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第 1 章

序 論

1.1 研究背景

画像処理技術とは，人間が目で感じる視覚情報を画像情報として捉え，コンピュー

タ等の計算機器で処理する技術である．画像処理技術が必要な分野は，個人の PC，ス

マートフォンやタブレット PC上で扱う写真・動画情報，ビジネス上でも産業や，テレ

ビ等の通信やネットワークなどの多岐に渡っており，日常生活には欠かせないものと

なっている．

近年，ハードウェアでの計算処理技術が大幅に進歩し，画像処理技術は目覚ましい発

展をとげている．これは，ハードウェアの処理技術が高まることによって，大容量の画

像を処理可能になったこと，処理の高速化に伴うリアルタイム処理化の幅が広まったこ

と，スマートフォンに代表される携帯機器にも搭載可能なより小型で高速なハードウェ

アが出現していることなどが理由である．画像処理技術の発展に伴い，4Kテレビに代

表されるような高解像度の画像処理技術や，モバイルデバイス上の画像処理の可能性が

広まった．

画像情報に対するユーザーの価値観にも変化が現れている．それは，スマートフォン

等の携帯撮像機器の普及によって，誰でも気軽に写真を取れるようになったこと，www

や SNS 上にこれらの写真が数多く投稿され，第三者の取得した画像を簡単に閲覧でき

るようになったことが理由にあげられる．

画像情報は撮像機器によって，被写体からの視覚情報を撮影することで取得される．

人間にとっての視覚情報とは，光源からの光を物体が反射し，その光が人間の視神経に

捉えられることで認識されるものである．その光の量が多いほど明るく，少ないほど暗

く知覚される．ディジタル画像はこの仕組みを模したものであり，格子状に配置された

1



被写体 光学系 イメージ
センサー

アナログ
処 理

ディジタル
処 理

撮影環境
(光量・ヘイズ)

焦点ボケ

不適切な
露光時間

センサー
の⽋損

単板式の
⾊⽋損

回路の
暗電流

量⼦化
誤 差

通 信

JPEG
圧縮誤差

画像編集 再圧縮

パケット
ロ ス

A - D
変 換

図 1.1 画像情報の取得とその過程で入る劣化

受光素子が物体から届く光の量を電圧に変換して計測する．受光素子は格子状に配置

されているので得られる画像は 2 次元上に分布した値となる．ただし，実際にはコン

ピュータ上では連続値を取り扱えないので，受け取った光の量を 256階調の離散値に量

子化したものを画像情報として取り扱っている．

画像情報は図 1.1 上部の様に，被写体から撮像機器での各プロセス，画像処理を経

る．この際に画像情報は同図の下部の様に様々な要因から劣化を受けたものとなる．被

写体には霧や雨すじ等の特性が含まれる．被写体をレンズなどの光学系に通す際には，

撮像機器の動きによるモーションぶれや，レンズの焦点位置に基づく焦点ぼけが発生す

る．光学系を通った光をイメージセンサーで取得する際に，センサーの欠損部分は画素

の欠損となる．イメージセンサーから取得された電気信号を処理するアナログ回路にお

いては暗電流に基づくノイズが混入する．アナログ信号からディジタル信号に変換する

A-D変換時には量子化誤差が，信号をユーザーが扱えるデータに変換するディジタル処

理の際には JPEG圧縮誤差や画像処理による劣化が混入する．

画像再構成技術は，これらの劣化過程をノイズとして画像から取り除き，本来の被写

体の情報を得る技術であり，重要性が高い．画像の劣化過程は，撮影環境や焦点ボケ，

センサーの欠損などのノイズの混入要因に応じて異なったモデルに基づいており，これ

らのモデルの想定を間違うとノイズを除去できないのみでなく，本来の原画像の情報を

損なう．そのため，処理したい画像の種類に応じて適切な劣化のモデルを選択する必要

がある．

2



表 1.1 劣化行列と加法性ノイズによる劣化過程と再構成手法

劣化の種類 劣化行列D ノイズ n 再構成手法

焦点ボケ，手ぶれ 畳み込み行列 加法性ノイズ ぶれ除去
低解像度化 ダウンサンプル行列 画像補間，超解像
ベイヤーパターン マスク行列 加法性ノイズ デモザイキング
カメラの暗電流 ガウスノイズ ガウスノイズ除去
センサーの欠損 インパルスノイズ インパルスノイズ除去
JPEG 圧縮誤差 ブロックノイズ ブロックノイズ除去
画像の欠損 マスク行列 インペインティング

1.2 既存研究

1.2.1 画像の劣化過程の表現

既存の多くの研究では，劣化画像は画像に対して劣化行列をかけて，加法性ノイズを

加算した形で劣化画像を表現する．すなわち，劣化のない画像のベクトル表現を x，劣

化画像を y，行列の形で表現される劣化過程をD，加法性ノイズを nとしたときに，劣

化画像は以下の表現で表すことができる．

y ≃ Dx + n (1.1)

