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1. The status quo of global greenhouse effect and 
carbon cycle 

 
The earth atmosphere contains of nitrogen (78.1%), oxygen (20.9%), argon (0.9%), 

and 0.43% small portion of greenhouse gases. These trace amount of gasses may cause the 

warming of the earth surface and atmosphere since they able to absorb infrared range 

wavelength, emitted by earth. In normal condition, it has the advantage to block the living 

organisms. However, one of the greenhouse gas, that is carbon dioxide (CO2) has increased 

the concentration up to 38% (as of 2009) since preindustrial time, and therefore contributes 

the most of the greenhouse effect that could bring to the unwanted impact.  

 

 
Figure 1. Carbon cycle [2] 

 

CO2 gas itself is involved in the process called carbon cycle [1], where the carbon 

moves between many different natural reservoirs, by photosynthesis, respiration, 

decomposition, etc. Since industrial revolution in the 1800s, human have been burning 

fossil fuels, and releasing the carbon as CO2 gas to the atmosphere. On the other hand, the 

rate of fossil fuel formation and its rate of the human activities are not equal, furthermore 

even the biomass process also a climate impact [3]. Those are resulting in the large amount 

of CO2 gas in the atmosphere and it still increases every year (Figure 2). Unfortunately, it 

goes beyond the environmental stability toward the dangerous effect. There have been 

numerous studies, measuring the CO2 concentration in atmosphere [2-5], in order to 

estimate and  prevent the worst effects.    
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Figure 2. Recent global monthly CO2 concentration [2] 

 

2. The reduction of CO2 emissions 
 

Since then, many attempts have been developed to reduce the CO2 emissions from 

atmosphere. Many countries have been trying several ways, such as promoting energy 

conservation, using low carbon fuels, deploying renewable energy, and by carbon 

sequestration [6], such as carbon capture and storage (CCS) technology [7]. Among those 

ways, CCS can reduce up to 85-90% CO2 emission from large point emission sources. On 

the other hand, despite of this promising way, CO2 gas as a high abundant and cheap gas 

available in atmosphere is also very attractive to be utilized to improve the value and more 

broadly to support the environment protection issue. CO2 conversion with the support of 

catalysts, through wet chemistry, electrochemistry, or the combination between renewable 

energy and electrochemistry method have been widely developed and reported in these 

decades.  

 

2.1  Carbon capture and storage (CCS) 
The CCS technology has been known as an amine scrubbing from the year of 1930,[8] 

in which CO2 gas is separated from natural gas and hydrogen. The technology began in 

1930 was the basic process where CO2 is absorbed from the fuel gas or combustion gas 

near ambient temperature into amine solution that has a low volatility (Figure 3). 

Monoethanolamine (MEA), diglycolamine (DGA) [9], diisopropanolamine (DIPA) [10], 

methyldiethanolamine (MDEA) [11] and diethanolamine (DEA) [12] are the solutions that 

have been known as the absorber for CO2 sequestration [13]. Among many alkanolamines 
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solution, MEA solution is known as the most efficient one for CO2 absorber with the 

efficiency over 90%. In addition, ammonia (NH3) solution is also known as a strong 

absorber and high capacity for CO2 scrubbing (3 times higher than MEA) [14]. Ammonia 

solution has also been known as a strong CO2 absorber that does not have a degradation 

problem that used to be occurred in amine solution, and thus, this behavior may decrease 

the material cost. However, the regeneration of ammonia solution, in which, separating the 

ammonia and the CO2 gas itself still require high energy consumption.  Nevertheless, in 

this thesis, we researched and reported, an NH3 aqueous solution as electrolyte for CO2 

electrochemical reduction, considering about its degradation difficulties, and thus, simplify 

the products analysis [15].   

 

 
Figure 3. Process of amine scrubbing reported by Bottoms in 1930. Reprinted with permission 

from reference [8]. Copyright (2009) American Association for the Advancement of Science. 

 

2.2  CO2 conversion  
 

On the other hand, other solutions have been proposed and researched to add the 

value of this cheap and abundant gas in atmosphere, by converting CO2 gas to useful 

chemical stocks, or even more to convert it back to fuel, as what will this thesis describes 

about. Many methods have been reported in numerous articles, such as: 

2.2.1 Chemical process 
 There have been many studies using chemical process, converting CO2 to value-

added chemicals by hydrogenation of CO2 gas [16]. For example, a mixture of pure H2 and 

CO2 gas to produce hydrocarbon by using Fischer–Tropsch process [17,18]. In addition, 
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the production of urea by combining ammonia and CO2 gas, so called, Bosch–Meiser 

method, methane production through Sabatier reaction or other catalysis attempt [19,20]. 

Others are synthesis of dimethyl carbonate [21], polyurethane [22], methane [23], and 

many chemicals of ethers, esters, and acids. Those productions have been studied and 

developed in mass-production by using particular heterogeneous or homogeneous catalyst. 

In summary, chemical process has a greater potential and even some of the reactions have 

been applied in large scale. On the other hand, a reaction of so called Fischer–Tropsch 

process needs clean H2 (which requires an expensive process), otherwise the by-products 

can be an obstacle. Beside that, the process is known to be exothermic, that might be lead 

to uncontrollable condition.  

2.2.2 Bio-chemical process 
  The CO2 conversion by utilizing the living organism is also promising. The used of 

photosynthetic and non-photosynthetic microorganisms have been utilized and some of the 

methods have been commercially available [24,25]. For example, a photosynthetic 

prokaryotic microorganism, Synechocystis sp. PCC 6803 has been used for the production 

of ethanol [26].  Bio-chemical process has a merit since it uses living organism, in 

conversely, maintaining the existence of organism is mandatory. 

2.2.3 Electrochemical process 
  The method can be described as a CO2 conversion using an external energy, that is, 

electricity, to drive a direct or indirect conversion of CO2 to value-added chemicals. CO2 

electrochemical reduction requires a high overpotential reduction, for direct electron 

transfer to the CO2 molecule (eqn. (1)): 

CO2   +  e−    →    CO2
•−     E0 = -1.9 V vs. NHE           (1) 

The standard potential for CO2 reduction to several compounds are listed as followed 

(Table 1) [27]: 
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Table 1. Standard potential for CO2 reduction and hydrogen evolution reaction 

 
 

 The electrochemical process has advantage of its customizable behavior, in which, the 

selectivity of the products can be adjusted. Under mild condition, the process is moderate and 

controllable. Beside that, the electricity that is used for the process can be attained from the 

renewable energy. Apart from that, it has a demerit since CO2 gas has low solubility in water, in 

which, water can be a proton source to convert CO2 to more valuable compound. This lack 

somehow can be solved by the use or organic solvent.  

 Numerous results have been reported [28-31], regarding to the effort to generate 

products with the required-energy as minimum as possible. As in electrochemical 

technique, a suitable electrode is one of the most important parts for the optimum system. 

Many electrodes have been carried out whether on carbon-based electrode [32,27] or metal 

electrode [33]. Moreover, gas diffusion electrode is also one of the well-known systems to 

be used for CO2 reduction (Figure 4). Meanwhile, Cu is one of the best-known metal to be 

used as an electrode, which is possible to convert CO2 to hydrocarbon or oxygenated 

species [34-36]. Recently, a quite new study of CO2 reduction on boron doped diamond 

BDD electrode as a carbon-based electrode has been reported, and several contributions on 

it will be described in this thesis. 
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Figure 4. Gas diffusion electrode set up for the electrochemical reduction of CO2. Reprinted 

with permission from reference [37]. Copyright (2013) The Royal Society of Chemistry 
 

2.2.4 Photochemical process 
A photochemical process for CO2 conversion is a way to reduce CO2 gas by the 

assistance of light or renewable solar energy. From the years of 1980s to 2013, the 

development of photochemical process for CO2 electrochemical reduction was 

insignificantly improved. Most of the catalyst used in the process was also focusing on 

TiO2 [37]. However, recently, the development using this process is growing and attracts 

much attention, as it is a step forward to build an artificial photosynthesis. 

The method of photocatalytic process is divided into three categories, those are, 

photoreduction using molecular catalyst, using semiconducting photocathode, and using 

electrochemical reduction with photovoltaic devices [38]. The examples of the study on 

Photochemical CO2 reduction are the use of p-GaP electrode in aqueous solution [39], a 

supramolecular photocatalyst using visible light [40], photoelectrochemical conversion 

using Ag loaded on BDD electrode [41], and many more. The photochemical process is 

lacking of low efficiency up to this moment and still need the improvement for several 

order of magnitude to be available for practical usability.  
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2.3  BDD electrode for CO2 electrochemical  
reduction application 

 
BDD electrode has been studied in many years since its beginning utilization on 

photoelectrochemistry by Russian scientist, Plescov, in the year 1987 that leads to other 

works around the world using diamond electrode. Since then, many works was done, 

numerous applications have been reported, for sensor and also synthesis applications [42-

44]. Meanwhile, as has been mentioned above, a quite new study of CO2 electrochemical 

reduction on BDD electrode has been reported. The wide potential window of BDD 

electrode that suggested being able for H2 evolution suppressing, has attracted attention, 

since H2 evolution mostly competes the CO2 reduction itself (Figure 5). The study on bare 

BDD electrode in alkali metal cation based aqueous solution has been known to produce 

HCOOH with efficiency for more than 90% using circulation flow cell [45]. Since then, 

the detailed study on this, such as, the boron concentration [46], and also electrolyte effect 

[47,48] have been reported. Beside, methanol was produced as the ammonia solution was 

used as the electrolyte [15].  

 

 
Figure 5. Potential window of Diamond electrode, compared to other electrodes. Reprinted with 

permission from reference [49]. Copyright (2010) Springer 
 

Among those studies, only C1 products have been successfully produced. However, 

none of the products were higher number of carbon atoms compounds. Moreover, high 

over potential still become a drawback. Thus, an attempt on metal deposition on BDD 

electrode has been proposed, whether to reduce the over potential or to produce compound 

with higher number of carbon atoms. Cu particles were deposited on surface of BDD 

electrode, and applied as the working electrode. The result shows that ethanol could be 

produced as high as 42%, at relatively low potential at -1.0 V [50]. Other studies were also 
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reported on metal deposition on BDD electrode, including CO2 reduction on Ag-BDD 

produced CO [41], on RuO2-BDD produced HCOOH and methanol [51], and on CuSn-

BDD produced CO [52]. The reported studies also show relatively lower potential 

compared to the bare BDD electrodes.   

 

3. Outline of this thesis 
 

This thesis will describe the study of CO2 electrochemical reduction on bare BDD and 

modified-BDD electrode, specifically on the production of compound with higher number 

of carbon atoms and on the objective of suppressing the overall CO2 reduction potential on 

BDD electrode.   

The first part (chapter 2) is using bare BDD electrode, and utilizing aqueous ammonia 

solution as an electrolyte that has been known to have a strong CO2 absorption. This topic 

is related and has direction to reduce stored-CO2 in amine solution that is used in carbon 

capture and storage technology. However, as a start point, we use a simpler solution that is 

aqueous ammonia solution in order to simplify the product analysis, as amine solution is 

very easy to degrade. As the result, methanol could be produce as the main value-added 

product. The important of the ammonia solution and the attempt to improve the product 

efficiency will be discussed in this chapter. 

The second part (chapter 3-5) is about the CO2 reduction on surface of metal modified 

BDD electrode. This part is separated into several chapters since several experiments using 

different metals were tried. The production of higher number of carbon atoms compound 

and the attempt to decrease the CO2 reduction overpotential are discussed. Finally, it was 

found that each metal particle deposited on surface of BDD has its own behavior for CO2 

reduction, and that, not all metal gives a catalytic effect toward CO2 reduction.  
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Abstract 
 

In this work, the electrochemical reduction of CO2 was investigated in an 
aqueous ammonia solution using boron-doped diamond electrodes.  Methanol was 

mainly produced by the electrochemical reduction at a potential of −1.3 V (vs. 
Ag/AgCl) with a faradaic efficiency as high as 24.3%.  Also, even in an aqueous 
ammonium bicarbonate solution (pH 7.9) without CO2 bubbling, methanol was 

produced, meanwhile it was not observed at higher (10.6) and lower (3.38) pH.  These 
observations suggest that the selectivity for methanol production in aqueous ammonia 
solution is due to the electrochemical reduction of bicarbonate ions, which are formed 

by the reaction between ammonia and CO2.  Moreover, this work presents the 
important role of ammonia as an electrolyte for the selective production of methanol 

by electrochemical reduction of CO2. 
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1. Introduction 
In this few decades, CO2 electrochemical reduction has been known to attract 

high attention for many researchers. Many attempts have been made to possibly 

convert the CO2 to fuels. Useful strategies, such as by using catalyst, has been 

reported in numerous publications [1-5]. Meanwhile, as it has been widely known, 

carbon dioxide capture and storage (CCS) technology is one of the promising 

technologies for reducing carbon emissions. Amine solutions, such as 

monoethanolamine (MEA) and diethanolamine (DEA), are used for CCS technology, 

since they are chemically strong CO2 absorbers [6-8]. The absorbed CO2, and thus, 

become attractive, due to its large quantity, that will be much beneficial to be 

converted into useful chemicals than to be forever stored. Among those absorbers, 

ammonia (NH3) solution is also known as a strong absorber and has high loading 

capacity for CO2 scrubbing systems, as high as 1.76 kg CO2/kg NH3 (3 times higher 

than MEA solutions, in which, has loading capacity 0.55-0.58 kg CO2/kg MEA) [9]. 

