111] M. Blagojević, M. Cochet, B. Keller, P. Flatresse, A. Vladimirescu, and
B. Nikolić, “A fast, flexible, positive and negative adaptive body-bias
generator in 28nm fdsoi,” in 2016 IEEE Symposium on VLSI Circuits
(VLSI-Circuits), June 2016, pp. 1–2.

[112] B. Korte and J. Vygen. Springer Berlin Heidelberg, 2018.

[113] L. Cheng, D. Chen, and M. D. Wong, “GlitchMap: An FPGA technol-
ogy mapper for low power considering glitches,” in Design Automation
Conference, 2007. DAC’07. 44th ACM/IEEE. IEEE, 2007, pp. 318–323.

[114] S. Cromar, J. Lee, and D. Chen, “FPGA-targeted high-level binding al-
gorithm for power and area reduction with glitch-estimation,” in Design
Automation Conference, 2009. DAC’09. 46th ACM/IEEE. IEEE, 2009,
pp. 838–843.

[115] A. A. Gaffar, J. A. Clarke, and G. A. Constantinides, “Modeling of
glitch effects in FPGA based arithmetic circuits,” in Field Programmable
Technology, 2006. FPT 2006. IEEE International Conference on. IEEE,
2006, pp. 349–352.

96 Bibliography

[116] Y. Take, H. Matsutani, D. Sasaki, M. Koibuchi, T. Kuroda, and
H. Amano, “3D NoC with inductive-coupling links for building-block
SiPs,” IEEE Transactions on Computers, vol. 63, no. 3, pp. 748–763,
2012.

[117] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen et al., Evolutionary
algorithms for solving multi-objective problems. Springer, 2007, vol. 5.

[118] L. Davis, “Adapting operator probabilities in genetic algorithms,” in
Proceedings of the third international conference on Genetic algor ithms.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989, pp.
61–69.

[119] “Graphviz - Graph Visualization Software,” https://www.graphviz.org/.

[120] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[121] T. Ikezoe, T. Kojima, and H. Amano, “A Coarse-Grained Reconfigurable
Architecture with a Fault Tolerant Non-Volatile Configurable Memory,”
in 2019 International Conference on Field-Programmable Technology
(ICFPT). IEEE, 2019, pp. 81–89.

[122] E.-G. Talbi, Metaheuristics: From Design to Implementation. Jhon
Wiley & Sons, Jun 2009.

[123] K. Bhanushali and W. R. Davis, “FreePDK15: An open-source predic-
tive process design kit for 15nm FinFET technology,” in Proceedings of
the 2015 Symposium on International Symposium on Physical Design,
2015, pp. 165–170.

[124] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive
process design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

https://www.graphviz.org/

Appendicies

A Full results of the simulated delay time

(a) ADD operation (b) SUB operation

(c) MULT operation (d) SL operation

(e) SR operation (f) SRA operation

97

98 Appendicies

(g) AND operation (h) OR operation

(i) NOT operation (j) XOR operation

(k) CAT operation (l) SEL operation

(m) SE

Figure A.2: Delay time of ALU for each operation and SE simulated with
Synopsys HSIM (CC-SOTB2)

Appendicies 99

B Full results of body bias optimization

(a) af application

(b) gray application

100 Appendicies

(c) sepia application

(d) sf application

(e) dct application

Figure B.1: Comparison between the row-level body bias control and the other
policies for each application (CC-SOTB2)

Appendicies 101

(a) af application

(b) gray application

(c) sepia application

102 Appendicies

(d) sf application

(e) dct application

Figure B.2: Comparison between the row-level body bias control and the
uniform control considering VDD control for each application (CC-SOTB2)

Appendicies 103

C Analysis of the crossover and mutation probabil-
ities

The crossover and mutation probabilities used in Chapter 6 are commonly-
used values, and they are also appropriate for our cases according to the
following evaluation.

We compared ten conditions of the probabilities using the hypervolume
indicator. Here, the mutation probability is equal to 1− the crossover(cx) one.
The af application is optimized for CC-SOTB2 within 300 generations for each
condition. The CC-SOTB2 brings the largest search space, and the difference
of searching capability due to the above conditions has a great impact on
the mapping quality and convergence speed considerably. Then, the same
experiments are repeated several times in order to confirm the robustness.

