
Active Queue Management Based on
Control-Theoretic Approaches for

Diversified Communication Services

February 2021

Ryosuke Alexander Hotchi

A Thesis for the Degree of Ph.D. in Engineering

Active Queue Management Based on
Control-Theoretic Approaches for

Diversified Communication Services

February 2021

Graduate School of Science and Technology
Keio University

Ryosuke Alexander Hotchi

Acknowledgements

I joined Associate Professor Kubo’s laboratory in 2015. This doctoral thesis is a compilation of

the six years of work at Keio University. I would like to express my gratitude to all those who

allowed me to accomplish this thesis.

First of all, I would like to express my sincere gratitude to my supervisor Associate Professor

Dr. Ryogo Kubo. He has been supporting my study throughout my entire research life since

I have entered his laboratory. He has spared his precious time to improve my study and paper

submission. I could not have attended multiple conferences nor received a Student Paper Award

at the international conference NOLTA 2017 without his guidance.

Apart from my supervisor, I would like to express the gratitude to Professor Dr. Masaaki

Ikehara, Professor Dr. Yukitoshi Sanada, and Associate Professor Dr. Kunitake Kaneko, for

sharing insightful suggestions and giving helpful discussions. They all have played a major role

in polishing up this thesis.

I owe my warm gratitude to Mr. Takanori Iwai, the System Platform Research Laboratories,

NEC Corporation, for supporting my research and journal publication. His advice has helped

me greatly improve the quality of the journal paper.

I am also pleased to say thank you to Mr. Hosho Chibana for giving me multiple instructions

at the beginning of my research life in the laboratory. My studies could not have been achieved

without his guidance.

I am warmly grateful to KLL Ph.D. Program Research Grant and Research Encouragement

Scholarship for Graduate Students for supporting my research life pecuniarily. My research

— i —

environment was satisfied with their financial supports.

In the end, I am grateful to my family and everyone who supported me to complete this

thesis. My parents have always supported me mentally and financially throughout my entire

university life so that I only pay attention to the studies and achieving my objective without any

obstacles on the way.

February 2021

Ryosuke Alexander Hotchi

— ii —

Contents

Acknowledgements i

Table of Contents iii

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Background . 1

1.1.1 Communications Over the Internet . 1

1.1.2 Congestion and TCP . 3

1.1.3 AQM . 5

1.1.4 Diversified Communication Services 7

1.2 Orientation of the Research . 7

1.3 Chapter Organization . 10

2 TCP/AQM Network 13

2.1 TCP . 13

2.1.1 Background of TCP . 13

2.1.2 Functions of TCP . 15

2.1.2.1 Connection Establishment 15

— iii —

CONTENTS

2.1.2.2 Acknowledgement . 15

2.1.2.3 Retransmission Control . 16

2.1.2.4 Retransmission Timeout . 16

2.1.2.5 Window Control . 16

2.1.2.6 Flow Control . 16

2.1.2.7 Congestion Control . 17

2.2 DropTail Queue . 19

2.3 AQM . 21

2.3.1 Functions of AQM . 21

2.3.2 RED . 22

2.4 Control-Theory Based AQM . 25

2.4.1 Nonlinear TCP/AQM Network Model 25

2.4.2 Linear TCP/AQM Network Model . 26

2.4.3 Nominal TCP/AQM Network Model 31

2.4.4 AQM Using PID Controller . 33

3 Network Delay Compensation for Remote Router Control 34

3.1 Background . 34

3.1.1 NCS . 35

3.1.2 Butterfly-Shaped PDC . 37

3.2 Control System Design . 42

3.2.1 Proposed Remote AQM Control System Using Butterfly-Shaped PDC . 42

3.2.2 Model Mismatch . 43

3.3 Performance Evaluation . 44

3.3.1 Simulation Setup . 44

3.3.2 Compensation of Identical Forward and Feedback Time Delays 45

3.3.3 Compensation of Different Forward and Feedback Time Delays 46

— iv —

CONTENTS

3.3.4 Compensation of Fluctuating Time Delays 46

3.3.5 Discussion About Model Mismatch 46

3.4 Summary . 54

4 Robust Dead Time Compensation for High-Latency Networks 55

4.1 Background . 55

4.1.1 Saturation Function . 57

4.1.2 DOB . 58

4.1.3 SP . 60

4.2 Control System Design . 62

4.2.1 AQM Using PD Controller . 62

4.2.2 Implementation of DOB and SP in an Integrated Manner 63

4.2.3 Proposed Control System . 65

4.3 Performance Evaluation . 65

4.3.1 Stability Analysis Using Nyquist Diagram 66

4.3.2 Simulation Setup . 68

4.3.3 Queue Length Fluctuation . 69

4.3.4 Changing the Bottleneck Link Capacity 76

4.3.5 Changing the Number of TCP Sessions 78

4.3.6 Changing the RTT . 79

4.3.7 Mixture of UDP Flows . 80

4.4 Summary . 83

5 Adaptive Target Queue Length Generation for QoS-Aware Control 84

5.1 Background . 84

5.2 Effects of Change in Target Queue Length . 86

5.2.1 Raising Target Queue Length and Goodput 87

5.2.2 Lowering Target Queue Length and Queueing Delay 90

— v —

CONTENTS

5.2.3 Buffer Overflow . 92

5.2.4 Buffer Underflow . 95

5.2.5 Independent Stable State . 97

5.3 Adaptive Target Queue Length Generation . 100

5.3.1 Wait Phase . 101

5.3.2 Monitor Phase . 102

5.3.2.1 Basic Parameter Update Procedure 102

5.3.2.2 Queue Length Monitor Time 103

5.3.3 Update Phase . 107

5.3.3.1 Standard Update Procedure 109

5.3.3.2 Independent Stable State Procedure 111

5.3.4 Emergency Update Procedure . 115

5.3.4.1 Loss-Aware Mode . 116

5.3.4.2 Delay-Aware Mode . 116

5.3.5 No Congestion Detection . 117

5.4 Performance Evaluation . 119

5.4.1 Simulation Setup . 119

5.4.2 Loss-Aware Mode . 120

5.4.2.1 Comparison Under Different Buffer Size 120

5.4.2.2 Performance Under High-Latency Network 125

5.4.2.3 Independent Stable State Detection 128

5.4.3 Delay-Aware Mode . 128

5.4.3.1 Comparison Under Different Buffer Size 130

5.4.3.2 Latency of UDP Packets . 133

5.5 Summary . 136

6 Conclusion 138

— vi —

CONTENTS

References 140

Achievements 154

— vii —

List of Figures

1-1 The transition of communication contents . 2

1-2 The total amount of download traffic over the Internet in Japan. 3

1-3 The ratio of transport layer protocols used in Japan. 4

1-4 Classifications of TCP congestion avoidance methods. 8

1-5 Chapter organization. 11

2-1 The scheme of packet-switched network. 14

2-2 The conceptual diagram of loss-based congestion window control. 18

2-3 The congestion window control of NewReno. 18

2-4 The scheme of DropTail queue. 23

2-5 The conceptual diagram of AQM. 23

2-6 The relationship between the packet drop probability and the average queue

length in RED . 24

2-7 Linearized TCP/AQM network model. 30

2-8 Simplified linear TCP/AQM network model. 30

2-9 The linear TCP/AQM control system. 31

2-10 Control system with the nominal TCP/AQM network model. 31

2-11 Control system with the nominal inertia model. 32

3-1 Block diagram of a general NCS. 36

— viii —

LIST OF FIGURES

3-2 Butterfly-shaped PDC originally proposed by Lai et al. [90]. 37

3-3 Controller implementation of the butterfly-shaped PDC. 37

3-4 Proposed butterfly-shaped PDC scheme considering controller model mismatch. 38

3-5 Proposed remote AQM control system using butterfly-shaped PDC. 42

3-6 Simulation topology. 44

3-7 Simulation results (�푡1 = �푡2 = 50 ms). 47

3-8 Comparison of SD values (�푡1 = �푡2). 47

3-9 Simulation results (�푡1 = 20 ms, �푡2 = 60 ms). 48

3-10 Simulation results (�푡1 = 60 ms, �푡2 = 20 ms). 48

3-11 Comparison of SD values (�푡1 = 20 ms). 49

3-12 Comparison of SD values (�푡1 = 60 ms). 49

3-13 Two types of delay fluctuations. 50

3-14 Simulation results for (�푡1, �푡2) =Type A. 51

3-15 Simulation results for (�푡1, �푡2) =Type B. 51

3-16 Simulation results with mismatch (�푁 = �푁nc). 52

3-17 Average queue length (�푁nm=100). 52

3-18 Average queue length (�푁nm = 80). 53

3-19 Average queue length (�푁nm = 120). 53

4-1 TCP/AQM network with a saturation function. 57

4-2 TCP/AQM network with the DOB. 58

4-3 Equivalent block diagram of Fig. 4-2 when �훿�푝sat = �훿�푝cmp. 60

4-4 Ideal TCP/AQM network with full suppression of disturbance. 60

4-5 Time delay compensation by the SP. 61

4-6 Equivalent block diagram of Fig. 4-5. 62

4-7 TCP/AQM network with the DOB and saturation as a disturbance �푑sat. 63

4-8 Equivalent block diagram of Fig. 4-7. 64

— ix —

LIST OF FIGURES

4-9 Block diagram of the proposed control system. 66

4-10 Nyquist diagram (�푅n = 20 ms). 67

4-11 Nyquist diagram (�푅n = 100 ms). 67

4-12 Simulation topology. 68

4-13 Queue length fluctuations. 70

4-14 Queue length fluctuations during the first 25 s. 71

4-15 Simulation results when �퐶 was changed with matching model. 77

4-16 Simulation results when �퐶 was changed with model mismatch. 78

4-17 Simulation results when �푁 was changed with matching model. 79

4-18 Simulation results when �푁 was changed with model mismatch. 80

4-19 Simulation results when �푇p was changed with matching model. 81

4-20 Simulation results when �푇p was changed with model mismatch. 81

4-21 Simulation results when UDP flows coexist. 82

5-1 Simulation topology. 86

5-2 Relationship between �푞cmd and quantity of dropped packets. 87

5-3 Relationship between �푞cmd and goodput. 88

5-4 Relationship between �푞cmd and file transfer duration. 89

5-5 Relationship between �푞cmd and average queueing delay. 90

5-6 Relationship between �푞cmd and transfer duration of small-sized files. 91

5-7 Queue length fluctuation (�푞cmd = 50, 250, 450). 93

5-8 Relationship between �푞cmd and SD of received packets. 94

5-9 Relationship between �푞cmd and maximum, minimum, and average queue length. 95

5-10 Relationship between �푞cmd and throughput. 96

5-11 Behavior of queue length in independent stable state. 98

5-12 The diagram of the algorithm flow. 99

5-13 The approximation curve. 104

— x —

LIST OF FIGURES

5-14 Queue length and two EMAs. 106

5-15 Queue length fluctuations when �푞lim = 200 packets. 121

5-16 Queue length fluctuations when �푞lim = 500 packets. 122

5-17 Queue length fluctuations when �푞lim = 1000 packets. 123

5-18 Queue length fluctuations under �푇p = 300 ms, �푁 = 500. 126

5-19 Queue length fluctuations when �푁 fluctuated between 45 to 75. 129

5-20 Queue length fluctuation of Delay-aware VMTwDEMA method (�푞lim = 200

packets). 130

5-21 Queue length fluctuation of Delay-aware VMTwDEMA method (�푞lim = 500

packets). 131

5-22 Queue length fluctuation of Delay-aware VMTwDEMA method (�푞lim = 1000

packets). 132

5-23 Queue length fluctuations when an UDP traffic flow coexists. 134

— xi —

List of Tables

3-1 Simulation parameters . 45

3-2 Control parameters . 45

4-1 Network parameters. 69

4-2 Control parameters for PID controller, PD controller, and DOB. 72

4-3 Summary of results in Figs. 4-13 and 4-14. 73

5-1 Network parameters. 120

5-2 Control parameters for PID controller. 120

5-3 Summary of the results in Fig. 5-15. 121

5-4 Summary of the results in Fig. 5-16. 122

5-5 Summary of the results in Fig. 5-17. 123

5-6 Summary of results in Fig. 5-18. 126

5-7 Summary of results under �푇p = 300 ms, �푁 = 750. 127

5-8 Summary of results under �푇p = 300 ms, �푁 = 1000. 127

5-9 Total number of buffer overflow samples in Fig. 5-19. 129

5-10 Comparison of the simulation results ofConst. qcmd andDelay-awareVMTwDEMA

under different buffer sizes. 133

5-11 Summary of simulation data when an UDP traffic flow coexists. 135

— xii —

Chapter 1

Introduction

1.1 Background

1.1.1 Communications Over the Internet

Many things we see these days make use of the Internet. Numerous electronic devices, including

personal computers and smartphones, can send and receive various information by accessing

the Internet. With the advent of the Internet, it became possible for people worldwide to

communicate with each other, control devices remotely, and collect information. In the modern

world, it is safe to say that the Internet is essential infrastructure.

Figure 1-1 shows a conceptual diagram showing the transition of communication contents.

Each picture shown in Fig. 1-1 denotes a type of communication content, alongwith the data size

example under standard usage. At the dawn of the Internet technology, people used to exchange

only text via the Internet, since both the bandwidth of the Internet and the specifications of the

electronic devices were not capable of handling a large data. As the technology evolves, the data

size of communication contents has become much larger, just like Fig. 1-1 shows. It is not rare

to see people downloading movie data with their smartphones in recent years. Even now, the

number of Internet users is continuously increasing. In September 2019, the penetration rate of

— 1 —

Chapter 1 Introduction

Text data

1 kB ~ 100 kB

Picture data Audio data Movie data

10 kB ~ 10 MB 100 kB ~ 100 MB 10 MB ~ 10 GB

Fig. 1-1 The transition of communication contents

the Internet in Japan reached 89.8% [1], which can be roughly estimated to be over 113 million

people, based on the population research result back then [2]. Considering this growth of the

Internet user population and the data volume enlargement of communication contents, it is easy

to foresee that the total amount of Internet traffics is rising.

In addition, the interests in the Internet-of-things (IoT) technology currently arising may

further increase the total amount of Internet traffics [3, 4]. As the IoT becomes more popular,

even more devices may be connected to the Internet, creating even more complicated sensor and

actuator networks [5, 6]. The number of devices communicating over the Internet is expected to

keep on increasing beyond the magnitude of the total human population. The recent transition

from Internet Protocol version 4 (IPv4) [7] to Internet Protocol version 6 (IPv6) [8] due to the

Internet Protocol (IP) address exhaustion vividly reflects this phenomenon [9].

Figure 1-2 shows the total amount of download traffic over the Internet in Japan [10]. The

plots denoted as “5 ISP companies” are the estimation values calculated from the data provided

by five Internet service provider (ISP) companies, which are Internet Initiative Japan Inc.,

OPTAGE Inc., KDDI Corporation, SoftBank Corp., and NTT Communications Corporation.

The plots denoted as “9 ISP companies” are the estimation values calculated from the data

provided by nine ISP companies, which are the five aforementioned companies, NTT Plala Inc.,

Jupiter Telecommunications Co., Ltd., BIGLOBE Inc., and NIFTY Corporation. The Ministry

of Internal Affairs and Communications of Japan added the latter mentioned four ISP companies

in May 2017, making the data discontinuous from November 2016 to May 2017. This is the

— 2 —

Chapter 1 Introduction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

20
10
/5

20
10
/11

20
11
/5

20
11
/11

20
12
/5

20
12
/11

20
13
/5

20
13
/11

20
14
/5

20
14
/11

20
15
/5

20
15
/11

20
16
/5

20
16
/11

20
17
/5

20
17
/11

20
18
/5

20
18
/11

20
19
/5

20
19
/11

20
20
/5

To
ta

l d
ow

nl
oa

d
tra

ffi
c

[G
bp

s]

Year / month

5 ISP companies 9 ISP companies

Fig. 1-2 The total amount of download traffic over the Internet in Japan.

reason why the plots switch from “5 ISP companies” to “9 ISP companies” in May 2017. The

connection line from the plot of November 2016 to May 2017 is drawn with a dotted line,

showing that the data were discontinuous. From Fig. 1-2, we can see that the amount of total

download traffic is still increasing, and its increment rate may accelerate even more in the future.

1.1.2 Congestion and TCP

Because of these facts, recently, routers and switches are more likely to suffer from network

connection failure due to excessive communication requests. This phenomenon of routers

and switches being crowded with excessive communication requests is called the “congestion”

of the network flows. The occurrence of network congestions would enlarge the number of

packets stored in the router’s buffer, and the packets newly arriving at the router would be

discarded if there is not enough vacant space in the buffer. This congestion of the network flows

— 3 —

Chapter 1 Introduction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2015 2016 2017 2018 2019 2020

Pr
ot

oc
ol

 u
sa

ge
 ra

tio
 [%

]

Year

Others
ESP
UDP
TCP

Fig. 1-3 The ratio of transport layer protocols used in Japan.

induces multiple negative impacts on the communication flows, and the communication using

transmission control protocol (TCP) [11] is especially affected by the congestion.

TCP is one of the main protocols of the IP suite, commonly being treated in a set with IP and

denoted as “TCP/IP”. TCP is often utilized for communications through the Internet, including

the communications between sensors and actuators, because of its high reliability. Figure 1-3

shows the ratio of transport layer protocols used in the last six years in Japan [12, 13]. There are

multiple types of transport layer protocols other than TCP, such as user datagram protocol (UDP)

[14] and encapsulating security payload (ESP) [15]. However, as Fig. 1-3 shows, while the ratio

of UDP is gradually increasing due to the increasing demand for real-time communications,

TCP still keeps the highest ratio.

When the network communication is done using loss-based TCP network flows, the receiver

host detects congestion by acknowledging the occurrence of packet disposal and notifies the

— 4 —

Chapter 1 Introduction

sender host of the congestion. Upon receiving this notification, the sender host scales down

the sending window size to control the congestion, resulting in reduced communication speed.

Owing to this mechanism, if a mass packet disposal occurs in the router, many TCP network

flows would be the target to shrink the congestion window size, which would result in multiple

senders transmitting packets at a low rate, sharing the networkwith low throughput [16, 17]. This

phenomenon is known as “global synchronization”, and this greatly reduces the communication

efficiency, sometimes halting the application services provided over the network [18, 19]. In

addition, the likeliness of some flows being the victim of packet disposal may be vastly different

compared to the others. The bursty traffics especially tend to be more vulnerable against

the effect of congestion, resulting in unfairness between multiple TCP sessions sharing the

same network. Due to these facts, the congestion of the traffic flows is a serious problem for

communications using TCP, and many studies have been conducted on the efficient method for

avoiding congestion at the routers [20, 21].

1.1.3 AQM

In order to avoid this serious congestion from occurring, a method called active queue man-

agement (AQM) has been proposed [22, 23]. AQM is a mechanism that discards the packets

buffered in the bottleneck router before its buffer becomes full and serious congestion occurs.

When AQM is utilized, the queue length in the buffer of the router would be always observed,

and when the queue length gets larger than the predetermined threshold, the system acknowl-

edges this as an indication of congestion and actively discards the packets in the buffer. By

introducing AQM to the router, packet disposal could be done before serious congestion take

place in the router, resulting in a more efficient and fair communication compared to a router

using the default DropTail queue [24, 25]. Due to this fact, there have been many studies of

AQM done [26, 27, 28].

As the most basic and representative AQM method, random early detection (RED) is well

— 5 —

Chapter 1 Introduction

known [29]. RED calculates the average queue length in the buffer and derives the packet drop

probability corresponding to the average queue length. RED starts discarding packets according

to the packet drop probability, which decisively differs from DropTail which is triggered by

a buffer overflow in terms of fairness. In addition, the fact that RED does not wait until the

buffer overflow occurs in order to start discarding packets makes global synchronization less

likely to happen, resulting in better communication efficiency. Because of its simple calculation

procedure, a variety of RED algorithms have been researched and analyzed [30, 31, 32, 33].

There are numbers of extent research based on RED, such as adaptive RED (ARED) [34], fair

RED (FRED) [35], upper threshold RED (URED) [36], Loss ratio based RED (LRED) [37], etc.

[38, 39]. In addition, there are AQM that marks explicit congestion notification (ECN) bits of

the packets instead of dropping the packets [40, 41, 42], such as BLUE method [43]. However,

an AQM method that discards packets does not need any alteration of existing routers, since

they can notify receiver hosts of the congestion by packet drop and sender hosts can control

congestion by receiving acknowledgement (ACK) message from the receiver host or timeout.

Due to this fact, the AQM using packet disposal is widely utilized recently.

RED has numerous parameters and its parameterization for obtaining satisfactory perfor-

mance under different circumstances is very difficult [44]. These parameters need to be selected

very carefully; otherwise, RED does not perform well, resulting in decreasing throughput and

increasing packet loss rate [45]. Therefore, as a scalable application of RED, the design of the

AQM controller on the basis of the control theory was proposed and multiple studies have been

done [46, 47, 48, 49]. In particular, it is well known that AQMbased on the proportional-integral-

derivative (PID) control scheme is effective [50], and its controllers were improved by various

methods [51, 52, 53]. Other than that, a control theory based AQM using proportional-integral

(PI) controller [54, 55] and proportional-derivative (PD) controller [56] were also proposed

for TCP/AQM networks to stabilize the queue length around its target value. Compared with

a primitive algorithm such as RED, AQM based on the control theory tends to have higher

throughput [57]. Thus, studies on AQM based on control theory have been actively conducted

— 6 —

Chapter 1 Introduction

in recent years [58, 59, 60, 61, 62, 63].

1.1.4 Diversified Communication Services

Along with the development of communication technologies, the definition of communication

services itself has been diversifying. In the past when the exchange of text data was the state-

of-the-art technology, the throughput was the major concern of the communication services. As

technology evolves, different factors became to be considered. For example, the functions of

TCP exist to maintain its reliability, which is another factor of better communication service. As

another example, Quality-of-Experience (QoE) was not an aspect of communication services in

the past but is a well-considered factor in modern days.

Along with its diversifying definition, a variety of communication services are desired to be

accomplished. The implementation of virtualized infrastructure via the network is one of the

popular considerations in current days. The communication under a high-latency network such

as interstellar communication is another example of communication service. A user may require

better data transmission efficiency or smaller transmission latency under certain communication

networks. The development of IoT technology is a comprehensible example of the diversity

of communication services. The technologies to improve communication quality under such

diversifying communication services are desired.

1.2 Orientation of the Research

This thesis aims to improve the quality of the communication services by utilizing AQM

based on control-theoretic approaches. Figure 1-4 is a diagram that shows the classification of

TCP congestion avoidance methods.

The characteristic of AQM techniques is that the communication quality could be improved

by implementing software-based approaches without making any physical alteration to the

system. The congestion avoidance may also be accomplished by improving the communication

— 7 —

Chapter 1 Introduction

Improvement of
infrastructures

Proposal of a new
communication protocol

Advantage
l Communication efficiency can be

drastically increased
l Cooperates with current

communication protocols

Disadvantage
l High implementation cost

Advantage
l May increase communication

efficiency more effectively
l The scheme may be more optimal

than the currently used protocols

Disadvantage
l May not cooperate with currently

used protocols

Control-theoretic
approach
Advantage

l High scalability
l Simplicity of implementation

Disadvantage
l Difficult to configure an optimal

control parameters

If-then algorithm

Advantage
l Low computation cost
l Simplicity of implementation

Disadvantage
l Insufficient performances
l Low scalability

Machine learning
algorithm
Advantage

l High scalability
l Optimization of the queue control

Disadvantage
l High computation cost
l Implementation difficulties

Packet queue management
at the router

Advantage
l Low implementation cost
l Cooperates with current

communication protocols

Disadvantage
l Improvement in terms of

throughput may be not drastic

Improve the communication
quality of TCP flows by

congestion avoidance

References
[24] , [64] , [65]

References
[40] , [66] , [67] Utilized in this research

Utilized in this researchReferences
[29] , [34] , [36]

References
[68] , [69] , [70]

Fig. 1-4 Classifications of TCP congestion avoidance methods.

— 8 —

Chapter 1 Introduction

infrastructure itself [24, 64, 65] or proposing a new communication protocol [40, 66, 67], as

shown in Fig. 1-4. However, the former example requires a very high implementation cost, and

the latter example may not cooperate with the currently utilized communication protocols. The

attempt to improve the quality of the communication services through the utilization of AQM

is cost-effective and does not need an establishment of a new protocol. The downside of this

approach is that this would generally not be able to drastically, in the magnitude of doubly or

more, improve the communication efficiency such as throughput.

This thesis focuses on proposing novel AQM control schemes based on the control-theoretic

approaches. Other than that, simple if-then algorithms [29, 34, 36] or machine learning algo-

rithms [68, 69, 70] exist, as shown in Fig. 1-4. Compared to the simple if-then algorithms

such as RED, AQM based on control-theoretic approaches are known to have higher scalability

and overall better performances. Compared to machine learning algorithms, AQM based on

control-theoretic approaches tend to have lower calculation costs and are relatively simpler to

implement. Despite the existence of multiple studies about AQM based on control theory been

done, there is ample scope of improvement remaining in this field of study.

This thesis aims to achieve communication quality control which could adapt to the diversi-

fied communication services flexibly by utilizing AQM based on control-theoretic approaches.

The considered communication services in this thesis are remote control, high latency network

control, and loss/delay aware control. Multiple novelAQM techniques based on control-theoretic

approaches were proposed to achieve the above-mentioned controls. Chapter 3, 4, and 5 present

these proposed AQM techniques. The positioning and novelty of the studies are clarified in each

chapter.

In chapter 3, a remote TCP/AQM congestion control system [71] is proposed. A remote

AQM control system can realize a cooperative control of multiple routers, which may become

useful for a remote centralized multiple router control scheme.

Chapter 4 describes a TCP/AQMnetwork system that can compensate for the effect of a large

round-trip-time (RTT) delay of over 100 ms while being robust against modeling errors such

— 9 —

Chapter 1 Introduction

as fluctuation of the number of TCP sessions and coexistence of UDP flows [72]. The control

system functioning properly under high-latency networks would be beneficial for dealing with

large-delay communication services such as marine and stellar communications.

A TCP/AQM network control system that can dynamically generate the target queue length

with consideration for the buffer size of the router is presented in chapter 5. An adjusting method

of the target queue length to reduce the latency or packet loss ratio by switching delay-aware

and loss-aware modes was proposed. The user can decide which to prioritize, low latency or

low loss ratio, and the algorithm attempts to improve the corresponding communication quality.

This study attempts to improve the communication quality from various aspects, adapting to

the diversified communication services flexibly.

1.3 Chapter Organization

The overall organization of the chapters is shown in Fig. 1-5. The topic discussed in chapter

3 is based on remote AQM control, while chapters 4 and 5 are based on local AQM controls.

The following chapter gives descriptions of TCP/AQM network followed by the presentation

of control-theory based AQM. The characteristics of TCP, equations of AQM, and the analytical

model of the congestion control system are shown.

Chapter 3 proposes a remote router control system using butterfly-shaped perfect delay com-

pensator as a network delay compensator. This study is basic research aiming to realize a remote

centralized multiple router control scheme. The novelty of this chapter is the implementation

of butterfly-shaped perfect delay compensator to the non-linear TCP/AQM network congestion

control system. Butterfly-shaped perfect delay compensator was originally proposed to be uti-

lized in a linear control system like motion control, and the application of it to the non-linear

TCP/AQM control system is the major novelty.

Chapter 4 proposes a robust congestion control system that would function even if there are

large latency in the network. The proposed method is capable of dealing with a large latency

— 10 —

Chapter 1 Introduction

Chapter 1
Introduction

Chapter 2
TCP/AQM Network

Local Control

Chapter 3
Network Delay

Compensation for
Remote Router

Control

Chapter 5
Adaptive Target
Queue Length
Generation for

QoS-Aware Control

Chapter 4
Robust Dead Time
Compensation for

High-Latency
Networks

Chapter 6
Conclusion

Remote Control

Fig. 1-5 Chapter organization.

— 11 —

Chapter 1 Introduction

and disturbances such as modeling errors and parameter fluctuations. The major novelty of this

chapter is the integrated implementation of two compensators; disturbance observer and Smith

predictor. The saturation function included in the TCP/AQM congestion control system induces

a problem when implementing the aforementioned two compensators, and the proposed method

overcomes the issue and achieves the integrated implementation of the compensators.

Chapter 5 proposes a novel method of controlling the target queue length of the system

dynamically in order to improve the Quality-of-Service (QoS) of the system [73, 74]. An

algorithm that dynamically generates target queue length without needing any information

of the TCP/AQM network is proposed. The novelty of this chapter is the proposal of the

algorithm that controls the target value of the system in order to increase the QoS under limited

communication resources. The proposed method can increase communication efficiency or

decrease communication latency with very low computation costs.

Finally, in chapter 6, the summaries and the conclusion of the researches are given.

— 12 —

Chapter 2

TCP/AQM Network

This chapter describes detailed information of TCP/AQM network, followed by the presen-

tation of control-theory based AQM. The proposed methods shown in the following chapters

are all based on the TCP/AQM network congestion control system based on control theory.

In the first section, the concept and functions of TCP are described in detail. In the second

section, a mechanism called DropTail, the basic packet queueing function utilized in the router

as default, is explained. In the third section, the functions of AQM are explained, followed by

the presentation of the RED algorithm. In the final section, the control-theory based AQM is

presented with control block diagrams.

