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Chapter 1 

General introduction to ionophore-based ion-selective 

optodes and paper-based sensing platforms 
 

1.1. Ion-selective optodes (ISOs) 

 Short history of the origin in the academic field 

The quantification of ion species undoubtedly plays an important role for many years in the various 

analytical fields, such as medical diagnosis, environmental monitoring, food chemistry, and biochemical 

research.1-5 In distinction from other analytical techniques, such as electrochemistry, atomic (flame) emission 

spectrometry (AES), and capillary electrophoresis (CE), optical chemical sensors have been expected to 

replace conventional analytical methods because of their common multiple advantages: (i) easy to miniaturize 

instruments, (ii) inexpensiveness to manufacture, and (iii) potential of compatibility with other techniques.6-10 

Their optical detection can be accomplished with an indicator chromogen generating the spectral information 

(e.g. absorbance and/or fluorescence, reflectometry), based on an interaction between analytes and 

analyte-specific receptors. However, common indicators for ion species suffer from modest selectivity and 

flexibility in the term of their dynamic response range.7 

For this issue, ionophore-based ion-selective optodes (ISOs) have extensively gained as more powerful 

optical chemical sensors along with a electrochemical counterpart of ion-selective electrodes (ISEs), because 

they can tune the analytical performances of both their selectivity and their dynamic range by changing the 

sensing components (refer to later section for the working principle). Typically, ionophore-based ISOs are 

composed of following lipophilic sensing reagents: chromoionophore (colorimetric pH indicator), ionophore 

(ion-specific receptor), and ion-exchanger (organic salt to maintain electroneutrality, if necessary), and their 

working principle is based on the ion-exchange reaction for cation detection or the co-extraction for anion 
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detection as illustrated in Figure 1-7.6-7, 9 In both cases, the ISO-based reaction refers to protons of 

H+-responsive chromoionophores as reference ions together with optically-silent ionophores. For a 

comprehensive review of ionophores for all kinds of ionic species, the excellent review was reported by 

Bühlmann et al.11  

 

 

 
Figure 1-1. (a) Schematic reaction scheme of ISOs for equilibrium-based cation/anion determination. The legends of 

I+/X-, L, C, and R- represent cationic/anionic analytes, ionophores, chromoionophores, and ion-exchanger, respectively. 

Increasing the concentration level of I+/X- results in the promotion of the rightward reaction (i.e. deprotonation/ 

protonation of chromoionophores for cation/anion detection); (b)-(d) examples of cation-sensing components of ISOs; 

(b) chromoionophore (chromoionophore I), (c) ion-exchanger (TFPB: tetrakis[3,5-bis(trifluoromethyl)phenyl]borate); (d) 

ionophore (calcium ionophore IV). 

 

The first concept of resembled modern ISOs was introduced by Charlton et al. in 1982, based on the 

co-extraction of both a cationic analyte (K+) and an anionic dye (erythrosine B) with a K+-selective ionophore 

(valinomycin)12. A solid-type test strip containing ionophores was soaked into the sample liquid solution 

prepared by diluting with the cationic dye solution, followed by generating the optical signal corresponding to 

the analyte concentration. However, the academic research on ISOs did not progress rapidly until 1990s when 

Simon’s research group developed a new class of a lipophilic colorimetric pH indicator, now commonly 

referred to as a chromoionophore13. Afterward, Simon’s research group also established the detection principle 

of modern neutral carrier-based ISOs for determination of ammonia14 and calcium15 (detailed working 

(a) 

(b) (c) (d) 



Chapter 1 General Introduction to ionophore-based ion-selective optodes and paper-based sensing platform 

 

3 

 

 

principle will be demonstrated in following section 1.1.2.). Since the development of the original 

chromoionophore by Simon research groups at ETHZürich16, most of the ionophore-based ISOs have relied 

on Nile blue derivatives, which are commercialized as chromoionophore/ETH series by Sigma Aldrich. 

 

 Theory of working principle 

1.1.2.1. Response function for the cation detection 

The working principle of equilibrium-based ISOs is well-established for the optical detection of 

cations/anions. Their detection mechanism is typically based on an equilibrium reaction between a 

water-immiscible polymeric membrane and an aqueous sample phase as shown in Figure 1-1.6-7 Selective 

recognition of the ion species of interest is achieved by an ion-specific receptor (i.e. ionophore) doped into the 

organic polymeric membrane. To data, various materials for bulk membrane substrates have been applied, 

such as cellulose acetate, polyvinyl chloride (PVC), ethylcellulose, poly(vinyl alcohol), nafion, polyurethane, 

poly(alkyl methacrylate).6, 9 Among them, PVC is the most popular polymer matrix because it has great 

capacity of membrane solvent (i.e. plasticizer). Extraction of the target ion into the organic phase is 

accompanied by either protonation (for anionic target ions) or deprotonation (for cationic target ions) of a 

co-doped chromoionophore, generating an optical signal from the ISO membrane. Their advantageous 

features, including high selectivity and ease of optical signal detection, gave birth to a variety of ISO 

configurations such as thin membrane films, particles, and suspension.6-10, 17 

In this context, the current thesis intends to describe the only cation detection with carrier-based ISOs. For 

anion detections, as a number of excellent review articles are available6-9, and thus, its detailed working 

principle will not be repeated here. In the term of the cation detection, the observable optical signal is based 

on the degree of deprotonation of the H+-sensitive chromoionophore (), corresponding to the concentration 

level of cationic analytes. Figure 1-2 shows an overview of popular combinations of the following chemical 

components, such as a chromoionophore (C), an ionophore (L), an ion-exchanger (R), for the determination of 
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cations. Since only chromoionophores and ionophores cannot maintain electroneutrality during the ISO-based 

reaction (e.g. a and e in Figure 1-2), ion-exchangers (R- or R+) must be doped into the organic optode 

phase.6-7 Most of the studies on ISOs have exploited the detection principle with a neutral ionophore and a 

neutral chromoionophore (e in Figure 1-2). On the other hand, in the term of “c” and “f” in Figure 1-2, the 

used ionophore itself must generate optical signal relying on the analyte concentration level. 

 

Cation: I+ Indicator: C- Indicator: C0 Indicator = ionophore 

Ionophore: L－ 

 

a 

 

b 

 

c 

Ionophore: L0 

 

d 

 

e 

 

f 

Figure 1-2. An overview of popular combinations of the following ISO components for the equilibrium-based 

determination of cations (I+): a chromoionophore (C), an ionophore (L), an ion-exchanger (R-/R+). Adapted with 

permission from Ref. 7. 

 

In the current thesis, the stepwise process for ion-exchange equilibrium reaction (Figure 1-2e) will be 

demonstrated. Selective extraction of cationic analytes (Iz+) into the organic optode phase triggers a release of 

protons of chromoionophores (H+) into the sample liquid phase to maintain electroneutrality in the organic 

optode phase. The working principle can be expressed in a simplified manner based on the ion-exchange 

equilibrium reaction using eq (1).6-7 

 

 I𝑧+(aq) + 𝑛L(org) + 𝑧CH+(org) + 𝑧R−(org) ⇌ LnIz+(org) + 𝑧C(org) + 𝑧H+(aq) + 𝑧R−(org) (1) 

 I𝑧+(aq) + 𝑛L(org) + 𝑧CH+(org) ⇌ LnIz+(org) + 𝑧C(org) + 𝑧H+(aq) (1)’ 
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where, subscripts of (org) and (aq) designate the organic optode phase and the aqueous sample liquid phase, 

respectively; L is a neutral ionophore; C is a neutral chromoionophore; R- is an ion-exchanger; z represents a 

valent of the analyte ion; n represents the stoichiometry ratio of the analyte-ionophore complex. For 

corresponding cation with charge z, an equivalent number of protons is necessary to be released from the 

organic phase. Because ion-exchangers are not involved in the ion-exchange reaction (see eq (1)’), the overall 

equilibrium constant of the reaction (𝐾exch) can be given by using the corresponding concentrations/activities 

as shown in eq (2).6-7 

 

 𝐾exch =
[C]𝑧(𝑎H)𝑧[L𝑛I𝑧+]

[CH+]𝑧[L]𝑛𝑎I
 (2) 

 

where, 𝑎H and 𝑎I represent the activity of the proton (H+) in the aqueous phase and the free cation analytes 

in the aqueous phase, respectively. Here, because we cannot find the concentrations of ISO components after 

the ion-exchange equilibrium reaction, the unknown terms should be replaced by the experimental parameters. 

Firstly, eq (3) involving the degree of deprotonation of the chromoionophores () is essential to make a 

correlation between an experimental optical signal and 𝑎I. 

 

 1 − α =
[CH+]

𝐶T
 (3) 

 

where, 𝐶T represents the total concentration of the used chromoionophore in organic phase (known from the 

optode preparation). On the other hands, since mass balance must not be changed during ISO-based reaction, 

each sensing components of ISOs can be expressed with eqs (4) to (6), representing the total concentrations of 

the corresponding sensing reagents. 

 

 𝑅T = [CH+] + 𝑧[LnIz+] (4) 
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 𝐿T = [L] + 𝑛[LnIz+] (5) 

 𝐶T = [C] + [CH+] (6) 

 

where, 𝑅T and 𝐿T represent the total concentration of the used ion-exchanger and ionophore in organic 

phase, respectively (known from the optode preparation). Here, the unknown concentrations in eq (2) can be 

replaced by using experimentally observable terms (e.g. 𝑅T, 𝐿T, 𝐶T, [CH+]) according to eqs (4) to (6). 

 

 [L] = 𝐿T −
𝑛

𝑧
(𝑅T − [CH+]) (7) 

 [C] = 𝐶T − [CH+] (8) 

 [L𝑛I𝑧+] =
𝑅T − [CH+]

𝑧
 (9) 

 

Then, eqs (3), (7) to (9) are inserted into eq (2) to estimate the 𝐾exch, and eq (2) is solved for 𝑎I in order to 

obtain response function: 6-7 

 

 𝑎I =
1

𝑧𝐾exch

(
α

1 − α
𝑎H)

z

×
𝑅T − (1 − α)𝐶T

{𝐿T − (𝑅T − (1 − α)𝐶T)(𝑛 𝑧⁄ )}𝑛
 (10) 

 

Here,  can be calculated according to eq (11) based on the experimentally determined absorbance of the 

chromoionophore in the optode phase.6-7 

 

 α =
𝐴P − 𝐴

𝐴P − 𝐴D
 (11) 

 

where A represents the experimentally measured absorbance at any given protonation state; AP and AD stand 

for the absorbance in the fully protonated and deprotonated states, respectively. 
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1.1.2.2. The overall equilibrium constant (𝑲𝐞𝐱𝐜𝐡) explained by the complexation constants 

The overall equilibrium constant (𝐾exch) represents the whole reaction process of eq (1), containing the 

acidity of the used chromoionophore (Ka) and analyte-ionophore complex formation constant (𝛽LnI𝑧+). Each 

ion-exchange equilibrium reaction during the cation assay is illustrated in Figure 1-3 to consider the 

concentration of the single protons and analyte ions in both the organic optode phase ([H+], [I𝑧+]) and the 

aqueous phase (𝑎H, 𝑎I).6-7 Because the primary ions in the aqueous sample phase (i.e. Iz+, H+) cannot directly 

form the complex with the receptors (i.e. ionophore, chromoionophore), it is essential that the transportation 

of the primary ions from the aqueous phase to the organic phase as shown in Figure 1-3. 

 

 
Figure 1-3. Schematic detailed ion-exchange equilibrium reaction scheme for cation detection with the typical ISO 

sensing components; subscripts of “(org)” and “(aq)” designate the organic phase and the aqueous phase respectively; L, 

C, and R represent an ionophore, a chromoionophore, and an ion-exchanger, respectively; Ka is the acidity of the used 

chromoionophore; 𝛽LnI𝑧+ is the constant of analyte-ionophore complex formation; 𝐾exch
H+,I𝑧+

 represents the exchange 

constant for the naked ions. Adapted with permission from Ref. 7. 

 

Then, we will consider an ion-exchange constant for the naked ions on the surface between the aqueous 

sample phase and the organic optode membrane (𝐾exch
H+,I𝑧+

). Based on Figure 1-3, 𝐾exch
H+,I𝑧+

 can be expressed 

with eq (12). 
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 𝐾exch
H+,I𝑧+

=
(𝑎H)𝑧[I𝑧+]

[H+]𝑧𝑎I
 (12) 

 

On the other hands, the acidity constant (Ka) and the complex formation constant (𝛽LnI𝑧+) can be given as 

follows: 

 

 𝑧CH+(org) ⇌ 𝑧C(org) + 𝑧H+(org)  

 (𝐾a)𝑧 =
[C]𝑧[H+]𝑧

[CH+]𝑧
 (13) 

 𝑛L(org) + I𝑧+(org) ⇌ LnIz+  

 𝛽LnI𝑧+ =
[LnIz+]

[I𝑧+][L]𝑛
 (14) 

 

Therefore, the overall ion-exchange constant (𝐾exch
overall) can be estimated by multiplying above constants of 

eqs (12) to (14). 

 

 𝐾exch
overall = (𝐾a)𝑧𝛽LnI𝑧+𝐾exch

H+,I𝑧+

= (
[C]𝑎H

[CH+]
)

𝑧
[LnIz+]

[L]𝑛𝑎I
 (15) 

 

In addition, obtained equation of eq (15) is identical to eq (2), representing that 𝐾exch in eq (2) (i.e. 𝐾exch
overall 

in eq (15)) may be replaced by 𝐾a, 𝛽LnI𝑧+, and 𝐾exch
H+,I𝑧+

 as follows:6-7 

 

 𝑎I =
1

𝑧(𝐾a)𝑧𝛽LnI𝑧+𝐾exch
H+,I𝑧+ (

α

1 − α
𝑎H)

z

×
𝑅T − (1 − α)𝐶T

{𝐿T − (𝑅T − (1 − α)𝐶T)(𝑛 𝑧⁄ )}𝑛
 (16) 

 

The working function for the cation detection with ISOs is predictable by using a commercial available 

software (e.g. Mathematica, Matlab, Excel or others) based on eq (16).6-7 Furthermore, the response function 

can be moderated by changing the chemical properties of the used chromoionophores or/and ionophores. 
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Although this approach is very useful to simulate ISO-based sensor response, direct calculation of 𝐾exch
H+,I𝑧+

 is 

basically challenging. Therefore, eq (16) is often applied to estimate 𝐾exch
H+,I𝑧+

 when both 𝐾a and 𝛽LnI𝑧+ are 

experimentally known by other individual experiments. In contrast to ISO-based measurement, 

electrochemical approach without ionophores and chromoionophores (i.e. ion-selective electrodes: ISEs) is 

more convenient for the direct estimation of 𝐾exch
H+,I𝑧+

.6-7 

 

1.1.2.3. Response in the presence of interfering ions 

The working principle for the cation detection as mentioned above is the ideal reaction model in the 

absence of the interfering ions. Although these equations are very useful for the development of ISO-based 

sensors, we have to attend to consider the potentially interfering ions in real sample matrix. The response 

function in the presence of the secondary interfering ion (Jz+) can be expanded in the same manner with the 

theory of cation detections of interest.6-7 Separated exchange equilibria and its overall equilibrium constant 

(𝐾exch) for each ion can be given as follows: 

 

 I𝑧I+(aq) + 𝑛IL(org) + 𝑧ICH+(org) ⇌ I𝑧J+L𝑛J
(org) + 𝑧JC(org) + 𝑧H+(aq) (17) 

 𝐾exch
CH+,L𝑛I𝑧I+

=
[C]𝑧I(𝑎H)𝑧I [L𝑛I𝑧I+]

[CH+]𝑧I[L]𝑛I𝑎I(IJ)
 (18) 

 J𝑧J+(aq) + 𝑛JL(org) + 𝑧JCH+(org) ⇌ J𝑧J+L𝑛J
(org) + 𝑧JC(org) + 𝑧JH

+(aq) (19) 

 𝐾exch
CH+,L𝑛I

𝑧J+

=
[C]𝑧J(𝑎J)

𝑧J[L𝑛I𝑧J+]

[CH+]𝑧J[L]𝑛J𝑎J(IJ)
 (20) 

 

where, “(IJ)” written after the activity represents the activity in the aqueous liquid solution containing both 

primary and interfering ions (I𝑧I+, J𝑧J+). On the other, mass balance of the ion-exchanger (eq (4)) and the 

ionophores (eq (5)) in the presence of the secondly ion can be given as follows: 

 

 𝑅T =  [CH+] +  𝑧I[L𝑛I
I𝑧I+] + 𝑧J [L𝑛J

I𝑧J+] (21) 
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 𝐿T  =  [L] + 𝑛I[L𝑛I
I𝑧I+] + 𝑛J [L𝑛J

I𝑧J+] (22) 

 

Next, a selectivity coefficient for the primary ion compared with the secondary ion (kIJ) is defined by using the 

ratio of both ions as follows:6-7 

 

 𝑘IJ =
𝑎I(I)

𝑎J(J)
 (23) 

 log 𝑘IJ = log 𝑎I(I) + log 𝑎J(J) (24) 

 

Here, this legalism kIJ of eq (24) corresponds to the difference of the sigmoidal response curve for the primary 

and the secondary ions at 50% deprotonation of the chromoionophore (i.e.  = 0.5) as shown in Figure 1-4. 6-7 

 

 
Figure 1-4. Estimation of a selectivity coefficient (kIJ) by the use of the response curves for the primary ions (I𝑧I+) in the 

presence of the secondary ions (J𝑧J+).6-7 

 

On the other hands, the activity of the primary ion the aqueous liquid solution containing both primary and 

interfering ions (𝑎I(IJ)) can be expressed with eq (25). 

 

 𝑎I(IJ) = 𝑎I(I) − 𝑘IJ 𝑎J(IJ) (25) 
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Then, eq (16) can be expand by using eq (25) to estimate the correlation of 𝑎I(IJ) and the ion-exchange 

constant for the naked ions on the surface between the aqueous sample phase and the organic optode 

membrane (𝐾exch
H+,I𝑧+

) as follows:6-7 

 

 𝑎I =
1

𝑧I(𝐾a)𝑧I 𝛽L𝑛I𝑧+𝐾exch
H+,Iz+ (

α

1 − α
𝑎H)

𝑧I

×=
𝑅T − (1 − α)𝐶T

{𝐿T − (𝑅T − (1 − α)𝐶T)(𝑛I 𝑧I⁄ )}𝑛I
− 𝑘IJ 𝑎J(IJ) (26) 

 

Here, kIJ can be estimated by using the ratio of each activity as follows: 

 

 

𝑘IJ =
𝑎I(I)

𝑎J(J)
 

=
𝑧J(𝐾a)𝑧J𝛽L𝑛J

I
𝑧J+𝐾exch

H+,I
𝑧J+

𝑧I(𝐾a)𝑧I𝛽L𝑛I
I𝑧+𝐾exch

H+,I𝑧I+ (
1

𝐾a

𝑎Hα

1 − α
)

𝑧I−𝑧J

×
{𝐿T − (𝑅T − (1 − α)𝐶T)(𝑛J 𝑧J⁄ )}

𝑛J

{𝐿T − (𝑅T − (1 − α)𝐶T)(𝑛I 𝑧I⁄ )}𝑛I
 

(27) 

 

1.1.2.4. Response time of equilibrium-based ISOs 

For equilibrium-based ISOs, the time required for the extraction of target analytes into the bulk optode 

basically is much longer than other comparable surface- or interface-based techniques (e.g. ISEs).6-7 This is 

because the limiting step for the ISO system is dominated by the diffusion within the bulk membrane (i.e. 

plasticized PVC membrane), representing that response time strongly depends on the membrane thickness 

except for extremely thin membranes. By introduction of a mean concentration-independent diffusion 

coefficient (𝐷m), a simple correlation between membrane thickness (d) and the time needed to achieve 95% of 

the steady state response (𝑡95) can be given by eq (28):6-7 

 

 𝑡95 = 1.13
𝑑2

𝐷m
 (28) 
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In the term of a typical plasticized PVC-based membrane, a response time for the diffusion of ion species can 

be found to be approximately 1 s for a membrane film of 1-m thickness (in the case: 𝐷m ≈ 10−8 cm2 s-1). In 

order to improve the prolonged response time, many researchers have attempted to increase the 

surface/volume ratio by minimizing ISOs as nanoparticles (refer to the later section of 1.1.3 for nanoscale 

optodes).6-7 However, the limitation of the diffusion in the bulk membrane phase is given only at relatively 

high analyte concentration.7 Regarding the nanoscale ISO suspension, this issue will be potentially overcome 

by sufficiently mixing. Apart from the use of nanoscale ISOs, reducing the amount of active compounds in 

bulk ISOs also serves to improve the prolonged response time, but lower sensor sensitivity will occur due to 

the limitation of a molecular absorbance coefficient () of colorimetric dyes. For this issue, a limit of detection 

(LOD) of absorbance-based measurements, in particular definitely depends on instrumentation-relying 

sensitivity, thus, fluorescent dyes were sometimes used because of their intrinsically higher sensitivity.7 

 

 From the bulk to the nanoscale 

1.1.3.1. Overview of academic studies on miniaturized ISOs 

While classical film-based ISOs have been applied to various analytical platforms, such as fiber optics18, 

flow cells15, waveguide devices19, and microchip20-21, they are too bulky for challenging applications with a 

small volume of sample (e.g. living cells).8 Thus, miniaturized ISOs in the form of micro- or nanosphere have 

emerged to expand their analytical applications. Kopelman and co-workers introduced optical ion nanosensors 

in 1990s, which were regarded as PEBBLEs (probes encapsulated by biologically localized embedding).22-27 

PEBBLE sensors are mainly composed of cross-linked acrylamide and water-soluble optical proves targeting 

intracellular ions of interest, and they are not so sensitive to sample pH. Although an average size of these 

particles sizes is relatively small (300 to 700 nm, see Figure 1-5a), however, the usable lifetime is limited to 

several hours due to the leakage of the sensing components (i.e. chromoionophore, ionophore, and 

ion-exchanger). In addition, the preparation of PEBBLE-based sensors was relatively complicated and 

time-consuming. Following this studies, Clark’s research group has improved this issue by the introduction of 
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polymeric Na+-selective nanosensors with an average diameter of approximately 120 nm (Figure 1-5b).28 The 

lifetime of this particle was roughly 1 week in solution, and it can be easily prepared under sonication. The 

polymeric cores, which consisted of traditional optode materials (i.e. plasticized PVC, chromoionophore, 

ionophore, and ion-exchanger), were coated with PEG-lipid molecules for stabilization in solution. Afterward, 

the same research group also reported on biodegradable Na+-selective nanosensors composed of 

polycaprolactone (PCL) and a citric acid ester plasticizer.29 The preparation of the particles was performed by 

a displacement method followed by centrifugation and washing. These nanosensors provide an average 

diameter of approximately 260 nm and a lifetime of at least 14 days at physiological temperature. 

During the same period, micrometer and submicrometer-sized ISOs composed of conventional polymetric 

materials (i.e. plasticized PVC) were reported by Shvarev’s (Figure 1-5c)30-31 and Bakker’s research group32-41. 

These particles were fabricated by the solvent displacement method with a sonicated/stirred reservoir solution. 

The obtained micro-spherical ISOs provided the function in a similar way to traditional film-based bulk 

optodes and monodispersity in aqueous solutions. Although nonionic surfactants (e.g. PEG: polyethylene 

glycol, Brij) were necessary for the stabilization in the optode suspension, the ISO microspheres were still too 

large size, causing aggregation. 