Along these lines, the electrochemical reduction of CO2 in amine or ammonia solution 

as a CO2 absorber is attractive and worth to be explored.  

 BDD electrode, as has been described in chapter 1, is a material of great interest 

due to its superior electrochemical properties, such as wide potential window, low 

background current, chemical inertness, and mechanical durability, and it has been 

used for many electrochemical applications [10-13]. This wide potential window is 

very helpful to suppress the production of hydrogen gas, namely hydrogen evolution, 

that used to be a competitor for CO2 reduction reaction [14]. Previously, the study of 

CO2 reduction on bare BDD electrode has been studied in methanol, seawater, and 

aqueous NaCl solution. Several products have been detected, such as formaldehyde 

and formic acid [15]. As it shows excellent result, the study of this CO2 reduction 

using bare BDD electrode was continued and expanded, developing the system for 

industrial application, especially the study using amine solution.  

 

2. Experimental 
2.1 Chemical 
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 NH4HCO3 was purchased from Sigma Aldrich, and other reagents were 

purchased from Wako Pure Chemical Industries. All reagents were used without any 

further purification. Ultra- pure water was obtained from a Symply-Lab water system 

(Direct-Q UV3, Millipore). 

 

2.2 Preparation of the BDD electrodes 
 BDD (1% B/C) films were deposited onto Si (111) wafers using a microwave 

plasma-assisted chemical vapor deposition system (MPA-CVD, Model AX 5400, 

CORNES Technology Corp.). Details of the preparation are described elsewhere [16]. 

A mixture of trimethoxyborane and acetone was used as the carbon and boron 

sources. (Figure 1) 

 
Figure 1. Illustration of BDD preparation 

 

2.3 Electrochemical measurement 
The electrochemical measurements were conducted in two compartment cells 

separated by a Nafion membrane with 100 mL of solution in each cell (Figure 2). 

BDD, Pt mesh, and Ag/ AgCl were used as a working electrode, a counter electrode, 

and a reference electrode, respectively. BDD with an area of 4.9 cm2 and the Ag/AgCl 

electrode were immersed on the catholyte side (1 M NH3), and the Pt mesh electrode 

was on the anolyte side (0.1 M NaCl). The BDD and Pt electrodes were pretreated by 

ultrasonication in ultrapure water. Ultrasonication in acetone and ultrapure water was 

also performed after each reduction process to clean the electrodes. Before reduction 

started, N2 gas was purged for 30 minutes to remove oxygen gas in the solution, 

followed by CO2 gas bubbling for 2 hours with a flow rate of 200 sccm. Cyclic 

voltammograms were taken before and after gas bubbling with a scan rate of 100 
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mV/s. Electrochemical reduction of CO2 was performed by chronoamperometry for 2 

hours at potentials ranging from −1.2 V to −1.5 V (vs. Ag/AgCl) at the room 

temperature and the atmospheric pressure. To study the mechanism, the reduction of 

an aqueous ammonium bicarbonate (NH4HCO3) solution was performed without CO2 

bubbling. In addition, the pH of the solution was measured before and after CO2 

bubbling using pH meter (LAQUA, HORIBA), and the concentration of CO2 in the 

solution was measured using CO2 measure CGP-31 (DKK-TOA Corp., Japan).  All 

electrochemical measurements were recorded using a potentiostat under stirring 

condition (Autolab PGSTAT204, Metrohm Autolab B.V.).  

 

 
Figure 2. The apparatus for electrochemical reduction of CO2. 

 

2.4 Sample Analysis 
2.4.1 Gas sample analysis 

The gas was collected in 1 L gas back after completed the electrolysis. CO and 

CH4 gas products were analyzed using gas chromatography (GC) with FID detector 

(Table 1). 5 mL of gas was taken from the gas bag and analyzed in GC-FID. 

Meanwhile, H2 gas was analyzed using TCD detector, by taking 1 mL gas sampling.  

 

!
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Table 1. Details of gas sample analysis using GC instrumentation. 

 
 

2.4.2 Liquid sample analysis 
The liquid sample was analyzed separately from the gas sample, by using gas 

chromatography-mass spectrometry (GC-MS). The injection method, using headspace 

method (Figure 3). 5 mL of sample in a 20-mL vial was heated for 30 minutes or 

more at 80oC to achieve a balanced condition in the vial.  A 1-mL gas sample was 

taken from the headspace area of the vial, and then directly injected manually into the 

GC-MS instrument using a gas tight syringe. 

 
Figure 3. Illustration of headspace method 

 

The GC-MS instrument was operated in specific condition, using SIM mode to 

specifically analyze the target sample by using ethanol as an internal standard. The 

certain ion fragment will be entered into the instrument and detected by the mass 

spectrometer. This method aims to improve the sensitivity of the analysis, and thus, 

Instrument Gas Chromatography-Mass Spectrometry (GC-MS)
Condition
a. GC
    Column Stabilwax 60m, 0.32mm I.D., 1μm df
    Carrier Gas He 
    Oven 40oC (3 min), adjusted to 150oC (10oC/min)

continued to 240oC (25oC)
    Method Splitless
b. MS
    Ion Source 200oC
    Interface 250oC
    Mode SIM

Instrument Gas Chromatography
Column Molecular Sieve 13X, 3.00 mm I.D., 2m
Detector
a. FID 
    Injection temperature 100oC
    Carrier Gas He, 20 mL/min
    Oven 60oC
    Detector temperature 120oC
    Injection volume 5 mL of gas sample
b. TCD
    Injection temperature 70oC
    Carrier Gas Ar, 10 mL/min
    Oven 70oC
    Detector temperature 100oC
    Injection Volume 1 mL of gas sample

Liquid Product

Gas Product
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the analysis with a very low limit detection and low of matrix interferences could be 

achieved. This may possibly a low concentration of the sample to be detected. The 

selected mass fragments for methanol analysis were m/z 15, 31, 32, and 29. This 

chosen fragment is based on the most significant MS signal detected by methanol and 

ethanol. The details are in Table 2. 

 

Table 2. Details of liquid sample analysis using GC-MS instrumentation. 

 
 

3. Results and Discussions 
First of all, the prepared BDD electrode was examined to make sure that the BDD 

electrode in a proper condition for used. The characterization was conducted using 

Raman spectroscopy (excited wavelength: 532 nm) and scanning electron microscope 

(SEM) using SIRION (FEI). SEM images of the BDD films showed the 

polycrystalline with the grain sizes of about 4~7 µm (Figure 4a). Raman spectra were 

recorded with Acton SP2500 (Prinston Instruments), which showed the typical peak 

at 1332 cm-1 related to the center zone phonon of diamond.  The two peaks were also 

observed at around 500 cm-1 and 1230 cm-1, which can be interpreted as due to a 

carbon disorder arising from the boron doping (Figure 4b). In addition, there was no 

peak observed at around 1500 cm-1 that related to sp2 carbon. Therefore, the BDD was 

successfully deposited on Si (111) wafer with a proper condition to be applied for 

CO2 electrochemical reduction.    

 

Instrument Gas Chromatography-Mass Spectrometry (GC-MS)
Condition
a. GC
    Column Stabilwax 60m, 0.32mm I.D., 1μm df
    Carrier Gas He 
    Oven 40oC (3 min), adjusted to 150oC (10oC/min)

continued to 240oC (25oC)
    Method Splitless
b. MS
    Ion Source 200oC
    Interface 250oC
    Mode SIM

Instrument Gas Chromatography
Column Molecular Sieve 13X, 3.00 mm I.D., 2m
Detector
a. FID 
    Injection temperature 100oC
    Carrier Gas He, 20 mL/min
    Oven 60oC
    Detector temperature 120oC
    Injection volume 5 mL of gas sample
b. TCD
    Injection temperature 70oC
    Carrier Gas Ar, 10 mL/min
    Oven 70oC
    Detector temperature 100oC
    Injection Volume 1 mL of gas sample

Liquid Product

Gas Product
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Figure 4. Characterization of obtained BDD electrode using SEM (a) and Raman 

spectroscopy (b) 
 

After obtaining the proper BDD electrode, the first study for CO2 reduction was 

begun with the cyclic voltammetry measurement, to know the behavior of the system 

after N2 and CO2 gas bubbling. Therefore, the CV was carried out right after 30 

minutes N2 gas bubbling and 2 hours CO2 gas bubbling at a flow rate of 200 sccm. 

Figure 5 shows the CVs on a BDD electrode in 1M NH3 aqueous solutions that was 

run at a scan rate of 100 mV/s. As we can see from the figure, after nitrogen gas 

purging, there was no reduction peak was observed for potentials ranging from 0 V to 

−1.8 V (vs. Ag/AgCl) (Figure 5a). This is the same as after CO2 gas was bubbled into 

the solution there was no special reduction peak was observed. However, a cathodic 

current was increased from around −1.0 V (vs. Ag/AgCl) (Figure 5b). This shows that 

CO2 has been dissolved into the solution, and thus, the pH was decreased and the 

potential window becomes narrower. 

 

(a)	

(b)	
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Figure 5. Cyclic voltammetry on a BDD electrode in 1 M NH3 aqueous solution after 

nitrogen gas purging (a: solid line) and after CO2 bubbling for 2 hours (b: dashed line) with a 
scan rate of 100 mV/s. 

 

After CO2 saturation (2 hours bubbling) in 1M NH3 aqueous solution, the 

electrochemical reduction was performed for 2 hours at various potentials at room 

temperature and atmospheric pressure. The products after electrolysis at −1.3 V (vs. 

Ag/AgCl) were methanol (0.25 mg L−1, faradaic efficiency: 24.3%), carbon monoxide 

(0.002 mg L−1, faradaic efficiency: 0.05%), methane (0.0006 mg L−1, faradaic 

efficiency: 0.13%), and hydrogen (0.04 mg L−1, faradaic efficiency: 19.7%). Here, the 

dependence of the faradaic efficiency on the applied potential is summarized in 

Figure 6. The production of methanol after 5 hours reduction was about 0.5 mg/L 

with the faradaic efficiency about 22%. Beside, the chromatograms of the products 

detected by GC and GC-MS are shown in Figure 7.  

 

 
Figure 6. The faradaic efficiencies of the products for 2 hours reduction of CO2 on a BDD 

electrode in 1 M NH3 aqueous solution at the potentials from −1.2 V to −1.5 V (vs. Ag/AgCl). 
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Figure 7. Chromatograms of each product, analyzed by GC-MS and GC with TCD and FID 
detectors.  

 

When the applied potential was −1.3 V (vs. Ag/AgCl), the efficiency of the 

methanol production was the highest. At the same time, the efficiencies for the 

production of CO and CH4 were quite low. Thus, methanol can be selectively 

produced by CO2 reduction on a BDD electrode in an aqueous NH3 solution. On the 

other hand, when the applied potential was more negative, the faradaic efficiency of 

the hydrogen evolution increased and that of the methanol production diminished. No 

other products were analyzed in a quantifiable amount in this range of potential. The 

repeatability of the CO2 electrochemical reduction at potential -1.3 V vs. Ag/AgCl 

during 2 hour was also carried out for four times experiment (Figure 8). The standard 

deviation was calculated as low as 1.97%.  
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Figure 8. Four times CO2 electrochemical reduction in aqueous ammonia solution at 

potential -1.3 V vs. Ag/AgCl during 2 hours 
 

The CO2 electrochemical reductions were carried out using chronoamperometry 

technique, thus the current during the electrolysis was monitored (Figure 8). The 

current was increased, as the potential reduction was more negative.  At potential 

reduction -1.5 V, the spectra shows a lot of signal noise that might be due to the 

interference of H2 evolution.   