2.1 TCP

2.1.1 Background of TCP

When the Internet first emerged, the requirements for the Internet were free, quick, and high-

speed communications. However, in the modern world where the Internet is widely utilized

amongst numerous users, “reliability of communications” became the essential requirement

for the Internet communications. In order to realize such a communication, TCP is utilized

— 13 —

Chapter 2 TCP/AQM Network

⋮ ⋮

Senders Receivers

RouterRouter
Bottleneck Link

Buffer

Fig. 2-1 The scheme of packet-switched network.

worldwide, keeping the highest usage ratio amongst all the transport layer protocols as shown

in Fig. 1-3.

In the communication network system, there are two major communication systems utilized,

which are “circuit-switched” network and “packet-switched” network. Circuit-switched network

is a communication network which first establishes the connection between the sender host and

the receiver host, and lets this connection be monopolized by these hosts until the connection

is finished. The original telephony network is an example of this communication system. On

the other hand, packet-switched network is a communication network that divides large data

into small data pieces and delivers them to the receiver, just like sending a postal package to

the receiver’s shipping address. The connection route can be shared by multiple users, making

the wastage of resources such as bandwidth smaller compared to the circuit-switched network.

TCP utilizes the packet-switched network as its communication system.

Figure 2-1 shows the scheme of packet-switched network in a simple dumbbell-shaped

network topology. As Fig. 2-1 shows, the packets are delivered to the receiver hosts by passing

through multiple routers. The packets sent from senders are once buffered in the router creating

a queue, and the router reads out the header data of the packets in order to extract the packets

to the corresponding output line. By utilizing this scheme, multiple users can share the same

— 14 —

Chapter 2 TCP/AQM Network

communication line simultaneously, thus resulting in higher bandwidth usage. If the output

link is not congested and has available bandwidth for the buffered packets to be sent, the packet

which arrived at the router the first would be sent, and the same procedures are repeated for

packets arriving later on. This is the standard first-in-first-out (FIFO) queue at the router.

In this thesis, all the simulations were done using IPv4 packets.

2.1.2 Functions of TCP

In order to ensure the reachability of the transmitted data, TCP holds multiple functions to deal

with problems such as packet loss, packet duplication, packet disorder, etc. The followings are

the functions that TCP has.

2.1.2.1 Connection Establishment

TCP offers connection-oriented communication while using a packet-switched network. In

connection-oriented communication, the connection is prepared before the actual data commu-

nication. In TCP, a connection establishment request packet which is consisted of a TCP header

only is sent before transmitting data and waits for a reply. If the ACK comes back, then data

communication is possible. Otherwise, data communication will never start. In addition, a

connection break procedure is done when the data communication is finished.

2.1.2.2 Acknowledgement

The data unit utilized in TCP is called “segment”. When the receiver host successfully receives

the sent segment, it transmits a confirmation reply to inform of the reception. This confirmation

reply is called “ACK (Acknowledgement)”. ACK is used as an accumulation confirmation reply,

which indicates how much of the continuous data were received. If no ACKs are returned to

the sender host for a preset length of time, the sender host determines that the segment has been

— 15 —

Chapter 2 TCP/AQM Network

lost and retransmits the same segment. By this function, TCP can guarantee the transmission of

data.

2.1.2.3 Retransmission Control

The sender host retransmits the segment if it decides that the segment is lost. That decision

is done by detecting a timeout by waiting for a certain duration. In addition, receiving ACKs

of the same segment three times in a row also denotes the segment loss, which is called ACK

duplication. If the window size is large, retransmission triggered by ACK duplication is much

faster than that of the timeout, so it is also called as fast retransmit.

2.1.2.4 Retransmission Timeout

The duration that the sender host waits for ACK without retransmitting is called retransmission

timeout (RTO). If this time passes and still no ACK messages arrive, the segment is determined

to be lost and retransmission starts. To realize highly efficient communication, TCP records the

round-trip-time (RTT) and its jitter and derive the RTO from them.

2.1.2.5 Window Control

The maximum amount of data packets that a sender host can send at once before receiving any

ACKmessages from the receiver host is called window size. This window size is determined by

two values, receive window size and congestion window size, where its value is set to be equal

to the smaller one. There would be a limit to how large the window size can be for each receiver,

called maximum window size, which is preset for each receiver.

2.1.2.6 Flow Control

In TCP, the receiver host informs the sender host of the data size that it can receive. This data

size is called receive window size, and this is defined by the receiver host. When the buffer of

— 16 —

Chapter 2 TCP/AQM Network

the receiver host becomes nearly overflowing, the receive window size is reduced and the data

transmission rate of the sender host is lowered. In other words, the required data transmission

rate is determined depending on the instruction of the receiver host. This procedure of tuning

the receiver window size is called the flow control.

2.1.2.7 Congestion Control

Normally, a network is shared with other hosts. This means there is a possibility that the network

is already congesting because of the traffics between other hosts. If a massive amount of data

were additively sent in that kind of situation, the network might get severely congested. In TCP,

there is an algorithm called congestion control which controls the congestion window size and

limits the amount of data packets being sent at once. There are multiple congestion control

methods, and they could be divided into three types; loss-based method, delay-based method,

and hybrid method.

The loss-basedmethods such as Reno [75] andNewReno [76] detect congestion by observing

the packet loss and limit the transmission rate. The delay-based methods such as Vegas [66]

detects congestion by observing the RTT of the communication. The hybrid methods such

as DCTCP [77] utilizes both loss-based and delay-based approaches to control the congestion

window size. In this thesis, NewReno is utilized as the TCP version of congestion window size

control.

Figure 2-2 shows the conceptual diagram of the congestion window control routine of

loss-based methods. As long as the communication is established without any packet drops,

the congestion window size continues to increase. If a packet drop occurs, the sender host

determines that there is congestion occurring, and it shrinks its window size.

This basic mechanism of enlarging and shrinking the congestion window size is the same

amongst all loss-based methods. However, the actual calculation procedures of deriving the

congestion window size differ by methods. Figure 2-3 shows the graph of congestion window

— 17 —

Chapter 2 TCP/AQM Network

Fig. 2-2 The conceptual diagram of loss-based congestion window control.

0

8

16

0 4 8 12 16 20 24

C
on

ge
st

io
n

w
in

do
w

 si
ze

Elapsed time

!!"ℎ$%!ℎ

congestion
point

Fig. 2-3 The congestion window control of NewReno.

— 18 —

Chapter 2 TCP/AQM Network

size fluctuation controlled by TCP NewReno. In Fig. 2-3, the timing of congestion window

size drop indicates a packet loss due to the congestion. The procedure of TCP NewReno can be

divided into two phases; slow start and congestion avoidance. The specific procedures of the

slow start phase are as follows:

1. The congestion window size �푐�푤�푛�푑 is set to 1 segment and a packet is sent.

2. The congestion window size �푐�푤�푛�푑 is incremented by 1 segment every time the ACK

returns. This procedure increases the congestion window size exponentially.

3. Continue enlarging �푐�푤�푛�푑 until a packet loss or timeout is detected.

After a packet loss or timeout detection, NewReno enters the congestion avoidance procedures.

If a packet loss was detected, the procedures would be as follows:

1. Shrink �푐�푤�푛�푑 to �푠�푠�푡ℎ�푟�푒�푠ℎ, which is equal to the half of the current �푐�푤�푛�푑.

2. Increase �푐�푤�푛�푑 by 1
�푐�푤�푛�푑 every time the ACK returns. This is equivalent to increase �푐�푤�푛�푑

by 1 per RTT, which would be increasing �푐�푤�푛�푑 linearly to the elapsed time.

3. Continue enlarging �푐�푤�푛�푑 until a packet loss or timeout is detected.

If a timeout was detected, the procedures would be as follows:

1. Shrink �푐�푤�푛�푑 to 1.

2. Increase �푐�푤�푛�푑 in the same manner with slow start until �푐�푤�푛�푑 reaches �푠�푠�푡ℎ�푟�푒�푠ℎ, which is

equal to the half of the �푐�푤�푛�푑 when the timeout was detected.

3. After �푐�푤�푛�푑 reached �푠�푠�푡ℎ�푟�푒�푠ℎ, increase �푐�푤�푛�푑 by 1
�푐�푤�푛�푑 every time the ACK returns.

4. Continue enlarging �푐�푤�푛�푑 until a packet loss or timeout is detected.

By this scheme, the TCP NewReno attempts to avoid congestions.

2.2 DropTail Queue

As Fig. 2-1 shows, the packet-switched network that supporting TCP flows would let all

senders send their packets to their corresponding receiver hosts, even if they share the same

— 19 —

Chapter 2 TCP/AQM Network

route. However, if multiple TCP sessions share the same link, which is denoted as bottleneck

link in Fig. 2-1. As described in 2.1.1, the router treats the packets buffered to be sent out in a

FIFO manner. Thus, all packets attempting to be sent through the bottleneck link will first be

buffered at the router connecting the sender hosts and the bottleneck link. The left side router in

Fig. 2-1 corresponds to this, and this router is called as “bottleneck link router”.

In communication using TCP, the sender hosts enlarge their window size regardless of the

actual condition of the network and shrink its size only when the packet loss or timeout is

detected. If there are no packet losses or timeouts, all the TCP sessions will increase their

window size, and sooner or later send packets faster than the bottleneck link capacity. In such

a congested situation, the queue in the bottleneck link router would keep growing, meaning that

more packets would flow into the buffer than flowing out to the bottleneck link. Eventually, the

queue will be too long for more packets to come in, and they would be dropped before joining

the buffer queue. This phenomenon of dropping the packets arriving after the buffer is full is

called “buffer overflow”, and this whole mechanism of letting the queue grow until a buffer

overflow occurs is called “DropTail”.

Figure 2-4 shows the scheme of DropTail queue. The number of packets in the buffer queue

of the bottleneck link router is denoted as “queue length”. DropTail is a default algorithm

utilized in the router buffer mechanism since there are no additional procedures required for

implementing it. The DropTail queue would drop packets only if the buffer overflow occurs.

This means TCP senders can detect the congestion only by buffer overflow, and the congestion

window size shrinkage happens only after the buffer overflow has occurred.

These characteristics of detecting the congestion only by buffer overflow are known to have

multiple issues. The followings are examples of the issues.

1. The dropped packets are the packets that coincidentally arrived at the router when the

buffer overflowed. This means that the flow whose packet was coincidentally dropped get

their flow limited.

2. The bursty traffic are likely to trigger a buffer overflow even when the transmission data

— 20 —

Chapter 2 TCP/AQM Network

rate is low. Due to this, the bursty traffics are more likely to have their transmission rate

limited, thus resulting in an unfairness of network. The bursty traffic sends a massive

number of packets at once, which can induce a mass packet disposal when the buffer

overflows.

3. If the congestion keeps growing, all sender hosts sharing the same router in the network

would be the victim of a speed limitation due to the congestion window size control,

resulting in a global synchronization (a phenomenon where the network is shared with

a low throughput). If the global synchronization occurs, the network load drastically

decreases, and the communication efficiency will experience a major degradation.

4. The queue length would rapidly fluctuate, making the system unstable in the sense of

inconsistent queueing delay.

The decrease in communication efficiency, unfairness amongst multiple TCP senders, and

instability of the system are the major issues that DropTail has.

2.3 AQM

2.3.1 Functions of AQM

In order to deal with the problems that DropTail had, AQM has been proposed. AQM actively

drops the packet in the queue to maintain the queue length stable. The packets to be dropped are

selected randomly. Thiswill be performed before the queue length reaches the buffering capacity.

By these procedures, AQM attempts to maintain the queue length to be stable, maintaining

fairness amongst multiple TCP sessions, avoiding global synchronization, and raising the link

utilization efficiency. Attempting to raise the efficiency of the communication through the

procedure of proactive disposal of packets is counter-intuitive. However, this procedure is

effective because the proactive packet disposal triggers the congestion window size shrinkage

of TCP sessions of the randomly selected packets, making the window size shrinkage timing

— 21 —

Chapter 2 TCP/AQM Network

diverged. On the other hand, DropTail tends to target multiple TCP sessions to shrink their

congestion window size at once, making the window size shrinkage timing more concentrated,

resulting in global synchronization.

AQM is a technique that can be implemented to the router additionally, which means AQM

coexists with DropTail instead of overriding it. This is since the DropTail is the basic function

of the FIFO queue system in the router, not the additional procedure. However, if the AQM

functions ideally enough to avoid buffer overflow, the DropTail function would not be triggered

at all.

Figure 2-5 shows the conceptual diagram of AQM. As shown in Fig. 2-5, AQM observes the

queue length in the router and drops packet actively to avoid serious congestion. The packet drop

probability is calculated based on the value of queue length observed. This actual calculation

method differs depending on the AQM method utilized.

2.3.2 RED

In this section, the most basic and representative method of AQM, i.e., RED, is introduced. RED

calculates the average queue length and attempts to keep this average queue length between the

two preset values. The calculation of average queue length is generally performed by using

exponential moving average (EMA). Additionally, the dropped packets are selected randomly,

which differs from DropTail that always dropped the last arriving packets. By this mechanism,

RED avoids the busty traffic being treated unfairly.

The specific algorithm of RED is as follows.

1. Define the minimum threshold �푡ℎmin and the maximum threshold �푡ℎmax.

2. Calculate the average queue length �푞ave by using EMA.

— 22 —

Chapter 2 TCP/AQM Network

⋮ ⋮

Senders Receivers

Drop packets
RouterRouter

only after the
buffer is full of
queuing packets

DropTail

queue length

Bottleneck Link

Fig. 2-4 The scheme of DropTail queue.

⋮ ⋮

Senders Receivers

Drop packets
RouterRouter

by calculating packet
drop probability

from queue length

AQM

queue length

Bottleneck Link

Fig. 2-5 The conceptual diagram of AQM.

— 23 —

Chapter 2 TCP/AQM Network

0

1

0

Pa
ck

et
 d

ro
p

pr
ob

ab
ili

ty

Average queue length

!!"#

"ℎ!"#"ℎ!$%

Fig. 2-6 The relationship between the packet drop probability and the average
queue length in RED

3.

�푝 =




0 (�푞ave ≤ �푡ℎmin)
�푝max

�푡ℎmax−�푡ℎmin
∗ (�푞ave − �푡ℎmin) (�푡ℎmin < �푞ave < �푡ℎmax)

1 (�푡ℎmax ≤ �푞ave)

4. Drop the packets in the buffer according to the value of �푝.

5. Repeat from procedure 2.

Figure 2-6 shows the relationship between the packet drop probability �푝 and �푞ave in RED.

The value of �푝 changes proportionally while the �푞ave is in the range from �푡ℎmin to �푡ℎmax. If the

value of �푞ave is lower than �푡ℎmin, then there will be no packet dropped. If it is greater than �푡ℎmax,

then all the packets are dropped.

— 24 —

Chapter 2 TCP/AQM Network

2.4 Control-Theory Based AQM

This section presents the control-theory based TCP/AQM network models. In this thesis,

a nominal TCP/AQM network model presented in [78] is utilized. This nominal model is

designed based on the linear TCP/AQM network model proposed by Hollot et al. [47]. The

linear TCP/AQM network model was designed by linearizing a nonlinear TCP/AQM network

model proposed by Misra et al. [46]. All of these TCP/AQM network models are presented in

this section. Finally, a TCP/AQM network congestion control system using a PID controller is

presented.

2.4.1 Nonlinear TCP/AQM Network Model

Misra et al. [46] proposed a nonlinear TCP/AQM network model by formulating the TCP

window size and queue length dynamics. The nonlinear TCP/AQM network model is shown in

(2.1) and (2.2),

$�푊 (�푡) =
1

�푅(�푡) −
�푊 (�푡)�푊 (�푡 − �푅(�푡))
2�푅(�푡 − �푅(�푡)) �푝(�푡 − �푅(�푡)), (2.1)

$�푞(�푡) = −�퐶 (�푡) + �푁 (�푡)
�푅(�푡)�푊 (�푡). (2.2)

— 25 —

Chapter 2 TCP/AQM Network

The variables in (2.1) and (2.2) are defined as follows:

�푊 (�푡) ! TCP window size [packets],

�푞(�푡) ! queue length [packets],

�푅(�푡) ! RTT [s]
(
!

�푞(�푡)
�퐶 (�푡) + �푇p

)
,

�퐶 (�푡) ! bottleneck link capacity [packet/s],

�푇p ! propagation delay [s],

�푁 (�푡) ! number of TCP sessions,

�푝(�푡) ! packet drop probability, where �푝(�푡) ∈ [0, 1] .

2.4.2 Linear TCP/AQM Network Model

Hollot et al. [47] proposed a linear TCP/AQMnetworkmodel by linearizing the nonlinear model

shown in (2.1) and (2.2). In order to linearize (2.1) and (2.2), the number of TCP sessions �푁 (�푡)

and bottleneck link capacity�퐶 (�푡)were both assumed to be constant, i.e., �푁 (�푡) ≡ �푁 and�퐶 (�푡) ≡ �퐶.

In addition, the operating point where $�푊 = 0 and $�푞 = 0 was defined as (�푊0, �푝0, �푞0, �푅0). From

these assumptions, the following equations can be derived:

�푊2
0 �푝0 = 2, (2.3)

�푊0 =
�퐶�푅0
�푁

, (2.4)

�푅0 =
�푞0
�퐶

+ �푇p. (2.5)

To proceed with linearization, the dependence of the time delay argument �푡 − �푅(�푡) on queue

length �푞(�푡) is ignored and assumed to be fixed to �푡 − �푅0. On the other hand, the dependence of

RTT �푅(�푡) on queue length �푞(�푡) in the dynamic parameters is retained. As a result, the simplified

dynamics are obtained as follows:

— 26 —

Chapter 2 TCP/AQM Network

$�푊 (�푡) =
1

�푞(�푡)
�퐶 + �푇p

− �푊 (�푡)
2

�푊 (�푡 − �푅0)
�푞(�푡−�푅0)

�퐶 + �푇p
�푝(�푡 − �푅0), (2.6)

$�푞(�푡) = −�퐶 + �푁

�푅(�푡)�푊 (�푡). (2.7)

Next, the right-hand sides of (2.6) and (2.7) are defined as (2.8) and (2.9)

�푓 (�푊 (�푡),�푊�푅 (�푡), �푞(�푡), �푞�푅 (�푡), �푝�푅 (�푡)) =
1

�푞(�푡)
�퐶 + �푇p

− �푊 (�푡)�푊�푅 (�푡)
2
(
�푞�푅 (�푡)
�퐶 + �푇p

) �푝�푅 (�푡), (2.8)

�푔 (�푊 (�푡), �푞(�푡)) = −�퐶 + �푁
�푞(�푡)
�퐶 + �푇p

�푊 (�푡), (2.9)

where�푊�푅 (�푡) ! �푊 (�푡 − �푅0), �푞�푅 (�푡) ! �푞(�푡 − �푅0), and �푝�푅 (�푡) ! �푝(�푡 − �푅0).

The partial derivatives of �푓 and �푔 at this operating point (�푊0, �푝0, �푞0) can be derived as follows

by recalling the operating point relationships shown in (2.4) and (2.5). For simplification, (�푡)

are treated as a constant and omitted for deriving partial differential equations in (2.10)–(2.16).

�휕 �푓

�휕�푊
= − �푊0

2�푅0
�푝0

=
�푊0
2�푅0

2
�푊2

0

= − 1
�푅0�푊0

= − �푁

�푅2
0�퐶

(2.10)

�휕 �푓

�휕�푊�푅
=

�휕 �푓

�휕�푊
(2.11)

— 27 —

Chapter 2 TCP/AQM Network

�휕 �푓

�휕�푞
=

�휕

�휕�푞

(
1

�푞
�퐶 + �푇p

− �푊�푊�푅

2(�푞�푅�퐶 + �푇p)
�푝�푅

)

= − 1
�푅2
0�퐶

(2.12)

�휕 �푓

�휕�푞�푅
=

�휕

�휕�푞

(
1

�푞
�퐶 + �푇p

− �푊�푊�푅

2(�푞�푅�퐶 + �푇p)
�푝�푅

)

=
�푊2

0 �푝0

2�푅2
0�퐶

=
1

�푅2
0�퐶

(2.13)

�휕 �푓

�휕�푝�푅
= −

�푊2
0

2�푅0

= −
�푅2
0�퐶

2

�푁2

2�푅0

= − �푅0�퐶2

2�푁2

(2.14)

�휕�푔

�휕�푞
=
�휕

�휕�푞

�푁�푊(�푞
�퐶 + �푇p

)
= − �푁�푊0

�퐶
(�푞0
�퐶 + �푇p

)2
= − 1

�푅0

(2.15)

�휕�푔

�휕�푊
=

�푁

�푅0
(2.16)

— 28 —

Chapter 2 TCP/AQM Network

Thus, by linearizing (2.6) and (2.7), the linear model could be obtained as follows:

�훿 $�푊 (�푡) = − �푁

�푅2
0�퐶

(�훿�푊 (�푡) + �훿�푊 (�푡 − �푅0))

− 1
�푅2
0�퐶

(�훿�푞(�푡) − �훿�푞 (�푡 − �푅0))

− �푅0�퐶2

2�푁2 �훿�푝 (�푡 − �푅0),

(2.17)

�훿 $�푞(�푡) = �푁

�푅0
�훿�푊 (�푡) − 1

�푅0
�훿�푞(�푡), (2.18)

where �훿�푊 = �푊 −�푊0, �훿�푞 = �푞−�푞0, and �훿�푝 = �푝− �푝0. A block diagram of the linearized dynamics

is shown in Fig. 2-7.

Hollot et al. continued to simplify these dynamics by dividing the dynamics into a nominal

model and modeling error. A simplified block diagram is shown in Fig. 2-8. The modeling

error Δ(�푠) is defined as (2.19)

Δ(�푠) ! 2�푁2�푠

�푅2
0�퐶

3

(
1 − �푒−�푠�푅0

)
. (2.19)

Finally, from the fact that the modeling error Δ(�푠) has extremely small gain, by excluding

Δ(�푠) from Fig. 2-8, the TCP/AQM network model for the controller design can be derived as

shown in Fig. 2-9. The transfer function �퐶 (�푠) denotes the AQM controller for the TCP/AQM

network. The AQM controller uses the queue length information in order to calculate the packet

drop probability. The transfer function �푃(�푠) is a combination of the nominal window dynamics,

queue dynamics, the block element between these two
(
�푁
�푅0

)
, and the minus sign before the

window dynamics, as shown in Fig. 2-8. The transfer function �푃(�푠) can be written as (2.20)

�푃(�푠) = −
�퐶2

2�푁(
�푠 + 2�푁

�푅2�퐶

) (
�푠 + 1

�푅

) . (2.20)

— 29 —

Chapter 2 TCP/AQM Network

1
"!"#

1 − %#$%!

1
&

'
"!"#

1 + %#$%!

"!#"
2'" %#$%!

'
"!

1
& + 1

"!

Queue Dynamics

TCP Window Dynamics

!" !#

!$

−

−
−

Fig. 2-7 Linearized TCP/AQM network model.

∆ "

#!"#!

$
%$

1
" + 1

%$

Queue DynamicsNominal Window Dynamics

!"

!#

+

−

%$(%
2$%

" + 2$
%$%(

Fig. 2-8 Simplified linear TCP/AQM network model.

— 30 —

Chapter 2 TCP/AQM Network

!!"#!

TCP/AQM Network Model

!"
!#

" #$(#)

Controller

−

Fig. 2-9 The linear TCP/AQM control system.

!(#) %!"#! &$ #

TCP/AQM Network

'%&Controller

+
− !"

−

!#!"# !#

Fig. 2-10 Control system with the nominal TCP/AQM network model.

2.4.3 Nominal TCP/AQM Network Model

Based on the linear model shown in Fig. 2-9, a nominal TCP/AQMnetworkmodel was proposed

in [78]. This nominal TCP/AQM network model was utilized to simplify the design of the AQM

controller.

Figure 2-10 shows the entire control system with a nominal TCP/AQM network model,

where �푃n(�푠), �훿�푝ref , and �푑dp denote the nominal TCP/AQM network model, reference packet

drop probability, and disturbance in the packet drop probability dimension, respectively. The

nominal TCP/AQM network plant model �푃n(�푠) is defined as (2.21)

�푃n(�푠) = − �퐶2
n

2�푁n

1
�푠2
, (2.21)

where �푁n and �퐶n denote the nominal number of TCP sessions and the nominal bottleneck link

capacity, respectively. The disturbance �푑dp includes the modeling errors due to linearization,

— 31 —

Chapter 2 TCP/AQM Network

!! ""#$! 1
!!$%

TCP/AQM Network

!!"Controller

+
− "#

−

"$#$%
%&($)

"#̈#$% "$

Fig. 2-11 Control system with the nominal inertia model.

nominalization, and coexistence of non-TCP flows such as UDP flows. The notation for input to

the TCP/AQM network is changed from �훿�푝 to �훿�푝ref along with the nominalization.

In addition, the inertia model in the TCP/AQM network dynamics �푀n is defined as (2.22)

�푀n = −2�푁n

�퐶2
n
. (2.22)

From (2.21) and (2.22), the following relationship between �푃n(�푠) and �푀n can be derived:

�푃n(�푠) =
1

�푀n�푠2
. (2.23)

Using this inertia model �푀n, the block diagram shown in Fig. 2-10 can be redesigned as shown

in Fig. 2-11, where �퐺c denotes a feedback controller such as PID or PD, and �훿 '�푞ref denotes the

reference queue acceleration. The reference packet drop probability �훿�푝ref is calculated as shown

in (2.24).

�훿�푝ref = �푀n�훿 '�푞ref (2.24)

The feedback controller�퐺c(�푠) calculates �훿 '�푞ref from �훿�푞; the design of the controller is described

in the following section.

— 32 —

Chapter 2 TCP/AQM Network

2.4.4 AQM Using PID Controller

As shown in Fig. 2-11, the feedback controller�퐺c(�푠) calculates the reference queue acceleration

�훿 '�푞ref from �훿�푞. When the PID controller is utilized, �훿 '�푞ref is calculated as (2.25)

�훿 '�푞ref = �퐺c(�푠)�훿�푞

=
(
�퐾p + �퐾i

1
�푠
+ �퐾d�푠

)
(�푞0 − �푞) ,

(2.25)

where�퐾p,�퐾d, and�퐾i denote the proportional gain, derivative gain, and integral gain, respectively.

Thus, using (2.24) and (2.25), the reference packet drop probability �훿�푝ref calculated by the PID

controller can be derived as (2.26).

�훿�푝ref = �푀n�퐺c(�푠)�훿�푞

= �푀n

(
�퐾p + �퐾i

1
�푠
+ �퐾d�푠

)
(�푞0 − �푞) .

(2.26)

— 33 —

Chapter 3

Network Delay Compensation for Remote

Router Control

3.1 Background

Routers that utilize anAQMcontroller are generally connected to one another, and congestion

control in one router may also affect congestion control in the other. More efficient congestion

control could be expected if information flow between routers is collected in one place and

controlled cooperatively. Chibana et al. [79] proposed a remote congestion controller to enable

cooperative AQM of multiple routers and flexible AQM taking traffic conditions in the entire

network into account. However, each router must be remotely controlled via the network

simultaneously in order to realize such a system.

Such a control system, i.e., a system that forms a control loop via the network, is called

a networked control system (NCS) [80]. Network-induced delay is one of the major factors

greatly affecting the performance and stability of the NCS [81]. If a feedback loop is formed via

the Internet, its network-induced delay varies randomly depending on the number of hardware

units and end-users connected to the Internet. This random network delay is unpredictable, and

— 34 —

Chapter 3 Network Delay Compensation for Remote Router Control

remote control systems easily become unstable due to random network delay [82].

Many studies have attempted to address the effect of network-induced delay in the NCSs

[83, 84]. To compensate for the network-induced delay in the TCP/AQM network, the Smith

predictor (SP) [85] and adaptive SP (ASP) [86] have been proposed. The existing works aim

at compensating for the round-trip delay between a server and a client. Li et al. [87] proposed

an AQM scheme using a PI controller with the SP. The ASP can compensate for the effect of

fluctuating delay as long as it can be measured, while the SP compensates only constant delay

[88]. Ohsaki et al. [89] has proposed anAQMscheme using the REDwith theASP.However, the

existingworks have not discussed the time-varying network delay between the remote congestion

controller and router, as shown in [79]. In addition, the SP and ASP need the time-delay model

or time-delay measurement, which leads to system instability or implementation complexity.

This chapter proposes a remote TCP/AQM congestion control system using a model free

time-delay compensator. This research was focused on the AQM based on control theory and

used a PID controller for the AQM congestion controller. A butterfly-shaped perfect delay

compensator (PDC) [90] is adopted as a time-delay compensator. The butterfly-shaped PDC

was originally proposed for time-delay compensation in networked motion control systems and

can sweep out time-delay elements from a feedback loop without any time-delay model. In order

to apply the butterfly-shaped PDC to the TCP/AQM network, a controller model on a plant side

is defined and the model mismatch between the controller model and an original controller on

a remote controller side is considered. The effectiveness of the proposed controller is validated

from simulations using time-varying network delays.

