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Preface

In datacenters, e-commerce services and cloud computing services are deployed for customers, ac-

commodating hundreds and thousands of computers. CPU power consumption and cooling systems

take more than half of a datacenter’s power consumption. Thus, building highly e�cient datacenters

is a significant challenge. In recent years, the growth of network interface speed is increasing, while

the growth of CPU performance is leveling o↵. This gap would be increasing continuously. That

is, network-based applications would be CPU bound for more performance. To solve this, field pro-

grammable gate arrays (FPGA) based solutions and in-kernel/kernel bypassing solutions have been

explored over the last five years. Traditionally, cache hierarchy has been installed and has been stud-

ied when we faced the gap between CPU and memory. Thus, this thesis discusses cache hierarchy

for network-based application, where a cache is built in both network interface card (NIC) and net-

work protocol stack as network data path. Key players start to deploy FPGAs in their datacenters to

accelerate their services and to achieve high energy e�ciency. In these five years, key-value store

acceleration using an FPGA has been actively studied.

This dissertation explores cache hierarchy on network-based applications. There are a variety

of design options such as write policy, eviction policy, inclusive cache vs. non-inclusive cache and

so on. The designs are implemented on the NetFPGA platform and its performance is measured

and analyzed. Furthermore, this thesis shows the memcached, one of key-value stores, architecture

for an FPGA equipped with NIC. The FPGA card has two types of store regions: an on-chip RAM

and on-board o↵-chip DRAM modules. The proposed architecture consists of the first level cache

with on-chip RAM and the second level cache with on-board DRAM modules. This thesis shows

practical performance results using this NIC, compared with an existing hardware-based memcached

and software. Latency, throughput and power consumption are drastically improved, compared to the

existing systems.

This hardware solution is applied to distributed denial of service attack (DDoS) as a practi-

cal case, since recently DDoS amplification attack tra�c has critically increased. An ICMP-based

DDoS detection scheme is proposed to fit with key-value store. This thesis conducts an experimental

evaluation and shows the feasibility.

Thoughout this dissertation, in-NIC cache, in-kernel cache and cache hierarchy are studied for a

network-based application. It is demonstrated that multi-layer key-value cache architectures will be

helpful to bridge speed gap between the growth of CPU performance and of network performance.
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Chapter 1

Introduction

1.1 Background

A datacenter serves cloud computing and e-commerce services with accommodating hundreds of

thousands of computers, which consume a lot of power due to CPU and cooling systems, for the pur-

pose of satisfying customers requirements. In the article [2], CPU and cooling systems took up half

of all power consumption in a datacenter. In 2015, Microsoft started to operate a field programmable

gate array (FPGA) in their datacenters in order to accelerate their search engine system Bing, the

Catapult project [3]. They achieved high energy e�ciency by using an FPGA. In addition, Amazon

AWS provides F1 instances serving FPGA logic cells to their customers in a cloud computing envi-

ronment [4]. An FPGA, therefore, has been considered to reduce power consumption and to improve

the performance of their applications.

In a datacenter, a variety of network services are served. A representative one of them is key-

value store. Key-value store is commonly used as a cache and storage of online services such as

e-commerce and social networking services, mostly running in cloud computing environments [5].

For the purpose of performance improvement [6], key-value store deployments in datacenters are

often scaled-out, leading in turn to increased power consumption. Thus, this dissertation focuses on

key-value store as a network service running in a datacenter.

S1 - Yahoo! Sherpa database platform system measurements, version 1.0 (33 K)The growth of

network interface speed is increasing, e.g., to 100GbE and 400GbE. On the other hand, the growth

of CPU performance is holding steady due to recent slowdown of Moore’s law. Applications along

with network processing would be CPU bound due to this limitation because it cannot be expected

that CPU performance would be improved to satisfy further network speed. Traditionally, to solve

the speed gap problem, cache hierarchy has been used in the case of the speed gap between CPU and

memory. We had faced the “memory wall” problem [7] where CPU and memory have both unbalance

performance and speed. Therefore, CPU cache hierarchy [8] has been studied and installed into

computer architecture. At the beginning of CPU, CPU and memory did not have a significant speed

gap. Thus, CPU had access to DRAM directly until the speed gap became conspicuous. Due to

1
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miniaturization of transistors and evolution of microprocessor, we, however, faced a memory wall

where speeds of CPU and memory do not match, resulting in installing cache hiearchy on current

microprocessor architecture as shown in Figure 1.1.

In client-server model, both a client machine and a server machine need to process network-

ing. As mentioned above, the gap between network interface speed and CPU performance would

be increasing. Considering FPGA trends, network-based cache hierarchy using FPGA-based NIC

equipped with DRAM modules can be considered as shown in Figure 1.2. Similar to CPU cache or-

ganization, various design options could be considerable, e.g., write policy, inclusive or non-inclusive

and eviction policy, etc.

In this dissertation, network-based cache hierarchy is proposed and design options are explored

for building cache organization of FPGA-based NIC. This thesis also shows a concrete key-value

store architecture on FPGA integrated with the NetFPGA platform [9], which is an open source

platform for prototyping network devices. Finally, this thesis introduces a practical application,

DDoS mitigation, one of the important Internet security issue.

1.2 Objective

In this dissertation, the research objective is to explore the design space on multi-layer key-value store

combining in-NIC cache design and in-kernel and to improve performance and energy e�ciency of

key-value store. To bridge the speed gap between CPU and network interfaces, an FPGA- based key-

value store acceleration and software optimization which use kernel-bypassing approach to remove

overhead of network processing on CPU and is used for building a cache on kernel have been studied.

An FPGA-based key-value store acceleration is built on an add-in card with PCI express as an

interface with a host machine or an FPGA board. Due to the physical size of an add-in card and the

limitation of FPGA’s I/O pins for di↵erential signals, DRAM modules which could be assembled
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is limited. That is, cache capacity on FPGA board is small, compared with general key-value store

running on a host. Regarding the energy e�ciency, an FPGA-based key-value store acceleration is

higher than CPU-based key-value store.

On the other hand, in-kernel key-value store and kernel-bypassing key-value store remove the

bottleneck of CPU bound, especially, at the network protocol stack. These key-value stores utilize

large main memory on a motherboard as a cache. Since these approaches run on CPU, they would

lead to high power consumption. That is, it is hard to reduce power consumption rather than FPGA-

based approach.

Hence, an FPGA-based key-value store and in-kernel key-value store are a trade-o↵ concerning

cache capacity and power e�ciency. Similar to cache hierarchy on CPU, cache hierarchy for a

network-based application can be considerable — an FPGA-based key-value store as the first level

cache (L1 cache) and in-kernel key-value store as second level cache (L2 cache). To design cache

hierarchy based on network datapath, various cache design options could be possible. Through this

dissertation, design options for network-based application and FPGA-NIC design along with a key-

value store processing core are explored.

1.3 Contributions

To address this issue, we introduce multi-layer key-value cache architecture, which is a networked

system for high energy e�ciency in a datacenter. First of all, we introduce a concept of multi-

layer key-value cache architecture using FPGA-based in-NIC cache and in-kernel cache. As level

one cache (L1 cache), we use in-NIC cache leveraging on-board DRAM on an FPGA for a cached

media. As level two cache (L2 cache), we use in-kernel cache using host memory. In addition, we

explore the design options, similar to CPU cache hierarchy: write through vs. write back, cache

associativity and eviction policy, etc.

The second, we provide a concrete FPGA design using the NetFPGA platform for memcached,

one of key-value store deployments. Similar to the CPU, we built a first level cache on on-chip RAM

and a second level cache on on-board DRAM. When a query is hit on a cache of on-chip RAM, the

response can be handled without DRAM, so latency and performance can be improved. We provide

more information about design and performance analysis.

Finally, we adopt an FPGA-based key-value store acceleration to DDoS mitigation platform on

the Internet. We also propose a detection scheme and maintain fine-grain rules on key-value store.

We assume that we place it on the wire, thus mitigation hardware requires line-rate processing.

1.4 Thesis Organization

We introduce related work on in-NIC cache using an FPGA and in-kernel cache, including cases

which used kernel-bypassing acceleration, in Chapter 2. We show the relationship of each Chapter
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Userland application
(main memory, HDD, SSD)

NIC

network stack
(main memory)

FPGA on-board DRAM
FPGA on-chip RAM

Chapter 3

Hardware-based
DDoS Mitigator

Chapter 5

Chapter 4

Figure 1.3: Relationship of chapters.

3-5, as shown in Figure 1.3. Chapter 3 proposes multi-layer key-value cache architecture, which is

a core proposal in this thesis. We also provide the detail of design options building the architec-

ture, which is our first contribution in this dissertation. Further, Chapter 4 focuses on in-NIC cache

design with hierarchy design combining on-chip RAM and on-board DRAM, which is the second

contribution. In this chapter, we take up in-NIC cache of the proposed multi-layer key-value cache ar-

chitecture described in Chapter 3, and introduce cache hierarchy inside in-NIC cache and the design.

Chapter 5 introduces the application case for DDoS mitigation, which is the third conribution. The

hardware-based key-value store described in Chapter 4 is applied to DDoS mitigation. We conclude

this dissertation in Chapter 6.
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Chapter 2

Related Work

The bottleneck on key-value store is considered to be the network protocol stack of the operating

system [10]. To solve this problem, two representative approaches have been proposed: hardware-

based key-value store acceleration and software-based key-value store acceleration. This chapter will

survey the related work: the detail and pros-and-cons on hardware-based key-value store acceleration

and software-based key-value store acceleration. Section 2.1 introduces key-value store and the

challenges for performance. Section 2.2 presents how an FPGA is used in two cases: industry and

academy to assist network protocol stack on kernel. To scale the performance of key-value store, the

remaing sections surveys the works realted to key-value store acceleration in aspects of hardware-

based and software-based acceleration. Section 2.3 introduces hardware-based key-value store and

Section 2.4 introduces software-based key-value store. Section 2.5 shows the hierarchy key-value

store design which uses di↵erent storage devices.

2.1 Key-value Store

Key-value store is one of Not only SQL (NOSQL) databases [11]. NOSQL database compensate

the disadvantages of RDBMS (e.g., transaction is supported in RDBMS). NOSQL databases have

simple data structure, which some databases have schemaless. Some NOSQL databases sacrifice

consistency in order to distribute queries to machines.

Key-value store traditionally is used for web cache and web application’s backend storage in an

aspect of simple API and scalability using consistent hashing, compared with RDBMS (Relational

DataBase Management System) [12]. Key-value store writes key-and-value pairs on host’s main

memory or storage such as SSD and HDD. Simple APIs consist of primitive GET(key), SET(key,

value) and DELETE(key), issuing a read request, a write request, and a delete (writing zero) request

respectively. Key-value store calculates a hash value of its key to retrieve the descriptor on hash table

entries when key-value store receives a query. Generally, a hash function (e.g., lookup3 [13, 14],

md5, cityhash [15]) is used for hash calculation. Hash table contains arrays of a data structure which

holds the descriptor to the key-value data. When key-value store identifies the requested key from
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the table, the paired value with the key is returned to the client.

The survey from [16] described that memcached which is on e of key-value store implementa-

tion is CPU-demanding application. Further, it reported that CPU utilization from 55% to 85% takes

Linux network stack. Rosenblum, et al also indicates that GET request of memcached latency anal-

ysis shows memcached’s user application processing time is around 7% [10, 17]. From this surveys,

key-value store processing is CPU-demanding application, which especially taking Linux network

protocol stack. Silver bullets for these problem is taking an dedicated hardware (e.g., FPGA and

ASIC) and software optimzing (e.g., Intel DPDK and netmap).

2.2 An FPGA

A common and promising approach to significantly improve the energy e�ciency of key-value store

is to replace a part of the software with an application specific custom hardware. To build such custom

hardware, recently, FPGAs have been widely deployed for datacenter applications [10,13,14,18–25],

due to the reconfigurability, low power consumption, and a wide set of IP cores and I/O interfaces

supported.

2.2.1 Use Cases in Industry

Microsoft started to integrate FPGA in their datacenter to accelerate their search engine and cloud

computing services as Catapult project in 2015 [3]. Microsoft Bing serves web search engine to

customers and embedded an FPGA into a server to accelerate ranking stack [18]. This was the first

attempt to deploy FPGAs in a datacenter. Microsoft then accelerated their cloud computing platform,

Azure [26]. In Azure, the SmartNIC equipped with an FPGA is used as a network interface card.

SmartNIC has some acceleration functions related to networking. Amazon AWS provides FPGAs

on virtual machines(EC2 instance) as F1 instance [4]. Customers can easily develop a service with

an FPGA via PCI express to accelerate an application by using “FPGA Developer AMI (Amazon

Machine Image)” and “Hardware Development Kit”. One virtual machine instance is able to utilize

up to eight FPGAs.

2.2.2 Use Cases in Accademia

NetFPGA project [9] has developed a networking platform under an open source license. NetFPGA

project released two types of FPGA boards equipped with 10GbE connection. The one is NetFPGA-

10G. An FPGA device used is Xilinx Virtex-5 XC5VTX240T. Four 10GbE network interfaces are

used for communication. 288MB RLDRAM-II memory and three x36 QDR II memory are available.

Another FPGA board is NetFPGA SUME [27] as next generation model of NetFPGA-10G. NetF-

PGA SUME card is equipped with four SFP+ ports, 8GB DDR3 DRAM modules, three x36 72Mbits

QDR II SRAM, PCI Express Gen3 x8, and Xilinx Virtex-7 690T FPGA. Since NetFPGA project
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Table 2.1: Summary of in-NIC processing approaches.

Ref. Type Platform Storage Parallelism

[10] Standalone FPGA+1GbE NIC DRAM Two cores

[19] Standalone Dedicated SoC Host DRAM Single accelerator is depicted

[14, 20] Standalone FPGA+10GbE NIC DRAM Deep pipeline

[25] Standalone FPGA+10GbE NIC DRAM+SSD Deep pipeline

[29] NIC+host FPGA+40GbE Host Memory Fully pipelined

Proposed Cache FPGA+10GbE NIC DRAM Many cores (crossbar connected)

provides reference switch, reference NIC and reference router design for targetting each board, re-

searchers can develop custom hardware based on these reference designs under the license.

For further network interface card (e.g., 40GbE, 100GbE), since memory and CPU processing

overhead is ine�cent, FlexNIC [28] was developed to acheive e�cient packet transferring on DMA.

Moving applications from userland to NIC achieves high throughput and low latency. FlexNIC was

used for a variety of applications for functionalities: key-value store. apache storm and intrusion

detection.

2.3 Hardware-based Key-value Store Acceleration

Table 2.1 summarizes the above-mentioned existing designs and our L1 cache design of the multi-

layer key-value cache. The existing designs can be used as a standalone key-value store and the

combination of a host and FPGA-NIC, while dedicated hardware as an L1 cache of the proposed

multi-layer key-value cache is used in this thesis. Since complete key-value servers are assumed to

be running on an application layer, dedicated hardware is operated just as an L1 cache and sophis-

ticated functionalities (e.g., logging, error handling, and data replication) can be left to the software

key-value servers. In the existing designs, GET requests are processed by dedicated hardwares,

while SET requests are processed by software or hardware, depending on how complicated memory

management is implemented.

A key application in datacenters is a distributed data store, such as memcached [30], used as a

large-scale data store and memory caching system. Because FPGA devices can be tightly coupled

with I/O subsystems, such as high-speed network interfaces [9, 27], their application to memcached

has been extensively studied recently [10, 13, 14, 19–25, 31]. An experimental result in [14] shows

that an FPGA-based standalone (i.e., FPGA board only) memcached accelerator improves the perfor-

mance per Watt by 36.4x compared to an 8-core Intel Xeon processor. Even with a host, it improves

the performance per Watt by 15.2x. However, a serious limitation of such FPGA-based memcached

accelerators is that their cache capacity is limited by DRAM capacity mounted on the FPGA boards.

As a DRAM module typically has more than 200 I/O pins (e.g., 204 pins for DDR3 SO-DIMM
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package), the number of DRAM modules handled by a single FPGA cannot be increased easily, as

mentioned in [25]. As DRAM capacity for a host main memory is growing, the capacity gap between

host memory and FPGA-based NIC should be addressed.

This approach first appeared in [10], which proposed an FPGA-based standalone memcached

appliance that utilizes DDR2 memory modules and a 1GbE network interface on an FPGA board.

The memcached appliance consists of dedicated hardware modules. A network processing block

and a memcached application block with slab-based memory management modules for supporting

various data lengths. Both GET and SET requests are processed by the dedicated hardware modules.

It can be parallelized by duplicating the memcached appliance cores.

Another memcached accelerator is designed as a dedicated SoC in [19]. It leverages the hard-

ware prototype proposed in [10] for GET requests, while it relies on general-purpose embedded

processors for the remaining functionalities, such as memory allocation, key-value pair eviction and

replacement, logging, and error handling.

A notable FPGA-based standalone memcached accelerator was proposed in [14,20]. It leverages

DDR3 memory modules and a 10GbE network interface on an FPGA board. To fully exploit the

parallelism of memcached requests, the request parsing, hash table access, value store access, and

response formatting are pipelined deeply. GET requests are processed by the pipelined hardware,

while a host CPU assists with memory management functionalities required for SET requests. To

handle key collisions by hardware, up to eight keys mapped to the same hash table index are looked

up in parallel (i.e., 8-way). Hash items with an expired timestamp in the same set are freed when they

are accessed for SET requests. Recently, this design is extended to support SATA3 SSDs in addition

to DRAM as storage [25] so that key-value pairs are stored in SSD or DRAM regions, depending on

the value length.