この表現において，劣化行列D や加法性ノイズ nで何を表すかによって画像の劣化過

程のモデルおよびその復元問題の種類が決定する．例えば，カメラの暗電流によって生

じるガウスノイズや，センサーの欠損によって生じるインパルスノイズ，JPEG圧縮誤

差によって発生するブロックノイズなどは加法性ノイズ n によって表現することがで

きる．画像の低解像度化によって発生するボケ，撮像機器の焦点ボケ・撮像機器の動き

に基づくモーションぶれは劣化過程D を用いて表現することができる．表 1.1に劣化

行列D，ノイズ nの表現と，それを除去する再構成手法の例を示した．

1.2.2 画像の超解像問題

画像信号を保存・伝送する際に低解像度化を行うと，画像にぼけが生じる．画像の高

解像度化技術は，低解像度で撮像された画像を高解像度の表示機器に表示する際，画像

補間によって生じるボケやジャギーの影響をなくし，より高繊細な画像を得る技術であ

る．この技術は近年高解像度化の著しいディスプレイ等の画像表示機器上で，既存の映

像資源をより高品質に表示するための技術として注目されている．図 1.2 に示すよう
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画像補間

超解像

フィルタベース

マルチフレーム超解像

シングルフレーム超解像 補間ベース

周波数ベース

機械学習ベース

機械学習ベース

再構成ベース

回帰問題ベース

補間ベース

辞書ベース

図 1.2 画像の高解像度化のためのアプローチの分類

に，画像の高解像度化のアプローチは，画像補間問題と超解像問題に分けられ，超解像

問題はシングルフレーム超解像とマルチフレーム超解像に分類される．

画像補間問題は，得たい画素の近傍から線形フィルタ [1–3]や回帰問題 [4,5]などを利

用して画素値を得る手法であり，後述の超解像に比べて高速な手法が多い一方で，画像

が本来持っていて，低解像度化の際に失われた情報の復元精度には限界があり，エッジ

境界等でボケやジャギーを生じるものが多い．超解像問題は画像の高周波成分等の，入

力低解像度画像に含まれなかった情報の復元を行う点で画像補間問題と異なっている．

超解像問題のアプローチには，入力画像の枚数によって，シングルフレーム超解像と

マルチフレーム超解像に分かれる．マルチフレーム超解像は，複数の画像から高解像度

画像を再構成する方式である．このような画像はビデオの連続するフレームや，露光時

間の違う写真の組 [6]，異なるズームの画像の組 [7]，動画処理における異なるフレー

ム [8, 9]などを使用することで得られる．マルチフレーム超解像は，1枚の画像から高

解像度画像を復元するシングルフレーム超解像に比べて，利用できる画像情報が多い

分，高精度な画像を得やすく盛んに研究されており，補間を用いたものや [4]，画像の周

波数特性を利用したもの [10]，MAP法 (Maximum a Posteriori，最大事後確率) を用

いたもの [11–14] が提案されている．一方で，マルチフレーム超解像は特に画像の拡大

率が高い時に画像の詳細部が失われやすい問題がある [15]．

シングルフレーム超解像問題は一枚の画像から高解像度画像を得る手法であり，複数

の画像を用意する必要がない分，マルチフレーム手法より広い範囲に適用できる．しか

し，シングルフレーム超解像問題は得たい未知点の数が既知点の数よりも多い不良設定
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問題となり，問題の不良設定性によって発生するぼけやジャギーなどをいかにして取り

除くかが課題となる．手法 [16, 17]では画像補間技術を発展させ，補間の際のジャギー

の発生を抑えている．手法 [18–20]では，画像の自己相似性に着目して，低解像度画像

中の画素値に成り立つ関係式を高解像度画像に適用して超解像を行う．

画像再構成に基づくシングルフレーム超解像では，多数の学習データセットをもとに

低解像度画像から高解像度画像を再構成する関係式を導出して超解像を実現する．手

法 [21] では Markov Random Field を用いて低解像度・高解像度の関係を学習させる．

手法 [22] はこのアプローチを拡張し，Primal Sketch Prior を用いてぼけたエッジ等を

強調している．手法 [23] は Locally Linear Embedding を用いてより少ない学習デー

タセットで学習を実現する方法を提案している．手法 [24, 25]ではハッシュ分けした画

像領域ごとに個別に線形フィルタの形で低解像度・高解像度の関係を学習させている．

手法 [26–29]では深層学習を用いて多数の学習データセットから低解像度画像から高解

像度画像を再構成する関係式を導出する．

辞書ベースの超解像手法は画像再構成に基づくシングルフレーム超解像手法に分類さ

れ，事前に低解像度画像パッチと高解像度画像パッチの対応関係を辞書として保持して

おき，低解像度画像を低解像度辞書で，高解像度画像を高解像度辞書で表現する．これ

は，辞書中の低解像度パッチと高解像度パッチの間にはぼけ・ダウンサンプルを含む低

解像度・高解像度の関係が成り立っており，低解像度辞書から合成された画像と，高解

像度辞書から構成された画像にも同様の関係が成り立っているという想定に基づいて

いる．高解像度・低解像度の辞書のペアは，学習用の画像に対して，高解像度版と低解

像度版を得て，それをもとに学習される．この方式は手法 [30] で初めて提案されてい

る．画像を辞書の要素の線形結合で再構成する方式は，他の画像処理手法とも容易に統

合することができ，詳細強調 [31] やノイズ除去 [32] 等に用いられている．辞書ベース

超解像は高解像度画像の細かいテクスチャ部分の復元に関して他の手法と比べて有利で

ある [33]．手法 [34] では事前に用意した高解像度・低解像度から切り出したパッチを

もとに圧縮センシング [35, 36]に基づくスパース再構成問題を用いて超解像を行う．手

法 [37] では，この手法の計算時間に着目し，組み合わせ辞書学習によって辞書の要素数

を圧縮し，計算コスト削減を図っている．

画像劣化の観点では，低解像度画像は高解像度の画像を劣化させたものとみなし，そ

の劣化特性を取り除くことで高解像度化を行う．低解像度画像は高解像度画像にダウン

サンプルが入ったものとみなすことができる．また，信号に直接ダウンサンプルを行っ

た時に高周波成分が回りこむ事によって発生するエイリアシングの影響をなくすため

に，原画像にぼけカーネル（点拡がり関数，PSF）の特性を想定する事が多い．そのた
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め，超解像問題は低解像度画像をアップサンプルすると共に，ぼけカーネルの特性を取