3.1.1 NCS

The NCS is a control system that has a feedback loop going through the network. The im-

plementation cost of the control system would be greatly reduced if a commercial network

is integrated in order to construct the NCS. The proposed remote AQM control system is an

— 35 —

Chapter 3 Network Delay Compensation for Remote Router Control

Network
Delay

−
"($)&($) + !!(#) !"(#)%#$!%

%#$"%

Fig. 3-1 Block diagram of a general NCS.

NCS. Network-induced delay is unavoidable since the NCS sends the control signal through

the network. In addition, when considering the usage of a commercial network, network delay

would not be constant and may fluctuate randomly. This unpredictable network delay is known

to greatly affect the performance of the NCS.

Figure 3-1 shows the block diagram of the general NCS, which is only constructed from

the controller �퐺c(�푠), the plant �퐺p(�푠), forward network delay �푡1, and feedback network delay �푡2.

�푅(�푠) and �푌 (�푠) denote the input and output signals, respectively.

If the network has no delay, i.e., �푡1 = �푡2 = 0, the transfer function for the entire block diagram

is denoted as (3.1)

�퐺woNET(�푠) =
�푌 (�푠)
�푅(�푠) =

�퐺c(�푠)�퐺p(�푠)
1 + �퐺c(�푠)�퐺p(�푠)

. (3.1)

The transfer function �퐺woNET is an ideal transfer function for an NCS.

The NCS transfer function that includes network delay, i.e., �푡1 ≠ 0 and �푡2 ≠ 0, is defined as

(3.2)

�퐺wNET(�푠) =
�푌 (�푠)
�푅(�푠) =

�퐺c(�푠)�퐺p(�푠)�푒−�푡1�푠

1 + �퐺c(�푠)�퐺p(�푠)�푒−(�푡1+�푡2)�푠
. (3.2)

The transfer function of �퐺wNET shown in (3.2) is clearly more complicated compared to that of

— 36 —

Chapter 3 Network Delay Compensation for Remote Router Control

Network
Delay

−
"($)&($) + −

−

−
−

+
+

+
+

!!(#)%"#!$

%"#"$

−!%(#)

Fig. 3-2 Butterfly-shaped PDC originally proposed by Lai et al. [90].

Network
Delay

−
"($)&($) +

+
+

+
+

(!($)

+
+

+
+

("($)(#($)($($)

"$($) "#($) "!($) ""($)

Remote Controller Side Plant Side

Original
Controller

Controller
Model

!!(#)%"#!$

%"#"$

!%(#)

−!%(#)

!%"&(#)

Fig. 3-3 Controller implementation of the butterfly-shaped PDC.

�퐺woNET shown in (3.1). In addition,�퐺wNET includes a time-delay element in the denominator. It

is known that if the denominator of the transfer function includes time-delay elements, the design

of a robust controller would become difficult, and the robustness of the entire control system

degrades. Due to this fact, many recent studies have focused on the time-delay compensation

method.

3.1.2 Butterfly-Shaped PDC

The butterfly-shaped PDC is a model-free time-delay compensator. The term model-free means

that this compensator does not require any information regarding the time delays. Figure 3-2

shows the block diagram of the butterfly-shaped PDC originally proposed by Lai et al. [90].

Figure 3-3 shows the block diagram equivalent to Fig. 3-2 with the controller placed on the

remote controller side of the network delay. As shown in Fig. 3-3, in the PDC-based networked

control systems, the controller �퐺c(�푠) has to be implemented on both the remote controller and

— 37 —

Chapter 3 Network Delay Compensation for Remote Router Control

Network
Delay

−
"($)&($) +

+
+

+
+

(!($)

+
+

+
+

("($)(#($)($($)

"$($) "#($) "!($) ""($)

Remote Controller Side Plant Side

Original
Controller Controller

Model
!!(#)%"#!$

%"#"$

!%(#)

−!&(#)

!&"'(#)

Fig. 3-4 Proposed butterfly-shaped PDC scheme considering controller model mismatch.

plant sides.

In the field of motion control, the nominal plant model is generally time-invariant as long as

the plant system is not changed dynamically in operation. On the other hand, the nominal plant

model of TCP/AQM network used in controller design should be frequently changed because

the plant system, i.e., the amount of network traffic through routers, may fluctuate in operation.

However, the controller on the plant side cannot be updated so frequently in operation because

the controller is implemented to the router’s firmware, whereas the software-based original

controller is implemented to a remote server.

Figure 3-4 shows the proposed butterfly-shaped PDC scheme with the controller �퐺c(�푠) on

the plant side replaced with the controller model �퐺m(�푠). In our proposed PDC-based system

shown in Fig. 3-4, the original controller on the remote controller side �퐺c(�푠) and the controller

model on the plant side �퐺m(�푠) are defined as different transfer functions to discuss their model

mismatch, which would not have occurred in motion control, as assumed in [90].

In this section, it is confirmed that the block diagram shown in Fig. 3-4 compensates for

network delay. First, the input and output sides of the plant butterfly element, each denotes as

�푈p(�푠) and �푌r(�푠), respectively, can be rewritten as follows:

�푈p(�푠) = �푈r(�푠) − �퐺m(�푠)�푌p(�푠), (3.3)

— 38 —

Chapter 3 Network Delay Compensation for Remote Router Control

�푌r(�푠) = �푌p(�푠) + �퐺m
−1(�푠)�푈p(�푠). (3.4)

Since the transfer function from �푈p(�푠) to �푌p(�푠) can be written as (3.5), the transfer function

from�푈r(�푠) to �푌r(�푠) can be derived as (3.6):

�푌p(�푠)
�푈p(�푠)

= �퐺p(�푠), (3.5)

�푌r(�푠)
�푈r(�푠)

=
�푌p(�푠) + �퐺m

−1(�푠)�푈p(�푠)
�푈p(�푠) + �퐺m(�푠)�푌p(�푠)

=
�퐺p(�푠) + �퐺m

−1(�푠)
1 + �퐺m(�푠)�퐺p(�푠)

.

(3.6)

The forward and feedback signals right after the network, each denotes as �푈r(�푠) and �푌�푙 (�푠), can

be written as shown in (3.7) and (3.8), respectively.

�푈r(�푠) = �푈�푙 (�푠)�퐺c(�푠)�푒−�푡1�푠 (3.7)

�푌�푙 (�푠) = �푌r(�푠)�푒−�푡2�푠 (3.8)

From (3.6)–(3.8), the transfer function from�푈�푙 (�푠) to �푌�푙 (�푠) can be derived as (3.9)

�푌�푙 (�푠)
�푈�푙 (�푠)

=
�푌r(�푠)�푒−�푡2�푠�퐺c(�푠)�푒−�푡1�푠

�푈r(�푠)

=

(
�퐺p(�푠) + �퐺m

−1(�푠)
)
�퐺c(�푠)�푒−(�푡1+�푡2)�푠

1 + �퐺m(�푠)�퐺p(�푠)
.

(3.9)

The forward and feedback output signals at the left hand side butterfly element, each denotes as

�푈�푙 (�푠) and �푌c(�푠), can be written as (3.10) and (3.11), respectively.

�푈�푙 (�푠) = �푈c(�푠) + �푌c(�푠) (3.10)

— 39 —

Chapter 3 Network Delay Compensation for Remote Router Control

�푌c(�푠) = �푌�푙 (�푠) +�푈c(�푠) (3.11)

By combining these equations, (3.12) and (3.13) can be obtained.

2�푈c(�푠) = �푈�푙 (�푠) − �푌�푙 (�푠) (3.12)

2�푌c(�푠) = �푌�푙 (�푠) +�푈�푙 (�푠) (3.13)

From these equations and (3.9), the transfer function from �푈c(�푠) to �푌c(�푠) can be derived as

(3.14)

�푌�푐 (�푠)
�푈�푐 (�푠)

=
�푈�푙 (�푠) + �푌�푙 (�푠)
�푈�푙 (�푠) − �푌�푙 (�푠)

=

(
1 + �퐺m(�푠)�퐺p(�푠)

)
+
(
�퐺p(�푠) + �퐺m

−1(�푠)
)
�퐺c(�푠)�푒−(�푡1+�푡2)�푠

(
1 + �퐺m(�푠)�퐺p(�푠)

)
−
(
�퐺p(�푠) + �퐺m

−1(�푠)
)
�퐺c(�푠)�푒−(�푡1+�푡2)�푠

.
(3.14)

The forward input signal at the left hand side butterfly element�푈c(�푠) can be expressed as (3.15)

�푈c(�푠) = �푅(�푠) − �푌c(�푠). (3.15)

By combining (3.14) and (3.15), the transfer function from the input of the control system �푅(�푠)

to �푌c(�푠) can be derived as (3.16)

�푌c(�푠)
�푅(�푠) =

�푈�푙 (�푠) + �푌�푙 (�푠)
2�푈c(�푠)

=

(
1 + �퐺m(�푠)�퐺p(�푠)

)
+
(
�퐺p(�푠) + �퐺m

−1(�푠)
)
�퐺c(�푠)�푒−(�푡1+�푡2)�푠

2
(
1 + �퐺m(�푠)�퐺p(�푠)

) .

(3.16)

Then, by utilizing the relationship between �푌c(�푠) and �푌p(�푠) shown in (3.17) and the relationship

between�푈p(�푠) and �푌p(�푠) shown in (3.18), �푌p(�푠) can be expressed as (3.19).

�푌c(�푠) = �푈c(�푠) +
(
�푈p(�푠)�퐺m(�푠) + �푌p(�푠)

)
�푒−�푡2�푠 (3.17)

— 40 —

Chapter 3 Network Delay Compensation for Remote Router Control

�푈p(�푠) = �퐺p
−1(�푠)�푌p(�푠) (3.18)

�푌p(�푠) =
(�푌c(�푠) −�푈c(�푠))(

�퐺p
−1(�푠)�퐺m(�푠) − 1

)
�푒−�푡2�푠

(3.19)

Using (3.19), the transfer function from �푅(�푠) to �푌p(�푠) can be derived as (3.20)

�푌p(�푠)
�푅(�푠) =

�퐺c(�푠)�퐺m
−1(�푠) − �퐺c(�푠)�퐺p(�푠)

1 + �퐺m(�푠)�퐺p(�푠)
· 1
�퐺p

−1(�푠)�퐺m
−1(�푠) − 1

· �푒−�푡1�푠

=
�퐺m(�푠)�퐺p(�푠)

1 + �퐺m(�푠)�퐺p(�푠)
· 1
�퐺m(�푠)�퐺p(�푠)

·
�퐺c(�푠)�퐺m

−1(�푠) − �퐺c(�푠)�퐺p(�푠)
�퐺p

−1(�푠)�퐺m
−1(�푠) − 1

· �푒−�푡1�푠

=
�퐺m(�푠)�퐺p(�푠)

1 + �퐺m(�푠)�퐺p(�푠)
·
�퐺c(�푠)�퐺m

−1(�푠) − �퐺c(�푠)�퐺p(�푠)
�퐺m(�푠)�퐺m

−1(�푠) − �퐺m(�푠)�퐺p(�푠)
· �푒−�푡1�푠

=
�퐺m(�푠)�퐺p(�푠)

1 + �퐺m(�푠)�퐺p(�푠)
· �퐺c(�푠)
�퐺m(�푠)

· �푒−�푡1�푠 .

(3.20)

It is clear that �푌p(�푠) = �푌 (�푠), thus the transfer function for the total networked control system

using PDC �퐺PDC(�푠) can be expressed as (3.21)

�퐺PDC(�푠) =
�푌 (�푠)
�푅(�푠) =

�퐺m(�푠)�퐺p(�푠)
1 + �퐺m(�푠)�퐺p(�푠)

· �퐺c(�푠)
�퐺m(�푠)

· �푒−�푡1�푠 . (3.21)

The final transfer function shown in (3.21) consists of an ideal transfer function using �퐺m(�푠),

model mismatch between �퐺m(�푠) and �퐺c(�푠), and pure forward delay �푡1.

The controller model �퐺m(�푠) is generally designed identical to the original controller �퐺c(�푠).

By assuming that �퐺m(�푠) = �퐺c(�푠), (3.21) can be rewritten as (3.22)

�퐺PDCmatch(�푠) =
�퐺c(�푠)�퐺p(�푠)

1 + �퐺c(�푠)�퐺p(�푠)
· �푒−�푡1�푠 . (3.22)

As (3.22) shows, the control system using a butterfly-shaped PDC successfully compensates the

effect of the network delay.

— 41 —

Chapter 3 Network Delay Compensation for Remote Router Control

Network
Delay

Original
Controller

−

"#

Controller
Model

+

+

+

++

+

+

+

TCP/AQM Network Model

+

%!"
−"&#$%

!!(#) %"#!$

%"#"$

%"$%# 1
'&#'

−!((#)

!(")(#)

Fig. 3-5 Proposed remote AQM control system using butterfly-shaped PDC.

3.2 Control System Design

As mentioned in the previous section, the proposed control system includes an original

controller and controller model, and their mismatch may occur. This section presents the block

diagram of the proposed remote AQM control system with a butterfly-shaped PDC and discuss

the model mismatch.

3.2.1 Proposed Remote AQMControl System Using Butterfly-Shaped PDC

Figure 3-5 shows the proposed remote AQM control system using a butterfly-shaped PDC.

The specific equations describing the transfer function of the original controller �퐺c(�푠) and the

controller model �퐺m(�푠) are as shown in (3.23) and (3.24), respectively.

�퐺c(�푠) = �푀nc

(
�퐾p + �퐾i

1
�푠
+ �퐾d�푠

)
(3.23)

�퐺m(�푠) = �푀nm

(
�퐾p + �퐾i

1
�푠
+ �퐾d�푠

)
(3.24)

In (3.23) and (3.24), �푀nc and �푀nm denote the inertia models used for designing the original

controller and the controller model, respectively.

— 42 —

Chapter 3 Network Delay Compensation for Remote Router Control

3.2.2 Model Mismatch

As shown in (3.22), if the original controller and controller model are identical, the transfer

function of the total control system can be constructed only from the ideal transfer function and

pure forward delay. However, it is possible that the original controller and the controller plant

may differ in reality. it is supposed that the controller model is implemented in the bottleneck

router’s firmware in actual implementation of this system. Thus, the implemented controller

model may be updated periodically, but not in real time.

As shown in (2.22), the inertia model �푀n is defined by the bottleneck link capacity �퐶 and

the nominal number of TCP sessions �푁n. In addition, both the original controller and controller

model include their own individual inertia models. Therefore, the equations defining �푀nc and

�푀nm can be rewritten as (3.25) and (3.26), respectively.

�푀nc = −2�푁nc
�퐶2 (3.25)

�푀nm = −2�푁nm
�퐶2 (3.26)

In (3.25) and (3.26), �푁nc and �푁nm denote the nominal number of TCP sessions used to design

original controller and controller model, respectively.

The original controller and controller model both utilize the same PID controller gain

parameters, and it is not likely that the bottleneck link capacity changes over time. Therefore,

the mismatch between the original controller and controller model may occur when the values

of �푁nc and �푁nm are not equal. As shown in (3.21), the model mismatch ratio directly affects

the transfer function of the whole system proportionally. Therefore, the design of the original

controller must be adjusted to lower the proportional effect due to model mismatch while still

maintaining the overall performance of the TCP/AQM congestion control system.

— 43 —

Chapter 3 Network Delay Compensation for Remote Router Control

⋮ ⋮!

Network

Senders Receivers
Remote

Controller

Bottleneck Link

10 Mbps 10 ms

!

Fig. 3-6 Simulation topology.

3.3 Performance Evaluation

This section shows simulation results that confirm the validity of the proposed butterfly-

shaped PDC and the effect of model mismatch.

3.3.1 Simulation Setup

Simulations were performed using the network simulator ns-2 in order to validate the proposed

congestion controller. The dumbbell shaped network topology shown in Fig. 3-6 was utilized in

the simulations. The value of the number of TCP sessions �푁 varies depending on the simulation

purpose, which was set to 100 if not specified. All links except one connecting the bottleneck

router and the remote controller have 10 ms of latency, which makes the round-trip propagation

delay of TCP sessions equal to 60 ms. The network delays between the bottleneck router and the

remote controller (which are �푡1 and �푡2) are specified for each simulation. The parameters used

in the simulations are shown in Table 3-1. The parameters used to design the PID controller are

shown in Table 3-2. Control parameters were set by referring to [91]. The values of nominal

number of TCP sessions used to design the original controller �푁nc and the controller model �푁nm

vary depending on the simulation purpose, which were set equal to �푁 if not specified. As the

TCP protocol version, TCP NewReno was utilized.

— 44 —

Chapter 3 Network Delay Compensation for Remote Router Control

Table 3-1 Simulation parameters

Sender side link capacity 10 Mbps
Receiver side link capacity 10 Mbps
Bottleneck link capacity �퐶 10 Mbps
Sender side link latency 10 ms
Receiver side link latency 10 ms
Bottleneck link latency 10 ms

Packet size 1000 Bytes
Simulation duration 180 s

Packet drop probability operating point �푝0 0
Router buffer size 200 packets

Target queue length �푞0 100 packets
Control period 0.001 s

Table 3-2 Control parameters

�퐾p Proportional gain 900
�퐾i Integral gain 700
�퐾d Derivative gain 55
�푔dif Cut-off frequency of pseudo-differential 50 rad/s

3.3.2 Compensation of Identical Forward and Feedback Time Delays

Simulation results using the matching controller model with forward network delay �푡1 equal to

feedback network delay �푡2 are shown in this subsection. Figure 3-7 shows the simulation results

when �푡1 = �푡2 = 50 ms. The figure shows the simulation results of the control system without the

butterfly-shaped PDC, referred as “without PDC”, and with the butterfly-shaped PDC, referred

as “with PDC”. From the simulation results, it can be seen that the queue length oscillation of

“without PDC” is larger than that of “with PDC”. This indicates that the network delay directly

affects the stability of the system, and the PDC effectively compensates this network delay.

Figure 3-8 shows the standard deviation (SD) of the queue length for various forward and

feedback delays. The SD values were calculated using all simulation results after 10 s out of

the total simulation duration of 180 s, in order to avoid the effect of overshoot occurring at

the start of the simulations. A larger SD value indicates that a larger queue length oscillation

— 45 —

Chapter 3 Network Delay Compensation for Remote Router Control

is occurring. It can be seen from Fig. 3-8 that the SD is larger when network delay is larger

without the PDC. However, this effect can be compensated and the SD values can be kept at

a relatively lower value by implementing PDC to the system, even with a large network delay.

The effectiveness of the PDC in compensating for the identical forward and feedback network

delays can be verified from these simulation results.

3.3.3 Compensation of Different Forward and Feedback Time Delays

This subsection shows the simulation results using the matching controller model when �푡1 and

�푡2 are different. Figure 3-9 shows the simulation results when �푡1 = 20 ms and �푡2 = 60 ms.

Figure 3-10 shows the simulation results when �푡1 = 60 ms and �푡2 = 20 ms. Figures 3-11 and

3-12 each shows the SD value for various �푡2 values when �푡1 = 20 and 60 ms, respectively. From

these simulation results, it can be stated that the proposed control system utilizing the PDC

can compensate network delays, even if the forward and feedback delays are not identical. The

relationship between forward and feedback delays also did not affect the PDC efficiency.

3.3.4 Compensation of Fluctuating Time Delays

This subsection shows the simulation results using the matching controller model while �푡1 and

�푡2 are simultaneously fluctuating. Figure 3-13 shows two types of delay fluctuations used in the

simulation. Figures 3-14 and 3-15 shows the simulation results while �푡1 and �푡2 are fluctuating

with type A and type B. From these simulation results, it can be seen that the PDC successfully

compensates for network delays, even if the network delays fluctuate.

3.3.5 Discussion About Model Mismatch

In this subsection, all simulations were performed when �푡1 and �푡2 were set to 50 ms. First, the

value of �푁nm was set to 100, as was done in the previous simulations. Then, by assuming a

situation where the actual number of TCP sessions �푁 was changed from the original number of

— 46 —

Chapter 3 Network Delay Compensation for Remote Router Control

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

without PDC with PDC

Fig. 3-7 Simulation results (�푡1 = �푡2 = 50 ms).

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

SD
 o

f q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Forward and feedback delay [ms]

without PDC with PDC

Fig. 3-8 Comparison of SD values (�푡1 = �푡2).

— 47 —

Chapter 3 Network Delay Compensation for Remote Router Control

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

without PDC with PDC

Fig. 3-9 Simulation results (�푡1 = 20 ms, �푡2 = 60 ms).

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

without PDC with PDC

Fig. 3-10 Simulation results (�푡1 = 60 ms, �푡2 = 20 ms).

— 48 —

Chapter 3 Network Delay Compensation for Remote Router Control

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

SD
 o

f q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Feedback delay [ms]

without PDC with PDC

Fig. 3-11 Comparison of SD values (�푡1 = 20 ms).

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

SD
 o

f q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Feedback delay [ms]

without PDC with PDC

Fig. 3-12 Comparison of SD values (�푡1 = 60 ms).

— 49 —

Chapter 3 Network Delay Compensation for Remote Router Control

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180

O
ne

-w
ay

 n
et

w
or

k
de

la
y

[m
s]

Elapsed time [s]

(a) Delay fluctuation type A

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180

O
ne

-w
ay

 n
et

w
or

k
de

la
y

[m
s]

Elapsed time [s]

(b) Delay fluctuation type B

Fig. 3-13 Two types of delay fluctuations.

TCP sessions 100, the value of �푁 was changed and the simulation was repeated. Assuming that

the original controller can detect a change in the actual number of TCP sessions, the value of

�푁nc was kept equal to �푁 .

Figure 3-16 shows the simulation results when �푁nm = 100 and �푁 = �푁nc = 60, 80, 100, 120,

and 140. Since the target queue length �푞cmd was set to 100 packets, the ideal response of the

system had its average queue length close to 100 packets. However, as Fig. 3-16 shows, the

average queue length differed from the ideal response when mismatch error between �푁nm and

�푁nc = �푁 occurred. The stability of the system, i.e., the queue length oscillation, remained nearly

constant, even if mismatch occurred. Thus, the effect of model mismatch can be discussed by

focusing on the average queue length.

Figure 3-17 shows the results of average queue lengths when �푁nm = 100 , and �푁 and �푁nc were

set to 60, 80, 100, 120, or 140. The average queue lengths were calculated using all simulation

results after 10 s out of the total simulation duration of 180 s in order to avoid overshoot occurring

at the beginning of the simulations. As Fig. 3-17 shows, the average queue length would be

nearly equal to 100 packets when �푁nc = 100, which was equal to �푁nm . Therefore, it can be

assumed that when �푁nc = �푁nm , the system will return the ideal average queue length.

The same simulations with �푁nm = 80 and 120 were performed in order to confirm this

— 50 —

Chapter 3 Network Delay Compensation for Remote Router Control

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

without PDC with PDC

Fig. 3-14 Simulation results for (�푡1, �푡2) =Type A.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

without PDC with PDC

Fig. 3-15 Simulation results for (�푡1, �푡2) =Type B.

— 51 —

Chapter 3 Network Delay Compensation for Remote Router Control

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

N=Nnc=60 N=Nnc=80 N=Nnc=100 N=Nnc=120 N=Nnc=140

Fig. 3-16 Simulation results with mismatch (�푁 = �푁nc).

60

80

100

120

140

0

50

100

150

200

60
80

100
120

140

N

Av
er

ag
e

qu
eu

e
le

ng
th

 [p
ac

ke
ts

]

Nnc

0-50 50-100 100-150 150-200

Fig. 3-17 Average queue length (�푁nm=100).

— 52 —

Chapter 3 Network Delay Compensation for Remote Router Control

60

80

100

120

140

0

50

100

150

200

60
80

100
120

140

N

Av
er

ag
e

qu
eu

e
le

ng
th

 [p
ac

ke
ts

]

Nnc

0-50 50-100 100-150 150-200

Fig. 3-18 Average queue length (�푁nm = 80).

60

80

100

120

140

0

50

100

150

200

60
80

100
120

140

N

Av
er

ag
e

qu
eu

e
le

ng
th

 [p
ac

ke
ts

]

Nnc

0-50 50-100 100-150 150-200

Fig. 3-19 Average queue length (�푁nm = 120).

— 53 —

Chapter 3 Network Delay Compensation for Remote Router Control

assumption. Figures 3-18 and 3-19 each shows the results of average queue lengths when �푁nm =

80 and 120, respectively. In Fig. 3-18, the average queue length is nearly equal to 100 packets

when �푁nc = 80, which is equal to �푁nm . In Fig. 3-19, the average queue length is nearly equal to

100 packets when �푁nc = 120, which is equal to �푁nm . The value of �푁 in both figures does not

clearly affect the average queue length.

These simulation results confirm that �푁nc = �푁nm is suitable, regardless of the value of �푁 .

3.4 Summary

This chapter proposed a remote congestion controller with the butterfly-shaped PDC for

time-delay compensation in the TCP/AQM network. The major novelty of this study is the

application of the butterfly-shaped PDC, which was originally proposed for motion control,

to the non-linear TCP/AQM network control system. The simulation results showed that the

proposed controller with the butterfly-shaped PDC effectively stabilized the TCP/AQM network

even if the system included time-varying delays. The proposed congestion control system with

PDC may have a model mismatch between the actual system and the controller model, and the

ratio of the controller model and the original controller proportionally affects the output of the

system. It was verified that by matching the parameters of the original controller to that of the

controller model, the effect of model mismatch can be excluded even if the parameters do not

match that of the actual system. Future work includes considering the situation where multiple

routers are controlled simultaneously with different controller models.

— 54 —

Chapter 4

Robust Dead Time Compensation for

High-Latency Networks

4.1 Background

Congestion control based onAQM is negatively impacted by themodeling error of the system

and the time delay caused by the RTT of the TCP flows. Recently proposed AQM based on

control theory is no exception, and there are some studies focusing on compensating either the

modeling error or time delay. However, simultaneous compensation of the modeling error and

time delay has not been studied for TCP/AQM networks. The related studies on compensation

methods for the time delay or modeling error in TCP/AQM networks are described below.

As previously mentioned in chapters 1 and 2, the receiver host notifies the corresponding

sender host of congestion when it detects the packet loss, and the sender host scales the sending

window size down based on it. This means that after sending a packet, the sender host cannot

scale the sending window size down until it receives the notification with a specific delay of

RTT. Thus, TCP/AQM networks include a time delay element such as RTT between the senders

and receivers, which affects the performance of the control system [92]. Several methods have

— 55 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

been proposed to compensate for the effect of this built-in delay of the TCP/AQM network, and

the most famous method is implementing the SP [85, 87, 89]. However, a TCP/AQM congestion

control system using an SP cannot cope with fluctuations of the network parameters, such as the

number of TCP connections. Because such fluctuations are likely to happen in the TCP/AQM

network, this effect must be considered in the design of the AQM scheme.

The robust congestion controller design that uses a disturbance observer (DOB) is an effective

way to cope with the parameter fluctuations [78]. DOB has been widely utilized in the field

of motion control [93]. It can estimate parameter variations as disturbances, and the estimated

disturbance is fed back for robust control. The modeling error can be included in the disturbance

as well, making the modeling much easier. On the other hand, the TCP/AQM congestion control

system using the DOB does not have a time delay compensator. The DOB-based controller

can be effectively used when the time delay is small. Because of its effectiveness, the DOB

has been used for congestion control in AQM with small time delay [63, 79, 94, 95, 96].

However, a significant time delay in the TCP/AQM network will cause serious degradation in

the performance and result in instability of the network. Therefore, the effects of time delay

should be considered in the design of the AQM scheme.

This chapter proposes a novel TCP/AQMcongestion control scheme supportingTCPflows by

implementing disturbance compensation and time delay compensation in an integrated manner

and avoids serious congestions under large RTT. The proposed control system consists of a PD

controller, DOB with an artificial delay, and an SP. By utilizing the DOB with an artificial delay,

the disturbance of the system can be suppressed even if the TCP/AQM network includes a time

delay element. Implementation of the SP will negate the effect of the time delay element by

using the plant model. A feature of the SP is that it needs a reasonably approximated plant model

to function ideally. Because the disturbance, including the modeling error, can be suppressed

by the DOB, the SP can obtain a well-approximated plant model by utilizing the same model

employed by the DOB. Kato et al. [97] proposed a motion control system with the DOB and SP

to compensate for modeling error and time delay. However, unlike the motion control system,

— 56 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

!! ""#$! 1
!!$%

TCP/AQM Network

!!"Controller

+
− "#

−

"$#$%
%&($)

"#̈#$% "$

Saturation
Function

"$&'(

DisturbanceTime delay

Fig. 4-1 TCP/AQM network with a saturation function.

the TCP/AQM network congestion control system is subject to input saturation of packet drop

probability. The existence of saturation function makes a direct introduction of the DOB and

SP impossible. In this study, this input saturation is taken into account and a novel TCP/AQM

network congestion control system with the DOB and SP is designed, to compensate for the

disturbance and time delay simultaneously.

4.1.1 Saturation Function

As shown in Fig. 2-11, the controller of the control-theory based TCP/AQM congestion control

system calculates the reference packet drop probability �훿�푝ref from �훿�푞. The fact that �훿�푝ref is in the

unit of probability means that its value must be saturated to be in the range of 0 to 1. Figure 4-1

is the block diagram shown in Fig. 2-11 with the saturation function explicitly indicated, where

�훿�푝sat denotes the reference packet drop probability after the saturation function. In addition,

Fig. 4-1 clarifies the position of disturbance and time delay which are going to be discussed in

the following sections.