On the other hands, commercialized polymeric beads were used as templates to fabricate miniaturized 

ISOs. For instance, the surface of micrometer-sized polystyrene particles was modified based on a simple 

adsorption of traditional ISO components (i.e. chromoionophore, ionophore, and ion-exchange).42-43 As seen 

in Figure 1-5d, the modification occurred only on the surface of polystyrene particles because diffusion of 

chemical reagents within polystyrene is extremely slow.42 

While the majority of micro- and nanoscale ISOs relies on sonication, polymerization, centrifugation, 

dialysis, or similar procedures, their fabrication procedure was relatively time-consuming and complicated 

(refer to comprehensive review on miniaturized ISOs for further works8). For this issue, a solvent 

displacement, also called precipitation, has been expected to the alternatives to these techniques for the 

fabrication of miniaturized ISOs. In 2013, Xie et al. successfully introduced a new precipitation-based 
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approach to yield monodisperse optode nanospheres, also called nano-emulsions, with an average size of 40 to 

100 nm (see Figure 1-5e).44 All ISO components (i.e. chromoionophore, ionophore, ion-exchanger) are 

encapsulated in a surfactant-composed micelle, leading water mono-dispersibility. The preparation of the 

nanosphere suspension was simply accomplished by mixing a cocktail containing sensing reagents, 

plasticizers, and nonionic surfactants (e.g. Pluronic F127) with an aqueous solution, followed by removal of 

the cocktail solvent (e.g. tetrahydrofuan) by blowing compressed non-reactive air (see Figure 1-6). Moreover, 

no further experimental steps, such as purification and filtration, were required. To date, Xie et al. 

demonstrated the unique feasibilities of optode nanospheres over classical film-based ISOs not only for ion 

sensing45-50 but also for light controlled ion concentration perturbations51, titration10, 52-55, and equipment-free 

blood determination56. 

 
Figure 1-5. Microscope images of different miniaturized ISOs; (a) scanning electron microscope (SEM) image of 

K+-selective PEBBLE sensors. Adapted with permission from M. Brasuel; R. Kopelman; T. J. Miller; R. Tjalkens; M. A. 

Philbert, Anal. Chem., 2001, 73, 10, 2221-2228 (ref. 24). Copyright 2012 American Chemical Society; (b) transmission 

electron microscope (TEM) image of Na+-selective nanosensors. Adapted with permission from J. M. Dubach; D. I. 

Harjes; H. A. Clark, Nano Lett., 2007, 7, 6, 1827-1831 (ref. 28). Copyright 2007 American Chemical Society; (c) bright 

field image of the plasticized PVC-composed particles prepared by a solvent displacement method. Adapted with 

permission from V. Bychkova.; A. Shvarev, Anal. Chem., 2009, 81, 6, 2325-2331 (ref. 31). Copyright 2009 American 

Chemical Society.; (d) confocal fluorescence image of surface-modified polystyrene particles. Adapted from Ref. 42 with 

permission from The Royal Society of Chemistry; (e) TEM image of Na+-selective optode nanospheres in the form of 

(a) 

(d) (e) 

(b) (c) 
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surfactant-based micelles. Adapted from X. Xie.; G. Mistlberger; E. Bakker, Anal. Chem., 2013, 85, 20, 9932-9938 (ref. 

44). Copyright 2013 American Chemical Society). 

 

 

Figure 1-6. Typical schematic procedure for fabrication of Na+-selective optode nanospheres forming micelles with 

surfactants (Pluronic F127) and the simple microscopic structure; gray spherical background represents plasticizer acting 

as a solvent for other sensing components; green symbols represent Na+-selective ionophores; pink symbols represent 

chromoionophores; blown symbols represent ion-exchanger. Adapted from X. Xie; J. Zhai; E. Bakker, Anal. Chem., 2014, 

86, 6, 2853-2856 (ref. 46). Copyright 2014 American Chemical Society. 

 

1.1.3.2. Detection mode: equilibrium vs. exhaustive 

As mentioned before (see section 1.1.2), the ISO response is associated with the redistribution of analyte 

ions together with H+ between two immiscible phases, therefore, the sample pH must be controlled or 

separately measured prior to the optical detection.6-7 Recently, Xie et al. reported that this pH dependence can 

be overcome by means of an “exhaustive” detection mode (refer to Figure 1-7).45-46 In case the analyte ions in 

the aqueous sample will completely consumed by the receptors (i.e. ionophores), the sensor response will only 

depend on not analyte concentrations (strictly, activities) but the total amount of the analytes, which 

potentially enables calibration-free analysis. Moreover, exhaustive-based reaction no longer depends on the 

sample pH at the limited range of analyte concentration as shown in Figure 1-7b. In the term of equilibrium 
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mode (Figure 1-7a), it is often assumed that the sample concentration is not changed before and after 

exposure to ISO-based sensors. In contrast, the exhaustive detection mode can only occur in the presence of 

excess binding sites in the sensing phase compared to the total amount of analyte ions in the aqueous sample 

phase (Figure 1-7b).7-8, 45 To achieve exhaustive detection mode with classical film-based ISOs, both a thin 

ISO membrane and a thin layer of sample liquid are required since the use of large sample volumes will cause 

in extremely long response times.8 For this reason, suspensions of micro- or nanospheres are useful thanks to a 

massively increased surface/volume ratio and significantly smaller diffusion distances for the reaction. 

 

 
Figure 1-7. Schematic working principles and theoretical response curves for Ca2+ at different pH: (a) equilibrium-based, 

(b) exhaustive-exchange detection. Adapted with permission from refs. 7 and 8. 

 

 Renovating the chromoionophores and the detection modes for ISOs 

Another option to overcome pH dependence during ISO-based assay is the replacement of 

chromoionophores with solvatochromic dyes (SDs), also called polarity-sensitive dyes, since the root of this 

issue is caused by the use of H+-responsive chromoionophores (refer to Figure 1-8 for comparison of signal 

transducing principle between traditional ISOs and SD-based ISOs).17 Optical properties of SDs (i.e. 

absorbance/emission spectra, and hence, color) are varied, corresponding to the solvent polarity 

(a) 

(b) 
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(solvatochromic effect).57-58 Wolfbeis and co-workers first introduced SDs to hydrogel-based ISOs instead of 

conventional H+-sensitive chromoionophores.59-63 Unlike classic ISOs, the sensor exhibited pH-independent 

response under the condition of a certain pH range. Recently, positively-charged SDs were rediscovered by 

Bakker’s research group for applications to carrier-based ISOs.17, 43, 47-49, 64 Surprisingly, these optical sensors 

were composed of not membrane films but nanospheres with massively increased surface/volume ratio as 

stated previous section. Generating optical signal from SD-based ISOs is based on the repartition of analyte 

cations in the aqueous sample phase with positively-charged SDs (see Figure 1-8), therefore the sensor 

response was no longer accompanied with the sample pH. 

 

 
Figure 1-8. A comparison of the signal transducing principle: (a) traditional ISOs with H+-sensitive chromoionophore 

and (b) SD-based ISOs; Mn+, L, LpMn+, R-, and SD+ represent an analyte cation, an analyte-free ionophore, an 

analyte-ionophore complex, an ion-exchanger, and a solvatochromic dye, respectively; Ind and HInd+ represent a 

deprotonated and protonated chromoionophore, respectively; The purple and blue color represent different 

absorption/fluorescence spectra. Adapted from Ref. 17 with kind permission from Springer Science and Business Media. 

 

 Readout mode for the estimation of the ISO response function 

Quantitative evaluation for the function of ISO response has been originally performed by means of 

spectral information (e.g. absorbance, reflectance, and fluorescence).6-7, 9 The majority of ISO studies has 

exploited visible absorbance/reflectance because colorimetric signal can be easily acquired in comparison to 

fluorescent signal. Our research group introduced digital color analysis (DCA) to quantify the colorimetric 

response of a plasticized PVC film-based optodes instead of the conventional optical methodology (i.e. 

(a) (b) 
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spectrometry). 65-66 In these studies, DCA has served to evaluate the visual sensor response for the Li+ 

detection. For instance, mixing ratio of two chromoionophores with different pKa values and different color 

variations can be optimized by means of hues, to acquire an appreciated visual color change over the whole 

Li+ concentration range.66 

By the way, why are most of the color spaces (e.g. red-green-blue: RGB, hue-saturation-value: HSV, and 

others) defined by the use of three component representation? This is because they follow the human vision 

system as Helmholtz has stated about the trichromatic theory of color.67 Among them, RGB color space is 

undoubtedly the most common in DCA since it works in a similar way to the human visual system.67 Although 

RGB color space has been applied for the evaluation of ISO response56, 68, RGB-based data processing is often 

affected by the concentration of chromogens or membrane thickness (i.e. optical path length).69 In contrast, a 

hue value of HSV color space shows excellent robustness against signal interferences from chromogen 

concentration, membrane thickness, detector spectral responsivity and illumination.9, 69 In addition, a hue 

coordinate commonly corresponds to the dominant wavelength of the spectral radiance of a color (see Figure 

1-9).67, 70 Hence, hue values have been frequently used for the quantitative evaluation of the colorimetric 

response from ISOs (see Figure 1-10).69, 71-79 However, it should be noted that deprotonation degrees of 

chromoionophores () experimentally obtained from absorbance and from hue color coordinates are not 

necessarily identical as shown in Figure 1-10b. 

 
Figure 1-9. (a) Schematic illustration of cylindrical hue-saturation-value (HSV) color space coordinates; (b) Correlation 

between HSV coordinates and the emission spectra of two different light sources with same hue and value but different 

saturation; a solid line and a dashed line represent blue laser and a blue LED, respectively. Adapted from Ref. 70 with 

permission from The Royal Society of Chemistry. 

(a) (b) 
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Figure 1-10. (a) An example of color ring indicating the range of possible hue values in the term of K+-selective ISO 

with chromoionophore I; other coordinate (e.g. saturation and value) are maintained constant at 1; The values of the H 

coordinate for the K(I); (b) Response curves obtained from different analytical parameters; the plots of triangles and 

circles represent the protonation degrees of the used chromoionophores (1-) obtained from absorbance measurement 

and hue values, respectively; diamond plots represent concentration response for K+ based on hue-based quantification; 

the solid and dashed lines represent the simulated theoretical curves. Adapted from K. Cantrell; M. Erenas; I. de 

Orbe-Payá; L. F. Capitán-Vallvey, Anal. Chem., 2009, 82, 2, 531-542 (ref. 69). Copyright 2009 American Chemical 

Society. 

 

In the DCA process, ISOs potentially suffer from two specific challenges: (i) interference of sample color (e.g. 

biological fluids) and (ii) light condition affected by a light source and a detector. To reduce the interference of 

biological fluid color on the pH/Na+ optodes, the optical measurement setup arranged with LED- and 

grayscale detectors has been applied for cation assay with optodes.80 Interestingly, a hydrogel layer containing 

white beads was immobilized between the sample liquid and the optode sensing membrane. Although this 

work is not related to ISO-based sensing, color manipulation is one of the simple and effective strategies to 

enhance sensor sensitivity in hue analysis (Figure 1-11).81 While the effectiveness of this tinting method via 

colorimetric detection depends on the reaction system, this strategy has excellent potential for broad 

application to any analyte-of-interest. Moreover, the tinting method enabled to distinguish between subtle or 

monotonal (colorless-to-coloed) color change to improve limits of H2O2 detection. On the other hands, sensor 

sensitivity in DCA-based ion sensing depends on the selection of digital color model. In previously published 

(a) (b) 
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study82, the sensor signal for colorimetric detection of irons with classical indicators varie, depending on used 

coordinates of color model (e.g. RGB, HSV, L*a*b*, and others). Under the optimized condition, analytical 

performance, such as calibration linearity, a slope of response curve, a limit of detection (LOD) and a limit of 

quantification (LOQ), was successfully enhanced. 

 

 

Figure 1-11. Schematic illustration of the tinting strategy by color manipulation. Color association with thr y-axis for a 

hue value in arbitrary unites (A. U.) represents colorimetric reaction for H2O2 assay with a chromogen (not ISOs). 

Adapted from Ref. 81 with permission from The Royal Society of Chemistry. 
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1.2. Paper as a sensor substrate 

 Short history of paper in the science field 

Paper has accompanied the progress of science for many years because of the multiple advantageous 

features as a sensor substrate: (i) inexpensiveness, (ii) abundance, (iii) safe disposability with incineration, (iv) 

mass productivity, and (v) high chemical/physical stabilities.83-88 Surprisingly, the long history of paper-based 

assay can be track back to a litmus paper in 17th century89, which has been used for the simple colorimetric 

test of acidity (i.e. pH) even now (refer to Figure 1-12a for an example of a commercialized product). Later, 

“dry chemistry” has drawn significant attention to develop test papers and dipsticks for the diagnostic 

application.83 In the 1950s, a dipstick-type paper test was first established for urinary metabolite assays (e.g. 

glucose)90-91, followed by its commercial introduction to the consumer market in the 1960s83-84. Urinary 

dipsticks allow screening of multiple analytes by simple single dipping of plastic-backed testing paper pads 

containing colorimetric indicators, to diagnose individual health conditions, such as diabetes, kidney disease, 

and hydration state (refer to Figure 1-12b for an example of a commercialized product). Semi-quantitative 

readout is also achievable by visual comparison of a resultant color with a color-code chart after the defined 

incubation time corresponding to the analytes of interest. Parallel to the development of dipstick tests, a 

paper-based lateral-flow format has been established for immunochromatographic assays in the 1980s.92-93 To 

date, this platform is undoubtedly common in commercial pregnancy testing and influenza diagnosis, among 

others in the field targeting food monitoring, veterinary, environmental assessment, and drug monitoring (refer 

to Figure 1-12c for an example of a general latera-flow paper devices). As mentioned above, paper-based 

assay, which is successfully penetrated into the commercial market, has often provided semi-quantitative 

screening of just one analyte per one sample (e.g. yes/no answer, comparison with color-coded chart) until a 

few years back. Recently, optical electronic readout systems have been applied to some commercial paper 

dipsticks and lateral flows, which allow quantitative and reliable result in the comparison the simple visual 

inspection. 
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Figure 1-12. Examples of paper-based analytical devices in the commercial market: (a) a colorimetric pH test paper; (b) 

a urinary dipstick paper; (c) a lateral-flow format test kit for an immunochromatographic pregnancy test. 

 

The first emergence of patterned paper in the analytical chemistry was in the 1930s, when a spot test for 

colorimetric detection of metal ions (Figure 1-13a).94 Following this study, a microfluidically-patterned paper 

was reported for the chromatographic separation and refractometric detection of dyes/pigments in the 1940s 

(Figure 1-13b).95 In both studies, hydrophobic walls were fabricated by the use of a paraffin wax, which was 

originally used to prevent cross contamination of each reaction zone96. In 2007, the Whitesides research group 

established a photographically-patterned paper-based microfluidic as a new chemical assay platform, targeting 

colorimetric detection of urinary pH and proteins (Figure 1-13c).97 Now it has been commonly referred to as a 

microfluidic paper-based analytical device (PAD).98 The porous structure and hydrophilic nature of 

cellulose-composed paper enable passive sample transportation by capillary action, in contrast to conventional 

microfluidic systems requiring active pumping. Thanks to its feasibility as a sensor substrate, a wide variety of 

detection principles, such as colorimetry, fluorescence, chemiluminescence, and electrochemistry, 

electrochemiluminescence, and others, has been adapted to paper-based sensing platforms targeting medical 

diagnosis, environmental analysis and food quality monitoring, among others. 99-107 Figure 1-13 shows an 

comparison of various assessments on the analytical performance and handling of paper-based biosensor 

products, based on SWOT (strengths, weaknesses, opportunities, and threats) analysis.104 

 

(a) (b) (c) 
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Figure 1-13. Schematic designs of the earliest filter paper patterned by the use of a paraffin wax: (a) a simple patterned 

spot test for the colorimetric detection of metal ions (adapted from H. Yagoda, Ind. Eng. Chem. Anal. Ed., 1937, 9, 2, 

79-82 (ref. 94)). Copyright 1937 American Chemical Society); (b) a microfluidically-patterned filter paper for the 

chromatographic separation and refractometric detection of dyes and pigments (adapted from R. H. Müller; D. L. Clegg, 

Anal. Chem. 1949, 21, 9, 1123-1125 (ref. 95)). Copyright 1949 American Chemical Society); (c) a 

photographically-patterned filter paper as the chemical sensing platform (reproduced with permission from ref. 97. 

Copyright© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim). 

 
Figure 1-13. SWOT (strengths, weaknesses, opportunities, and threats) analysis of paper-based biosensors. Adapted from 

Biosens. Bioelectron., 96, K. Mahato; A. Srivastava; P. Chandra, “Paper based diagnostics for personalized health care: 

Emerging technologies and commercial aspects”, 246-259, (ref. 104), Copyright 2017, with permission from Elsevier. 
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 The potential of paper for microfluidics 

1.2.2.1. Comparison with other conventional microfluidic materials 

As mentioned in the above section, paper has numerous advantages as a sensor substrate to consider the 

alternative to the conventional materials (refer to Table 1-1 for comparison with other conventional 

microfluidic materials: glass, silicon, PDMS).84, 108-110 Especially, inexpensive material cost and white 

background have supported the motivation of scientific research for developing ()PADs, emerged as 

promising microfluidic substrate in the field of analytical chemistry. 

In spite of their excellent and unique characters, paper also has some weaknesses. For instance, some of 

paper products contain chemical additives (e.g. calcium carbonate: CaCO3, sizing reagents) to improve light 

scatting, ink absorbency, smoothness, water resistance, and mechanical strength.110 Therefore, these impurities 

may potentially cause interference with (bio)chemical assay on a paper substrate. For this issue, a 

chromatographic or filter paper, which is mainly composed of high-quality pure cellulose without chemical 

reagents, is often used for the development of PADs.111 The other character is that the physical properties can 

easily vary, depending on ambient conditions (e.g. relative humidity and temperature).110 Although the 

hydrophilic feature of natural cellulosic paper enable passive transport of sample liquid with a capillary force, 

the amount of moisture around the surface of paper fibers is increased, corresponding to the relative 

humidity112-113. This saturation moisture content depends on the paper structure and the number of polar 

groups (e.g. hydroxyl groups), and the absorption water leads a reduced physical strength, swelling, and a 

change in pore size distribution, which influences on microfluidic transport of applied sample liquid.110-111 The 

surrounding water can be categorized as unbound (or bulk) and bound water, depending on the strength of 

interaction between water molecule and the surface of cellulosic surface as illustrated in Figure 1-14.114-115 

Furthermore, the bound water can be divided into two categories: freezing water (in the pores of the fiber 

wall) and nonfreezing water (chemically bonded to the hydrophilic groups). 114-115 
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Table 1-1. Features of paper as a sensor substrate in comparison with traditional materials (glass, Silicon, and PDMS: 

polydimethylsiloxane). Reprinted from Ref. 84 with kind permission from Springer Science and Business Media. 

Property Material    

 Glass Silicon PDMS Paper 

Surface profile Very low Very low Very low Moderate 

Flexibility No No Yes Yes 

Structure Solid Solid Solid, gas-permeable Fibrous 

Surface-to-volume ratio Low Low  Low High 

Fluidic flow Forced Forced Forced Capillary action 

Sensitivity to moisture No No No Yes 

Biocombability Yes Yes Yes Yes 

Disposability No No No Yes 

Biodegradability No No To some extent Yes 

High-throughput fabrication Yes Yes No Yes 

Functionalization Difficult Moderate Difficult Easy 

Spatial resolution High Very high High Low to modulate 

Homogeneity of the material Yes Yes Yes No 

Price Moderate High Moderate Low 

Initial investment Moderate High Moderate Low 

 

 
Figure 1-14. A three-dimensional structure of water absorption around the surface of cellulosic paper: capillary water 

(bulk water: Wc); bulk water (cluster: Wb); freezing bound water (Wf); nonfreezing water (Wnf). Adapted from Carbohydr. 

Polym., T. Bechtold; A. P. Manian; H. B. Öztürk; U. Paul; B. Široká; J. Široký; H. Soliman; L. T. Vo; H. Vu-Manh, 93, 

“Ion-interactions as driving force in polysaccharide assembly”, 1, 316-323, (ref. 115), Copyright 2013, with permission 

from Elsevier.  
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1.2.2.2. Chemistry of papers 

Paper is a flexible thin sheet of material produced by pressing together cellulosic fibers. The raw sources 

for the production of paper are selected corresponding to the intended purpose: wood for printing paper, 

cotton for filter and chromatographic papers, jute or flax for linen, and others.111 For the development of the 

PADs, the physical and chemical properties of paper (e.g. surface characters, flow rate for liquid transport, 

pore size, porosity, thickness) are significantly important because they are critical parameters in the analytical 

performance of PADs (i.e. sensitivity, specificity, and reproducibility).111 To date, various grades of paper 

have been applied for (bio)chemical assays with ()PADs, selection of the appreciate paper substrate is still 

challenging, relying on the used techniques (e.g. fabrication, designing, and detection principle).106 Most of 

studies have exploited Whatman No. 1 filter paper, which is a smooth surface, uniformity on both sides, 

medium flow rate, and the thickness which can be applied to printing technology.84, 111 

Cellulose is the simplest structure among polysaccharides, which is composed a linear, polydisperse and 

syndiotactic chain of -D-glucopyranose (Figure 1-15).116-117 The chain length, also called the degree of 

polymerization (DP), is expressed as the number of anhydroglucose unit (AGU), relying on not only but the 

origin of the raw material but also the extraction treatments during manufacturing (e.g. cotton: 800 to 10 

000).116 In addition, both ends of the cellulose chain are different as shown in Figure 1-15.116 At a 

non-reducing group, the glucose unit is still a closed ring, displaying an original C4-OH group. At the other 

end (i.e. a reducing end group), both pyranose ring structures (cyclic hemiacetal) provide the reducing feature 

due to the equilibrium between an original C1–OH group and an aldehyde structure. 

 

Figure 1-15. Chemical molecular structure of cellulose; n represents degree of polymerization (DP). Adapted from ref. 

116 with permission from the Royal Society of Chemistry. 
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Since cellulose contains abundant hydroxyl groups (-OH) as shown in Figure 1-15, cellulosic paper shows 

the hydrophilic surface character as mentioned before. If that is so, then why does cellulose provide 

insolubility in the aqueous media? Before answering this question, we should consider the intra- and 

inter-molecular hydrogen bounding (Figure 1-16). For a detailed principle, the some excellent reviews are 

avairable114, 116-117, and thus, brief of chemical interaction will be here described in this thesis. The primary 

intra-molecular hydrogen bond in the cellulose is the OH(3)-O(5’) bound, which is shared by most allomorphs, 

and OH(2)-O(6’) hydrogen bonds also occur in some allomorphs(Figure 1-16a).116, 118 On the other hands, the 

supramolecular distinction (i.e. inter- and intra-molecular hydrogen bonds) is expressed as show in Figure 

1-16b, resulting in different packings: parallel (cellulose I) and anti-parallel (cellulose II).116, 119 The primary 

intra-molecular OH(3)-O(5’) hydrogen bond is shared by both polymorphs, and the intra-molecular 

OH(2)-O(6) hydrogen bond only occurs in cellulose I in Figure 1-16b. Furthermore, inter-molecular 

hydrogen bonds of OH(6)-O(3’’) and OH(6)-O(2’’) in cellulose I and II, respectively.116, 119 

 

 

 

 
Figure 1-16. Intra- and inter-molecular hydrogen bounding of cellulose: (a) Intra-molecular hydrogen bonding in 

cellulose; (b) different packings models: parallel (cellulose I) and anti-parallel (cellulose II). Adapted from Ref. 116 with 

permission from the Royal Society of Chemistry. 