り除く問題と定義することができる．低解像度画像を y，高解像度画像を x とし，ぼ

けカーネルをH，画素値のサンプリングを行う行列を S としたときに，低解像度画像

y は，高解像度画像 xに，ぼけH，サンプリング S をこの順でかけた以下の形で表さ

れる．
y = SHx (1.2)

これは，式 (1.1)においてD = SH とした表現とみなすことができる．しかし，この

式を用いて y から xを求める問題は不良設定問題となるため，一意の xを定めること

はできない．

マルチフレーム超解像は，複数の画像を入力として用いることで問題の不良設定性

を解消する．マルチフレーム超解像のアプローチとしては，すべての画像に対して式

(1.2)の関係が満たされると想定して，モーション行列Mk で位置合わせした高解像度

画像と低解像度画像の間で以下の最小二乗問題を解いて高解像度画像を求める方法が取

られる．
x = argmin

x

∑

k

∥yk − SHMkx∥2
2 + ρ(x) (1.3)

ρ(x)はxの事前分布によって決定される制約項であり，Total Variationノルム [11,14]，

L2 ノルム [12]，L1 ノルム [13] が用いられる．

1.2.3 画像のぶれ除去問題

撮像機器の手ぶれや被写体の動き，光学系の焦点距離と被写体とのずれ，光学系自身

が持つ伝達関数によって画像にぶれが混入する．ぶれ除去問題はぶれを含む画像からぶ

れの影響を取り除いて本来のぶれ・ぼけのない画像を得る技術である．劣化画像である

ぶれ画像は劣化のない原画像にカーネル (PSF)と呼ばれるぶれ特性が畳み込まれた画

像とみなすことができる．手ブレ画像の補正は，これの逆演算に相当し，逆畳み込み

(Deconvolution)とよばれる．画像信号に対する既存の逆畳み込みのフレームワークは

大きく２つに分けることができる．既知のカーネルを用いて画像を補正する Non-Blind

Deconvolutionと，ブレ画像のみを入力とし，カーネルと補正画像の両方を得る Blind

Deconvolution である．Non-Blind Deconvolution の手法は古くから多くのアルゴリ

ズムが提案されてきている．一方で Blind Deconvolution問題は，求めたい画像とカー

ネルを得るための情報が入力のブレ画像から大きく欠落しているため，非常に困難な課

題であり，Blind Deconvolution の具体的な手法が出てくるまでに，1990 年後半を待
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つことになった．

画像の劣化過程の数学表現を考えた時，ぶれ画像はぶれのない画像とカーネルとの 2

次元畳み込みの関係で表現される．すなわち，ぶれ画像の 2次元行列表現を Y ぶれの

ない画像の 2次元行列表現をX，カーネルの 2次元行列表現をK，2次元畳み込みの

演算を ⊗としたときに，Y はX, K を用いて以下のように表現される．

Y = X ⊗ K (1.4)

また，ぶれ画像 Y を 1次元の列ベクトルにした表現を y，ぶれのない画像X を 1次元

の列ベクトルにした表現を xとしたときに，ぶれ画像 y はぶれのない画像 xに行列 C

を前からかけ合わせた表現として以下のように表される．

y = Cx (1.5)

行列 C は，カーネル行列K の要素を画像 xに対応する位置に配置したもので，K の

畳み込み行列とよばれる．畳み込み行列を用いることで，画像のぶれ・ぼけの特性は式

(1.1)中の画像の劣化行列D を用いて表現できることがわかる．

ぶれ・ぼけのカーネルを未知とする Blind Deconvolutionのアルゴリズムでは，カー

ネルの表現K も未知数として推定する問題となる．しかしながら，1枚のぶれ画像 Y

からカーネルK および画像X の両方を推定する問題は不良設定問題となり，式 (1.4)

の関係を満たす画像X およびカーネルK の組み合わせは一意に定まらない．問題の

不良設定性を解消するアプローチの一つとして，カーネルK に対して強い制約条件を

課すアプローチが取られた．手法 [38–42]では直線状のカーネル，手法 [43–45]では折

れ線状のカーネル，手法 [46]では回転によって生ずるカーネルに限定して補正を行う．

このような Blind Deconvolution のアプローチをパラメトリックなアプローチと呼ぶ．

パラメトリックなぶれ軌跡推定法は，ブレ軌跡問題を大幅に簡略化できるものの，複雑

なブレ軌跡には対応できない問題がある．

ぶれカーネルの形状に制約を加えないノンパラメトリックな推定手法も提案されてい

る．ノンパラメトリックな推定手法はカーネルの形状に影響されない推定が可能になる

他に，焦点ぼけを含むカーネル推定にも適用できる利点がある．この様なノンパラメト

リックの推定手法は Fergusの手法 [47]によって提案された．この手法は変分ベイズ推

定によってK とX の推定値を得て，これによって得られたカーネルの推定値K と，

ぶれ画像 Y から，Richardson-Lucy法 [48, 49] を用いて最終的な補正画像を得るアル

ゴリズムである．Levinの手法 [50]は Fergusの手法と同様にベイズ推定を用いてカー

ネルの推定値を得るが，Fergusの手法とは，画像X およびカーネルK の事前分布の
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設定方法に違いがある．Xuおよび Jiaの手法 [51, 52]は最小二乗問題を用いたカーネ