The saturation function alters the value of �훿�푝ref as follows:

�훿�푝sat =




0 (�훿�푝ref < 0)

�훿�푝ref (0 " �훿�푝ref " 1)

1 (1 < �훿�푝ref) .

(4.1)

— 57 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

!!"#!

!!"#"

1
#$$

1
$

%%&'
$ + %%&'

%%&'#$

%%&'#$

Saturation
Function

!"!"#

TCP/AQM Network

#$%

DOB

+
−

+ +

+
−

!$
+ +

#%$%

!"&'(!")*% !$̇

Fig. 4-2 TCP/AQM network with the DOB.

The existence of this saturation function induces a problem when implementing DOB and SP in

an integrated manner, which will be discussed afterwards in this chapter.

4.1.2 DOB

As indicated in 4-1, the disturbance of the TCP/AQM network control system is denoted as

�푑dp. This disturbance includes the parameter fluctuation, modeling error, coexistence of non-

TCP flows, etc. In order to suppress the effect of the disturbance �푑dp, the DOB [93] has been

implemented as a disturbance compensator. Because the TCP/AQM network has an input

delay in its system, the DOB must consider the time delay element [98]. By compensating the

disturbance, the DOB attempts to make the actual TCP/AQM network behave identical to the

nominal model.

Figure 4-2 shows the TCP/AQM network with the DOB, where �훿 $�푞 and �훿�푝cmp each denotes

the queue velocity and the reference packet drop probability including the compensation signal

from the DOB, respectively. In addition, �푑dp, �푅n, and �푔dis denote the compensation signal output

— 58 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

from the DOB, the nominal time delay, and the cut-off frequency of the DOB, respectively.

By assuming that �푅n = �푅0, the DOB estimates the value of �푑dp through the low pass filter,

as (4.2).

�푑dp =
�푔dis

�푠 + �푔dis
�푑dp. (4.2)

The DOB suppresses �푑dp by modifying the reference packet drop probability as follows:

�훿�푝cmp = �훿�푝ref + �푑dp. (4.3)

Because the actual input to the TCP/AQM network is the probability, its value must be between

0 and 1. The saturation function will alter the value of �훿�푝cmp based on this rule, as expressed as

(4.4)

�훿�푝sat =




0
(
�훿�푝cmp < 0

)
�훿�푝cmp

(
0 " �훿�푝cmp " 1

)
1

(
1 < �훿�푝cmp

)
.

(4.4)

By assuming that the error due to saturation does not occur, i.e., �훿�푝sat = �훿�푝cmp, the re-

lationship at the point where the disturbance �푑dp joins the control signal can be obtained as

(4.5)

�푀n�푠�훿 $�푞 = �푒−�푠�푅0
(
�훿�푝sat + �푑dp

)
− �푑dp

= �푒−�푠�푅0�훿�푝cmp + �푒−�푠�푅0 �푔dis
�푠 + �푔dis

�푑dp − �푑dp

= �푒−�푠�푅0�훿�푝cmp −
(
�푠 + �푔dis

(
1 − �푒−�푠�푅0

)
�푠 + �푔dis

)
�푑dp

= �푒−�푠�푅0�훿�푝cmp −
(
�퐻 + �퐿

(
1 − �푒−�푠�푅0

))
�푑dp, (4.5)

where the high-pass filter�퐻 = �푠
�푠+�푔dis and the low-pass filter �퐿 = �푔dis

�푠+�푔dis . Using (4.5), the equivalent

— 59 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

!"#$% 1
'()

1
)

TCP/AQM Network

*+,

+
− -.-/012 -.̇

4 + 6 1 − !#$%

Fig. 4-3 Equivalent block diagram of Fig. 4-2 when �훿�푝sat = �훿�푝cmp.

𝑒−𝑠𝑅0
1

𝑀n𝑠2

Ideal TCP/AQM

𝛿𝑞𝛿𝑝ref

Fig. 4-4 Ideal TCP/AQM network with full suppression of disturbance.

block diagram of Fig. 4-2 can be obtained as shown in Fig. 4-3. Ideally, if �푔dis → ∞ and

�푅0 → 0, the disturbance is suppressed completely, i.e., the TCP/AQM network model perfectly

converges on the nominal inertia model of the TCP/AQM network �푀n. The block diagram of

an ideal TCP/AQM network with its disturbance suppressed perfectly is shown in Fig. 4-4. The

robustness of the system with DOB against disturbance has been discussed in previous studies

[63, 78].

4.1.3 SP

In the feedback control, the control command of the following sampling time is determined

according to a deviation of the current command and the response. When a time delay element

— 60 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

1
"!#"

1 − %#$%!

&&(#) "! %#$%" 1
"!#"

Saturation
Function Ideal TCP/AQM NetworkController

!"

SP

+
−−

!#!"#$

$ % & %+ !#%&'

!"!(

Fig. 4-5 Time delay compensation by the SP.

exists in the feedback loop, the response will be delayed for the same period, inducing a

degradation of the control performance. The SP excludes the time delay element outside of the

feedback loop by using the control plant model and time delay model [85].

The block diagram of a control system of the ideal TCP/AQM network with SP implemented

is shown in Fig. 4-5, where �푅(�푠) and �푌 (�푠) denote the input and output of the system in the

Laplacian domain. In addition, �훿�푝′sat and �훿�푞sp denote the input and output signal of the SP. The

signal �훿�푝′sat is also the input signal to the ideal TCP/AQM network. As shown in Fig. 4-5, the

SP utilizes the TCP/AQMmodel and the delay model for its transfer function. By assuming that

the error due to saturation does not occur, i.e., �훿�푝′sat = �훿�푝ref , the transfer function of the entire

system can be expressed as follows:

�푌 (�푠)
�푅(�푠) =

�퐺c(�푠)�푒−�푠�푅0

�푠2 + �퐺c(�푠)
(
1 + �푒−�푠�푅0 − �푒−�푠�푅n

) . (4.6)

If the plant model is identical to the actual control plant and the nominal delay �푅n equals the

actual delay �푅0, the equivalent block diagram of Fig. 4-5 can be obtained as shown in Fig. 4-6.

The transfer function of (4.6) can be also transformed into (4.7)

�푌 (�푠)
�푅(�푠) =

�퐺c(�푠)
�푠2 + �퐺c(�푠)

�푒−�푠�푅0 . (4.7)

— 61 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

!"($) &'
1

&'$)

Ideal TCP/AQM NetworkController
*+

−

*,-./
0 $ 1 $+ 23456

Fig. 4-6 Equivalent block diagram of Fig. 4-5.

As Fig. 4-6 indicates, the time delay element can be excluded from the feedback loop. This

means that the characteristic equation of the control system does not include the time delay

element, which will enable the design of a controller without considering the effect of the time

delay.

4.2 Control System Design

The proposed control system is designed by implementing DOB and SP at the same time.

This section describes the design procedures of the proposed control system. The PD controller

is utilized for the controller of the system.

4.2.1 AQM Using PD Controller

The calculation of PD controller is nearly identical to that of PID controller, the only difference

beingwhether integral gain�퐾i exists or not. When the PD controller is utilized, �훿 '�푞ref is calculated

as (4.8)

�훿 '�푞ref = �퐺c(�푠)�훿�푞

=
(
�퐾p + �퐾d�푠

)
(�푞0 − �푞) .

(4.8)

— 62 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

!"#$%

!"#$&

1
()*

1
*

+,-.
* + +,-.

+,-.()

+,-.()

01.23

TCP/AQM Network

4,5

DOB

+
−

+ +

+
−

06
+ +

47,5

0189: 01;<5 06̇
+

−

4.23

Fig. 4-7 TCP/AQM network with the DOB and saturation as a disturbance �푑sat.

Thus, using (2.24) and (4.8), �훿�푝ref calculated by the PD controller can be derived as (4.9)

�훿�푝ref = �푀n�퐺c(�푠)�훿�푞

= �푀n
(
�퐾p + �퐾d�푠

)
(�푞0 − �푞) .

(4.9)

4.2.2 Implementation of DOB and SP in an Integrated Manner

The integrated implementation of DOB and SP to a linear control system has been discussed

by Kato et al. in the past [97]. However, when implementing the DOB and SP in an inte-

grated manner in the TCP/AQM network congestion control system, its nonlinear characteristics

prevents the proper functioning of the simple independent implementation of the two compen-

sators. Because the input to the TCP/AQM network is the packet drop probability, the saturation

function must occur right before the TCP/AQM network. Because of this design restriction, the

compensation signal from the DOB must be added before the input signal passes through the

saturation function, as shown in Fig. 4-2. In the previous section, the saturation function was

— 63 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

!!"#! 1
#$$

1
$

TCP/AQM Network

!!"

+
− "#"$#$% "#̇

% + ' 1 − ! "#!

+
−

!&'(

"$&'()

Fig. 4-8 Equivalent block diagram of Fig. 4-7.

ignored and it was assumed that �훿�푝sat = �훿�푝cmp whereas, in reality, there are adequate chances

that �훿�푝cmp becomes lower than 0 or higher than 1 according to (4.4). The effect of the error

occurring at the saturation function can be expressed as (4.10)

�훿�푝sat = �훿�푝cmp − �푑sat, (4.10)

where �푑sat denotes the saturation error. By using (4.10) as an equivalent method of expressing

the saturation function, the block diagram shown in Fig. 4-2 can be redrawn as Fig. 4-7, and its

equivalent block diagram is shown in Fig. 4-8. The signal alteration caused by the saturation

function in Fig. 4-8 can be expressed as (4.11)

�훿�푝′sat = �훿�푝ref − �푑sat. (4.11)

When the SP is implemented in the TCP/AQM congestion control system with the DOB

shown in Fig. 4-7, the SP requires the saturated input signal without compensation by the DOB,

�훿�푝′sat, as shown in Fig. 4-5. However, the required input �훿�푝′sat is not explicitly shown in Fig. 4-7,

since the compensation signal from the DOB �푑dp is added to �훿�푝ref before the saturation occurs.

Therefore, our proposed method calculates the required input signal �훿�푝′sat based on the actual

— 64 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

input signal �훿�푝sat and �푑dp and inputs the estimated �훿�푝′sat into the SP.

4.2.3 Proposed Control System

Using (4.3), (4.10), and (4.11), �훿�푝′sat can be rewritten as (4.12)

�훿�푝′sat = �훿�푝ref − �푑sat

= �훿�푝ref + �푑dp − �푑sat − �푑dp

= �훿�푝cmp − �푑sat − �푑dp

= �훿�푝sat − �푑dp.

(4.12)

Considering this relationship, the proposed TCP/AQMnetwork congestion control systemwhich

consists of the PD controller, DOB, and SPwas designed. Figure 4-9 shows the block diagram of

the proposed TCP/AQM network congestion control system, where �퐺PD(�푠) denotes the transfer

function of PD controller as shown in (4.8), and �훿�푝sp denotes the input signal to the SP, which

is expressed as follows:

�훿�푝sp = �훿�푝sat − �푑dp = �훿�푝′sat. (4.13)

The input to the SP in the proposed method is equal to the required input signal �훿�푝′sat.

4.3 Performance Evaluation

In this section, first the stability analysis using Nyquist diagram is presented. After that, the

simulation setup andmultiple patterns of simulation results are shown. The results are compared

with those of the conventional methods, namely the control systems using RED[29], controlled

delay (CoDel) [99], proportional integral controller enhanced (PIE) [100], PID controller, and

PD controller with DOB. For simplicity, the proposed method is denoted as PD+DOB+SP,

and the five aforementioned conventional methods are denoted as RED, CoDel, PIE, PID, and

— 65 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

+

!"#$%

!"#$&

1
()*

1
*

+,-.()

+,-.()

TCP/AQM Network

/,0

DOB

+
−

+

−

+ +

−

12+
+

/3,0

+
−−

+,-.
* + +,-.

15.67
89:(*) ()

Controller

1
()*=

1 − !"#$&

SP

12̇15@AB
+

−

/.67
15CD0

12.0

15.0

Fig. 4-9 Block diagram of the proposed control system.

PD+DOB, respectively.

4.3.1 Stability Analysis Using Nyquist Diagram

Figures 4-10 and 4-11 show the Nyquist diagrams of the loop transfer functions when �푅n values

were set to 20 ms and 100 ms, respectively. The proposed PD+DOB+SP is compared with PID

and PD+DOB. It was assumed that �푅0 = �푅n and �푑sat = 0. In addition, �푑dp was set to 0 in PID and

fully suppressed by DOB in PD+DOB and the proposed PD+DOB+SP. The control gains were

set to the same values as those in the simulations. The proportional, integral, and derivative

gains of PID were set to 900, 700, and 55, respectively. The proportional and derivative gains

of PD+DOB and PD+DOB+SP were set to 900 and 60, respectively.

In Fig. 4-10, all the three methods were stable under this condition of �푅n = 20 ms.

The proposed PD+DOB+SP method resulted in larger gain and phase margins than any other

methods. In Fig. 4-11, PID and PD+DOB were unstable under this condition of �푅n = 100

ms, while the proposed PD+DOB+SP was stable. The results indicated that the proposed

PD+DOB+SP effectively compensated for the effect of the time delay element and stabilized the

system, which was also evident from the closed-loop transfer function expressed by (4.7).

— 66 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

-5

-4

-3

-2

-1

0

1

2

3

4

5

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Im
ag

in
ar

y
ax

is

Real axis

PID

PD+DOB

PD+DOB+SP

Fig. 4-10 Nyquist diagram (�푅n = 20 ms).

-5

-4

-3

-2

-1

0

1

2

3

4

5

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Im
ag

in
ar

y
ax

is

Real axis

PID

PD+DOB

PD+DOB+SP

Fig. 4-11 Nyquist diagram (�푅n = 100 ms).

— 67 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

Bottleneck
⋮ ⋮

Senders Receivers

!!" , #!"

! !

!,##

!$" , #$"

Fig. 4-12 Simulation topology.

4.3.2 Simulation Setup

Simulations were performed using the network simulator ns-2. The dumbbell shaped network

topology shown in Fig. 4-12 was utilized in the simulations. In Fig. 4-12, �퐶�푖
s and �푅�푖

s denote

the link capacity and link latency between the sender side bottleneck link router node and the

�푖th (�푖 = 1, 2, · · · , �푁) sender node. Similarly, �퐶�푖
r and �푅�푖

r denote the link capacity and link latency

between the receiver side bottleneck link router node and the �푖th (�푖 = 1, 2, · · · , �푁) receiver node.

The bottleneck link latency is denoted as �푅b; thus, the propagation delay of the �푖th TCP session

�푇�푖
p can be calculated as shown in (4.14)

�푇�푖
p = 2

(
�푅�푖
s + �푅b + �푅�푖

r
)
. (4.14)

Hereon, if the propagation delays of all TCP sessions are equal, the propagation delay is denoted

as �푇p.

The network parameters used in the simulations are shown in Table 4-1, and these are used

unless mentioned otherwise. Thus, the propagation delay is set to 100 ms, unless another

value is specifically mentioned. In RED [29], the queue weight, minimum threshold, maximum

threshold, and maximum packet drop probability were set to 0.002, 50 packets, 150 packets,

and 0.02, respectively. In CoDel [101], the interval and target were set to 116 ms and 14.4 ms,

— 68 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

Table 4-1 Network parameters.
Number of TCP sessions �푁 100

Sender side link capacity �퐶�푖
s (�푖 = 1, 2, · · · , �푁) 100 Mbps

Receiver side link capacity �퐶�푖
r (�푖 = 1, 2, · · · , �푁) 100 Mbps

Bottleneck link capacity �퐶 100 Mbps
Sender side link latency �푅�푖

s (�푖 = 1, 2, · · · , �푁) 20 ms
Receiver side link latency �푅�푖

r (�푖 = 1, 2, · · · , �푁) 20 ms
Bottleneck link latency 10 ms

Nominal number of TCP sessions �푁n 100
Nominal bottleneck link capacity model �퐶n 100 Mbps

Nominal RTT delay model �푅n 100 ms
Packet size 1040 bytes

Maximum window size �푤�푛�푑max 20 packets
Simulation duration 300 s
Router buffer size 200 packets

Target queue length �푞0 100 packets
Control period 0.001 s

respectively. In PIE [102], the update interval, reference latency, and maximum burst allowance

were set to 8 ms, 16 ms, and 16 ms, respectively. The parameters for CoDel and PIE were

heuristically adjusted so as to have the highest throughput while maintaining the average queue

length close to the target queue length of 100 packets. The parameters used in the PD controller,

PID controller, and DOB are shown in Table 4-2. These control parameters were set by referring

to [91]. All simulations were performed without using ECN.

4.3.3 Queue Length Fluctuation

Figure 4-13 shows the queue length fluctuations of RED, CoDel, PIE, PID, PD+DOB, and

PD+DOB+SP for the whole simulation duration of 300 s. The queue length was obtained every

0.05 s. Figure 4-14 shows the first 25 s of queue length fluctuations, along with the queue length

smoothed using EMA. The smoothing factor for EMA was set to 0.01. The smoothed queue

— 69 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

0

50

100

150

200

0 50 100 150 200 250 300

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

(a) RED

0

50

100

150

200

0 50 100 150 200 250 300

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

(b) CoDel

0

50

100

150

200

0 50 100 150 200 250 300

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

(c) PIE

0

50

100

150

200

0 50 100 150 200 250 300

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

(d) PID

0

50

100

150

200

0 50 100 150 200 250 300

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

(e) PD+DOB

0

50

100

150

200

0 50 100 150 200 250 300

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

(f) PD+DOB+SP

Fig. 4-13 Queue length fluctuations.

— 70 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

0

50

100

150

200

0 5 10 15 20 25

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

Queue length
EMA

(a) RED

0

50

100

150

200

0 5 10 15 20 25

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

Queue length
EMA

(b) CoDel

0

50

100

150

200

0 5 10 15 20 25

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

Queue length
EMA

(c) PIE

0

50

100

150

200

0 5 10 15 20 25

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

Queue length
EMA

(d) PID

0

50

100

150

200

0 5 10 15 20 25

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

Queue length
EMA

(e) PD+DOB

0

50

100

150

200

0 5 10 15 20 25

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

Queue length
EMA

(f) PD+DOB+SP

Fig. 4-14 Queue length fluctuations during the first 25 s.

— 71 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

Table 4-2 Control parameters for PID controller, PD controller, and DOB.
�퐾pid
p Proportional gain for PID controller 900

�퐾pid
i Integral gain for PID controller 700

�퐾pid
d Derivative gain for PID controller 55

�퐾pd
p Proportional gain for PD controller 900

�퐾pd
d Derivative gain for PD controller 60

�푔dif Cut-off frequency for PD and PID controllers 50 rad/s
�푔dis Cut-off frequency for DOB 50 rad/s

length was utilized for evaluating the responsiveness of each method.

To evaluate the network performance of each method, the average throughput, average

goodput, and fairness index of goodput were obtained. The average throughput is defined as the

time average of total TCP throughput on the bottleneck link. The average goodput is defined as

the time average of total throughput excluding retransmission of packets, taking the amount of

packet loss into consideration. This excludes the retransmitted packets from the number of total

packets received, denoting how much packet drop occurred. The fairness index is a number that

shows the fairness of the goodput of each TCP session in unit of %. Jain’s fairness index [103]

is utilized in this thesis, and its calculation equation is as follows;

Fairness = (∑ �푥�푖)2

�푛
(∑

�푥�푖2
) ∗ 100 [%], (4.15)

where �푥�푖 denotes the �푖th value of the variable that the fairness is calculated with.

To evaluate the control performance of each method, the average queue length, SD of the

queue length, maximum queue length, and the total number of empty buffer samples were

utilized. The average queue length was measured to evaluate not only the control performance

but also the average queueing delay. The SD of the queue length was calculated to consider

the queue length oscillation and jitter caused by the oscillation. The maximum queue length

can be used to consider the occurrence of buffer overflow and the maximum queueing delay.

— 72 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

Table 4-3 Summary of results in Figs. 4-13 and 4-14.
RED CoDel PIE

Average throughput [Mbps] 97.11 98.85 98.92
Average goodput [Mbps] 96.76 98.49 98.55
Fairness index of goodput [%] 99.96 92.84 84.49
Average queue length [packets] 72.57 100.53 100.62
SD of queue length [packets] 60.71 73.05 70.91
Maximum queue length [packets] 182 200 193
Total number of empty buffer samples 499 306 349
Rise time of the smoothed queue length [s] 11.55 13.65 18.70
Response delay time of the smoothed queue length [s] 5.00 5.20 5.85

PID PD+DOB PD+DOB+SP
Average throughput [Mbps] 99.63 99.80 99.99
Average goodput [Mbps] 99.23 99.24 99.55
Fairness index of goodput [%] 99.94 99.94 99.93
Average queue length [packets] 100.07 57.78 100.28
SD of queue length [packets] 48.45 25.64 27.73
Maximum queue length [packets] 189 118 185
Total number of empty buffer samples 70 51 2
Rise time of the smoothed queue length [s] 8.95 10.15 8.15
Response delay time of the smoothed queue length [s] 4.20 5.05 4.45

The total number of empty buffer samples is defined as the number of measured samples when

the queue length is equal to 0, which indicates the duration when the buffer of the bottleneck

router is empty. The buffer overflow and empty buffer should be avoided to efficiently utilize

the bottleneck link capacity.

To evaluate the responsiveness of each method, the rise time and response delay time of the

smoothed queue length were utilized. Both the rise time and response delay time were derived

by using EMA of queue length, as shown in Fig. 4-14. The rise time is defined as the time

required for rising of the smoothed queue length from 10% to 90% of the average queue length.

The response delay time is defined as the time required for rising of the smoothed queue length

— 73 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

from the initial value to 50% of the average queue length.

The average throughput, average goodput, fairness index of goodput, average queue length,

SD of queue length, maximum queue length, the total number of empty buffer samples, rise

time of the smoothed queue length, and response delay time of the smoothed queue length for

each method are listed in Table 4-3. The average throughput, average queue length, SD of queue

length, maximum queue length, and the total number of empty buffer samples were measured

except for the first 10 s of the simulation duration, to eliminate the surges induced by the TCP

algorithm. The ideal behavior of the AQM congestion control system is to maintain the queue

length stable at the target queue length without any fluctuation and fully utilize the bottleneck

link capacity.

As listed in Table 4-3, the proposed PD+DOB+SP showed the highest average throughput

and goodput among the six methods, followed by PD+DOB and PID. The relationship between

the throughput and goodput, which indicated the amount of packet loss, showed a similar

tendency for each method. RED method showed the highest fairness index of goodput, while

PID, PD+DOB, and proposed PD+DOB+SP methods had nearly identical fairness index values.

The fairness indexes of the four methods were notably higher than those of CoDel and PID.

Maintaining the relatively high fairness index while raising the throughput and goodput, the

proposed PD+DOB+SP was confirmed to provide the best network performance of the six

methods.

PID had the average queue length closest to 100 packets, while the proposed PD+DOB+SP

also kept the average queue length within the range of 100 to 101 packets. This means that PID

and PD+DOB+SP provided better control performance with respect to target tracking. However,

PID provided a larger SD of the queue length than the proposed PD+DOB+SP, which induced

a larger jitter in the queue. In contrast, PD+DOB had the smallest SD of the queue length,

followed by the proposed PD+DOB+SP. This means that PD+DOB and PD+DOB+SP provided

a smaller jitter. However, PD+DOB provided the worst control performance with respect to

target tracking. In addition, only CoDel generated buffer overflow among all the methods. The

— 74 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

proposed PD+DOB+SP showed the smallest number of samples with the buffer being empty

among all the six methods. It was confirmed that the proposed PD+DOB+SP provided the best

control performance with no occurrence of buffer overflow and the least occurrence of empty

buffer.

The proposed PD+DOB+SP showed the shortest rise time, followed by PID and PD+DOB.

The PID showed the shortest response delay time, followed by the proposed PD+DOB+SP. It

was confirmed that PID and the proposed PD+DOB+SP provided better responsiveness than the

other four methods.

Therefore, the proposed PD+DOB+SP was proven to be the best from the perspectives of

not only network performance but also control performance with respect to target tracking and

responsiveness. This indicates that the implementation of the proposed PD+DOB+SP method

will be beneficial for the bottleneck routers. One of the technical difficulties of implementing

PD+DOB+SP to the router is the computation cost of it compared to the other methods. The

calculations done in all six methods consist of the standard four arithmetic operations. In

addition, the amount of calculations is nearly the same amongst all six methods, meaning that

the calculation cost would not vary significantly based on which methods to implement. On

the other hand, while RED, CoDel, PIE, and PID methods only need a few variables to be

stored, PD+DOB method needs to store some certain length of variable array to record the

queue lengths in the past, since the DOB has an artificial delay function inside. Moreover, the

proposed PD+DOB+SP needs two of the same arrays to be stored since the SP also has an

artificial delay function. This will make the proposed PD+DOB+SP consuming more memory

of the router compared to the other five methods, making the computation cost higher. However,

since the queue length is a simple integer, it is safe to say that the increased computation cost at

the router would not give a notable impact on the computational load at the router, considering

the performance of the current routers. If every number stored in the arrays is assumed to have

an 8-byte data size (which is the size of a double-precision floating point format variable) each

and the artificial delay is 1 s, the total amount of additional memory needed is about 16 KB under

— 75 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

the control period of 0.001 s. That additionally required memory size would be nearly negligible

in the modern era. From these considerations, it can be said that the proposed PD+DOB+SP

method can be implemented with no notable increase in computation costs.

In the following sections, the evaluation of link utilization is mainly presented, which is

defined as the ratio of throughput to bottleneck link capacity, since the link utilization is the best

parameter representing the network performance of AQM. PID, PD+DOB, and PD+DOB+SP

are compared since RED, CoDel, and PIE showed worse results than PID, PD+DOB, and

PD+DOB+SP with respect to network and control performances.

4.3.4 Changing the Bottleneck Link Capacity

Figure 4-15 shows the link utilization ratio of the threemethodswhen the bottleneck link capacity

�퐶 and the nominal bottleneck link capacity model �퐶n were changed simultaneously from 20 to

140 Mbps. The maximum value of �퐶 was set considering the throughput upper bound of the

TCP flow. A single TCP session can only send up to 20 packets at once owing to the limitation

of the maximum window size shown in Table 4-1. Because the sender host starts sending the

next packet after the ACK is returned from the receiver hosts, it takes an entire RTT to start

sending the second set of 20 packets after the first. In other words, the maximum throughput of

a single TCP session in packets/s unit can be derived by dividing this maximum window size

by the RTT. The theoretical maximum throughput of the system can be obtained by converting

the unit to Mbps and multiplying by the number of TCP sessions. The theoretical maximum

throughput of the system can be calculated from the maximum window size �푤�푛�푑max, packet

size, number of TCP sessions �푁 , and actual RTT �푅, as shown in (4.16)

�푤�푛�푑max ∗ �푝�푎�푐�푘�푒�푡�푠�푖�푧�푒 ∗ 8 ∗ �푁
�푅 [s] [bps] . (4.16)

By using the parameters shown in Table 4-1 and (4.16), the possible maximum total throughput

can be approximated to 166 Mbps. This value decreases even when the queue exists, due to

— 76 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

0 20 40 60 80 100 120 140 160

L
in

k
ut

ili
za

tio
n

[%
]

Bottleneck link capacity C [Mbps]

PID
PD+DOB
PD+DOB+SP

Fig. 4-15 Simulation results when �퐶 was changed with matching model.

the queueing delay. Thus, the upper bound value of �퐶 was set to 140 to ensure that the system

would not surpass the abovementioned throughput limit.

Figure 4-16 shows the link utilization ratio when �퐶 was changed while �퐶n was maintained

at the nominal value of 100 Mbps. This means that the model comprising the controller, DOB,

and SP differs in value from the actual network. Hereon, this is called “changing the parameter

with model mismatch.”

The link utilization generally drops as �퐶 rises because the inertia of the system increases.

This relationship can be confirmed by referring to (2.22) and (2.23). However, at a certain

point, this relationship reverses and link utilization starts to increase, as implied by the results

of PID and PD+DOB shown in Figs. 4-15 and 4-16. This is because �퐶 becomes sufficiently

large for the congestion to reduce. On the other hand, the proposed PD+DOB+SP maintains

nearly maximum link utilization ratio at any given value of �퐶, demonstrating its time-delay

compensation capability, even with mismatching model value of �퐶n.

— 77 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

0 20 40 60 80 100 120 140 160

L
in

k
ut

ili
za

tio
n

[%
]

Bottleneck link capacity C [Mbps]

PID
PD+DOB
PD+DOB+SP

Fig. 4-16 Simulation results when �퐶 was changed with model mismatch.

4.3.5 Changing the Number of TCP Sessions

Figure 4-17 shows the link utilization ratio when the number of TCP sessions �푁 and the nominal

number of TCP sessions �푁n were changed simultaneously from 80 to 200. Figure 4-18 shows

the link utilization ratio when �푁 was changed while �푁n was maintained at the nominal value of

100. The lower bound of the value of �푁 was set to 80 owing to its maximum throughput. By

using (4.16), the maximum throughput when �푁 = 60 was calculated to be 99.84 Mbps, which

is smaller than �퐶. Thus, �푁 was set to values higher than 60 to ensure that the queue would be

generated.

The link utilization generally drops as �푁 drops because of the enlarging inertia of the system.