 

Abundant hydroxyl groups of cellulose serve the chemical functionalization, however, inherent chemical 

reactivities of three hydroxyl groups in AGU (i.e. OH(2), OH (3), and OH(6) in Figure 1-15) are different due 

(a) 

(b) 
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to the involvement in supramolecular structure (i.e. the hydrogen bond network).116, 120 Therefore, the relative 

chemical reactivity of the hydroxyl groups in cellulose can be basically described in the following order: 

OH(6) >> OH(2) > OH(3).120 

 

 Fabrication technique for microfluidically patterning 

The first introduction of a microfluidically-patterned paper for (bio)chemical assay was based on a 

photolithographic and etching techniques in the same manner with the fabrication of silicon/glass-based 

microfluidics. In general, a hydrophilic microfluidic channel is defined by bonding with hydrophobic walls, 

and the reported patterning methods can be categorized the following groups: (i) indirect pattering and (ii) 

direct patterning (see Figure 1-17).121 In the term of (i) indirect patterning (e.g. lithography), a paper substrate 

is often soaked into hydrophobic components forming a wall (e.g. polymer), followed by removal of formed 

coating chemical components to define a hydrophilic microfluidic channel. These techniques are relatively 

high-resolution, but they are expensive and complicated manufacture process (e.g. mask, phonologist, and 

clean room). In addition, the hydrophilic channel area of paper substrate once coated with the hydrophobic 

polymer solution may have the potential of interfering (bio)chemical assays. In contrast, direct patterning (e.g. 

printing, stamping, and others) serves to pattern a microfluidic channel with simple equipment, which does 

not require pre-exposure of the microfluidic channel area to chemical reagents. For the detailed characters of 

laboratory-based patterning technique some excellent reviews were reported.86, 122-123 Briefly, most of the 

studies on PADs depend on wax-printing methods for patterning of microfluidic channels because of the 

multiple advantageous features (as shown in Figure 1-18): (i) simplicity (printing, followed by heating for 30 

s at 135°C124), (ii) relatively inexpensiveness including initial introduction of a wax printer, and (iii) 

high-throughput (30 pages of A4-sized paper in 1 min124), (iv) the feasibility to combine with other techniques 

(especially, printing technology because the same graphic software is adaptable for the deposition of chemical 

reagents).103 
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Figure 1-17. Classification of patterning techniques to fabricate microfluidic channels on paper substrates: (i) indirect 

and (ii) indirect patterning. Reproduced with permission from ref. 121. Copyright© 2015 Wiley-VCH Verlag GmbH & 

Co. KGaA, Weinheim. 

 

 

Figure 1-18. Classification of literature publications on PADs for medical application according to the implemented 

patterning technique. Adapted from Ref. 103 with permission from The Royal Society of Chemistry. 

 

In the same manner with patterning techniques, automation of reagent deposition is also appreciated to 

improve the reproducibility of PAD manufacture (i.e. device sensitivity and selectivity). To date, the reagent 
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deposition originally performed by manual pipetting onto a paper substrate (typically less than 10 L) has 

been replaced by printing-based dispensing since our research group introduce inkjet-printing technology for 

the fabrication of PADs125-126. Especially, inkjet-printing technology plays a significantly essential role 

because defined contactless deposition of assay reagents is achievable with tiny sample volumes (pL order).103, 

121 For comprehensive reviews on inkjet-printed PADs, some excellent reviews are available121, 127, and 

further discussion is not described here. Not surprisingly, inkjet-printing technology enables to dispense wide 

varieties of chemical assay reagents, such as organic/inorganic molecule, polymer, nanoparticles, proteins, and 

others.125-126. Therefore, it can be concluded that inkjet printing is already penetrated as a routine tool for the 

R&D on PADs, and that novel applications are being continuously developed. 
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1.3. Paper-based ion sensing 

 Paper-based colorimetric ion sensing with classical indicators 

In the academic field targeting paper-based ion sensing, several detection principles have been applied to 

()PADs, such as colorimetry, fluorescent, electrochemistry, electrochemiluminescence, chemiluminescence, 

and others. In the term of general paper-based assay, colorimetry is the most popular detection principle as 

shown in Figure 1-19 assay (note that “electrochemistry” in Figure 1-19 may include amperometry, 

voltammetry, potentiometry, and electrochemical impedance spectrochemistry detection)86, and it is regarded 

as the most appropriate detection technique for paper-based assay.128 Not surprisingly, the detection principle 

of colorimetric transduction typically have relied on mature reactions: classic indicators, nanoparticles, redox 

reaction, acid-base reaction, and others.111, 128-131 Although colorimetry is simple and capability with low-cost 

instruments, it suffers from poor sensitivity, which does not meet the sensitivity of traditional analytical 

technique (e.g. UV-Vis spectroscopy). In addition, application of optical paper sensors to biological fluid (e.g. 

blood, urine) is significantly challenging because body fluids often have their own color. Therefore, additional 

sample preparation steps (e.g. sample dilution, matrix simplification) are very important prior to the 

colorimetric assay with biological fluid. 

 

 

Figure 1-19. Classification of each detection principle in the analytical field targeting ()PAD-based assay. Adapted from 

Ref. 86 with kind permission from Springer Science and Business Media. 
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In contrast to ion sensing with biological fluids, colorimetric paper devices plays an important role for the 

quality control of water and processing of foods and beverages in the fields of both academic studies and 

industrial manufacturing.107, 130-133 For example, Macherey-Nagel and Merks Millipore have commercialized 

colorimetric paper dipsticks for various ion species: Al3+, Ar5+, Ca2+, CO3
2-, Cl-, Co2+, CrO4

2-, CN-, Fe3+, Ni2+, 

Mo2+, Pb2+, Ni2+, Mn2+, NO2-, NO3-, K+, PO4
3-, SO4

2-, SO3
2−, Sn2+, Zn2+, and total hardness, of interest.134-135 

Most of these ion sensing also rely on well-establish recognitions: classical indicators, redox reactions, Griess 

reaction (NO3-, NO2-) and Gutzeit reaction (Ar5+). Not surprisingly, the major focus of colorimetric dipsticks is 

on the heavy metal detection since classical indicators for the selective detection of heavy metals are abundant. 

Moreover, in academic studies on ()PADs targeting ion sensing, classical colorimetric indicators also lead to 

determine heavy metals (refer to Table 1-2 and 1-3 for the summary of colorimetric PADs for the 

determination of ion species). Apart from heavy metal detections, it can be seen that research on nitrite 

detection with ()PADs is also well-reported. This is because Griess reaction promises reliable nitrite 

detection, which can be used for not only environmental and food monitoring but also clinical application (e.g. 

urinary analysis).103, 111 On the other hand, ()PADs for alkali and alkaline-earth metals are much less plentiful, 

because no selective classical colorimetric indicators are available for these ion species. Alternatively, 

metal-chelating fluorophores136 and a DNAzyme coupled with chromogenic enzymatic reaction137 enable 

PAD-based quantification of tear electrolytes (Na+, K+, Ca2+) and serum K+, respectively. 
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Table 1-2. Summary of colorimetric indicators/chromogens for the detection of heavy metals with ()PADs 

Heavy metals Indicator/chromogen Quantification 
method 

Ref 

Cadmium Thiourea Intensity 138 
Chromium Diphenylcarbazide (DPC) Intensity 138-148 
Cobalt Chrysoidine-G Intensity 148 
 1-(2’-pyridylazo)-2-naphthol (PAR) Intensity 149 
 1-Nitroso-2-naphthol Distance 150 
Copper Bathocuproine Intensity 141-143, 147, 151 
 Diethyldithiocarbamate Intensity 138-139 
 D2EHPA and 1-(2’-pyridylazo)-2-naphthol (PAR) Intensity 152 
 Dithiooxamide, Intensity 148 
  Distance 153 
 Zincon Intensity 154 
  Distance 155 
 Polyethyleneimine Intensity 156 
 1-(2-pyridylazo)-2-naphthol (PAN) Counting 157 
 Diethyldithiocarbamate trihydrate (DDTC) Intensity 158 
 Diphenylcarbazide (DPC) Intensity 159 
Iron Aminophenol Intensity 160 
 Bathophenanthroline Intensity 158 
  Distance 153, 155, 161 
 Ferene S Intensity 154 
 Phenanthroline Intensity 141-142, 148, 151, 

162-164 
 2,4,6-Tri(2-pyridyl)-1,3,5-triazine (TPTZ) Intensity 159 
 Thiocyanate Intensity 165 
Lead Sodium rhodizonate Intensity 160, 166 
  Distance 167 
Manganese 1-(2’-pyridylazo)-2-naphthol (PAR) Intensity 148 
Mercury Michler’s thioketone (MTK) Intensity 146, 149 
 Zincon Intensity 139 
 Pyridylazo dye Intensity 168 
 HOTT Intensity 169 
 Dithizone Distance 170 
Nickel Dimethylglyoxime (DMG) Intensity 138-139, 141-143, 

146-148, 151, 158, 
165, 171-172 

  Distance 153, 173-174 
 Zincon Intensity 175 
 Nitro-PAPS Intensity 176 
Zinc Zincon Intensity 154, 177 
 Dithizone Distance 160 

D2HEPA: di(2-ethlyhexyl)phosphoric acid, HOTT: 6-hydroxy-3-(2-oxoindolin-3-ylideneamino)-2-thioxo-2H-1,3-thiazin-4(3H)-one, 

Nitro-PAPS: 2-(5-Nitro-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino] phenol  
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Table 1-3. Summary of colorimetric indicators/chromogens for the detection of ion species (except for heavy metals) 

with ()PADs. 

Analyte Indicator/chromogen Quantification method Ref 

Alkaline-earth metals    
Barium Sodium rhodizonate Intensity 160 
Calcium Eriochrome Black T/Xylidyl blue 

(Chelating titration) 
Intensity 178 

 Eriochrome Black T/Calcon 
(Chelating titration) 

Counting 179 

Magnesium Eriochrome Black T/Xylidyl blue 
(Chelating titration) 

Intensity 178 

 Xylidyl blue Intensity 160 
 Eriochrome Black T/Calcon 

(Chelating titration) 
Counting 179 

Strontium Chrysoidine-G Intensity 180 

Other metals    
Aluminum Aluminon/Ammonium acetate Intensity 160 
Antimony Sodium sulfide Intensity 160 

Other ions    
Ammonia Bromothymol blue (acid-base reaction) Intensity 181 
 3-nitrophenol (acid-base reaction) Intensity 181-182 
 Nessler reagent Intensity 182-183 
 Berthelot reagent Intensity 184 
Bromide Phenol red Intensity 185 
Boric acid Brilliant green Distance 186 
Nitrite Griess reagent Intensity 164, 183, 

187-204 
Phosphate Molybdenum blue Intensity 205-206 
Fluoride SPADNS Intensity 203 
 Methylene blue Intensity 183 

SPADNS: 2-(4-Sulfophenylazo)-1,8-dihydroxy-3,6-naphthalenedisulfonic acid, 

 

For the colorimetric detection, most of quantitative readout are performed based on digital color analysis 

by the use of color intensity (e.g. Figure 1-20a). However, intensity-based interpretation is often affected by 

inhomogeneous color development of indicators and/or ambient conditions (e.g. illumination condition). In 

addition, calibrations cannot be integrated with paper devices, which require conventional digital color 

analysis or visual comparison of the resultant color with a reference color-coded guide. To simplify 

quantification steps for point-of-care testing (POCT), equipment-free detection models have been investigated 
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by the introduction of direct distance-based (Figure 1-20b), ladder-bar (Figure 1-20c), counting-based 

(Figure 1-20d), and timing-based readout (Figure 1-20e).207 

 

 
Figure 1-20. Examples of reported colorimetric PADs targeting ion sensing: (a) intensity-based readout model for the 

colorimetric detection of Hg2+. Adapted from S. M. Z. Hossain; J. D. Brennan, Anal. Chem., 2011, 83, 22, 8772-8778. 

(ref. 139) with permission. Copyright 2011 American Chemical Society; (b) direct distance-based readout model. 

Adapted from Ref. 173 with permission from The Royal Society of Chemistry; (c) ladder-bar readout for the colorimetric 

detection of Cu2+. Adapted from G. C. Bandara; C. A. Heist; V. T. Remcho, Anal. Chem., 2018, 90, 4, 2594-2600 (ref. 

Adapted from 157). Copyright 2018 American Chemical Society; (d) counting-based readout model for a 

complexometric titration. Adapted from Anal. Chim. Acta, S. Karita; T. Kaneta, 924, “Chelate titrations of Ca2+ and Mg2+ 

using microfluidic paper-based analytical devices”. 60-67 (ref. 177). Copyright 2014, with permission from Elsevier; (e) 

timing-based readout model for the colorimetric detection of K+. Adapted from Biosens. Bioelectron., Y. Zhang; J. Fan; J. 

Nie; S. Le; W. Zhu; D. Gao; J. Yang; S. Zhang; J. Li, 73, “Timing readout in paper device for quantitative point-of-use 

hemin/G-quadruplex DNAzyme-based bioassays”, 73, 13-18 (ref. 137). Copyright 2015, with permission from Elsevier. 

 

The first introduction of distance-based readouts to PAD-based assay is accomplished by Henry’s 

research group, based on concentration-dependent visual spatial distribution of the resultant signal along the 

flow channel (see Figure 1-20b).173 The marks preprinted beside the colorimetric detection region serves to 

calibration-free semi-quantification without any optical instruments. Due to the feasibility of distance-based 

readouts, this quantification model has been applied to various microfluidic substrate (e.g. glass, PDMS, and 

(a) (b) (c) 

(d) (e) 
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cotton thread).208 Ladder-bar quantification model is relatively similar to direct distance-based readout, relying 

on counting the number of the discrete detection regions of color-developed indicators (Figure 1-20c).157 

Although the number of resultant visual bars can be semi-quantitatively translated to the analyte concentration, 

the observer-dependent errors will potentially occur during the semi-quantification. In contrast, radial-bar 

readout (i.e. counting-based readout) targeting ion sensing is inspired by the classical titration (i.e. 

complexometric titration with EDTA (ethylenediaminetetraacetate) and semi-selective indicators).179 

Compared to linear rudder-bar readout, dynamic range of paper devices can be tuned by changing the amount 

of chelating reagents (i.e. EDTA). Although, calibration-free detection is achievable for both rudder-bar and 

counting-based readouts, however, resolution of detectable analyte is relatively limited.103 Finally, a 

complementary readout model is based on “time” requiring for the ion assay, which is similar to 

distance-based readout (Figure 1-20d).137 Note that this research used a DNAzyme coupled with chromogenic 

enzymatic reaction to detect K+. This model potentially results in quantitative readout, however, the devices 

force users to pay attention not to miss the resultant time during the assay.103, 207 For this issue, timing-based 

readout can be automatically performed by introduction of the a smartphone, and it serves to reduce 

observer-dependent errors.207 

 

 Implementation of the ionophore-based sensing system into a ()PAD 

As mentioned before, focus has mostly been on the detection of heavy metal cations and nitrite due to the 

presence of excellent colorimetric indicators. Despite the necessity of detecting biologically abundant 

electrolytes (e.g. Na+, K+, Cl-), ()PADs targeting these electrolytes are much less plentiful, because no 

classical colorimetric indicators are available. For this issue, the function of ionophore-doped chemical 

sensors, which are based on not only optical detection (i.e. ISOs) but also electrochemical detection, has been 

attempted to apply to paper-based sensing platforms. The concept of ion-selective electrodes (ISEs), often 

regarded as electrochemical counterparts of ISOs, have been adapted to disposable paper sensors earlier than 
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ISOs, because paper has historically accompanied potentiometric measurement as a mechanically supporting 

substrate for sensing membrane and electrolyte solution over the past three decades209-211. 

 

Figure 1-21. Designs of paper-based analytical devices for potentiometric ion sensing: (a) a planar strip-type paper-based 

ion selective electrode (ISE) and a separated commercial reference electrode. Adapted from M. Novell; M. Parrilla; G. A. 

Crespo; F. X. Rius; F. J. Andrade, Anal. Chem., 2012, 84, 11, 4695-4702 (ref. 212). Copyright 2012 American Chemical 

Society); (b) a disposable electrochemical paper-based analytical devices (EPADs). Three components of EPADs (inner 

solution zone, sensing membrane, reference/sample zone) are stacked for the cation determinations. Adapted from W.-J. 

Lan; X. U. Zou; M. M. Hamedi; J. Hu; C. Parolo; E. J. Maxwell; P. Bühlmann; G. M. Whitesides, Anal. Chem., 2014, 86, 

19, 9548-9553 (ref. 213). Copyright 2014 American Chemical Society; (c) a disposable planer paper-based 

potentiometric ion-sensing platform (reproduced with permission from ref. 214. Copyright© 2016 Wiley-VCH Verlag 

GmbH & Co. KGaA, Weinheim); (d) a fully inkjet-printed paper-based potentiometric ion-sensing device for Na+ or K+. 

Adapted from N. Ruecha; O. Chailapakul; K. Suzuki; D. Citterio, Anal. Chem., 2017, 89, 19, 10608-10616 (ref. 215). 

Copyright 2017 American Chemical Society). 

 

A strip-type sensor is the most common platforms to fabricate paper-based ISEs, therefore, a number of 

excellent strip-type paper-based ISEs have been reported for point-of-care and in-field testing application until 

now216-217. On the other hands, a separated reference electrode is required for the potentiometric measurement 

(Figure 1-21a).212 In 2013, both a working electrode and a reference electrode for potentiometric ion sensing 

were embedded into a paper substrate218, followed by wax-patterned paper-based analytical devices (EPADs) 

(a) 

(c) (d) 

(b) 
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for the potentiometric determination of electrolytes (Figure 1-21b)213. Afterward, the function of ISEs were 

completely embedded into a disposable planar paper-based ion sensing platform by Bühlmann’s research 

group for the determination of Cl- and K+ in serum (Figure 1-21c).214 More recently, our research group has 

applied inkjet printing technology for all fabrication steps of paper-based ISEs (Figure 1-21d).215 

 

 

Figure 1-22. Designs of colorimetric ()PADs combined with ISOs: (a) a planar paper strip of plasticizer-free 

paper-based ISOs for determination of pH-buffered Na+ (adapted from ref. 74 with permission from The Royal Society of 

Chemistry), (b) a plasticizer-free anion-selective paper-based ISO. Assay components were inkjet-printed onto a paper 

substrate (reproduced with permission from ref. 75. Copyright© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, 

Weinheim); (c) a vertically-assembled PAD (vPAD) with a classical plasticized PVC-based ISO (adapted from ref. 78 

with permission from The Royal Society of Chemistry); (d) a paper-based classical ISO for the continuous colorimetric 

sensing of K+ (adapted from Talanta, P. Kassal; M. Sigurnjak; I. M. Steinberg, 193, “Paper-based ion-selective optodes 

for continuous sensing: Reversible potassium ion monitoring”, 51-55 (ref.222), Copyright 2019, with permission from 

Elsevier); (e) colorimetric distance-based PADs for the determination of K+ (adapted from C. T. Gerold; E. Bakker; C. S. 

Henry, Anal. Chem., 2018, 90, 7, 4894-4900 (ref. 223). Copyright 2018 American Chemical Society); (f) colorimetric 

distance-based PADs for K+ determination with an ISO-modified capillary (adapted from Y. Soda; D. Citterio; E. 

Bakker, ACS Sens., 2019, 4, 3, 670-677 (ref. 221). Copyright 2019 American Chemical Society). 

 

In accordance with the advantageous features of colorimetric ()PADs (i.e. observable by unaided eyes, 

simplicity), the function of ISOs has been frequently applied to paper-based sensing platforms. Compared to 

(a) 

(d) (e) (f) 

(b) (c) 
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paper-based ISEs, the implementation of ISOs into paper-based sensing platforms is are much less plentiful. 

In 1990s, a cellulose derivative (cellulose acetate) was used instead of a conventional organic polymer (e.g. 

polyvinyl chloride) to fabricate a pH-sensitive optomembrane.219-220 The sensing components, such as a pH 

indicator, plasticizer, were mixed together with a cellulose derivative. In one special arrangement, a 

semi-selective colorimetric indicator has been combined with a selective receptor for Cu2+, doped into a 

polymer inclusion membrane (PIM) composed of a plasticized polyvinyl chloride. This membrane fabricated 

by a dropping cast method was attached to cellulosic filter paper vertically stacked by hot lamination.152 Since 

Meyerhoff’s research group established a new class of paper-based ISO without a traditional plasticized 

organic polymeric membrane (Figure 1-22a)74, the implementation of ISOs into a paper substrate has gained 

for ion-selective determination of cations, anions, cations.75-79, 221-224 More recently, Meyerhoff’s research 

group also first introduced inkjet printing technology for the deposition of the sensing reagents together with 

pH-controlling function (Figure 1-22b).75 A mimic plasticized polymer phase for the ISO-based detection (i.e. 

hydrophobic micro-environment) has been successfully formed by both the highly lipophilic ISO components 

themselves and a hydrophobic part of cellulose.74-77 Interestingly, observable reaction basically relied on the 

transfer-based heterogeneous sensing, resembled in the traditional response function of carrier-based ISOs. 

Afterward, our research group applied a classical PVC-based ISO to PADs together with pH-buffering 

function (Figure 1-22c).78 Moreover, same research group fabricated polymetric ISO nanoparticles by means 

of inkjet-printing technology for paper-based sensing platforms, and reaction behavior was addressed by the 

use of a classical equilibrium-based theory.79 More recently, paper-based classical ISOs leaded continuous 

colorimetric sensing of K+ with reflectometry (Figure 1-22d).223 In order to simplify colorimetric readout, 

equipment-free distance-based quantification was achieved by corroboration of Henry’s and Bakker’s research 

groups (Figure 1-22e).224 Micelle-composed ISO nanosphere (nano-optode) was simply applied for 

colorimetric detection of K+. Later, inkjet-printing technology was adapted to the well-defined and 

reproducible deposition of ISO nanosphere for the colorimetric determination of Ca2+ in drinking and tap 

water samples.222 The water-monodisperse nano-optodes enabled patterning onto wax-patterned microfluidic 
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channels with simple office inkjet printer. Another approach for colorimetric distance-based readout was 

accomplished by the use of target-induced dyes released from a plasticized PVC film in a separated capillary 

(Figure 1-22f).221 Released positively-charged colorimetric dyes were adsorbed onto the negatively-charged 

surface of a paper substrate, resulting in chromogenic length corresponding to the analyte concentration. 

 

 Analyte loss during cation assay 

The majority of academic studies on the development of ()PADs have supported for the implementation 

of particular detection mechanism into paper-based sensing platform. Hence, the optimization of device 

geometry and the effect of a cellulosic paper substrate on the (bio)chemical assay have drawn less attention 

until now. Recently, instead of traditional one-factor-at-time (OFAT) approaches, design of experiments 

(DOE) have been applied for the selection of the optimum experimental conditions with limited experimental 

effort.225-227 In these publications226-227, the device sensitivity strongly relied on not only the amount of sensing 

reagents but also device geometry. In other research176, the correlation between total area of flow channel (i.e. 

channel width ✕ channel length) and amount of transported cation analytes has been investigated by the use 

of a simple assay model with PADs (Figure 1-24). Although flow rate in PADs is affected by various 

influence factors, such as ambient condition (e.g. temperature, humidity), channel width, and others, the 

amount of transported analytes depended on the total area of channel. In other words, we have to consider the 

total area of PADs to yield greater device sensitivity. 
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Figure 1-24. Estimation of amount of cationic analyte (Ni2+) transported in PADs, corresponding to the total area of 

flow channel (adapted from ref. 176 with permission from The Royal Society of Chemistry). 

 

Regarding paper-based ion sensing, loss of cation analyte (e.g. Ni2+, Cu2+, Zn2+) and anion analytes (e.g. 