KV-Direct [29] demonstrated a SmartNIC achieving a high query rate (e.g., ⇠180Mqps), but was

limited to key-value store operations only, was a proprietary solution using 8B query size, batching

multiple queries in a single packet, and processing vector queries.

2.4 Software-based key-value store acceleration

In addition to such FPGA-based solutions, software-based optimizations have been studied to im-

prove the performance of data stores [15, 16, 32–36]. A latency breakdown of memcached reported

in [10] shows that a packet processing time for NIC and kernel network protocol stack is longer than

that spent in memcached software. Actually these software-based optimizations mainly focus on

how to reduce the processing time for kernel network protocol stack, and they can be classified into

two approaches: kernel bypassing and in-kernel processing.
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2.4.1 Kernel-bypassing Approach

One solution to the bottleneck in the network stack is a kernel-bypassing approach. Luigi Rizzo

developed netmap [37], which is packet I/O framework using kernel bypassing to reduce overhead

on network protocol stack of an operating system. In the netmap framework, Ethernet device driver

passes a packet to netmap ring bu↵er to access userland application without any specialized hard-

ware. However, network processing is needed on userland application to develop netmap-based

application. Intel DPDK (Data Plane Development Kit) framework is a library feature which packets

can access userland application directly and are processed on a specific core, resulting in achieving

high performance.

To improve the throughput of key-value store, a holistic approach that includes the parallel data

access, network access, and data structure design was proposed in [15]. As the parallel data access,

data are partitioned and a single CPU core exclusively accesses a partition. As the network access,

Intel DPDK is used so that the server software can directly access NIC by bypassing the network

protocol stack to minimize the packet I/O overhead. As the data structure design, di↵erent data

structures are proposed for the cache and store modes. The network access optimization (e.g., kernel

bypassing) is mainly taken into account in this thesis. The other optimizations are orthogonal to the

multilevel NOSQL cache and can be applied for further e�ciency.

2.4.2 In-kernel Approach

Another solution to the bottleneck is to build an application cache within kernel stack directly in

order to reduce overhead on the network protocol stack.

As proposed in [16], moving the key-value store into the OS kernel is an alternative approach

to remove most of the overhead associated with the network stack and system calls. In a kernel

layer, received packets are hooked by Netfilter framework [38], and only key-value store queries are

retrieved. The retrieved queries are processed inside the kernel with an in-kernel hash table. The

response packet is generated and sent back to the device driver. The received sk_bu↵ is reused for

the response to reduce memory copies in the kernel.

In the proposed multi-layer key-value cache architecture, since in this work complete key-value

servers are assumed to be running on an application layer and thus sophisticated functionalities, such

as data replication, are left to the key-value servers, the in-kernel cache approach is embedded as

an L2 cache in the proposed key-value cache hierarchy. The L2 cache design will be illustrated in

Section 3.5.

2.5 Hierarchical Key-value Store Design

In 2018, hierarchical key-value store design appeared in [39]. They built a cache organization on a

host CPU with NVM. Specifically, they use DRAM, NVM, and TCL Flash as the level one cache, the
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level two cache and main storage, respectively. Recent NVM serves persistent storage with middle

latency and middle capacity between DRAM and Flash. Di↵erent from this approach, this thesis

focuses on network datapath.

2.6 Summary

This chapter surveyed FPGA-based key-value store acceleration and software-based key-value store

acceleration and showed that there are trade-o↵s in terms of cache capacity and power e�ciency.

The following chapter introduces the proposed multi-layer key-value cache architecture combining

FPGA-based and software-based acceleration to complement their disadvantages and to bridge net-

work speed and CPU performance speed.
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Chapter 3

Multi-layer Key-value Cache Architecture

This chapter introduces multi-layer key-value cache architecture. Section 3.1 provides an overall

view of cache hierarchy concept. Section 3.2 introduces design options to building the proposed

multi-layer key-value cache architecture. Section 3.3 and Section 3.4 show details of L1 key-value

cache and L2 key-value cache, respectively. Section 3.5 shows a simple implementation for a proof

of concept. In addition, a simulator is built for each design option and evaluates them in Section 3.6.

Lastly, this chapter is summarized in Section 3.7

3.1 Key-value Cache Hierarchy

This section introduces a multi-layer key-value cache architecture combining in-NIC and in-kernel

cache, which is the main contribution in this dissertation. Figure 3.1 illustrates our multi-layer key-

value cache architecture that complementally combines the in-NIC and in-kernel caches in order

to fully exploit the highly energy-e�cient in-NIC processing, while addressing the capacity limita-

tion by the in-kernel cache that utilizes a huge host main memory. It is assumed that one or more

key-value databases, such as key-value store, column-oriented store, document-oriented store, and

graph database, are running as software servers on a machine, where FPGA-based network inter-

faces (FPGA NICs) are mounted for receiving and responding key-value queries. On-board DRAM

capacity of the FPGA NICs is used as the L1 key-value cache, while a host main memory allocated

by the kernel module is used as the L2 key-value cache.

When the FPGA NIC receives a packet, the received packet header is parsed, and if it is a key-

value query, it is processed inside the FPGA NIC; otherwise, it is transferred to an Ethernet device

driver as well as common TCP/IP packets. For key-value queries, a key-value pair is extracted from

the packet and the corresponding key is looked up from a hash table in the FPGA NIC. If the key

is found in the hash table, the value stored in the on-board DRAM is returned to the requestor (i.e.,

L1 key-value cache hit); otherwise, it is transferred to an Ethernet device driver as well as common

TCP/IP packets (i.e., L1 key-value cache miss).

In the Ethernet device driver of our L2 key-value cache, the received packet header is examined
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Figure 3.1: Relationship between L1 and L2 key-value caches.

again, and if it is a key-value query, it is processed inside the in-kernel cache module; otherwise, it is

transferred to a standard network protocol stack as well as common packets. For key-value queries, a

key-value pair is extracted from the packet and the corresponding key is looked up from a hash table

in the in-kernel cache. If the key is found in the hash table, the value stored in the in-kernel cache

is returned to the requestor (i.e., L2 key-value cache hit); otherwise it is transferred to a network

protocol stack as usual (i.e., L2 key-value cache miss). In the case of L2 key-value cache miss, the

key-value query is transferred to an application layer and processed by a corresponding key-value

software server.

Similar to CPU cache hierarchy, there are a variety of design options to build multi-layer caches.

Here, we re-visit design options in CPU cache and memory management system used in general

opearation systems.

1. Cache write policies between L1 and L2 caches
To update cache, there are two ways for cache: write-through and write-back. Generally, write-

through is writing data from CPU is updating to both cache and memory. An advantage is that

data consistency is kept since the contents on both cache and memory always correspond.
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Meanwhile, write-back can write only cache then, data is returned back to memory later. An

advantage is high availability of cache management, compared with write-through. Drawbacks

are keeping consistency, which is di�cult to identify the inconsistency data and to control the

data to keep consistency.

2. Cache associativities
To map memory, contents on cache has mainly three ways: direct map, set-accosiative, and

full-associative. Direct map is that cache line is determined by memory address. Advantages

are that developing cost is cheap and the replacement algorithm is simple. Set-associative
cache is that N-way data is stored per memory address. Set-associative needs to select which

data should be chosen. In addition, if data is needed to be replaced, the one of N-ways must

be selected. Against this replacement, an algorithm could be FIFO, LRU, and RANDOM.

Full-associative cache is not accessed by the pointer. All cache lines are retrieved. Hit ratio

can be improved. However, design cost is high and the design itself is complicated.

3. Inclusion policies between L1 and L2 caches
The content of cache and memory could be shared or not-shared: inclusive policy and non-

inclusive policy. In inclusive policy, the memory contains cache contents, whereas memory

excludes cache contents in non-inclusive policy. Therefore, when replacement happens on

cache, the data removed from cache and the data is transferred to memory. This function takes

development cost for the building. Meanwhile, inclusion policy is a simple way in an aspect

of building cache.

4. Cache eviction policies on L1 cache
Eviction policy happens when set-associative cache is used and the cache is needed to be re-

placed. Representative algorithms are LRU, Random, and FIFO. LRU (Least Recently Used)

is that the data which is not used the most frequently, is replaced of N-ways. Random al-

gorithm chooses one of N-ways to replace with random algorithm. FIFO (First-in, first out)

algorithm evicts the firstly accessed data of N-ways.

5. Memory management
Generally, key-value store uses slab allocator or log-structured merged-tree as a memory man-

agement mechanism. Slab allocation is utilized on kernel’s memory management in addition

to memcached. (e.g., Linux, FreeBSD, and HP-UX). Log-structure merged-tree is used for

database systems. This memory management takes inserting operation for write. Since ran-

dom access is not used, this write scheme is faster. Inserting operation takes O(1) on avarage,

but find-min takes O(N) on avarage. Therefore, LSM-tree is suitable for a write-intensive

application. This memory management is used general key-value store (e.g., LevelDB and

RocketDB).
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3.2 Design Options in Multi-layer Key-value Caches

In this section, design options in multi-layer key-value caches are overviewed, based on the previous

section.

3.2.1 Write-Back vs. Write-Through

Cache write policy is an important design choice for multi-layer cache design. In the proposed multi-

layer key-value cache, write-back policy can reduce the tra�c amount between L1 and L2 key-value

caches, because written data are not transferred from L1 to L2 key-value caches until modified (i.e.,

dirty) cache blocks in the L1 key-value cache are evicted. Although in write-back policy the cache

blocks in L1 key-value cache are not consistent with those in L2 key-value cache internally, such

inconsistency is never exposed to applications. In write-through policy, cache blocks in L2 key-value

cache are updated whenever those in L1 key-value cache are updated, and thus the tra�c amount

between L1 and L2 key-value caches increases. The problem of such write-through policy is that

the write performance of L1 key-value cache is restricted by the L2 key-value cache bandwidth.

Section 3.6.2 will evaluate the write-back and write-through policies.

3.2.2 Cache Associativities on Hash Table

As illustrated in Section 3.3, to access cached key-value data in value store, the key is hashed to

compute the index in the hash table where a start address of the cached key-value data in Value Store

is stored. There is a possibility that di↵erent keys generate an identical hash value, but only one of

them can be stored in hash table and the others will be evicted. Such a situation is called a hash

conflict.

To avoid hash conflicts and key-value cache misses, we can increase the associativity of hash

table. More specifically, in the n-way set associative hash table, up to n di↵erent keys whose hashed

values are identical can be stored in hash table. As the number of ways increases, L1 key-value

cache misses due to the hash table conflicts are typically decreased. For example, an 8-way hash

table is used in Xilinx’s FPGA memcached appliance to avoid the hash conflicts [14]. Note that in

the proposed design the key length assumed is variable and if the key is too long to be stored in a

single hash table entry, the key is stored using multiple hash table entries. In this design, a key with

up to 64B size can be stored in a single hash table entry. A key larger than 64B is stored in multiple

hash table entries. Section 3.6.3 will evaluate the set-associative design of hash table in terms of L1

key-value cache miss ratio.

3.2.3 Inclusion vs. Non-Inclusion

Inclusion policy (e.g., inclusive or non-inclusive) is an important design choice for multi-layer

caches. When the proposed L1 and L2 key-value caches are inclusive, cached data in L1 key-value
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cache are guaranteed to be in L2 key-value cache. When they are non-inclusive, cached data are

guaranteed to be in at most one of L1 and L2 key-value caches.

Non-inclusive policy has an advantage in terms of cache e�ciency especially when L1 key-value

cache size is comparable to that of L2 key-value cache, while inclusive policy is simple to implement,

as illustrated below.

• Assuming that a GET query is missed at L1 key-value cache and hit at L2 key-value cache, if

non-inclusive policy is enforced, the cached block in L2 key-value cache is transferred to L1

key-value cache and then the cached block in L2 is deleted. If inclusive policy is enforced in

the same situation, the cached block in L2 is not deleted.

• Assuming that an unmodified cached data in L1 key-value cache is evicted, if non-inclusive

policy is enforced, the cached data in L1 key-value cache is transferred to L2 key-value cache

and then the original cached block in L1 is deleted. If inclusive policy is enforced in the same

situation, we do not have to copy the cached block in L1 to L2.

• Assuming that a query is missed at both L1 and L2 key-value caches, if inclusive policy is

enforced, the requested data retrieved from key-value server are required to be cached in both

L1 and L2 key-value caches. This behavior can be easily implemented, because the requested

value retrieved from key-value store server is naturally transferred to the client machine via

Ethernet device driver (i.e., L2 key-value cache) and FPGA NIC (i.e., L1 key-value cache).

Non-inclusive policy is advantageous in terms of cache e�ciency, while inclusive policy is simple

to implement in L1 key-value cache. However, inclusive policy increases the tra�c between L1 and

L2 key-value caches, which may degrade the throughput. Section 3.6.4 will evaluate the inclusive

and non-inclusive policies in terms of total cache miss ratio when L1 and L2 key-value cache sizes

are varied.

3.2.4 Eviction Policies on Hash Table

Section 3.2.2 introduced set associativities on hash table design to reduce L1 key-value cache misses

due to hash conflicts. By building multiple ways for hash table, multiple key-value pairs whose

hashed keys are identical can be stored in hash table. Assuming that a new key-value pair is going to

be stored in Hash Table but all the ways are in use, one of existing ways in hash table will be replaced

with the new key-value pair. Eviction policy defines which way will be evicted in such situations.

Here we discuss the following three eviction policies.

• Random: One of the ways is randomly selected to be replaced with a new key-value pair. A

simple implementation without a random generator is that the hashed value of the new key-

value pair is used to select one of the ways to be evicted.
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• LRU: The least recently used way is selected to be evicted. The design complexity increases

when the number of ways is greater than two.

These eviction policies will be evaluated in terms of L1 key-value cache miss ratio in Section 3.6.5.

3.2.5 Slab Size Configurations in L1 key-value Cache

Section 3.1 introduced memory management scheme on key-value store: slab allocation and log-

structured merged-tree. For key-value store acceleration, slab allocation is selected for memory

management system since slab allocation is used as preallocation memory, hence, it is easy to utilize

it.

According to a memcached workload analysis [40], 90% of the requested data sizes are less than

1KB. The study shows that requested key-value sizes are mostly about 20B in USR workload, while

large values with up to 1MB are requested in ETC and APP workloads. As illustrated in Section 3.3,

in the proposed L1 key-value cache, a list of free memory blocks are preliminarily allocated for each

value size (e.g., 64B, 128B, 256B). The number of memory blocks preliminarily allocated for each

value size should be carefully selected. It can be further optimized if the workload is predictable so

that the majority of requested key-value data can be fit to the allocated memory blocks.

In this work, L1 key-value cache is implemented on an FPGA board. As L1 key-value cache

capacity is limited, allocating large memory blocks (e.g., 1MB blocks) may significantly reduce the

number of small-sized cache blocks and increases the L1 key-value cache miss ratio. Therefore, it

may be required to determine the upper limit of memory block sizes allocated. In this case, key-value

data larger than the upper limit are not cached in L1 key-value cache.

Section 3.6.6 will evaluate various configurations of sizes and the numbers of memory blocks

with memached traces in terms of L1 key-value cache miss ratio.

3.3 L1 Key-value Cache Architecture

Figures 3.2 and 3.3 show a datapath of the proposed L1 key-value cache implemented in an FPGA

NIC. Only packets with key-value queries (i.e., key-value packets) are extracted based on their ser-

vice destination port number and only key-value packets are transferred to dedicated PEs (e.g., PE1)

for hash table lookup. Other packets are transmitted to a host machine with a DMA controller via

PCI-Express. Thus, an arbiter is implemented in front of the DMA controller to arbitrate two input

sources: key-value tra�c which are not hit in hash table (i.e., L1 key-value cache miss packets) and

non-key-value tra�c.

L1 key-value cache stores key-value pairs in the on-board DRAM modules equipped on an FPGA

board. The key and value parts are typically processed as variable-length data. As surveyed in Section

2.3, existing in-NIC key-value accelerators [14, 20] employ a single deep pipeline in which value

parts are processed as variable-length binary data. However, a wide diversity of value lengths (e.g.,
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Figure 3.2: L1 key-value cache hit on heterogeneous multi-PE design of L1 key-value cache.
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Figure 3.3: L1 key-value cache miss on heterogeneous multi-PE design of L1 key-value cache.

4B to 1MB) is observed in a memcached workload analysis [40]. In addition, a wide variety of value

types, such as, string, list, hash, set, and sorted set [41], are useful for practical applications. Their

processing cycles di↵er significantly depending on their value types. For example, the computational

complexity of processing a string-type value is O(1), while that for a list structure it is O(n), where n

is the number of items in the list. Thus, an optimized PE core is built for each value type, rather than

a single deep pipeline where various key-value pairs are uniformly processed. While these optimized

PE cores are simple and are not pipelined, the proposed design employs multiple instances of such

simple cores to exploit a high query-level parallelism.

Below are value-types supported in our L1 key-value cache. They are the same as those supported

in data structure server Redis [41].

• STRING: A variable-length value is stored as a string into a dynamically allocated free mem-
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Figure 3.4: key-value store PE core architecture.

ory block, called chunk.

• HASH: A value consists of multiple pairs of field and its value, both of which are STRING

type. These strings and their hashed values are stored as a table into a free chunk.

• SET: A value consists of a collection of unsorted strings. The collection of strings are stored

in a free chunk. Each string is aligned in a fixed-size block in a chunk.