ル推定および逆畳込み手法を提案している．この手法ではショックフィルタを適用し

たぶれ画像 Y からカーネルK の推定値を得て，この推定値から補正画像X を得る．

Choの手法 [53]では，カーネル推定問題を周波数上の処理を用いて高速に処理するア

ルゴリズムを提案している．いずれのノンパラメトリック推定手法も，逆畳み込み問題

を，カーネルK の部分問題および画像 X の部分問題に分割し，2 つの問題を交互に

実行する点に特徴がある．カーネルK の部分問題では，X の部分問題で得られた補正

画像 X を固定して，ぶれ画像 Y からカーネルの推定値を得る．X の部分問題では，

カーネル推定問題によって得られたカーネルK を固定して，ぶれ画像 Y を Non-blind

Deconvolution で逆畳み込みすることによって補正画像X を得る．式 (1.4) の逆畳み

込みを 2つの部分問題に分割し，交互にこれらの問題を実行することで，各問題におけ

る不良設定性を解消することができる．

1.3 研究目的

本研究では画像の劣化除去のアプローチのうち，超解像問題とぶれ除去問題に焦点を

あてる．超解像問題は，画像劣化のうち，低解像度化によって発生するぼけを除去する

技術にあたる．近年，撮像機器やディスプレイ等の画像表示機器の解像度が大幅に向上

しており，大型の表示機器への表示の他，スマートフォンやタブレット PCなどの小型

かつサイズの異なる表示機器への表示など，多岐にわたる画像の表示環境に応じて柔軟

に画像のサイズ変更を行う需要は高まっている．前節で示した超解像のアルゴリズム

を，画像枚数，速度，事前情報の有無で分類すると表 1.2の様になる．辞書ベースの超

解像手法は 一枚の画像のみを必要とするシングルフレーム手法であり，エッジやテク

スチャ部分の復元性能に優れているが，処理速度や，事前情報に依存する点に改良の見

こみがある．そのため，本研究ではこの辞書ベース超解像手法をもとに改良を行う．従

来の辞書ベース超解像手法は低解像度・高解像度の辞書のペアを予め用意しておく必要

があり，事前辞書の容量や，パッチサイズ・辞書サイズ・拡大率等のパラメータに柔軟

に対応できない問題があった．本研究では，入力低解像度画像から高解像度・低解像度

の辞書の組み合わせを動的に生成し，従来法の問題であった，事前辞書を用意してお

くことの欠点を解消した．また本研究では従来手法がスパース再構成問題を使用して

超解像問題を行っていたのに対し，スパース再構成問題で用いられている L1 正則化を

Tikhonov 正則化に置き換えることで高速化を図った．L1 正則化を Tikhonov 正則化

に置き換えることにより，再構成画像の精度には若干の低下が見られるが，実行時間の
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表 1.2 超解像手法の画像枚数，速度，事前情報の必要性における比較

手法のベース 手法 画像枚数 速度 事前情報

マルチフレーム MAP法 [11–14] 複数 低速 不要

マルチフレーム Multi-Surface [4] 複数 高速 不要

補間 Bilinear, Bicubic, DCC [16] 一枚 高速 不要

補間 SAI [18], RSAI [19], BSAI [20] 一枚 低速 不要

機械学習 ANR [5], A+ [24] 一枚 低速 必要

機械学習 RAISR [25] 一枚 高速 必要

深層学習 SRCNN [26], VDSR [27] 一枚 低速 必要

辞書ベース SRSR [34], ScSR [37] 一枚 低速 必要

辞書ベース 提案法 一枚 高速 不要

改善量はサイズ 512 × 512の画像で 30倍前後と非常に大きく，実行時間短縮の利点が

精度低下の欠点を上回ると考えられる．

ぶれ除去問題はぶれを含む画像からぶれの影響を取り除いて本来のぶれ・ボケのない

画像を得る技術である．ぶれ特性は，撮像機器の手ぶれや被写体の動き，光学系の特性

によって画像に混入するもので，撮像環境の多様化によって多くの種類が存在するた

め，直線や，回転などの想定を加えないぶれ特性の除去手法が求められている．ノンパ

ラメトリックな Blind Deconvolution手法は撮像機器の手ぶれによるモーションブレ，

レンズの収差や露光時間から生じる焦点ボケの両方を表現することができるため，多様

なぶれ特性に対応することができる．ノンパラメトリックなぶれ補正技術はカーネルを

推定するカーネル推定問題と，推定したカーネルから画像を補正する逆畳み込み問題を

交互に行うことで実現され，カーネル推定問題・逆畳込み問題ともに，高速で高精度な

アルゴリズムの選択が要求される．本手法では，高速なカーネル推定問題に特徴のある

Choの手法 [53]をもとにカーネル推定の精度向上および逆畳込みの速度向上を行うこ

とで，高精度なぶれ補正をより実用的な処理時間で実現できるアルゴリズムの実現を図

る．カーネル推定においては画像に特徴抽出フィルタを導入することで，従来手法では

用いられなかった領域でのカーネル推定を実現し，その精度向上を図った．逆畳み込み

問題では，高精度な差分逆畳み込みを周波数軸上で実現する方法を考案し実行速度向上

を図っている．

画像の劣化除去の観点から説明すると，超解像問題は，ぼけ行列とサンプリングを劣

化過程に含む画像の再構成問題として取り扱うことができる．またぶれ除去問題はぼけ

行列に加えてモーションぶれを劣化過程に含む画像を再構成することができる．両問題
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ともぼけ行列のみを含む画像の再構成が可能である点が共通している．