PO4
3-) during transport in PADs has been quantitatively discussed under various influence factors such as 

device geometry, user handling, and physico-chemical nature of analyte (Figure 1-25a).172, 176 It is known that 

the surface of cellulosic paper is negatively charged because carboxyl and hydroxyl groups are abundant. 

Typically, carboxyl groups are generated by oxidization of 6-position hydroxy group during bleaching 

process.228 Therefore, amount of carboxyl group on the surface of cellulose relies on the used oxidative 

treatment and types of used paper. This carboxyl groups mainly contribute to ion-exchange behavior between 

the anionic paper and cationic analytes occurs (chelating-like bonding). In this adsorption of cation analytes, 

the amount of transported cation analytes was independent on the counter ions (e.g. Cl-, NO3
-) as described in 

Figure 1-25a. Although this binding strength is affected by chemical conditions of sample liquid (e.g. sample 

pH, ionic strength), it depends on types of cations as shown in Figure 1-25b.229 On the other hands, anionic 

analyte (e.g. PO4
3-) showed higher transport amount due to electrostatic repulsion with the cellulosic 

substrate.173 

  



Chapter 1 General Introduction to ionophore-based ion-selective optodes and paper-based sensing platform 

 

42 

 

 

 

Figure 1-24. (a) Amount of cationic/anionic analytes transported in PADs corresponding to types of target analytes 

(adapted from ref. 176 with permission from The Royal Society of Chemistry); (b) distribution coefficient (Kd) of metal 

ion traces corresponding to sample pH; note that short-fibered cellulose was used in this experiment (adapted from Burba 

P. and Willmer P. G, 30, 5, “CELLULOSE: A BIOPOLYMERIC SORBENT HEAVY-METAL TRACES IN WATERS”, 

381-383 (ref. 229), Copyright 1983, with permission from Elsevier). 

 

The electrostatic adsorption behavior of metal cations can be described by a Langmuir adsorption isotherm 

model (Figure 1-25).230 Based on the Langmuir equation, absorption amount (W) can be expressed by the use 

of an equilibrium concentration (C) as follows: 𝑊 =
𝛼𝑊𝑠𝐶

1+𝛼𝐶
, where  and Ws represent an associated 

equilibrium constant and saturated adsorption amount, respectively. Note that the Langmuir equation is 

frequently applied to a binary system the sorption of cations (e.g. Na+, Ca2+) by kraft pulps. In this Langmuir 

model, the velocity of adsorption/desorption relies on amounts of bunding sites and free targets. In addition, 

the adsorption depends also on the structure of fibers, which is highly complex consisting of cellulose layers. 
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Figure 1-24. Schematic adsorption and desorption process based on a Langmuir adsorption isotherm model. 



Chapter 1 General Introduction to ionophore-based ion-selective optodes and paper-based sensing platform 

 

44 

 

 

1.4. Summary of the research motivation 

This thesis describes the integration of an ionophore-based ISOs into a paper-based sensing platform for 

optical cation detection (e.g. Na+ and Ca2+) to solve historical drawbacks of ISOs as mentioned before. For 

this issue, three classes of ISOs, which are a plasticized polymetric film-based optodes, plasticizer-free 

optodes, and micelle-composed optode nanospheres, have been applied to ()PADs by means of an 

inkjet-printing technology. Focus of the current thesis can be categorized into two main missions: (i) the 

elimination of the inherent pH-dependence during ISO-based assay (Chapter 2 and 3) and (ii) simplification 

of colorimetric signal readout for semi-quantification of cations (Chapter 4). The outline of this thesis is 

summarized in Scheme 1-1. 

Chapter 1 describes general background of advancing ionophore-based optical sensors and ()PADs 

targeting the detection of ion species. The state-of-the-art and challenging of colorimetric ()PADs for ion 

sensing have been discussed by reviewing the recent literatures. The colorimetric detection of heavy metals 

and nitrite with ()PADs are frequently reported since excellent classical indicators are abundant. Thus, 

development of ()PADs for the colorimetric detection of alkali-earth and alkali metals have drawn significant 

attention. Although alternatives of classical indicators, such as metal-chelating fluorophores133 and a 

DNAzyme coupled with chromogenic enzymatic reaction134, have been adapted to PAD-based quantification 

of these electrolytes, sensor varieties are still limited. For this reason, the function of the ISO system has been 

frequently applied to a paper-based sensing platform because ISO-based chemical sensors potentially provide 

ion-selective detection of interest and appropriate dynamic response range.75-79, 219-222 

Chapter 2 describes that both a classical PVC-based ISO and the pH-buffering function have been 

integrated with vertically-assembled PADs (vPADs). Functionalized paper layers individually containing 

printed classical film-based ISOs and pH-buffering reagents have leaded the colorimetric Na+ detection with 

no pretreatment (e.g. pH controlling, separate pH measurement prior to the assay), resulting in the elimination 

of the pH dependence. Moreover, the establishment of an ion-exchange equilibrium was achieved by 

eliminating evaporation of sample liquid through whole device lamination because the response function of 
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equilibrium-based ISOs refers to not “analyte amounts” but “analyte concentrations (strictly, analyte 

activities)”, in contrast to conventional colorimetric PAD-based assay. Since classical film-based ISOs have 

been first applied to an active sensor substrate (i.e. cellulosic paper), the comparison of the ISO response 

between “on a paper substrate” and “on a conventional plastic film (i.e. non-active sensor substrate)” has been 

quantitatively demonstrated by the use of a well-known theory on the working principle. 

Chapter 3 describes a new class of paper-based ISOs for pH-independent assay for fluorescent detection 

of Ca2+. Since the pH dependence of ISOs rooted the use of H+-sensitive chromoionophores, 

positively-charged solvatochromic dyes (SDs) have been introduced to plasticizer-free ISO sensing system for 

the first time. All sensing components, such as SDs, ionophores, and ion-exchangers, were directly 

inkjet-printed onto wax-patterned paper wells to fabricate plasticizer-free paper-based ISOs. The proposed 

paper-based ISOs have served to eliminate a traditional plasticized polymeric membrane, resulting in 

reduction of the assay time. As an early stage of practical analytical applications, quantification of Ca2+ 

concentration in drinking water has been demonstrated with the proposed paper devices. 

Chapter 4 describes an instrument-free “distance-based” quantitative signal readout approach for ISOs. In 

the same manner with previously reported articles222, ISO nanospheres in the form of surfactant-composed 

micelles (nano-optodes) 44, 46 were used to achieve a distance-based readout model. For reliable and 

highly-reproducible distance-based readout, all assay reagents including prepared nano-optodes and 

pretreatment reagents have been inkjet-printed onto microfluidic channels by means of a simple desktop 

thermal inkjet printer for the first time. To meet with the criteria recommended by both World Health 

Organization (WHO) and International Organization for Standardization, pre-deposition of electrolytes (i.e. 

MgCl2) providing an increased ionic strength environment after sample application resulted in improved assay 

sensitivity by reducing the interaction between cationic analytes and the paper substrate. Besides, it can be 

found that this adsorption of cation analytes onto the paper substrate also served to accomplish distance-based 

quantification. Finally, the developed distance-based paper devices have quantified the concentration of Ca2+ 
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in drinking and tap water samples, which are comparable to conventional analytical technique 

(complexometric titration). 

Chapter 5 summarizes the result of this thesis research and a future outlook of paper-based ion-sensing 

platform with ionophore-based ISOs. 

 

 

Scheme 1-1. Outline of the current thesis for the implementation of an ionophore-based ISO into paper-based sensing 

platform by means of inkjet-printing technology 
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Chapter 2 

Integration of a classical film-based optode system into 

paper-based sensing platform 
 

This chapter is based on “Implementation of a plasticized PVC-based cation-selective optode system into a 

paper-based analytical device for colorimetric sodium detection”, 

Hiroyuki Shibata, Terence G. Henares, Kentaro Yamada, Koji Suzuki and Daniel Citterio, 

Analyst, 2018, 143, 678-686. 

 

Summary 

On the example of a colorimetric sodium assay, this work demonstrates the implementation of a classical 

cation-exchange optode relying on an ionophore-doped plasticized PVC membrane into a paper-based 

analytical device (PAD). An ion-selective optode (ISO) system has been arranged into a vertically-assembled 

PAD (vPAD) integrating a pH-buffering function. Capillary force-driven sample liquid transportation through 

the paper matrix enabled pH-adjustment prior to the optical detection of the analyte cation. Functionalized 

paper layers with inkjet-deposited ISO membranes were combined with whole device lamination to attain a 

stable ion-exchange equilibrium required for the theoretical behavior of ISOs. Whole device lamination 

limited rapid evaporation of sample liquid on vPADs to avoid an increase of target concentration. Sigmoidal 

response curves between 10−5 and 1 M of Na+ at pH 5.0–7.0 have been confirmed on vPADs, following the 

theory defined by the cation-exchange equilibrium reaction. Finally, the influence of the cellulosic paper 

substrate matrix acting as a cation-exchanger on the optode response behavior has been evaluated and 

compared with conventional plastic film optodes. 
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2.1. Introduction 

Ion-selective optodes (ISOs), often regarded as optical counterparts of ion-selective electrodes (ISEs), 

have been applied for optical detection of ion species targeting a wide array of application fields.1-3 Their 

detection mechanism is typically based on an equilibrium reaction between a water-immiscible polymeric 

membrane and an aqueous sample phase.1 Selective recognition of the ion of interest is achieved by an 

ion-specific receptor (ionophore) doped into the organic polymeric membrane. Extraction of the target ion into 

the organic phase is accompanied either by protonation (for anionic target ions) or deprotonation (for cationic 

target ions) of a co-doped lipophilic pH indicator (chromoionophore), generating an optical signal from the 

ISO membrane. Their advantageous features, including high selectivity and ease of optical signal detection, 

gave birth to a variety of ISO configurations such as thin films, particles and suspensions.2-5 

Over the past decade, porous filter paper has drawn attention as an attractive substrate material for the 

fabrication of analytical devices due to multiple advantages including: (i) low-cost, (ii) ease of device 

manufacturing, (iii) portability, and (iv) safe disposability by incineration, among others.6-8 In 2007, the 

Whitesides research group has first introduced the concept of microfluidically patterned paper as a new 

chemical assay platform,9 now commonly referred to as microfluidic paper-based analytical devices 

(PADs).10 The porous structure and hydrophilic nature of cellulose-composed paper enables pump-free 

passive sample transportation by capillary action, in contrast to conventional microfluidic systems requiring 

active pumping. Such capabilities of PADs have greatly expanded their application fields including to 

medical diagnosis, environmental analysis and food quality monitoring, among others.11-17 

Colorimetry is undoubtedly the most well-established signalling approach among classical chemical 

analyses. Not surprisingly, a large fraction of PADs reported in the literature relies on colorimetric 

detection,7 because of the abundance of chemistries for this detection technique and the ease of signal 

recognition (i.e. observable by unaided eyes) fitting well the philosophy of PADs (low-cost and 

user-friendliness). Accordingly, a wide range of analytical targets including ion species has become detectable 

by colorimetric PADs.13, 15, 18 Focus has mostly been on the detection of heavy metal cations relying on 
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classical colorimetric indicators.19-23 In one special arrangement, a semi-selective colorimetric indicator has 

been combined with a selective carrier for Cu2+, incorporated into a polymer inclusion membrane (PIM) made 

from plasticized PVC.21 This membrane was attached to filter papers vertically stacked by hot lamination. 

PADs for the biologically most abundant electrolytes (e.g. Na+, K+, Cl−) are much less plentiful, because no 

selective classical colorimetric indicators are available for these ion species. Alternatively, metal-chelating 

fluorophores24 and a DNAzyme coupled with chromogenic enzymatic reaction25 were used to achieve 

PAD-based quantification of tear electrolytes (Na+, K+, Ca2+) and serum K+, respectively. 

Despite the well-established ISO-based analytical technique and the importance of biological electrolyte 

detection,26-27 this system is scarcely integrated into PADs. While the sensitivity required for blood 

electrolyte analysis with very narrow physiological ranges might be challenging for a PAD relying on 

colorimetric signaling, there are biological samples showing significant variations of electrolyte levels (e.g. 

tear fluid, urine, saliva), for which monitoring at point-of-care is of interest. In addition to the application to 

biological fluids, ISO-based PADs could also come handy in the field of drinking water monitoring or the 

analysis of environmental water samples, among others. Given the large number of highly selective 

ionophores available,28 their implementation into user-friendly PADs with optical colorimetric signal 

detection offers great potential to extend the palette of target analytes detectable by low-cost approaches. In 

2015, the Meyerhoff research group has first reported the colorimetric ISO-based detection of Na+ on a filter 

paper disc,29 where they surprisingly demonstrated that the traditional plasticized organic polymer matrix was 

not needed. In 2016, Capitan-Vallvey and co-workers applied classical film-based cation exchange ISOs for 

the determination of K+ onto a cotton thread substrate.30 Although quantitative analysis of the target ions was 

achieved with these systems, they require sample pH control by the user, since the optical signal generated by 

the cation exchange reaction is inevitably influenced by the pH of the aqueous sample phase in the same 

manner as with classical ISOs.1-3 Only very recently, Meyerhoff's group addressed this bottleneck by 

pre-depositing pH-buffering components together with an inkjet-dispensed polymer matrix-free ISO on a filter 

paper strip for detection of anions (F−, Cl−)31 or polyions32. Nevertheless, the implementation of a classical 

plasticized PVC-based ion-selective optode system onto a paper platform has to the best of our knowledge 
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never been reported. 

In this context, the current work describes a PAD for cation detection (Na+ as a proof-of-concept target) 

relying on a classical ion exchange reaction-based ISO membrane. For the sake of user-friendliness, the 

pH-buffering function was integrated into vertically-assembled PADs (vPADs). Shorter flow path lengths on 

vPADs (several hundreds of μm per paper layer) compared to lateral-flow configurations (several mm to cm) 

bring along several advantages: (i) only low sample volume required, (ii) quick sample liquid transportation, 

and (iii) compact device size.33 Fabrication of microfluidic structure and deposition of ISO reagents were 

performed by using printing technologies (wax and inkjet printing) since they allow for well-defined and 

reproducible micropatterning of PAD components.34-36 The developed ISO-based vPAD successfully 

integrated multiple advantageous features, including automated sample pH adjustment by the pre-deposited 

buffer salt reagent, flexibility of pH value condition in the ISO reaction, prevention of evaporative loss of 

sample liquid and good selectivity for Na+ over potentially interfering cations (K+, Ca2+, Mg2+, Li+). Besides 

evaluation of the analytical performance, a basic study on the influence of the cellulosic paper matrix on the 

optode response function was performed for the first time. 

 

2.2. Theory of the detection principle 

ISOs rely on an equilibrium cation-exchange reaction between the plasticized polymeric organic optode 

membrane phase containing the sensing reagents and the aqueous sample phase. The equilibrium reaction of 

the used ISO for Na+ detection is given by eq (2.1):1-2 

 

 Na+
(aq) + CH+

(org) + L(org) + R−
(org) ⇆ H+

(aq) + C(org) + LNa+
(org) +R−

(org) (2.1) 

 

where C is the chromoionophore (CH1), L the Na+ ionophore (DD16C5), R− the ion-exchanger (KTpClPB), 

and the indices “aq” and “org” indicate the aqueous sample phase and organic membrane phase, respectively. 

Extraction of the monovalent sodium ion (Na+) into the organic membrane phase by the ionophore is 
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accompanied by deprotonation of the chromoionophore in order to maintain the electro-neutrality within the 

optode membrane phase. The degree of deprotonation of the chromoionophore () is related to the activity of 

the target analyte ion (𝑎Na+) in the aqueous sample phase as expressed by the following equation (eq. 2.2): 

 

 𝑎Na+  =
1

𝐾𝑒𝑥𝑐ℎ
(

𝛼

1 − 𝛼
𝑎H+) ×

𝑅T − (1 − 𝛼)𝐶T

𝐿T − (𝑅T − (1 − 𝛼)𝐶T)
 (2.2) 

 

where, Kexch is the equilibrium constant of the reaction shown in eq (2.1), 𝑎H+  is the proton activity in the 

aqueous sample solution, RT, CT, and LT are the total concentration of ion-exchanger, chromoionophore and 

ionophore in the optode membrane, respectively. The optical property of ISOs is determined by the ratio of the 

chromoionophore’s protonated and deprotonated form. The degree of deprotonation of the chromoionophore 

() is calculated according to eq (2.3) based on the experimentally determined absorbance of the 

chromoionophore in the optode phase: 1-2 

 

 𝛼 =
𝐴P − 𝐴

𝐴P − 𝐴D
 (2.3) 

 

where A represents the experimentally measured absorbance at any given protonation state, and AP and AD 

stand for the absorbance in the fully protonated and deprotonated states, respectively. 

Throughout this study, the hue value of the HSV (hue-saturation-value) color coordinate system was used 

as the colorimetric signal of the vPADs. In analogy to eq (2.3), the hue parameter is linked to  by the 

following eq (2.4):37 

 

 𝛼 =
𝐻P − 𝐻

𝐻P − 𝐻D
 (2.4) 

 

Here HP and HD are the experimentally obtained hue values of the fully protonated and deprotonated 

chromoionophore, and H is the hue value at any given state. Throughout this work, HD and HP were measured 
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by using aqueous solutions of 0.1 M KOH and 0.1 M HCl as the sample, respectively. 

 

2.3. Experimental section 

2.3.1. Reagents and instruments 

All reagents were used without further purification. High molecular weight poly(vinyl chloride) (PVC), 

chromoionophore I (CH1), and tetramethylammonium hydroxide pentahydrate (TMAOH) were purchased 

from Sigma-Aldrich (St Louis, MO). Potassium tetrakis(4-chlorophenyl)borate (KTpClPB) was purchased 

from TCI (Tokyo, Japan). Bis(2-ethylhexyl)sebacate (DOS), cyclohexanone, sodium chloride (NaCl), 

potassium chloride (KCl), lithium chloride monohydrate (LiCl·H2O), calcium chloride dihydrate 

(CaCl2·2H2O), magnesium chloride hexahydrate (MgCl2·6H2O), cobalt(II) chloride hexahydrate 

(CoCl2·6H2O), 0.1 N hydrochloric acid (HCl), potassium hydroxide (KOH), sodium hydroxide (NaOH) and 

citric acid were purchased from Wako Pure Chemical Industries (Osaka, Japan). 2-Morpholinoethanesulfonic 

acid (MES), N-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and DD16C5 (sodium ionophore 

IV) were purchased from Dojindo Laboratories (Kumamoto, Japan). Ultrapure water (>18 MΩ cm) was 

obtained from a PURELAB flex water purification system (ELGA, Veolia Water, Marlow, U.K.) and used for 

the preparation of all solutions. Advantec No. 5C filter paper was purchased from Toyo Roshi (Tokyo, Japan). 

Hot lamination films (100 μm thickness, film material: polyethylene terephthalate and polyvinyl alcohol as a 

thermoplastic adhesive) were obtained from Jointex (Tokyo, Japan). 

 

2.3.2. Preparation and characterization of paper layers 

Advantec 5C filter paper cut into A4-size was fed into a ColorQube 8570 printer (Xerox, Norwalk, CT) to 

pattern wax barriers designed in PowerPoint (Microsoft) as shown in Figure 2-1a, followed by heating at 

150 °C for 3 min on a hot plate (Nissin NHS-450ND, Nissinrika, Tokyo, Japan). The wax patterned paper 

substrates were then subjected to reagent deposition to fabricate the vPAD for colorimetric Na+ detection 
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composed of 3 paper layers as illustrated in Figure 2-1b and c. 

 
Figure 2-1. (a) Schematic illustration of the wax barrier pattern printed on an A4 size filter paper sheet. The dimensions 

in the red box represent the settingsinthe PowerPoint graphic software; (b) Schematic design of the developed vertically 

microfluidic paper-based analytical devices (vPADs) for ISO-based Na+ detection; (c) actual photograph of a vPAD. 

 

For the preparation of a sample inlet (“1st layer” in Figure 2-1b), no reagent deposition was performed, 

whereas the buffer area (“2nd layer” in Figure 2-1b) was prepared by pipetting 7 μL of an aqueous pH-buffer 

solution (1 M citric acid-TMAOH pH 5.0, 1 M MES-TMAOH pH 6.0, or 1 M HEPES-TMAOH pH 7.0) onto 

the hydrophilic paper zone, followed by complete drying at room temperature. The optical detection area (“3rd 

layer” in Figure 2-1b) was prepared by depositing the ISO reagent ink (18.0 mg of PVC, 72.0 mg of DOS, 

2.40 mg of KTpClPB, 1.28 mg of CH1 and 2.56 mg of DD16C5 dissolved in 2.0 g of cyclohexanone) onto the 

centre of the paper zone by means of a piezoelectrically actuated Dimatix DMP-2831 inkjet printer 

(Dimatix-Fujifilm Inc., Santa Clara, CA) in 30 printing cycles (2 × 2 mm2 square, 40 μm of drop spacing). To 

meet the ink volume requirements and to decrease the ink dead volume, a 5 mL disposable pipette tip was 

used as the ink reservoir in place of the original Dimatix cartridge. During inkjet deposition, the printing table 

was heated at 40 °C to promote solvent evaporation. Optical microscope images were acquired on a 

DVM2500 digital microscope (Leica, Wetzlar, Germany) and scanning electron micrographs were recorded 

with a JSM-7600 instrument (JEOL, Tokyo Japan). 

2.3.3. Assembly of vPADs 

(b) 

(c) 

(a) 
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As-processed A4 size wax-patterned paper substrates were cut into individual spots. Before lamination, 

sample inlet holes ( = 5 mm) were cut into the top lamination film layer with a Silhouette Cameo electronic 

knife blade cutting device (Silhouette, Lehi, UT) in double cutting mode. After sandwiching the three paper 

layers by the lamination films (note that the ISO-printed side is visible from the bottom side), hot lamination 

was performed on a QHE325 laminator (Meikoshokai, Tokyo, Japan). The instrument settings for substrate 

thickness and feeding speed were “150 μm” and “slow”, respectively. 

 

2.3.4. Na+ assay with vPADs 

15 μL of sample solution was applied onto the inlet area of the vPADs, followed by equilibration for 20 

min under ambient condition to carry out the ISO reaction. The developed optical signals were captured with a 

Canoscan 8800F color scanner (Canon, Tokyo, Japan) from the bottom side. Numerical color intensity values 

of the ISO region (Figure 2-2) on the RGB (Red-Green-Blue) color scale were extracted from the scanned 

images with the ImageJ software (NIH, Bethesda, MD) to quantify the colorimetric response. The acquired 

RGB color intensity values were further converted to the HSV color coordinates,38 and the hue value was used 

as the principal colorimetric signal parameter throughout this work. The deprotonation degree of CH1 () was 

calculated based on eq (2.4) using experimental hue values.37 

 
Figure 2-2. Color measurementarea on a scanned device image (600 dpi) for quantitative evaluation of ISO response. 

The dimensions of the ROI (region of interest) represent the settingsinthe ImageJ software 
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2.3.5. Theoretical sigmoidal curve fitting of ISO response 

Activities of metal ions were estimated according to the expanded Debye-Hückel equation.39 Theoretical 

curve fitting for the experimentally acquired ISO response data was performed based on eq (2.2) using known 

experimental parameter values (𝑎H+, 𝐶C, 𝐶R, 𝐶L shown in Table 2-1) and estimates of the equilibrium 

constant (Kexch) obtained with the “Solver” function of Excel (Microsoft). 

 

Table 2-1. Experimental parameters used for calculation of Kexch. 