Fig. C.1 shows the hypervolume evaluations for the best five conditions.
The condition of 0.7 crossover probability (i.e., 0.3 for mutation), which we
used in Chapter 6, shows the most efficient search. For other samples, similar
tendencies are observed.

Figure C.1: Comparison of the hypervolume evolution (sample #0)

Next, we analyzed how fast the convergence speed is for each condition.
For an explanation, we introduce the following notation:

hvPcx(n) : hypervolume at n-th generation with Pcx crossover probability (1)

Here, we regard hvref = 0.9×hv0.7(300) as a baseline of comparison, as shown
in Fig. C.1. The comparison results are shown in Table. C.1 and Table. C.2.
“N/A”s mean those conditions cannot reach the baseline until 300 generations.
In Table. C.2, the negative values indicate those conditions reach the baseline
earlier than the case of 0.7 crossover probability. Although 0.7 crossover prob-
ability does not always show the fastest convergence speed as summarized in

104 Appendicies

Table. C.2, it shows the most stable searching. For example, 0.8 crossover
probability in sample #2 reaches the baseline earlier, while it does not work
well for the other samples. Hence, 0.7 crossover probability is appropriate for
our cases as well.

Table C.1: Generation count reaching hvref

crossover probability
sample 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#0 N/A 225 N/A 267 251 228 N/A 167 N/A N/A N/A

#1 N/A 79 173 143 69 132 N/A 50 N/A N/A 106

#2 N/A 102 149 115 42 199 80 57 37 37 104

#3 N/A 196 N/A 267 86 100 133 128 152 N/A N/A

Table C.2: Difference in the generation count from the case of 0.7 crossover
probability

crossover probability
sample 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#0 N/A 29 123 93 19 82 N/A 0 N/A N/A 56

#1 N/A 58 N/A 100 84 61 N/A 0 N/A N/A N/A

#2 N/A 45 92 58 -15 142 23 0 -20 -20 47

#3 N/A 68 N/A 139 -42 -28 5 0 24 N/A N/A

Avg. 50 97.5 11.5 64.25 0

Appendicies 105

D Measurement results of power optimization with
GenMap

CC-SOTB

(a) af application (b) gray application

(c) sepia application (d) sf application1

(e) dct application

Figure D.1: Comparison of optimization result regarding power consumption
for each application (CC-SOTB)

1SPKM fails to map sf application for CC-SOTB

106 Appendicies

CC-SOTB2

(a) af application (b) gray application

(c) sepia application (d) sf application

(e) dct application

Figure D.2: Comparison of optimization result regarding power consumption
for each application (CC-SOTB2)

Appendicies 107

NVCMA

(a) af application (b) gray application

(c) sepia application (d) sf application

(e) dct application

Figure D.3: Comparison of optimization result regarding power consumption
for each application (NVCMA)

108 Appendicies

E Effect of time slack objective

The time slack objective contributes to an efficient search for a valid mapping
rather than a guarantee that no timing violation occurs. Here, we assume two
mappings MA and MB where Tslack(MA) = −10 nsec and Tslack(MB) = −5
nsec, that is, both violate the timing constraint. Without the objective func-
tion, which returns the slack time explicitly, both mappings can be considered
to be the same mapping quality. However, it is obvious MB is better than
MA in terms of slack time. If such a better solution is missed at the selection
phase, the genetic algorithm cannot optimize the solutions efficiently. Thus,
we should treat the slack time explicitly.

To demonstrate the efficiency by introducing the time slack objective, we
carried out additional experiments. Three applications (af, gray, sepia) are
optimized by GenMap with either considering the time slack or not. For each
application, a severe timing constraint is given. Fig. E.1 shows the transition
of the best time slack during the optimization. The target architecture is CC-
SOTB2. If GenMap does not consider the objective, it makes the mapping
worse in terms of the time slack. Then, it takes a long time to obtain a
mapping which meets the timing requirement. In the case of sepia, a valid
mapping is found at the 8th generation with the dedicated objective for the
time slack, while it is obtained at the 221st generation without the objective.

Appendicies 109

(a) af at 40MHz (b) gray at 50MHz

(c) sepia at 65MHz

Figure E.1: Effect of time slack consideration

Publications

Related Papers

Journal Papers

[1] Takuya Kojima, Nguyen Anh Vu Doan, Hideharu Amano, GenMap:
A Genetic Algorithmic Approach for Optimizing Spatial Mapping of
Coarse Grained Reconfigurable Architectures, IEEE Transactions on
Very Large Scale Integration Systems, Vol. 28, no. 11, pp.2383–2396,
November 2020.