1.4 本論文の構成

本論文は次のように構成される．まず 2章で本研究の基礎となる画像の劣化過程につ

いて説明し，それを用いた簡単な画像再構成問題の説明と，画像再構成問題に用いられ

る最適化のアルゴリズムについて説明したのち，関連研究についての説明を行う．3章

では画像超解像問題の提案手法として，事前辞書への依存の解消法および L2再構成に

よる高速化法の説明を行う．4章でぶれ除去問題の提案手法として，カーネル推定問題

の高精度化法および逆畳み込み問題の高速化について説明を行う．5章で全体を総括し

結論を述べる．
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第 2 章

基礎理論

2.1 本章の構成

本章では提案する手法の理解に必要な，画像の劣化過程の数学表現とその再構成問

題，本手法がベースとした画像の辞書ベース超解像問題およびぶれ除去問題の従来手法

について説明を行う．まず 2.2節において，画像の劣化過程としてよく用いられる数学

表現について説明し，具体的な劣化過程の表現として画像の補間・超解像問題，ノイズ

の付加および画像のぶれ除去問題を取り上げる．次に 2.3節において 2.2節の劣化過程

に基づく画像再構成手法として，非線形問題に基づく画像の再構成問題，スパース表現

に基づく画像の再構成問題，確率理論に基づいた画像の再構成問題についての説明を行

う．2.4節ではこれらの再構成問題を実現するための最適化アルゴリズムについて説明

を行う．2.5節では画像の超解像問題の既存手法について説明を行い，2.6節では画像の

ぶれ除去の既存手法についての説明を行う．

2.2 画像の劣化過程の数学表現

劣化のない画像のベクトル表現を x ∈ R
n1n2，劣化画像を y ∈ R

n1n2 としたときに，劣

化画像は画像 x ∈ R
n1n2 に対して，行列積の形で表現される劣化過程D ∈ R

n1n2×n1n2

と，足し算の形で加わる加法性ノイズ n ∈ R
n1n2 を用いて以下の表現で表すことがで

きる．
y ≃ Dx + n (2.1)

劣化過程 D および加法性ノイズ n を変化させることで，超解像，ノイズ除去，手ブレ

除去や，それらの組み合わせ等，多くの画像再構成問題に対応することができる．
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2.2.1 画像の補間・超解像問題

画像の補間・超解像問題において，得たい高解像度画像を x ∈ R
nh，低解像度画像

を y ∈ R
nl とする．nh, nl はそれぞれの画像の画素数で，拡大率を s > 1 とすると，

nh = n1n2, nh = s2nl を満たす値である．このとき低解像度画像 y は高解像度画像を

x にぼけカーネル H とサンプリング行列 S をこの順でかけた以下の形で表現できる．

y = SHx (2.2)

ぼけカーネルH ∈ R
nh×nh は高解像度画像のナイキスト周波数より低いカットオフ周

波数を持ち，サンプリングの際に発生するエイリアシングを除去する．行列 H は畳み

込み行列であり，図 2.1右の様に，ぼけカーネルの係数を x の対応する座標に配置した

ものである．サンプリング S は，ぼかした高解像度画像 Hx に対して，図 2.2の様に，

拡大率 sに応じた間引き操作を行う．行列 S ∈ R
nl×nh は，行列積の形でこの演算を行

うもので，図 2.1左の様に，高解像度画像のうち，残す画素を 1，それ以外の画素を 0

にした行列である．

マルチフレーム超解像問題を扱う際には，異なるフレーム間の空間的なずれを考慮す

るためのモーションを考慮する必要がある．すなわち，k 番目の低解像度画像フレーム

を yk ∈ R
nl としたとき．yk は高解像度画像 x に対して k 番目のモーションMk およ

びぼけカーネルH，サンプリング行列 S が加わった表現として近似され，以下の表現

で表される．
yk = SHMkx (2.3)

また，yk をひとつの列ベクトルにまとめた表現を用いて大きな線形システムとして表

現することもできる．










y1

y2

...
yK











=











SHM1

SHM2

...
SHMK











x (2.4)

2.2.2 ノイズの付加

画像にノイズ成分が混入していると，画像処理アルゴリズムに対して好ましくない影

響を与える．画像のノイズ成分は撮像機器の光学特性や電気ノイズ，イメージセンサー

の欠損，JPEG等の非可逆圧縮や通信の際のパケットロス等によって混入する．
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ぼけカーネル
(畳み込み⾏列)

⾼解像度画像
(ベクトル表現)𝑯 𝒙

⾏列積

𝑥1

𝑥4

𝑥7

𝑥2

𝑥5

𝑥8

𝑥3

𝑥6

𝑥9

𝑘1 𝑘4 𝑘7𝑘2 𝑘5 𝑘8𝑘3 𝑘6 𝑘9

0

𝑺サンプリング⾏列

⾏列積

1
1
0

1
0 0
0 0

0

低解像度画像
(ベクトル表現)𝒚

＝

図 2.1 低解像度画像と高解像度画像の関係の数学表現

サンプリング𝑠 = 2

⾼解像度の画素 低解像度の画素

図 2.2 高解像度から低解像度へのサンプリング s = 2

ノイズには加法性ノイズと置き換えノイズがある．加法性ノイズはノイズのない画像

y に対して，ノイズ成分 nが加算された表現として表される．

y = x + n (2.5)