Parameters Values 

𝑎H+ 1.0×10−6 mol/L 

𝐶C 2.72×10−2 mol/kg 

𝐶R 5.04×10−2 mol/kg 

𝐶L 5.91×10−2 mol/kg 

 

2.4. Results and discussion 

2.4.1. Inkjet-printing of ISO membranes onto paper substrates 

While a 1:2 molar ratio of polymer matrix (PVC) and plasticizer (DOS) is commonly chosen,40 a 1:4 

(PVC:DOS) ratio has been selected in this work, for the sake of optimal viscosity for inkjet-printing and 

shorter response time of the Na+-selective devices. In addition, a preliminary experiment revealed that 30 

printing cycles of the ISO reagent ink were sufficient to obtain color intensities enabling reproducible 

hue-based signal processing (refer to Figure 2-3 for the detailed experimental setup and results, respectively). 

Inkjet-deposited ISOs exhibit well-defined optode areas on the surface of the filter paper (Figure 2-4a). The 

printed ISO reagents mainly reside in the filter paper within a depth of 150 μm from the printed surface, as 

seen in the cross-sectional microscope image shown in Figure 2-4b. The morphology of the printed-optode 

membrane prepared on the paper substrate was further studied by scanning electron microscopy (SEM). In 

contrast to the rough structure of the unmodified filter paper (Figure 2-4c), formation of smooth film areas 
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linking cellulosic fibres are observable on the ISO-modified paper surface (Figure 2-4d). It should be noted 

however, that due to the high porosity and surface area of the filter paper substrate, no continuous optode film 

is formed despite of the 30 printing cycles. This is an advantageous feature to partially maintain the liquid 

wicking character of the originally hydrophilic substrate. 

 

 

 
Figure 2-3. (a) Experimental procedure for optimization of ISO inkjet-printing cycles based ona spot test; (b) Scanned 

images of paper-based ISOs at 10, 20, 30, 40, 50 printing cyclesafter exposure to various concentrations of Na+; (c) 

Hue-based (converted to ) response curvesobtained by scanning the results of 20, 30, 40, 50 printing cycles shown in 

part (b); each data point has been obtained by measurements with 5 individual single-use paper discs; error bars indicate 

the standard deviations. 

  

(a) 

(b) (c) 
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Figure 2-4. Microscope images of filter paper substrates: optical microscope images of (a) ISO-modified paper surface 

and (b) cross-section of ISO-modified paper; SEM images of (c) unmodified filter paper and of (d) filter paper after 

deposition of 30 printing cycles of ISO reagent ink. 

 

2.4.2. Prevention of sample liquid evaporation by device lamination 

Since the ISO-based Na+ detection relies on the ion-exchange equilibrium reaction between the immiscible 

aqueous sample phase and the organic optode phase, evaporation of the aqueous sample liquid during the 

system equilibration must be prevented. Sample liquid evaporation would inevitably shift the reaction 

equilibrium, making quantitative analyses dependent on external factors (e.g. temperature- and 

humidity-dependent evaporation loss). Whole device lamination has been reported as an efficient approach to 

reduce evaporation of the sample liquid on PADs.21, 33, 41-42 In this study, the effect of vPAD lamination on the 

preservation of the sample liquid in the optical signal detection area was evaluated by making use of the 

hydration state-dependent color change of CoCl2 (blue dehydrated form and red hydrated form). After 

deposition of 15 L of aqueous CoCl2 solution onto a reagent-free vPAD (Figure 2-5), the bottom paper layer 

maintained the red color after 30 min (Figure 2-5c, top row). On the other hand, non-laminated devices 
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prepared by stacking three paper layers with staples (Figure 2-5b) resulted in more rapid liquid evaporation, 

as indicated by the significant color change observed after 20 min (Figure 2-5c, bottom row). The results of a 

hue-based quantitative evaluation are shown in Figure 2-6. Non-laminated vPADs lead to a completely dry 

state 40 min after sample introduction, while no significant evaporation of sample liquid occurs within the 

first 25 min for the laminated devices. Thus, it can be concluded that in the case of fully laminated vPADs, an 

ISO-based assay with an equilibration time of 20 min can be performed without influence of sample 

evaporation. 

 

 

Figure 2-5. Evaluation of sample liquid evaporation prevention by device lamination: (a) design of laminated device 

(vPAD without ISO and pH-buffer reagents); (b) design of non-laminated device prepared by stacking paper layers with 

staples; (c) qualitative evaluation of the wetting state of the bottom paper layer of laminated and non-laminated devices 

(application of 15 L of 0.3 g mL-1 aqueous CoCl2 solution to sample inlet followed by scanning after indicated time); 

the “vacuum-dried” result represents the completely dry state. 

  



Chapter 2 Integration of a classical film-based optode system into apaper-based sensing platform 

 

81 

 

 
Figure 4-6. Quantitativeevaluation of the wettingstate of the bottom paper layer of laminated and non-laminated devices 

as shown in Figure 4-5 of the main text (application of 15 L of 0.3 g mL-1 aqueous CoCl2 solution to sample inlet 

followed by scanning after indicated time); the “vacuum-dried” result representsthe completely dry state; each data point 

has been obtained by measurements with 3 individual single-use devices; error bars indicate the standard deviations. 

 

2.4.3. On device pH-control in vPADs 

A drawback of cation-exchange-based ISO systems is the inherent pH-dependency of the optical signal, 

making it necessary to either adjust the pH of the sample to a known fixed value or to perform simultaneous 

pH-measurements.1-2 This pH-dependency is obvious from the ion-exchange equilibrium involved eq (2.1) 

and also reflected in the corresponding theoretical ISO response function including the proton activity of the 

aqueous sample phase (eq (2.2)). In order to overcome the pH-dependency of the ISO response, the developed 

vPAD integrates a buffer component (MES-TMAOH, pH 6.0) in the 2nd paper layer for on-device pH-control 

(Figure 2-1b). The successful integration of the pH-control function has been experimentally validated by 

comparing the colorimetric response obtained after application of pure aqueous NaCl solutions to vPADs 

integrating the buffer component in the 2nd paper layer, or of pH-buffered (50 mM MES-TMAOH, pH 6.0) 

NaCl solutions to vPADs lacking the buffer component (Figure 2-7). Actual scanned images of the 

colorimetric Na+ assays are shown in Figure 2-7b. The corresponding ISO response functions shown in 

Figure 2-7 indicate a good agreement for the results of the two experiments. Therefore, it can be concluded 
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that on-device pH-buffering of the sample prior to the ISO assay is achievable by the buffer component 

pre-deposited onto an internal paper layer. 

 

 
Figure 2-7. (a) Response curves obtained by application of unbuffered (black circles) or buffered (red crosses; 

MES-TMAOH, 50 mM, pH 6.0) aqueous NaCl samples applied to vPADs with (black circles) or without (red crosses) 

integrated pH-buffering function; sample volume 15 L; equilibration time 20 min; each data point has been obtained by 

measurements with 4 individual single-use devices; error bars indicate the standard deviations: (b) actual scanned images 

of colorimetric ISO response on vPADs exposed to corresponding sample liquid solutions. 

 

A positive “side-effect” of the pH-dependency of cation-exchange-based ISO systems is the possibility to 

modulate their dynamic response range by the pH of the aqueous sample phase. This characteristic was also 

demonstrated for the vPADs by pretreating the 2nd paper layer for on-device pH-control (Figure 2-1b) with 7 

L of pH-buffer solutions of different pH-values, followed by the application of unbuffered aqueous NaCl 

solutions. Figure 2-8a shows that the dynamic response range shifts to lower Na+ activities with increasing 

pH-values, and vice versa (actual scanned images are shown in Figure 2-8b). 

Finally, the pH-buffering capacity of the vPAD-integrated buffer system was examined by applying 10-5-1 

M aqueous NaCl samples of different pH-values to devices including a pH 6.0 buffer area as the 2nd paper 

layer for on-device pH-control. Typical response curves obtained with these samples are shown in Figure 2-9 

(actual scanned images are shown in Figure 2-9b). The lack of significant differences between the three 

response curves demonstrates that the integrated pH-control function is tolerant to different sample pH 

(a) (b) 
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conditions (pH 5.0-7.0 tested) even in pH-buffered samples. 

 

 

Figure 2-8. (a) pH-Dependent response curves of ISO vPADs with integrated pH-buffering function (red crosses: 1 M 

citric acid-TMAOH pH 5.0; black circles: 1 M MES-TMAOH pH 6.0; green triangles: 1 M HEPES-TMAOH pH 7.0) 

upon application of unbuffered aqueous Na+ solutions; sample volume 15 μL; equilibration time 20 min; each data point 

has been obtained by measurements with 4 individual single-use devices; error bars indicate the standard deviations: (b) 

actual scanned images of colorimetric ISO response on vPADs exposed to corresponding sample liquid solutions. 

 

 
Figure 4-9. (a) Tolerance of the integrated pH-buffering function (buffer area pretreated with 7 L of 1 M MES-TMAOH 

pH 6.0) of the vPADs against unbuffered (black circles) and weakly buffered aqueous NaCl solutions (red crosses: 10 

mM citric acid-TMAOH pH 5.0; green triangles: 10 mM HEPES-TMAOH pH 7.0); sample volume 15 L; equilibration 

time 20 min; each data point has been obtained by measurements with 4 individual single-use devices; error bars indicate 

the standard deviations: (b) actual scanned images of colorimetric ISO response on vPADs exposed to corresponding 

sample liquid solutions. 

  

(b) (a) 

(b) (a) 
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2.4.4. Selectivity of vPADs 

The selectivity of the vPAD for Na+ detection has been investigated by determining the optical selectivity 

coefficient (Kopt) based on the separate solution method.1-2 Figure 2-10a shows the ISO vPAD response 

obtained with unbuffered aqueous solutions of various alkali and alkaline earth metal ions, including NaCl, 

KCl, CaCl2, MgCl2 and LiCl (actual scanned images are shown in Figure 2-10b). As expected from the 

known selectivity of the used Na+-ionophore DD16C543 and confirmed by the response curves shown in 

Figure 2-10, Ca2+, Mg2+ and Li+ generated no significant colorimetric signal up to tested concentrations of as 

high as 1 M. Also not surprisingly, only K+ resulted in a weak colorimetric signal at the highest tested 

concentration of 1 M. The log Kopt value for Na+ over K+ was found to be −2.10. This selectivity value is 

comparable to the one reported for the ISE counterpart using the same ionophore (log Kpot: −2.5).43 

 

 
Figure 2-10. (a) Selectivity evaluation of vPADs for ISO-based Na+ detection over other alkali and alkaline earth metal 

cations (K+, Ca2+, Mg2+, Li+); all metal cation samples were applied as chloride salts; sample volume 15 μL; equilibration 

time 20 min; each data point has been obtained by measurements with 4 individual single-use devices; error bars indicate 

the standard deviations: (b) actual scanned images of colorimetric ISO response on vPADs exposed to corresponding 

sample liquid solutions. 

 

Device lamination is essential to maintain the selectivity for Na+. As can be observed from the data shown 

in Figure 2-11, the response behaviour of ISO vPADs, including their selectivity, is significantly influenced 

(b) (a) 
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by device lamination. Non-laminated devices (Figure 2-5b) resulted in more pronounced response to K+ at 

elevated activities (Figure 2-11, yellow diamonds) in comparison to laminated vPADs (Figure 2-11, red 

crosses). In addition, non-laminated devices exhibited a dynamic response to Na+ at lower activities (Figure 

2-11, green triangles) compared to the laminated vPADs (Figure 2-11, black circles). These changes in the 

ISO vPAD response properties are another indication of the importance of device lamination, since they are 

attributed to the evaporation of the sample liquid. Evaporative loss of sample liquid results in concentration of 

solute species in the aqueous sample phase, and thus, a shift in equilibrium, promoting ion extraction into the 

organic ISO phase. Lamination contributes not only to maintaining the selectivity, but also renders devices 

more robust against fluctuation caused for example by environmental conditions such as humidity and 

temperature. 

 

 
Figure 4-11. Comparison of selectivity and dynamic response range between laminated vPADs (Figure 2-5a) and 

non-laminated devices (Figure 2-5b); sample volume 15 μL; equilibration time 20 min; each data point has been 

obtained by measurements with 4 individual single-use devices; error bars indicate the standard deviations. 

 

2.4.5. Influence of the cellulose matrix on ISO response 

Finally, to investigate the influence of the cellulosic substrate on the ion-exchange reaction, the 

paper-based ISO system was compared with a classical membrane ISO approach, where optode films were 
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prepared on a transparent plastic substrate. The classical film-based ISOs were fabricated on a transparent 

lamination sheet by inkjet-printing, following the same procedure as the paper-based system. A spot test using 

the printed ISO film and pH-buffered NaCl solutions was carried out (detailed procedure is shown in Figure 

2-12). As shown in Figure 2-13, the response curve obtained from the plastic film-based spot test (Figure 

2-13a, green triangles) exhibited colorimetric response at a lower activity range of Na+ (log Kexch: −3.88) as 

compared to the assay on vPADs (Figure 2-13a, black circles) with a log Kexch value of −4.53. On the other 

hand, the response curve and log Kexch value (−4.48) obtained in a simple filter paper spot test using 

pH-buffered NaCl solutions (Figure 2-13a, red crosses) was nearly identical to the one obtained with the 

vPAD assembly (actual scanned images for all 3 cases are shown in Figure 2-13b). The close agreement of 

the ISO response on vPADs with that of simple paper spot tests suggests that the deviation from the classical 

plastic film-based configuration is caused by the cellulosic substrate material, rather than the vPAD-specific 

multilayer-structured configuration. 

 

 
Figure 2-12. Experimental procedure for the spot test with classical membrane-type optodes on a lamination film. The 

ISO membranes were first prepared on an A4 sheet of lamination film with the Dimatix DMP-2831 inkjet printer in the 

same way as on the filter paper platform. 50 L of aqueous NaCl solutions prepared in MES-TMAOH buffer (pH 6.0, 50 

mM) were directly applied to the ISO-printed lamination film. After 20 min of equilibration, the remaining 

sampleliquidwas removed with a paper towel, and the ISO-printed lamination film was scanned from the bottom 

sideagainst a filter paperbackground, simulating the vPAD arrangement. 
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Figure 2-13. (a) Comparison of ISO response curves obtained on vPADs with integrated pH-buffering function (pH 6.0) 

and unbuffered aqueous NaCl solutions, spot tests using ISOs-printed on paper discs and ISOs printed on lamination film 

with pH-buffered solutions (50 mM MES-TMAOH pH 6.0); sample volume 15 L for vPADs, 50 L for spot tests; 

equilibration time 20 min; data points of vPADs or paper spot test/film optodes have been obtained by measurements 

with 4 and 5 individual single-use devices, respectively; error bars indicate the standard deviations: (b) actual scanned 

images of colorimetric ISO response to corresponding devices and samples. 

 

Generally, cellulosic paper contains several ionizable groups having different pKa values and different 

affinities to cations depending on the chemical nature of the respective ionizable functional group.44-45 Due to 

the major presence of carboxyl groups, the surface of cellulosic paper is negatively charged.31, 44, 46-47 

Carboxylic acids are weakly dissociated (pKa ≈ 4-5),44 with the negative charge on the cellulose surface being 

dependent on sample pH.31 Thus, carboxylic acid residues play an important role as functional anionic groups 

to interact with metal ions.45 In a paper-based ISO assay performed near neutral or slightly acidic pH, 

carboxyl groups can be involved in cation-exchange processes, as schematically shown in Scheme 2-1. 

Electrolytes present in the sample solution (e.g. Ca2+, Mg2+ and Na+) are interacting with these carboxyl 

groups on cellulose, based on reversible, and spontaneous sorption.44-45 Previous studies mentioned that 

Donnan distribution can be adapted to the validation of the distribution coefficient of ions in cellulosic fibre 

slurries.44-45 The interaction of metal ions with the cellulosic surface is affected by the pH and the ionic 

strength of the sample liquid. Hence, independent of the existence of an ISO membrane, the concentration of 

cations (e.g. Na+) in an aqueous sample phase applied to a paper-based device can be reduced by sorption to 

(a) (b) 
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the paper surface during sample transport through the porous cellulose fibre network, potentially giving rise to 

different response functions when comparing the optode behaviour on a plastic film and on a cellulose 

substrate. In the current case, the amount of Na+ sorption onto the cellulose surface of the used filter paper 

(Advantec 5C) was experimentally evaluated. For this purpose, the ion-exchange capacity (IEC) of the filter 

paper was determined by acid–base titration. The experimentally determined IEC value of the filter paper used 

in this work is comparable to reported values of the amount of carboxyl groups on other cellulose-based 

materials.44, 46 The average weight of a paper disc of the size corresponding to the hydrophilic region of each 

paper layer used for vPAD assembly was determined to be 2.1 mg (estimated from the total weight of 10 paper 

discs). Thus, the experimentally estimated total amounts of ionizable groups present in the hydrophilic area 

(i.e. no wax-modified area) of a vPAD or a paper disc used for the spot tests are approximately 0.67 mol or 

0.23 mol, respectively. Putting these IEC values of the filter paper in relation to the total amounts of Na+ 

applied as sample solutions (vPADs: 150 pmol–15 mol, spot tests: 500 pmol-50 mol) maximum 

paper-induced target cation depletion between 100-0.5% is theoretically thinkable. However, these numbers 

do not take into consideration a possible competition for carboxylate sites from the TMA+ cations present at 

high concentration in the pH-buffering system, which makes a total depletion of Na+ rather unlikely in reality. 

In any case, the IEC of cellulose alone does not allow to explain the experimentally observed differences in 

ISO response curves obtained on plastic and paper substrates (Figure 2-13). 

 

 

Scheme 2-1. Cation-exchange reaction between analyte cations (Na+) and protons of carboxyl groups present on the 
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surface of cellulose. 

There remains another important factor potentially influencing ISO response curves obtained on 

ion-exchange inert plastic substrates and on filter paper with inherent ion-exchange capacity. With ISO 

systems transferred to cellulosic paper surfaces, there exists the possibility of competing cation-exchange 

reactions between the target cation of the aqueous sample phase (e.g. Na+) and protons from cellulosic 

carboxyl groups instead of protons from the chromoionophore present in the optode membrane phase. With an 

ISO membrane deposited on cellulose fibres, carboxylic acid residues become an integral part of the organic 

optode phase. Since carboxyl groups have significantly lower pKa values compared to a chromoionophore 

typically used in an ISO membrane (pKa of CH1 in plasticized PVC membrane: 12.0),48 the cation-exchange 

between the target ions and protons of carboxyl groups is preferred over the actual ISO cation-exchange 

reaction, which leads to apparent shifts in log Kexch values. Translated to the concept of classical 

cation-exchange optodes, this situation corresponds not only to an optode membrane phase with amounts of 

cation exchanger in addition to the added anionic additive (KTpClPB), but also to the situation where two 

proton acceptors/donors with different pKa values are present (cellulosic carboxyl groups and 

chromoionophore), one of them not directly contributing to the optical signal. The fact that the paper matrix in 

combination with a deposited ISO membrane does provide a cation exchange function is indicated by the 

small, but significant colorimetric response observed for anionic additive-free ISO membranes deposited on 

filter paper, in contrast to the complete absence of such response with identical ISO membranes printed onto a 

lamination film (Figure 2-14). 
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Figure 2-14. Response behaviourof spot tests with ISO membranes deposited onto filter paper (top row) or lamination 

film (bottom row) in the absence of anionic additive (KTpClPB) exposed to pH-buffered (pH 6.0) NaCl solutions: (a) 

hue-based response curvesand (b) corresponding images acquiredwith a color scanner (paper) or an iPhone 5S (film); 

sample volume 50 μL; equilibration time 20 min; each data point has been obtained by measurements with 5 individual 

spots; error bars indicate the standard deviations. 

 

2.5. Conclusion 

The implementation of the classical plasticized PVC-based ISO system onto a cellulosic paper platform 

for colorimetric cation detection has been successfully demonstrated on the example of a Na+-selective 

vertically-assembled paper-based analytical device (vPAD). Whole device lamination allowed for prevention 

of evaporation loss of sample liquid and preserved the selectivity for Na+ over other potentially interfering 

cations (K+, Ca2+, Mg2+, Li+). It has been shown that the hue-based ISO response curves obtained on a paper 

platform can be fitted to the known ion-selective cation-exchange optode function. However, a shift of the 

response function to higher analyte activities in comparison to classical film optodes deposited on solid plastic 

substrates has been observed. It has been experimentally shown that the cause for this shift most likely lies in 

the cation-exchange properties of the cellulosic paper matrix. Although further experimentation is required to 

fully clarify this phenomenon and to eventually eliminate the substrate material caused differences in optode 

response, we believe that the current work contributes to the expansion of the applicability of the well-known 

plasticized PVC optode system. 

(b) (a) 
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Chapter 3 

pH-Independent cation sensing system with fluorescence 

solvatochromic dyes 
 

Summary 

A challenge for paper-based cationic ion sensors relying on carrier-based ion-selective optodes (ISOs) is 

pH-cross respon-sivity during the cation assay due to the use of H+-sensitive chromoionophores as optical 

signal transducers. Herein, this work demonstrates the pH-independent fluorescence cation detection with a 

paper-based plasticizer-free ISO. To achieve pH-independent cation assay, instead of a traditional H+-sensitive 

chromoionophore, a solvatochromic dye (SD) has been applied to the paper-based ISO by means of inkjet 

printing technology. The detection principle basically depends on trans-fer-based ion-exchange reaction 

directly between the positive-ly-charged SDs and the target cations, which no longer involves H+ during the 

cation detection. In the current work, Ca2+ was selected as a model cation to proof the concept. The proposed 

paper-based ISOs with the SDs clearly showed that concentra-tion response curves were not affected by the 

sample pH (pH 6.0, 7.0, and 8.0). The dynamic range for Ca2+ detection was from 10-5 to 1 M of Ca2+ samples. 

Additionally, excellent selectivity relying on the used ionophores has been confirmed with the developed 

paper-based ISOs. The capability of the developed plasticizer-free paper-based ISOs has been proposed to 

overcome pH dependence for determination of Ca2+ in mineral water without conventional pH-buffering 

process by using chemical components. 
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3.1. Introduction 

The quantification of ion species is one of the crucial components in not only biomedical science but also 

physiology, and environmental monitoring.1-4 Ion-selective optodes (ISOs) have been extensively gained as 

powerful optical chemical sensors for many years potentially to consider alternatives to ion-selective 

electrodes (ISEs).1-4 Such classical optodes are typically composed of a plasticized organic polymeric 

membrane (e.g. polyvinyl chloride), doped with a lipophilic pH indicator generating optical signal 

(chromoionophore), an ion-specific ligand (ionophore), and an ion-exchanger.1-2 The function of 

cation-selective optodes is undoubtedly well-established, relying on an ion-exchange equilibria reaction 

between cationic analytes and protons (H+) of H+-responsive chromoionophores. However, the response of 

classical optodes is accompanied by sample pH changes, and this pH-cross response is admittedly a historical 

drawback to extend their application fields. 

To overcome the pH dependence, solvatochromic dyes (SDs), which are also called as polarity-sensitive 

dyes, have been introduced as signal transducers instead of conventional chromoionophores.5-13 

Positively-charged SDs exhibit different absorption/emission spectra (i.e. color) corresponding to the solvent 

polarity (solvatochromic effect). In 2014, charged SDs were rediscovered for carrier-based ISOs by Bakker’s 

research group.5 The basis for the sensor response with SDs is no longer traditional extraction competition 

between cationic analytes and the H+. Instead, cationic analytes are extracted into the lipophilic optode phase, 

corresponding to the amount of the positively-charged SDs expelled from the organic phase.14 As a result, 

pH-independent cation quantification was achieved due to the application introduction of SDs to ISOs. 