 

 
Figure 8. Chronoamperometry of CO2 reduction in various potential during 2 hours 

electrolysis on bare BDD electrode in 1 M NH3 solution. 
 

Meanwhile, to understand the saturation of CO2 gas in the solution, we measure 

the pH that was monitored during CO2 bubbling in the 1 M NH3 aqueous solution. 

The initial pH was 11.7. During CO2 bubbling for 2 hours, the pH decreased to 7.7 

(Figure 9). In aqueous solutions, NH3 and CO2 react as follows (eqn (2)–(4)):[9] 
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NH3 + CO2 + H2O ⇄ NH4
+ + HCO3

−     Keq(293) = 1.02 × 103                     (2) 

NH3 + HCO3
− ⇄ NH2CO2

− + H2O          Keq(293) = 3.61                              (3) 

NH3 + HCO3
− ⇄ CO3

2− + NH4
+              Keq(293) = 1.04 × 10−1                   (4) 

 

 
Figure 9. pH of the aqueous ammonia solution during CO2 gas bubbling. The 

measurement was conducted while stirring the solution at ~25oC. After 2 hours 
bubbling, pH decreased to 7.7 

 

On the other hand, according to the distribution of carbonaceous species in the 

aqueous solution, the pH determines which species are dominant in the solution. It is 

known that dissolved CO2(aq) is the dominant species at pH < 5, while at pH levels 

from 7.5 to 9, HCO3
− (bicarbonate ion) is dominant, and CO3

2− (carbonate ion) is 

dominant above pH 12 (Figure 10). The reaction is generally denoted as follows (eqn. 

(5) and (6)):[17]  

 

CO2 (aq) + H2O (l) ⇄ H+(aq) + HCO3
− (aq)               pK1 = 6.35        (5) 

H+(aq) + HCO3
− (aq) ⇄ 2H+(aq) + CO3

2− (aq)           pK2 = 10.33      (6) 

 

Since the reaction of aqueous NH3 with CO2 rapidly produces bicarbonate 

(pH 7.6–8.0) after CO2 saturation, it is assumed that bicarbonate ions are 

reduced to methanol in our system. 
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Figure 10. Distribution of carbonaceous species in aqueous solution with the 

dependence of pH, at temperature 25oC. Reprinted with permission from reference 
[17]. Copyright (2015) American Chemical Society. 

 
 

In order to confirm that bicarbonate ions are reducible species, the 

electrochemical reduction of a 0.1 M NH4HCO3 aqueous solution (pH 7.9) was 

performed without CO2 bubbling. As the result, methanol was mainly produced in 

common with the reduction in an aqueous NH3 solution saturated with CO2 (Figure 

11). In addition, we investigated into the influence of pH by adding HCl for low pH 

(<4) and NaOH for high pH (>10) to the NH4HCO3 solution. As the results, methanol 

was not detected in either condition at the same reduction potential of −1.3 V (vs. 

Ag/AgCl). These results suggest that bicarbonate ions are reducible species, not CO2 

and CO3
2−. That is, we propose the mechanism of methanol production in our system 

as follows (eqn (7)): 

 

HCO3
−  +  5H2O +  6e− →  CH3OH +  7OH−         (7) 
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Figure 11. Faradaic efficiencies of methanol production by the 2 hours reduction of 0.1 M 
NH4HCO3 aqueous solution (pH 7.9) on a BDD electrode at the potentials from −1.2 V to 
−1.5 V (vs. Ag/AgCl). The faradaic efficiencies of the products for 2 hours reduction of CO2 
on a BDD electrode in 1 M NH3 aqueous solution at the potentials from −1.2 V to −1.5 V (vs. 

Ag/AgCl) 
 

On the hand, we considered the effect of NH3 on methanol production by the 

electrochemical reduction of bicarbonate ions. There are several studies that show the 

dependence of product selectivity and product distribution by changing the 

electrolyte. [3,18,19]. Figure 12 shows one of the example of electrolyte dependence, 

in which, the production of HCOO- could be improve by changing the electrolyte 

from KHCO3 to Na2SO4 solution.  

 

 
Figure 12. HCOO- production improvement by changing the electrolyte. Reprinted with 

permission from reference [18]. Copyright (2012) Electrochemical Society 
 

Thus, the electrochemical reduction was performed in 0.1 M KOH solution 

saturated with CO2 (pH 7.0) and in 0.1 M NaOH solution saturated with CO2 (pH 7.2) 

at a potential of −1.3 V (vs. Ag/AgCl) for 2 hours on a BDD electrode, resulting in no 

methanol production. It can be explained by the buffering effect of the solution. 
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During the electrochemical reduction, the hydroxide ions (OH−) were produced by the 

reduction of bicarbonate ions and also by the hydrogen evolution (eqn. (8-9)): 

 

HCO3
- + 5H2O + 6e- →   CH3OH + 7OH-         (8) 

2H2O + 2e-  →  H2 + 2OH-           (9) 

 

Therefore, the local pH will become slightly higher. However, in the aqueous NH3 

solution, OH− reacts with ammonium ions to form ammonia and water by the reaction 

(eqn. (10)): 

 

NH4
+ + OH− ⇄ NH3 + H2O                        (10) 

 

On the other hand, in the KOH and NaOH solution, the bicarbonate ions will 

react with OH− to form carbonate ions by the following reaction (eqn. (11)):  

 

HCO3
− + OH− ⇄ CO3

2− + H2O                (11) 

 

As mentioned previously, the reducible species are bicarbonate ions, and 

carbonate ions could not be reduced to methanol. Therefore, the presence of 

NH3 is important for methanol production. In addition, ammonia has the 

advantage of the higher loading capacity of CO2 than other aqueous solutions 

(Tables 2 and 3). However, a clear and complete mechanism will need further 

study. 

 

Table 3. CO2 concentration in the solution depending on the aqueous ammonia concentration 
(5 minutes CO2 bubbling in 50-mL solutions). 

Concentration 

NH3(aq)  (M) CO2 (mg/L) 

0.001 1520 

0.01 2580 

0.1 10380 

1 67000 
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Table 4. CO2 absorption in 0.1 M NH3, 0.1 M KOH, and 0.1 M NaOH aqueous solutions (15 
minutes CO2 bubbling in 100-mL solutions). 

Electrolyte Concentration of CO2 (mg/L) 

0.1 M NH3 18400 

0.1 M KOH 9960 

0.1 M NaOH 7100 

 

Furthermore, for comparison, the electrochemical reduction of CO2 on glassy 

carbon electrode was conducted at a potential of −1.3 V (vs. Ag/AgCl) for 2 hours. 

However, no methanol was detected, and most of the product was H2 reaching an 

amount of 0.26 mg/L (on the BDD electrode, it was 0.04 mg/L). Therefore, methanol 

can be selectively produced by CO2 reduction on a BDD electrode, as long as the 

hydrogen evolution can be suppressed. This kind of continuous electrochemical 

reduction at quite high potential may cause surface corrosion of the glassy carbon 

electrode (emphasizing roughness, changing pores volume, etc.) [20]. On the other 

hand, BDD has high durability. In order to show evidence for the durability of BDD, 

the surface morphology of a BDD electrode was examined by SEM after using the 

BDD electrode for more than 30 hours in a reduction process. The SEM images 

revealed no difference as compared to the as-grown BDD (Fig. 5). This is consistent 

with the results in our previous report [15]. 

 

                 

Figure 13. SEM images of BDD electrode before (a) and after (b) more than 30 hours CO2 
electrochemical reduction 

 

 

 

(a)	 (b)	
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4. Conclusion 
CO2 electrochemical reduction on surface of bare BDD electrode in aqueous 

ammonia solution has been successfully carried out. The main product was methanol 

with maximum faradaic efficiency of 24.3% at potential -1.3 V vs. Ag/AgCl. Other 

products including CO and CH4 were produced in a low efficiency. A mechanism for 

methanol production was revealed to be the reduction of bicarbonate ion by 

performing the reduction of ammonium bicarbonate solution without CO2 bubbling at 

final pH lies about 7.7. Finally, as long as the hydrogen production can be suppressed, 

the selectivity of methanol production in weakly alkaline aqueous ammonia solution 

can be achieved, since no other products produced in high amount except methanol 

itself. Thus, it will be a good opportunity for practical application especially in 

reducing industrial stored-CO2(HCO3
-) reduction, that usually use amine based 

solution for CO2 scrubbing system.  
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Abstract 
 
 

The electrochemical reduction of CO2 to C2/C3 species on the surface of copper 
modified boron doped diamond (Cu-BDD) electrode for the first time in aqueous 

solution at room temperature and pressure. Ethanol (42.4%), acetaldehyde (13.7%), 
and acetone (7%) were observed at potential -1.0 V vs. Ag/AgCl. The product 

distribution is dependent on the amount of deposited Cu particles and also the applied 
potential. The Cu particles were remained stable at particular condition, showing the 

insignificant differences after CO2 reduction. Moreover, the comparison of CO2 
reduction using glassy carbon electrode as a support electrode for Cu deposition is 

also presented.  
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1. Introduction 
 

 CO2 electrochemical reduction on the surface of bare BDD electrode has been 

studied and reported in several publications [1-4]. The quantifiable products that 

could be achieved are C1 products, such as formaldehyde, formic acid, methanol, and 

CO.  Meanwhile, the compound with higher number of carbon atoms is desired, in 

which the production of ready-to-use fuel can be developed. [5] Therefore, to improve 

the catalytic effect to produce compound with higher number of carbon atom, and 

also to decrease the over potential that used to be found on bare BDD electrode for 

CO2 reduction, metal particle was suggested to be deposited on surface of BDD 

electrode.   

 Determining the suitable metal to deposit on surface of BDD is an important 

point to be considered. There have been numerous studies on CO2 reduction using 

metal electrode. [6-8]. Figure 1 shows the product distribution of CO2 reduction on 

many metal electrodes. All those metal are categorized based on ability to adsorb CO. 

First, low binding strength of CO such as Au, Zn, and Ag. Those metals usually 

produce CO as the main product. Second, high binding strength of CO such as Ni, Pt, 

Fe, and Co. These metals do not active for CO2 reduction since it produces H2 in high 

rate. Generally, this second type of metals is not preferable for CO2 reduction. 

Meanwhile, the third type has moderate binding strength of CO. Cu metal is the only 

metal in this type. It has a special behavior toward CO2 reduction, that is, possibly 

produces hydrocarbon and oxygenated species in quantifiable amount. [9-12] Up to 

this moment, Cu is the best-known metal catalyst for the electrochemical reduction of 

CO2.  

 
Figure 1. Distribution of CO2 reduction products on many metal electrodes. Reprinted with 

permission from reference [8]. Copyright (2015) American Chemical Society 
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The modification of bare BDD surface with metal particles has been known to 

improve electrocatalytic and also selectivity. It has been used for many applications, 

such as for sensor and also synthesis application [13,14]. Therefore, the modification 

of BDD electrode with copper particles was carried out, aiming to produce compound 

with higher number of carbon atoms and it is expected that the applied potential could 

be suppressed. In this work, the deposition of metal was carried out by a sample 

electrochemical deposition. Despite of its stability issue, this method was used as it 

easy to prepare and recover. The amount of deposited Cu particle and also potential 

dependence were studied and presented in this chapter.  

 

2. Experimental 
2.1 Chemicals 

All the reagents were purchased from Wako Pure Chemical Industries and were 

used without further purification. Ultra-pure water was obtained from a Symply-Lab 

water system (Direct-Q UV3, Millipore).  

2.2 Electrode preparation 
BDD electrode was prepared by depositing the films onto Si (111) wafers using 

microwave plasma-assisted chemical vapor deposition system. (Model 5400, 

CORNES Technology Corp.) [15]. The deposition was carried out electrochemically 

in 10 ml of 0.1 M H2SO4 containing a 1 mM CuSO4 solution. cyclic voltammetry 

(CV) electrodeposition of Cu nanoparticles was carried out (Figure 2). 

 

 
Figure 2. CV of BDD electrode in 10 ml of 0.1 M H2SO4 containing a 1 mM CuSO4 solution. 
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 The reduction peak of Cu2+ is at -0.6 V (vs. Ag/AgCl). The Cu particle was 

deposited in different deposition time, 50 s (Cu-BDD-50), 100 s (Cu-BDD-100), and 

300 s (Cu-BDD-300). N2 gas purging was performed for 5 minutes prior to 

electrodeposition to remove the dissolved oxygen [16]. The Cu-BDD electrodes were 

then rinsed with water and dried at room temperature and pressure for 1 hour, 

followed by ultrasonication in water for about 5 minutes and dried under N2 gas. 