ノイズ成分 nの種類として，nの要素 ni がガウス分布を示すガウスノイズ N (0, σ2)，

ガウスノイズが平滑化された平滑化ガウスノイズ（カラーノイズ）などが存在する．ガ

ウスノイズは，加法性ノイズの中でも撮像機器から発生するノイズをよく近似すること

が知られており，[54–56] 等の手法でノイズ量を推定する手法が提案されている．

置き換えノイズはインパルスノイズとも呼ばれて，x 中の画素値 xi が一定の確率 p

で，ノイズの画素値 ni に置き換わることで発生する．

yi =

{

xi with probability p

ni with probability 1 − p
(2.6)

ここで，混合するノイズ ni はガウシアン分布や一様分布 U(0, 1)に従う．画像にガウス

ノイズおよびインパルスノイズを付加した例を図 2.3に示した．
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(a) 原画像 (b) ガウスノイズ画像 (c) インパルスノイズ画像

図 2.3 ガウスノイズ（標準偏差 25）とインパルスノイズ（混入率 15%）の例

ガウスノイズ除去手法としてウィナーフィルタ [57] や Non-local means フィル

タ [58,59]，BM3D [60–62]，スパース近似 [63]などが使われる．インパルスノイズの除

去にはしばしばガウスノイズとは異なる手法が適用される．これは，インパルスノイズ

にガウスノイズ除去の手法を適用すると，インパルスノイズが拡散して出力画像が大幅

に劣化するからである．インパルスノイズ除去のための手法には中央値フィルタ [64],

WMF [65], SMF [66], DWM [67] 等がある．SMF や DWM はインパルスノイズに対

して，ノイズ検出とノイズ除去の 2段階に分けた処理を行う特徴がある．

またガウス分布に従う加法性ノイズとインパルスノイズの両方が混入した混合ガウス

ノイズを考慮するアルゴリズムも考案されている [68–71]．

2.2.3 ぶれに基づく画像の劣化過程

ぶれ画像の 2 次元信号を Y ∈ R
N1×N2，これをぶれ除去した信号の 2 次元表現を

X ∈ R
N1×N2，ぶれ軌跡（点拡がり関数，PSF，以後カーネルと表記）の 2次元表現を

K ∈ R
M1×M2 と表現する．カーネル行列は図 2.4 の様に点の軌跡でモーションぶれ，

点の広がりで焦点ボケの両方を表現することができる行列である．この時，Y は X,

K の 2 次元畳み込みとして表現され，以下の式が成り立つ．

Y = X ⊗ K (2.7)

ここで，⊗ を 2 行列間の 2 次元畳み込みを計算する演算とした．座標 (n1, n2) におけ

る Y , X の画素値をそれぞれ Y (n1, n2), X(n1, n2) と表現する．この時に Y (n1, n2)
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カーネルの動き
▶ モーションぶれを表現

カーネルの広がり
▶ 焦点ボケを表現

図 2.4 カーネル行列によるモーションぶれ・焦点ボケの表現

の値は (n1, n2)の周囲の値をK の値で重み付き合計値として以下のように表される．

Y (n1, n2) =

N1
∑

k1=1

N2
∑

k2=1

X(k1, k2) · K(n1 − k1, n2 − k2) (2.8)

以降の説明のために，画像 X およびカーネル K に対してベクトル表現および畳み

込み行列を定義して，畳み込み表現 X ⊗ K を行列積の表現に変換する．

Y , X の要素を列ベクトル上に並べた表現をそれぞれ y ∈ R
N1N2×1, x ∈ R

N1N2×1

とする．また，カーネル K の要素を列ベクトル上に並べた表現を k ∈ R
M1M2×1 と表

記する．さらに，K の要素を 2 次元畳み込みの際に x に対応する座標に配置した畳み

込み行列を C ∈ R
N1N2×N1N2，X の畳み込み行列表現を A ∈ R

N1N2×M1M2 とする．

ここで，A の列数は出力画像のサイズに対応する N1N2 としている．

この時に 式 (2.8)の 2次元畳み込み表現は，カーネルの畳み込み行列 C と画像のベ

クトル表現 x の積，あるいは，画像の畳み込み表現 A とカーネルのベクトル表現 k の

積として以下の表現に置き換えることができる．

y = Cx (2.9)

y = Ak (2.10)

式 (2.9) の畳み込み行列 C が，式 (2.1)の劣化過程 D に対応する．画像・カーネルの

ベクトル表現と畳み込み行列表現の対応を図 2.5にまとめた．
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カーネル
(⾏列表現)

𝑘1 𝑘4 𝑘7𝑘2 𝑘5 𝑘8𝑘3 𝑘6 𝑘9

画 像
(⾏列表現)

2次元
畳み込み

⊗ 𝑥1 𝑥4 𝑥7𝑥2 𝑥5 𝑥8𝑥3 𝑥6 𝑥9

𝑲 𝑿
(a) 画像とカーネル行列の 2次元畳み込み表現

カーネル
(畳み込み⾏列)