This relationship can be confirmed by referring to (2.22) and (2.23). However, at a certain point,

this relationship reverses and the link utilization increases, as implied by the results of PID

and PD+DOB shown in Figs. 4-17 and 4-18. This is because congestion is less likely to

occur when �푁 is sufficiently small. On the other hand, the proposed PD+DOB+SP maintains

— 78 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

60 80 100 120 140 160 180 200 220

L
in

k
ut

ili
za

tio
n

[%
]

Number of TCP sessions

PID
PD+DOB
PD+DOB+SP

Fig. 4-17 Simulation results when �푁 was changed with matching model.

nearly maximum link utilization ratio at any given value of �푁 , demonstrating its time-delay

compensation capability, even with mismatching model value of �푁n.

4.3.6 Changing the RTT

Figure 4-19 shows the link utilization ratio when the propagation delay �푇p and nominal RTT

delay model �푅n were changed simultaneously from 20 to 140 ms. The alteration of �푇p was

achieved by changing the value of �푅�푖
s (�푖 = 1, 2, · · · , �푁). Figure 4-20 shows the link utilization

ratio when �푇p was changed while �푅n was maintained at the nominal value of 100 ms. The upper

bound of the value of �푇p was set to 140 ms owing to its maximum throughput limit. When

�푇p = 160, the maximum throughput was calculated to be approximately 104 Mbps by using

(4.16). At this point, the maximum throughput limit is greater than �퐶 although this is because

the effect of queueing delay is ignored. If there are 100 packets of queue when �퐶 = 100 Mbps,

the queueing delay would be approximately 8 ms. This will lengthen the total RTT, increasing

— 79 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

60 80 100 120 140 160 180 200 220

L
in

k
ut

ili
za

tio
n

[%
]

Number of TCP sessions

PID
PD+DOB
PD+DOB+SP

Fig. 4-18 Simulation results when �푁 was changed with model mismatch.

the denominator of (4.16) and lowering the maximum throughput to 99.04 Mbps. Thus, �푇p was

set to values lower than 160 ms to ensure that adequate queue would be generated to discuss the

queue control performance.

As Figs. 4-19 and 4-20 show, the proposed PD+DOB+SP maintains the highest link

utilization ratio among the three methods under any given value of �푇p. PD+DOB tends to

generally deliver better performance than PID by compensating the time delay element with the

DOB, but its compensation effect appears less effective than that of PD+DOB+SP.

4.3.7 Mixture of UDP Flows

Figure 4-21 shows the link utilization ratio of all TCP sessions when UDP flows coexist. It was

assumed that the UDP flows represent the applications and services, such as video and voice,

unresponsive to congestion control. The UDP flows can be considered as disturbance for the

system. The UDP flows were implemented in the same manner as the TCP sessions shown in

— 80 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

0 20 40 60 80 100 120 140 160

L
in

k
ut

ili
za

tio
n

[%
]

Propagation delay Tp [ms]

PID
PD+DOB
PD+DOB+SP

Fig. 4-19 Simulation results when �푇p was changed with matching model.

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

0 20 40 60 80 100 120 140 160

L
in

k
ut

ili
za

tio
n

[%
]

Propagation delay Tp [ms]

PID
PD+DOB
PD+DOB+SP

Fig. 4-20 Simulation results when �푇p was changed with model mismatch.

— 81 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Li
nk

 u
til

iz
at

io
n

of
 T

C
P

[%
]

Number of UDP sessions

PID
PD+DOB
PD+DOB+SP

Fig. 4-21 Simulation results when UDP flows coexist.

Fig. 4-12, maintaining a simple dumbbell shaped network topology. Each UDP flow utilized in

the simulation attempts to send the packets at the constant bitrate of 1 Mbps. Thus, for example,

if there are 10 UDP sessions coexisting, the UDP session sources would attempt to send the total

load of 10 Mbps to the bottleneck link router. The simulations were conducted with 1, 2, 5, 10,

20, 30, 40, 50, 60, 70, 80, 90, 95, 98, and 100 UDP sessions.

Unlike TCP, UDP traffic does not have its sending rate limited by the receiving of a packet

loss. In fact, the host sending the UDP flow does not even wait for the ACK signal to return

from the receiver host. Thus, the coexistence of the UDP flows creates a different situation when

compared with the network without UDP flows. From Fig. 4-21, PID and PD+DOB appear to

be affected by the different characteristics of the UDP flows, with the total throughput of the

TCP flows being extremely low. On the other hand, the proposed PD+DOB+SP succeeded in

maintaining a relatively higher throughput than the other two methods. From this result, it can

— 82 —

Chapter 4 Robust Dead Time Compensation for High-Latency Networks

be said that the proposed PD+DOB+SP can maintain higher throughput even when UDP flows

coexist.

4.4 Summary

In this chapter, the AQM congestion control systemwhich uses a PD controller, DOB, and SP

in an integrated manner was proposed. The major novelty of the proposed control system is the

accomplishment of the simultaneous implementation of DOB and SP considering the effect of

the saturation function. The effectiveness of the proposed method was validated by performing

simulations using ns-2. The simulations were performed under multiple setups by changing the

parameters that mainly affect the behavior of the TCP/AQM network. The simulation results

showed that the proposed PD+DOB+SPmethod generally achieved the highest throughput when

compared with the conventional methods. The simulation results with model mismatch also

showed that the proposed method maintained its high throughput, demonstrating simultaneous

compensation of time delay and model mismatch. In addition, the proposed method maintained

a relatively higher throughput of TCP flows than the two conventional methods, PID and

PD+DOB, when UDP flows coexisted in the same network. It was confirmed that the proposed

PD+DOB+SPhas improved performancewhen comparedwith the conventionalmethods. Future

works include the implementation of ECN to improve link utilization and simulations usingmore

complicated scenarios such as those employing multiple bottleneck routers.

Introducing machine learning approaches into AQM is one of the promising solutions to op-

timize control parameters. If the controller gains, cut-off frequencies, and nominal parameters in

the proposed method are adaptively optimized according to network conditions, its performance

may be further improved. The real-time optimization of control parameters in the proposed

AQM controller is an issue to be addressed.

— 83 —

Chapter 5

Adaptive Target Queue Length Generation

for QoS-Aware Control

5.1 Background

AQM based on control theory utilizes a parameter called the target queue length, i.e., a

command parameter that the system attempts to keep the actual queue length close to. The

specific value of the target queue length has not been discussed enough in the past studies, and

its value has been traditionally set to one-half of the buffer size or lower [49, 56, 58]. However,

changing its value would affect the performance of the TCP/AQM network.

By fully utilizing the buffer size, the bottleneck router drops smaller quantity of packets,

which reduces the number of packet retransmissions of the TCP flows. If the throughput is the

same, fewer retransmissions mean more efficient data transmission. This could be achieved by

raising the target queue length and the average queue length. If the system utilizes a router

that supports deep buffering, there would be nearly infinite data space to buffer packets and

no complicated AQM technique would be needed. However, when considering a situation

of improving the communication efficiency under a sensor network with low-cost routers,

— 84 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

such a costly router with nearly infinite buffer size would be impossible. Considering the

implementation of IoT network routers, the technique of fully utilizing the limited buffer size

and raising the data transmission efficiency.

On the other hand, lowering the target queue length and the average queue length is beneficial

in terms of lower communication delay. Bufferbloat [105] has been considered to be a problem

since the demand for faster communications in terms of lower latency has been considered

recently. Shortening the queue length will result in smaller queueing delay, which will be

beneficial on some occasions where smaller communication latency is preferred over efficient

data transmission.

Na et al. [106] and Zhang et al. [107] presented a research about tuning the target queue

length. These studies focused on controlling the target queue length according to the average

packet drop probability and determining whether to aim for low latency or low packet loss

ratio based on that information. The methods presented in these studies need the threshold for

determining low load or high load, making the system not scalable for a variety of network

conditions and withholding a risk of performing undesired behavior, such as aiming for low

latency when the higher goodput is the priority.

In this chapter, the novel algorithm which dynamically generates a target queue length for

the control-theory based AQM is proposed. The proposed algorithm has two modes; loss-aware

mode and delay-aware mode; and which to use is predetermined. In the loss-aware mode,

the algorithm attempts to fully utilize the buffer size of the bottleneck router by raising the

target queue length, lowering the packet loss ratio. Methods utilizing constant monitor time

[73], variable monitor time with an approximation curve plot [74], and variable monitor with

dual EMA peak detection method are presented and compared with the conventional method of

constant target queue length. In the delay-aware mode, the algorithm attempts to decrease the

target queue length, lowering the queueing delay while maintaining the full utilization of the

bottleneck link capacity. A proposed method utilizing variable monitor time with dual EMA

peak detectionmethod is comparedwith the conventionalmethod of constant target queue length.

— 85 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Bottleneck
⋮ ⋮

Senders Receivers

!, #!5

! !

!, #!10

!, #!5

Fig. 5-1 Simulation topology.

The modes to be utilized for each buffer is predetermined and will not be automatically switched

dynamically. The proposed dual EMA methods for both modes do not need the network model

to function. As the controller for the system, a PID controller is utilized.

5.2 Effects of Change in Target Queue Length

In this section, the systematic behavior of queue length, the advantages of raising and

lowering the target queue length, and some technical issues are described. The simulation

results shown in this section were obtained using the network topology shown in Fig. 5-1. In

addition, all simulations done in this section utilized a PID controller as an AQM controller,

where proportional gain �퐾p, integral gain �퐾i, derivative gain �퐾d, and cutoff frequency for

pseudo-derivative calculation �푔dif were set to 900, 700, 55, and 50 rad/s, respectively. Network

parameters, i.e., the number of TCP sessions �푁 , bottleneck link capacity �퐶, and propagation

delay �푇p, are mentioned for each presented simulation.

As shown in chapter 2, TCP/AQM network congestion control system based on control

theory utilizes the target queue length �푞0 as the control input. In this chapter, this variable

is redefined as �푞cmd, since this is the command input of the control-theory based TCP/AQM

network congestion control system. The system attempts to keep the actual queue length close

to the value of �푞cmd. Thus, if �푞cmd is raised or lowered, the average of the actual queue length

— 86 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

0 100 200 300 400 500 600 700 800 900 1000

To
ta

l d
ro

pp
ed

 p
ac

ke
ts

 [p
ac

ke
ts

]

Target queue length [packets]

Fig. 5-2 Relationship between �푞cmd and quantity of dropped packets.

tends to follow its fluctuation. However, the oscillation of queue length is the unavoidable factor

in AQM [108]. Because of this unavoidable oscillation, simply observing the average queue

length and buffer size of the router and increasing or decreasing �푞cmd proportionally may induce

undesired overshoot or undershoot, resulting in buffer overflow or underflow. The proposed

algorithm raises or lowers �푞cmd to control the average queue length, while considering this fact

and avoiding buffer overflow or underflow. The proposed algorithm has two modes; loss-aware

mode and delay-aware mode. Each mode raises or lowers �푞cmd, respectively.

5.2.1 Raising Target Queue Length and Goodput

Figure 5-2 shows the quantity of dropped packets during the simulation duration under different

�푞cmd. These simulations were performed with �푁 , �퐶, �푇p, buffer size �푞lim, and simulation

duration set to 1000, 100 Mbps, 200 ms, 1000 packets, and 120 s, respectively. The first

— 87 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

89.5

90

90.5

91

91.5

92

0 100 200 300 400 500 600 700 800 900 1000

Av
er

ag
e

go
od

pu
t [

M
bp

s]

Target queue length [packets]
Fig. 5-3 Relationship between �푞cmd and goodput.

TCP session started their communication at 0 s, and the second session and onwards started

their communication every 0.01 s. This was performed in order to avoid unintentional surge

induced by a large number of TCP sessions starting communications at the same instant. In

this simulation, all the 1000 TCP sessions kept communicating until the simulation ended.

Figure 5-2 shows that the system with higher �푞cmd had a smaller quantity of dropped packets,

meaning less packet retransmissions were performed. When packet retransmissions occur, the

opportunity to send the same quantity of new packets are lost, which will decrease the amount

of the total application data conveyed to the receiver hosts. Thus, when a smaller number of

packets are dropped, the more efficient communication can be expected.

Figure 5-3 shows the goodput under different �푞cmd, under the exact same simulation setups

with Fig. 5-2. The goodput is defined as the total amount of packets received by the receiver

host per unit time excluding the retransmitted packets. From the result shown in Fig. 5-3, a

— 88 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Av
er

ag
e

fil
e

tra
ns

fe
r d

ur
at

io
n

[s
]

Target queue length [packets]

Fig. 5-4 Relationship between �푞cmd and file transfer duration.

higher �푞cmd tended to provide a higher goodput, since there were fewer packet retransmissions

occurring. This means that setting a higher �푞cmd will not only efficiently utilize the designed

buffer size of the bottleneck router but also increases the utilization of the bottleneck link.

Figure 5-4 shows the average duration needed to transfer files under different �푞cmd. The

simulation setups are mostly same with Figs. 5-2 and 5-3, except that all the 1000 TCP sessions

performed a file transmission of 1 MB in size and stopped communicating afterwards. Figure

5-4 shows that a higher �푞cmd needed shorter duration to send the same quantity of packets to

receiver hosts. The transfer duration when �푞cmd varies from 100 to 300 does not seem to follow

this characteristic, but this is assumed to be the result of random discard done by the AQM

functioning luckily for �푞cmd = 100 and 200 under this simulation setups.

In summary, raising �푞cmd reduces the total amount of dropped packets, which induces fewer

packet retransmissions resulting in a higher goodput. The drawback of raising �푞cmd is that a

— 89 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700 800 900 1000

Av
er

ag
e

qu
eu

ei
ng

 d
el

ay
 [m

s]

Target queue length [packets]
Fig. 5-5 Relationship between �푞cmd and average queueing delay.

higher average queue length induces a larger queueing delay, which can be detrimental in some

cases. Raising �푞cmd should be beneficial for the communication system which gives preference

to a higher goodput over a lower communication latency or has a large propagation delay that

the effect of queueing delay is nearly negligible. Raising �푞cmd may be suitable for online data

backup and high-latency networks such as marine and satellite communications.

5.2.2 Lowering Target Queue Length and Queueing Delay

When the queue is created in the buffer of the bottleneck link router, the emergence of queueing

delay is inevitable. A large queue length in the buffer may critically increase the RTT of the

TCP flows. To reduce the average queueing delay, the average queue length must be lowered,

since the queueing delay is changed depending on the queue length and bottleneck link capacity.

This can be accomplished by lowering �푞cmd.

— 90 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700 800 900 1000

Av
er

ag
e

fil
e

tra
ns

fe
r d

ur
at

io
n

[s
]

Target queue length [packets]

Fig. 5-6 Relationship between �푞cmd and transfer duration of small-sized files.

Figure 5-5 shows the average queueing delay under different �푞cmd. These simulations were

performed with �푁 ,�퐶,�푇p, �푞lim, and simulation duration set to 100, 50Mbps, 50ms, 1000 packets,

and 120 s, respectively. In this simulation, the first 90 TCP sessions were the background traffic

flows which kept communicating until the simulation ended, while the other 10 TCP sessions

performed a file transmission of 10 KB in size and stopped communicating afterwards. The

first background TCP flow session started their communication at 0 s, and the second session

and onwards started their communication every 0.01 s. The first data file transmitting TCP flow

session started their communication at 30 s, and the second session and onwards started their

communication every 5 s. Figure 5-5 shows that the average queueing delay is proportional to

the value of �푞cmd. This is fairly easy phenomenon to comprehend, since the control theory based

AQM maintains the queue length close to �푞cmd; thus, changing �푞cmd proportionally affects the

average queue length, which is proportional to the queueing delay.

— 91 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

The packet arriving at the bottleneck router tends to be sent out faster if the queueing delay

is short, compared to when it is long. Figure 5-6 shows the average duration needed to transfer

files with different �푞cmd, under the exact same simulation setups with Fig. 5-5. As shown in Fig.

5-6, the smaller �푞cmd tends to need less time to transfer a small sized data file of 10 KB. There

are two reasons why the relationship is not linear. The first reason is because of the function

of AQM selecting the packets to drop at random, not selecting the drop candidate according to

the load proportion completely. The second reason is because the plot of �푞cmd = 900 packets

spiked up since the file transmitting TCP sessions became the victim of packet disposal and had

to retransmit multiple times, which was caused by the buffer overflow.

In summary, lowering �푞cmd reduces the queueing delay, resulting in more responsive system

and shorter duration for the transmission of small-sized files. The drawback of lowering �푞cmd is

that the packets are more actively dropped to maintain the queue length, which results in lower

goodput, as shown in Fig. 5-3. Lowering �푞cmd should be beneficial for the traffic flow which

gives preference to a shorter communication latency over a higher goodput in a long term, has a

small propagation delay so the effect of queueing delay is magnified in contrast, or transmitting

a very small-sized file consisted of a few packets. Lowering �푞cmd may be suitable for online live

communications and network with UDP traffic coexisting.

5.2.3 Buffer Overflow

When the queue length reaches the buffer size �푞lim of the router, buffer overflow occurs. This is

the situation where the buffer of the router is full (�푞(�푡) = �푞lim), where no more incoming packets

can be received by the router; thus, all of them will be dropped. Avoiding the buffer overflow

is the original purpose of AQM, since the DropTail queue was used as the basic process at the

router. With the DropTail queue, the routers can only detect congestion after buffer overflow,

which causes mass packet disposal and global synchronization. In order to deal with these

problems, the implementation of AQM for stable queue control was proposed.

— 92 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Fig. 5-7 Queue length fluctuation (�푞cmd = 50, 250, 450).

However, when �푞cmd is raised to an improperly high value, the buffer overflow may be

induced. Figure 5-7 shows the queue length fluctuations when �푞cmd is set to 50, 250, and 450

packets. These simulations were performed with �푁 , �퐶, �푇p, �푞lim, and simulation duration set

to 100, 100 Mbps, 100 ms, 500 packets, and 120 s, respectively. The three selected values for

�푞cmd denote low, medium (= �푞lim/2), and high values, respectively. As shown in Fig. 5-7, when

�푞cmd = 450 packets, the queue length repeatedly reached �푞lim. The fact that the queue length

reaches �푞lim means there are buffer overflows occurring.

One of the major reasons why the buffer overflow should be avoided is because it induces

unfairness amongst the packets to be dropped. Figure 5-8 shows the SD of received packets

amongst all TCP receiver hosts, under the exact same simulation setups with Fig. 5-7. As this

figure shows, the simulation result when �푞cmd = 450 packets has a high SD value compared to

the other �푞cmd. SD of received packets indicates how distributed the number of received packets

— 93 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250 300 350 400 450 500

SD
 o

f r
ec

ei
ve

d
pa

ck
et

s [
pa

ck
et

s]

Target queue length [packets]

Fig. 5-8 Relationship between �푞cmd and SD of received packets.

in the simulation duration were amongst all TCP receiver hosts. The higher SD means the

total number of received packets of each TCP receiver host differs drastically. Thus, from the

result shown in Fig. 5-8, it can be stated that the TCP sessions were very unfairly treated when

�푞cmd = 450 packets. This is caused by the nature of buffer overflow and DropTail procedure

dropping the packets. As long as the queue length does not reach �푞lim, the packet drop procedure

is performed based on the calculation of AQM, and the candidate packets to be dropped are

selected randomly. However, when the queue length reaches �푞lim, the DropTail procedure

additionally drops packets without any randomness. Thus, the aforementioned unfairness is

triggered, resulting in obvious distribution shown in Fig. 5-8.

Considering this fact, the buffer overflow should be avoided in order to achieve a stable

congestion control. Avoiding the buffer overflow is a critical factor to consider with the loss-

aware mode, since raising �푞cmd has a risk of raising the maximum queue length up to �푞lim.

— 94 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Target queue length [packets]

max(60~ s) ave(60~ s) min(60~ s)

Fig. 5-9 Relationship between �푞cmd and maximum, minimum, and average queue length.

5.2.4 Buffer Underflow

When there is no queue in the buffer of the bottleneck link router, the bottleneck link is not fully

utilized. In such a situation, the throughput would be smaller than the bottleneck link capacity

�퐶.

Figure 5-9 shows the maximum, minimum, and average queue length with different �푞cmd,

under the exact same simulation setups with Figs. 5-7 and 5-8. The maximum, minimum, and

average queue length were all calculated based on the queue length after 60 s in the simulation

duration. As Fig. 5-9 shows, the minimum queue length reached 0 when �푞cmd was set to

200 packets or lower. Whether the minimum queue length reaches 0 or not is a crucial factor

for AQM, since a buffer underflow means there are no packets waiting to be sent through the

bottleneck link, which is equal to the non-maximum usage of bottleneck link capacity.

Figure 5-10 shows the throughput with different �푞cmd, under the exact same simulation setups

— 95 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

0 50 100 150 200 250 300 350 400 450 500

Th
ro

ug
hp

ut
 [M

bp
s]

Target queue length [packets]

Fig. 5-10 Relationship between �푞cmd and throughput.

with Figs. 5-7, 5-8, and 5-9. As this figure shows, the throughput of the system was equal to 100

Mbps, which is the designed value of �퐶, when �푞cmd is set to 250 packets or higher. However,

the throughput started dropping from �푞cmd = 200 packets and kept dropping at an accelerating

rate as �푞cmd lowered. The values of �푞cmd that recorded a throughput lower than 100 Mbps are

identical to the ones that had buffer underflow shown in Fig. 5-9.

This relationship of low throughput and buffer underflow must be taken into account for

designing the algorithm. Avoiding the buffer underflow is a critical factor to consider with the

delay-aware mode, since lowering �푞cmd has a risk of lowering the minimum queue length down

to 0.

— 96 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

5.2.5 Independent Stable State

TCP session changes their window size in order to efficiently utilize the link capacity. Generally,

the window size is increased when there are no packet drops detected and is decreased when

the packet drop is detected. However, there are a limit to the window size, defined as maximum

window size�푤�푛�푑max. Thismeans that themaximumamount of data a single TCP communication

sender can send at once before receiving any ACK packets can be derived by (5.1),

�푤�푛�푑max ∗ �푝�푎�푐�푘�푒�푡�푠�푖�푧�푒 ∗ 8 [bits], (5.1)

where �푝�푎�푐�푘�푒�푡�푠�푖�푧�푒 denotes the data size of a single packet including the header information

in bytes. Dividing (5.1) by the RTT �푅 gives the maximum throughput a single TCP session

can accomplish theoretically. Thus, the theoretical maximum throughput of the system can be

calculated as shown in (4.16).

If the maximum throughput calculated by (4.16) becomes equal to �퐶, the system becomes

completely stable with a 100% link utilization and no packet drops. Under some certain

scenarios, the queue length may reach a value where �푅(�푡)
(
! �푞(�푡)

�퐶 (�푡) + �푇p
)
satisfies the above-

mentioned conditions.

Figure 5-11 shows the queue length fluctuation when �푞cmd is set to 100, 250, and 400 packets.

These simulations were performed with �푁 , �퐶, �푇p, �푞lim, and simulation duration set to 40, 50

Mbps, 100 ms, 500 packets, and 120 s, respectively. With this setup, the queue length became

stable at a value of just below 200 packets when �푞cmd = 250 and 400 packets. This is because

the queueing delay at the queue length just below 200 packets satisfies the aforementioned

relationship between the maximum throughput and �퐶. In such a scenario, the AQM controller

cannot raise the queue length higher than that value, and the queue length becomes stable

regardless of the target queue length. This state is defined as “independent stable state” in this

thesis.

The existence of this independent stable state must be taken into consideration in order to

— 97 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

qcmd100 qcmd250 qcmd400

Fig. 5-11 Behavior of queue length in independent stable state.

design the algorithm, especially in the loss-aware mode. When the system is in the independent

stable state, there are no packets dropped by the system while the bottleneck link capacity being

fully utilized. This situation itself is an ideal state desired by the loss-aware mode algorithm, so

the algorithm should attempt to stay in the independent stable state. However, if the new TCP

sessions join the network, their load would break the independent stable state and the queue

length would start to rise again. In such a scenario, if the value of �푞cmd is not intentionally

maintained to some certain value, the system may induce buffer overflow multiple times. The

same situation can happen when the system has sudden increment of TCP sessions while the

buffer is completely empty.

— 98 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Initialize !!"#, !!$%, !&!'

Yes No

Start

Wait until !"#$% ≥ '("!_!"#$

Yes No
Independent stable state?

Yes

!"#$% ≥ '("!_!"#$ +#+,"!+%_	!"#$
No

Buffer overflow

Buffer underflow
Basic parameter update procedure

Standard
update procedure

Independent stable state
update procedure

Reset !!"#, !!$%
"#$%& ← ()#"_"#$%

!"#$% = 0

Wait
Phase

Monitor
Phase

Update
Phase

No congestion

!"#$% = 0
Emergency

update
procedure

Fig. 5-12 The diagram of the algorithm flow.

— 99 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

5.3 Adaptive Target Queue Length Generation

In this section, the proposed algorithm which controls �푞cmd dynamically is explained. The

overall flow of the algorithm is shown in Fig. 5-12. The algorithm first starts from the “Wait

Phase”, and transits to “Monitor Phase” and “Update Phase”. Through the multiple procedures,

the value of �푞cmd is dynamically controlled.

The algorithm has two modes, i.e., the Loss-aware mode and Delay-aware mode. The Loss-

aware mode attempts to raise the �푞cmd from its initial value while avoiding buffer overflow.

The Delay-aware mode attempts to lower the �푞cmd from its initial value while avoiding buffer

underflow. The mode to be utilized for a router is predetermined and will not be automatically

switched dynamically. The procedures shown in Fig. 5-12 may differ between the two modes,

which would be described later.

The algorithm runs in the same sampling period with the controller. In this thesis, all the

sampling periods are set to 0.001 s.

— 100 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

The parameters used in the algorithm are as follows:

�푞th ! Threshold queue length [packets],

�푞guard ! Guard queue length [packets],

�푞max ! Maximum queue length [packets],

�푞min ! Minimum queue length [packets],

�푡�푖�푚�푒�푟 ! Elapsed time count [samples],

�푤�푎�푖�푡_�푡�푖�푚�푒 ! Wait phase duration [samples],

�푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒 ! Monitor phase duration [samples],

�푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒min ! The minimum �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒 [samples],

�퐸�푀�퐴1 ! EMA of queue length (initialized as 0) [packets],

�퐸�푀�퐴2 ! EMA of �퐸�푀�퐴2 (initialized as 0) [packets],

�푖�푛�푑_ �푓 �푙�푎�푔 ! Independent stable state flag (initialized as 0),

�푒�푚�푔_ �푓 �푙�푎�푔 ! Emergency update flag (initialized as 0).

Some parameters were not utilized for all the proposed algorithms.

5.3.1 Wait Phase

The algorithm starts from this phase. This phase is designed to prevent the algorithm from

updating �푞max, �푞min, and �푞cmd. If the algorithm enters this phase with �푡�푖�푚�푒�푟 = 0, the following

parameter initializations are performed;

�푞max = 0, (5.2)

�푞min = �푞lim, (5.3)

�푞cmd = �푞lim/2. (5.4)

— 101 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

This phase last until �푡�푖�푚�푒�푟 reaches the duration predefined by the parameter �푤�푎�푖�푡_�푡�푖�푚�푒. If

�푡�푖�푚�푒�푟 ≥ �푤�푎�푖�푡_�푡�푖�푚�푒, the algorithm enters the “Monitor Phase”.

5.3.2 Monitor Phase

After �푤�푎�푖�푡_�푡�푖�푚�푒 has passed, the algorithm enters this phase. In this phase, the “Basic parameter

update procedure” is performed at every sampling time. This is continued until the duration

defined by the parameter�푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒 passes, i.e., �푡�푖�푚�푒�푟 ≥ �푤�푎�푖�푡_�푡�푖�푚�푒+�푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒. After

that, the algorithm enters the “Update Phase”.

If a buffer overflowwas detected in Loss-awaremode, the algorithm performs the Emergency

update procedure. If a buffer underflow was detected in Delay-aware mode, the algorithm

performs the Emergency update procedure. The detail about the Emergency update procedure

will be described at section 5.3.4.

5.3.2.1 Basic Parameter Update Procedure

This procedure updates the value of �푞max and �푞min at every sampling time. The current queue

length �푞 is observed and compared with that of �푞max and �푞min. If �푞 > �푞max, the algorithm

substitutes �푞 for �푞max. If �푞 < �푞min, the algorithm substitutes �푞 for �푞min. This procedure

combined with the Monitor Phase duration is shown in Algorithm 1. The value of �푞max is

utilized in the Loss-aware mode, and the value of �푞min is utilized in the Delay-aware mode.

Algorithm 1 Basic parameter update procedure
while �푡�푖�푚�푒�푟 < (�푤�푎�푖�푡_�푡�푖�푚�푒 + �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒) do

if �푞 > �푞max then
�푞max ← �푞.

end if
if �푞 < �푞min then

�푞min ← �푞.
end if

end while

— 102 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

5.3.2.2 Queue Length Monitor Time

The duration of the Monitor Phase is defined as �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒, and the Basic parameter update

procedure is performed at every sampling time during this period. There are multiple methods

of defining �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒. Three methods, i.e., Constant Monitor Time (CMT) method [73],

Variable Monitor Time with Approximation Curve (VMTwAC) method [74], and Variable

Monitor Time with Dual EMA (VMTwDEMA) method, are proposed in this chapter. The CMT

method and VMTwAC method were designed only to function with Loss-aware mode, while

VMTwDEMA method functions with both the Loss-aware mode and Delay-aware mode.