Moreover, the modified electrodes were recovered by immersion in an aqua regia 

solution for 10 minutes followed by ultrasonication in ultrapure water for 15 minutes. 

This recovery method was confirmed to not broke the BDD, and can be use again for 

many times. Electrode characterization was performed using X-ray photoelectron 

spectroscopy (XPS), scanning electron microscopy (SEM) (JCM-6000, JEOL) before 

and after electrolysis. 

 

2.3 Electrochemical CO2 reduction 
 

The electrochemical measurements were conducted in a cell with two 

compartments, separated by a Nafion membrane (Figure 3).  

 

 
Figure 3. Compartment cell for CO2 electrochemical reduction of CO2 

 

A 0.5 M KCl solution was used as the catholyte, and a 0.5 M KOH solution as the 

anolyte (15 mL in each cell).[17] Cu-BDD, a Pt Mesh, and Ag/AgCl were used as the 

working, counter, and reference electrodes, respectively. Prior to electrochemical 

reduction, the catholyte side was purged with N2 gas for 5 minutes, followed by CO2 

bubbling for 15 minutes. Linear sweep voltammetry (LSV) was performed with a 



	

	

	
Chapter 3 

	
	 	

39	

scan rate of 20 mV/s in the potential range from 0 V to -1.8 V (vs. Ag/AgCl). The 

electrochemical reduction of CO2 was conducted for 2 hours at potentials ranging 

from -0.8 V to -1.2 V (vs. Ag/AgCl) at room temperature and pressure.  

 

2.4 Product analysis 
 

The liquid products were analyzed using gas chromatography-mass 

spectrometry (GCMS-QP2010 Ultra, Shimadzu Corp.) by the autoinjection headspace 

method (5 mL sample in 20 mL volume vial) with the selected ion monitoring (SIM) 

mode for the target products. The selected mass fragments for analysis were m/z 15, 

29, 31, 32, 46, 45, 42, 26, 19, 14, 43, 44, and 58. Meanwhile, the GC-MS condition 

was summarized in Table 1. Beside that, high performance liquid chromatography 

(HPLC) with electroconductivity and UV/Vis detectors (Prominence, Shimadzu 

Corp.) were also used for HCOOH and aldehyde analysis. The gas products were 

analyzed by gas chromatography with a flame ionization detector and a thermal 

conductivity detector (GC-2014, Shimadzu Corp.). 

 
Table 1. Details of GC-MS condition for sample analysis 

 
 

 

 

 

 

Instrument Gas Chromatography-Mass Spectrometry (GC-MS)
Condition
a. GC
    Column Stabilwax 60m, 0.32mm I.D., 1μm df
    Carrier Gas He 
    Oven 40oC (3 min), adjusted to 150oC (10oC/min)

continued to 240oC (25oC)
    Method Splitless
b. MS
    Ion Source 200oC
    Interface 250oC
    Mode SIM

Instrument Gas Chromatography
Column Molecular Sieve 13X, 3.00 mm I.D., 2m
Detector
a. FID 
    Injection temperature 100oC
    Carrier Gas He, 20 mL/min
    Oven 60oC
    Detector temperature 120oC
    Injection volume 5 mL of gas sample
b. TCD
    Injection temperature 70oC
    Carrier Gas Ar, 10 mL/min
    Oven 70oC
    Detector temperature 100oC
    Injection Volume 1 mL of gas sample

Liquid Product

Gas Product
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3. Results and Discussions 
 
 First of all, Cu modified BDD electrode was examined by performing the linear 

sweep voltammetry (LSV) using Cu-BDD-100 in 0.5 M KCl solution. The LSV was 

performed at potential ranging from 0V to -1.8 V vs. Ag/AgCl (Figure 4). 

 

 

Figure 4. The LSV of Cu-BDD-100 in 0.5 M KCl solution saturated with N2 gas (dashed line) 
and CO2 gas (solid line). The scan rate was 20 mV/s, swept from potential 0 V to -1.8 V vs. 

Ag/AgCl 
  

 The LSVs were carried out after saturated with N2 gas and CO2 gas. We can see 

that at potential around -1.0 V, there is an increase in absolute value of the current. 

This peak is increased up to potential -1.7 V and sharply increased as the hydrogen 

evolution begins. This peak is believed to be a CO2 reduction peak, since it could not 

be observed in the N2 saturation solution. The shift of the onset peak of the hydrogen 

evolution is assuming that the hydrogen evolution can be suppressed.  

 The Cu modified on surface of BDD electrode and then used for CO2 

electrochemical reduction. Three kind of modified electrodes, that is, Cu-BDD-50, 

Cu-BDD-100, and Cu-BDD-300 were prepared. These electrodes were characterized 

using SEM and XPS. Figure 5a shows the change of XPS spectra after Cu deposition 

on BDD surface.  The peak at binding energy of 932.05 and 952 eV correspond to Cu 

2p3/2 and Cu 2p1/2 respectively (Figure 5b). A Cu/C ratio of 0.08 was calculated. 

Furthermore, an increase of O/C ratio from 0.006 to 0.09 was observed after Cu 

deposition, indicating that not only Cu but also there may be some species of CuO or 

Cu2O are formed on the surface of BDD electrode. However, the detail requires 

further study. 
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Figure 5. XPS spectra of bare and Cu modified BDD electrodes (a) wide scan (b) narrow scan 
 

 

 Figure 6 shows the SEM images before and after CO2 electroreduction for 2 

hours at -1.0 V (vs. Ag/AgCl). However, on the Cu-BDD-300 electrode surface, 

accumulation of the Cu particles made it easy for them to become detached. On the 

other hand, the SEM images of the Cu-BDD-100 surface before and after 

electroreduction show insignificant differences, indicating the Cu-BDD had remained 

stable. The average sizes of the Cu particles on the Cu-BDD electrode surfaces were 

around 50-85 nm, as has been calculated manually by ImageJ software application. 

The detailed calculation can be seen at Figure 7. 

 

 
Figure 6. SEM images of Cu-BDD electrodes formed by electrodeposition at -0.6 V (vs. 

Ag/AgCl) in 0.1 M H2SO4 solution containing 1 mM CuSO4. (a), (b), (c) show images of the 
Cu-BDD-50, Cu-BDD-100, Cu-BDD-300 electrodes before electrochemical reduction, and 

(d), (e), (f) show images of the same electrodes after electrochemical reduction of CO2 at -1.0 
V (vs. Ag/AgCl) for 2 hours at room temperature and pressure 
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Figure 7. The average particle size as measured by ImageJ software. (a), (b), (c) are Cu-BDD-
50, Cu-BDD-100, Cu-BDD-300 electrodes before electrochemical reduction, and (d), (e), (f) 
are the same electrodes after electrochemical reduction of CO2 at -1.0 V (vs. Ag/AgCl) for 2 

hours at room temperature and pressure.  
 

Those three electrodes and thus to be applied for CO2 electrochemical reduction 

at potential -1.0 V vs. Ag/AgCl during 2 hours reduction. The C2/C3 products that 

could be achieved were ethanol, acetaldehyde, and acetone. The product efficiencies 

were calculated based on this equation (1): 

 

Faradaic Efficiency = ! ! ! ! !
!"

 x 100 %         (1) 

 

Where, n is electron involved in reduction, F is faraday constant, M is concentration 

of sample, I is current and t is reduction time.    

The highest faradaic efficiencies for those compounds were ethanol 42.4 %, 

acetaldehyde 13.7%, and acetone 7% (Figure 8), which were obtained on Cu-BDD-

100. With the Cu-BDD-50 electrode, the amount of Cu nanoparticles was insufficient 

a d 

f c 

e b 
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to catalyze the production of ethanol. However, for Cu deposition times of more than 

100 s, the efficiency dropped due to the instability of the Cu nanoparticles deposited 

on the BDD surface (Figure 6). Manthiram et al. [18] has reported that isolated 

nanoparticles expose the catalytic sites for the methanation of CO2, but that, as the 

nanoparticles begin to aggregate, these catalytic sites are lost. To the best of our 

knowledge, this is the first time that C2/C3 species have been produced with 

reasonable efficiency by the electrochemical reduction of CO2 using a modified BDD 

electrode. Moreover, ethanol is well known to be widely used as solvent, feedstock, 

and even as a fuel.  

 

 
Figure 8. Liquids produced CO2 electrochemical reduction for two hours on surface of Cu-

BDD-50, Cu-BDD-100, and Cu-BDD-300. 
 

Since the best performance was achieved with the Cu-BDD-100 electrode, we 

used this electrode to examine the dependence of the faradaic efficiencies for the 

production of ethanol, acetone, and acetaldehyde over the range from 0.8 V to -1.2 V 

(vs. Ag/AgCl) (Figure 9). The chemical equations for the production of ethanol, 

acetone, and acetaldehyde are given below by (2), (3), and (4), where E is the 

equilibrium potential [7]: 

 

2CO2 + 12e− + 12H+  →  CH3CH2OH + 3H2O        E  = 0.09 V (vs. RHE)    (2) 

2CO2 + 10e− + 10H+  →  C2H4O + H2O                  E  = 0.05 V (vs. RHE)     (3) 

2CO2 + 16e− + 16H+  →  C3H6O + H2O         E  = -0.14 V (vs. RHE)     (4) 
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Figure 9. The faradaic efficiencies of the products from CO2 electrochemical reduction on 
Cu-BDD-100 at various potential reductions ranging from -1.2 V to -0.8 V vs. Ag/AgCl in 

room temperature and pressure. 
 

 
Figure 10. The Chromatogram of CO2 electrochemical reduction on Cu-BDD-100 during 2 

hours reduction at various potentials. 
 

The highest faradaic efficiency for the production of ethanol was achieved at -1.0 

V (vs. Ag/AgCl). From Figure 9, we can see the production efficiency of acetone 

increased as the reduction potential was reduced, signifying that the coupling 

mechanism is more preferable compared to electron and proton transfer. Moreover, a 

significant decline in the faradaic efficiency for the production of ethanol at more than 

-1.0 V (vs. Ag/AgCl), which might be due to the high production of hydrogen gas 

detaching Cu nanoparticles from the surface of the electrode. This can also be 

explained by referring to Figure 10, in which the current density vs. time profiles for 

the reduction of CO2 at different potentials are plotted, and which shows that, at more 
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than -1.0 V (vs. Ag/AgCl), there are large changes in current density with time. The 

repeatability of the amount produced is indicated by the standard deviation obtained 

from three different experiments at this potential for 2 hours (Figure 11). The standard 

deviation of ethanol, acetaldehyde, and acetone are 9.31%, 3.73%, and 1.92% 

respectively.   

 

 
Figure 11. The repeatability of ethanol, acetaldehyde, and acetone production at reduction 

potnetial -1.0 V vs. Ag/AgCl during 2 hours. 
 

In addition, the differences on the BDD surfaces can be seen from the SEM 

images after 2 hours reduction at various potentials (Figure 12). After reduction at -

1.2 V (vs. Ag/AgCl), the Cu nanoparticles had become detached, and the Cu 

nanoparticles remaining on the surface became smaller on average by about 50 nm. 

On the other hand, at less than -1.0 V vs. Ag/AgCl, the Cu nanoparticles seemed to 

have been stable.  
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Figure 12. SEM images of Cu-BDD after 2 hours reduction at potential (a) -0.8 V (b) -0.9 V 
(c) -1.0 V (d) -1.1 V (e) -1.2 V vs. Ag/AgCl 

 

Other liquid products, such as formic acid and formaldehyde, and gas products 

were not detected in quantifiable amounts, since they were beneath the detection 

limits of our instrument (Table 2). This Limit of Detection (LOD) were determined by 

calculating the standard deviation of the response (Sy) of the curve and the slope of 

the standard calibration curve (S) according to this equation (5) 

a	 b	

c	 d	

e	
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LOD = 3 (Sy/S)      (5) 

 

The standard deviation of the response was determined from the standard deviation of 

y-intercept of the regression line. In addition, the values of both standard deviation of 

the response and the slope were calculated by using LINEST function from 4 to 9 

different concentration values of standard solutions. 