[2] Takuya Kojima, Naoki Ando, Hayate Okuhara, Ng. Anh Vu Doan,
Hideharu Amano, Optimization of Body Biasing for Variable Pipelined
Coarse-Grained Reconfigurable Architectures, IEICE Transactions on
Information and Systems, Vol.E101-D, No.6, pp.1532–1540, Jun 2018.

International Conference Papers

[3] Takuya Kojima, Naoki Ando, Yusuke Matsushita, Hayate Okuhara, Nguyen
Anh Vu Doan, Hideharu Amano, Real Chip Evaluation of a Low Power
CGRA with Optimized Application Mapping, In Proc. of the 9th Inter-
national Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies (HEART2018), pp,1–6, Toronto, Canada, June, 2018.

[4] Takuya Kojima, Naoki Ando, Hayate Okuhara, Hideharu Amano, Glitch-
aware Variable Pipeline Optimization for CGRAs, In Proc. of the 2017
International Conference on ReConFigurable Computing and FPGAs(ReConFig
2017), pp.1–6, Cancun, Mexico, December, 2017.

[5] Takuya Kojima, Naoki Ando, Hayate Okuhara, Ng. Anh Vu Doan, Hide-
haru Amano, Body Bias Optimization for Variable Pipelined CGRA, In
Proc. of the 27th International Conference on Field-Programmable Logic
and Applications (FPL), pp.1–4, Ghent, Belgium, September, 2017.

111

112 Publications

Other Papers

Journal Papers

[6] Takeharu Ikezoe, Takuya Kojima, Hideharu Amano, Recovering faulty
Non-volatile Flip Flops for Coarse-Grained Reconfigurable Architectures,
IEICE Transactions on Electronics, June 2021. (Accepted)

[7] Takuya Kojima, Takeharu Ikezoe, Hideharu Amano, CubeSim: A Cycle
Accurate Simulator for Multicore System with 3D SiP, IEICE Transac-
tions on Information and Systems, April 2021. (In Japanese)(Accepted)

[8] Takuya Kojima, and Hideharu Amano, A Fine-Grained Multicasting
of Configuration data for Coarse-Grained Reconfigurable Architectures,
IEICE Transactions on Information and Systems, Vol.E102-D, No.7,
pp.1247–1256, July 2019.

International Conference Papers

[9] Ayaka Ohwada, Takuya Kojima, Hideharu Amano, MENTAI: A Fully
Automated CGRA Application Development Environment that Sup-
ports Hardware/Software Co-design, 23rd Workshop on Synthesis And
System Integration of Mixed Information technologies (SASIMI2021),
March 2021. (Accepted)

[10] Ayaka Ohwada, Takuya Kojima, Hideharu Amano, Compiler Frame-
work for Spatial Mapping CGRA using LLVM, In Proc. of the 2020
IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS),
Poster 8, Kokubunji, Japan, April 2020.

[11] Takeharu Ikezoe, Takuya Kojima, Hideharu Amano, A Coarse-Grained
Reconfigurable Architecture with a Fault Tolerant Non-volatile Config-
urable Memory, In Proc. of the 2019 International Conference on Field-
Programmable Technology (FPT), pp.81–89, Tianjin, China, December
2019.

[12] Hideto Kayashima ,Takuya Kojima, Hayate Okuhara, Tsunaaki Shidei,
Hideharu Amano, Real Chip Performance Evaluation on Through Chip
Interface IP for Renesas SOTB 65nm Process, In Proc. of 7th Inter-
national Symposium on Computing and Networking Workshops (CAN-
DARW ’19), pp.269–274, Nagasaki, Japan, November 2019.

[13] Ryohei Tomura, Takuya Kojima, Hideharu Amano, A Real chip eval-
uation of a CNN accelerator SNACC, In Proc. of the 22st Workshop
on Synthesis And System Integration of Mixed Information technologies
(SASIMI2019), pp.62–67, Tainan, Taiwan, October 2019.