5.3.2.2.1 Constant Monitor Time The first method, i.e., CMT method, is the very basic

method of predetermining �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒 [73]. The value of �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒 was defined to be

10 s, i.e., 10000 samples. This value was selected to make the Monitor Phase long enough so

its duration would be longer than the queue length oscillation period. This duration was utilized

regardless of the conditions of the TCP/AQM network; thus, having no scalability amongst

different network conditions.

5.3.2.2.2 Variable Monitor Time with Approximation Curve The second method, i.e.,

VMTwAC method, utilizes an approximation curve to estimate a queue oscillation period [74].

As it can be seen in Figs. 5-7 and 5-11, the queue length tends to oscillate and its oscillation

period is heavily affected by the delay of the TCP/AQM network, which is RTT �푅.

In order to obtain the relationship between the queue oscillation period and RTT, numerous

simulations were performed with �푁 , �퐶, �푞lim, and simulation duration were set to 100, 50 Mbps,

2000 packets, and 60 s, respectively. The value of �푇p and �푞cmd was changed in the range of 20 to

200 ms and 200 to 1000 packets, respectively. From the simulation results, the approximation

curve shown in Fig. 5-13 was obtained. The calculated RTT on the horizontal axis of Fig. 5-13

is the estimated RTT calculated from �푞cmd and the nominal model of RTT �푅n, which is equal to

the actual propagation delay �푇p if it is assumed to have no modeling errors. The equation of the

— 103 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.05 0.1 0.15 0.2 0.25 0.3

Q
ue

ue
 le

ng
th

 o
sc

ill
at

io
n

pe
rio

d
[s

]

Calculated RTT [s]

Simulation Results Approximation curve

Fig. 5-13 The approximation curve.

approximation curve is as follows;

queue length oscillation period ! 0.1�푒0.0125�푅calc , (5.5)

where �푅calc denotes the calculated RTT. By assuming the average queue length is generally close

or equal to �푞cmd, the average queueing delay could be calculated by converting the unit of �푞cmd

to bits and dividing it by �퐶. Thus, the value of �푅calc can be derived by adding the calculated

queueing delay with �푅n. The duration of �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒 is defined as the doubled duration of

the queue oscillation period, which means there would be two queue oscillation peaks during

every �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒. Thus, the calculation would be as follows;

�푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒 = 0.2�푒
0.0125

(
�푇p+

�푞cmd∗8∗�푝�푘�푡_�푠�푖�푧�푒
�퐶Mbps

)
, (5.6)

— 104 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

where �푝�푘�푡_�푠�푖�푧�푒 denote the size of a single packet in unit of bytes, and �퐶Mbps denotes the value

of �퐶 in Mbps which equals to �퐶/1000000.

This method attempts to change the duration according to the TCP/AQMnetwork conditions,

making the algorithm respond faster while avoiding misdetection due to making �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒

unsuitably short. However, there are still some issues remainingwith thismethod. The twomajor

issues of this method are the lack of consideration about �푁 and needs for an accurate model.

As shown in (5.6), �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒 is determined based on the values of �푅n, �푞cmd, �푝�푘�푡_�푠�푖�푧�푒, and

�퐶. However, the queue length oscillation period is also affected by the number of TCP sessions

�푁 , since it affects the inertia of the TCP/AQM network as shown in (2.22). Thus, this method

cannot consider the effect of different value of �푁 while it actually affects the queue oscillation

period. The second issue is that this method heavily depends on the multiple network model

parameters. Thus, there is a probability of the modeling error severely degrading the efficiency

in this method.

5.3.2.2.3 Variable Monitor Time with Dual EMA The third method is VMTwDEMA

method, where two EMAs are utilized for determining �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒. The first EMA, denoted

as �퐸�푀�퐴1, is an EMA of queue length with smoothing factor �훼 = 0.0005. The second EMA,

denoted as �퐸�푀�퐴2, is an EMA of �퐸�푀�퐴1 with the same smoothing factor �훼 = 0.0005. Thus, the

calculation would be as follows;

�퐸�푀�퐴1(�푘) = �푞(�푘)�훼 + �퐸�푀�퐴1(�푘 − 1) (1 − �훼) , (5.7)

�퐸�푀�퐴2(�푘) = �퐸�푀�퐴1(�푘)�훼 + �퐸�푀�퐴2(�푘 − 1) (1 − �훼) , (5.8)

where �푞(�푘), �퐸�푀�퐴1(�푘), and �퐸�푀�퐴2(�푘) denote �푞, �퐸�푀�퐴1, and �퐸�푀�퐴2 at �푘 th sample, respectively.

These two EMAs are calculated throughout the algorithm procedure, regardless of the current

phase the algorithm is in.

Figure 5-14 shows the queue length and two EMAswhen �푞cmd, �푁 ,�퐶,�푇p, �푞lim, and simulation

— 105 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

100

150

200

250

300

350

50 51 52 53 54 55 56 57 58 59 60

Q
ue

ue
 le

ng
th

 [p
ac

ke
ts

]

Elapsed time [s]

queue EMA_1 EMA_2

Fig. 5-14 Queue length and two EMAs.

duration were set to 250 packets, 100, 50Mbps, 100 ms, 500 packets, and 120 s, respectively. As

it can be seen in Fig. 5-14, �퐸�푀�퐴1 tended to follow the queue length but was slightly delayed and

had narrower oscillation. This is since taking the EMA calculation is mathematically identical

to applying a digital low-pass filter. This relationship can also be observed between �퐸�푀�퐴1 and

�퐸�푀�퐴2.

Utilizing these characteristics, the upper and lower peak of the queue length oscillation can

be detected by the magnitude relationship between �퐸�푀�퐴1 and �퐸�푀�퐴2. When the magnitude

relationship changed from �퐸�푀�퐴1 ≥ �퐸�푀�퐴2 to �퐸�푀�퐴1 < �퐸�푀�퐴2 at two consecutive sampling

times, that indicates there was an upper peak of the queue length oscillation. On the other hand,

when the magnitude relationship changed from �퐸�푀�퐴1 < �퐸�푀�퐴2 to �퐸�푀�퐴1 ≥ �퐸�푀�퐴2 at two

consecutive sampling times, that indicates there was a lower peak of the queue length oscillation.

This relationship can be confirmed by observing the queue length fluctuations in Fig. 5-14. This

— 106 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

characteristic is due to the existence of phase delay between �퐸�푀�퐴1 and �퐸�푀�퐴2.

Along with the calculation of EMAs, the algorithm always observes the magnitude relation-

ship between �퐸�푀�퐴1 and �퐸�푀�퐴2 and stores the magnitude relationship datum of the previous

sampling time. By calculating the current magnitude relationship and comparing it with that

of the previous sampling time, the algorithm can detect whether the inversion of magnitude

relationship has occurred or not. If an inversion has been detected, the algorithm take note that

the queue length oscillation has passed an upper or lower peak based on which inversion of mag-

nitude relationship has happened. The Loss-aware mode takes record of detected upper peaks,

and the Delay-aware mode takes record of detected lower peaks. The duration of �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒

is defined as the time needed for detecting three peaks corresponding to a selected mode. This

number three was increased from the number two which was utilized in approximation curve

method, in order to avoid misdetections.

In addition, the minimum duration of the Monitor Phase�푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒min is predetermined.

If the duration passed in the Monitor Phase is larger than �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒min and three peaks

corresponding to the mode are detected, the algorithm exits theMonitor Phase and enters Update

Phase. The whole flow of the Monitor Phase using VMTwDEMA is shown in Algorithm 2.

5.3.3 Update Phase

After performing the Basic parameter update procedure for duration of �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒, the

algorithm enters “Update Phase”.

If VMTwDEMA method is utilized, the algorithm first checks if the system is in the inde-

pendent stable state or not, as shown in Fig. 5-12. If the algorithm determined that the system is

in the independent stable state, the algorithm performs the “Independent stable state procedure”.

The actual calculation done in the procedure differs depending on the mode and the independent

stable state flag �푖�푛�푑_ �푓 �푙�푎�푔. If the algorithm determined that the system is not in the independent

stable state, the algorithm performs the “Standard update procedure”.

— 107 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Algorithm 2Monitor Phase using VMTwDEMA
while �푡�푖�푚�푒�푟 ≥ �푤�푎�푖�푡_�푡�푖�푚�푒 do

Calculate �퐸�푀�퐴1(�푡�푖�푚�푒�푟).
Calculate �퐸�푀�퐴2(�푡�푖�푚�푒�푟).
if �퐸�푀�퐴1(�푡�푖�푚�푒�푟) ≥ �퐸�푀�퐴2(�푡�푖�푚�푒�푟) then
if �퐸�푀�퐴1(�푡�푖�푚�푒�푟 − 1) < �퐸�푀�퐴2(�푡�푖�푚�푒�푟 − 1) then
An upper peak detected.

end if
end if
if �퐸�푀�퐴1(�푡�푖�푚�푒�푟) < �퐸�푀�퐴2(�푡�푖�푚�푒�푟) then

if �퐸�푀�퐴1(�푡�푖�푚�푒�푟 − 1) ≥ �퐸�푀�퐴2(�푡�푖�푚�푒�푟 − 1) then
A lower peak detected.

end if
end if
if �푡�푖�푚�푒�푟 ≥ (�푤�푎�푖�푡_�푡�푖�푚�푒 + �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒min) then

if Loss-aware mode then
if Detected upper peaks ≥ 3 then

Exit Monitor Phase and enter Update Phase.
end if

else {Delay-aware mode}
if Detected lower peaks ≥ 3 then

Exit Monitor Phase and enter Update Phase.
end if

end if
end if

end while

— 108 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

If CMTmethod or VMTwACmethod is utilized, the algorithm cannot detect the independent

stable state and the Standard update procedure is always performed in this phase. Thus, at the

decision symbol of the beginning of the Update Phase in Fig. 5-12, the route of No is always

selected with CMT and VMTwAC methods.

5.3.3.1 Standard Update Procedure

In this procedure, the algorithm compares �푞max or �푞min with the threshold queue length �푞th,

and increase or decrease �푞cmd based on the difference. The calculation differs depending on the

mode of the algorithm.

5.3.3.1.1 Loss-AwareMode In the Loss-aware mode, the algorithm compares �푞max with the

threshold queue length �푞th defined as follows;

�푞th = �푞lim − �푞guard, (5.9)

where �푞guard is the designed guard queue length to avoid the buffer overflow and is set to �푞lim/20

in this thesis. In other words, �푞th = �푞lim ∗ 19/20 in the Loss-aware mode.

If �푞max is exactly equal to �푞th, then the current �푞cmd is maintained. If �푞max is larger than

�푞th, the algorithm calculates the difference and subtracts that value from �푞cmd, thus lowering the

queue length. If �푞max is smaller than �푞th, the algorithm calculates the difference and adds 1/3 of

its value to �푞cmd. This coefficient of 1/3 functions as an attenuator in order to avoid the queue

length spiking up instantly to reach �푞lim, inducing buffer overflow.

After the update of �푞cmd is performed, the algorithm checks if �푞cmd is in the range from the

initial value �푞lim/2 to the threshold �푞th. If �푞cmd is outside the range, its value is saturated to

be in the range, which means �푞cmd would not be lower than �푞lim/2 nor higher than �푞th in the

Loss-aware mode. Finally, �푞max is reset to 0, �푞min is reset to �푞lim, �푡�푖�푚�푒�푟 is reset to �푤�푎�푖�푡_�푡�푖�푚�푒,

and the algorithm reverts to the Monitor Phase.

— 109 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

The whole flow of the Standard update procedure of the Loss-aware mode is shown in

Algorithm 3.

Algorithm 3 Standard update procedure of the Loss-aware mode
if �푞max > �푞th then

�푞cmd ← �푞cmd − (�푞max − �푞th).
else if �푞max < �푞th then

�푞cmd ← �푞cmd + (�푞th − �푞max) /3.
end if
if �푞cmd < �푞lim/2 then

�푞cmd ← �푞lim/2.
else if �푞cmd > �푞th then

�푞cmd ← �푞th.
end if
�푞max ← 0.
�푞min ← �푞lim.
�푡�푖�푚�푒�푟 ← �푤�푎�푖�푡_�푡�푖�푚�푒.
Revert to the Monitor Phase.

5.3.3.1.2 Delay-Aware Mode In the Delay-aware mode, the algorithm compares �푞min with

the threshold queue length �푞th defined as follows;

�푞th = �푞guard, (5.10)

where �푞guard is same with the Loss-aware mode, which means that �푞th = �푞lim ∗ 1/20 in the

Delay-aware mode.

If �푞min is exactly equal to �푞th, then the current �푞cmd is maintained. If �푞min is smaller than

�푞th, the algorithm calculates the difference and adds that value to �푞cmd, thus raising the queue

length. If �푞min is larger than �푞th, the algorithm calculates the difference and subtracts 1/3 of its

value from �푞cmd. This coefficient of 1/3 functions as an attenuator in order to avoid the queue

length plunging down instantly to reach 0, inducing buffer underflow.

After the update of �푞cmd is performed, the algorithm checks if �푞cmd is in the range from the

threshold �푞th to the initial value �푞lim/2. If �푞cmd is outside the range, its value is saturated to

— 110 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

be in the range, which means �푞cmd would not be lower than �푞th nor higher than �푞lim/2 in the

Delay-aware mode. Finally, �푞max is reset to 0, �푞min is reset to �푞lim, �푡�푖�푚�푒�푟 is reset to �푤�푎�푖�푡_�푡�푖�푚�푒,

and the algorithm reverts to the Monitor Phase.

The whole flow of the Standard update procedure of the Delay-aware mode is shown in

Algorithm 4.

Algorithm 4 Standard update procedure of the Delay-aware mode
if �푞min < �푞th then

�푞cmd ← �푞cmd + (�푞th − �푞min).
else if �푞min > �푞th then

�푞cmd ← �푞cmd − (�푞min − �푞th) /3.
end if
if �푞cmd > �푞lim/2 then

�푞cmd ← �푞lim/2.
else if �푞cmd < �푞th then

�푞cmd ← �푞th.
end if
�푞max ← 0.
�푞min ← �푞lim.
�푡�푖�푚�푒�푟 ← �푤�푎�푖�푡_�푡�푖�푚�푒.
Revert to the Monitor Phase.

5.3.3.2 Independent Stable State Procedure

If the TCP/AQM network enters the independent stable state, the standard update procedure

may function in an unintended manner. The following is an example scenario in the Loss-aware

mode:

1. The network enters independent stable state and �푞max stays at 200 packets, while �푞lim = 500

packets and currently �푞cmd = 350 packets.

2. The algorithm enters the Update Phase, the difference is calculated as �푞th − �푞max = 275,

and �푞cmd is updated to 442 packets.

3. The algorithm reverts to the Monitor Phase, but �푞max is still 200 packets, regardless of the

raised �푞cmd.

— 111 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

4. In the next Update Phase, �푞cmd is raised and saturated to be 475 packets, which is equal to

the possible maximum value �푞th.

Thus, when the system enters independent stable state, the algorithm keeps raising �푞cmd until

it reaches the maximum value �푞th. This is undesired because when the new TCP sessions

join the network, their load resolves the independent stable state, raises the queue length, and

induces buffer overflow. Since �푞cmd is set to the possible maximum value at that moment, a

longer duration is needed to resolve the buffer overflow. In order to avoid such situations, the

independent stable state must be detected, and specific procedure must be performed.

The following independent stable state procedures includes both detection process and update

process, which are expressed separately in Fig. 5-12. The independent stable state procedures

were implemented for the VMTwDEMA method, where the other two proposed methods, i.e.,

the CMT method and VMTwAC method, do not include these functions.

5.3.3.2.1 Loss-Aware Mode In the Loss-aware mode, whether the system is in the indepen-

dent stable state or not is determined by observing the relationship between �푞max and �푞cmd. If the

AQM congestion control system has a very small steady state error, the queue length oscillates

above and below �푞cmd, which means �푞max > �푞cmd. However, if �푞max ≤ �푞cmd, the algorithm

considers the situation may be in the independent stable state and sets the independent stable

state flag �푖�푛�푑_ �푓 �푙�푎�푔 to 1 from the initial value of 0. At the first detection of the independent

stable state, instead of performing the standard update procedure for �푞cmd, �푞cmd is kept the same

value, and the algorithm reverts back to Monitor Phase.

At the second consecutive detection, which means �푞max ≤ �푞cmd while �푖�푛�푑_ �푓 �푙�푎�푔 = 1, the

algorithm recognizes that the system is in the independent stable state, and sets �푞cmd as �푞max. By

performing this procedure, the algorithm maintains the independent stable state while setting

�푞cmd as low as possible. This shortens the duration needed to resolve the buffer overflow when

new TCP sessions join the network and induces buffer overflow.

If �푞max > �푞cmd while �푖�푛�푑_ �푓 �푙�푎�푔 = 1, that indicates that the system may have resolved the

— 112 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

independent stable state. In such a situation, �푖�푛�푑_ �푓 �푙�푎�푔 is updated to 0, but �푞cmd is kept the same

value for that Update Phase. If the relationship of �푞max > �푞cmd is still kept for the next Update

Phase, the standard update procedure is performed.

The saturation of �푞cmd is also performed after setting �푞cmd as �푞max after the independent

stable state recognition. Thus, �푞cmd does not become lower than �푞lim/2 even after the detection

of the independent stable state.

The whole flow of the independent stable state procedure of the Loss-aware mode is shown

in Algorithm 5.

Algorithm 5 Independent stable state procedure of the Loss-aware mode
if �푖�푛�푑_ �푓 �푙�푎�푔 = 0 then

if �푞max > �푞cmd then
Perform standard update procedure.

else {�푞max ≤ �푞cmd}
�푖�푛�푑_ �푓 �푙�푎�푔 ← 1.

end if
else {�푖�푛�푑_ �푓 �푙�푎�푔 = 1}

if �푞max > �푞cmd then
�푖�푛�푑_ �푓 �푙�푎�푔 ← 0

else {�푞max ≤ �푞cmd}
�푞cmd ← �푞max.

end if
end if
�푞max ← 0.
�푞min ← �푞lim.
�푡�푖�푚�푒�푟 ← �푤�푎�푖�푡_�푡�푖�푚�푒.
Revert to the Monitor Phase.

5.3.3.2.2 Delay-Aware Mode In the Delay-aware mode, the detection of whether the system

is in independent stable state or not is determined in the samemanner with the Loss-aware mode.

However, since the Delay-aware mode attempts to lower the �푞cmd, a different update procedure

must be performed.

The Delay-aware mode generally can perform the Standard update procedure even if the

independent stable state was detected, since the process of lowering the �푞cmd itself may resolve

— 113 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

the independent stable state. However, under some specific scenarios, there is a possibility of the

Standard update procedure of the Delay-aware mode algorithm may function in an unintended

manner. The following is an example scenario in the Delay-aware mode:

1. The network enters independent stable state while �푞max = 40 packets, �푞min = 37 packets,

�푞lim = 500 packets, and �푞cmd = 41 packets.

2. The algorithm enters the Update Phase, the difference is calculated as �푞min − �푞th = 12,

and �푞cmd is updated to 37 packets.

3. The algorithm reverts to the Monitor Phase, but the network is still in the independent

stable state, �푞max = 40 packets, and �푞min = 37 packets, regardless of the lowered �푞cmd.

4. The algorithm enters the Update Phase again, the same calculations are done, and �푞cmd is

updated to 33 packets.

5. The algorithm reverts to theMonitor Phase again, but the network is still in the independent

stable state.

6. The algorithm enters the Update Phase for the third time, the same calculations are done,

and �푞cmd is updated to 29 packets.

7. The network finally reacts to the lowered �푞cmd, but the current �푞cmd = 29 packets are too

small compared to �푞max = 40 packets and �푞min = 37 packets.

8. The �푞cmd = 29 packets plunges down the queue length to 0, inducing buffer underflow.

Thus, when the system enters independent stable state at some certain queue length, the Delay-

awaremode algorithm keeps lowering �푞cmd until it is too low, that the buffer underflow is induced

when the network starts reacting to the AQM controller. This is because there is a possibility of

independent stable state being triggered while �푞max > �푞cmd. In order to avoid such situations,

the algorithm should avoid continuously lowering �푞cmd when it has a risk of inducing buffer

underflow. In other words, the algorithm should define the range of queue length for �푞min, so

that when �푞min is in that range the Standard update procedure would not be performed. In this

thesis, this range was defined as from �푞guard to �푞guard ∗ 2.

— 114 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

The saturation of �푞cmd is also performed after setting �푞cmd as �푞max after the independent

stable state recognition. Thus, �푞cmd does not become lower than �푞guard even after the detection

of the independent stable state.

The whole flow of the independent stable state procedure of the Delay-aware mode is shown

in Algorithm 6.

Algorithm 6 Independent stable state procedure of the Delay-aware mode
if �푖�푛�푑_ �푓 �푙�푎�푔 = 0 then

if �푞max > �푞cmd then
Perform standard update procedure.

else if �푞min > �푞guard ∗ 2 then
Perform standard update procedure.
�푖�푛�푑_ �푓 �푙�푎�푔 ← 1

else
�푖�푛�푑_ �푓 �푙�푎�푔 ← 1

end if
else {�푖�푛�푑_ �푓 �푙�푎�푔 = 1}

if �푞max > �푞cmd then
�푖�푛�푑_ �푓 �푙�푎�푔 ← 0

else if �푞min > �푞guard ∗ 2 then
Perform standard update procedure.

else
�푞cmd ← �푞max

end if
end if
�푞max ← 0.
�푞min ← �푞lim.
�푡�푖�푚�푒�푟 ← �푤�푎�푖�푡_�푡�푖�푚�푒.
Revert to the Monitor Phase.

5.3.4 Emergency Update Procedure

In the Loss-aware mode, the buffer overflow must be avoided while raising �푞cmd. In the Delay-

aware mode, the buffer underflow must be avoided while lowering �푞cmd. However, the system

may induce buffer overflow or underflow due to the change of network conditions. The algorithm

must instantly mitigate the buffer overflow or underflow.

— 115 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

The instant decrement or increment of �푞cmd to mitigate the buffer overflow or underflow is

called the “Emergency update procedure”. This is performed during the Wait Phase or Monitor

Phase.

5.3.4.1 Loss-Aware Mode

In the Loss-aware mode, when the buffer overflow is detected, which means �푞 = �푞lim, �푞cmd is

updated to the average of the current �푞cmd and the initial value �푞lim/2 at an instant. After that, the

algorithm turns the emergency update flag �푒�푚�푔_ �푓 �푙�푎�푔 to 1 from the initial value of 0 to indicate

that there was an Emergency update procedure performed recently. Then, the algorithm resets

�푞max to 0, �푞min to �푞lim, �푡�푖�푚�푒�푟 to �푤�푎�푖�푡_�푡�푖�푚�푒 ∗4/5, and reverts back to theWait Phase. This means

that the algorithm stays in the Wait Phase for the duration of �푤�푎�푖�푡_�푡�푖�푚�푒/5. This procedure is

performed in order to avoid recording the high queue length right after the emergency update

procedure as �푞max and lowering �푞cmd too much afterwards.

After the emergency update procedure, if the algorithm passes through Monitor Phase and

Update Phase normally without triggering another Emergency update procedure, �푒�푚�푔_ �푓 �푙�푎�푔 is

reset to 0. However, if another buffer overflow is detected inMonitor Phasewhile �푒�푚�푔_ �푓 �푙�푎�푔 = 1,

the algorithm resets �푡�푖�푚�푒�푟 to 0 and restarts from the Wait Phase. In that case, �푞max, �푞min, and

�푞cmd will also be reset to their initial values, as mentioned in 5.3.1 and shown in Fig. 5-12.

The whole flow of the Emergency update procedure of the Loss-aware mode is shown in

Algorithm 7.

5.3.4.2 Delay-Aware Mode

In the Delay-aware mode, when the buffer underflow is detected, which means �푞 = 0, the value

of �푞cmd is updated to the average of the current �푞cmd and the initial value �푞lim/2 at an instant.

After that, the algorithm turns the emergency update flag �푒�푚�푔_ �푓 �푙�푎�푔 to 1. Then, the algorithm

resets �푞max to 0, �푞min to �푞lim, �푡�푖�푚�푒�푟 to �푤�푎�푖�푡_�푡�푖�푚�푒 ∗ 4/5, and reverts back to the Wait Phase.

— 116 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Algorithm 7 Emergency update procedure of the Loss-aware mode
if �푞 = �푞lim then
if �푒�푚�푔_ �푓 �푙�푎�푔 = 0 then

�푞cmd ← (�푞cmd + �푞lim/2) /2.
�푒�푚�푔_ �푓 �푙�푎�푔 ← 1.
�푡�푖�푚�푒�푟 ← �푤�푎�푖�푡_�푡�푖�푚�푒 ∗ 4/5.

else {�푒�푚�푔_ �푓 �푙�푎�푔 = 1}
�푡�푖�푚�푒�푟 ← �푤�푎�푖�푡_�푡�푖�푚�푒.

end if
�푞max ← 0.
�푞min ← �푞lim.
Revert to the Wait Phase.

end if
if Standard update procedure is performed and �푒�푚�푔_ �푓 �푙�푎�푔 = 1 then

�푒�푚�푔_ �푓 �푙�푎�푔 ← 0.
end if

This procedure is performed in order to avoid recording the low queue length right after the

emergency update procedure as �푞min and raising �푞cmd too much afterwards.

After the emergency update procedure, if the algorithm passes through Monitor Phase and

Update Phase normally without triggering another emergency update, �푒�푚�푔_ �푓 �푙�푎�푔 is reset to 0.

However, if another buffer underflow is detected in Monitor Phase while �푒�푚�푔_ �푓 �푙�푎�푔 = 1, the

algorithm resets �푡�푖�푚�푒�푟 to 0 and restarts from the Wait Phase. In that case, �푞max, �푞min, and �푞cmd

will also be reset to their initial values, as mentioned in 5.3.1 and shown in Fig. 5-12.

The whole flow of the Emergency update procedure of the Delay-aware mode is shown in

Algorithm 8.

5.3.5 No Congestion Detection

If the total throughput that the communications through the bottleneck router can achieve is

smaller than the bottleneck link capacity, there would be no congestion occurring. In another

words, the queue length would be generally equal to 0. Since the proposed VMTwDEMA

method utilizes the values of two EMAs to determine its monitor time, the method needs the

— 117 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Algorithm 8 Emergency update procedure of the Delay-aware mode
if �푞 = 0 then

if �푒�푚�푔_ �푓 �푙�푎�푔 = 0 then
�푞cmd ← (�푞cmd + �푞lim/2) /2.
�푒�푚�푔_ �푓 �푙�푎�푔 ← 1.
�푡�푖�푚�푒�푟 ← �푤�푎�푖�푡_�푡�푖�푚�푒 ∗ 4/5.

else {�푒�푚�푔_ �푓 �푙�푎�푔 = 1}
�푡�푖�푚�푒�푟 ← �푤�푎�푖�푡_�푡�푖�푚�푒.

end if
�푞max ← 0.
�푞min ← �푞lim.
Revert to the Wait Phase.

end if
if Standard update procedure is performed and �푒�푚�푔_ �푓 �푙�푎�푔 = 1 then

�푒�푚�푔_ �푓 �푙�푎�푔 ← 0.
end if

magnitude relationship between �퐸�푀�퐴1 and �퐸�푀�퐴2 to change in order to enter the Update Phase.

However, if the queue length falls to 0 at some point and does not increase, the inversion of

magnitude relationship will never occur afterwards. This is troublesome especially for the Loss-

aware VMTwDEMAmethod because the algorithm would be unable to update the �푞cmd once the

TCP/AQM network enters this situation of no congestion. That may lead into the same scenario

described in section 5.3.3.2.

In order to deal with this problem, VMTwDEMAmethod has a specific function to determine

if there are no congestion occurring. If the queue length is equal to 0 for decently long duration,

the values of two EMAs will eventually become lower than 1. Using this characteristic, the

algorithm determines the network to have no congestion occurring if queue length is 0 and both

�퐸�푀�퐴1 and �퐸�푀�퐴2 are lower than 1.0 at the same time. If the variables satisfy that requirements,

the algorithm resets �푞max, �푞min, �푞cmd, �푡�푖�푚�푒�푟 , �푖�푛�푑_ �푓 �푙�푎�푔, and �푒�푚�푔_ �푓 �푙�푎�푔 to their initial values

and reverts to Wait Phase. By performing this procedure, the algorithm resets itself to its initial

state and waits for the congestion to occur.

This detection is only performed in the Monitor Phase. The whole flow of this detection of

— 118 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

no congestion is shown in Algorithm 9.

Algorithm 9 No Congestion Detection procedure for VMTwDEMA
if in Monitor Phase then

if �푞 = 0 and �퐸�푀�퐴1 < 1.0 and �퐸�푀�퐴2 < 1.0 then
�푞cmd ← �푞lim/2.
�푞max ← 0.
�푞min ← �푞lim.
�푡�푖�푚�푒�푟 ← 0.
�푖�푛�푑_ �푓 �푙�푎�푔 ← 0.
�푒�푚�푔_ �푓 �푙�푎�푔 ← 0.

end if
end if

5.4 Performance Evaluation

In this section, the performances of the proposed algorithms are evaluated. All simulations

were performed using Network Simulator 2 (NS-2).