 

Table 2. Limit detection of the instrument for each product 

Liquid products 

Name LOD (ppm) 

Acetone 0.006 

Ethanol 0.022 

Acetaldehyde 0.003 

Formaldehyde 0.014 

Formic acid 0.056 

Gas products 

Name LOD (µmol) 

H2 0.002 

CO 1.5 x 10 -4 

CH4 1.8 x 10-4 

 

 

 For comparison, the electrochemical reduction of CO2 on a bare Cu electrode was 

also carried out at -1.0 V (vs. Ag/AgCl) for 2 hours in the same experimental system. 

However, in the same applied potential, ethanol, acetone, or acetaldehyde were not 

observed as on the Cu-BDD electrodes. Considering the potential dependence, we 

carried out experiments with the Cu electrode at -1.6 V (vs. Ag/AgCl), resulting in the 

production of ethanol, acetone, acetaldehyde, and formic acid with faradaic 

efficiencies of less than 1%. On the other hand, the production was dominated by the 

evolution of hydrogen gas and a small amount of CO gas. This is in line with previous 

reports [19][5] showing that, with a bare Cu electrode, a high overpotential was 

required to produce hydrocarbons or multi-carbon oxygenated species. However, this 

behavior was not found with the Cu-BDD electrodes, where ethanol, acetaldehyde, 
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and acetone were produced at low potentials of -1.0 V (vs. Ag/AgCl). This suggests 

that the nano-sized Cu particles deposited on the surface of the BDD electrodes have 

high affinity, and tend, therefore, to interact more efficiently with the CO2 molecules 

and their intermediates. 

Studies of the production of C2 species at the surfaces of Cu electrodes have, so 

far, only been observed on rough surfaces, such as those produced by 

electrodeposition or after a thermal pretreatment [20-22]. Beside that, producing 

compound with high number of carbon atoms, such as C2/C3 species, C-C coupling 

reactions are necessary during the reduction process. [23] C-C coupling reactions are 

strongly influenced by the amount of CO bonded to the surface of the electrode, 

which influences the CO-CO coupling or the coupling with other hydrogenated 

intermediates. Vollmer et al. [24] reported that CO binds more strongly with stepped 

edges and kinks rather than Cu electrodes with terraced surfaces. The binding energy 

has also been measured for defect sites on sputtered and polycrystalline Cu electrodes. 

These studies clearly show that rough surfaces are needed to increase the adsorption 

of CO, and thus promotes C-C coupling reactions. To give a clear suggested 

mechanism, the summary of the general mechanism that include the formation of 

adsorbed species on the surface of electrode, written by Kuhl, et al., [7] and Calle-

Vallejo, et al [23], can be combined as follow: 
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CO2 is adsorbed on surface of electrode to form C1 intermediates. This C1 

intermediate could release from the surface of electrode and detected as a product. On 

the other hand, C-C coupling from C1 species can also forms C2 species. Continues 

coupling reaction of C1 species and/or with C2 species could be occurred and 

producing thus producing C3 species.       

Back to Cu-BDD electrodes, the formation of C2/C3 products on this modified 

electrode is at a low potential (-1.0 V). This can be explained by the fact that at more 

negative potentials, electron and proton transfer are more favorable, thus the 

intermediate C1 species on the surface of the electrode are likely to desorb as C1 

products (i.e. CO, CH4, HCOOH, etc.) rather than remain and couple with other 

intermediates to form higher carbon-containing compounds. It is also in line with  

previously reported results for the electrochemical reduction of CO2 to HCOOH on a 

bare BDD electrode, which took place by reduction at high potential [25][2]. Indeed, a 

more detailed understanding of the mechanism is worth further study.  

For comparison with other carbon-based electrodes, the electroreduction of CO2 

with traditional carbon electrode, that is, glassy carbon (GC) and Cu-modified GC 

(Cu-GC) electrodes was also conducted at -1.0 V (vs. Ag/AgCl) for 2 hours (Figure 

14). As a result, on both electrodes, hydrogen evolution dominated. At the same time, 

the efficiency for the production of C2/C3 species was less than 1% with the Cu-GC 

electrode. This suggests that the larger Cu particles and narrower potential window 

increase the rate of hydrogen production (Figure 13).  

 

 
Figure 13. LSV of Cu-BDD and Cu-GC electrodes in 0.5 M KCl after CO2 gas bubbling 
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(A) 

 

 

 

 

 

 

 
 

(B) 

 

 

 

  

   

 

Figure 13. (A) Faradaic efficiency of CO2 electrochemical reduction on GC and Cu-GC 
electrode (B) SEM images of Cu-BDD electrode before and after reduction at potential 

reduction -1.0 V (vs. Ag/AgCl) during 2 hours. 
 

In conclusion, the production of C2/C3 species is feasible on a relatively inert 

BDD electrode by modifying it with Cu. Previously, Roy et al. [26] reported a study 

on a copper-modified BDD electrode in aqueous ionic liquid. Nonetheless, products 

higher than C1 species were not reported and they were dominated by hydrogen gas.  

Despite using similarly modified electrodes, the higher potentials applied and the 

bigger sizes and greater amounts of Cu particles, which promote faster electron and 

proton transfer, may be the reasons for this. Recently, Song et al. [27] reported 

Before	 After	
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ethanol production on a Cu nanoparticle/N-doped graphene electrode. The reaction 

pathway, however, remains in question, and although similar behavior was shown 

using a doped material, the other benefit of using BDD electrodes is that they are 

highly durable and promising for real applications. Moreover, using BDD electrodes, 

C3 species, which were not observed by Song et al., were observed for the first time. 

The future challenge is to develop an optimum procedure for the reduction of CO2 to 

high carbon-containing compounds.  

 

4. Conclusion 
 

The electrochemical reduction of CO2 on Cu-BDD electrodes was successfully 

carried out, producing C2/C3 species with high efficiency at low reduction potentials. 

The Cu deposited on the electrodes remained stable, showing insignificant differences 

after 2 hours reduction at -1.0 V vs. Ag/AgCl or less. The wide potential window of 

BDD seems to be responsible for suppressing the production of hydrogen compared 

to a glassy carbon electrode. Moreover, nano-sized Cu particles increase the affinity 

with which CO2 becomes attached to the surface of the electrode, thus increasing the 

feasibility of C-C coupling, leading to the production of higher carbon-containing 

compounds. The production of C2/C3 species will give impetus to further studies 

using BDD electrodes to possibly produce high carbon-containing compounds with 

certain types of catalyst.  
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Abstract 
 
 

In recent years, the utilization of boron doped diamond (BDD) as an excellent 
electrode for CO2 electrochemical reduction is attractive and has been published in 

several reports. Its wide potential window may decrease the hydrogen evolution that 
is known as a CO2 reduction reaction competitor. On the other hand, a high 

overpotential still become an obstacle. We report a surface modification with 
deposited metal as an effort to overcome the issue. Pd metal was chosen to be 

modified onto surface of BDD electrode (PdBDD), resulting in enhancement of CO 
production (53.3% faradaic efficiency) as a used-to-be side product on CO2 reduction 

using BDD electrode, by applying lower potential of -1.6 V vs. Ag/AgCl. Various 
attempts are presented to improve the production of CO. 
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1. Introduction 
 

Carbon dioxide (CO2) has been known as a notorious greenhouse gas, which is 

abundantly available in atmosphere. It is produced naturally or artificially through 

fuel combustion in transportations and many industrial processes. Ideally, as what we 

hope, the produced CO2 will be equal or even less than what is consumed. However, 

with the high industrial activity, the concentration of CO2 gas increases every year 

and unfortunately, go beyond the balance of environmental stability [1,2].  Therefore, 

increasing the value of this cheap and high available gas in atmosphere by CO2 

conversion method is enormously attractive and also necessary to support the 

environmental protection issue. Meanwhile the conversion of CO2 gas to useful 

chemical stocks [3-5], or more further to convert it back to fuel [6], have been studied 

by many researchers around the world, as one of the attempt to obtain a value added 

chemicals [7] . Among many techniques that have been attempted, electrochemical 

reduction is one of a widely used method. However, this method suffers for a 

drawback. CO2 gas is thermodynamically stable and chemically inert molecule [8], 

which requires a very high potential as high as -1.9 V vs. NHE to transfer 1 electron 

to CO2 molecule. Therefore, this causes the hydrogen evolution to take place, and 

interferes the CO2 reduction.  

These few years, an excellent electrode, namely BDD electrode, that has been 

known to have excellent results on numerous application such as sensor and synthesis 

applications [9-12], has been utilized for CO2 electrochemical reduction in a form of 

unmodified/modified electrode. BDD has a wide potential window that may suppress 

the production of H2 gas, in addition of this superior mechanically and chemically 

stable electrode behavior that is promising for practical applications. Einaga group 

has successfully utilized bare BDD electrode for CO2 reduction and producing 

HCOOH with highest faradaic efficiency of 94.7% and the selectivity that reach more 

than 99% using a circulation flow cell [13,14]. Since then, many parameters have 

been carried out to improve the system and scientifically studied in detail about the 

phenomenon [15-17]. However, high overpotential is still being observed to reduce 

CO2 gas, and moreover only C1 product is successfully produced with bare BDD.  

Therefore, an attempt has been carried out by modifying the surface of BDD 

electrode with the nanoparticle size of metal, in order to decrease the overpotential or 
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to find the new products, which has higher number of carbon atoms. In a first result in 

copper modified on BDD electrode (Cu-BDD) could improve the production of C2/C3 

species, in which ethanol, acetaldehyde, and acetone were produced with faradaic 

efficiency of 42.4%, 13.7%, and 7% respectively [18]. Hereafter, modification of 

other promising metal on surface of BDD electrode has been explored, to study and 

find new system with BDD electrode. There were not many studies on metal modified 

BDD electrode for CO2 reduction, however several reports [19-23] show that metal 

modified on BDD electrode could improve the efficiency, producing new products, 

and lowering the overpotential for CO2 reduction. Among those studies, palladium 

(Pd) metal modified on BDD electrode was not investigated yet so far, regardless of 

its well-known and widely used metal catalyst. Moreover, addressing of its behavior 

toward CO2 reduction, Pd is a “special” metal in group VIIIB elements (i.e. Pt, Ir, Ni, 

etc), in which it has been observed about its ability to not only producing H2 gas as it 

is generally being shown in this group [24,25]. Therefore, in this report, we present a 

Pd modification on surface of BDD electrode for CO2 electrochemical reduction to 

CO, which has been known widely as an important starting material for chemicals in 

industry, such as manufacture of alcohol, aldehyde, and liquid hydrocarbons.  

 

2. Experimental 
 
2.1 Chemicals 

NaCl (99.5%), Na2SO4 (99%), H2SO4 (98%), HCl (35%), and HNO3 (60%) were 

purchased from Wako Pure Chemical Industries.  PdCl2 (99%) was purchased from 

Sigma Aldrich. All those reagents are used without any further purification. Ultra-

pure water was obtained from Symply-Lab water system (Direct-Q UV3, Millipore).  

 

2.2 Working electrodes preparation 
BDD (1% B/C) electrodes were prepared by depositing on the surface of Si(111) 

wafers using a micro-wave plasma-assisted chemical vapor deposition system (Model 

AX-5400, CORNES Technology Corp.). The details are described elsewhere [26]. 

Meanwhile, the electrodeposition of Pd particles on BDD surface was carried out 

using chronoamperometry technique in one compartment cell containing 10 mL of 

1mM PdCl2/0.1 M HCl.  The applied potential for deposition was -0.15 V during 30 s 
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(PdBDD30), 100 s (PdBDD100), 300 s (PdBDD300), 500 s (PdBDD500), and 1000 s 

(PdBDD1000). The palladium modified on BDD (PdBDD) electrodes were rinsed 

with ultra-pure water and dried under N2 gas afterward. All PdBDD electrodes were 

recovered by immersing in aqua regia solution for 10 minutes, and then ultrasonicated 

in ultra-pure water during 5 minutes (2 times), and followed by pretreatment in 0.1 M 

H2SO4 by applying cyclic voltammetry (CV) performance from -3.5 V to 3.5 V (20 

cycles), continued from 0 V to 3.5 V (10 cycles) with scan rate 1 V/s. The electrodes 

were characterized using scanning electron microscopy (SEM) (JCM-6000, JEOL), 

and X-Ray photoelectron spectroscopy (XPS) (JPS-9010TR, JEOL).  