• LIST: A value consists of a list of strings which are stored in a free chunk as well as those of

SET type. The proposed L1 key-value cache supports the list operations that insert and append

a new element to the list.

• SORTED SET: It is similar to SET type, but each string has its own score and strings are sorted

based on their score.

As shown in Figures 3.2 and 3.3, PE cores (mentioned above) are connected to a crossbar switch.

PE A�nity module is in charge of packet classification. It receives packets from Ethernet MAC

(Media Access Control) and checks their destination port number. If the destination port number of a

received packet is matched to one of key-value service port numbers, PE A�nity module passes the

packet to one of PEs which are currently idle. A DRAM controller is also connected to the crossbar

switch. It is accessed by the PE cores to read and write access hash table and value store in DRAM

modules on the FPGA NIC board.
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3.3.1 Processing Element (PE) Design

A prototype of an L1 key-value cache that consists of key-value store PE cores of the string type

is implemented. The PEs process SET and GET operations. The proposed design accepts variable-

length values, while the key length is fixed to 64B for simplicity. CRC32 is implemented as a hash

function. PEs and a DRAM controller are connected via a crossbar switch. A simple fixed-priority

arbiter is used for the crossbar switch. Data width of the crossbar is 128bit. UDP is employed as

a transport-layer protocol as it is simple and low-overhead. UDP is supported in memcached in

addition to TCP.

Figure 3.4 shows a block diagram of a string type key-value cache PE. Received key-value store

queries are passed to Fetch module and they are parsed as operation type (e.g., SET, GET, and

DELETE), key, and value. PacketFilter core extracts key-value packets from all the received pack-

ets. More specifically, packets with specific destination IP address and destination port number are

marked as key-value packets and transferred to the L1 key-value cache for key-value processing. The

other packets are simply transferred to a host machine via the DMA controller. The key-value queries

are first stored in a FIFO bu↵er and processed by one of multiple PE cores. In the GET operation,

the requested key is examined in the L1 key-value cache and if the requested key-value pair does

not exist in the cache, the request packet is passed to the crossbar switch and then transferred to the

host machine. If the requested key-value pair exists in the L1 key-value cache, the response packet

is generated by swapping the source/destination IP addresses and source/destination port numbers of

the original request packet and adding the requested value.

3.3.2 Memory Management

Memory management is in charge of allocating free memory chunks and freeing unused ones. For

example, a write request (e.g., SET operation) needs to allocate a free memory chunk in value store

to store the new value. Slab Allocator is employed for memory management in value store. Slab

Allocator manages fixed-length memory chunks of several sizes where values are stored, as shown

in Figure 3.5.

When it receives a SET query that stores a new value, an unused chuck with minimum size where

the new value can be fit is removed from the Free List and then used. Assuming, for example, a SET

query contains a 24B new value, Slab Allocator in Figure 3.5 allocates a 64B chunk to store the 24B

new value. Such a memory management is one of complicated functions when it is implemented

as a dedicated hardware. In the proposed L1 key-value cache, Slab Allocator is implemented as a

microcode running on a tiny soft-CPU processor in each PE core to access Free List of each chunk

size as shown in Table 3.1. The other options are using hard-macro CPU (e.g., Xilinx Zynq series)

and dedicated hardware implemeted by HDL. Since hard-macro CPU runs on further faster speed,

the performance of slab allocation can be improved. Chapter 4 shows further implementation for

higher performance and uses dedicated hardware for slab allocation.
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Table 3.1: Soft-macro CPU specification for slab allocator

CPU MIPS R3000 Compatible

Instruction and Data Width 32bit

RAM 32kB (cache-less)

Frequency 80MHz

Hash Table Entry (72 Bytes)

Value Pointer
(32 bits)
Key Length (16 bits)

Val Length (16 bits)

Flag (16 bits)

Reserved (16 bits)

Key (512 bits)

0x00

0x03

0x05

0x07

0x09

0x0A

0x47

64 Bytes chunk x 512k

128 Bytes chunk x 256k

256 Bytes chunk x 128k

512 Bytes chunk x 64k

Hash Table

Value Store

Value Store (slab)

On-board Memory

Figure 3.5: Hash Table and Value Store implemented on DRAM.

3.3.3 Hash Collision Handling

Figures 3.2 and 3.3 also illustrate its behavior of L1 key-value cache in the two cases where a

requested key is hit and missed on the hash table, respectively. hash table is used to store pairs of a

key and a start address of the chuck where the corresponding value is stored. A hashed value of a

key is used as an index (address) of the hash table. To read or write the chunks stored in value store,

a PE core performs the following steps.

1. An index in the hash table is calculated by hashing the requested key.

2. Content from the hash table is read based on the index. Then the requested key and the key

read from the hash table are compared.

3. If both the keys are identical, a value is read from the Value Store based on the start address

of the chunk (Figure 3.2). Otherwise, the requested key does not exist in the value store

(Figure 3.3).

20



3. Multi-layer Key-value Cache Architecture
3.4. L2 Key-value Cache Architecture

L1 key-value cache miss occurs when the hashed value of the requested key does not exist or it

is conflicted with that of the other keys. To mitigate the hash conflicts, set-associative design was

introduced in Section 3.2.2.

Various hardware-level NIC extensions, such as TCP o✏oading, checksum calculation, and Re-

ceive Side Scaling (RSS) supported in some commercial network adapters, are available for improv-

ing the network performance. Please note that the proposed L1 key-value cache is orthogonal to such

hardware-level NIC extensions and can be used with them for further e�ciency.

3.3.4 Interconnection

In this system, each PE is connected with the crossbar switch to accelerate the performance by

parallelizing cores. Table 3.2 shows the specification of the crossbar switch used in this L1 key-value

cache.

Table 3.2: Crossbar switch specification

Data Width 128bit

Arbitration Fixed priority

Frequecy 160MHz

Figure 3.6 shows the frequency and occupancy when only crossbar switch is synthesized on an

FPGA (Xilinx Virtex-5 XC5VTX240T). It is assumed that each PE runs on 160MHz. The horizontal

line indicates 160MHz as a target frequency. This figure shows that when the number of PEs con-

nected with a crossbar switch is more than 30, the frequencies are below the target frequency. Slice

occupancy is below 6% to satisfy the frequenecy requirement (160MHz). As shown in this figure,

30 PEs can be connected with a crossbar switch in terms of slice utilization and frequency. Please

note that since this evaluation does not include PEs’ area, the number of PEs implemented would be

lower than expected.

3.4 L2 Key-value Cache Architecture

In [16], a key-value data store that uses a host memory as storage is implemented in Linux kernel

space. Key-value queries received by the kernel are hooked so that a customized handler is called

in order to process the key-value queries inside the kernel. Such in-kernel processing can improve

the key-value performance compared to the original user space implementation, because the network

protocol processing and related system calls can be eliminated. As a result, about 3.3Mops (operation

per second) performance in USR trace is achieved as reported in [16]. In the proposed multi-layer

key-value cache architecture, as an L2 key-value cache, a similar in-kernel cache is implemented in

Linux kernel using Netfilter framework.
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Figure 3.6: Maximum operating frequency and slice utilization vs. number of PEs connected to

crossbar switch.

3.5 System Implementation

In this section, a prototype implementation of the proposed multi-layer key-value cache is illus-

trated. Only the necessary functions of the L1 key-value cache are implemented to explore the design

choices. More specifically, multiple heterogeneous key-value cache PEs introduced in Section 3.3

are implemented in the L1 key-value cache.

3.5.1 Design Environment

Table 3.3 lists the design environment. The proposed L1 key-value cache is implemented on NetFPGA-

10G board by partially using the reference NIC design provided by NetFPGA Project [9]. Table 3.4

shows the hardware specification. FPGA device used is Xilinx Virtex-5 XC5VTX240T. A 10GbE

network interface is used for communication. hash table and value store in the L1 key-value cache

are implemented on a 288MB RLDRAM-II memory on the FPGA board 1. Design tool used is

Xilinx ISE 13.4.

1 The memory capacity of NetFPGA-10G board is very small, but newer FPGA boards have more capacity (e.g., 8GB

DDR3 SDRAM for NetFPGA-SUME).
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Table 3.3: L1 key-value cache design environment.

CPU Intel(R) Core(TM) i5-4460

Host memory 4GB

OS CentOS release 6.7

Kernel Linux kernel 2.6.32-504

NIC (FPGA) NetFPGA-10G

Table 3.4: Target FPGA board for L1 key-value cache.

Board NetFPGA-10G

FPGA Virtex-5 XC5VTX240T

DRAM 288MB RLDRAM-II

SRAM 27MB QDRII SRAM

PCIe PCIe Gen2 x8

Network I/O SFP+ x4

3.5.2 Implementation of L1 and L2 Key-value Caches

Slab Allocator is implemented as a microcode running on a MIPS R3000 compatible soft processor.

Free List is a list structure that manages unused memory chunks. It is initially implemented as Block

RAMs in the FPGA for simplicity, but it can be implemented using on-board SRAMs. When the

key-value cache PE executes a SET operation that requires a free memory chunk, it interrupts the

soft processor so that the Slab Allocator returns an unused chunk from Free List. In the case of a

DELETE operation, Slab Allocator seeks the corresponding chunk and appends it to Free List.

As L2 key-value cache, an in-kernel key-value cache is implemented as a loadable kernel module.

Netfilter framework is used to process key-value store packets in the kernel. That is, a customized

handler is called when the kernel receives the key-value queries, as illustrated in Section 3.4.

3.5.3 Area Evaluation

This section evaluates the FPGA area utilization of key-value cache PEs, which are used in L1 key-

value cache. Horizontal scalability that allows us to add more PEs depending on required perfor-

mance is an advantage of our heterogenous multi-PE design, where each PE is optimized for spe-

cific data types as illustrated in Section 3.3. The target device is Xilinx Virtex-5 XC5VTX240T on

NetFPGA-10G. Xilinx ISE 14.7 is used for design synthesis and implementation. SPEED mode is

selected as a synthesis option.

Figure 3.7 shows the slice utilization. “Reference NIC” shows the slice utilization for the stan-
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Table 3.5: L1 key-value cache throughput for four query types.

Query type Average throughput [Mops]

GET (HIT) 1.42354

GET (MISS) Determined by L2 key-value cache

SET (HIT) 2.20104

SET (MISS) 0.71049

dard 10GbE NIC functions that include four 10G MAC cores and a DMA controller for PCI-Express

Gen2 x8. “Key-value cache PE + Reference NIC” shows that for up to eleven PEs and an RL-

DRAM/DDR3 SDRAM controller in addition to Reference NIC. Each key-value cache PE has a

MIPS R3000 compatible processor and registers for storing key-value pairs. Up to eleven PEs can

be implemented on the Virtex-5 device.

3.5.4 Throughput

This section evaluates the query processing throughput of L1 key-value cache. On the client machine,

netmap-based [37] query injector that can fully utilize 10GbE bandwidth is used to generate queries.

The following four query types are used for the throughput evaluation. Each type has a key and a

value. Their lengths are fixed to 64B.

• “SET (HIT)” generates SET queries which are always hit in L1 key-value cache and modify

the cache.

• “SET (MISS)” generates SET queries which are always missed in L1 key-value cache 2. In

this case, memory allocation is performed for each query in L1 key-value cache and thus the

performance will be degraded.

• “GET (HIT)” generates GET queries which are always hit in L1 key-value cache by caching

the keys to be requested in L1 key-value beforehand. The key-value cache PE returns response

packets that contain the key-value pair requested in the GET queries to the client.

• “GET (MISS)” generates GET queries that never hit in L1 key-value cache. Such queries are

transferred to L2 key-value cache and processed. Thus, its throughput is determined by that of

L2 key-value cache rather than L1 key-value cache.

Table 3.5 shows average throughputs of the four query types on L1 key-value cache. Throughput

of “GET (HIT)” is 1.42Mops. Throughput of “SET (HIT)” is 2.20Mops, while that of “SET (MISS)”

is 0.71Mops because memory allocation on value store is performed for each query. In “SET (MISS)”

2We modified the FPGA logic of L1 key-value cache not to cache anything.
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case, a soft processor running on the PE executes a memory allocation which takes about 200 clock

cycles. The PE is stalled during the memory allocation, and thus the throughput is degraded.

The expected throughputs when assuming multiple PEs can be calculated. NetFPGA-10G board

is equipped with two RLDRAM-II modules and their aggregate throughput is 25.6Gbps3. Thus, the

memory bandwidth including the arbitration for the DRAM controller is not a major performance

bottleneck when a given workload is under 25.6Gbps. An expected aggregated throughput is calcu-

lated as

TTotal = min(TMem,TNet, n ⇥ TPE), (3.1)

where TMem, TNet, TPE , and n denote the memory bandwidth, network bandwidth, single PE per-

formance, and the number of PEs, respectively. TMem and TNet are set to 25.6Gbps and 10Gbps,

respectively. TPE is set based on Table 3.5. Figure 3.8 shows the calculation result. It shows that

10Gbps network bandwidth is a major source of the performance bottleneck on L1 key-value cache.

It also shows that seven PEs and nine PEs are required to achieve the 10Gbps GET and SET through-

put, respectively.
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Figure 3.7: Area utilization on Virtex-5 XC5VTX240T.

3.6 Design Exploration on Key-value Cache Architecture

Various design options are available for the proposed multi-layer key-value cache architecture in

terms of the multilevel organizations and cache policies, as proposed in Section 3.1. This section will

quantitively explore the proposed design options by using a simulator with real memcached traces so

3Since we assume that RLDRAM controller runs with 160MHz as frequency and 128bit data bus, the throughput is up

to 25.6Gbps.
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Figure 3.8: Aggregated throughput with multiple key-value cache PEs on NetFPGA-10G.

that this thesis would be the first guideline to build the multi-layer key-value cache architecture that

utilizes the FPGA-based in-NIC cache and the in-kernel key-value cache.

3.6.1 Simulation Methodology

The memcached traces were generated based on a memcached workload analysis results [40]. In [40],

the following five workload classes are analyzed in terms of operation types (e.g., GET, SET, and

DELETE) ratio, key size distribution, value size distribution, key appearance, and so on. These three

parameters were used to generate workload. To decide hit or miss in hash table, we referred only

key appearance, i.e., identification number. Key length and value length were used for calculating

throughput and slab allocation. Value contents were not utilized because the value contents are not

considered in this simulation.

• USR : Key sizes are 16B and 21B. Value sizes are 2B.

• SYS : Most key sizes are less than 30B. 70% of value sizes are around 500B.

• APP : 90% of key sizes are 31B. Value sizes are around 270B.

• ETC : Most key sizes are 20-40B. Small amount of values are very large (e.g., 1MB).

• VAR : Key sizes are 32B. 80% of value sizes are 50B.

The above-mentioned values were measured by us from graphs in [40] by hand. Please note that

these values may contain certain errors.
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Figure 3.9: DMA tra�c between L1 and L2 key-value caches (write-back vs. write-through).

3.6.2 Write-Through vs. Write-Back

There are two write policies between L1 and L2 key-value caches: write-through and write-back.

Here the DMA controller between L1 and L2 key-value caches is simulated in addition to these

caches. In the simulation, 10Gbps line rate queries based on the memcached traces are injected to

L1 and L2 key-value caches.

Figure 3.9 shows the simulation result. In VAR and SYS traces, there is a large gap between the

write-back and write-through policies. In VAR trace, more than 70% of queries are SET operations

that update the L1 key-value cache. SYS trace also contains a lot of SET operations (i.e., more than

30% of whole queries). Thus, write-through policy achieves a quite high throughput in VAR and

SYS traces, while the di↵erences between these two policies are not significant in the other traces.

The 10GbE and PCI-Express interfaces would limit the write throughput between these caches.

Theoretical DMA transfer capacity is 4GB/s and 7.69GB/s in PCI-Express Gen2 x8 and PCI-Express

Gen3 x8, respectively. A PCI-Express Gen3 x8 interface achieves 7.06GB/s throughput [42]. 10GbE

is assumed as a network I/O. In the graph, these 10GbE and PCI-Express bandwidth values are shown

as horizontal lines.

Although a performance gain of write-back may not be significant in the read-intensive workload,

write-back policy can reduce the DMA tra�c in write-intensive workload. When assuming a 10GbE

network bandwidth, the DMA bandwidth between L1 and L2 key-value caches is a bottleneck when

write-through policy is used for VAR and SYS traces.

3.6.3 Cache Associativity

The multi-layer key-value caches were simulated by varying the set associativity N of the L1 key-

value cache, where N = 1, 2, 4, and 8. In all the cases, the total L1 key-value cache size is fixed to
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92MB.

Figure 3.10 shows the simulation results, where X-axis shows the memcached trace and Y-axis

shows the L1 key-value cache miss ratio. In USR, SYS, and VAR traces, when N is varied from 2

to 8, the cache miss ratio is reduced by 2-7% compared to the direct mapped cache (i.e., N = 1). In

ETC trace, the associativity does not a↵ect the miss ratio due to less hash conflicts.