画 像
(ベクトル表現)𝑪 𝒙

⾏列積

𝑥1

𝑥4

𝑥7

𝑥2

𝑥5

𝑥8

𝑥3

𝑥6

𝑥9

𝑘1 𝑘4 𝑘7𝑘2 𝑘5 𝑘8𝑘3 𝑘6 𝑘9

0

(b) カーネルを畳み込み行列にした表現

𝑘1𝑘2𝑘3𝑘4𝑘5𝑘6𝑘7𝑘8𝑘9

⾏列積

𝑥1 𝑥8𝑥7𝑥6𝑥5𝑥4𝑥3𝑥2 𝑥9

画 像
(畳み込み⾏列)

カーネル
(ベクトル表現)𝑨 𝒌

(c) 画像を畳み込み行列にした表現

図 2.5 画像とカーネルの畳み込み行列表現

16



∘ =

=⨂

要素積

畳み込み

2次元
フーリエ変換

画  像 カーネル ぶれ画像

図 2.6 空間軸と周波数軸における畳み込みの関係

畳み込み定理に基づき，Y , X, K の関係は周波数空間上でも表現できる．Y , X, K

を 2次元フーリエ変換したものをそれぞれ F(Y ), F(X), F(K) とすると，F(Y ) は

F(X), F(K) を要素ごとに掛け算した以下の関係を満たす．◦は行列を要素ごとに掛
け算する演算である．

F(Y ) = F(X) ◦ F(K) (2.11)

図 2.6に空間軸と周波数軸での畳み込みの関係を示した．

2.3 画像再構成問題

2.3.1 非線形問題による画像の再構成問題

このようにいくつかの画像の劣化過程は式 (2.1)の形で表現できることを示した．そ

のため，y と劣化させた x との間の最小 2乗問題を解くという形で画像再構成問題を

表現する事ができる．
x = argmin

x

∥y − Dx∥2
2 (2.12)

しかしながら，式 (2.12)の問題は一般に劣決定問題であり，上記の式を満たす x は一

意に定まらず，得られる解も画像とはかけ離れたものとなる場合も存在する．問題の劣

決定性の解消や，x をより自然な画像に近づけるために，x に関する制約条件 ρ(x) を
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付加した以下の式を解く場合が多い．

x = argmin
x

∥y − Dx∥2
2 + ρ(x) (2.13)

2.3.2 非線形最適化問題によく用いられる制約条件

ノルム制約

ベクトル xに対して Lp ノルム (p ≥ 0)を以下の式で定めることができる．

∥x∥p = p

√

√

√

√

N
∑

n=1

|xn|p (2.14)

式 (2.14)のノルムで p = 2としたノルムを L2 ノルムという．L2 ノルムに基づく正

則化は Tikhonov 正則化とも呼ばれる．これは，解 xの集合のうち最もエネルギーの小

さい解を選択する制約項であり，問題の劣決定性を解消し，最適化問題の収束を安定化

させる目的で用いられる．

∥x∥2 =

√

√

√

√

N
∑

n=1

x2
n (2.15)

式 (2.14)のノルムで p = 1としたノルムを L1 ノルムという．L1 ノルム最小化に基

づく正則化はスパース正則化とも呼ばれ，xの要素の多くが 0 となり，限られた要素の

みが値を持つ表現となる．L1 正則化を伴う線形回帰問題は LASSO と呼ばれ，これを

対象とするアルゴリズムとして LARS [72] や GPSR [73]などが提案されている．

∥x∥1 =

N
∑

n=1

|xn| (2.16)

画像再構成問題では，画像の DCT係数や DWT係数に対するノルム制約を課すことが

行われる．画像 xから DWT係数を抽出する行列をW とした時に，画像の DWT係

数に対するノルム制約は以下の様に表現される．

ρ(x) = ∥W x∥p (2.17)

Total Variationノルム

Total Variation (TV) ノルムは主に画像に対して多く用いられる制約項である

[74–77]．これは画像X の微分成分に対して，L1 や L2 ノルムを適用したものである．
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スパース表現 グループスパース表現
非ゼロ要素がまばらに存在 非ゼロ要素が特定の次元にまとまる

図 2.7 スパースな行列とグループスパースな行列

すなわち，画像に横方向微分を加えるカーネル ∂x = [1, −1]，画像に縦方向微分を加え

るカーネル ∂y = [1, −1]T を定義した時に

∥X∥
TV

=

∥

∥

∥

∥

[

∂x ⊗ X

∂y ⊗ X

]∥

∥

∥

∥

1

(2.18)

と定義される．ここで，画像の微分値を加算するノルムは L1 ノルムとした．

L1-L2混合ノルム

行列X に対して，片方の次元に L2 ノルムを，もう片方の次元に L1 ノルムを適用し

た混合ノルムが提案されている．L1, L2 混合ノルムは，要素 Xft を持つ行列 X に対

して，t の次元で L2 ノルム，f の次元で L1 ノルムを取ったものに相当し，以下の式

で表現される．

∥X∥1,2 =
F

∑

f=1

√

√

√

√

T
∑

t=1

X2
ft (2.19)

L1, L2 混合ノルムを制約として解いた行列は図 2.7 右の様に行列中の非ゼロの要素が

t の次元にまとまった分布を持つ．このような表現を行列のグループスパース表現と

いう．

L1, L2 混合モデルを用いた画像再構成問題は [78]で述べられている．他にも JPEG

ブロックノイズ除去 [79]等で使用されている．

核ノルム

核ノルムは行列X に対して定義され，その行列のランク数 rank(X) を最小化させ

る制約項として用いられる．行列X を特異値分解した時の特異ベクトル U , V T , 特異

値 σ1, σ2, . . . , σN は以下の関係を満たす．

X = UΣV T = U · diag(σ1, σ2, . . . , σN ) · V T (2.20)
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この時に，行列X のランク数は以下の式で表される．

rank(X) =

N
∑

n=1

|σn|0 = ∥σ∥0 (2.21)