Recently, point-of-care testing (POCT) or on-site analysis have played as important roles in the field of 

analytical chemistly.15-16 Since 2007 when a microfluidically-patterned paper was first established by 

Whitesides’ research group17-18, paper has been drawn significant attention as cost-effective attractive 

analytical platform due to its multiplex advantages; i) low-cost, ii) safe disposability by incineration, iii) 

portability, iv) ease of fabrication. Besides, a cellulosic porous structure of the paper serves passive pump-free 

transport of sample liquid by capillary force. Such advantageous capability of paper-based assay enables a 
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wide variety of measurement for biomedical science, physiology, and environmental monitoring.19-24 

In accordance with the advantages of colorimetric paper-based analytical devices (e.g. observable with 

unaided eyes), the function of ionophore-based ISOs has been frequency adapted to cellulosic paper materials 

for selective determination of cations, anions, and polyions.25-34 More recently, our research group has 

introduced classical plasticized polymetric ISO have been applied to paper-based sensing platform by means 

of inkjet printing technology for determination of Na+ or K+.29-30 On the other hands, Meyerhoff’s research 

group first discovered new class of paper-based ISOs without traditional plasticized organic polymeric 

materials.31-34 A mimic plasticized polymer phase for the ISO-based detection (i.e. hydrophobic 

micro-environment) has been successfully formed by both the highly lipophilic ISO components themselves 

and a hydrophobic part of cellulose. Interestingly, obtained reaction basically relied on transfer-based 

heterogeneous sensing.31 Nevertheless, the detection function of paper-based ISOs has been suffering from 

pH-cross reactivity due to the use of the H+-sensitive chromoionophores. 

Here, we demonstrate a pH-independent paper-based ISO without a traditional plasticized organic polymer, 

relying on an inkjet-printed positively-charged SD. In this work, Ca2+ was selected as a model ion to show for 

the first time that pH-independent system of paper-based ISOs has been successfully overcome without 

pH-buffering reagents. The lipophilic sensing components of SD-based ISOs (SD-ISOs) were inkjet-printed 

onto a wax-patterned paper substrate and resulted in forming a “dry” hydrophobic sensing layer31-32. Printing 

technologies in the entire process of the device fabrication are expected for well-defined and reproducible 

micropatterning during the device fabrication.35-37 Finally, the developed paper-based SD-ISOs have 

successfully quantified Ca2+ based on fluorescence detection without pH-buffering process, and their obtained 

quantitative result was comparable to a conventional complexometric titration method. 
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3.2. Experimental section 

3.2.1. Reagents and instruments 

All reagents were used without further purification. Tetrakis[3,5-bis(trifluoromethyl)phenyl] borate, 

sodium salt (NaTFPB), 2-morpholinoethanesulfonic acid (MES), and 

N-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were purchased from Dojindo (Kumamoto, 

Japan). Calcium ionophore IV and tetramethylammonium hydroxide pentahydrade (TMAOH) were purchased 

from Sigma-Aldrich (St. Louis, MO). Cyclohexanone, sodium chloride (NaCl), potassium chloride (KCl), 

calcium chloride dihydrate (CaCl2･2H2O), and magnesium chloride hexahydrate (MgCl2･6H2O) were 

purchased from Wako Pure Chemical Industries (Osaka, Japan). 

Ultrapure water (>18 MΩ cm) was obtained from a PURELAB flex water purification system (ELGA, 

Veolia Water, Marlow, U.K.) and used for the preparation of all solutions. Advantec No. 5C and Whatman 

Grade 541 filter paper were purchased from Toyo Roshi (Tokyo, Japan) and GE Healthcare (Buckinghamshire, 

U.K), respectively. Hot lamination films (150 m thickness) were obtained from Jointex (Tokyo, Japan). A 

single-lens mirrorless digital camera was purchased from Nikon (Tokyo, Japan). A UV hand lump (UVGL-25 

Compact UV Lamp 4W) was purchased from UVP (CA, USA). Field-emission scanning electron microscopy 

(SEM) analysis was performed on a JSM-7600F microscope (JEOM, Tokyo Japan). 

 

3.2.2. Fabrication of Ca2+ paper sensor 

ColorQube 8580 printer (Xerox, Norwalk, CT, USA) was used to pattern a wax barrier on a filter paper cut 

into A4-size before. Identical patterns of wax designed in PowerPoint (Microsoft) were printed, shown in 

Figure 3-1. For fabrication of the hydrophobic barrier, the wax-patterned paper was heated at 150 °C for 3 

min on a hot plate (Nissin NHS-450ND, Nissinrika, Tokyo, Japan). Hot-lamination of only the unprinted 

backside was performed on a QHE325 laminator (Meikoshokai, Tokyo, Japan) to prevent leakage of sample 

liquid during the Ca2+ assay. For the device lamination, a sheet of baking paper was inserted between the 
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laminate film and the top side of the wax-patterned paper to prevent them from adhesion to each other. The 

instrument settings of hot lamination for substrate thickness and feeding speed were “150 m” and “slow”, 

respectively. The wax-patterned paper substrates were then subjected to reagent deposition to fabricate the 

paper-based SD-ISOs for fluorescent Ca2+ detection as illustrated in Figure 3-2a and b. 

 

 

 

 
Figure 3-1. (a) Schematic illustration of the wax barrier pattern printed on an A4 size filter papersheet.29 The dimensions 

in the red box exhibit the settings in the PowerPoint graphic software; (b) actual photograph of paper-based ISOs after 

deposition of ISO components with Dimatix DMP-2831 inkjet printer. 

(b) 

(a) 
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Sensing printing ink for fluorescence detection of Ca2+ was prepared by dissolving 0.9 mg of SD, 2.7 mg 

of NaTFPB (ion-exchanger) and 3.24 mg of Ca ionophore IV in 2.0 mL of cyclohexanone. The used SD 

((E)-1-ethyl-4-(-4-(ethyl(2-(stearoyloxy)ethyl)amino)styryl)pyridinium)) was synthesized according to the 

previous report9. The prepared printing ink was dispensed onto the center of the wax-patterned unmodified 

paper zone (inlet area in Figure 3-2a) by means of piezoelectrically-actuated Dimatix DMP-2831 inkjet 

printer (Dimatix-Fujifilm Inc., Santa Clara) in 20 printing cycles (2×2 mm2 square, 40 m of the dropping 

space setting). In inkjet printing steps, 4 nozzles were selected from 16 nozzles of a cartridge (DMC-11610) to 

achieve homogeneously printing, and a customized ink reservoir was used instead of the original Dimatix 

cartridge.29 During inkjet deposition with the Dimatix printer, its printing table was heated at 40°C to promote 

the evaporation of the ink solvent. 

 

 

 
Figure 3-2. Schematic design of the developed Ca2+-selective paper-based SD-ISO and assay procedure; (a) the device 

dimension designed on the software; (b) actual photograph of a paper-based SD-ISO under ambient light or UV light (ex 

= 365 nm); (c) schematic procedure for the fluorescent detection of Ca2+ with a digital camera in a customized dark box. 

The focus of the digital camera was adjusted by using a paper-based SD-ISO without exposure to Ca2+ samples. 

 

(

a) 

(

b) 

(

c) 

(c) 

(a) (b) 
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3.2.3. Fluorescent Ca2+ assay with paper devices 

Figure 3-2c shows the schematic protocol for the fluorescence Ca2+ detection with the developed 

paper-based SD-ISO. Sample liquid solution of 5 μL was applied onto the paper device, followed by 

equilibration for 5 min under ambient condition to achieve the ISO reaction. The incubated paper-based 

SD-ISO was fixed on a customized housing case, and the fluorescent signal corresponding to concentration of 

Ca2+ was captured with a digital camera under irradiation with a UV hand lump (ex = 365 nm) in a 

customized dark box. The settings of the digital camera were as follows: exposure time 1 s; ISO value 800; f 

value 11. The images of paper devices were captured as NEF format. Using the converted JPEG file, the 

numerical red intensity values of the SD-ISO region (Figure 3-3) on an RGB (Red-Green-Blue) color model 

were extracted from the obtained digital images with a ImageJ software (NIH, Bethesda, MD) to quantify the 

concentration of Ca2+. Curve fitting for the experimentally acquired device response data was performed with 

Igor Pro software (WaveMetrics, Lake Oswegeo, OR) based on a sigmoidal equation. 

 

 

Figure 3-3. Color measurement area on a digital image for quantitative validation of ISO response. The dimensions of 

the ROI (region of interest) represent the settings in the ImageJ software. 

 

3.3. Result and discussion 

3.3.1. Fluorescence assay with Ca2+-selective paper-based SD-ISO 

It has been known that the sensing function of carrier-based ISOs with SDs relies on the ion-exchange 

equilibrium reaction as shown in following Scheme 3-1.9, 14 In this work, the working principle can be 
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expressed in a simplified manner based on the equilibrium reaction using eq. (3.1). 

 

 Ca(aq)
2+ + 2SD(org)

+ + 3L(org) + 2R(org)
− ⇄ Ca(aq)

2+ + 2SD(su)
+ + L3Ca(org)

2+ + 2R(org)
−  (3.1) 

 

where, subscripts of (org), (aq).and (su) designate the organic sensing phase on/in the modified cellulosic 

paper, the surrounding aqueous sample phase and the interface between the organic sensing phase and the 

aqueous sample phase respectively; L is calcium ionophore IV; SD+ is positively-charged solvatochromic dye; 

R- is an ion-exchanger. After extraction of cationic analytes (i.e. Ca2+ in this work) from the aqueous sample 

phase, positively-charged SDs must be expelled from an organic sensing phase into the hydrophilic aqueous 

phase (refer to Scheme 3-1). Here, the optical spectrum property of the used SD (e.g. fluorescence, 

absorbance) is significantly sensitive to solvent polarity, which results in the “on-off” fluorescence signal 

corresponding to the concentration of Ca2+.9, 11 The long alkyl chain linkers conjugated with the SDs serve to 

retain on the cellulosic surface, preventing the leakage of SDs into the aqueous sample phase. As described in 

Scheme 3-1, the conceptual reaction scheme of SD-ISOs in the current work relies on the transfer-based 

heterogeneous sensing with two water-unmixable phases, in the same manner with previously reported 

articles31-34. 

 

Scheme 3-1. Schematic illustration of conceptual reaction principle of thee plasticizer-free Ca2+-selective ISO on a paper 

substrate, relying on positively-charged SD and Calcium ionophore IV. 
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Fluorescence measurements to detect Ca2+ were performed with the Ca2+-selective paper-based SD-ISOs 

(Figure 3-4). Fluorescent signal emitted from the paper device under irradiation of UV light with a UV hand 

lump was quantified by digital color analysis based on the mean values of R. Figure 3-4a obviously shows a 

concentration-dependent decrease in the fluorescence signal of the printed SDs after the incubation for 5 min, 

corresponding to the anticipated detection mechanism as demonstrated in Scheme 3-1. The experimentally 

acquired means of the R values exhibited a good correlation with the concentration of Ca2+ (pH-buffered at 

7.0) in the dynamic range of from 10-5 mol/L1 to 1 mol/L (Figure 3-4b). Moreover, the obtained R-based 

response curve for Ca2+ was not affected by the different volumes of the applied sample (5, 7, 10 L) as 

shown in Figure 3-5. Therefore, it should be noted that the response of SD-ISOs in the current work relied on 

not the “amount” but the “concentration” of the target cations (i.e. Ca2+), indicating that the anticipated 

ion-exchange equilibrium reaction was occurred in the same manner with previously-reported articles9, 11, 14. 

 

 

 

Figure 3-4. (a) Scanned images of concentration-dependent response for Ca2+ on paper-based SD-ISOs under the 

irradiation of the UV light (ex = 365 nm) from a UV hand lump. (b) R-based response curve obtained by Ca2+-selective 

paper-based SD-ISOs exposed to various concentrations of pH-buffered Ca2+ samples (50 mM MES-TMAOH buffer, pH 

7.0); sample volume 5 μL; incubation time 5 min; each data point has been obtained by measurements with 4 individual 

single-use devices; error bars indicate the standard deviations. 

  

(a) 

(b) 
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Figure 3-5. R-based response curve obtained from paper-based SD-ISOs exposed to various applied volumes of 

pH-buffered Ca2+ samples (50 mM HEPES-TMAOH buffer, pH 7.0); sample volume 5, 7, and 10 μL; incubation time 5 

min; the response curve represented by the solid line was obtained by using underlying data of 5 L (circles); each data 

point has been obtained by measurements with 4 individual single-use devices; error bars indicate the standard 

deviations. 

 

To estimate the morphology of the SD-ISOs printed on the paper substrate, a filter paper after deposition 

of the SD-ISO components was compared with an unmodified filter paper by using a SEM (Figure 3-6). In 

contrast to the smooth surface of the unmodified paper (Figure 3-6a), the rough surface of the ISO-modified 

paper (Figure 3-6) was clearly observable due to the presence of the printed lipophilic sensing reagents in 

analogy to a published article32. Hence, it can be concluded that the homogenous hydrophobic 

micro-environment layer was successfully formed on the surface of the paper fiber by the SD-ISO reagents 

themselves. As others have already reported on ISOs with the same SDs9, however, no obvious 

analyte-dependent fluorescence signal has not been confirmed on a hydrophobic plastic film (nylon) without a 

plasticizer. The reason for this issue is that the SDs were not able to easily transfer from a solid nylon film to 

the aqueous phase9. Nevertheless, a cellulosic paper allowed for this transfer of the SDs to achieve the 

ion-exchange reaction as demonstrated Scheme 3-1. Although both the structure and property of the cellulosic 
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filter paper are rather complex than the traditional materials for ISOs (e.g. plasticized organic polymer), it 

should be known that a cellulosic paper substrate is composed of a crystalline and an amorphous form.38-40 

The lipophilic ISO components may be adsorbed onto/in the amorphous part since tightly binding between 

each cellulose molecular in the region of the crystalline cellulose prevents the penetration of other 

chemicals.31-34 The concentration-dependent response for Ca2+ on paper substrate was achievable regardless of 

the features of the filter paper (see Figure 3-7 for Ca2+ assay on the different types of the paper substrate). 

Although the corresponding fluorescent signal was slightly different probably because of the chemical or 

physical distinctions, however, the obtained dynamic ranges were nearly identical. Consequently, it can be 

concluded that cellulosic sensor material enabled the movement of the SDs from the hydrophobic sensing 

phase into the aqueous sample phase for transfer-based reaction as illustrated in Scheme 3-1. 

 

 

Figure 3-6. SEM images of (a) unmodified filter paper, (b) filter paper after printing reagent-free cyclohexanone at 20 

printing cycles, (c) filter paper after deposition of 20 printing cycles of SD-based ISO components with a Dimatix 

DMP-2831 inkjet printer. 

 

(a) (b) (c) 



Chapter 3 pH-Independent Cation Sensing System with Fluorescence Solvatochromic Dyes 

 

108 

 

 

 

Figure 3-7. Ca2+ concentration response curves obtained from paper-based SD-ISOs fabricated by using different kinds 

of filter paper, which are calculated from (a) mean values of R or (b) normalized fluorescence intensity; sample volume: 

5 μL; corresponding Ca2+ samples were prepared in 50 mM HEPES-TMAOH buffer (pH 7.0); incubation time 5 min; 

each data point has been obtained by measurements with 4 individual single-use devices; error bars indicate the standard 

deviations; normalized fluorescence intensities were estimated by using maximum (experimental result of 1 mol/L) and 

minimum (blank) experimental results. 

  

(a) 

(b) 
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3.3.2. pH independence of paper-based SD-ISOs 

In a proof-of-concept experiment, Ca2+ samples prepared with different pH-buffering solutions (pH 6.0: 50 

mM MES-TMAOH buffer, pH 7.0: 50 mM HEPES-TMAOH buffer, pH 8.0: 50 mM HEPES-TMAOH buffer) 

were applied onto the proposed paper devices (Figure 3-8). From Figure 3-8, it can be clearly shown that the 

fluorescence response for the corresponding concentration of Ca2+ did indeed not rely on the sample pH 

(6.0-8.0 tested). Since the used SDs cannot be protonated compared to the traditional H+-responsive 

chromoionophore9, 41, the ion-exchange reaction directly between the positively-charged SDs and the target 

cations (i.e. Ca2+) was achievable, which no longer involved the H+ during the Ca2+ detection. Therefore, 

pH-independent fluorescent Ca2+ assay was successfully performed with the developed Ca2+-selective paper 

devices owing to the introduction of the positively-charged SDs. 

 

 
Figure 3-8. R-based response curve obtained by Ca2+-selective paper devices exposed to Ca2+ samples pH-buffered at 

different pH conditions (red crosses: 50 mM MES-TMAOH buffer at pH 6.0; black circles: 50 mM HEPES-TMAOH 

buffer at pH 7.0; green triangles: 50 mM HEPES-TMAOH buffer at pH 8.0); a solid line represents sigmoidal fitting 

curve for results of pH 7.0 (circles); sample volume 5 μL; incubation time 5 min; each data point has been obtained by 

measurements with 4 individual single-use devices; error bars indicate the standard deviations. 
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This pH independence serves to eliminate the traditional pH-buffering process with chemical reagents 

prior to the ISO-based assay, corresponding theoretical response function of the SD-ISOs as described in the 

above section. To confirm this advantageous feature, the response curve for pH-unbuffered Ca2+ samples (i.e. 

prepared with ultrapure water) were experimentally evaluated by using the paper devices with any 

pre-deposited pH-buffering salts (Figure 3-9). The obtained fluorescent response shows identical dynamic 

concentration range from 10-5 to 1 mol/L. Therefore, it can be concluded that elimination of the pH-buffering 

of the sample is achievable by introduction of the SDs instead of the traditional H+-sensitive 

chromoionophores. 

 

 

Figure 3-9. R-based response curve obtained by Ca2+-selective paper-based SD-ISOs exposed to various concentrations 

of Ca2+ samples without pH-buffering; sample volume 5 μL; incubation time 5 min; each data point has been obtained by 

measurements with 4 individual single-use devices; error bars indicate the standard deviations. 

 

3.3.3. Selectivity study over other cations 

The selectivity of the proposed paper devices for Ca2+ detection has been investigated with pH-buffered 

cation samples (50 mM HEPES-TMAOH buffer, pH 7.0) of common alkali and alkaline earth metal ions 
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including MgCl2, NaCl, KCl (Figure 3-10). Figure 3-10 demonstrates that the selectivity feature owing to the 

used Ca2+-ionophore was observable. Here, the SD-ISOs without any addition of the ionophores did not show 

concentration response for Ca2+ (Figure 3-11). Based on the Separation Solution Method by using 

experimentally acquired mean values of R, observable legalism selectivity coefficient of the proposed 

paper-based Ca2+-selective optodes were found to be -2.3 over Mg2+ and <-3 over other cations (Na+ and K+). 

Compared with classical membrane-based or ISEs42 or emulsion-based ISOs43 with the same ionophore, the 

selectivity of the developed paper devices was slightly reduced probably due to the different polarity 

environment of the receptors43. Consequently, selective recognition of Ca2+ was successfully accompanied 

with the ion-specific ionophores (calcium ionophore IV). 

 

 

Figure 3-10. Selectivity evaluation of Ca2+-selective paper-based SD-ISOs over other alkali and alkaline earth metal 

cations (Mg2+, Na+, K+); all metal cation samples were prepared with chloride salts; All sample solutions were 

pH-buffered with HEPES-TMAOH buffer (50 mM, pH 7.0); sample volume 5 μL; incubation time 5 min; each data point 

has been obtained by measurements with 4 individual single-use devices; error bars indicate the standard deviations. 
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Figure 3-11. R-based response curve obtained from ionophore-free paper-based SD-ISOs exposed to various 

concentrations of pH-buffered Ca2+ samples (50 mM HEPES-TMAOH buffer, pH 7.0); sample volume 5 μL; incubation 

time 5 min; each data point has been obtained by measurements with 4 individual single-use devices; error bars indicate 

the standard deviations. 

 

3.3.4. Practical application 

Finally, we selected here a mineral water purchased at a local supermarket as an early stage practical 

application. The level of Ca2+ concentration in the mineral water was estimated by using the developed 

paper-based SD-ISOs or complexometric titration. The quantitative results obtained from the paper devices 

and the titration were 0.20±0.04 mM (n = 3) and 0.18±0.01 mM (n = 3), respectively. It should be noted that 

the capability of the proposed devices to determine Ca2+ in the mineral water was comparable to the 

conventional titration methods, which no longer required any pretreatments prior to the assay. 

 

3.4. Conclusion 

The implementation of the positively-charged SDs onto a plasticizer-free paper-based ISO system for 

fluorescent cation detection has been successfully demonstrated on the example of Ca2+ as the model of the 
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target cations. The use of the SDs instead of conventional H+-responsive leaded to overcome the 

pH-independence of paper-based ISOs without pre-deposited pH-buffering components. The proposed paper 

devices have provided the fluorescence response corresponding to the concentration of Ca2+ in the range of 

10-5-1 mol L-1, and a good selectivity capability owing to the used ionophore. As simple application, the Ca2+ 

level in mineral water has been quantified with the developed paper devices, which is comparable to a 

conventional complexometric titration method. It has been experimentally shown that a homogenous 

hydrophobic micro-environment layer was observable on a cellulosic fiber of paper substrate, which is 

applicable to transfer-based heterogeneous sensing with two water-unmixable phases in the same manner with 

previously reported articles. Interestingly, the structure of a cellulosic paper also allowed for the transfer of the 

SDs from the organic sensing phase into the aqueous sample phase. Although further experimentation is 

required to fully clarify this phenomenon, we believe that the current work contributes to the expansion of the 

applicability of paper-based cation sensors. 
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Chapter 4 

Simplification of Semi-quantitative Readout for 

Colorimetric Cation Detection 
 

This chapter is based on “Fully inkjet-printed distance-based paper microfluidic devices for colorimetric 

calcium determination using ion-selective optodes”, 

Hiroyuki Shibata, Yuki Hiruta and Daniel Citterio, 

Analyst, 2019, 144, 1178-1186. 

 

Summary 

Although the determination of calcium ions (Ca2+) is of high importance to monitor water hardness, 

currently available devices for on-site analysis suffer from a lack of user-friendliness and sensitivity. This 

work demonstrates fully inkjet-printed and low-cost microfluidic paper-based analytical devices (PADs) for 

the simple naked-eye colorimetric determination of calcium ions (Ca2+) in drinking and tap water samples. 

The quantification of Ca2+ relies on visual readout of the length of a color-changed detection channel modified 

with ionophore-doped ion-selective optode nanospheres (nano-optodes), eliminating the requirement of a 

scanner or a camera. All fabrication steps for deposition of assay reagents have been performed by means of a 

simple desktop thermal inkjet printer, which is expected to contribute to highly batch-to-batch reproducible 

device preparation. The detectable Ca2+ concentrations between 0.05 mM and 5 mM cover the range 

recommended by the International Organization for Standardization (0.05-2.5 mM) and the World Health 

Organization (WHO) guideline for Ca2+ quantification in drinking water (less than 5 mM). The lowest 

concentration of Ca2+ detectable by the naked eye was found to be 0.05 mM, which is below the value 

achieved with previously reported paper-based devices. PAD quantified Ca2+ concentrations in tap or 

drinking waters were within 15% error of the results obtained with a classical complexometric titration. Hence, 
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distanced-based PADs relying on nano-optodes are sensitive and reproducible tools for equipment-free 

on-site assaying of Ca2+ in real samples. 