 

2.3 CO2 reduction method 
 

The electrolysis of CO2 was conducted in two cells (15 mL in each cell) 

separated by Nafion membrane. 0.1 M Na2SO4 was used as an anolyte, and 0.1 M 

NaCl as a catholyte. Pt mesh and PdBDD electrodes were used as counter electrode 

and working electrodes respectively. All potentials were measured against Ag/AgCl 

(3M NaCl) unless otherwise stated. Prior to the electrochemical reduction, N2 gas was 

bubbled into the catholyte to remove remained oxygen gas during 15 minutes in 100 

sccm, followed by CO2 gas purging in the same time and gas rate. CV performance at 

potential -0.5 V to 1.2 V was performed for each gas bubbling. The electrochemical 

reduction of CO2 was then performed during 1 hour under stirring condition at various 

applied potentials (-1.4 V to -1.9 V). A low flow rate of CO2 gas was purged into the 

cell to maintain CO2 concentration during reduction. All electrochemical 

measurements were recorded using a potentiostat (Autolab PGSTAT204, Metrohm 

Autolab B.V.). 

 

2.4 Products analysis method 
The gas products were collected in a 1 L gas and 1 mL of liquid sample was 

taken from the cell and both of them were analyzed subsequently after reduction 

process. The gas products were analyzed by gas chromatography with a flame 

ionization detector and a thermal conductivity detector (GC-2014, Shimadzu Corp.). 

Liquid product was analyzed using high performance liquid chromatography (HPLC) 

with electroconductivity detector (Prominence, Shimadzu Corp.). 
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3. Results and Discussions 
Figure 1 shows CV performances of PdBDD electrodes with different time 

depositions, in comparison with bare BDD electrode. The CVs were performed after 

CO2 bubbling in 0.1 M NaCl solution, from potential -0.5 V to 1.2 V, before the CO2 

reduction was taken place. On bare BDD electrode, there are not any peaks can be 

observed around this potential range, showing one of excellent BDD behavior, that is 

a low background current of BDD electrode. As the Pd particles deposited on BDD 

surface, it shows typical Pd CV performance. On negative-going potential, H2 

adsorption happened at around potential -0.3 V, and continued by hydrogen evolution 

at >-0.4 V. On positive-going potential, we can see the H2 desorption peak at around 

potential -0.3 V, followed by the oxidation peak of Pd0 to Pd2+ at around potential 0.7 

V and back as a reduction of Pd2+ to Pd0 at around potential 0.2 V. The CV 

performance also shows that as the deposition time longer, the amount of deposited 

Pd particles increases, and thus the Pd oxidation peak at potential 0.7 V increases.  

 

 
 

Figure 1. The CV performances of PdBDD electrodes with different Pd time deposition. The 
scan rate was 100 mV/s, from potential -0.5 V to 1.2 V vs. Ag/AgCl. 

 
 

Meanwhile, SEM images were performed for all PdBDD electrodes after the 

electrodeposition at potential -0.15 V in different time depositions (Figure 2(1)-(5)). 

The particles are deposited quite homogeneously on all active deposition surface, with 

the particles size are around ~50 nm in average, except on PdBDD500 and 
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PdBDD1000 electrodes where the particles agglomerate, forms larger size of particles 

(~160 nm). In addition, the mass of Pd particles is calculated based on the total charge 

consumed during the electrodeposition, by considering of no contribution of hydrogen 

evolution. On PdBDD30, the mass of particles is 2.75 µg/cm2, and increases as the 

deposition time becomes longer (Figure 2(6)). Moreover, the presence of Pd particles 

on surface of BDD electrode was also characterized using XPS, showing the peak of 

Pd5/2 at 335.3 eV and Pd3/2 at 340.5 eV, that represent the metallic form of Pd (Pd0). 

Deconvolution method shows that the amount of PdOx on the surface is less than 

10%, and thus the catalytic effect of Pd is considered coming from the Pd0 species 

(Figure 3).  
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Figure 2. The SEM images of PdBDD electrodes prepared at potential -0.15 V with 
deposition time 30 s (1), 100 s (2), 300 s (3), 500 s (4), 1000 s (5), and the mass of Pd 

particles vs. deposition time dependence (6).  
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Figure 3. XPS spectra (narrow scan) with deconvolution method of Pd-BDD electrode 

 

The electrochemical reduction of CO2 was evaluated from the CVs after N2 and 

CO2 bubbling by scanning from potential -1.8 V to 1.2 V (Figure 4). The scan was 

carried out from 0 V to the anodic potential 1.2 V and go through the cathodic 

potential, and back to 0 V. At this potential range, CO2 reduction was considered to 

be taken place, as it can be observed from the reduction peak at potential around -1.0 

V, which contributed to the reduction of CO2 to reduced-CO2 species as it cannot be 

seen at the CV after N2 bubbling. This result is consistent with the results mentioned 

in Ref.[27,28], where the  adsorbed-CO (COad) is formed  on the surface of electrode 

during the CV in bicarbonate solution containing CO2 gas, and this COad is oxidized 

again back to CO2 at anodic potential. In addition, in the presence of CO2, the 

hydrogen evolution is shifted in more negative potential, explaining that the CO2 

reduction is catalyzed, producing reduced-CO2 species and covering the surface of 

BDD, and thus decreasing the H2 evolution itself. Beside that, all CVs of PdBDD 

electrodes in different Pd deposition time show that as the deposition time of Pd 

increases, the oxidation peak of Pd (at 0.7 V) is increased, as well as the intensity of 

peak at -1.0 V that indicates the increasing of the reduced-CO2 species amount 

attached to the surface of BDD electrode.  
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Figure 4. CV of PdBDD after N2 and CO2 gas bubbling performed at potential -1.8 V to 
1.2 V with scan rate of 100 mV/s. 

 

 

Although we perform the CV performance before the electrochemical reduction, 

we found that it did not affect the Pd modified electrode significantly. To be sure 

about the surface of the modified electrode, SEM images before and after one-time 

PdBDD 500s 
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CV performance was carried out (Figure 5). The results show that there were 

insignificant differences.  

 

  

Figure 5. SEM images of PdBDD electrode (A) before and (B) after CV performance (-0.5 
V to 1.2 V vs. Ag/AgCl) 

 
The electrochemical reduction of CO2 was then carried out on all PdBDD 

electrodes. The products detected were CO, HCOOH, and H2 gas. The 

chromatograms of each product are shown in Figure 6.  
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Figure 6. The product’s chromatogram of (a) CO (b) HCOOH and (c) H2 from the CO2 
electrochemical reduction on PdBDD300 at potential -1.6 V during 1 hour.  

 
Meanwhile, the electrochemical reduction of CO2 at potential -1.5 V during 1 

hour shown in Figure 7. CO is the main product of CO2 reduction, with HCOOH as 

the side products. There are no other products detected, and that the total faradaic 

(a) 

(b) 

(c) 
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efficiencies are more or less ~100%. Faradaic efficiency of CO is calculated based on 

2e- consumed in reduction, according to this reaction: 

 

CO2 + H+
(aq) + 2e- → CO(g) + OH-

(aq)          (1) 

 

 
Figure 7. Faradaic efficiency of CO2 electrochemical reduction products performed at 

potential -1.5 V during 1 hour reduction on PdBDD electrodes with different Pd deposition 
time.  

 
The faradaic efficiency of CO is increased as the amount of Pd particles 

increased, and it slightly decreases after 500 s deposition. It can be explained by the 

instability of deposited Pd particles, where the Pd particles are agglomerated on 

longer deposition time, and thus easier to be detached from surface of electrode, that 

also causes the decreasing of current density value for CO2 reduction (Figure 8).  
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Figure 8. Chronoamperometry for the electrochemical reduction of CO2 (A) and the current 
density at a potential of -1.5 V (B) during 1 hour reduction using PdBDD electrodes with 

different Pd deposition time. 
 

 
In order to study in detailed, the potential dependence, ranging from -1.4 V to -

1.9 V was performed on each PdBDD electrodes (Figure 9). The maximum 

production of CO is 53.3% (HCOOH 9.29%, H2 39.86%) on PdBDD300 at potential -

1.6 V. This production of CO is approximately five times higher than that on bare 

BDD and even on Pd metal electrode in the same system and conditions, where the 

production of CO is around ~9% (Table 1). Thus, deposited Pd particles on surface of 

BDD may catalyze the production of CO at relatively lower potential than that used-

to-be in CO2 reduction on bare BDD (>-2.0 V), to produce higher CO2 reduction 

products [13].  

 

(A) 

(B) 
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Figure 9. Faradaic efficiency vs. potential dependence of CO2 electrochemical reduction 
products on A) PdBDD30, B) PdBDD100, C) PdBDD300, D) PdBDD500, E) PdBDD1000, 

performed during 1hour reduction. 
 

 
Table 1. Faradaic efficiencies for the products produced using bare BDD and Pd metal 

electrodes 

Electrode Potential/V 
Faradaic Efficiency/% 

HCOOH CO H2 

Bare BDD -1.6 5.76 9.95 84.92 

Pd metal* -1.6 0.70 9.34 8.53 

 *The total faradaic efficiency of the products with the Pd metal electrode is far from 100%. This might be due to 
dissolution of H2 into the electrode [29]. 
  
 

Meanwhile, the CO production on PdBDD30 and PdBDD100 are maximum at 

the value of ~20% faradaic efficiency in all potential variations, which is two times 

higher than that on bare BDD. Whereas on PdBDD300, PdBDD500, and 

PdBDD1000, it can be improved to about 30-50% faradaic efficiencies, which is three 

to five times higher than that on bare BDD, by applying potential of -1.5 V or more. It 

shows that sufficient amount of Pd particles are necessary to obtain best result for CO 

production. Small amount of Pd particles are improving the faradaic efficiency up to 



	

	

	
Chapter 4 

	
	 	

70	

two times higher only, on the other hand high amount of Pd particles have a shortage 

in case of its stability during electrochemical reduction. The SEM images (Figure 10) 

and particle size of Pd particles measurements (Figure 11-12) on the surface of BDD 

electrode shows the difference before and after electrochemical reduction on PdBDD 

electrodes at potential -1.5 V during 1 hour reduction, where the size of Pd particles 

on PdBDD500 and PdBDD1000 are decreasing, that might be due to the particles that 

detached from the surface of BDD. Unlike the particle size dependence study in 

literatures [30,31], however, it is suggested that the particle size dependence in this 

range is not visibly affecting the CO production since the faradaic efficiency of CO 

could be achieved up to ~40% on PdBDD500 which has larger particle size than that 

on PdBDD300.  In addition, since the production of HCOOH is relatively same (more 

or less 5~10%) in all variations, it may explain that the catalytic effect of Pd particles 

might only influence the CO productions. Regardless of the recent study on metal 

modified BDD electrode produces CO on Cu-SnOx/BDD electrode [22], this study is 

giving new point of view of the Pd utilization on BDD electrode for CO2 reduction, 

which has high catalytic activity yet has stability from corrosion, unlike Cu. And thus, 

it is assumed that using Pd as a noble metal to be modified onto BDD surface may 

increase the durability of electrocatalytic effect on electrode.   
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Figure 10. SEM images of PdBDD electrodes after the electrochemical reduction of CO2 at a 

potential of -1.5 V for 1 hour. 
 

PdBDD30 PdBDD100 

PdBDD300 PdBDD500 

PdBDD1000 

5μm	
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Figure 11. Pd particle size distribution after electrochemical deposition at a potential of -0.15 

V using electrodes with different deposition times 
 

 
 

Figure 12. Pd particle size distribution on the different PdBDD electrodes, after 
electrochemical reduction of CO2 at a potential of -1.5 V for 1 hour. 
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 In addition, the stability of the PdBDD500 for the CO2 electrochemical reduction 

to CO at potential -1.6 V vs. Ag/AgCl was carried out. Each experiment was 

conducted for 1 hour. The result showed the faradaic efficiency for CO was not 

changed significantly for up to four times electrolysis with the same condition, 

without any electrode recovery (Figure 13) 
 

 
 

Figure 13. Products faradaic efficiency of CO2 electrochemical reduction on PdBDD500 
electrode for four times reduction at potential -1.6 V vs. Ag/AgCl.  

 
 

Moreover, since the system was carried out under stirring condition, the effect of 

stirring speed was studied. It has been known that the mass transfer to surface of 

electrode has also a big meaning for CO2 reduction activity and selectivity [32]. A 

stirring will improve the transfer of dissolved CO2 in a bulk to come closer to the 

electrode [33], and further affecting the CO2 products efficiency. The stirring speeds 

were applied as a low (~120 rpm), middle (~240 rpm), and fast (~480 rpm) speed, 

performed at potential -1.6 V on PdBDD300 (Figure 14).  
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Figure 14. Stirring speed dependence of the faradaic efficiencies of the products and the 

current density during the electrochemical reduction of CO2 carried out using PdBDD300 at a 
potential of -1.6 V for 1 hour. 