5.4.1 Simulation Setup

The dumbbell shaped network topology shown in Fig. 5-1 was utilized in the simulations. As

shown in Fig. 5-1, all the links had the same link capacity �퐶. The bottleneck link had a link

latency of �푇p/10, while all the other links had a link latency of �푇p/5. This was designed to make

the RTT equal to the propagation delay �푇p if there were no queueing delays.

The network parameters used in the simulations are shown in Table 5-1. The parameters

used in the PID controller are shown in Table 5-2. These control parameters were set by referring

to [91]. All the simulations were performed without using ECN. The parameters not mentioned

here, such as �푁 , �퐶, �푇p, and �푞lim are specified in each section.

— 119 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Table 5-1 Network parameters.
Packet size 1040 bytes

Maximum window size �푤�푛�푑max 20 packets
Simulation duration 120 s

Control period 0.001 s
�푤�푎�푖�푡_�푡�푖�푚�푒 5000 samples (5 s)

�푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒min 1000 samples (1 s)
Smoothing factor �훼 for VMTwDEMA method 0.005

Table 5-2 Control parameters for PID controller.
�퐾p Proportional gain for PID controller 900
�퐾i Integral gain for PID controller 700
�퐾d Derivative gain for PID controller 55
�푔dif Cut-off frequency for PID controller 50 rad/s

5.4.2 Loss-Aware Mode

The proposed loss-aware mode algorithm was evaluated by the simulations. The three meth-

ods, i.e., CMT, VMTwAC, and VMTwDEMA, were presented as the proposed Loss-aware

mode algorithm. The effectiveness of the three proposed methods were evaluated by com-

paring with the conventional method of using constant target queue length. In addition, the

effectiveness in terms of converging speed and independent stable state detection of the three

proposed methods were also evaluated. For simplicity, the conventional method is denoted as

“Const. qcmd”, and the three proposed algorithms are denoted as “CMT”, “VMTwAC”, and

“Loss-aware VMTwDEMA”, respectively.

5.4.2.1 Comparison Under Different Buffer Size

Figures 5-15, 5-16, and 5-17 show the fluctuations of the queue length and �푞cmd of the four

methods under different buffer size �푞lim. Both the queue length and �푞cmd was obtained every 1

ms. Figure 5-15 shows the simulation results under relatively small buffer size, where the values

— 120 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

(a) Const. qcmd (b) CMT

(c) VMTwAC (d) Loss-aware VMTwDEMA

Fig. 5-15 Queue length fluctuations when �푞lim = 200 packets.

Table 5-3 Summary of the results in Fig. 5-15.

Const. qcmd CMT
Average queue length [packets] 100.00 179.99
Maximum queue length [packets] 105 188
Rise time of the smoothed queue length [s] 21.887 54.258
Average goodput [Mbps] 9.34 9.34
Fairness index of goodput [%] 94.48 98.29

VMTwAC Loss-aware VMTwDEMA
Average queue length [packets] 185.00 184.99
Maximum queue length [packets] 191 190
Rise time of the smoothed queue length [s] 24.030 28.258
Average goodput [Mbps] 9.37 9.36
Fairness index of goodput [%] 98.28 97.78

— 121 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

(a) Const. qcmd (b) CMT

(c) VMTwAC (d) Loss-aware VMTwDEMA

Fig. 5-16 Queue length fluctuations when �푞lim = 500 packets.

Table 5-4 Summary of the results in Fig. 5-16.

Const. qcmd CMT
Average queue length [packets] 250.03 388.47
Maximum queue length [packets] 322 478
Rise time of the smoothed queue length [s] 21.518 47.205
Average goodput [Mbps] 49.55 49.59
Fairness index of goodput [%] 99.65 99.72

VMTwAC Loss-aware VMTwDEMA
Average queue length [packets] 393.96 396.54
Maximum queue length [packets] 491 491
Rise time of the smoothed queue length [s] 22.693 26.861
Average goodput [Mbps] 49.61 49.62
Fairness index of goodput [%] 99.56 99.50

— 122 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

(a) Const. qcmd (b) CMT

(c) VMTwAC (d) Loss-aware VMTwDEMA

Fig. 5-17 Queue length fluctuations when �푞lim = 1000 packets.

Table 5-5 Summary of the results in Fig. 5-17.

Const. qcmd CMT
Average queue length [packets] 500.00 896.54
Maximum queue length [packets] 516 948
Rise time of the smoothed queue length [s] 20.533 53.904
Average goodput [Mbps] 96.18 96.89
Fairness index of goodput [%] 99.57 99.55

VMTwAC Loss-aware VMTwDEMA
Average queue length [packets] 921.88 923.12
Maximum queue length [packets] 957 959
Rise time of the smoothed queue length [s] 25.364 32.072
Average goodput [Mbps] 97.13 97.06
Fairness index of goodput [%] 99.61 99.56

— 123 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

of �푁 ,�퐶, �푇p, and �푞lim were each set to 100, 10Mbps, 20 ms, and 200 packets, respectively. Figure

5-16 shows the simulation results under medium buffer size, where the values of �푁 , �퐶, �푇p, and

�푞lim were each set to 100, 50 Mbps, 100 ms, and 500 packets, respectively. Figure 5-17 shows

the simulation results under a large buffer size, where the values of �푁 , �퐶, �푇p, and �푞lim were each

set to 500, 100 Mbps, 100 ms, and 1000 packets, respectively. From the results shown in Figs.

5-15, 5-16, and 5-17, it can be confirmed that the three proposed methods successfully raised

�푞cmd without inducing any buffer overflow, while their converging speed differs.

Tables 5-3, 5-4, and 5-5 show the five evaluation index data under the three different

simulation setups shown in Figs. 5-15, 5-16, and 5-17, respectively. The first two data, i.e.,

average queue length and maximum queue length, denote the time average of queue length and

the maximum value of queue length, respectively. These values were obtained based on the

queue length of the second half of the simulation duration, which means the data during the first

60 s were not used for calculating average nor maximum queue lengths. The rise time is defined

as the time taken for rising of the smoothed queue length from 10% to 90% of the average queue

length. The smoothed queue length was derived by taking the EMA of queue length with the

smoothing factor of 0.0001 and was derived in independently from the calculation utilized in the

proposed VMTwDEMAmethod. The average goodput is defined as the time average of the total

throughput excluding the retransmitted packets. The fairness index of the goodput is a number

that shows the fairness of the goodput of each TCP session in unit of %. Jain’s fairness index

[103] is utilized in this thesis, and its calculation equation shown in (4.15).

As shown in Tables 5-3, 5-4, and 5-5, the three methods using the Loss-aware mode

algorithms had their average and maximum queue lengths being higher than the conventional

Const. qcmd method, raising their average goodputs as well. Comparing the rise time of the

three proposed methods, the VMTwAC method tends to have the fastest converging speed,

followed by the proposed Loss-aware VMTwDEMA method, and the CMT method being the

slowest. This is because the duration of �푚�표�푛�푖�푡�표�푟_�푡�푖�푚�푒 of the VMTwAC method was defined as

the doubled duration of the queue oscillation period, meaning the algorithm attempts to observe

— 124 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

two upper peaks of the queue oscillation, while Loss-aware VMTwDEMA attempts to observe

three of them. On the other hand, the CMT method had its monitor phase duration set to 10

s, which is too long under these simulation setups, resulting in the slowest converging speed of

the three methods. The fairness index varied depending on the utilized method and the network

setup in the range of 94 % to 99.5%. A significant difference between the four methods in term

of fairness was not observed.

5.4.2.2 Performance Under High-Latency Network

Figure 5-18 shows the queue length fluctuations of the four methods where �푁 , �퐶, �푇p, and �푞lim

were each set to 500, 50 Mbps, 300 ms, and 1000 packets, respectively. This simulation setup

was designed to simulate the communication in a high-latency network. As shown in Fig. 5-18,

the three proposed methods had their average and maximum queue length being higher than the

conventional Const. qcmd method. However, unlike the simulation results shown in Figs. 5-15,

5-16, and 5-17, the Loss-aware VMTwDEMAmethod converged the fastest while the VMTwAC

method became the slowest. This is because the approximation curve utilized in the algorithm,

shown in (5.6), failed to approximate an accurate queue length oscillation period under large �푇p

and derive a duration too large for the monitor phase.

Table 5-6 shows the five evaluation index data under the simulation setup shown in Fig. 5-18.

Tables 5-7 and 5-8 show the five evaluation index data under the same simulation setup with

Table 5-6, while the value of �푁 were set to 750 and 1000, respectively. From the results shown in

Tables 5-6, 5-7, and 5-8, it can be confirmed that the three proposed methods successfully raised

the average queue length and increased the average goodput. The Loss-aware VMTwDEMA

method had the fastest converging speed and highest average goodput of the three proposed

method, while the VMTwACmethod had slowest converging speed and lowest average goodput.

The characteristic of the approximation curve not functioning as intended under a high-latency

network is reflected in the results. The fairness index varied amongst the methods and the

— 125 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

(a) Const. qcmd (b) CMT

(c) VMTwAC (d) Loss-aware VMTwDEMA

Fig. 5-18 Queue length fluctuations under �푇p = 300 ms, �푁 = 500.

Table 5-6 Summary of results in Fig. 5-18.

Const. qcmd CMT
Average queue length [packets] 499.52 799.60
Maximum queue length [packets] 586 956
Rise time of the smoothed queue length [s] 18.531 49.332
Average goodput [Mbps] 48.32 48.54
Fairness index of goodput [%] 99.11 98.93

VMTwAC Loss-aware VMTwDEMA
Average queue length [packets] 626.47 801.49
Maximum queue length [packets] 811 977
Rise time of the smoothed queue length [s] 74.695 33.911
Average goodput [Mbps] 48.41 48.55
Fairness index of goodput [%] 99.10 98.98

— 126 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Table 5-7 Summary of results under �푇p = 300 ms, �푁 = 750.

Const. qcmd CMT
Average queue length [packets] 500.02 909.50
Maximum queue length [packets] 509 943
Rise time of the smoothed queue length [s] 19.085 58.120
Average goodput [Mbps] 47.27 47.61
Fairness index of goodput [%] 98.57 98.72

VMTwAC Loss-aware VMTwDEMA
Average queue length [packets] 655.47 939.57
Maximum queue length [packets] 756 953
Rise time of the smoothed queue length [s] 75.898 31.000
Average goodput [Mbps] 47.39 47.73
Fairness index of goodput [%] 98.65 98.71

Table 5-8 Summary of results under �푇p = 300 ms, �푁 = 1000.

Const. qcmd CMT
Average queue length [packets] 500.00 912.84
Maximum queue length [packets] 508 941
Rise time of the smoothed queue length [s] 19.161 56.688
Average goodput [Mbps] 46.57 46.87
Fairness index of goodput [%] 97.30 97.54

VMTwAC Loss-aware VMTwDEMA
Average queue length [packets] 656.15 942.66
Maximum queue length [packets] 755 951
Rise time of the smoothed queue length [s] 76.005 30.400
Average goodput [Mbps] 46.65 46.94
Fairness index of goodput [%] 97.46 98.06

— 127 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

network setups in the range of 97 % to 99%. A significant difference between the four methods

in term of fairness was not observed.

5.4.2.3 Independent Stable State Detection

Figure 5-19 shows the queue length fluctuations of the four methods where �푁 changes depending

on time. The value of other parameters; �퐶, �푇p, and �푞lim; were each set to 50 Mbps, 100 ms, and

500 packets, respectively. The value of �푁 was set to 75 at the beginning of the simulation, and

its value decreased to 60 at the simulation time of 30 s. The value of �푁 was decreased again to

45 at the simulation time of 45 s, and returned to 60 at the simulation time of 60 s. After that, �푁

was increased back to 75 at the simulation time of 75 s, and maintained that value for the rest of

simulation duration. These simulation setups were designed to simulate the TCP/AQM network

communication with fluctuating number of TCP sessions.

As Fig. 5-19 shows, when �푞cmd was set to a value equal to or greater than approximately

300 packets, the TCP/AQM network entered the independent stable state at 45 s. Since the

CMTmethod and VMTwACmethod did not have any detection algorithm of independent stable

state, they keep raising �푞cmd while the system is in the independent stable state. This induced

multiple samples of buffer overflow as soon as �푁 increased at 60 s. Table 5-9 shows the total

number of buffer overflow samples of the simulation result shown in Fig. 5-19. The Loss-aware

VMTwDEMA method reduced the buffer overflow samples compared the other two proposed

methods which induced a large quantity of buffer overflow samples.

5.4.3 Delay-Aware Mode

The proposed Delay-aware VMTwDEMA method is evaluated. A method using constant target

queue length is utilized as the conventional method. For simplicity, the proposed algorithm is de-

noted as “Delay-awareVMTwDEMA” and the conventionalmethod is denoted as “Const. qcmd”.

— 128 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

(a) Const. qcmd (b) CMT

(c) VMTwAC (d) Loss-aware VMTwDEMA

Fig. 5-19 Queue length fluctuations when �푁 fluctuated between 45 to 75.

Table 5-9 Total number of buffer overflow samples in Fig. 5-19.

Const. qcmd CMT
Total number of buffer overflow samples 0 992

VMTwAC Loss-aware VMTwDEMA
Total number of buffer overflow samples 2234 219

— 129 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Fig. 5-20 Queue length fluctuation of Delay-aware VMTwDEMAmethod (�푞lim =
200 packets).

5.4.3.1 Comparison Under Different Buffer Size

Figures 5-20, 5-21, and 5-22 show the fluctuations of the queue length and �푞cmd of the proposed

Delay-aware VMTwDEMA method under different buffer size �푞lim. Figure 5-20 shows the

simulation results under the same simulation setups with Fig. 5-15, where the values of �푁 , �퐶,

�푇p, and �푞lim were each set to 100, 10 Mbps, 20 ms, and 200 packets, respectively. Figure 5-21

shows the simulation results under the same simulation setups with Fig. 5-16, where the values

of �푁 , �퐶, �푇p, and �푞lim were each set to 100, 50 Mbps, 100 ms, and 500 packets, respectively.

Figure 5-22 shows the simulation results under the same simulation setups with Fig. 5-17, where

the values of �푁 , �퐶, �푇p, and �푞lim were each set to 500, 100 Mbps, 100 ms, and 1000 packets,

respectively.

From the results shown in Figs. 5-20, 5-21, and 5-22, it can be confirmed that the proposed

— 130 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Fig. 5-21 Queue length fluctuation of Delay-aware VMTwDEMAmethod (�푞lim =
500 packets).

Delay-aware VMTwDEMA method lowered �푞cmd and average queue length. Although it gener-

ally avoids buffer underflow, queue length seldom reaches 0 when the queue length oscillation

amplitude is large, as shown in Fig. 5-21. However, even in such a situation, the algorithm

immediately reacted to the buffer underflow and raised the �푞cmd, suppressing the effect of buffer

underflow to the minimum.

Table 5-10 shows the evaluation index data under the three different simulation setups shown

in Figs. 5-20, 5-21, and 5-22. The data of Const. qcmd method are derived from the simulation

data shown in Figs. 5-15, 5-16, and 5-17. The average queue length and minimum queue length

denote the time average of queue length and the minimum value of queue length, respectively.

These values were obtained based on the queue length of the second half of the simulation

duration, which means the data during the first 60 s were not used for calculating average nor

maximum queue length. The average throughput of TCP flows is defined as the time average of

— 131 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Fig. 5-22 Queue length fluctuation of Delay-aware VMTwDEMAmethod (�푞lim =
1000 packets).

the throughput of TCP sessions, which does not include the throughput of non-TCP flows which

are utilized in the following section. This value is also calculated based on the queue length of

the second half of the simulation duration. The total number of buffer underflow samples is the

number of the samples with queue length of 0 in the second half of the simulation duration.

As shown in Table 5-10, it can be confirmed that the proposed Delay-aware VMTwDEMA

method successfully lowered �푞cmd, lowering the average queue length lower than the conventional

Const. qcmd method. The proposed Delay-aware VMTwDEMAmethod generally avoids buffer

underflow, and had only 7 samples, which corresponds to 7 ms duration, of buffer underflow

under �푞lim = 500 packets. Even in such a situation, the average throughput differed by 0.001

Mbps compared to the conventional Const. qcmd method, which was only a few packets worth

of difference.

— 132 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Table 5-10 Comparison of the simulation results of Const. qcmd and Delay-aware
VMTwDEMA under different buffer sizes.

�푞lim 200 500 1000
Average queue length [packets] (Const. qcmd) 100.00 250.03 500.00
Average queue length [packets] (Delay-aware VMTwDEMA) 15.15 131.92 63.96
Minimum queue length [packets] (Const. qcmd) 92 69 469
Minimum queue length [packets] (Delay-aware VMTwDEMA) 9 0 45
Average throughput of TCP flows [Mbps] (Const. qcmd) 9.999 49.999 99.998
Average throughput of TCP flows [Mbps] (Delay-aware VMTwDEMA) 9.999 49.998 99.998
Total number of buffer underflow samples (Const. qcmd) 0 0 0
Total number of buffer underflow samples (Delay-aware VMTwDEMA) 0 7 0

5.4.3.2 Latency of UDP Packets

Figure 5-23 shows the queue length fluctuations of the two methods when an UDP traffic flow

coexisted in the TCP/AQM network. The single UDP traffic started communication at 60 s of

simulation duration and kept sending packets with a constant bit rate of 1 Mbps. The values of

�푁 , �퐶, �푇p, and �푞lim were set to 100, 50 Mbps, 80 ms, and 500 packets, respectively. The general

behavior of queue length fluctuation did not vastly change by including a single UDP flow, and

the proposed Delay-aware VMTwDEMA method successfully lowered �푞cmd and average queue

length, lowering the queueing delay.

Table 5-11 shows the evaluation index data under the same simulation setups used for Fig.

5-23, expect with multiple values of �푇p. In addition to the evaluation index data shown in Table

5-10, Table 5-11 shows the average UDP packet propagation delay and calculated UDP packet

queueing delay. The average UDP packet propagation delay denotes the average duration of

all UDP packets to be conveyed from the sender host to the receiver host. The estimated UDP

packet queueing delay denotes the value of average UDP packet propagation delay subtracted

by �푇p/2 which is equal to the total forward propagation latency. This value shows the pure

additional delay caused by the queue.

As shown in Table 5-11, the proposed Delay-aware VMTwDEMA method lowered �푞cmd

— 133 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

(a) Const. qcmd

(b) Delay-aware VMTwDEMA

Fig. 5-23 Queue length fluctuations when an UDP traffic flow coexists.

— 134 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

Table 5-11 Summary of simulation data when an UDP traffic flow coexists.

�푇p 20 40 60 80 100
Average queue length [packets] (Const. qcmd) 250.05 250.12 250.02 250.06 249.92
Average queue length [packets] (Delay-aware VMTwDEMA) 37.59 41.56 53.44 74.25 118.75
Minimum queue length [packets] (Const. qcmd) 217 191 157 119 92
Minimum queue length [packets] (Delay-aware VMTwDEMA) 20 13 14 7 0
Average throughput of TCP flows [Mbps] (Const. qcmd) 49.051 49.039 49.0267 49.021 49.012
Average throughput of TCP flows [Mbps] (Delay-aware VMTwDEMA) 49.110 49.068 49.049 49.033 49.018
Total number of buffer underflow samples (Const. qcmd) 0 0 0 0 0
Total number of buffer underflow samples (Delay-aware VMTwDEMA) 0 0 0 0 17
Average UDP packet propagation delay [s] (Const. qcmd) 0.052 0.062 0.072 0.082 0.092
Average UDP packet propagation delay [s] (Delay-aware VMTwDEMA) 0.017 0.027 0.039 0.053 0.075
Estimated UDP packet queueing delay [s] (Const. qcmd) 0.042 0.042 0.042 0.042 0.042
Estimated UDP packet queueing delay [s] (Delay-aware VMTwDEMA) 0.007 0.007 0.009 0.013 0.025

�푇p 120 140 160 180 200
Average queue length [packets] (Const. qcmd) 249.81 250.14 251.00 250.63 249.19
Average queue length [packets] (Delay-aware VMTwDEMA) 164.87 202.74 232.88 250.16 249.19
Minimum queue length [packets] (Const. qcmd) 58 42 0 0 0
Minimum queue length [packets] (Delay-aware VMTwDEMA) 0 0 0 0 0
Average throughput of TCP flows [Mbps] (Const. qcmd) 49.012 49.010 48.998 48.962 48.878
Average throughput of TCP flows [Mbps] (Delay-aware VMTwDEMA) 48.989 48.971 48.989 48.962 48.878
Total number of buffer underflow samples (Const. qcmd) 0 0 37 166 343
Total number of buffer underflow samples (Delay-aware VMTwDEMA) 103 123 59 160 343
Average UDP packet propagation delay [s] (Const. qcmd) 0.102 0.112 0.122 0.132 0.142
Average UDP packet propagation delay [s] (Delay-aware VMTwDEMA) 0.092 0.106 0.121 0.132 0.142
Estimated UDP packet queueing delay [s] (Const. qcmd) 0.042 0.042 0.042 0.042 0.042
Estimated UDP packet queueing delay [s] (Delay-aware VMTwDEMA) 0.032 0.036 0.041 0.042 0.042

— 135 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

and the average queue length. When �푇p got larger, the queue length oscillation amplitude got

larger, as it can be seen with the relationship between the average and minimum queue length

of Const. qcmd method. Thus, the algorithm got limited with how much it lowered �푞cmd under

a higher propagation delay, being not much effective when �푇p = 160, 180, or 200 ms. However,

the proposed Delay-aware VMTwDEMAmethod did not degrade the communication efficiency

in such situations, giving no negative effect even under high-latency network scenario.

On the other hand, the reduction of UDP packet propagation delay by the proposed Delay-

aware VMTwDEMA method is notable, especially when �푇p is small. This is because the

proposed algorithm decreased the average queue length, lowering the average queueing delay

as well. The proposed Delay-aware VMTwDEMA method also raised the throughput under

a small �푇p, as shown in Table 5-11. This is be because the smaller queueing delay made the

control delay in the TCP/AQM network �푅 smaller and made the system become more stable.

5.5 Summary

In this chapter, the algorithm that dynamically generated the target queue length considering

the QoS for a control theory based AQM controller was proposed. The algorithm attempts to

raise the goodput or lower the communication delay of the system, by raising or lowering the

average queue length, respectively. In addition to simply raising or lowering the target queue

length, the algorithm needed to consider avoiding buffer overflows or buffer underflows in the

process.

The effectiveness of the proposed method was validated by performing simulations using

ns-2. The simulations were performed under multiple scenarios by changing the parameters

that mainly affect the behavior of the TCP/AQM network. The three proposed Loss-aware

mode methods, i.e., CMT, VMTwAC, and Loss-aware VMTwDEMA, all showed their ability

to raise the goodput. The Loss-aware VMTwDEMA method showed multiple improvements

compared to the other two methods. The proposed Delay-aware mode method, i.e., Delay-aware

— 136 —

Chapter 5 Adaptive Target Queue Length Generation for QoS-Aware Control

VMTwDEMA, showed its ability to lower the communication latency. The simulation results

showed that the proposed algorithm successfully raised or lowered the target queue length and

increased goodput or decreased queueing delay, achieving communication with improved QoS.

The proposed method of using an algorithm to control the target queue length can improve

the QoS of the network communication without constructing any additional infrastructures

or applying a new communication protocol. The additional calculations that the proposed

algorithms require are estimated to be less than 100 times, including both comparisons and

standard four arithmetic operations, per 0.001 s. In addition, the additional variables that the

proposed algorithms require to store are about a dozen, which would be a minuscule portion

of the memory built in the router. Considering the calculation capability of routers used in the

modern Internet society, these additional computation costs would be negligibly small. This

small computation cost would be beneficial for implementing the proposed methods to low-cost

low-powered routing devices, such as amobile router capable of managing numerous IoT devices

for example.

Future works include the implementation of ECN to improve link utilization and simulations

using more complicated scenarios such as those employing multiple bottleneck routers.

— 137 —

Chapter 6

Conclusion

This thesis proposed a remote TCP/AQM congestion control system with butterfly-shaped

PDC, a robust congestion control system with tolerance for high-latency network, and adaptive

target queue length generation algorithms for QoS-aware congestion control.

In chapter 3, the remote congestion control system with butterfly-shaped PDCwas proposed.

The delay compensator butterfly-shaped PDC was implemented to the remote TCP/AQM net-

work congestion control system in order to compensate for the network delay induced by the

NCS. The simulation results showed that the proposed controller with the butterfly-shaped PDC

effectively stabilized the TCP/AQM network even if the system included time-varying delays.

In chapter 4, the AQM congestion control system using a PD controller, DOB, and SP in

an integrated manner was proposed. The DOB was implemented to compensate for the control

disturbances such as modeling errors and parameter fluctuations, and the SP was implemented

to compensate for the control delays of the high-latency TCP/AQM network. The technical

difficulty with the integrated implementation of the DOB and SP to the nonlinear TCP/AQM

network was discussed, and the method to overcome the difficulty was presented. The simulation

results showed that the proposedPD+DOB+SPmethod generally achieved the highest throughput

when compared with the conventional methods.

In chapter 5, the algorithm that adaptively generates the target queue length in order to

— 138 —

Chapter 6 Conclusion

improve the QoS was proposed. The proposed algorithm had two modes, i.e., the Loss-aware

mode and Delay-aware mode. The proposed Loss-aware mode algorithm successfully lowered

the packet loss ratio, increasing the goodput of the TCP/AQM network. The proposed Delay-

aware mode algorithm successfully lowered the queueing delay, decreasing the communication

latency of the network.

This research contributes for improving the QoS of AQM congestion control, making it

support the diversified communication services. Along with the arise of the IoT technology,

demands for efficient online communications are increasing. The online services under a high-

latency network can increase in the future. The preference of users may be more efficient

goodput or smaller communication latency. Therefore, the proposed methods are important for

improving the QoS in the future of Internet communication technologies.

Currently, the raising demands for live online contents combinedwith electronic devices with

relatively high communication capabilities tend to shift everyone attention to the “low-latency”

communications. However, the electronic contents that can be created is increasing their size

rapidly. Virtual reality (VR) is the current example, and this may be followed by holographic or

3D movies that can be replayed at home. If a new communication protocol like TCP but being

compatible with such a large-sized content emerge in the future, all the techniques proposed

in this thesis may be applied in the same form. Such a new-generation TCP would be like

the packet size being 1 MB, routers having buffering capacity of 1 GB, and the link capacity

being in TB order. The proposed AQM scheme would still be applied to such a scenario,

where only some parameters need to be proportionally magnified. In addition, the high-latency

network environment would keep on existing in the future, such as marine communications and

interstellar communications. The technique of delay compensation would be useful in a same

manner in the future.

— 139 —

References

[1] Ministry of Internal Affairs and Communications of Japan,
“Result of communication use trend research in Reiwa 1st,”
https://www.soumu.go.jp/menu_news/s-news/01tsushin02_02000148.html, May 2020.

[2] Statistics Bureau, Ministry of Internal Affairs and Communications of Japan,
“Overview of population estimation result,”
https://www.stat.go.jp/data/jinsui/2.html, October 2020.

[3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of things: A survey on enabling technologies, protocols, and applications,”
IEEE Communications Surveys & Tutorials, Vol. 17, No. 4, pp. 2347–2376, Fourthquar-
ter 2015.

[4] J. Granjal, E. Monteiro, and J. Sá Silva,
“Security for the internet of things: A survey of existing protocols and open research
issues,”
IEEE Communications Surveys & Tutorials, Vol. 17, No. 3, pp. 1294–1312, Thirdquar-
ter 2015.

[5] S. Bera, S. Misra, and A. V. Vasilakos,
“Software-defined networking for internet of things: A survey,”
IEEE Internet of Things Journal, Vol. 4, No. 6, pp. 1994–2008, December 2017.

[6] A. Molina-Garcia, J. A. Fuentes, E. Gomez-Lazaro, A. Bonastre, J. C. Campelo, and
J. J. Serrano,
“Development and assessment of wireless sensor and actuator network for heating and
cooling loads,”
IEEE Transactions on Smart Grid, Vol. 3, No. 3, pp. 1192–1202, September 2012.

— 140 —

References

[7] J. Postel,
Internet Protocol, document RFC 791, September 1981.

[8] S. Deering and R. Hinden,
Internet Protocol, Version 6 (IPv6) Specification, document RFC 8200, July 2017.

[9] J. Arkko and M. Townsley,
IPv4 Run-Out and IPv4-IPv6 Co-Existence Scenarios, document RFC 6127, May 2011.

[10] Ministry of Internal Affairs and Communications of Japan,
“Collection and calculation of the Internet traffics in our country,”
https://www.soumu.go.jp/menu_news/s-news/01kiban04_02000171.html, July 2020.

[11] J. Postel,
Transmission control protocol, document RFC 793, September 1981.

[12] K. Chou,
“Periodic observation report,”
Internet Infrastructure Review (IIR), Vol. 48, pp. 4–9, September 2020.

[13] K. Chou,
“Broadband traffic report,”
Internet Infrastructure Review (IIR), Vol. 32, pp. 28–33, August 2016.

[14] J. Postel,
User Datagram Protocol, document RFC 768, August 1980.