3.6.4 Inclusion vs. Non-inclusion

Here “L2/L1 capacity ratio” is defined as the ratio of the L2 key-value cache capacity against that of

L1 key-value cache (e.g., the ratio is two when L2 is twice larger than L1). We will discuss inclusion

and non-inclusion design options for L1 and L2 key-value caches when the L2/L1 capacity ratio is

varied. Figure 3.11 shows the simulation results of inclusion and non-inclusion options, where X-axis

shows the L2/L1 capacity ratio and Y-axis shows the cache miss ratio. When the capacity ratio is 1,

the non-inclusion option reduces the cache miss ratio by up to 15% compared to the inclusion. Please

note that inclusion option when the capacity ratio is 1 implicates the results with only L1 key-value

cache (no L2 key-value cache). In this case, the cache miss ratio is quite high (e.g., 75.8% and 52.1%

in USR and SYS, respectively), which demonstrates the necessity of our multi-layer key-value cache

design. When the capacity ratio is over 16, di↵erences between the inclusion and non-inclusion in

terms of cache miss ratio become quite small. Assuming L1 key-value capacity is 288MB and 8GB,

non-inclusion is an e�cient option only when L2 key-value capacity is less than 4.6GB and 128GB,

respectively.

DRAM capacity of the FPGA board used in the experiments is 8GB. When the capacity of a host

main memory is less than 128GB, we can reduce the cache miss ratio by up to 10% by selecting

non-inclusion option compared to the inclusion option. In other cases, the selection of inclusion

and non-inclusion options does not a↵ect the cache miss ratio significantly. Regarding the L1 key-

value cache write policy, the inclusion policy assumes the write-through, while the non-inclusion

policy assumes the write-back. non-inclusion can reduce DMA tra�c in some traces. Although non-

inclusion requires replacement of cache blocks, and so implementation cost is high. Thus in case

28



3. Multi-layer Key-value Cache Architecture
3.6. Design Exploration on Key-value Cache Architecture

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128 256 512

C
a
ch

e
 M

is
s 

R
a
tio

 [
%

]

Cache Capacity Ratio (L2 / L1)

Inclusion USR
Exclusion USR

(a) USR trace

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128 256 512

C
a
ch

e
 M

is
s 

R
a
tio

 [
%

]

Cache Capacity Ratio (L2 / L1)

Inclusion SYS
Non-inclusion SYS

(b) SYS trace

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128 256 512

C
a
ch

e
 M

is
s 

R
a
tio

 [
%

]

Cache Capacity Ratio (L2 / L1)

Inclusion ETC
Non-inclusion ETC

(c) ETC trace

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128 256 512

C
a
ch

e
 M

is
s 

R
a
tio

 [
%

]

Cache Capacity Ratio (L2 / L1)

Inclusion APP
Exclusion APP

(d) APP trace

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128 256 512

C
a
ch

e
 M

is
s 

R
a
tio

 [
%

]

Cache Capacity Ratio (L2 / L1)

Inclusion VAR
Exclusion VAR

(e) VAR trace

Figure 3.11: Inclusive policy vs. non-inclusive policy.

of high bandwidth with PCI express, inclusion is recommended as a more straightforward design

should be adopted when we consider implementation cost.
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3.6.5 Eviction Policy

This section examines cache eviction policies in L1 key-value cache when the number of ways N

is more than one. In the simulations, the capacity of L1 key-value cache is set to 2M entries, and

eviction policies of Random and LRU are simulated. Figure 3.12 shows the simulation results of

these eviction policies in terms of cache miss ratio for five traces when the number of ways N is

varied from 2 to 8.

A visible improvement can be observed for each policy when N increases except for ETC trace

which contains a lot of DELETE operations. The result of LRU is not better than that of RANDOM.

Since hardware implementation of LRU is complicated, RANDOM is thus practical choice as the

cache eviction policy for L1 key-value cache.

3.6.6 Slab Configurations for L1 key-value Cache

The proposed L1 key-value cache supports variable-length keys and values. Regarding the keys, since

each hash table entry has a 64B memory space for key, keys larger than 64B are stored using multiple

Hash Table entries. Since value sizes di↵er significantly, we employ Slab Allocator for the memory

allocation. Up to six chunk sizes (a power of 2 from 64B) are supported by configuring the Slab

Allocator. Table 3.6 shows various slab configurations used in this experiment. Each configuration

type has a unique characteristic (e.g., uniform distribution, more small-sized slabs).

Figure 3.13 shows simulation results of these slab configurations. In USR, more than 90% of

queries access small-sized values (e.g., 2B), so the slab configuration that has more small-sized

chunks can reduce the cache miss ratio. In APP, the average value size is about 270B. When Type

C configuration that does not have large-sized chunks is applied to APP, the cache miss ratio is

more than 70% since most requested values cannot be cached in L1 key-value cache. In APP, we

need 512B chunks to store most requested values; thus Type E that has many large-sized chunks can

reduce the cache miss ratio to 40%.

The cache miss ratio can be improved by configuring the chunk sizes and their numbers in L1

key-value cache in response to value sizes in an expected workload. In the proposed design, soft-

processor in L1 key-value cache can configure the chunk sizes and their numbers at a boot time.

Table 3.6: Chunk size configurations (In Type A, the number of 64B chunks is 70k).

Type 64B 128B 256B 512B 1024B 2048B Note

A 70k 70k 70k 70k 70k 70k Uniform

B 120k 100k 80k 60k 40k 20k More small sizes

C 160k 140k 120k 0 0 0 No large sizes

D 140k 120k 100k 30k 20k 10k More small sizes

E 20k 40k 60k 80k 100k 120k More large sizes
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Figure 3.12: Eviction policies on set-associative L1 key-value cache.
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Figure 3.13: Five slab configurations on L1 key-value cache.

3.6.7 Cache Miss Ratio vs. Throughput

Finally, Figure 3.14 compares the proposed multi-layer key-value cache and L1 key-value only de-

signs in terms of the total throughput when the L1 key-value cache miss ratio is varied from 10% to

90%. GET queries are injected in a 10Gbps line rate (i.e., 9.32Mops). In the multi-layer key-value

cache case (Figure 3.14(a)), L2 key-value cache miss ratio is fixed at 15%, which is a conservative

assumption. As L1 key-value cache miss ratio increases, L2 key-value cache and memcached soft-

ware process more queries. Please note that the throughput decreases quite slowly in the multi-layer

key-value cache case when L1 key-value cache miss ratio is less than 40%, while the throughput

decreases linearly in the L1 key-value only case.
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Figure 3.14: Multi-layer key-value cache miss ratio vs. throughput.

3.7 Summary

This chapter introduced multi-layer key-value cache architecture combining in-NIC and in-kernel

caches. Each component: in-NIC key-value store acceleration and in-kernel key-value store acceler-

ation, has actively studied so far. But, each approach has disadvantages in terms of cache capacity

and power e�ciency. To complement these drawbacks, multi-layer key-value cache architecture was

proposed to utilize them.

For the building block, there are a variety of design options to compose cache organization. Thus,

we explore them with a simulator using realistic workload. This chapter introduced preferred design

options, based on simulation results.
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Chapter 4

Hierarchical In-NIC Key-value Cache Design

The previous chapter introduced concept based on simulation and basic proof of concept using a

simple prototype. This chapter describes the practical implementation of in-NIC key-value cache

design. This chapter focuses on inside in-NIC design and shows hierarchical in-NIC cache design

combining on-chip RAM and on-board DRAM. As shown in Figure 4.1, this chapter introduces

level 0 (L0) key-value cache, based on on-chip RAM to in-NIC cache of multi-layer key-value cache

architecture, proposed in the previous chapter. Furthur, power e�cient schemes are also introduced

for scheduling software and hardware switching. Section 4.1 introduces the background behind

this architecture. Section 4.2 provides a concrete architecture design of key-value cache integrated to

NIC. Section 4.3 evaluates di↵frent design aspects. Section 4.4 provides design trade-o↵. Section 4.5

describes an on-demand controller. Lastly, Section 4.6 summarizes this chapter.

4.1 Background

The previous chapter introduced multi-layer key-value cache architecture. This chapter focuses on

micro-level in-NIC design and introduces hierarchical in-NIC cache design for higher performance

and an acceleration hardware as in-network computing.

In-network computing is an emerging area in computing, where applications natively running on

the host are accelerated by running them on network devices. While hardware acceleration is typi-

cally done on stand-alone programmable platforms [10], in-network computing executes the applica-

tions on programmable network devices, such as network interface cards (NICs) or switches [43,44].

These network devices provide both the networking functionality and the execution of an application

at the same time [45].

In-network computing has been shown to provide throughput and latency improvement of orders

of magnitude [43,45]. Furthermore, the use cases are far from being limited to networking functions;

examples include consensus [46], data processing [47], machine learning [48] and more. The most

popular use case of in-network computing is for cache-based applications (e.g., [43]). The placement

of the in-network computing device within the network saves traversals of the network by-design
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Figure 4.1: Chapter 4 introduces L0 key-value cache, based on on-chip RAM.

[45], and is ideal for handling frequently repeated requests for information. This work focuses on

one class of caching applications, the caching of key-value store, to study design trade-o↵s in in-

network computing.

Online services such as e-commerce and social networks, mostly running in the cloud [5], are

commonly using key-value store. Key-value store deployments in datacenters are often scaled-out in

order to increase performance [6], which leads in turn to increased power consumption. One of the

limitations of key-value store is that it is very sensitive to latency, in the order of tens of microsec-

onds, end-to-end [49]. Using in-network computing has the potential to significantly improve the

performance of key-value store based applications.

While in-network computing has attracted a lot of attention over the last few years, most of the

work has focused on ASIC-driven implementations [43–45, 47]. The design trade-o↵s in building

in-network computing platforms, and in particular those implemented using FPGAs, have to the best
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of our knowledge, not been explored.

4.2 Architecture

Single-node memcached servers have been shown in the past to process queries at around 370kqps

(query per second) on an Intel Xeon machine [19], with more modern servers achieving close to a

million queries per second. Using consistent hashing algorithms has been shown to improve this

throughput by an order of magnitude [50]. Large services, such as e-commerce or social networking

services, therefore use tens to thousands of data center servers to sustain the query rate they require.

LaKe is an in-network computing Layered Key-value store architecture, focused on memcached

with two layers: on-chip RAM and on-board DRAM. LaKe is FPGA-based and provides both

network-switching functionality and key-value store acceleration. It achieves significant performance

improvement by using multiple layers of cache. Each cache layer provides a trade-o↵ between per-

formance (latency, throughput) and memory size. LaKe runs on a platform that also acts, at the same

time, as a NIC or a switch, therefore eliminating the need the cost of adding additional hardware.

The performance achieved by LaKe reduces by an order of magnitude the number of servers required

in the data center. This section explores its architecture, as shown in Figure 4.2.
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L1 key-value cache architecture was shown in Section 3.3. In this chapter, to provide higher

e�ciency, hierarchy design with micro-level in-NIC cache is built: on-chip RAM and on-board o↵-

chip DRAM as shown in Figure 4.1. Further, to optimize proof of concept, some parts of the design

were upgraded, compared with the previous design in Section 3.3.

4.2.1 High Level Architecture

The LaKe architecture, a hardware component utilized with software components. It assumes that the

software components are L2 key-value cache introduced in the previous section and the memcached

host software, modified to support UDP binary protocol. Please note that we use only memcached

host application as a software component in this section. The hardware component, which is the

focus of this section, is a combined design of a networking device and a memcached accelerator

running on a single platform.

The architecture of LaKe is shown in Figure 4.2. While LaKe can operate either as a switch or a

network interface card (NIC), let us assume for clarity that it is used as a NIC. Tra�c arrives to LaKe

from multiple sources. A packet classifier is used to distinguish between memcached queries and any

other type of tra�c; general tra�c will be sent to the host, as in a standard NIC, while memcached

queries will be sent to the LaKe module. Queries that are a miss in LaKe’s cache and memory, are

sent to the host.

LaKe is implemented on the NetFPGA-SUME platform [27]. The network data plane is based on

the NetFPGA Reference Switch project, which can also operate as a NIC, and we amend it with logic

enabling memcached operation, as shown in Figure 4.3. Modules unique to LaKe are marked in dark

gray. Incoming tra�c from multiple ports is fed into the data plane using an arbitration module (Input

Arbiter). A packet classifier, unique to the proposed design, identifies the type of the packet and sends

memcached packets to the LaKe module, described later in this section. Non-memcached tra�c

continues in the pipeline, where it is merged (using a second arbiter) with packets returning from the

memcached module: both reply packets, going back to clients, and missed queries, forwarded to the

host. The destination of the packet is set in an output port lookup module, and packets wait in an

Output Queues module to their turn to be transmitted.

4.2.2 LaKe Module

To improve performance bottlenecks and enable scalability across di↵erent platforms, LaKe adopts

a multi-core processor approach for query processing, similar to the design described in the previous

chapter. The architecture of the LaKe module is shown in Figure 4.4.

Incoming queries are evenly spread between a set of processing elements (PEs), using a multi-

plexing and demultiplexing PE-network. Each PE receives and processes queries. Once a query is

processed, the PE accesses a shared memory network. Three types of memories are connected to

the memory network: DRAM, containing the hash table bucket and data store chunks (Section 4.2.3,
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Section 4.2.4), SRAM, containing chunk information (Section 4.2.4), and CAM, serving as a look

up table (LUT) for retrieving key-value pairs (Section 4.2.5).

Figure 4.5 illustrates the request-response process of a query in LaKe. As a new query arrives, the

PE parses the packet and extracts the command, key and value. Next, the hash of the extracted key

is calculated. In the proposed implementation, CRC32 is used as the hash function. The hash value

serves as a pointer to an address in the DRAM, holding a descriptor (hash table bucket) pointing to

the key-value pair in the memory. If a key exists in LaKe’s memory, it is considered a hit, otherwise

it is a miss. Upon a SET command that is a hit (Figure 4.5(a)), both the hash table and the key-value

pair data are updated in the DRAM. If a SET command arrives with a new key (miss, Figure 4.5(b)),

the PE assigns it to a chunk using a list of free descriptors stored in the SRAM and pointing to empty

chunks. As a write-through policy is used, any SET query is also sent to the host’s memcached

server.

For a GET query that is a hit, a reply is prepared in the Packet Deparser and returned to the

client. Otherwise, the request is forwarded to the host memcached server through the switch datapath

(Figure 4.5(c)) and using a DMA engine [27]. The host then sends a reply to LaKe (Figure 4.5(d)),
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which updates the key and value in the cache and DRAM before sending the reply to the user.
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4.2.3 Hash Table

The hash table is used to store descriptors pointing from a hashed key to the address in memory

of the actual key-value pair. As such, it is a critical component in the design. The data structure

of the descriptors in the hash table is shown in Figure 4.6. The descriptor size is 64bit, which is

performance optimized: the DDR3 uses a burst size of 8 and data bus width of 64bit, which leads in

turn to a bus width from the DDR3 controller of 512bit. This allows in a single access to read eight

descriptor entries, enabling 8-associativity. To reduce the number of accesses to the DRAM, a key’s

length is compared to the key’s length in the descriptor, and only if they match the PE attempts to

access the DRAM and read the key-value chunk.

In the design previously described in Section 3.3, a hash table entry includes a maximum 64

bytes key. When we use more than 64 bytes key, multiple entries are assumed to be used. However,

this is complicated logic and leads to in-e�ciency in hash table, since duplicated addresses in hash

table become invalid. Thus, a new hash table entry does not include a key, moving a key to data store

managed by slab allocator. As a result, in order to retrieve a key, we need two memory access: hash

table, and data store.
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4.2.4 Memory Management

Memcached builds upon a slab allocator to e�ciently use the memory [6, 30]. This approach is also

taken in hardware-based designs, as well as in LaKe, enabling to handle variable key- and value-

length.

Similar to the design previously described in Section 3.3, a slab allocator is implemented using

an SRAM-based memory, storing addresses of unused chunks. However, in this version. we do not

use soft CPU for the processing slab allocation. To reduce access time to the SRAM, LaKe uses a

small cache (implemented as a FIFO), which pre-loads the next available addresses from memory.

The number of entries in the SRAM can be calculated using the following formula:
Pn

k=i S kNk 
Cmem, where S k, Nk and Cmem denotes the size of chunk, the number of chunks and SRAM capacity,

respectively. We use multiplications of 64B as slab size, and support 64B, 128B, 256B and 512B

chunk sizes in our prototype. The minimum size slab is determined by the width of the memory

network datapath: 512bit.

Shared cache To conceal DRAM access latency, LaKe uses a shared cache for each data context:

hash table and data store. These caches are located in front of the DRAM controller, rather than inside
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a PE, in order to enable PE scalability and avoid holding data context (such as CPU process) inside a

PE. In this manner, frequent keys and values are referred from caches, immediately. Each cache has

in our prototype 1024 entries, implemented using a BRAM. We employ write through as the update

policy, thus cache coherency is maintained for both cache and DRAM.

DRAM access: Random access to the DRAM has a non-negligible and variable latency, which

can stall PEs. To attend to this latency we integrate a small cache (e.g., 64B cache line, write through,

direct-map, total capacity 64kB). Without the cache, we measure the DRAM controller’s access

latency (using Xilinx MIG, running at 933.33MHz) to be around 115ns in a zero load test, and to be

up to 650ns under high load.

PE scalability: LaKe applies a modular, scalable approach to key-value store acceleration. The

number of PEs supported by the design starts at one and scales up, with five PEs su�cient to support

per-port full line rate. Beyond physically implementing a variable number of PEs, LaKe also allows

to controlling on-the-fly the number of PEs used, balancing workload and power e�ciency.

4.2.5 Memcache Protocol

Memcached systems [6] generally use the memcache protocol. There are two memcache protocol

variants: ASCII based and binary based. Binary protocol over UDP/IP is used in the proposed cache

system. The challenge using the memcache protocol is that key-value pairs cannot be identified in

responses from the host. For example, a GET request missed in the hardware and sent to the host

will have a query response returning with the value but without the key. Thus, cache systems cannot

handle only response packets; it is required to learn and save request query’s information.