 

At low stirring speed, 39.92% faradaic efficiency of CO was produced, and it was 

increased to 53.29% at middle stirring speed. However, the faradaic efficiency of CO 

was dropped to 39.79% at fast stirring speed, as a contrary to higher hydrogen 

production. This can be explained by paying attention to the current consumed during 

the electroreduction. As we can see, the current density was increased gradually as the 

stirring speed went faster. Taking a concern to the trend of exchange current of 

various metals vs. calculated free energy of H adsorption, known as “the volcano 

plot”[34,35], metals stand in the left side of volcano plot has a large H coverage, in 

contrary to metals stand in right side of volcano plot which has small H coverage. 

Meanwhile, Pd is in the left side of volcano plot, where the high current density may 

result in the higher faradaic efficiency of hydrogen production. Therefore, it limits the 

CO2 reduction itself. Finally, the appropriate stirring speed is necessary to control the 

mass transfer, while taking into account the catalytic activity of metal toward 

hydrogen production. 

 

4. Conclusion 
 

In summary, we successfully modified the Pd particles onto the surface of 

BDD electrode to be applied for CO2 electrochemical reduction for the first time. CO 

is the main CO2 reduction product at potential -1.6 V with the existence of Pd 
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particles 16.39 µg/cm2 modified on surface of BDD electrode. The deposited Pd 

particles remained stable after electrochemical reduction at potential -1.5 V on the 

surface of PdBDD30, PdBDD100, and PdBDD300. As the particles grow bigger on 

PdBDD500 and PdBDD1000, the size of Pd particles decreases subsequently after 

reduction. At last, Pd is an alternative metal to be deposited on the surface of BDD 

electrode that has high activity for CO2 reduction, and thus it possibly decreases the 

overpotential for CO2 reduction on BDD electrode, especially for increasing the CO 

production that used to be known as a side product in CO2 reduction using BDD 

electrode.  
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1. Introduction 
 

The global monitoring for CO2 concentration in atmosphere reports increasing of 

its well-known gas, called greenhouse gas. The high concentration of CO2 gas in 

atmosphere could lead to the dangerous environmental effect. Accordingly, 

converting this cheap and abundant gas in atmosphere to be useful chemicals, not 

only will add the value of this gas, but broadly, will give a positive contribution for 

environment [1]. CO2 electrochemical reduction has attracted researchers all over the 

world, as one of the method of CO2 conversion [2-4].   

Meanwhile, in electrochemical method, electrode material is very important point 

to be noticed as an important part to create the suitable system, which has high 

performance and efficiency for CO2 electrochemical reduction. Recently, boron doped 

diamond (BDD), that has been widely used for sensor or synthesis application [5,6], 

has also been utilized for CO2 reduction [7-9]. Its low background current may 

suppress the production of H2 gas that has been known as a CO2 reduction competitor. 

Moreover, BDD has high mechanical and chemical stability that may lead for 

practical application. However, a drawback is still existed due to its high over 

potential required for the process. Many attempts have been reported, especially by 

metal modification on BDD surface [10,11]. This method may decrease the over 

potential, and even more, producing higher chain of carbon compound, that is hardly 

produced only on bare BDD electrode. 

Moreover, the study of CO2 electrochemical reduction on metal-oxide electrode 

is attractive, since it has been found that possibly giving other activity and selectivity 

on products distribution [12]. A mixed metal transition oxide electrode has been 

reported to have an activity for methanol production in a low current density [13]. 

Therefore, in this thesis, metal oxide form of Ir and Ni metal deposited on BDD 

electrode were tried for its activity toward CO2 reduction. Meanwhile, recently, 

Iridium-based catalyst were reported for CO2 reduction [14,15]. The reported results 

were succeed to convert CO2 to formate. Following this, the modification of Iridium 

on surface of BDD electrode is desired to give catalytic effect and active for CO2 

reduction. Meanwhile, several applications using iridium modified on surface of BDD 

electrode has been reported, especially for sensor application [16-18]. However, there 

was no report related for CO2 electrochemical reduction application. In addition, Ni 
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metal has been known to have low activity for CO2 reduction, since it mainly 

produces H2 gas. Therefore, by modify it to its oxide form, an activity for CO2 

reduction was desired, as well as for Ir.  Therefore, for the first time, the 

oxide/hydroxide form of iridium and nickel metal were modified on surface of BDD 

(IrO2-BDD) electrode, and applied for CO2 reduction, desired to decrease the over 

potential, or else, for a new finding of other useful chemicals.  

 

2. Experimental  

2.1 Chemicals 
All reagents were purchased from Wako Pure Chemical Industries, and were 

used without any further purification. Ultra-pure water was obtained from a Symply-

Lab water system (Direct-Q UV3, Millipore).  

 

2.2 Preparation of Ni(OH)2 electrode 
BDD electrode was prepared by depositing the films onto Si (111) wafers 

using microwave plasma-assisted chemical vapor deposition system. (Model 5400, 

CORNES Technology Corp.) [19]. The deposition was carried out electrochemically 

in 10 ml of 0.1 M acetate buffer pH 5 containing 1 mM Ni(NO3)2. The 

electrodeposition was carried out using pulse chronoamperometry at potential -1.2 V 

for 5 seconds followed by applying potential -0.2 V for 0.2 secons (for 50 times 

repetition). The modified BDD electrodes were then rinsed with water and dried 

under N2 gas and used for application as a fresh nickel modified BDD electrode (Ni-

BDD). To prepare the oxide/hydroxide form of nickel modified BDD electrode, the 

step was followed by annealing at high temperature (300, 500, 800oC) for 30 minutes 

(Ni(OH)2-BDD). Moreover, the modified electrodes were recovered by immersion in 

an aqua regia solution for 10 minutes followed by ultrasonication in ultrapure water 

for 15 minutes. Electrode characterization was performed using X-ray photoelectron 

spectroscopy (XPS), scanning electron microscopy (SEM) (JCM-6000, JEOL). 

 

2.3 Preparation of the IrO2 electrode 
The iridium-contained solution was prepared before the electrochemical 
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deposition on surface of BDD (B/C 1%) electrode that has been prepared as described 

in previous report [19]. 0.5 mM Na2IrCl6 was dissolved in 0.1 M KNO3 solution (ratio 

v/v 1:1) (deep reddish-black color). The solution was heated at 80oC for 1 hour, while 

adding the ethanol (approx. 100 µl) several times in it until no color changed was 

observed (light brown color). The heating was continued for another 15 minutes to 

evaporate the excess ethanol. The solution was cooled down at room temperature 

afterward. This solution can be stored for a long time. Prior the using, the solution 

was purge with N2 gas for 15 minutes under stirring condition and added by 0.5 M 

KOH until pH 10.5 (pale yellow color). This solution thus ready to use for 

electrochemical deposition [18,20].  

A pretreatment of BDD electrode was carried out prior the deposition by cyclic 

voltammetry (CV) scans from -3.5 V to 3.5 V for 20 cycles with scan rate of 1 V/s. 

The electrochemical deposition was then carried out to prepare several IrO2 modified 

on BDD electrodes (IrO2-BDD) using the prepared pale yellow solution, by applying 

CV from 0.2 V to 1.2 V for several cycles, 10 (IrO2-BDD-A), 20 (IrO2-BDD-B), 30 

(IrO2-BDD-C), 40 (IrO2-BDD-D), 50 (IrO2-BDD-E), 200 (IrO2-BDD-F) cycles at 

scan rate of 0.1 V/s. The reaction is stated as follow (eqn. (1)): 

 

Ir2O3.xH2O(aq) + 2OH−  → 2IrO2.xH2O(s) + H2O + 2e−                 (1) 

 

The modified electrodes were then characterized using scanning electron microscopy 

(SEM) (JCM-6000, JEOL), and x-ray photoelectron spectroscopy (XPS) (JPS-

9010TR, JEOL). 

 

2.4 Electrochemical CO2 reduction and products 
analysis 

 
The electrochemical reductions of CO2 were carried out in 2 compartment cells 

separated by Nafion membrane. For CO2 electrochemical reduction on IrO2-BDD 

electrode, each cell contained 15 mL of solution, in which, 0.1 M Na2SO4 as anolyte 

and 0.1 M NaCl as catholyte.  Whereas for nickel modified BDD electrode, each cell 

contained 15 mL of solution, in which, 0.5 M KCl as catholyte, and 0.5 M KOH as 

anolyte. BDD, IrO2-BDD, Ni-BDD, or Ni(OH)2-BDD were used as a working 
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electrode, Pt mesh for counter electrode and Ag/AgCl for reference electrode. All 

potentials were measured against Ag/AgCl (3M NaCl) unless otherwise stated. The 

N2 gas was purged for 15 minutes in 100 sccm, followed by CO2 gas for the same 

time and flow rate before each potentiostatic electrochemical reduction of CO2, which 

are carried out for 1 hour under stirring condition. CO2 gas was flow into the cell with 

low flow rate to maintain the CO2 concentration during reduction process. All the 

electrochemical measurements were conducted by using potentiostat (Autolab 

PGSTAT204, Metrohm Autolab B.V).  

The gas products were collected in one liter gas bag connected to the 

compartment cell, whereas liquid product was sampled from the catholyte by taking 1 

mL sample from the catholyte. Both of the samples were analyzed after the reduction. 

The gas products were analyzed by gas chromatography with a flame ionization 

detector and a thermal conductivity detector (GC-2014, Shimadzu Corp.). The liquid 

was analyzed using high performance liquid chromatography (HPLC) with an 

electroconductivity detector (Prominence, Shimadzu Corp.). 

 

3. Results and Discussion 
 
3.1 CO2 electrochemical reduction on nickel modified 

BDD electrode 
	
3.1.1 Characterization of nickel modified BDD electrode 

SEM image of each nickel modified BDD electrode are shown in Figure 1. 

The increasing of particles size after annealing treatment could be observed. In 

addition, the surface of BDD electrode was found to have holes. However, it did not 

show any damages on sp3 structure of the diamond. However, it is suggested that the 

high annealing temperature is not preferable.  
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Figure 1. SEM images of Ni-BDD (A) and Ni(OH2)2 annealed at 300oC (B) 500oC (C) and 

800oC (D) 
 

Beside the SEM image, the XPS analysis (narrow scan) was carried out to 

understand whether the deposited nickel was metallic form or in its oxide form. In 

Figure 2 we can see that the as deposited Ni-BDD shows 2 peaks that belong to the 

nickel metallic at binding energy 852.7 eV, and the peak at binding energy of 855 eV 

that belong to Ni(OH)2. Since the peak was relatively broadening, the NiO species 

might also exist. The Ni(OH)2-BDD electrode annealed in all various temperatures 

show the diminish of Ni metallic peak. Therefore, it is concluded that by annealing 

treatment, the deposited metallic nickel particles were oxidized whether in its 

oxide/hydroxide form.  

 

C D 

A B 
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Figure 2. XPS spectra (narrow scan) of as deposited and annealed nickel modified BDD 

electrode  
 

Cyclic voltammetry was also performed in 0.5 M KCl solution for all electrodes. 

Unfortunately, it is difficult to understand completely the behavior of each electrode 

from the voltammogram. However, the starting point for hydrogen evolution on 

annealed electrode seems to be more negative compare to the as deposited nickel 

modified BDD electrode (Figure 3). Thus, to know the activity of the electrodes, we 

carried out directly the CO2 electrochemical reduction using all those modified 

electrodes.   

 

 

Figure 3. CV performance of as deposited and annealed nickel modified BDD electrode in 0.5 
M KCl solution, scanned from potential 0.5 V to -1.5 V vs. Ag/AgCl after N2 and CO2 

bubbling. The scan rate was 100 mV/s.  
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3.1.2 CO2 electrochemical reduction performance 
 The products efficiency for CO2 electrochemical reduction on each annealed 

electrode are summarized in Table 1-3. The product for HCOOH, CO, CH4, and H2 

was calculated. The reductions were carried out for several potential reductions from 

potential -0.8 V to -1.3 V. The potential was kept at lower potential, as the purpose of 

this metal modification is lowering the overpotential of using only bare BDD 

electrode. Therefore, we expect the useful products produced at lower potential.   