 

4.1. Introduction 

Calcium (Ca) is found as an important trace mineral and nutrient in natural or drinking waters, and 

together with magnesium (Mg) determines the water hardness. The World Health Organization (WHO) 

published a report on the public health significance of water hardness, addressing its benefits and risks.1 

Although no strict criteria for Ca2+ levels in the context of drinking water quality have been defined in this 

guideline, the WHO alternatively established a recommendation for Ca2+ levels in drinking water to be below 

5 mM and a taste threshold for Ca2+ in the range of 2.5-7.5 mM.1 Quantitative and selective quantification of 

Ca relies on a wide variety of classical analytical methods, such as complexometric titration, 

spectrophotometry and atomic absorption spectrometry (AAS).1-3 As a standardised protocol provided by the 

International Organization for Standardization, classic complexometric titrations using cation-responsive 

chromogens and chelating reagents are applied to the direct determination of calcium levels in the range of 

0.05-2.5 mmol/L.4 While this analytical approach is inexpensive and relatively simple, it is difficult to be 

adapted to on-site or in-field assays because of the necessity of specific experimental equipment (e.g. burette) 

and the multistep nature of the assay including sample pretreatment with a strongly basic solution (pH ≈ 12) 

for masking interfering cations.4-5 On the other hand, spectrophotometry and AAS allow for selective, 

sensitive, and reliable measurement of the target ions of interest. However, they are expensive, labour 

intensive, and complicated for untrained users. 

Since Whitesides’ research group first established the concept of microfluidically patterned paper,6-7 

microfluidic paper-based analytical devices (PADs) have emerged as a new class of analytical platform over 

conventional paper strips for point-of-need analysis.3, 8-14 In this context, the naturally porous structure of 

cellulosic paper plays an important role as a sustainable, inexpensive, ready-to-use, and safely disposable 

substrate platform for (semi-)quantitative assays applied to both clinical and environmental monitoring. 
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Passive sample transportation through capillary forces enables sophisticated (bio)chemical assays, including 

sample pretreatment steps, and PADs have evolved into analytical tools helping to overcome some 

limitations of conventional analytical instruments in terms of cost, portability and user-friendliness. 

Colorimetric PADs are of particularly high interest, because they allow for unaided eye observable 

quantitative signal readout.15 Not surprisingly, various metal ions (especially heavy metals) have been 

colorimetrically determined on PADs due to the wide availability of classical colorimetric indicators. 3, 12-14, 

16-20 With regard to the colorimetric detection of Ca2+, complexometric titration reagents, such as chelating 

reagents, cation-responsive chromogens, and masking reagents, have typically been adapted to the cellulosic 

substrate.21-23 Kaneta’s research group for example, fully integrated the classical complexometric titration 

system into a PAD for the visual determination of Ca2+ and Mg2+ in natural or drinking waters without the 

requirement for burettes and optical signal quantification tools (e.g. camera, scanner).22 Nevertheless, 

paper-based assays for visual detection of Ca2+ in drinking water and tap water suffer from relatively poor 

limits of detection (LOD), with an LOD of 0.21 mM reported for a µPAD relying on software-assisted 

colorimetric readout,21 or of 5 mM by naked eye visual detection.22 

As one of the sophisticated optical chemical sensors targeting ionic species, ionophore-based ion-selective 

optodes (ISOs) continue to attract significant attention.24-26 Classical ISOs are typically composed of lipophilic 

sensing components, such as a pH indicator as optical transducer (chromoionophore), an ion-specific ligand 

(ionophore), and an organic salt additive (ion-exchanger), embedded into a plasticised polymeric membrane.24, 

27 Due to the versatile capabilities of ISOs, their detection function has been integrated into cellulosic material 

platforms, such as a cotton thread28 and paper substrates.29-36 More recently, our research group introduced the 

classical polymer film-based ISOs into PADs with the aid of inkjet printing technology.29 In a later stage, we 

reported the use of inkjet-generated polymeric particle-based ISOs on paper strips.30 Meyerhoff’s research 

group on the other hand, first established a new class of ISOs without the conventional plasticised polymeric 

materials on paper substrates,31 and first applied inkjet printing technology for the deposition of the 

corresponding ISO components.32-34 Although paper-based ISOs have served to determine various electrolytes, 
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they require optical signal readout tools (e.g. scanner, camera, reflectometry). Only in 2018, Henry’s and 

Bakker’s research groups succeeded in the elimination of the conventional color intensity or color hue readout 

by adapting a distance-based signal readout motif to ISOs with micelle-based nanospheres (nano-optodes) 

pipetted onto PADs.35 Nevertheless, inkjet printing technology has to best of our knowledge never been 

applied to the highly-reproducible and well-defined deposition of all assay reagents onto practical PADs. 

The present work demonstrates distance-based PADs for the naked-eye quantification of Ca2+ in drinking 

or tap waters with high batch-to-batch reproducibility and assay accuracy without any external equipment. For 

this purpose, nano-optodes composed of the surfactant Pluronic® F-127 have been applied to the fabrication of 

distance-based PADs by means of inkjet printing technology. Notably, the nano-optodes no longer require 

the use of volatile organic solvents in the paper device fabrication process (e.g. tetrahydrofuran, 

cyclohexanone).25, 37-38 Therefore, it is possible to use simple desktop thermal inkjet printing for their 

deposition onto wax-patterned paper substrates. All fabrication steps leading to the distance-based PADs, 

from the microfluidic patterning of the paper substrate (wax printing) to the deposition of all required assay 

reagents (inkjet printing), were performed with standard printing technology, which is expected to contribute 

to highly reproducible and scalable fabrication with minimum consumption of chemical reagents.39-40 

Additionally, the developed PADs show a lower naked-eye observable LOD (0.05 mM) than a commercial 

colorimetric paper dipstick (0.1 mM), and they are applicable to practical sample analysis of Ca2+ with 

sufficient accuracy (no more than 15% error). 

 

4.2. Materials and methods 

4.2.1. Reagents and instruments 

All reagents were used without further purification. Chromoionophore I (CH1), calcium ionophore IV and 

tetramethylammonium hydroxide pentahydrade (TMAOH) were purchased from Sigma-Aldrich (St. Louis, 

MO). Pluronic® F-127 (F127) was purchased from BASF (Ludwigshafen, Germany). Tetrahydrofuran (THF) 

was purchased from Kanto Chemical (Tokyo, Japan). Bis(2-ethylhexyl) sebacate (DOS), sodium chloride 
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(NaCl), potassium chloride (KCl), calcium chloride dihydrate (CaCl2･2H2O) and magnesium chloride 

hexahydrate (MgCl2 ･ 6H2O) were purchased from Wako Pure Chemical Industries (Osaka, Japan). 

N-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), sodium 

tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaTFPB), 0.01 N EDTA (ethylenediaminetetraacetate) 

titration solution (f = 1.001), and 2-hydroxy-1-(2-hydroxy-4-sulfo-1-naphthylazo)-3-naphthoic acid (NN) 

were purchased from Dojindo Laboratories (Kumamoto, Japan). Colorimetric paper dipsticks for Ca2+ assays 

were purchased from Merck Milllipore (Darmstadt, Germany). 

Ultrapure water (>18 MΩ cm) was obtained from a PURELAB flex water purification system (ELGA, 

Veolia Water, Marlow, U.K.) and used for the preparation of all solutions. Advantec No. 5C filter paper was 

purchased from Toyo Roshi (Tokyo, Japan). Hot lamination films (150 m thickness, film material: 

polyethylene terephthalate and polyvinyl alcohol as a thermoplastic adhesive) were obtained from Jointex 

(Tokyo, Japan). For inkjet printing of the reagents for Ca2+ detection, a thermally-actuated Canon iP2700 

inkjet printer (Canon, Tokyo, Japan) was used. For this purpose, the standard color cartridge of the Canon 

printer was cut open and the sponge inside and color inks were removed, followed by washing with copious 

amounts of deionised water. Dynamic light scattering (DLS) measurements to evaluate the hydrodynamic 

diameter of nano-optodes were performed by a Zetasizer Nano ZS from Malvern (Worcestershire, UK). 

Optical microscope images were acquired on a DVM2500 digital microscope (Leica, Wetzlar, Germany). 

 

4.2.2. Preparation of Ca2+-selective nano-optode suspension 

The preparation of the ion-selective optode nanospheres (nano-optodes) according to previously published 

articles37-38 and the evaluation of their physical properties by DLS are described in Figure 4-1. 4.28 mg of 

NaTFPB, 1.68 mg of CH1, 3.2 mg of DOS, 3.0 mg of F127 and 3.90 mg of calcium ionophore IV were 

dissolved in 1.2 mL of THF to obtain a homogeneous solution. 1.0 mL of this prepared cocktail was injected 

into 4.5 mL of deionized water on a vortex with a spinning speed of 1000 r/min, followed by organic solvent 

removal with a stream of N2 gas for 40 min. The suspension of nano-optodes contained nanosphere particles 
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of approximately 200 nm in diameter with a polydispersity index (PDI) of 0.273. This solution was directly 

used for inkjet printing without any further processing. 

 

 

Figure 4-1. Hydrodynamic diameter of the prepared nano-optodes measured by dynamic light scattering (DLS). The 

suspension of nano-optodes contained nanosphere particles of approximately 200 nm in diameter with a polydispersity 

index (PDI) of 0.273. 

 

4.2.3. Device fabrication for distance-based Ca2+ quantification 

A ColorQube 8570 printer (Xerox, Norwalk, CT, USA) was used to pattern wax barriers on filter paper 

sheets cut into A4-size before use. 32 identical wax patterns designed in PowerPoint (Microsoft) were 

transferred to one single sheet of paper, as shown in Figure 4-2. For melting the wax into the depth of the 

paper to produce hydrophobic barriers, printed patterns were heated on a hot plate (Nissin NHS-450ND, 

Nissinrika, Tokyo, Japan) at 150oC for 3 min. To prevent contamination from paper feeding rollers of the 

printer during inkjet printing steps, the back side of wax-patterned paper was laminated. The wax-patterned 

and back side-laminated paper substrates were then subjected to reagent deposition to obtain the 

distance-based PADs for colorimetric determination of Ca2+ as described below and illustrated in Figure 4-3. 
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Figure 4-2. Schematic illustration of the wax barrier patterns printed on an A4-size filter paper sheet. The dimensions in 

the red box represent the settings in the PowerPoint graphic software. 

 

 

 

Figure 4-3. (a) Schematic procedure of device fabrication by printing technology and Ca2+ assay with a Ca2+-selective 

distance-based PAD; (b) Design of distance-based PAD for nano-optode based Ca2+ detection, and (c) corresponding 

dimensions representing the settings in the PowerPoint graphic software. 

(a) 

(b) (c) 
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As sample pretreatment reagents, pH-buffering solution (250 mM HEPES-TMAOH buffer, pH 7.0) and 10 

mM aqueous MgCl2 solution, were separately inkjet-deposited from a black ink cartridge in 1 and 3 print 

cycles, respectively. Then, Ca2+-selective nano-optodes were inkjet-printed from a magenta ink cartridge in 20 

printing cycles. After the inkjet printing step, the printed sides of the PADs were laminated with exception of 

the sample inlet area to limit evaporation of sample liquid during assays. 

 

4.2.4. Distance-based Ca2+ assay with PADs 

30 L of aqueous CaCl2 solution was applied to the sample inlet of the PAD, followed by incubation 

under ambient condition to perform the nano-optode reaction (45 min). The generated colorimetric signals 

were captured as JPEG images of 600 dpi resolution with a Canoscan 9000F MarkII color scanner (Canon, 

Tokyo, Japan). The obtained images were processed by separating the color into the red, green and blue 

channels. The red channel was used to quantify the colorimetric change of paper devices. The length of the 

color-changed nano-optode section of the detection channel was measured with the ImageJ software (NIH, 

Bethesda, MD). The colorimetric response profile recorded along the detection channel shown in Figure 4-4 

was obtained by using the data smoothing function of ImageJ. It is noted here that the distance-based µPADs 

are intended for equipment-free naked-eye signal readout. The use of scanned images and image processing 

software exclusively serves the purpose of device characterization. Curve fitting of the experimentally 

acquired response data was performed with the Igor Pro 4.01 software package (WaveMetrics, Lake Oswegeo, 

OR) based on a sigmoidal equation and estimates for the concentration of Ca2+ were obtained with the “Solver” 

function of Excel (Microsoft). 
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Figure 4-4. Procedure for obtaining colorimetric response profiles along a detection channel of color-developed PADs; 

after extraction of the red color channel from a scanned image, the “smoothing” function of Image J was applied. 

 

4.2.5. Ca2+ assay in water samples 

All used mineral waters were purchased at a local convenience store. Tap water samples were collected 

from various local sources, followed by storage in plastic bottles. Complexometric titration to quantify the 

Ca2+ levels in water samples was performed with NN as the colorimetric indicator and 0.01 N aqueous EDTA 

titration solution as chelating reagent under strong basic condition using 8 N KOH. For spiking tests using tap 

water, spiked water samples (added Ca2+ levels: 0.3, 0.5, 0.7 mM) were prepared by mixing as-collected tap 

water with aqueous Ca2+ standard solutions in a 99:1 (v/v) ratio. 

 

4.3. Results and discussion 

4.3.1. Optimization of distance-based Ca2+ assays 

A preliminary experiment revealed that 20 printing cycles (i.e. the amount of nano-optodes deposited with 

an inkjet printer) of the nano-optode ink was sufficient to obtain visual colorimetric changes (refer to Figure 

4-5 for the detailed experimental procedure and results). In the same manner with previously reported 

articles16-17, the device sensitivity relied on the amount of printed nano-optodes (Figure 4-5c), indicating 

potential to moderate the dynamic range corresponding to analytical applications (e.g. biological fluids). 
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Figure 4-5. (a) Design of the developed distance-based PADs for evaluation of the amount of nano-optodes: actual 

scanned image of a PAD (left) and the corresponding dimensions (right). (b) Scanned images of distance-based PADs 

with different amounts of printed nano-optodes (number of printing cycles: 4, 5, 7, 10, 12, 15, 20 and 25) 45 min after 

application of 30 µL of pH-buffered (50 mM HEPES-TMAOH buffer pH 7.0) 1.0 mM Ca2+ solution; (c) quantitative 

result of visible colorimetric signal corresponding to amount of printed nano-optodes (printing cycles).  

(a) 

(c) 

(b) 
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However, it should be noted that Figure 4-5c did not show the significant difference depending on the amount 

of printed nano-optodes because the contribution of analyte extraction by nano-optodes was less than the 

interaction between cation analytes (i.e. Ca2+) and a cationic paper surface (refer to Section 4.3.4). Typically, 

device geometry is also essential to consider the device sensitivity since large total area of a flow channel 

results in the decreased sensitivity. Hence, we confirmed the effect of a channel width on the response curves 

(Figure 4-6). The narrower channel width provided the longer visual colorimetric with same mass of Ca2+ in 

applied sample liquid because the areas of both a flow channel and nano-optodes were reduced. Although 

device sensitivity can be tuned by changing the channel width, narrower channel width resulted in the 

prolonged assay time because of the slow flow rate. 

 

Figure 4-6. (a) Scanned images of distance-based PADs with a different channel width (1.5, 2.0, and 3.0 

mm) after application of 30 µL of pH-buffered (50 mM HEPES-TMAOH buffer pH 7.0) Ca2+ solution; (b) 

quantitative result of visible colorimetric signal corresponding to the paper devices with a different width. 

 

Notably, the hydrophobic wax barriers defining the fluidic structure of the devices were not affected by the 

pre-deposited surfactant (nano-optode suspension), since no leakage of applied sample liquid was observed 

(refer to Figure 4-7 for the detailed experimental procedure and results). Whereas manual deposition of 

nano-optode suspension by pipetting causes the occurrence of a coffee-ring effect after the evaporation of the 

water solvent,35 inkjet-dispensed nano-optodes exhibit well-defined and homogeneous optode areas on the 

surface of the paper substrate (Figure 4-8a, b). The printed nano-optodes mainly reside in the filter paper 

(a) (b) 
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within a depth of approximately 120 μm from the printed surface, as seen in the cross-sectional microscope 

image shown in Figure 4-8c. Additionally, the advantageous capabilities of the filter paper substrate, such as 

its high porosity and surface area, were maintained for the unhindered liquid wicking character of the original 

hydrophilic substrate. 

 
Figure 4-7. Evaluation of wax barrier resistance against the presence of surfactants: 30 L of aqueous solution 

containing a food dye (0.02wt% acid red) was applied to an unlaminated PAD containing surfactant (F-127) micelles 

printed from a magenta cartridge at 20 cycles to mimic the conditions found in Ca2+-selective distance-based PADs; the 

F-127 micelle ink suspension was prepared according to the same procedure as described for the preparation of 

Ca2+-selective nano-optodes, however without the addition of sensing reagents (ionophore, chromoionophore, 

ion-exchanger). 

 

 

 

Figure 4-8. Microscope images of nano-optode filter paper substrates: (a) nano-optode modified paper surface of the 

flow channel; (b) scale-up of the nano-optode modified paper surface; and (c) cross section of nano-optode modified 

paper.  

(a) (b) (c) 
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The appropriate amounts of chemical reagents for distance-based Ca2+ assays (e.g. pH-buffering reagents, 

pre-deposited MgCl2 salt) were investigated. First, the influence of the amount of deposited pH-buffering 

reagents (250 mM HEPES-TMAOH buffer at pH 7.0) was evaluated. For this purpose, 4 different numbers of 

printing cycles (1, 2, 3 and 5 cycles) were tested with distance-based PADs (results shown in Figure 4-9). 

The deposition of two or more printing cycles of the pH-buffer solution resulted in a high background signal 

indicated by the magenta color observable also in the absence of Ca2+. This is probably because an excess 

quantity of cationic buffer components (i.e. TMA+) affects the cation-exchange reaction of the nano-optodes 

by an uptake of buffer cations into the nano-optode phase and hence, the deprotonation of chromoionophore 

even in the absence of target cations. Therefore, one single printing cycle was selected as the optimal amount 

of deposited pH-buffering solution in device fabrication. Next, the effect of the amount of deposited MgCl2 

for improved sensitivity of PADs was studied (refer to Figure 4-10 for the quantitative response curves). In 

this work, MgCl2 was deposited in the inlet area to compete in the non-specific interaction between the target 

cations (Ca2+) and the cellulosic surface during capillary force-driven sample wicking, which results in 

improved sensitivity for the distance-based Ca2+ assay. The reason for this is further explained in the section 

discussing the interference study. MgCl2 has been selected because the used Ca2+ ionophore has excellent 

selectivity against Mg2+,41 so that the presence of this cation does not contribute to a colorimetric signal. The 

experimental results of Figure 4-10 show that the response curves for Ca2+ are vertically shifted towards 

longer color-changed distances with increasing amounts of printed MgCl2. However, excess amounts of 

deposited MgCl2 (i.e. over 5 printing cycles) resulted in a high background signal upon the corresponding 

PADs being exposed to the blank and 1 mmol L-1 of Ca2+ samples (refer to Figure 4-11), due to the 

extraction of Mg2+ into the Ca2+-selective nano-optodes. Therefore, three printing cycles were selected as the 

appropriate amount of deposited MgCl2 in subsequent experiments. 
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Figure 4-9. Evaluation of amounts of pH-buffering reagents (250 mM HEPES-TMAOH buffer pH 7.0) printed onto the 

inlet areas and the flow channels of PADs (printing cycles of pH-buffering reagents: 1, 2, 3, 5 cycles); 30 L of blank 

(pure H2O) or 1 mM aqueous CaCl2 solution was applied onto a PAD. 

 

 
Figure 4-10. Evaluation of the amounts of MgCl2 printed onto the inlet area of PADs (printing cycles of MgCl2: 0, 1, 3, 

5 cycles); each data point has been obtained by measurements with 4 individual single-use distance-based PADs; 30 L 

of aqueous CaCl2 solution was applied onto a PAD; error bars indicate the standard deviations; incubation time: 45 min. 
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Figure 4-11. (a) Scanned images and (b) extracted red channel of distance-based PADs with different amounts of 

printed MgCl2 (number of printing cycles: 3, 5, 7) 45 min after application of 30 µL of blank sample (water) and 1.0 mM 

Ca2+ solution. 

 

4.3.2. Distance-based Ca2+ assay 

To confirm the distance-based colorimetric response of the developed PADs, aqueous Ca2+ samples of 

various concentrations have been applied onto the paper devices (Figure 4-12). The developed PADs 

showed a good correlation between the concentration of Ca2+ and the length of the color-developed 

nano-optode channel in the concentration range of 0-5.0 mM (Figure 4-12), making them ideally suited for 

the quantification of Ca2+ in drinking water samples according to the WHO (less than 5 mM) and International 

Organization for Standardization (0.05-2.5 mM) established recommendations. The batch-to-batch 

reproducibility of distance-based PADs has been estimated by using response curves obtained with µPADs 

independently prepared on different days (Figure 4-13a). This data, together with the Pearson’s correlation 

(a) (b) 
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analysis (r = 0.995-0.998) comparing the different batches with each other (Figure 4-14), confirms the high 

fabrication reproducibility of distance-based paper devices, which were independently fabricated on different 

days. For achieving calibration-free Ca2+ quantification by simply relying on a single color-changed distance 

measurement, this batch-to-batch reproducibility is one one of the most critical criteria for the successful 

practical application of PADs. Additionally, it was also experimentally confirmed that the response curve 

obtained with the aid of scanned images and digital color analysis shows no significant difference from 

naked-eye visual readout by independent untrained volunteer users (Figure 4-13b). The corresponding 

Pearson’s correlation analysis is summarized in Figure 4-15. 

 

 

 

Figure 4-12. (a) Scanned images of color-developed PADs after application of the corresponding Ca2+ solutions of 

various concentrations (30 L of aqueous CaCl2); (b) software-assisted response curve of a µPAD-based Ca2+ assay; the 

response curve represented by the solid line was obtained with a non-linear curve fit: y = −124 +
165

1+exp⁡(−
𝑥−2.21

1.99
)
; each 

data point has been obtained by measurements with 4 individual single-use devices; 30 L of aqueous CaCl2 solution 

applied; error bars indicate the standard deviations; incubation time: 45 min. 

 

(a) 

(b) 
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Figure 4-13. (a) Reproducibility evaluation of distance-based PADs independently fabricated on different days for 

software-assisted Ca2+ quantification; each data point has been obtained by measurements with 4 individual single-use 

devices; 30 L of aqueous CaCl2 solution applied; error bars indicate the standard deviations; incubation time: 45 min; 

circle plots (batch #1) are identical to the data of Figure 4-11b; (b) response curves for distance-based Ca2+ detection 

obtained by scanner and software-assisted digital color analysis (circles) and individual user naked-eye readout (crosses 

and triangles); each data point has been obtained by measurements with 3 individual single-use devices; 30 L of 

aqueous CaCl2 solution applied; error bars indicate the standard deviations; incubation time: 45 min. 

  

(a) 

(b) 
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Figure 4-14. Comparison between different batches of fabricated µPADs; the underlying data is identical to Figure 

4-13a. 

 

 
Figure 4-15. Comparison of Ca2+ assay results with distance-based PADs between software-assisted readout and 

readouts by two individual observers; the underlying data is identical to Figure 4-13b. 

 

To address the analytical capabilities of the PADs, the lowest naked-eye detectable concentrations were 

compared with those achieved with commercial colorimetric paper dipsticks. The assay procedure applied for 

commercial paper dipsticks and the colorimetric changes corresponding to various Ca2+ concentrations are 

shown in Figure 4-16. In this study, the LOD was defined as the lowest concentration observable by naked 

eye as a visual color change instead of the classical 3 method, since a blank sample does not generate any 

optical signal on distance-based PADs (i.e. blank signal distance = 0 mm). From Table 4-1, it can be 

concluded that the developed distance-based PADs resulted in lower LOD (0.05 mM) than commercial 

colorimetric paper dipsticks for the Ca2+ assay shown in Figure 4-16b (0.1 mM). Furthermore, it should be 

(a) (b) (c) 

(a) (b) 
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noted that commercial paper dipsticks require a multi-step procedure, including sample pretreatment by 

reagent addition (Figure 4-16a). Thus, the distance-based µPADs represent sensitive and user-friendly tools 

for the instrument-free and single-step determination of Ca2+ concentrations. 