113

[14] Sayaka Terashima, Takuya Kojima, Hayate Okuhara, Kazusa Musha,
Hideharu Amano, Ryuichi Sakamoto, Masaaki Kondo, Mitaro Namiki,
A Preliminary Evaluation of Buiding Block Computing Systems, In
Proc. of the 2019 IEEE 13th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC-2019), pp.312–319, Sin-
gapore, October 2019.

[15] Takuya Kojima, Naoki Ando, Yusuke Matsushita, Hideharu Amano,
Demonstration of Low Power Stream Processing Using a Variable Pipelined
CGRA, In Proc. of the 29th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp.411–412, Barcelona, Spain,
September 2019.

[16] Takuya Kojima, Hideharu Amano, Refinements in Data Manipulation
Method for Coarse Grained Reconfigration Architectures, In Proc. of the
14th International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC 2019), pp.113–120, York, United Kingdom,
July 2019.

[17] Hideto Kayashima, Takuya Kojima, Hayate Okuhara, Tsunaaki Shidei,
Hideharu Amano, Real Chip Performance Evaluation of Inductive Cou-
pling TCI IP, In Proc. of the 2019 IEEE Symposium in Low-Power and
High-Speed Chips (COOL CHIPS), Poster 16, Yokohama, Japan, April
2019.

[18] Takuya Kojima, Hideharu Amano, A Configuration Data Multicasting
Method for Coarse-Grained Reconfigurable Architectures, In Proc. of
the 28th International Conference on Field Programmable Logic and Ap-
plications (FPL), pp.239–242, Dublin, Ireland, August, 2018.

[19] Takeharu Ikezoe, Takuya Kojima, Hideharu Amano, Junya Akaike, Kimiyoshi
Usami, Keizo Hiraga, Yusuke Shuto, Kojiro Yagami, A micro-controller
for MTJ-based Non-volatile Flip-flops for data verification, Proc. of
the 2018 IEEE Symposium in Low-Power and High-Speed Chips (COOL
CHIPS), Poster 10, Yokohama, Japan, April 2018.

[20] Sayaka Terashima, Takuya Kojima, Hayate Okuhara, Yusuke Matsushita,
Naoki Ando, Mitaro Namiki, Hideharu Amano, A shared memory chip
for twin-tower of chips, In Proc. of the 21st Workshop on Synthesis And
System Integration of Mixed Information technologies (SASIMI2018),
pp.353–358, Shimane, Japan, March 2018.

[21] Ryuichi Sakamoto, Ryo Takata, Jun Ishii, Masaaki Kondo, Hiroshi Naka-
mura, Tetsui Ohkubo, Takuya Kojima, Hideharu Amano, Scalable Deep
Neural Network Accelerator Cores with Cubic Integration using Through

114 Publications

Chip Interface, In Proc. of the 2017 International SoC Design Confer-
ence (ISOCC 2017), pp.155–156, Seoul, Korea, November, 2017.

[22] Ryuichi Sakamoto, Ryo Takata, Jun Ishii, Masaaki Kondo, Hiroshi Naka-
mura, Tetsui Ohkubo, Takuya Kojima, Hideharu Amano, The Design
and Implementation of Scalable Deep Neural Network Accelerator Cores,
In Proc. of the 2017 IEEE 11th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), pp.13–20, Seoul, Ko-
rea, September, 2017.

[23] Takuya Kojima, Naoki Ando, Hayate Okuhara, Ng. Anh Vu Doan, Hide-
haru Amano, Power Optimization for CGRA with Control of Variable
Pipeline and Body Bias Voltage, In Proc. of the 2017 IEEE Sympo-
sium in Low-Power and High-Speed Chips (COOL CHIPS), Poster 6,
Yokahama, Japan, April 2017.

Domestic Conference Papers and Technical Reports

[24] 大和田彩夏, 小島拓也, 天野英晴, CGRAアプリケーションの IPベース設
計環境の提案, 信学技報, vol. 120, no. 121, CPSY2020-6, pp.37–42, 2020
年 7月.

[25] 小島拓也,大和田彩夏,天野英晴,深層学習を用いたCGRAの効率的なアプ
リケーションマッピング手法, 信学技報, vol. 120, no. 121, CPSY2020-7,
pp.43–48, 2020年 7月.

[26] 小島拓也, 池添赳治, 天野英晴, 3次元積層型ヘテロジニアスプロセッサ
のためのシミュレータ開発とその応用, 信学技報, vol. 119, no. 428,
CPSY2019-103, pp.93–98, 2020年 2月.