 

Table 1. Faradaic efficiency of products from CO2 electrochemical reduction on Ni(OH)2-
BDD electrode annealed at temperature 300oC 

 

Table 2. Faradaic efficiency of products from CO2 electrochemical reduction on Ni(OH)2-
BDD electrode annealed at temperature 500oC 

 
 

Table 3. Faradaic efficiency of products from CO2 electrochemical reduction on Ni(OH)2-
BDD electrode annealed at temperature 800oC 
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However, the trend was far difficult to explain. The CO2 reduction efficiency was 

far so low compared to the hydrogen production. It is suggested that the surface of the 

electrode was passivized after annealing treatment, the epitaxial lattice structure was 

assumed to be formed as has been studied by Gao, et al [21]. Therefore, activation to 

the electrode using cyclic voltammetry/chronoamperometry after annealing treatment 

is suggested. Moreover, we observed the reduction of Ni(OH)2 species during the 

electrochemical reduction of CO2, as the XPS peak shows the shifting of Ni(OH)2 

peak after reduction at potential -1.1 V and -1.3 V on Ni(OH)2-BDD electrode with 

500oC annealing treatment (Figure 4), that may cause the less overall total faradaic 

efficiency.  

 

 

Figure 4. XPS spectra of Ni(OH)2-BDD electrode annealed at 500oC, before and after CO2 
electrochemical reduction at potential -1.1 V and -1.3 V vs. Ag/AgCl during 2 hours 

 
In addition, since we could not find any satisfying result on the oxide/hydroxide 

form of nickel modified on BDD electrode, we performed the CO2 electrochemical 

reduction on as deposited BDD electrode. The reduction was started at low potential -

1.3 V. However, the activity was poor. Thus, we increased the potential reduction up 

to -2 V. However, again the product was dominated by hydrogen evolution (Table 4). 

Therefore, the final conclusion was determined, that nickel modified BDD electrode 

was not suitable enough for CO2 electrochemical reduction performance. It is 

suggested that the combination of other metal, such as Cu will improve the overall 

performance for future experiment.  
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Table 4. Faradaic efficiency of products from CO2 electrochemical reduction on as deposited 
Ni-BDD electrode 

 

3.2  CO2 electrochemical reduction on IrO2-BDD 
electrode  

 
3.2.1  Characterization of IrO2-BDD electrode 
 

A simple CV performance was applied for modified BDD electrodes, in order 

to ensure the deposition of IrO2 on surface of BDD electrodes (Figure 5). The CV was 

performed from potential -1.5 V to 1.2 V in 0.1 M NaCl solution. As we can see, in 

this potential range, the bare BDD electrode does not shows any peaks. However, 

IrO2-BDD electrodes show the oxidation peak at around potential 0.7 V, increases as 

the amount of deposition CV cycles was increased. It shows that the amount of 

deposited IrO2 is increased. This result is also linear to the previous works [18,20].  

 

 
Figure 5. CVs of IrO2-BDDE electrodes with different amount of deposition CV cycles. The 

CVs were performed from potential -1.5 V to 1.2 V in 0.1 M NaCl solution with scan rate 100 
mV/s. 
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Beside the CV performance, the elemental characterization of IrO2-BDD 

electrode was carried out using XPS. Figure 6 shows the wide scan of XPS spectra.  

The IrO2 peak was observed after electrochemical deposition. The narrow scan shows 

a detailed peak of IrO2 4f7/2 at binding energy 62 eV, and IrO2 4f5/2 at binding energy 

65 eV. The peak was not shifted even after reduction, explaining that the oxide form 

of iridium was not significantly reduced and remained stable after electrochemical 

reduction.     

 

 

 

Figure 6. (I) Wide scan and (II) narrow scan of XPS spectra of IrO2-BDDE, before and after 
CO2 electrochemical reduction at potential -1.7 V 

 

The morphology of IrO2-BDD electrodes was examined by SEM analysis. The 

deposited IrO2 particles was confirmed and noted as a spherical white dote. The 

amount of the particles is increased as the deposition CV cycles are increased (Figure 

7 (I-VI). 

 

 

 

 

(II)	

IrO2	

4f7/2	
	

4f5/2	
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Figure 7. SEM images of IrO2-BDD electrodes. (I) IrO2-BDD-A (II) IrO2-BDD-B  

(III) IrO2-BDD-C (IV) IrO2-BDD-D (V) IrO2-BDD-E (VI) IrO2-BDD-F 
 
 

3.2.2 CO2 electrochemical reduction 
 

Firstly, CV performance was conducted on IrO2-BDD after N2 and CO2 

bubbling from potential -1.5 V to 1.0 V. As we can see from Figure 8, after CO2 

bubbling, the reduction peak was shifted to more positive potential, explaining that 

the hydrogen evolution is occurred earlier. It could be explained, due to the lower pH 

measured after CO2 bubbling (around pH 4), based on this reactions (Eq. (1)(2)): 

CO2(aq) + H2O(l) ⇄ H2CO3(aq)         (1) 

H2CO3(aq)  ⇄ H+(aq) HCO3− (aq)        (2) 

 

(I) (II) 

(III) (IV) 

(V) (VI) 
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The bubbling of CO2 leads to the H+ production, thus the amount of H+ increases and 

increasing the rate of hydrogen evolution.      

 

 
Figure 8. CV performance of IrO2-BDD-E in 0.1 M NaCl solution, after N2 and CO2 

bubbling, conducted at the potential -1.5 V to 1.0 V with scan rate 100 mV/s. 
 
 

The modified BDD electrodes were then applied for CO2 electrochemical 

reduction on each modified electrode at potential -1.7 V during 1 hour (Figure 9A). 

HCOOH and CO were produced as the main products. The faradaic efficiency of 

HCOOH is increased, as the deposition CV cycles are longer and remained stable 

after 50 cycles deposition. Thus, IrO2-BDD-E was used for further study. For 

comparison, the previous study on CO2 electrochemical reduction on bare BDD (B/C 

1%) required a higher potential around -2.3 V to produce HCOOH with faradaic 

efficiency around 50% [22]. This work was successfully reducing the applied 

potential to -1.7 V to possibly produce the product efficiency around that value.  
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Figure 9. Faradaic efficiency of products on IrO2-BDD with different (A) number of CV 
cycles and (B) potential reduction  

 
  

The CO2 electrochemical reduction was also carried out on IrO2-BDD-E at 

potential -1.6 V and -1.8 V to show the dependence of applied potential clearly 

toward the product efficiency (Figure 9B).  At the potential -1.6 V, the H2 production 

was dominant than CO2 reduction. This result is vise-versa to the result at potential -

1.8 V, in which, the efficiency of CO2 reduction is higher compare to H2 production. 

The efficiency of HCOOH is increases as the potential increased.    

In addition, the repeatability of the HCOOH production at potential -1.7 V on 

IrO2-BDD-E was evaluated (Figure 10A). The production of HCOOH was produced 

in the range of 42% to 52%.  Beside the stability of the modified electrode is also an 

important part to be considered for practical application. The SEM image shows that 

the deposited IrO2 still remained on the surface of BDD electrode after electrolysis. 

Thus, the stability of the modified electrode was achieved (Figure 10B).  

(A) 

(B) 
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 (A) 

 

 

 

 

 

 

 

 

 (B) 

 
 
 
 
 
 
 
 
 
 
 

Figure 10. (A) The repeatability of HCOOH production at potential -1.7 V on IrO2-BDD-E 
electrode. (B) The SEM image of IrO2-BDD-E electrode after one hour reduction at potential 

-1.7 V 
  

4. Conclusions 
 
1. The electrochemical reductions of CO2 on as deposited and annealed nickel 

modified BDD electrode were carried out at various potential reduction. The 

annealed electrode activity was poor, suggesting that the electrode activation is 

needed after the annealing treatment. Moreover, as deposited Ni-BDD was active 

for hydrogen production rather than the CO2 reduction. Thus, for future 

experiment, it is not suggested to use the single metal, nickel modified BDD, 

however combining with other metal will improve the activity for CO2 reduction 

itself. 

2. Various IrO2-BDD electrodes with different CV cycles for electrode preparation 

have been successfully fabricated. The CO2 electrochemical reduction products 

were HCOOH and CO. The faradaic efficiency of HCOOH could be improved by 
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the lower applied potential compare to the previous results on bare BDD (B/C 1%) 

electrode. Finally, stability test for longer electrolysis and also improving the CO2 

reduction efficiency on metal modified BDD electrode is worth more studies as 

one of the effort to reduce the overpotential of CO2 reduction on bare BDD 

electrode.  
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1. Summary 
 
 The increasing of CO2 emission from the combustion of fossil fuels has attracted 

high attention due to its negative impact. Attempts have been made to reduce 

emission or the emitted-CO2 gas itself in atmosphere, by using carbon capture and 

storage technology, or else, by converting to added-value chemicals incorporation to 

the renewable energy system. One of the efforts is utilizing the electricity to convert 

CO2 to more valuable compound, through electrochemistry system. As in 

electrochemistry, a suitable electrodes and an adequate whole system is needed. This 

thesis is focusing on the utilization of so called boron-doped diamond (BDD) 

electrode, as the new material studied in CO2 reduction area.  

 First of all, in chapter 1, the broad perspective and current condition of 

greenhouse gas and carbon cycle is briefly discussed. The effort of reducing CO2 

emission and the motivation of using BDD electrode as an electrode for the designed 

electrochemistry system is explained.  

 In chapter 2, we present the first study on CO2 reduction on bare BDD electrode 

using aqueous ammonia solution. Methanol has been successfully produced. The 

attempt to improve the product efficiency is discussed. Finally, the use of aqueous 

ammonia solution is mandatory to improve the production of methanol, compare to 

the use of other electrolytes. The pH of the solution is also one of the important parts 

to be considered to possibly producing methanol.  

 In chapter 3, we shifted the focus on improving the electrocatalytic activity of 

bare BDD electrode and focusing on the production of higher number of carbon atom 

compounds. Metal modification on surface of BDD electrode, especially using 

copper, was carried out and successfully producing C2/C3 species with quite satisfying 

efficiency compare to the use of only bare copper metal.  

 Whereas in chapter 4, the study on metal modified BDD electrode was continued. 

Palladium was chosen to be the metal that was deposited, since it is a well-known 

metal catalyst, other than its ability to be active for CO2 reduction. The result shows 

the improvement of CO production that used to be a side product on bare BDD 

electrode. The appropriate amount of deposited palladium particles, and also the 

applied potentials are needed to optimize the efficiency of CO production. 
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 The last chapter is discussing about the CO2 electrochemical reduction on other 

metal particles modified on BDD electrode. Ni and Ir, including its oxide formed 

were researched. It has been known that the oxide form of the metal will have 

different behavior, or else, improving the efficiency and selectivity. However, some 

negative result was also observed using nickel, since H2 evolution dominates the 

overall reaction. Meanwhile, the oxide form of iridium modified on BDD electrode 

may improve the production of formic acid.  

 Finally, the summary of CO2 reduction on the metal modified BDD electrode 

from this work, in comparison to metal electrode [1,2] is presented in Table 1. 

 

Table 1. CO2 reduction products faradaic efficiency on various metal modified BDD 
and metal electrodes 

 
 

2.  Future Perspective 
 
 Along the story of many efforts that has been addressed for CO2 reduction to 

value-added chemicals, the improvement of the design system and a finding of new 

catalytic system are still widely researched. Electrochemical method is one of the 

methods that taken into account as the way to overcome the unstable classic 

renewable energy system. In which, this method uses electrical energy with possibly 

the customizable condition, including potential dependence and an ambient 

temperature and pressure. Therefore, it is assumed that this method still becomes a 
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promising method, specifically for designing a CO2 reduction with a desired product 

efficiency and selectivity.  

 However, through many years research activity on CO2 electrochemical 

reduction, a wide commercial industrial application is still not existed. In this point, 

BDD electrode might become a good material due to its inner nature, wide potential 

window and high mechanical and chemical stability. The challenge is its high over-

potential to produce quantifiable amount of products, in which, it has a high 

correlation with the production cost. Therefore, a modification should be applied for 

BDD electrode, with the provision of maintaining the activity of BDD itself. A small 

modification of metal thus may promote a higher activity of BDD electrode. Beside, a 

modification with active functional group might also be able to be applied in the 

future. Despite of its exceptional ability as a support electrode, a very stable and inert 

BDD surface remains a challenge for a stable metal modification. Thus, the 

improvement of modification technique is highly suggested to study. In addition, a 

focus on the mechanism of CO2 electrochemical reduction using bare or modified 

BDD electrode is not yet understood. Therefore, a surface study on the electrode 

during CO2 reduction is also need.  
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