To associate a key with a returning value, memcache protocol’s opaque field and source UDP

port number are used. Memcache protocol uses a 32-bit opaque field, and memcached systems use

the same opaque value in both request and reply. A lookup module is used to match returned values

from a host with their paired keys. The LUT is implemented using a CAM, where we query using

the opaque value and the source UDP port, and the reply is the original query’s key. The keys are

updated every time a GET query is a miss in the hardware and forwarded to the host.

4.3 Evaluations

The evaluation of LaKe covers two aspects: absolute performance, and the exploration of design

trade-o↵s. The evaluation results are summarized in Table 4.1.

4.3.1 Absolute Performance

The absolute performance of LaKe is evaluated, based on several performance metrics: throughput,

latency and power e�ciency. The performance is compared with memcached (v1.5.1), a software im-

plementation, and Emu’s memcached implementation [51], a hardware-acceleration of memcached
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using the binary protocol. Emu is selected as it is comparable, being available as open-source on

NetFPGA-SUME, yet it does not support networking functionality, only memcached-acceleration.

Emu also supports only the on-chip cache, and cannot forward a missed query to a server.

4.3.1.1 Test Setup

The server uses Intel Core i7-4770 CPU, 64GB RAM, running Ubuntu 14.04 LTS (Linux kernel

3.19.0) and NetFPGA-SUME card. OSNT [52] is used for tra�c injection. A 10GbE port is con-

nected to LaKe-side card. GET requests including 4B key and 8B value are injected at 10Gbps.

Throughput is measured on a second granularity. For comparison with software-based memcached,

the memcached software was amended to support binary protocol over UDP.

4.3.1.2 Maximum Throughput

For maximum throughput, all three designs are compared using a warmed cache. LaKe achieves

a throughput of 13.1Mqps (query per second) when all the queries are hit in the shared-cache, as

shown in Table 4.1. This is ⇥6.7 improvement compared with Emu [51], and ⇥13.6 improvement

compared with memcached running on the host. The throughput achieved is equivalent to 10GbE

line rate, using the given query size, and requires only 5 PEs.

4.3.1.3 Latency

An Endace DAG card 10X2-S (4ns resolution) is used to measure queries’ latency. A software-

based client is used to generate queries, and the DAG measures the isolated latency of LaKe, client

excluded. Despite supporting both memcached and networking functionality, as well as using the

DRAM, LaKe’s latency on a hit (1.16µs) is better than Emu (1.21µs), thanks to the small shared-

cache (64kB) in front of the DRAM. When queries are miss in the shared-cache, and hit in the

DRAM, the latency is 5.6µs. Emu does not support cache misses. LaKe’s latency is ⇥205 better than

a host-based memcached on a hit, and ⇥42 better on a miss in the cache and a hit in the DRAM. A

miss in both cache and DRAM means LaKe and a host-based memcached will have about the same

latency, as LaKe will forward the query to the host. The only penalty is the first lookup in the DRAM

of the key.

4.3.2 Scalability

LaKe scales up both in throughput and resources.

Area and Resources: Up to six PEs were implemented while maintaining 200MHz core fre-

quency. Each PE utilizes around 3% of chip slices and 2% BRAMs, as shown in Figure 4.7. These

values include also the interconnection networks, as each PE is connected with both PE-network and

memory switch. The small overhead in resources taken by each PE enables scaling the number of

PEs used by LaKe with little e↵ect on resource consumption.
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Figure 4.7: The area utilization of LaKe implemented on NetFPGA SUME.
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Figure 4.8: Throughput and latency as a function of number of PEs.

Throughput: The throughput scalability of LaKe is evaluated using OSNT [52]. First, the cache

is warmed using a SET request. Next, OSNT generates GET requests, matching the warmed cache,

using a 4B key, and returning an 8B value. The throughput scalability as a function of the number of

PEs is shown in Figure 4.8. As the figure shows, LaKe can handle up to 13.1Mqps using five PEs,

when the queries are hit in the shared-cache in front of the DRAM. Each PE processes up to 3.3Mqps.

The bottleneck on throughput growth is the memory interconnect core and memory bandwidth. The

throughput grows linearly with the number of PEs until reaching these bottlenecks. On a platform

with more memory interfaces, or with a higher speed memory, a higher throughput can be achieved.
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Figure 4.9: Power e�ciency vs throughput, for

LaKe and memcached (bottom left).
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Figure 4.10: The throughput and latency of LaKe

as a function of core frequency.
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Figure 4.11: LaKe’s throughput and latency un-

der varying hit ratio in the on-chip cache. Queries

missed in the cache are a hit in the DRAM.

0 20 40 60 80 100

Hit ratio [%]

0

1

2

3

4

5

T
h
ro

u
gh

p
u
t

[M
q
p
s]

Throughput

Figure 4.12: LaKe’s throughput under varying hit

ratio in the DRAM, with fixed 10% in the on-chip

cache.

Core frequency: LaKe is a pipelined design. As such, its throughput depends on its packet

processing rate. This packet processing rate, which is shared for the networking data plane and the

LaKe memcached module, is fully achieved at a core frequency of 160MHz, as shown in Figure 4.10.

Below this frequency, the NetFPGA platform has a performance limitation in its 10GbE ports 1.

Mean latency drops with core frequency increase: this is as the number of stages in the pipeline is

maintained, but the duration of each clock cycle is reduced.

Hit ratio: The hit ratio in the cache plays a critical role in the performance on an in-network

computing design. Figure 4.11 demonstrates the e↵ect of the hit ratio on the performance of LaKe.

The x-axis indicates the hit ratio of the keys in the on-chip cache. The y-axis indicates the maximum

throughput (left) and mean latency (right). Mean latency is measured at a constant query rate of

10Kpps, for all hit ratios, since as shown in Section 4.4, the latency is subject to change under

di↵erent query rates. The maximum latency, measured across all hit-ratios, is only 1.9µs. The e↵ect

of the hit ratio is mandatory to in-network computing solutions, as the size on the on-chip cache

1https://github.com/NetFPGA/NetFPGA-SUME-live/issues/36
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Table 4.1: Performance comparison.

System Average latency [µs] Throughput [kqps] Power e�ciency [kqps/Watt.]

memcached(software) 238.84 962 9.938

Emu (hardware) [51] 1.21 1932 47.121

LaKe (shared-cache) 1.16 13120 242.962

directly a↵ects the performance of the device. In devices where the memory capacity is in the order

of megabytes to tens of megabytes [53], this becomes a crucial element.

Figure 4.12 continues the exploration of hit-ratio e↵ect, by exploring the e↵ect of hit ratio in the

DRAM, and LaKe as a whole. The x-axis in Figure 4.12 indicates the overall hit ratio in both on-chip

cache and DRAM. The hit ratio in the on-chip cache is fixed to 10%, and vary the hit ratio in the

DRAM, with all queries missed in the DRAM being sent to the host. As the results show, throughput

linearly increases with the hit ratio in the DRAM.

4.3.3 Power E�ciency

Next, we evaluate the power e�ciency of LaKe. A wall power meter is used to measure power

consumption. power e�ciency is calculated as E = T/W, where E, T and W denote power e�ciency,

throughput, and power consumption, respectively. LaKe achieves 242.962 kqps/Watt using five PEs

at full line rate. This is ⇥5.1 improvement compared with Emu.

Dynamic power consumption is investigated by measuring how power consumption varies as a

function of throughput. Power consumption is normalized to 0W under zero load, i.e. the static power

consumption. The dynamic power consumption takes up to 3.4W on LaKe modules, while software-

based memcached consumes a maximum of 58.2W dynamically. Thus, LaKe reduces dynamic power

consumption by more than an order of magnitude. Moreover, the power e�ciency of LaKe scales

linearly with throughput (as shown in Figure 4.9), much better than a host’s power e�ciency does.

To put it in order words, LaKe’s power consumption changes very little under load, which means

that it is most e�cient when the query rate is maximal. Even under low query rate, LaKe’s power

e�ciency is better than running on a host.

4.4 Design Trade-O↵s

The previous section has introduced the absolute performance of LaKe. This section focuses on

trade-o↵s in the design of LaKe, and extrapolates from them to in-network computing designs at

large.

In-network computing applications tend to implement cache using only on-chip memory [43,

45, 54]. For key-value store applications, this leads to a very small percentage of keys that can be

cached: in the orders of thousands to tens of thousands on an FPGA, and in the order of hundreds
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of thousands to a million on an ASIC. For example, NetChain [44] suggests that up to 10MB on a

Tofino switch can be used as a cache. This number of cache entries is insu�cient for large key-value

store systems: in Facebook, between a billion and hundred billion unique keys are accessed every

hour [40], with 18.4% to 74.7% of these keys accessed within 5 minutes (For Facebook’s di↵erent

workloads [40]). It is therefore important to understand the e↵ect of using external memories on

in-network computing performance.

So far the evaluation used a fully-featured LaKe: using BRAM, SRAM and DRAM. Next, we

check the e↵ect of each on the performance. Note that for this discussion the design employs a single

DRAM module (4GB) which utilizes both hash table region (2GB: 268M entries) and a data store

region (2GB: 33M entries as 64B chunk), and consumes 4W. When BRAM is used instead of DRAM,

the number of hash table entries and data store entries are 4096 entries and 512 entries, respectively.

Two SRAM modules (total 18MB) are also employed to manage free-list on slab allocation. When

BRAM is used instead of SRAM, the number of free-list addresses stored is 144 entries.

When only the BRAM is used, and the SRAM and DRAM memory controllers are taken out, the

maximum power consumption of LaKe is 16W including NetFPGA-SUME card — almost identical

to a standalone switch, and the maximum throughput is 13.1Mqps. Under these circumstances we

use a BRAM-based 1k entry cache as hash table and data store instead of a DRAM, and use BRAM-

based FIFO as slab allocator instead of an SRAM.

Adding the SRAM adds 6W and holds 4.7M chunk addresses, which are updated when a DELETE

operation moves a specific chunk to the free list. A BRAM-based FIFO placed in front of the SRAM

is used to hide SRAM access latency, but is shallow in comparison with the SRAM. One can there-

fore trade the 6W SRAM power consumption with the number of available chunks on LaKe. Al-

ternatively, one can use a DRAM to store chunk address: this solution is cheaper and more power

e�cient than using SRAM, but results in an increased latency and considerably lower throughput.

The use of DRAM as a first level cache increases the number of keys hit in LaKe. However, as

can be expected, DRAM access does not provide the same performance as on-chip cache access. As

shown in Figure 4.8, the maximum throughput using DRAM only is 6.3Mqps (using five PEs ), lower

than using the shared-cache. To understand the throughput of the DRAM, we isolate the DRAM from

the LaKe module, and consider its latency under low and high utilization. As Figure 4.13 shows,

while the latency is almost constant without a load, under high utilization the latency almost doubles.

Memcached accesses to the memory are random and not sequential, as keys are not requested in a

sorted order, this double-latency explains the 6.3Mqps throughput achieved using the DRAM.

While using the DRAM may seem as a disadvantage, it is in fact an advantage: access to the

DRAM is only upon a miss in the cache, and replaces an access to the host memory (as in a device

without a DRAM). In this manner, significant time (⇥42) and dynamic power (⇥17) are saved.
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Figure 4.13: The cumulative distribution function of READ latency from the DRAM, for a Random

access, under zero and high load. Strict, Normal and Relax are the three memory controller access

modes [1].

4.5 On-demand Controller

This section discusses our LaKe, in-network computing device should be treated as one would treat

other scheduled computing resources. Workloads can be assigned to network devices, and one should

be able to reallocate the workloads to other computing resources. Section 4.5.1 provides an analy-

sis describing when in-network computing can be optimally used, and next the how is discussed..

Section 4.5.2 proposes the on-demand scheme in terms of power consumption, CPU usage and traf-

fic rate. Section 4.5.3 provides the details of host-controlled on-demand and network-controlled

on-demand. Section 4.5.4 discusses the controllers.

4.5.1 Power and Performance Measurement

Here, we examine that in-NIC cache can be power hungry [55], by evaluating the power consump-

tion of in-NIC cache and memcached. The power consumption is evaluated for both software- and

hardware-based implementations, including overheads, e.g., power supply unit.

Experiment Setup In this experiment, an Intel Core i7-6770 4-cores server, running at 4GHz,

equipped with 64GB RAM, 10GE Mellanox NIC (MCX311A-XCCT), and Ubuntu 14.04 LTS (Linux

kernel 3.19.0) was used for software-based evaluation. For hardware-based evaluation, the NIC was
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replaced by NetFPGA-SUME [27] card.

OSNT [52] was used to send tra�c, in which the rates can be controlled at fine granularities and

reproduce results. Average throughput was measured with a second granularity. An Endace DAG

card 10X2-S was used to measure latency, measuring the isolated latency of the application under

test, tra�c source excluded. Power measurements were performed using SHW 3A power meter [56],

connected to the device under test’s power supply.

Results With LaKe, the role of the server software is not eliminated by shifting functionality to

hardware. LaKe serves as a first and second level cache. In the event of cache misses at both levels,

the software services the request. Memcached (v1.5.1) was used as both the host-side software reply-

ing to queries missed in LaKe’s cache, and as the software implementation we benchmark against.

The power consumption evaluation of LaKe, therefore, includes the combined power consumption of

the NetFPGA board and the server. Note that the NIC is taken out of the server for LaKe’s evaluation,

as LaKe replaces it.

To measure the power consumption of LaKe and memcached, we start with the power consump-

tion of an idle system, and then gradually increase the query rate until reaching peak performance.

Peak performance is full line rate for LaKe and approximately 1Mpps for memcached. It is verified

that the CPU reaches full utilization using all 4-cores.

Figure 4.14 shows the power to throughput trade-o↵ for the key-value store. The x-axis indicates

the number of queries sent to the server every second, while the y-axis indicates the power con-

sumption of the server under such load. It shows the power consumption for memcached (software

only), LaKe within a server, and LaKe as a standalone platform, i.e., working outside a server and

without the power consumption contributed by the hosting server. As the figure shows, the power

consumption of the server while idle or under low utilization is just 39W, while LaKe draws 59W

even when idle. However, the picture changes quickly as query rate increases. At less than 100Kpps,

LaKe is already more power e�cient than the software-based key-value store, with the crossing point

occurring around 80Kpps.

LaKe has a high base power consumption, but the consumption does not increase significantly

under load. Figure 4.14 shows the throughput up to 2Mpps. But, please note that LaKe reached full

line rate performance, supporting over 13Mpps for the same power consumption.

4.5.2 Scheduling Scheme

The experiments have shown that there is no silver bullet for using in-network computing while

maintaining power e�ciency at all times. Not only do in-network computing designs vary so much

between platforms, but also on the same platform there are many components that can a↵ect power

e�ciency, as shown by the example of libpaxos and DPDK. This is, however, not unlike standard net-

work switching where seemingly “similar” switches from di↵erent vendors have up to ⇥2 di↵erence

in power consumption [57].
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Figure 4.14: Power vs throughput comparison of key-value store.

As there is no doubt that in-network computing o↵ers significant performance benefits (Sec-

tion 4.5.1), it is essential to get the performance benefit of in-network computing, without losing

power e�ciency.

Thus, this section proposes in-network computing on demand, a scheme to dynamically shift

computing between servers and the network, according to load and power consumption. This scheme

is useful where identical applications run on the server and in the network, as in our examples. It can

be applied to a wide range of applications, though possibly not all (as discussed later). It is also not

applicable to bespoke in-network computing applications, which have no server-side equivalent.

The power consumption using in-network computing on demand is illustrated in Figure 4.15.

As the figure shows, at low utilization power consumption is derived from the properties of the

software-based system. As utilization increases, processing is shifted to the network, and the power

consumption changes little with utilization.

Here, the communication cost associated with in-network computing on demand is considered.

Stateless applications will require no additional communication cost to run, whereas stateful appli-

cation will have a communication cost that is bounded by the communication cost of shifting the

application from one server to another. The networking device providing in-network computing ser-

vices is expected to be en-route to a server running the application (otherwise it is not in-network

computing, but standard o✏oading), meaning that no additional latency is introduced.

Two components are required to support in-network computing on demand. The first is a con-

troller, deciding where the processing should be done and when the processing should be shifted

between a server and the network. The second is an application-specific task, which may be null, in

charge of the actual transition of an application.
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Figure 4.15: Power consumption of key-value store using in-network computing on demand. Solid

lines indicate in-network computing on demand, and dashed lines indicate software-based solutions.

4.5.3 In-network Computing On Demand Controller

Two types of in-network computing on demand controllers are considered: host-controlled and

network-controlled. This section shows proofs-of-concept for both approaches and evaluates them.

There are trade-o↵s between the two approaches. The network-controlled approach typically reacts

faster, but must make its choices based on fewer parameters. On the other hand, host-controlled takes

time due to measure power consumption and CPU usage.

Network-controlled in-network computing. The first controller design makes o✏oading de-

cisions in the network hardware, based on the tra�c load. The goal is to reduce load on the host

as early as possible, to take out bottlenecks, and provide another layer of o✏oading (rather than en-

cumbering the host with an additional controller). The control is not entirely automatic: all of its

parameters are configurable.