 

 

Figure 4-16. (a) Assay procedure applied for commercial colorimetric paper dipstick for Ca2+ according to the attached 

user manual; (b) Scanned images of the commercial test strips after exposure to the corresponding Ca2+ concentrations. 

 

Table 4-1. Determination of the lowest naked-eye detectable Ca2+ concentration with commercial paper dipsticks. 

Observer # 
Concentration of Ca2+ [mM] 

0 0.05 0.1 0.2 0.3 

#1 - - ✓ ✓ ✓ 

#2 - - ✓ ✓ ✓ 

#3 - - ✓ ✓ ✓ 

#4 - - ✓ ✓ ✓ 

“-” and “✓” stand for “unobservable color change” and “observable color change”, respectively, read out by 4 

independent users; before comparing each sample exposed dipstick to a reference dipstick (i.e. exposed to blank), the 

color code reference of the user manual was used for user instruction. 

 

Despite their improved sensitivity for selective naked-eye determination of Ca2+ in mineral or tap water, 

the proposed distance-based paper devices require a relatively long assay time (45 min) to acquire the 

(a) 

(b) 
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quantitative optical signal. It is a general drawback that distance-based detection motifs need a prolonged time 

for assay completion due to the slow transport of sample liquid by capillary force: up to 45 min have also been 

reported by others for several centimetres of detection channel length.16-17, 20 In addition, distance-based 

colorimetric signalling relies on analyte depletion during sample transport, either by binding to a specific 

receptor16 or by interaction with the paper substrate, as it is the case in the current work. This can only be 

achieved with sample liquids being slowly transported through the cellulose fibre network of the paper 

substrate. 

On the other hand, the distance-based colorimetric signal achieved with the present system is stable over 

time (up to approximately 2 h) so that a user is not forced to continuously monitor the device during an assay, 

which allows for so-called “walk-away assays” that require nothing more than the application of the sample. 

While it is clear that in general a more rapid assay time is desirable, the 45 min assay time is not hindering 

practical use of the proposed devices. A possible perspective to reduce assay times is the shortening of flow 

channels. However, this would result in narrowing of the dynamic response range and reducing the signalling 

resolution. Alternatively, converting a color intensity-based approach into a distance readout referred to as 

“dip-and-read distance-based assay” as we have recently reported,20 might allow nearly instantaneous signal 

detection, although probably at lower resolution. Furthermore, dipping time dependent result variations would 

have to be expected, due to the dissolution of buffer salts required for maintaining a constant pH value. 

 

4.3.3. Interference study on distance-based Ca2+ assay 

The selectivity of the Ca2+-selective PADs has been qualitatively validated by using aqueous samples of 

various metal cations (Na+, K+, Li+, Mg2+, Zn2+, Cu2+, Ni2+, Hg2+ and Al3+). In this assay, different 

concentrations of each interfering ion were evaluated on the PADs and scanned images of devices exposed to 

the corresponding cation samples are summarized in Table 4-2. Table 4-2 lists the experimentally evaluated 

maximal concentrations of interfering ions that do not result in a visually recognizable development of a 
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color-changed area. Such tolerance against potentially interfering cations (e.g. Na+, K+, Mg2+) is comparable 

to the performance of plasticised PVC-based ISOs using the same ionophore.41 Additionally, a competitive 

assay was performed by quantifying the concentration of Ca2+ (1 mM) in the presence of a mixture of Na+ or 

Mg2+ in aqueous solution (refer to Figure 4-17). 30 L of aqueous Ca2+ sample (1 mM) containing various 

concentrations of Na+ or Mg2+ (0, 0.5, 1, 3 and 5 mM) was applied onto the fabricated Ca2+-selective PAD. 

After the incubation for 45 min under ambient condition, the generated distance-based signal was quantified 

with ImageJ software in the same manner as for Ca2+ assays. The color-changed distance was slightly 

extended by the presence of these cations at concentrations above 3 mM or 1 mM for Na+ or Mg2+, 

respectively. It is assumed that changes in the color-changed distance in mixed sample solutions containing 

Na+ or Mg2+ are not caused by a lack of selectivity of the nano-optodes on the paper substrate, as confirmed 

by the data in Table 4-2. As others have already reported,35 elevated ionic strengths of samples potentially 

cause a corresponding increase in viscosity with a decrease in flow velocity, resulting in the extension of 

length-based signals. However, the amounts of added cations (Na+ or Mg2+) in the current work are rather 

unlikely to result in an increase in the viscosity of the applied sample liquid.35 Therefore, the presence of 1 

mM or higher Mg2+ or 3 mM or higher Na+ is assumed to cause an extended color-changed distance mainly 

due to increased competition for anionic binding sites on the paper surface between the Ca2+ target analyte and 

the other cations, as further outlined below. 
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Table 4-2. Tolerance levels for potentially interfering cations. 

Interfering ions Tolerance [mM] Interfering ions Tolerance [mM] 

Na+ 100 Cu2+ 1000 

K+ 100 Ni2+ 100 

Li+ 100 Hg2+ 100 

Mg2+ 100 Al3+ 1000 

Zn2+ 1   

Cl- was used as counter anion for preparation of all samples 

 

 
Figure 4-17. Result of Ca2+ concentration readout in the presence of potentially interfering cations (Na+ and Mg2+). The 

amount of Ca2+ was fixed at 1 mmol L-1, whereas the amount of the interfering cations was varied (from 0 mM to 5 mM); 

each data point has been obtained by measurements with 4 individual single-use distance-based PADs; error bars 

indicate the standard deviations. 

 

4.3.4. Detection principle of distance-based readoutforCa2+ 

Typically, non-specific adsorption onto a cellulosic surface results from reversible noncovalent 

interactions, such as van der Waals, electrostatic or hydrophobic interactions or hydrogen bonding.42 The 

strength of this interaction varies corresponding to the experimental conditions (e.g. target analytes, pH, ionic 

strength, and others). It is postulated that the adsorption of Ca2+ to the paper substrate is the primary cause for 

the analyte concentration-dependent changes in color-changed distance, rather than the depletion of the target 

cation by extraction into the optode phase. To verify this hypothesis, various concentrations of pH-buffered 
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Ca2+ samples were applied onto a simple paper channel with/without sensing reagents (i.e. nano-optodes) as 

shown in Figure 4-18a. To visualize sample transport in a reagent-free paper channel (condition 1), 

Ca2+-selective nano-optodes were inkjet-printed onto the channel after exposure to Ca2+ samples. The 

quantitative data of Figure 4-18b clearly shows that distance-based readout was achieved also in the absence 

of nano-optodes during sample flow through the detection channel (condition 1). Hence, it can be concluded 

that distance-based quantification in this work relies on the non-specific adsorption of Ca2+ onto the paper 

substrate. On the other hands, it can be found that concentration-corresponding distances obtained from 

reagent-free paper channels (condition 1) were slightly shorter than the result of condition 2 probably 

because of the slow flow rate of applied sample. Additionally, the color change of nano-optodes of condition 

1 is weaker than condition 2, indicating the less amount of reacted nano-optodes. In condition 1, 

nano-optodes extracted the target analytes only during printing process (1 printing cycle for several seconds).  

 

 
Figure 4-18. (a) Experimental procedure to verify the adsorption of Ca2+ onto a paper substrate; (b) software-assisted 

response curve for corresponding Ca2+ detection; each data point has been obtained by measurements with 3 individual 

(b) 

(a) 
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single-use devices; 30 L of pH-buffered Ca2+ sample applied; error bars indicate the standard deviations. 

For simple estimation of the flow rate based on capillary force, Lucas-Washburn equation, which exhibits 

the timi-dependent distance moved by the liquid front (L), has been generally used43:𝐿 = √
𝑟𝛾 cos𝜃

2𝜂
𝑡, where, r 

represents the pore size of a paper substrate,  represents the surface tension of sample liquid,  represents the 

viscosity of sample liquid,  represents the contact angle between the penetrating liquid and the solid, and t 

represents time. Here, Lucas-Washburn equation’s terms can be categorized into the two factors related to the 

character of (i) a microfluidic material (e.g. r and ) and (ii) the applied sample liquid (e.g.  and ). In the 

condition 1, the presence of the hydrophobic sensing reagents (i.e. nano-optodes) on a paper channel 

prevented rapid sample flow by increasing the contact angle (), resulting in the shorter color-changed length. 

Then, we address the effect of the whole device lamination on the response curve (Figure 4-19). Although 

unlaminated devices (red triangles) did not have the sufficient capacity to maintain the applied sample droplet 

on the inlet area, the response curve of laminated devices (black circles) was vertically shifted. This is because 

pressing process during the device lamination decreased pore size of a paper substrate (r), resulting in slow 

flow rate to shorten the color-changed length. In contrast to the characters of a microfluidic material, the 

characters of the applied sample liquid did not provide significant difference on response curve, such as the 

viscosity of sample liquid corresponding to the target concentration35 and the surface tension affected by the 

presence of surfactants with printed nano-optodes (Figure 4-20). 
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Figure 4-19. Estimation of whole device lamination effect on the Ca2+ response of distance-based readout; (a) schematic 

experimental procedure; (b) software-assisted response curve to comparison between laminated devices and unlaminated 

devices; each data point has been obtained by measurements with 3 individual single-use devices; 30 L of pH-buffered 

Ca2+ solution applied; error bars indicate the standard deviations; incubation time: 45 min. 

  

(a) 

(b) 
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Figure 4-20. Estimation of the effect of printed surfactants on the device response; (a) experimental procedure; F-127 

surfactants (0.56 g/L) were inkjet printed onto a reagent-free paper device at 20 printing cycles; (b) software-assisted 

response curve for distance-based Ca2+ detection by paper devices with/without surfactants of nano-optodes; each data 

point has been obtained by measurements with 3 individual single-use devices; 30 L of pH-buffered Ca2+ solution 

applied; error bars indicate the standard deviations; incubation time: 45 min. 

 

As mentioned before, distance-based detection in this work relied on the analyte adsorption onto the 

surface of a paper substrate. It is known that the degree of cation transport is modulated by the presence of  

ionizable sites on cellulosic paper surfaces (mostly carboxyl groups).29-30, 44 In this work, the amount of 

binding sites derived from the ionizable groups on the paper surface (311 nmol) are significantly abundant 

compared with binding sites of printed nano-optodes (18 nmol). A significant amount of carboxyl groups 

(mmol/kg order29, 45) is produced by oxidation of cellulosic hydroxyl groups during the industrial paper 

(a) 

(b) 
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making process.46 Therefore, the surface of filter paper is negatively charged as demonstrated in previously 

reported articles.33, 47 The electrostatic interaction between a cationic analyte (e.g. Ca2+ in this work) and the 

anionic paper surface results in the adsorption of target cations onto the filter paper surface.44, 48-49 In this 

adsorption process, the pre-deposited Mg2+ competes with the Ca2+ analyte for the available binding sites on 

the paper surface. In addition, the adsorption of metal cations, which is described by a Langmuir adsorption 

isotherm model, is affected by the ionic strength of the sample liquid.50 Since the pre-deposited Mg2+ also 

contributes to an increase in ionic strength of the flowing liquid, this leads to decreased adsorption of metal 

cations onto the paper surface in the same manner with paper-based chromatographic separation45. The 

pre-deposited Mg2+ provides a relatively high but constant ion background, in order to avoid undesired 

modulation in non-specific Ca2+ adsorption due to sample-induced, non Ca2+-related competition for binding 

sites or changes in ionic strength. The tolerance against interfering cations relies on the total amount of 

ionised electrolytes (i.e. pH-buffering reagents, MgCl2 on the sample inlet). For drinking or natural water 

assays, the WHO guideline addresses the threshold values for multiple ions, including those potentially 

interfering with the current Ca2+ assay. The values of taste or health-based thresholds are all well below the 

amounts that can be tolerated by the developed µPAD1 and are therefore expected not to interfere with the 

distance-based Ca2+ assay. 

 

4.3.5. Ca2+ assays in mineral and tap water samples 

The practical applicability of the developed distance-based PADs was investigated by determining Ca2+ 

levels in mineral water or tap water samples without any sample pretreatment. Table 4-3 summarises the 

concentrations of Ca2+ measured with PADs and the classical complexometric titration method, with an 

intermethod result agreement ranging from +15% to -5%. The Pearson’s correlation analysis (Figure 4-21a) 

and the Bland-Altmann method comparison plot (Figure 4-21b) indicate a good agreement between the two 

independent methos and confirm the suitability of the µPAD for reliable determination of Ca2+ levels in real 

water samples. In the case of Ca2+ analysis using mineral water sample #4, the observed standard deviation 
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(Table 4-3) was slightly higher than for other samples, due to lower device sensitivity in the higher 

concentration range. For the same reason, the corresponding sample is found outside the 95% limit of 

agreement in the Bland-Altmann plot of Figure 4-21b. Notably, the distance-based PADs allow to detect low 

Ca2+ concentration levels (mM order), which are out of reach for recently published colorimetric PADs that 

do not use optical signal readout instruments22. 

 

Table 4-3. Determination of Ca2+ concentrations in mineral or tap waters with distance-based PADs and classical 

complexometric titration. 

Sample Distance-based PADs (mM)a Complexometric titration (mM)b Errorc (%) 

Mineral 

water 

   

#1 0.43±0.03 0.43±0.01 0 

#2 0.25±0.03 0.23±0.01 +6 

#3 0.21±0.02 0.21±0.01 +2 

#4 1.96±0.13 2.05±0.01 -5 

Tap water    

#1 0.46±0.03 0.41±0.02 +10 

#2 0.48±0.03 0.45±0.01 +6 

#3 0.51±0.03 0.44±0.01 +15 

#4 0.39±0.01 0.35±0.01 +12 
a Each data has been obtained by measurements with 4 individual single-use devices, b each data has been 

obtained by 3 individual titrations, c error estimated by comparing with the experimental results obtained by 

complexometric titration as reference values. 
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Figure 4-21. (a) Comparison between Ca2+ measurements by distance-based PADs and complexometric titration; the 

plots and error bars represent the average and standard deviations of 4 (PADs) and 3 (titration) repetitions; (b) 

Bland-Altmann analysis for eight Ca2+ samples quantified by PADs and complexometric titration; the underlying data is 

identical to Table 4-3. 

 

To further investigate the capability of the distance-based PADs, quantification of Ca2+ levels in spiked 

tap water samples was carried out by multiple independent observers. The as-collected tap water (tap water #4 

shown in Table 4-3) as well as 3 spiked samples were applied onto PADs and the resulting length of the 

color-changed detection channel was measured by a ruler with sample exposed µPADs presented to observers 

in a random order. Before testing, the volunteers were instructed on the readout method using one example of 

a color-changed PAD. Figure 4-22 shows the visually read out results for various concentrations of Ca2+ in 

tap water or spiked tap water samples. Due to the subjective interpretation of the distance-based signals, some 

differences between individual observers are unavoidable. Overall, the visually detected distance-based 

signals were within +23% to -11% of the ImageJ software-assisted readout results. The color blurring in the 

detection of high-concentration Ca2+ occurred, potentially preventing obvious interpretation by users (for 

example, see Figure 4-12a). One of the approaches to overcome this issue is controlling the amount of 

sensing reagents (i.e. nano-optodes). Printing-based dispense enables to change the ejected ink volumes 

flexibly, corresponding to the color intensity on a software (e.g. magenta value). In previously reported 

article17, graduation printing has been applied to improve the linearity of the response curve. In this work, 

increasing the amount of nano-optodes in the end of a detection channel potentially improve the visibility for 

(a) (b) 
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the signal interpretation. Another strategy is introduction of color manipulation. The visual colorimetric 

change based on ISOs relies on chromoionophores, therefore, introduction of chromoionophores with 

effective color variations (e.g. yellow to blue) potentially improves the visual interpretation in distance-based 

detection while we have to pay attention to pKa of chromoionophores. For this purpose, digital color analysis 

(DCA) can help to simulate the optimum color variations for development of obvious visual readout.51 In this 

publication, a screening indicator has been applied to produce the colorimetric change passing through a 

colorless gray point that serves to recognize visually at a certain point. As another technique, color screening 

filter is useful to manipulate the visual color by overlapping on the paper device.52-53 Although this technique 

is affected by ambient light conditions (e.g. light source, wet/dry condition of the paper devices), it is 

relatively simple technique requiring no modification of the device design. 

 

 

Figure 4-22. Naked-eye observer readout of length of color-changed detection channels from distance-based PADs 

after Ca2+ assays of a tap water sample; different batches of PADs were used for data shown in panels (a) and (b); the 

data represent the mean and standard deviations of 3 independent readouts by 24 observers; the corresponding 

color-change lengths obtained with the aid of scanned images and digital color analysis are indicated by the dotted 

horizontal lines with a color corresponding to the legend. 

  

(a) (b) 
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4.4. Conclusion 

In this study, fully-printed distance-based microfluidic paper-based analytical devices (PADs) for simple 

and reliable determination of Ca2+ levels by means of ionophore-doped ion-selective optode nanospheres 

(nano-optodes) have been demonstrated for the first time. Water-dispersible nano-optodes, which no longer 

require a volatile organic solvent, allowed for simple desktop thermal inkjet printing-based fabrication of 

PADs. Highly batch-to-batch reproducible and reliable devices for naked-eye Ca2+-selective assays have 

been obtained. The developed distance-based PADs have been successfully applied to visual instrument-free 

quantification of Ca2+ in drinking or tap water samples, with no significant differences compared to classical 

complexometric titration. It has been experimentally shown that the tolerance of the paper-based devices 

against other potentially interfering cations was sufficient for Ca2+ determination in real world water samples. 

Notably, the PADs provided improved lowest naked-eye detectable concentrations of Ca2+ (0.05 mM), 

compared to known colorimetric approaches. Although a relatively long assay time (45 min) is required to 

acquire the quantitative optical signal, we believe that our current work contributes to the further development 

of inexpensive, equipment-free, easy-to-handle, accurate and highly batch-to-batch reproducible analytical 

devices for on-site quantification of Ca2+ and other cations in real samples. 
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Chapter 5 

General conclusion 
 

5.1. Summary of the results 

Until now, the implementation of ionophore-based ion-selective optodes (ISOs) into paper-based sensing 

platforms has gained in the academic field to expand the feasibility of colorimetric paper devices targeting ion 

species. Because typical ISOs must refer to protons as reference ions to quantify cations of interest, it is 

known that pH-dependent sensing system is the most challenging for the development of ISO-based sensors. 

Moreover, the evaluation of the ISO response has been often performed by the use of spectral information (e.g. 

UV-vis absorbance measurement) or digital color analysis (e.g. camera, colorimetric scanner). For these 

reasons, both (i) elimination of pH dependence and (ii) equipment-free readout is significantly essential to 

develop ISO-integrated sensors for point-of-care testing (POCT) or on-site analysis. In the current thesis, 

various sensing platforms, which are composed of a classical film-based ISO (Chapter 2), a plasticizer-free 

ISO (Chapter 3), and a micelle-based ISO nanosphere (Chapter 4), have been applied to (microfluidic) 

paper-based analytical devices (()PADs) by means of inkjet-printing technology.  

Elimination of pH dependence during ISO-based assay has been accomplished by the introduction of 

pre-deposited pH-buffering reagents. For development of ISO-integrated PADs, open microfluidic channel 

potentially provides poor selectivity because of an increase in the analyte concentration by the evaporation of 

applied sample liquid. For this reason, whole device lamination allowing for prevention of evaporation loss of 

sample liquid served to preserve the selectivity over other potentially interfering cations. Although the 

function of classical equilibrium-based ISOs has been embedded into PADs, paper substrate caused a shift of 

the response function to higher analyte activities in comparison to classical film-based optodes deposited on 

solid plastic substrates (non-active substrate). It has been demonstrated that the cause for this shift primary lies 

in the cation-exchange adsorption properties of the cellulosic paper matrix. 
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Another approach to overcome pH dependence is the introduction of a fluorescent solvatochromic dye 

(SD) instead of a conventional H+-responsive chromoionophore. In the current thesis, pH-independent sensing 

system has been first applied to paper-based assay with ISOs, regarded as plasticizer-free ISOs. The 

developed paper-based ISOs has eliminated a traditional pH-controlling step prior to the ISO-based assay, and 

they provided the excellent selectivity derived from used ion-specific ionophores. Although the feasibility of 

SD-based ISOs is still limited to simple matrix samples (e.g. drinking water in the current thesis), the use of 

SDs served to expand analytical application of paper-based ISOs. 

To meet with equipment-free readout, distance-based detection model has been applied to ISO-integrated 

PADs, and the applicability of the developed paper devices has been successfully demonstrated. 

Distance-based readout promises calibration-free semi-quantification by measuring the resultant length of the 

color-changed region of ISOs. It should be noted that highly reproducible device fabrication is essential to 

achieve distance-based quantification. For this purpose, all device fabrications of ISO-integrated PADs have 

been performed by the use of printing technology (wax and inkjet-printing) for the first time. The printing ink 

of water-monodisperse micelle-based ISO nanospheres (nano-optodes) potentially enabled dispensing with a 

simple desktop thermal inkjet printer, and the use of volatile organic compounds (VOCs) which are unsuitable 

for industrial manufacturing can be avoided. Moreover, the introduction of pre-deposited electrolyte salts 

(MgCl2) for an increase in ionic strength of sample liquid has provided the improved sensitivity because 

working principle of distance-based readout relied on the adsorption of analyte cations onto the cellulosic 

paper substrates. Although the developed paper devices require relatively long assay time, they have 

quantified the concentration of Ca2+ in drinking and tap water samples, which are comparable to conventional 

analytical technique (complexometric titration). 

Finally, the current thesis has stated the potential of ionophore-based ISOs in fabrication of PADs 

targeting ion sensing and overcoming historical drawbacks of ISO-based sensor by the use of PADs. The 

main focus is on the fundamental study for the development of ISO-integrated ()PADs by addressing the 

chemical interaction between analyte cations and cellulosic paper substrates. The early stage of practical 
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applications of these techniques have experimentally demonstrated in cation sensing paper devices. 

 

5.2. Future outlook 

Scheme 5-1 demonstrates the summarized pathways toward the paper-based analytical devices targeting 

industrial products. Contrast to successful paper devices (e.g. dipsticks, immunochromatography test kit), the 

majority of PADs are chemical still under development for commercialization in the market. In the current 

thesis, fundamental study on the integration of ionophore-based ISOs into paper-based sensing platform and 

an early stage of simple practical application with the developed ISO-integrated paper devices have been 

demonstrated. Although the feasibility of PADs to detect ion species has been expanded by the establishment 

of ISOs on paper substrates, further studies must be required before industrial manufacturing. For example, 

ISO-based sensors typically require matrix simplification for the assay using complicated samples such as 

biological fluids (e.g. urine, blood). Therefore, it should be essential that not only the response function of 

paper-based ISOs but also pretreatment step prior to the ISO-based assay. In addition, reliability of 

paper-based ISOs was never discussed in the academic field until now. To overcome these issues, not focusing 

on applicability to practical use but careful fundamental study (e.g. working function on a sensor substrate) 

must be necessary. Once again, paper-based ISOs still require further studies to promise commercialization, 

however, paper-based ISO will gain by accompanying other analytical technique to improve device handling 

and reliability, such as smartphone or Raspberry Pi for automation of colorimetric readout. 
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Scheme 5-1. Essential steps for development of paper-based analytical devices targeting industrial application 
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