[15] S. Kent and R. Atkinson,
IP Encapsulating Security Payload (ESP), document RFC 2406, November 1998.

[16] R. Shorten, C. King, F. Wirth, and D. Leith,
“Modelling TCP congestion control dynamics in drop-tail environments,”
Automatica, Vol. 43, No. 3, pp.441–449, March 2007.

[17] A. De Vendictis, A. Baiocchi, and M. Bonacci,
“Analysis and enhancement of TCP Vegas congestion control in a mixed TCP Vegas and
TCP Reno network scenario,”
Performance Evaluation, Vol. 53, No. 3, pp. 225–253, August 2003.

— 141 —

References

[18] V. Jacobson,
“Congestion avoidance and control,”
ACM SIGCOMM Computer Communication Review, Vol. 18, No. 4, pp. 314–329, Au-
gust 1998.

[19] S. Low, F. Paganini, and J. Doyle,
“Internet congestion control: An analytical perspective,”
IEEE Control Systems Magazine, Vol. 22, No. 1, pp. 28–43, February 2002.

[20] H. Wang, H. Xin, D. S. Reeves, and K. G. Shin,
“A simple refinement of slow-start of TCP congestion control,”
in Proceedings of ISCC 2000. Fifth IEEE Symposium on Computers and Communications
(ISCC), July 2000, pp. 98–105.

[21] W. Lautenschlaeger and A. Francini,
“Global synchronization protection for bandwidth sharing TCPflows in high-speed links,”
in Proceedings of IEEE 16th International Conference on High Performance Switching
and Routing (HPSR), July 2015, pp. 1–8.

[22] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and
L. Zhang,
Recommendations on Queue Management and Congestion Avoidance in the Internet,
document RFC 2309, April 1998.

[23] R. Adams,
“Active queue management: A survey,”
IEEE Communications Surveys and Tutorials, Vol. 15, No. 3, pp. 1425–1476, Thirdquar-
ter 2013.

[24] V. Kushawaha and R. Gupta,
“Congestion control for high-speed wired networks: A systematic literature review,”
Journal of Network and Computer Applications, Vol. 45, pp 62–78, October 2014.

[25] H. Wang, M. J. Cheng, and Z. H. Tian,
“Robust buffer management mechanism in quality of service routers,”
Journal of Shanghai Jiaotong University (Science), Vol. 16, No. 4, pp. 452–458, Au-
gust 2011.

— 142 —

References

[26] L. Le, J. Aikat, K. Jeffay, and F. D. Smith,
“The effects of active queue management and explicit congestion notification on web
performance,”
IEEE/ACM Transactions on Networking, Vol. 15, No. 6, pp. 1217–1230, December 2007.

[27] L. Pingping and Z. Lianying,
“The Research of Adaptive Network Congestion Control Algorithm Based on AQM,”
in Proceedings of the 2009 International Forum on Information Technology and Appli-
cations (IFITA), May 2009, pp. 123–125.

[28] T. Wen, C. Chen, Z. Ding, and T. C. Yang,
“A novel AQM scheme for wireless networks with BER estimation,”
in Proceedings of the 17th IFAC World Congress, July 2008, Vol. 41, No. 2, pp. 2919–
2924.

[29] S. Floyd and V. Jacobson,
“Random early detection gateways for congestion avoidance,”
IEEE/ACM Transactions on Networking, Vol. 1, No. 4, pp. 397–413, August 1993.

[30] T. Bonald, M. May, and J. C. Bolot,
“Analytic evaluation of RED performance,”
in Proceedings of the International Conference on Computer Communications (INFO-
COM), March 2000, Vol. 3, pp. 1415–1424.

[31] X. Chen, S. Wong, and C. K. Tse,
“Adding randomness to modeling internet TCP-RED systems with interactive gateways,”
IEEETransactions onCircuits and Systems II: Express Briefs, Vol. 57, No. 4, pp. 300–304,
April 2010.

[32] S. K. Mohapatra, S. K. Bisoy, and P. K. Dash,
“Stability analysis of active queue management techniques,”
in Proceedings of the 2015 International Conference on Man and Machine Interfacing
(MAMI), December 2015, pp. 1–6.

[33] S. Patel, B. Gupta, and V. Sharma,
“Throughput analysis of AQM schemes under low-rate denial of service attacks,”
in Proceedings of the 2016 International Conference on Computing, Communication and
Automation (ICCCA), April 2016, pp. 551–554.

— 143 —

References

[34] S. Floyd, R. Gummadi, and S. Shenker,
“Adaptive RED: An algorithm for increasing the robustness of RED’s active queue man-
agement,”
http://www.icir.org/floyd/red.html , August 2001.

[35] D. Lin and R. Morris,
“Dynamics of random early detection,”
ACM SIGCOMM Computer Communication Review, Vol. 27, No. 24, pp. 127–137,
October 1997.

[36] C. M. Patel,
“URED: Upper threshold RED an efficient congestion control algorithm,”
in Proceedings of the 2013 Fourth International Conference on Computing, Communi-
cations and Networking Technologies (ICCCNT), July 2013, pp. 1–5.

[37] C. Wang, J. Liu, B. Li, K. Sohraby, and Y. T. Hou,
“LRED: A robust and responsive AQM algorithm using packet loss ratio measurement,”
IEEE Transactions on Parallel and Distributed Systems, Vol. 18, No. 1, pp. 29–43,
January 2007.

[38] Q. Xu, and J. Sun,
“A simple active queue management based on the prediction of the packet arrival rate,”
Journal of Network and Computer Applications, Vol. 42, pp. 12–20, June 2014.

[39] K. Chavan, R. G. Kumar, M. N. Belur, and A. Karandikar,
“Robust active queue management for wireless networks,”
IEEE Transactions on Control Systems Technology, Vol. 19, No. 6, pp. 1630–1638,
November 2011.

[40] K. Ramakrishnan, S. Floyd, and D. Black,
The Addition of Explicit Congestion Notification (ECN) to IP, document RFC 3168,
September 2001.

[41] S. Floyd,
“TCP and explicit congestion notification,”
ACM SIGCOMM Computer Communication Review, Vol. 24, No. 5, pp. 1–23, Octo-
ber 1994.

— 144 —

References

[42] A. Kuzmanovic,
“The power of explicit congestion notification,”
ACM SIGCOMM Computer Communication Review, Vol. 35, No. 4, pp. 61–72, Au-
gust 2005.

[43] W. Feng, K. G. Shin, D. D. Kandlur, and D. Saha,
“The BLUE active queue management algorithms,”
IEEE/ACM Transactions on Networking, Vol. 10, No. 4, pp. 513–528, August 2002.

[44] W. Chen, Y. Li, and S. Yang,
“An average queue weight parameterization in a network supporting TCP flows with
RED,”
in Proceedings of the 2007 IEEE International Conference on Networking, Sensing and
Control (ICNSC), April 2007, pp. 590–595.

[45] S. Woo and K. Kim,
“Tight upper bound for stability of TCP/RED systems in AQM routers,”
IEEE Communications Letters, Vol. 14, No. 7, pp. 682–684, July 2010.

[46] V. Misra, W. Gong, and D. Towsley,
“A fluid-based analysis of a network of AQM routers supporting TCP flows with an ap-
plication to RED,”
ACM SIGCOMM Computer Communication Review, Vol. 30, No. 4, pp. 151–160, Octo-
ber 2000.

[47] C. V. Hollot, V. Misra, D. Towsley, and W. Gong,
“Analysis and design of controllers for AQM routers supporting TCP flows,”
IEEE Transactions on Automatic Control, Vol. 47, No. 6, pp. 945–959, June 2002.

[48] J. Aweya, M. Ouellette, and D. Y. Montuno,
“A control theoretic approach to active queue management,”
Computer Networks, Vol. 36, No. 2–3, pp. 203–235, July 2001.

[49] X. Deng, S. Yi, G. Kesidis, and C. R. Das,
“A control theoretic approach for designing adaptive AQM schemes,”
in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM),
December 2003, pp. 2947–2951.

— 145 —

References

[50] D. Aqrawal and F. Granelli,
“Redesigning an active queue management system,”
in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM),
November 2004, pp. 702–706.

[51] A. Haider, H. Sirisena, and K. Pawlikowwski,
“PID based congestion control algorithms for AQM routers supporting TCP/IP flows,”
IEICE Transactions on Communications, Vol. E87-B, No. 3, pp. 548–555, March 2004.

[52] F. Ren and C. Lin,
“Speed up the responsiveness of active queue management system,”
IEICE Transactions on Communications, Vol. E86-B, No. 2, pp. 630–636, February 2004.

[53] B. A. Sadek, T. E. Houssaine, and C. Noreddine,
“A robust PID controller for active queue management framework in congested routers,”
in Proceedings of the 2017 International Conference on Intelligent Systems and Computer
Vision (ISCV), April 2017, pp. 1–6.

[54] Q. Chen and O. W. W. Yang,
“On Designing Self-Tuning Controllers for AQM Routers Supporting TCP Flows Based
on Pole Placement,”
IEEE Jounal on Selected Areas in Communications, Vol. 22, No. 10, pp. 1965–1974,
December 2004.

[55] M. Y. Waskasi, M. J. Yazdanpanah, and N. Yazdani,
“A new active queue management algorithm based on neural networks PI,”
in Proceedings of the 16th IFAC Triennial World Congress, July 2005, Vol. 38, No. 1,
pp. 1–6.

[56] J. Sun, G. Chen, K. Ko, S. Chan, and M. Zukerman,
“PD-controller: A new active queue management scheme,”
in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM),
December 2003, pp. 3103–3107.

[57] P. K. Dash and S. K. Bisoy,
“Analysis of AQM router of network supporting multiple TCP flows,”
in Proceedings of the 2014 IEEE International Conference on Computational Intelligence
and Computing Research (ICCIC), December 2014, pp. 1–5.

— 146 —

References

[58] S. K. Bisoy and P. K. Pattnaik,
“Design of feedback controller for TCP/AQM networks,”
Engineering Science and Technology, an International Journal, Vol. 20, No. 1, pp. 116–
132, February 2017.

[59] H. C. Cho, M. S. Fadali, and H. Lee,
“Neural network control for TCP network congestion,” in Proceedings of the 2005 Amer-
ican Control Conference (ACC), June 2005, pp. 3480–3485.

[60] M. H. Y. Moghaddam,
“A fuzzy active queue management mechanism for Internet congestion control,”
in Proceedings of the Third International Workshop on Advanced Computational Intelli-
gence (IWACI), August 2010, pp. 203–208.

[61] Y. H. Aoul, A. Nafaa, D. Negru, and A. Mehaoua,
“FAFC: Fast adaptive fuzzy AQM controller for TCP/IP networks,”
in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM),
November 2004, pp. 1319–1323.

[62] N. E. Fezazi, S. B. Alaoui, F. E. Haoussi, E. H. Tissir, and T. Alvarez,
“A dynamic anti-windup AQM for congestion control in Internet,”
in Proceedings of the IEEE/ACS 13th International Conference of Computer Systems and
Applications (AICCSA), November 2016, pp. 1–6.

[63] H. Chibana, M. Tadokoro, D. Murayama, K. Suzuki, and R. Kubo,
“Robustness evaluation of disturbance observer-based active queue management support-
ing TCP flows,”
IEICE Communications Express, Vol. 3, No. 10, pp. 311–316, October 2014.

[64] A. Ghasempour and T. K. Moon,
“Optimizing the number of collectors in machine-to-machine advanced metering infras-
tructure architecture for Internet of Things-based smart grid,”
in Proceedings of 2016 IEEE Green Technologies Conference (GreenTech), pp. 51–55,
April 2016.

[65] H. Park, J. Park, and J. Kim,
“Network infrastructure for Giga internet service: Trial deployment and prospects,”
in Proceedings of Digest of the 9th International Conference on Optical Internet (COIN

— 147 —

References

2010), pp. 1–3, July 2010.

[66] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson,
“TCP Vegas: New Techniques for Congestion Detection and Avoidance,”
ACM SIGCOMM Computer Communication Review, Vol. 24, No. 4, pp. 24–35, Octo-
ber 1994.

[67] Y. Chan and H. Lee,
“A hybrid congestion control for TCP over high speed networks,”
in Proceedings of 2012 Sixth International Conference on Genetic and Evolutionary
Computing, pp. 530–533, August 2012.

[68] M. Shafiq, X. Yu, A. A. Laghari, L. Yao, N. K. Karn and F. Abdessamia,
“Network traffic classification techniques and comparative analysis using machine learn-
ing algorithms,”
in Proceedings of 2016 2nd IEEE International Conference on Computer and Communi-
cations (ICCC), pp. 2451–2455, October 2016.

[69] Q. Xu, G. Ma, K. Ding, and B. Xu,
“An adaptive active queue management based on model predictive control,”
IEEE Access, Vol. 8, pp. 174489–174494, September 2020.

[70] Y. Su, L. Huang, and C. Feng,
“QRED: A Q-Learning-based Active Queue Management Scheme,”
Journal of Internet Technology, Vol. 19, No. 4, pp. 1169–1178, July 2018.

[71] R. Hotchi and R. Kubo,
“Remote congestion control using model-free butterfly-shaped perfect delay compensator
for active queue management supporting TCP flows,”
Nonlinear Theory and Its Applications (NOLTA), IEICE, Vol. 10, No. 2, pp. 157–172,
April 2019.

[72] R. Hotchi, H. Chibana, T. Iwai, and R. Kubo,
“Active queue management supporting TCP flows using disturbance observer and Smith
predictor,”
IEEE Access, Vol. 8, pp. 173401–173413, September 2020.

— 148 —

References

[73] R. Hotchi and R. Kubo,
“Active queue management supporting TCP flows using dynamically controlled target
queue length,”
in Proceedings of the 2018 IEEE International Conference on Consumer Electronics -
Taiwan (ICCE-TW), May 2018, pp. 77–78.

[74] R. Hotchi and R. Kubo,
“Update cycle recalculation in active queue management using dynamically controlled
target queue length,”
in Proceedings of the 2019 International Symposium on Nonlinear Theory and Its Appli-
cations (NOLTA), December 2019, pp. 389–392.

[75] M. Allman, V. Paxson, and W. Stevens,
TCP Congestion Control, document RFC 2581, April 1999.

[76] T. Henderson, S. Floyd, and A. Gurtov,
The NewReno Modification to TCP’s Fast Recovery Algorithm, document RFC 6582,
April 2012.

[77] S. Bensley, D. Thaler, and P. Balasubramanian
Data Center TCP (DCTCP): TCP Congestion Control for Data Centers, document RFC
8257, October 2017.

[78] R. Kubo, J. Kani, and Y. Fujimoto,
“Advanced Internet congestion control using a disturbance observer,”
in Proceedings of the IEEE Global Communications Conference (GLOBECOM), Decem-
ber 2008, pp. 1–5.

[79] H. Chibana, M. Yoshino, M. Tadokoro, D. Murayama, K. Suzuki, and R. Kubo,
“Disturbance-observer-based active queue management with time delay using software-
defined networking controller,”
in Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society
(IECON), November 2015, pp. 1049–1054.

[80] J. M. Zhang and S. Q. Wang,
“Networked control system design and implementation,”
in Proceedings of the International Conference on Machine Learning and Cybernetics
(ICMLC), November 2002, pp. 750–753.

— 149 —

References

[81] F. L. Lian, J. R. Moyne, and D. M. Tilbury,
“Performance evaluation of control networks: Ethernet ControlNet and DeviceNet,”
IEEE Control Systems Magazine, Vol. 21, No. 1, pp. 66–83, February 2001.

[82] J. Baillieul and P. J. Antsaklis,
“Control and communication challenges in networked real-time systems,”
Proceedings of the IEEE, Vol. 95, No. 1, pp. 9–28, January 2007.

[83] W. Zhang, M. S. Branicky, and S. M. Phillips,
“Stability of networked control systems,”
IEEE Control Systems Magazine, Vol. 21, No. 1, pp. 84–99, February 2001.

[84] E. Joelianto,
“Networked control systems: Time delays and robust control design issues,”
in Proceedings of the 2nd International Conference on Instrumentation Control and
Automation (ICA), November 2011, pp. 16–25.

[85] O. J. M. Smith,
“A controller to overcome dead time,”
ISA Journal, Vol. 6, No. 2, pp. 28–33, February 1959.

[86] A. Bahill,
“A simple adaptive Smith-predictor for controlling time-delay systems: A tutorial,”
IEEE Control Systems Magazine, Vol. 3, No. 2, pp. 16–22, May 1983.

[87] Y. Li, K. Ko, and G. Chen,
“A Smith predictor-based PI-controller for active queue management,”
IEICE Transactions on Communications, Vol. E88-B , No. 11, pp. 4293–4300, Novem-
ber 2005.

[88] C. L. Lai and P. L. Hsu,
“Design the remote control system with the time-delay estimator and the adaptive Smith
predictor,”
IEEE Transactions on Industrial Informatics, Vol. 6, No. 1, pp. 73–80, February 2010.

[89] H. Ohsaki, H. Yamamoto, and M. Imase,
“SPRED: Active queue management mechanism for wide-area networks,”
in Proceedings of the 2007 International Symposium on Applications and the Internet

— 150 —

References

(SAINT ’07), January 2007, pp. 531–537.

[90] C. L. Lai and P. L. Hsu,
“The butterfly-shaped feedback loop in networked control systems for the unknown delay
compensation,”
IEEETransactions on Industrial Informatics, Vol. 10, No. 3, pp. 1746–1754, August 2014.

[91] R. Kubo, J. Kani, and Y. Fujimoto,
“Congestion control in TCP/AQM networks using a disturbance observer,”
IEEJ Transactions on Industry Applications, Vol. 129, No. 6, pp. 541–547, June 2009.
(in Japanese)

[92] L. Khoshnevisan, F.R. Salmasi, and V. Shah-Mansouri,
“Robust queue management for TCP-based large round trip time networks with wireless
access link,”
in Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC), March 2015, pp. 1309–1313.

[93] K. Ohnishi, M. Shibata, and T. Murakami,
“Motion control for advanced mechatronics,”
IEEE/ASME Transactions on Mechatronics, Vol. 1, No. 1, pp. 56–67, March 1996.

[94] M. Lin, T. Ren, H. Yuan, and M. Li,
“The congestion control for TCP network based on input/output saturation,”
inProceedings of the 29th Chinese Control and Decision Conference (CCDC), May 2017,
pp. 1166–1171.

[95] P. Wang, C. Zhu, and X. Yang,
“A novel AQM algorithm based on feedforward model predictive control,”
International Journal of Communication Systems, Vol. 31, No. 12, article e3711, Au-
gust 2018.

[96] L. Khoshnevisan, X. Liu, and F.R. Salmasi,
“Predictive sliding-mode congestion control for wireless access networks with singular
and non-singular control gain,”
IET Control Theory & Applications, Vol. 14, No. 13, pp. 1722–1732, August 2020.

— 151 —

References

[97] A. Kato, A. Muis, and K Ohnishi,
“Robust network motion control system based on disturbance observer,”
Automaika, Vol. 47, No. 1–2, pp. 5–10, January 2006.

[98] K. Hong and K. Nam,
“A load torque compensation scheme under the speed measurement delay,”
IEEE Transactions on Industrial Electronics, Vol. 45, No. 2 pp. 283–290, April 1998.

[99] K. Nichols and V. Jacobson,
“Controlling queue delay,”
ACM Queue, Vol. 10, No. 5, pp. 1–15, May 2012.

[100] R. Pan, P.Natarajan, C. Piglione,M.S. Prabhu, V. Subramanian, F. Baker, andB.VerSteeg,
“PIE: A lightweight control scheme to address the bufferbloat problem,”
inProceedings of the 14th IEEE InternationalConference onHighPerformance Switching
and Routing (HPSR), Jul. 2013, pp. 148–155.

[101] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar,
Controlled delay active queue management,
document RFC 8289, January 2018.

[102] R. Pan, P. Natarajan, F. Baker, and G. White,
Proportional integral controller enhanced (PIE): A lightweight control scheme to address
the bufferbloat problem,
document RFC 8033, February 2017.

[103] R. Jain, D. M. Chiu, and W. R. Hawe,
“A quantitative measure of fairness and discrimination for resource allocation in shared
computer systems,”
DEC Research Report, TR–301, September 1984.

[104] T. Qi and H. Wang,
“PID sliding mode controller design and application to active queue management,”
in Proceedings of 2016 35th Chinese Control Conference (CCC), July 2016, pp. 6917–
6922.

— 152 —

References

[105] J. Gettys,
“Bufferbloat: Dark buffers in the Internet,”
IEEE Internet Computing, Vol. 15, No. 3, p. 96, May 2011.

[106] Z. Na and Q. Guo,
“An improved AQM scheme with adaptive reference queue threshold,”
in Proceedings of the 6th International ICST Conference on Communications and Net-
working in China (CHINACOM), August 2011, pp. 589–593.

[107] H. Zhang, L. Song, B. Fan, and J. Jiang,
“Optimal buffer management algorithm with auto-tuning reference queue length,”
in Proceedings of 2008 10th IEEE International Conference on High Performance Com-
puting and Communications, September 2008, pp. 418–424.

[108] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle,
“Linear stability of TCP-RED and a scalable control,”
Computer Networks, Vol. 43, No. 5, pp. 633–647, December 2003.

— 153 —

Achievements

Journals (First Author)

[1] Ryosuke Hotchi and Ryogo Kubo,

“Remote congestion control system using model-free butterfly-shaped perfect delay com-

pensator for active queue management supporting TCP flows,”

Nonlinear Theory and Its Applications, IEICE, Vol. 10, No. 2, pp. 157–172, April 2019.

[2] Ryosuke Hotchi, Hosho Chibana, Takanori Iwai, and Ryogo Kubo,

“Active queue management supporting TCP flows using disturbance observer and smith

predictor,”

IEEE Access, Vol. 8, pp. 173401–173413, September 2020.

Journals (Co-author)

[1] Takaharu Yamanaka, Kenta Yamada, Ryosuke Hotchi, and Ryogo Kubo,

“Simultaneous time-delay and data-loss compensation for networked control systems with

energy-efficient network interfaces,”

IEEE Access, Vol. 8, pp. 110082–110092, June 2020.

[2] Ryuta Sakamoto, Takahiro Shobudani, Ryosuke Hotchi, and Ryogo Kubo,

“QoE-aware stable adaptive video streaming using proportional-derivative controller for

MPEG-DASH,”

IEICE Transactions on Communications, accepted for publication.

— 154 —

Achievements

International Conferences (First Author)

[1] Ryosuke Hotchi, Hosho Chibana, and Ryogo Kubo,

“Active queue management using remote congestion controller with model-free butterfly-

shaped perfect delay compensator,”

Proceedings of the 31st International TechnicalConference onCircuit/Systems, Computers

and Communications, ITC-CSCC 2016, Okinawa, Japan, pp. 755–758, July 10–13, 2016.

[2] Ryosuke Hotchi and Ryogo Kubo,

“Analysis of controller mismatch in AQM with butterfly-shaped perfect delay compen-

sator,”

Proceedings of the 2017 International Symposium on Nonlinear Theory and Its Applica-

tions, NOLTA 2017, Cancun, Mexico, pp. 58–61, December 4–7, 2017.

[3] Ryosuke Hotchi and Ryogo Kubo,

“Active queue management supporting TCP flows using dynamically controlled target

queue length,”

Proceedings of the IEEE International Conference on Consumer Electronics-Taiwan,

ICCE-TW 2018, Taichung, Taiwan, pp. 77–78, May 19–21, 2018.

[4] Ryosuke Hotchi and Ryogo Kubo,

“Update cycle recalculation in active queue management using dynamically controlled

target queue length,”

Proceedings of the 2019 International Symposium on Nonlinear Theory and Its Applica-

tions, NOLTA 2019, Kuala Lumpur, Malaysia, pp. 389–392, May 2–6, 2019.

International Conferences (Co-author)

[1] Ryuta Sakamoto, Takahiro Shobudani, Ryosuke Hotchi, and Ryogo Kubo,

“QoE assessment considering user preferences in PD-based stable adaptive streaming for

— 155 —

Achievements

MPEG-DASH,”

Proceedings of the 2019 International Symposium on Nonlinear Theory and Its Applica-

tions, NOLTA 2019, Kuala Lumpur, Malaysia, pp. 389–392, May 2–6, 2019.

[2] Kento Aida, Kenta Yamada, Ryosuke Hotchi, and Ryogo Kubo,

“Dynamic redundant path selection for tamper-tolerant networked control,”

Proceedings of the 2019 International Symposium on Nonlinear Theory and Its Applica-

tions, NOLTA 2019, Kuala Lumpur, Malaysia, pp. 389–392, May 2–6, 2019.

[3] Takaharu Yamanaka, Kenta Yamada, Ryosuke Hotchi, and Ryogo Kubo,

“Time-delay and data-loss compensation using communication disturbance observer for

energy-efficient networked control systems,”

Proceedings of the 2019 International Symposium on Nonlinear Theory and Its Applica-

tions, NOLTA 2019, Kuala Lumpur, Malaysia, pp. 389–392, May 2–6, 2019.

Domestic Conferences (First Author)

[1] Ryosuke Hotchi, Hosho Chibana and Ryogo Kubo,

“Model-free delay compensation using butterfly-shaped PDC for AQM with fluctuating

control delays,”

Proceedings of the 2016 IEICE Society Conference, Vol. 2, p. 266, September 20–23,

2016, Hokkaido, Japan. (in Japanese)

[2] Ryosuke Hotchi, Hosho Chibana and Ryogo Kubo,

“Time-delay compensation for AQM using disturbance observer,”

Proceedings of the 3rd IEICE Communication Quality Workshop, p. 43, January 21, 2017,

Osaka, Japan. (in Japanese)

[3] Ryosuke Hotchi and Ryogo Kubo,

“Effect of controller model parameter mismatch in AQM with butterfly-shaped PDC,”

Proceedings of the 2017 IEICE Society Conference, Vol. 2, p. 184, September 12–15,

2017, Tokyo, Japan. (in Japanese)

— 156 —

Achievements

[4] Ryosuke Hotchi and Ryogo Kubo,

“A study of queue length control in TCP/AQM networks considering buffer capacity,”

IEICE Technical Report, CommunicationQuality, Vol. 118, No. 140, CQ2018–39, pp. 45–

50, July 19–20, 2018, Miyagi, Japan. (in Japanese)

[5] Ryosuke Hotchi and Ryogo Kubo,

“A study of updating cycle of target queue length in AQM,”

Proceedings of the 2018 IEICE Society Conference, Vol. 2, p. 208, September 11–14,

2018, Ishikawa, Japan. (in Japanese)

Domestic Conferences (Co-author)

[1] Kenta Yamada, Ryosuke Hotchi, and Ryogo Kubo,

“Information hiding for networked control systems using steganography,”

IEICE Technical Report, CommunicationQuality, Vol. 118, No. 302, CQ2018–73, pp. 55–

60, November 15–16, 2018, Ishikawa, Japan. (in Japanese)

[2] Kento Aida, Kenta Yamada, Ryosuke Hotchi, and Ryogo Kubo,

“Dynamic redundancy switching method of network paths for tamper-tolerant networked

control,”

IEICE Technical Report, Communication Systems, Vol. 199, No. 6, CS2019–1, pp. 1–6,

April 18-19, 2019, Osaka, Japan. (in Japanese)

[3] Ryuta Sakamoto, Takahiro Shobudani, Ryosuke Hotchi, and Ryogo Kubo,

“QoE-aware mitigation of bitrate fluctuation in MPEG-DASH,”

IEICE Technical Report, Communication Quality, Vol. 119, No. 7, CQ2019–1, pp. 1–6,

April 18-19, 2019, Osaka, Japan. (in Japanese)

[4] Takaharu Yamanaka, Kenta Yamada, Ryosuke Hotchi, and Ryogo Kubo,

“Time-delay and data-loss compensation using communication disturbance observer for

— 157 —

Achievements

networked control systems with power-saving function,”

IEICE Technical Report, CommunicationQuality, Vol. 119, No. 61, CQ2019–32, pp. 107–

112, May 30–31, 2019, Hiroshima, Japan. (in Japanese)

[5] Ryuta Sakamoto, Ryosuke Hotchi, and Ryogo Kubo,

“Stable bitrate selection method for improving user QoE in MPEG-DASH,”

Proceedings of the 2020 IEICEGeneral Conference, Vol. 2, pp. S–92–S–93,March 17–20,

2020, Hiroshima, Japan. (in Japanese)

[6] Koji Ochi, Ryuta Sakamoto, Ryosuke Hotchi, and Ryogo Kubo,

“A time-delay compensation technique for QoE-aware adaptive video streaming,”

IEICE Technical Report, Communication Systems, Vol. 120, No. 75, CS2020–9, pp. 33–

38, June 25–26, 2020, Online. (in Japanese)

[7] Keisuke Tajima, Ryuta Sakamoto, Ryosuke Hotchi, and Ryogo Kubo,

“Waiting time control considering QoE fluctuation in web browsing,”

IEICE Technical Report, Communication Quality, Vol. 120, No. 76, CQ2020–16, pp. 77–

82, June 25–26, 2020, Online. (in Japanese)

Awards

[1] Finalist of NOLTA 2017 Best Student Paper Award,

in The 2017 International Symposium on Nonlinear Theory and Its Applications, NOLTA

2017, December 7th, 2017, Cancun, Mexico.

— 158 —