Figure 4.16 shows network-controlled in-network computing scheme. The controller utilizes a

pair of parameters to shift a workload from the host to the network. The first parameter is the average

packet rate that would trigger the transition, and the second is the averaging period (implemented as

a sliding window). If the average packet rate of the accelerated application exceeds the packet rate

threshold over the averaging period, the device transitions the workload to the network. A mirror

pair of parameters is used to shift workloads from the network back to the host. Using two sets of

parameters provides hysteresis, and attends to concerns of rapidly shifting workloads back-and-forth

between the host and the network.

The values used to configure the controller are taken from the evaluation of the target application,

such as introduced in Section 4.5.1. This is, however, a downside of this approach, as it requires some
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Figure 4.16: Network side in-network computing controller

knowledge of the observed application. A second drawback is that this approach does not take into

account the actual power consumption of the host. A drawback of this approach is that it does not

take into account the actual power consumption of the host. It only has access to the packet rate.

Di↵erent applications have very di↵erent power profiles [58], and there is no suitable heuristic that

can be applied to the shifting thresholds. The proposed controller is implemented in 40 lines of code

within the FPGA’s classifier module, and consumes negligible resources (order of 0.1%).

Host-controlled In-network Computing. The second controller design makes o✏oading deci-

sions at the host, using information such as the CPU usage and power consumption. A shift occurs

when there is a clear power consumption benefit, and the o✏oading leading leads to a performance

gain. A shift may also happen when computing demands exceed available resources, and the network

provides extra computing capacity.

Similar to the network-based controller, the host-based controller maintains two sets of parame-

ters: one for shifting the workload to the network, and one for shifting the workload back. As long

as the application is running, the controller monitors its CPU usage. The end-host’s power consump-

tion is also monitored using running average power limit (RAPL). If the application exceeds a given

power threshold set for o✏oading, and CPU usage is high, the controller shifts the workload to the

network. Monitoring the power consumption alone is not su�cient, as high power consumption can

be triggered by multiple applications running on the same host. As before, the information is in-

spected over time, avoiding harsh decisions based on spikes and outliers. In order to shift back to the

host from the network, the controller needs information from the network (e.g., packet rate processed

using in-network computing). Otherwise, the shift may be ine�cient, or cause a workload to bounce

back and forth. The proposed controller is implemented in 204 lines of code, and consumes only
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Figure 4.17: Host side in-network computing controller

0.3% CPU usage, mainly for performing RAPL reads.

The host-controlled approach provides better control and flexibility to the user. Yet, care needs

to be taken when benchmarking a workload [59]. An advantage of the host-controlled approach

is that we do not need application knowledge. Unlike the network-driven approach, one needs to

know only CPU usage and target power consumption. This does not mean that any application

can be o✏oaded: the network device must support the application. However, there is no need for

a full power/performance characterization. The host-based controller is not perfect: it does incur

a (small) processing overhead and it does require longer reaction cycles than a network-hardware

controller. The algorithms used are naive, providing a proof of concept. They can be enhanced by

more sophisticated algorithms. In energy proportional servers, energy e�ciency is not linear, though

power consumption still grows linearly with utilization [60], and algorithms such as those based on

PEAS [61] may improve energy consumption. These algorithms are beyond the scope of this section

and remain part of future work.

4.5.4 Discussion

4.5.4.1 Managing in-network computing on demand.

Power consumption di↵ers between use-cases, and each application has a di↵erent optimal thresh-

old for switching between software and hardware. While we demonstrated a transition based on

throughput, a di↵erent approach would be to monitor the utilization of CPUs or VMs. While mon-

itoring power consumption sounds like a palatable idea, it would be hard to apply it in a machine

serving multiple users and running multiple services. While there is a value in characterizing the

power consumption-to-throughput of each application, a more practical approach would be to apply

a rule of thumb to migration, based on throughput or CPU utilization. Such a value would need to
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apply for hysteresis and ignore short bursts of activity.

Generality of in-network computing on demand. in-network computing is not the magic cure-

all for data center’s problems. Not all applications are suitable to be shifted to the network, and

the gain will not be the same for all. In-network computing is best suited for applications that are

network-intensive, i.e., where the communication between hosts has a high toll on the CPU. Latency

sensitive applications are also well suited for in-network computing. It is no coincidence that the

most popular in-network computing applications to date are caching related [29, 43, 44]. Caching

provides a large benefit in the common case, and a way to handle tail events. Other applications may

find in-network computing on demand to be hard. For example, using Paxos in the network is hard,

and doing it on demand is even harder. The e↵ort of implementing an in-network computing solution

may just be too high for some applications. Furthermore, each application may have a di↵erent

power consumption gain, as shown in Figure 4.15.

In-network computing alternatives. Readers may wonder if there are no simpler solutions to

increase application performance, rather than in-network computing. One solution, for example,

is using multiple standard NICs in a server to achieve higher bandwidth [62, 63]. However, this

approach comes at the cost of more NICs, increasing power and price. Alternatively, one may use

multiple servers, or opt for a multi-socket or multi-node architecture [64]. These may be cost and

power equivalent to an FPGA, a smartNIC, or an ASIC based design. But, their performance per

watt is unlikely to match the ASIC-based solution. GPUs are e�cient for o✏oading computation-

heavy applications, but as they are not directly connected to the network, they are less suitable for

network-intensive applications.

FPGA, SmartNIC or Switch? “Where should I place my in-network computing application?”

one may wonder. The answer is not conclusive. Today, a switch ASIC can provide both the highest

performance and the highest performance per Watt. It may not be, however, the cheapest solution,

with a price tag of ⇥10 or more compared to other solutions2. Use a switch as the place to implement

in-network computing leads to other questions. What is the topology of the network? Can and will

all messages travel through a specific (non addressed) switch? What are the implications of a switch

failure (as opposed to a smartNIC/FPGA next to the end-host)? The answers are all application and

data center dependent.

SmartNICs maintain the same power consumption as NICs, typically limiting their power con-

sumption to 25W supplied through the PCI express slot, while achieving millions of operations per

Watt, including external memories access [65, 66]. Many smartNICs are, in-fact, FPGA based [67–

69].

Of the three, FPGA (and FPGA-based smartNICs) is likely to provide the poorest performance

and performance per Watt, due to its general purpose nature. Yet, FPGA performance per Watt in

real data centers is not significantly below ASIC. Azure’s FPGA-based AccelNet SmartNIC [67] con-

sumes 17W-19W (standalone) on a board supporting 40GE, providing close to 4Mpps/W for some
2List prices, obtained from https://colfaxdirect.com
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use cases. This is slightly better, but on a par with, the FPGA-based power consumption reported in

this work. The big advantage of FPGA, and FPGA-based platforms, is their flexibility—the ability

to implement almost every application and to use (on a bespoke board) any interface, memory or

storage device. ASIC-based smartNICs may not be suitable for every in-network function, but for

many applications, they will provide a good trade-o↵ of programmability, cost, maturity and power

consumption.

4.6 Summary

This chapter introduced in-NIC key-value cache design for a practical case. While L1 key-value

cache consists of only on-board DRAM in the previous chapter, this chapter introduced L1 key-value

cache composed of on-chip RAM and on-board DRAM to hide latency and to improve performance.

LaKe was introduced as a new architecture for energy e�cient in-NIC key-value cache. LaKe can

serve as a switch or a NIC, while presenting a multi-core, multi-level cache architecture, that balances

throughput, latency and power e�ciency. LaKe achieves ⇥17 better energy e�ciency than running

on a host, with ⇥6.7 to ⇥13.6 higher throughput, maintaining two orders of magnitude better latency.

LaKe does all that without giving up memcached functionality and while supporting a large and

scalable number of keys. Further, this chapter introduced optimized scheduling schemes for power

e�ciency.
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Chapter 5

The Case for DDoS Amplification Attack

This chapter introduces the applied case to DDoS mitigation, the important Internet security issue.

Section 5.1 introduces background of DDoS amplificaiton attack. Section 5.2 introduces related

work regarding DDoS detection and prevention. Section 5.3 then proposes architecture and detec-

tion scheme. Section 5.4 shows evaluations for absolute performance and capability of our system.

Section 5.5 discusses further research and then Section 5.6 remarks summary.

5.1 Introduction

Distributed Denial of Service (DDoS) attack is a significant problem of the Internet. Major DDoS

attacks exhaust network or server resources of victims. Amplification attacks using UDP-based

protocols such as DNS and NTP try to exhaust link capacity on victim networks. TCP SYN flooding

attacks lead to victim servers consuming CPU resources. With the growth of importance of services

on the Internet, DDoS attacks are not negligible from the viewpoint of service availability. Hence,

mitigating DDoS attack has become increasingly important.

The volume of DDoS attacks to exhaust network resources is increasing due to the growth of

link speed and server performance. Recently, the DDoS using Mirai botnet is reported that the most

massive tra�c volume of DDoS attack becomes over 600Gbps with infected 600k devices [70]. In

addition, as of Feburary, 2018, memcached is also used as an amplifier and the attack becomes more

than 1.35TBps, targeted to Cloudflare and Github. Akamai reported that Github servers receieved

1.35TB tra�c [71]. Also, 66% of DDoS attack’s targets are customers, such as end users, financial

and hosting services. The customer Autonomous Systems (AS) purchase transit connectivities that

are 10, 40 and up to 100Gbps links from transit network providers in general [72]. Therefore, today’s

DDoS attacks exhaust transit links e↵ortlessly; and thus DDoS attacks should be mitigated in transit

provider sides to protect customer networks.

On the other hand, a current dominant type of DDoS attack is DNS-based amplification attack.

The DNS protocol has a high tra�c amplification rate, and there are over 12 millions of open recur-

sive resolvers around the world that can be used for amplification attack [73]. Furthermore, Arbor
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Networks reports that DNS occupies 85% of protocols used for amplification attacks [74]. Thus, if

DNS-based amplification attack is wholly prevented, most of DDoS attacks can be eliminated. It is a

critical issue to prevent DDoS tra�c at a transit link since an Autonomous System needs to pay the

cost on communication fee with a transit AS depending on the volume of tra�c.

This section focuses on the DDoS mitigation on a transit AS’s link. To address the increasing

volume of DDoS attack, detection, and prevention at the AS-level link bandwidth are required. In the

manner of software mitigation scheme, it is insu�cient to forward the packets on data-plane to satisfy

over 10Gbps links. To build a middlebox for line rate mitigation, we need to choose a hardware-based

solution to achieve high forwarding throughput. This section proposes a novel hardware-based DDoS

mitigation system, called mitiKV, that focuses on DNS amplification attack. The mitiKV works as an

inline middlebox on a transit link between a transit provider and a customer network. mitiKV detects

and discards DDoS packets toward customer network without fail by using ICMP port unreachable

message. In addition, detecting and filtering the attacks are all processed in hardware-based key-

value store on Field Programmable Gate Array (FPGA), so that mitiKV achieves high throughput

up to 100Gbps. A prototype system was developed on a NetFPGA-SUME board [27] and was

demonstrated to prevent DNS-based amplification attacks as a proof of concept.

The evaluation shows that mitiKV has a capability of mitigation in 10Gbps line rate. Besides,

it was tested with the Internet tra�c combined with DDoS tra�c. mitiKV can prevent only DDoS

tra�c without a↵ecting the normal tra�c of the Internet tra�c. This methodology can apply to the

other types of UDP-based amplification attacks.

5.2 Related Work on DDoS Mitigation

This section will show related work in terms of detection methodology and storage design for de-

tected rules on DDoS mitigation.

5.2.1 Detection Methodology

DDoS detection mechanisms can be classified into two categories: anomaly detection and pattern

matching [75]. Anomaly detection based methods collect normal system or network behavior reg-

ularly and compare present state with the normal state to detect anomalies. PacketScore [76] based

on anomaly detection provides a score, called Conditional Legitimate Probability, that can be used

to decide a packet is malicious or not. An advantage of pattern matching over anomaly detection

is that it can detect several known attacks without fail. Snort [77], a popular open-source intrusion

detection system using pattern matching, has wide usage. The proposed detection method is also one

of pattern matching methods focusing on DNS-based amplification attack.

In addition to DDoS detection mechanisms, data-plane systems for packet forwarding and filter-

ing are also a fundamental part of DDoS mitigators. In such data-plane systems, high throughput is a

55



5. The Case for DDoS Amplification Attack
5.2. Related Work on DDoS Mitigation

technical issue to overcome the growth of attack tra�c volume. CYSEP [78] is a hardware architec-

ture for firewall, encryption/decryption, message authentication, and DDoS mitigation. The DDoS

detection system of CYSEP is PacketScore [76], and it is designed to be implemented in ASIC. The

proposed mitiKV and CYSEP mitigation module prevent link congestion attacks from exhausting

on high-speed networks by hardware implementation. On the other hand, other hardware-based mit-

igation approaches, Sentinel [79] and SQL DDoS Mitigator [80], mitigate end host CPU resource

exhaustion attacks by generating and sending CAPTCHA [81]. While these hardware-based solu-

tions focus on conventional anomaly detection to accelerate statistical processing and prevention

system, this chapter proposes a novel detection scheme and optimal hardware-based key-value store

to hold the rules generated by this scheme. FPGA-based DDoS detection by using an e↵ective corre-

lation measuring is proposed in [82]. It needs 354ns to distinguish DDoS attacks. In this chapter, we

are assuming the case of the Internet backbone, and DDoS mitigation requires line rate processing on

the link. Although the sophisticated algorithm to detect anomalies takes a certain time, once rule is

added, simple pattern matching can detect DDoS without statistical processing, which is low latency.

As opposed to hardware-based technique, software-based packet inspection implementations

such as Snort [77] have plenty of flexibility to inspect and filter packets from the network. Although

software-based technique historically has performance drawbacks, many proposals were addressed

to alleviate the drawbacks to take both advantages of high-performance and flexible packet process-

ing simultaneously. Hardware-based approaches can achieve high throughput keeping low latency,

compared with software-based solutions. GASPP [83] is a network tra�c processing framework

which integrates Graphic Processing Units (GPU) for their packet processing purposes. While tak-

ing advantage of flexible packet processing such as filtering with a regular expression specified by

users, it optimizes memory usage as well as packet scheduling for packet processing to speed up its

processing. It also integrates Snort to accelerate the performance to mitigate tra�c from attacks. The

proposed method does not require such a flexible method for packet processing as it only needs to

look at a specific portion of a packet. This simplified detection with protocol behavior gives us an

opportunity to implement the mitigation middlebox as hardware.

5.2.2 Storage Design for Detected Rules

Hardware-based key-value store [10, 14, 84] has been studied last five years (e.g., FPGA and ASIC).

It is a suitable platform for networked systems such as DDoS filtering, since hardware-based solution

utilizes an external memory for large capacity to manage a key-value pair with low latency, compared

with software-based key-value stores.

Content addressable memory (CAM) is utilized on a commercial network switch and a router to

retrieve the destination of an incoming packet and to refer rules against a packet flow (e.g., ACL).

While ASIC-based CAM has a 40M-80M bits capacity [85], mitiKV prototype has 262k entries

(34M bits) on BRAM; it can be expanded with an external memory. For the defense of recent
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Figure 5.1: The overview of mitiKV installation on a provider network. mitiKV box is installed on

a provider side of a customer link and works as an inline middlebox.

DDoS attack, it includes a number of flows because IoT devices are targeted, so DRAM can hold the

capacity to manage the flows rather than CAM. To satisfy this characteristic, the key-value store is

used to manage IP-based 4-tuple on an FPGA, while ASIC-based CAM can hold the same capacity

with FPGA’s internal RAM but it is expensive.

5.3 mitiKV Architecture

The mitiKV is a hardware-based, autonomous, inline DDoS mitigation system, which generates

DDoS rule automatically and prevents them. Figure 5.1 shows the overview of mitiKV on a provider

network. The attacker sends DNS queries to amplify the response packet size, then DNS open re-

solvers reply to victim servers. Since an AS pays the connection fee with the peered AS according

to the volume of tra�c, it is a critical challenge to reduce DDoS tra�c. Thus, mitiKV is located

in front of the customer AS to prevent DDoS packets and identifies the DDoS tra�c and generate

4-tuple rules for the filtering automatically. Section 5.3.1 proposes a novel DDoS detection scheme

with protocol behavior by using an ICMP error message, and Section 5.3.4 then provides hardware
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design. DDoS defense mechanisms can be characterized with three features: activity level, coop-

eration degree, and deployment location [75]. The proposed mitiKV is discussed in terms of these

features below.

• Activity level: mitiKV is reactive and pattern matching based detection mechanism. mitiKV

achieves high speed detection and prevention by focusing on DNS amplification attack.

• Cooperation degree: mitiKV does not need any other tra�c measurement or filtering sys-

tems. mitiKV performs DDoS attack detection and filtering with dedicated hardware. Besides,

multiple mitiKV boxes installed on multiple customers’ links work autonomously.

• Deployment location: mitiKV is located on a transit link which is connected to other net-

works. It protects a link connected to a customer network against DDoS attack.

In this manner, mitiKV works as an inline DDoS mitigator on customers’ links to protect cus-

tomer servers against DNS-based amplification attack.

5.3.1 DDoS Detection by ICMP Behavior

The key idea of the DNS-based amplification attack detection mechanism of mitiKV is leveraging

one of the most basic mechanisms of the Internet, ICMP Port Unreachable message. Since ICMP

port unreachable packet has 64 bytes of the original datagram’s data [86], DNS-based amplification

attack can be identified by checking ICMP port unreachable message on customers’ links.

The detection sequence is shown in Figure 5.2 and is explained below. Figure 5.3 shows the state

machine to manage 4-tuple state discussed below.