[27] 大和田彩夏, 小島拓也, 天野英晴, LLVMを用いた CGRA向けソフトウェ
ア開発環境の構築と評価, 信学技報, vol. 119, no. 428, CPSY2019-109,
pp.145–150, 2020年 2月.

[28] 小島拓也,天野英晴, CGRAのためのアプリケーションマッピングフレーム
ワークGenMapの実装と実機評価,信学技報, vol. 119, no. 282, VLD2019-
29, pp.1–6, 2019年 11月. (IEEE CEDA AJJC Design Gaia Best
Poster Award)

[29] 茅島秀人, 小島拓也, 奥原颯, 四手井綱章, 天野英晴, チップ間誘導結合
無線通信技術の実機評価, 信学技報, vol. 119, no. 286, CPSY2019-48,
pp.59–64, 2019年 11月.

[30] 戸村遼平, 小島拓也, 天野英晴, 坂本龍一, 近藤正章, CNNアクセラレー
タ SNACCの実チップ評価, 信学技報, vol. 119, no. 286, CPSY2019-49,
pp.65–70, 2019年 11月.

115

[31] 池添赳治, 小島拓也, 天野英晴, 不揮発性構成メモリを用いた耐故障性粗粒
度再構成可能アーキテクチャ,信学技報, vol. 119, no. 208, RECONF2019-
28, pp.39–44, 2019年 9月.

[32] 天野英晴, 茅島秀人, 小島拓也, 坂本龍一, 近藤正章, 並木美太郎, ビルディ
ングブロック型積層システムの性能評価, 信学技報, vol. 119, no. 147,
CPSY2019-17, pp.1–6, 2019年 7月.

[33] 小島拓也, 天野英晴, 粗粒度再構成可能アーキテクチャCMAにおけるメ
モリバンクアクセスの改良, 信学技報, vol. 119, no. 147, CPSY2019-22,
pp.85–90, 2019年 7月.

[34] 茅島秀人, 小島拓也, 奥原颯, 四手井綱章, 天野英晴, 誘導結合 TCI IPの
実チップにおける性能測定, LSIとシステムのワークショップ 2019, ポス
ターセッション, no.26, 2019年 5月.

[35] 天野英晴,茅島秀人,四手井綱章,小島拓也,ルネサスSOTB65nm用Through
Chip Interface IPの実機評価, 信学技報, vol. 119, no. 25, VLD2019-5,
pp.31–36, 2019年 5月.

[36] 小島拓也, 天野英晴, 3次元積層型CGRAのためのアプリケーション割り
当て手法の検討, 信学技報, vol. 118, no. 375, CPSY2018-51, pp.37–42,
2018年 12月.

[37] 寺嶋爽花, 小島拓也, 武者千嵯, 奥原颯, 天野英晴, ツインタワー型共有メ
モリチップを用いたCNNアプリケーションの高速化, 信学技報, vol. 118,
no. 375, CPSY2018-76, pp.125–130, 2018年 12月.

[38] 茅島秀人, 小島拓也, 奥原颯, 天野英晴, 誘導結合 ThruChip Interfaceの
検証方式の実チップ実装, 信学技報, vol. 118, no. 339, CPSY2018-42,
pp.53–58, 2018年 12月.

[39] 小島拓也, 安藤尚樹, 松下悠亮, 奥原颯, Nguyen Anh Vu Doan, 天野英晴,
可変パイプラインを持つ低消費電力アクセラレータ CCSOTB2によるス
トリーム処理, 信学技報, vol. 118, no. 325, CPSY2018-33, pp.1–5, 2018
年 11月. (IEICE CPSY Young Presentation Award)

[40] 小島拓也, 安藤尚樹, 松下悠亮, 奥原颯, Nguyen Anh Vu Doan, 天野英晴,
多目的遺伝的アルゴリズムを用いたCGRAマッピング最適化手法と実チッ
プ評価, 信学技報, vol. 118, no. 215, RECONF2018-31, pp.67–72, 2018
年 9月.

[41] 松下悠亮, 小島拓也, 門本淳一郎, 黒田忠広, 天野英晴, マルチコア積層シ
ステム Cube-2 の実装と評価, 情報処理学会第 80回全国大会講演論文集,
pp.1:81-–1:82, 2018年 3月.