1. DNS Query: An attacker sends a DNS query to a DNS open resolver. The attacker spoofs its

source IP address as victim host’s IP address.

2. DNS Response: The DNS open resolver receives the query and replies to the spoofed source

IP address to the victim host via a transit link. mitiKV learns 4-tuple that consists of source IP

address, destination IP address, source UDP port number and destination UDP port number.

mitiKV updates the state of flow into Suspected.

3. ICMP Port Unreachable Meassage: The victim host receives the unexpected DNS response

packet and replies ICMP port unreachable message including the DNS response packet on its

payload. mitiKV updates the state of 4-tuple into Filtered and decides this as DDoS attack.

4. DNS Query: Repeating steps 1 and 2.

5. DNS Response: The DNS open resolver replies against spoofed queries, but mitiKV already

learned the 4-tuple and recognized that these packets were related to the DDoS attack. Thus,

mitiKV discards the packets.
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Figure 5.2: The detection sequence of mitiKV.

By this method, mitiKV can detect certain DNS-based amplification attack and prevent them

immediately. Because this method relies on ICMP messages, if they are perfectly filtered by firewalls

between any victim and amplifier hosts, the proposed method does not work. Please note that it is

assumed that amplifiers are distributed across ASes. In this case, the proposed method can reduce

DDoS tra�c if network paths where ICMP port unreachable message can go through exist between

ASes.

5.3.2 Hash Table Size Managed on mitiKV

Hash table size is the critical factor in terms of mitigating the DDoS attack. DDoS attackers may

spoof multiple source IP addresses. In this case, the number of combinations of source IP addresses

and source UDP port numbers that query packets include is important to mitigate the DDoS attack.

Thus, hash table size whether how many key-value pairs to be stored should be determined depending

on the expected number of flows, and key conflicts should be handled.

The hash table size is limited by a physical hardware capacity in which an FPGA has limitations

of an external memory module [25]. A simulator, written in C, of mitiKV behavior was built to

evaluate hash table sizes and the number of mitigated packets. This simulator performs hash calcu-

lation by the combination of source IP address, destination IP address, source UDP port number, and

destination UDP port number. Then, a hash table entry indexed by the calculated hash value is ac-

cessed. Finally, hit ratio is calculated from this procedure. Note that hit means that the pointed hash
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Figure 5.3: State machine of mitiKV that manages 4-tuple.

table entry can be inserted without overwriting a key-value pair which has already been registered.

A compulsory miss is counted as hit.

Here, a simple incremental pattern was used as data pattern, where combinations of destination

UDP port and source IP address are incremented for each query. Hash functions used are CRC32 and

lookup3 of Jenkins hash. CRC32 is often implemented as dedicated hardware for calculating frame

check sequence on Ethernet MAC. Jenkins hash is often used in a hardware design of key-value

store [10].

Figure 5.4 shows simulation results when hash table size is 1k and 262k entries using CRC32

and Jenkins hash to calculate hash table index, respectively. The x-axis denotes the number of com-

binations of amplifiers’ source IP addresses and destination UDP port numbers. Y-axis denotes the

hit ratio of packets which are mitigated by mitiKV. In 1k table size, mitiKV cannot mitigate these

packets related to DDoS attacks when the number of combinations is over 600 on CRC32. In 262k

hash table size, mitiKV cannot mitigate packets when the number of combinations is over 500,000.

In Jenkins hash, higher hit ratio than the ratio of CRC32 is observed. When the number of com-

binations is 1,000, the hit ratio is 38%. This result implies that hash table is used e�ciently when

Jenkins hash is adopted, compared with CRC32. Thus, we have to choose hash table size carefully

taking expected tra�c amounts and network interface of transit link into consideration. It is required

to further investigate the hashing system including the hash function to obtain the higher hit ratio on

mitiKV.
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Figure 5.4: Simulation result on CRC32 and lookup3.

5.3.3 Rule Management on Hardware-based Key-value Store

Hardware-based key-value store is used as rule management for decision of all packets to pass-

through or to be discarded.

The key-value store was optimized to meet the required network middlebox as described in the

following. The assumed data structure is the 4-tuple flow label as the key, which is comprised of

source IP address, destination IP address, source UDP port number and destination UDP port number

and an expiry time as the value as shown in Figure 5.5. In this context for a network middlebox, since

key length and value length are fixed size, we can reduce the number of lookup to tables (e.g., hash

table and bucket list).

Key-value store and hash table are looked up at the expense of the wildcard. We can also think

the number of tuples for each flow label n can be smaller than 4 to achieve e�ciency of table size.

We introduce trade-o↵s from a real Internet tra�c, which lead to errors when adopting n-tuple-base.

We explain each tuple attributes at the receiver of DDoS tra�c as described in the following.

• 4-tuple {Source IP address, Destination IP address, Source UDP port number, Destina-
tion UDP port number}
Although the 4-tuple flow level attributes can specify a fine-grained UDP-based flows, the at-

tack with randomized port is not absorbed due to limitation of rules generated by 4-tuple. It

takes time until the mitigator learns all the flows. On the other hand, mitigator decides the

action by 4-tuple flow, so false positives are reduced.

• 3-tuple {Source IP address, Destination IP address, Source UDP port number}
Some attackers use randomized destination port numbers against victim hosts. Since the num-

ber of tuples can be aggregated due to the lack of destination UDP port, the number of stored

entries can be reduced and mitigator uses memory more e�ciently. The attack by concerned

protocol is mitigated between specified hosts regardless of randomized ports.
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Figure 5.5: Hash table design on mitiKV.

• 2-tuple {Source IP address, Destination IP address}
The mitigator recognizes that the tra�c from source IP host to destination IP host is perfectly

malicious and mitigated tra�c. Instead, false positives increase.

• 1-tuple {Source IP address}
The mitigator recognizes that the tra�c from the host with the concerned source IP address is

perfectly malicious. The key size is only 4B, so store space is e↵ectively used and has more

entries than any n-tuple key. However, the detection by a single ICMP packet leads filtering

tra�c from the host even though the host sends legitimate tra�c.

Since the constraints of memory capacity a↵ect the hit ratio, the e�ciency of memory capacity

is critical. When hash collision occurs, the entry is updated to a new key if an expired time is

invalidated. Otherwise a new key is ignored.

This chapter focuses only on 4-tuple base data structure. Since key-value store uses a hash

function to look up the hash table, the number of the rule entries and the hit ratio of hash collision

are important design parameters.

5.3.4 Hardware Design

Figure 5.6 shows the proposed mitiKV architecture overveiw. mitiKV consists of the following

modules.

• DDoS Attack Filter module : This module monitors all packets to filter the packets related
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Figure 5.6: mitiKV architecture.

to suspected DDoS attacks. When DDoS attack packets are filtered, the module creates a

tuple which will be processed in database Lookup/Insert module. In the prototype FPGA

implementation, we assume DNS-based amplification attack as attack tra�c in Section 5.3.5.

In this case, DNS response packets whose source UDP port number is 53 are filtered.

• ICMP Filter module : This module monitors all packets whether packets with ICMP port

unreachable and an error packet over the ICMP matched with DDoS suspected packet as men-

tioned in Section 5.3.1. When packets are filtered, this module sends a query to database to

lookup state and then checks whether the packet is suspected DDoS attack or not.

• Database Lookup/Insert module : This module provides two interfaces, READ and WRITE

interfaces to manage key-value store for flows and their states. The DDoS Attack Filter module

and ICMP Filter module access this module to check the 4-tuple flow whether DDoS attack

or to update the state. This database is managed by hardware-based key-value store on the

memory module.

• System Counter : This module is a counter module generating timestamp for expiring logic.

The timestamp in value field is checked if time is expired when database module accesses each

key-value entry.

An external memory is used as the hash table as shown in Figure 5.6. The hash table can be

implemented on DRAM, SRAM, and internal FPGA memory. While SRAM and internal FPGA

memory modules has constant access latency, DRAM has dynamic access latency. The di↵erence

of these access latencies is hidden by implementing a pipeline deeply in which the number of stages

is equivalent to the access latency. On the other hand, the memory size will be a crucial factor to
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mitigate attack tra�c. To mitigate abusing tra�c, the hash table needs to be larger than the size

which is capable of storing the number of abusing flows in a period. The hash table size and hit ratio

on the hash table is the key component of this approach. They were described in Section 5.3.2.

Figure 5.5 shows hash table design on mitiKV. Each entry consists of key and value. Key is

the 12B fixed length and consists of IPv4 source address, IPv4 destination address, source UDP port

number and destination UDP port number. Value is 4B fixed length and consists of status, flag and

expiring time. The index is calculated by hash function to retrieve the key. The key retrieved from

the hash table is compared with the requested key to see if both the requested key and the key from

the hash table are identical. Status field is used to identify a suspicious or a filtered flow. Flag field

is used for validation of data, which utilizes 1 bit and the other bits are reserved. This validation bit

implies that data has been stored. If validation bit is set to 1 and expiry time is expired, this entry

becomes invalidation and can store a coming flow.

The expiry time is used to validate filtering rules. According to the investigation of UDP-based

amplification DDoS attack [87], the 99-percentile duration is 130.52 minutes. Thus, it is su�cient

for 16bit time counter with a second resolution in mitiKV as shown in Figure 5.5. Expired key-value

pairs are deleted when the hash table entry is read. Expiry time can be set an arbitrary value by an

operator. Operators can use 130 minutes or more based on past rule of thumb above. Since DDoS

trend and attack condition would change, network operators carefully choose the expiry time, which

a↵ects the communication after recovering from hijacking.

When hash table is fully utilized, a new entry will be added, depending on status field and expiry

field. When the status field of an entry is suspicious, a new entry can be replaced. When the status is

filtered, adding a new entry is depending on the expiry field. If the expiry time exceeds, a new entry

can be replaced.

5.3.5 An FPGA Implementation

This section illustrates a prototype of the proposed mitiKV. The proposed mitiKV is implemented

on Digilent NetFPGA-SUME board [9, 27]. An FPGA device used is Xilinx Virtex-7 XC7V690T

FFG1761-3. The board has four 10GbE interfaces for communication. Design tool used is Xilinx

Vivado 2015.4.

The proposed mitiKV module uses Advanced eXtensible Interface (AXI) Stream 1 as data bus

interface. 10G Ethernet Subsystem IP is used as a 10G MAC. The data width is 64bit. This imple-

mentation is based on AXI Stream data bus interface.

Integrating CPU into our implementation can provide configurations, statistical information and

manual managing of rules on key-value store via a user interface on UART. A soft-macro CPU was

not implemented for system configuration for the sake of simplicity.

The key-value store was implemented on BRAMs. The number of hash table entries is 1k and

1AXI is a family of microcontroller buses by ARM AMBA.
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Table 5.1: Synthesis results.

Hash Table Entry Size 1k 262k

Slice Utilization [%] 4.17 6.21

BRAM Utilization [%] 1.63 64.73

262k to store filtering rules. From the viewpoint of hardware implementation, while CRC32 can

be calculated by a single clock cycle, Jenkins hash can be calculated in 6 clock cycles [10], which

need 6 steps data pipeline to conceal the latency. Hence, as a hash function, CRC32 was chosen

for simplicity. If more capacity for storing rules is required, an external memory such as SRAM or

DRAM is also available to store them. As mentioned above, constant access latency for SRAM and

dynamic access latency for DRAM are hidden by implementing a deep pipeline. In the evaluation,

the BRAM-based mitiKV is used.

Specifically, 10GbE requires running at more than 156.25MHz when AXI stream data width

is 64bit. Table 5.1 shows the synthesis report of mitiKV per table size. The hash table sizes we

implemented are 1k and 262k sizes. We implemented 262k size hash table, which is the maximum

size of single Dual Port RAM IP in the targeted FPGA. The BRAM utilization is 64.73%. In case

more hash table space is needed, an external RAM such as SRAM and DRAM can be replaced with

BRAMs. Since the slice utilization indicates that mitiKV core is so small compared to the overall

FPGA’s area, the mitiKV core can be also embedded in other hardware-based network appliances.

5.4 Evaluations

This section provides feasibility in terms of two aspects: Can ICMP port unreachable message be

used for DDoS attack detection? and Can mitiKV defense DDoS attack even on the Internet back-

bone? Section 5.4.1 analyzes the Internet tra�c to provide the answer to the first question. To answer

the second question, Section 5.4.2 provides the hardware test to show mitigation performance under

the simple environment, and then Section 5.4.3 provides mitigation capability under the Internet

tra�c. Section 5.4.4 provides results of completion time for DDoS attack.

5.4.1 ICMP Port Unreachable Message

The proposed method in this section, heavily relies on the message encoded by the network stack

of the victim hosts. Therefore understanding how the ICMP destination unreachable message is

observed at a transit link is important since some implementations may not embed the original packet

information which triggers port unreachable message, some middleboxes may strip the packet or just

simply filtered out. The standard says If a higher level protocol uses port numbers, they are assumed

to be in the first 64 data bits of the original datagram’s data. [86], which is interpreted as 28 bytes
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Figure 5.7: Number of IP address pairs among 1) all of observed ICMP port unreachable messages,

and 2) 1) with DNS packet in the payload.

in IPv4 (i.e., 20 bytes IP header and 8 bytes higher protocol datagram) of the original packet is in the

payload. In the IPv6 standard [88] it specifies di↵erently with 1,280 bytes payload at the maximum

size.

This section investigates the availability of the key information for our proposed method by

analyzing the public packet trace at educational backbone network. In summary, the ICMP port

unreachable messages we observed fulfill our expectation to detect UDP-based amplification attack.

The detail will be discussed in the following description.

5.4.1.1 Dataset

We used tra�c traces from MAWI (Measurement and Analysis on the WIDE Internet) archive sam-

plepoints F [89] in July 2016 (i.e., 31 days). The archive includes 15 minutes daily packet trace at

the transit link of the backbone network, with anonymized IP addresses in the traces.

Although the tra�c trace only recorded a short duration in a day as well as with partial length

(first 96 octets) of packets, it contains enough information of what we are investigating here —we

only need the payload of IPv4 ICMP destination unreachable message and the trend of ICMP mes-

sage, not the full number of messages exchanged, to justify how the proposed method is practical in

the wild.

We focus on the number of source and destination pairs of IP addresses in the trace which 1)

have ICMP destination port unreachable (type 3 code 3) messages, 2) 1) with DNS packet (port

53 of UDP packet) in the payload. In addition to that, we counted the distribution of packet size

which each packet contains ICMP destination unreachable message to study how the network stack

implementation encodes the original packet when it sends back the error.
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Figure 5.8: Cumulative distribution of the packet size in the ICMP destination error message, which

indicates the existence of the original packet to identify it is DNS packet or not.

5.4.1.2 Results

Figure 5.7 shows the number of observed flows in the packet traces which contains the ICMP desti-

nation unreachable messages and payloads which the original packets were DNS packets. Figure 5.8

plots the distribution of packet size among all of ICMP port unreachable messages.

As shown in Figure 5.7, there are a number of ICMP port unreachable messages which the

original packets are DNS-related (query or response). Also Figure 5.8 represents that the minimum

packet size of the original packet is 28 bytes2, which can contain the port number of UDP to identify

if the packet is DNS or not.

Above information confirms that there are su�cient information to identify the packet under

suspicious by our proposed method based on the ICMP port unreachable messages.

5.4.2 Mitigation Test under DDoS Tra�c

This section shows the capability of DDoS prevention. mitiKV is tested to see whether it can detect

and prevent DDoS tra�c. We use the implementation with 262k hash table entries as described in

Section 5.3.5. Hash table hit ratio in Section 5.3.2 was simulated, so that this hardware should be

able to prevent up to around 200k without misses on the hash table.

5.4.2.1 Hardware Environment

Figure 5.9 shows an evaluation environment. Each component is explained as follows, except mkv.

Table 5.2 shows specification of each component on measurement environment.
2The minimum packet size 56 bytes of ICMP unreachable message can be interpreted as 28 bytes the original packet

since the size of IPv4 header is 20 bytes and the size of ICMP Destination Unreachable Message without the Original
datagram is 8 bytes.
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Figure 5.9: Evaluation envrionment.

(a) FPGA-based Attacker Emulator : Attacker emulator generates packets related to DNS am-

plifier attack. More specifically, it generates DNS response packets with response bit by chang-

ing the combinations of source IP address and destination UDP port number and sends them to

the victim host via mitiKV in 10Gbps line rate. Therefore, packets are generated against mul-

tiple destination UDP port numbers from UDP port number 53. In Section 5.4.3, OSNT [90]

is used on NetFPGA-SUME card instead of VC709 card.

(b) FPGA-based TAP device : In order to measure packets per second (pps) between mitiKV and

the victim host, the FPGA-based TAP device is installed. The TAP device has four Ethernet

ports. Two ports are bridging: port0 is connected to mitiKV, and port1 is connected to the

victim host. Remaining two ports are connected to (c) tra�c analyzer for mirroring of inbound

and outbound tra�c.

(c) Tra�c Analyzer : The tra�c analyzer measures packets per second from mitigator’s outbound

port and victim host’s inbound port. This analyzer performs tcpdump for capturing a large

number of packets to measure packets per second in two 10GbE ports: victim host’s RX and

TX ports. A RAM disk is used as storage to store captured pcap files in consideration of

storage throughput. The number of packets per 10 ms from the captured files are analyzed.

(d) Victim Host : It is assumed that victim host is a general Linux machine.
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Table 5.2: Components of measurement environment.