[42] 寺嶋爽花, 小島拓也, 奥原颯, 松下悠亮, 安藤尚輝, 並木美太郎, 天野英晴,
ツインタワーのためのメモリチップ, 情報処理学会第 80回全国大会講演
論文集, pp.1:87-–1:88, 2018年 3月.

116 Publications

[43] 小島拓也, 安藤尚樹, 天野英晴, 可変構造パイプラインを持つ粗粒度再構
成アクセラレータ CCSOTB2, 情報処理学会第 80回全国大会講演論文集,
pp.1:89-–1:90, 2018年 3月.

[44] 小島拓也, 安藤尚輝, 奥原颯, 天野英晴, グリッチ削減のためのパイプライ
ン構造最適化, 信学技報, vol. 117, no. 279, RECONF2017-41, pp.25–30,
2017年 11月.

[45] 安藤尚輝, 小島拓也, 天野英晴, 可変パイプラインCGRAの実チップ評価,
信学技報, vol. 117, no. 279, RECONF2017-41, pp.19–24, 2017年 11月.

[46] 寺嶋爽花, 小島拓也, 奥原颯, 松下悠亮, 安藤尚輝, 並木美太郎, 天野英晴,
ツインタワー用共有メモリチップの開発, 信学技報, vol. 117, no. 273,
VLD2017-34, pp.43–48, 2017年 11月.

[47] 小島拓也, 安藤尚輝, 奥原颯, Ng.Doan Anh Vu, 天野英晴, 整数計画問題
を用いたパイプライン型 CGRAのボディバイアス電圧最適化, 信学技報,
vol. 117, no. 46, RECONF2017-16, pp.81–86, 2017年 5月.

[48] 小島拓也, 安藤尚輝, 松下悠亮, 奥原颯, 天野英晴, パイプライン段数とボ
ディバイアス電圧制御によるパイプライン型CGRAの電力削減手法の検
討, 信学技報, vol. 116, no. 510, CPSY2016-140, pp.51–56, 2017年 3月.

[49] 大久保徹以, 小島拓也, 天野英晴, 高田遼, 石井潤, 坂本龍一, 近藤正章, 中
村宏, 無線 3次元積層チップを用いたDeep Learningアクセラレータのコ
ンパイラツールチェーン, 信学技報, vol. 116, no. 510, CPSY2016-155,
pp.357–362, 2017年 3月.

	Acknowledgement
	Abstract
	Introduction
	Demands for novel architectures
	Challenges for efficient compilation of CGRAs
	Scope of this thesis and contributions
	Structure of this thesis

	Background
	CGRA: Coarse-Grained Reconfigurable Architecture
	A taxonomy of CGRAs
	Advantage of CGRAs over FPGAs

	Power consumption of CMOS VLSI
	Dynamic power
	Static power

	Body bias control
	Recent CMOS technology
	SOTB: a case of FD-SOI

	Motivation
	Related work on optimization techniques for CGRAs
	Design-time optimization
	Runtime optimization
	Compile-time optimization

	Cool mega array: a case of CGRA
	Architecture overview
	Existing implementations
	Combination of body bias control and variable pipeline

	Challenges in the previous optimization approaches

	Body bias optimization
	Problem definition
	Preliminary analysis
	ILP model
	Evaluation
	Optimization results
	Performance and energy reduction
	Comparison of VDD control

	Summary

	Dynamic power estimation technique
	Glitch propagation on PE array
	Preliminary analysis of glitch propagation
	Dynamic power model
	Evaluation
	Obtaining model parameters
	Accuracy of the proposed model
	Comparision with a post-layout simulation

	Summary

	GenMap: mapping optimization with genetic algorithm
	Problem Definition
	Proposed framework: GenMap
	Multi-Objective Optimization with NSGA-II
	Gene coding and crossover
	Mutation
	Population Initialization
	Routing Method
	Constants and IO mapping

	Model and Objectives
	Wire Length
	Mapping Width
	Power Consumption
	Time Slack

	Evaluation
	Evaluation Setup
	Quality of Optimization
	Mapping Ability
	Energy Consumption and Speed Up

	Summary

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Appendicies
	Full results of the simulated delay time
	Full results of body bias optimization
	Analysis of the crossover and mutation probabilities
	Measurement results of power optimization with GenMap
	Effect of time slack objective

	Publications