Hardware OS NIC + Driver Main memory

(a) Xilinx VC709 — — —

(b) Xilinx VC709 — — —

(c) Intel Core i5-4590 FreeBSD 10.2R Intel X520-DA2 + ixgbe 2.8.3 4GB

(d) Intel Core i7-4770 Fedora 24 (Linux 4.6.6) Intel X520-DA2 + ixgbe 4.2.1 32GB

5.4.2.2 ICMP Kernel Tuning

A general Linux machine is set as rate limit parameter that defines a packet per one second against

one host. Since the mitiKV is located at transit link of network service provider, mitiKV needs to

observe all packets in the located network and the connected network. To evaluate mitiKV hardware,

the Linux machine denoted in (d) is required to emulate multiple victim hosts located in the connected

network. Kernel parameters for ICMP on the victim host were configured for emulating multiple

victim hosts temporarily. A Linux host returns an ICMP packet with a port unreachable message

per one second against one remote host in an environment with default kernel parameters. Here, the

following parameters were tuned as returned packets per one second.

• /proc/sys/net/ipv4/icmp_ratelimit : 0

• /proc/sys/net/ipv4/icmp_msgs_per_sec : 14880000

• /proc/sys/net/ipv4/icmp_msgs_burst : 25600

In default, Linux host has parameters of rate limiting on ICMP packets. The parameter icmp_ratelimit

controls the maximal rate of sending ICMP packets and can be disabled by setting 0. The param-

eter icmp_msgs_per_sec defines the maximal number of ICMP packets from a host. To emulate

multiple victims at a single host in the experiments, the machine was tuned to return the ICMP

packets at 10GbE line rate because the rate of short packet (64B) is 14.88Mpps. The parameter

icmp_msgs_burst can set the burst size of ICMP packets.

5.4.2.3 Results

Figure 5.10 shows the result of DDoS attack to a victim host as shown in Figure 5.9. FPGA-based

Attacker Emulator generates DDoS attack tra�c which includes 1,000 flows — amplified tra�c from

DNS server to a victim host (incremental 1,000 destination UDP port numbers, which are equivalent

to 1,000 source UDP port numbers from an attacker). This measurement is performed on (c) tra�c

analyzer. Received packets from two network interfaces on the tra�c analyzer machine represent the
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Figure 5.10: DDoS attacking test against a victim host with incremental 1,000 destination UDP port

numbers.

Table 5.3: Components of measurement environment.

Hardware OS NIC + Driver Main memory

(a) Intel Xeon E5-2637 Ubuntu 16.04 LTS NetFPGA-SUME + sume_ri↵a 1.34 512GB

(b) NetFPGA-SUME — — —

(c) Intel Core i7-6700K Ubuntu 16.04 LTS Intel X520 + ixgbe 5.3.5 64GB

(d) Intel Core i5-3450S Fedora 24 Intel X520 + ixgbe 4.2.1 8GB

number of DDoS attack packets and ICMP port unreachable messages, respectively. The figure in-

dicates that the proposed detection method takes time to learn all DDoS flows. Specifically, we need

1,000 DNS packets and 1,000 ICMP port unreachable messages to generate rules for 1,000 flows, but

we need to consider round trip time between mitiKV and a victim host. In this time, a victim host re-

ceives DDoS packets because mitiKV does not complete generating rules until receiving ICMP port

unreachable messages on mitiKV. Although the latency between victim host and mitiKV is small due

to the back-to-back connection in this evaluation, the millisecond level latency to achieve ICMP port

unreachble messages to the mitiKV occurs due to network devices in the practical case. Figure 5.10

indicates that dropping packets in a first second mean packets to pass through mitiKV until filetering

rules are generated. After completing to generate rules, packets are perfectly filtered by mitiKV. The

learning time is depending on the round trip time between mitiKV and a victim host. In this case, the

victim may receive more attacks in a period of learning flows on the mitiKV because it takes more

time to learn DDoS flows.
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5.4.3 Mitigation Test under DDoS Tra�c with the Internet Backbone Tra�c

In this section, we try to understand the behavior of mitigation against the real world tra�c. To

examine it, a trace was created by combining tra�c data and pseudo-DDoS tra�c, which is DNS

amplified packets with 1,036 bytes as packet size, including 1,000 flows. We use SINET5 [91]

backbone tra�c as of 18th November 2015 and extracted 1M packets and concatenated it with DDoS

amplified tra�c which we prepared. In the extracted tra�c, average packet size is 688.74 bytes and

average throughput is set to 2,038 kpps.

For this experiment, almost the same environment in Figure 5.9 is used, but replaced FPGA-

based Attacker Emulator with OSNT [90] on NetFPGA-SUME to replay the tra�c file we created.

Table 5.3 shows the environment used in this experiment. In tra�c analyzer, tcpdump was performed

to capture packets on RAM disk. Note that, in this experiment, since the purpose is not throughput

measurement but confirming protocol behavior and mitigation test under the Internet backbone traf-

fic, the inter packet delay was set to 10µs on OSNT to capture them without packet loss due to capture

machine’s performance.

To confirm the e↵ectiveness of mitiKV, two trials were examined: 1) tra�c replaying with mi-

tiKV and 2) tra�c replaying without mitiKV. In Figure 5.11, while the tra�c with mitiKV is cleaned

up after mitigation by mitiKV, the tra�c without mitiKV shows the tra�c including DDoS attacks.

We used pcap file including 1,010,000 packets and repeated the tra�c file 10 times with OSNT, so we

generated 10,100,000 packets in total: 10,000,000 packets as normal and 100,000 packets as DDoS.

In the tra�c without mitiKV, 10,100,000 packets were captured. When we used mitiKV and tried

this experiment five times, 1145.2 DDoS packets on average (standard deviation is 15.6) were passed

through mitiKV for learning the DDoS flows by detecting ICMP port unreachable messages. In this

case, 98,854.8 DDoS packets of 100,000 DDoS packets were reduced on average. That is, in this

setup, the mitigator reduced 98.8% DDoS packets in total when mitiKV is used with the real Internet

tra�c. Tra�c before cleaning up is the almost constant packet rate at 100kpps. In contrast, mitigated

tra�c shows a periodical wave because we added DDoS tra�c in the tail of the regular backbone

tra�c and repeated replaying the concatenated tra�c file.

Thus, mitiKV can prevent DDoS attacks drastically under the Internet backbone tra�c. In this

case, 100,000 DDoS packets which include 1,000 flows were used. Current BRAM-based mitiKV

can hold 262k flows, which can mitigate less than 262k flow attacks. For the recent trending attacks,

we can expect a longer duration for DDoS attack and a number of flows for DDoS. In such cases,

mitiKV can also utilize external memory as the key-value store, sacrificing its access latency.

5.4.4 Mitigation Completion Time and Rate

DDoS tra�c is generated with Namp = 512, 1k, 2k, 4k, 8k, 16k and 32k. The completion time

depends on Round Trip Time (RTT) between a victim host and amplifiers, and detection scheme,

which we use ICMP-based detection in this section. The number of targeted victims also a↵ects
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Figure 5.11: Mitigation test with extracted tra�c of Internet backbone.
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(b) Multiple targeted victims emulation

Figure 5.12: The mitigation completion time in a local environment. FPGA-based attacker emu-

lator generates packets with Namp source IP addresses to one/multiple target(s). A victim host has

limitation of returning ICMP port unreachable messages. In the (a), we did not modify Linux kernel

related to ICMP. Thus, a victim host returns an ICMP error packet per 1ms. In the (b), we tuned

kernel parameters related to rate limiting of ICMP.

the completion time of mitigation due to the limitation of the response rate of ICMP error messages

by a victim host machine configuration. Thus, two scenarios were built using a single machine as

victim(s) in the following: 1) the single victim host and 2) multiple victim hosts. 1) uses default

Linux machine used as a victim host. 2) uses the same machine with 1) and tuned ICMP kernel

parameters. In this experiment, we use CAM-based mitigator to compare key-value store with CAM.

This CAM-based mitigator is implemented on the same FPGA board and uses the same detection

logic with mitiKV. Note that we use NetFPGA-SUME boards as (a) and (b) on Table 5.3, and replace

machines as (c) and (d) with machines that have Intel Core i7 series CPU. Victim host which is

denoted as (d) utilizes 64GB RAM.

In this experiment, the following two scenarios were assumed.
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Figure 5.13: The mitigation completion time in a local environment related to ICMP into one victim

host. Left figure shows the result when the target is a single victim host. Right figure shows the result

when the target is multiple victim hosts.

1. Namp amplifiers attack against a single targeted victim host in order to focus on performance

of a single node.

2. Namp amplifiers attack against multiple targeted victim hosts in order to observe entire pack-

ets filtering.

Figure 5.12 shows the result of generating DDoS tra�c up to 8k of Namp. In the environment

(a) including a single targeted victim host, a single Linux based victim host returns ICMP port un-

reachable messages in the default speed of 1000 packets per second. Since the proposed mitigator

generates rules in the same speed by detecting ICMP port unreachable message and filters packets

which are triggered by the rule, the finished time depends on the number of source IP addresses.

In the environment (b) including multiple targeted victim hosts, victim hosts which are emulated

by setting Linux kernel parameters related to ICMP on a single linux machine, return ICMP error

messages without limiting the rate of ICMP error messages. Thus, instant mitigation was observed

in the (b) of Figure 5.12. In both environments, though DRAM-based mitigator completely achieves

to prevent packets after detection, CAM-based mitigator fails to prevent over 1k source IP addresses

because it has limited entries.
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Table 5.4: Scalability.

10GbE 40GbE 100GbE

Clock Frequency [MHz] 156.25 156.25 322.266

Data Width [bit] 64 256 512

DNS Reply Detection [clock cycles] 8 2 1

Hash Function (CRC32) [clock cycles] 1 1 1

KVS Processing [clock cycles] 2 2 2

Pipelining Depth 11 5 4

Figure 5.13 shows the result of completion time to have detected ICMP error messages and to

have mitigated DDoS tra�c related to them. In the figure, x-axis denotes the number of source IP

addresses and y-axis denotes the completion time. As a result, while CAM-based mitigation has

not finished over 1k flows in both environments, KVS-based mitigation using DRAM has finished

depending on the rate of ICMP error packets.

5.5 Discussion

Scalability up to 100Gbps link
Transit links will be replaced with 40Gbps and 100Gbps high bandwidth link interfaces to pro-

vide network services to their customers. We investigated MAC IP specification provided by Xilinx

and calculated required clock cycles for a hardware-based pipeline. Table 5.4 shows the scalability

on 10GbE, 40GbE and 100GbE. To support 100GbE interface, high-end FPGA series are required to

implement mitiKV. It is a simple pipeline to design 40GbE and 100GbE because required clock cy-

cles related to packet parsing for detection of DNS response are reduced due to increasing data width

of MAC on 40GbE and 100GbE. To support high-speed interfaces such as 40GbE and 100GbE, a

custom FPGA board equipped with these interfaces is required. The mitiKV core design is applicable

to these interfaces.

Deployment level
It is assumed that mitiKV is placed in front of the customer AS on aspect of AS’s transit link. To

manage high volume tra�c, DRAM implementation is not negligible. On the other hand, mitiKV

can be deployed on the various scale location. This mitiKV can also be e↵ective for the security to

locate in front of routers on home networks, o�ce, and university by using proper memory module

including DRAM, SRAM, and BRAM.

False positive
ICMP port unreachable message is used for network diagnosis to confirm the port available or not.

Therefore, false positive may occur when network diagnosis is used. To avoid this false positive,
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expiry time for DDoS duration was introduced. Thus, network diagnosis may fail due to mitiKV’s

filtering.

Application to programmable switches
Programmable switches are emerging (e.g., Tofino [54]). The proposed scheme is suitable for match-

action tables to manage rules processed on the key-value store. Therefore, we are going on devel-

oping it for the programmable switch. However, the current model can utilize external SRAM chip.

We will also extend this architecture with larger external memory (e.g., DRAM).

5.5.1 Future Work

For the future work, this section summarizes three points.

Protocol supporting
While this chapter focuses on DNS protocol, mitiKV can support other protocols (e.g., NTP, SSDP

and memcached) by adding filters of the specific protocol and logic. Further research can explore

other protocol extension.

RTT and thoughput
This chapter described the middlebox design which is assumed to place on the Internet path. Thus,

this middlebox, mitiKV a↵ected network latency. So, extended evaluation is measuring RTT and

analized the impact of network sevices. Besides, the mitiKV can be evaluated whether mitiKV

processes at line speed accurately.

Implementation
In this implementation, the version with 262k bit BRAM has a negative slack, which means target

frequency was not matched. Some normal packets lost can be observed. Thus, the improvement

of the implementation would be performed using new generation FPGA (e.g., ultrascale+ FPGA in

Xilinx).

5.6 Summary

This chapter proposed a novel hardware-based DDoS mitigation system, called mitiKV, which fo-

cuses on DNS-based amplification attack. We focused on protocol behavior of the DNS-based am-

plification attack and the ICMP port unreachable message. The mitiKV detects and manages DDoS

attacks on hardware-based key-value store. This chapter analyzed real-world tra�c and showed that

ICMP port unreachable messages have packet payload including required data for our protocol-based

approach. A prototype system was implemented on an FPGA board to show that mitiKV can mitigate

malicious tra�c in 10GbE. Evaluation results demonstrated that mitiKV has capable of preventing

DDoS packets on the Internet tra�c with DDoS attack. We discussed the scalability of the proposed

approach for further high throughput interfaces, such as 40GbE and 100GbE.
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Chapter 6

Conclusions

6.1 Discussion

This dissertation proposed multi-layer key-value cache architecture using in-NIC and in-kernel caches,

which can improve the performance by increasing hit ratio on lower level caches. In this thesis, sim-

ulation results showed that a variety of design options can be adopted in the cases on the proposed

architecture.

This dissertation introduced the case for DDoS mitigation as an application of the proposed

architecture. A prototype of DDoS mitigation middlebox was developed with on-chip RAM of an

FPGA. While exteranl memory modules can be replaced with on-chip RAM and store more flows on

the memory in order to support massive DDoS tra�c, latency increases on data plane due to memory

access latency to external memory modules.

In Chapter 4, level 0 cache which uses on-chip RAM of an FPGA to in-NIC cache, was intro-

duced. In this prototype, 1024 entries were developed as level 0 cache due to design limitation. More

entries can be expected in next generation FPGA technologies. Besides, two power management

shemes were introduced: host-based controller and in-NIC based controller. Realistic workload ex-

periments on the proposed implimentation using these power reduction schemes are important as

future work.

The proposed architecture can be applied to not only DDoS mitigation but also message queuing

system, real-time data streaming, domain name system, and so on. Note that it is important to have

temporal locality to enable the proposed architecture since lower level cache has small capacity.

Massive lower level cache capacity is expected to improve hit ratio on caches.

6.2 Concluding Remarks

In this dissertation, multi-layer key-value cache architecture using in-NIC cache and in-kernel caches

was studied in order to bridge the growth of networking and of CPU performance.

Networking equipment evolution has increased rapidly, resulting in the gap between network
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interface speed and CPU performance. Historically, cache hierarchy has been used in case we en-

counter the speed gap between CPU and memory. However, we have faced the gap between CPU and

network. Chapter 3 introduced the concept of the network-based multi-layer cache hierarchy, which

introduced in-NIC cache as the first level cache and in-kernel cache as the second level cache, and

the implementation of cache hierarchy organization on an open source platform. Simulations were

performed for the design options such as write policy, inclusive cache vs. non-inclusive cache and

eviction policy and so on. These results imply that this architecture is e↵ective for the gap mentioned

above.

Chapter 4 introduced the proposed architecture implemented on an FPGA equipped on NIC and

showed the architecture integrated with network datapath on NIC. Level 0 cache (on-chip RAM) is

introduced in in-NIC cache design to reduce DRAM latency and to improve in-NIC cache’s perfor-

mance. When the query is hit on the level 0 cache, the latency and the performance turned out to be

improved. Further, scheduling scheme for more energy e�ciency was introduced in aspect of in-NIC

tra�c measurement and power measurement in a host machine.

Chapter 5 applied the proposed FPGA architectur eapplied to DDoS mitigation, which is one

of the important Internet security issues. To detect DDoS flows quickly, an ICMP-based detection

was introduced. Tra�c analysis results indicated a capability of the detection scheme on the Internet

backbone. In this chapter, hardware-based key-value store to mitigate DDoS tra�c using an ICMP-

based detection scheme was introduced. A prototype system was developed using hardware-based

key-value store. Experiment results of DDoS testing in 10GbE line rate imply a capability of DDoS

mitigation. To protect a massive flows, external memory modules are expected to work. In this way,

it is expected that the proposed multi-layer key-value store could be applied for various applications.

The main contribution in this dissertation is exploring a variety of design space on multi-layer

key-value cache architecture: inclusive vs. non-inclusive cache, write-through vs. write-back, asso-

ciativities and eviction policies. In addition, in-NIC cache architecture combining on-board DRAM

and on-chip memory was designed and explored in terms of low latency, high throughput, and power

e�ciency. As a result, it achieved higher performance than existing memcached design in terms of

the three metrics. The case for an application using in-NIC cache design showed DDoS security box

for DDoS mitigation system.

Possible future work is optimization of multi-layer key-value caches using in-NIC cache in the

context of in-network computing, since FPGA takes power consumption even when query work-

load is low. Thus, we will explore highly energy e�cient system with in-NIC cache using proper

scheduling approach for the in-network computing.
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