ここで σ = [σ1, σ2, . . . , σN ] とした．行列のランク数は特異値のベクトル σ の L0 ノル

ムに相当し，これの最小化は NP困難な問題となる．そのため，これの緩和のため，L0

ノルムを L1 ノルムに緩和したノルムを以下のように定義する．

∥X∥∗ =

N
∑

n=1

|σn| = ∥σ∥1 (2.22)

L1 ノルムの他に Lp ノルムに緩和した Schatten-p ノルムも用いられる．

核ノルムを用いた画像再構成問題は，画像のノイズ除去 [80,81] 等に用いられている．

画像分野以外では，音声研究分野における楽曲からのボーカル分離 [82–84]，や多重音

解析 [85] 等に使用されている．

2.3.3 スパース表現に基づいた画像の再構成問題

スパース表現はオリジナルの信号を限られた数の信号の線形結合で表現するための技

術であり，画像再構成の他にパターン認識やコンピュータビジョンなどのアプリケー

ションで用いられている．

信号 d1, d2, . . . , dK ∈ R
n を K 個の既知サンプルとし，行列 D ∈ R

n×K をこれら

のサンプルからなる行列とする．これは基底または辞書と呼ばれるもので，一般に過決

定（n < K）である．観測点を列ベクトル x ∈ R
n とすると，すべての既知サンプルを

用いて観測点は以下のように表現される．

x = d1α1 + d2α2 + · · · + dKαK (2.23)

αi は di にかかる係数である．式 (2.23)は行列D とベクトル α = [α1, α2, . . . , αK ]T

を用いて以下の表現に書き換えられる．

x = Dα (2.24)

しかしながら，式 (2.24) は劣決定な線形システムであり，α は事前情報や制約がない

限り，単一の解が得られない．言い換えると式 (2.24)のみでは，観測点 xを基底行列

D で表現する方法は一つに定まらない．この問題に対処するために解 α に対して適切

な制約項を課すことが不可欠である．スパース表現では，係数 α がスパースな解を持
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つように解く．スパースとは，列ベクトルの要素の多くが 0 または 0 に近い値であり，

僅かな数の係数が大きな値を持つ状態を表す．

最もスパースな解は (2.24)の線形システムを L0 ノルム最小化制約と共に解くことで

得られる．すなわち，(2.24) の問題は以下の最適化問題に書き換えられる．

α̂ = argmin
α

∥α∥0 s.t. x = Dα (2.25)

ここで ∥ · ∥0 はベクトル中の非ゼロ要素の数であり，ベクトルのスパース性を指し示す

指標である．さらに観測点が辞書行列中の k個の要素によって表現されているものとす

ると，問題 (2.25) は以下の問題と等価になる．

x = Dα s.t. ∥α∥0 ≤ k (2.26)

式 (2.25)の解を得るには，MP法 [86]や OMP法 [87]が用いられる．

L0 最小化問題は α のスパース解を得ることができるものの，この問題は NP困難な

問題であり，解を得ることが難しい．L0 最小化の NP 困難性を解消するために L1 ノ

ルムを用いたスパース再構成が考案されている．L1 ノルム最小化は Lasso問題に基づ

いており，機械学習やパターン認識，統計分野で広く用いられている．L1 最小化制約

によって得られた解はスパース性の要件を満たしており，L0 ノルム最小化によって得

られる解と同等のものが得られることが示されている．さらに，L1 ノルム最適化は解

析的な解が得られ，多項式時間で解くことができる．これらの理由から，L1 ノルム最

小化はスパース再構成問題において L0 ノルムの代わりに広く用いられている．L1 ノ

ルム最小化に基づくスパース再構成問題は次の式で表される．

α̂ = argmin
α

∥α∥1 s.t. x = Dα (2.27)

画像処理に辞書に基づいたスパース再構成を適用するには，画像をオーバーラップし

たパッチに分割し，パッチに対して処理を行う方法が取られる．画像のパッチを x と

し，パッチを辞書D を用いて以下の表現で近似する．

α̂ = argmin
α

∥α∥p s.t.∥x − HDα∥2
2 ≤ ε (2.28)

これによって得られた係数 αを用いて x̂ = Dα̂より再構成パッチを得る．このパッチ

を画像の該当する場所に戻し，オーバーラップした箇所を平均する．これは再構成した

画像の不連続性を解消し，より自然な出力を得るためである．

21



2.3.4 確率理論に基づいた画像の再構成問題

2.3.1 節の式 (2.12) において，劣化画像 y とそのモデル Dx + n の間に 2乗誤差を

とり，その最小化を行ったが，y や x を確率変数と捉えることで，x に事前分布を導入

したり，ガウスノイズ以外の分布をもつノイズを想定することができる．代表的な方法

は x に事前分布を導入し，その事後確率を最大化する最大事後確率 (MAP: maximum

a posteriori) 推定で，画像のデノイズ [88, 89] やインペインティング [90] に使われて

いる．

画像再構成問題において，画像 x に関する事後確率を p(x|y) と定義する．これをベ

イズの定理によって，y に関する確率に書き換える．

p(x|y) ∝ p(y|x) · p(x) (2.29)

この時に，p(y|x) が尤度関数，p(x) が画像信号の事前分布となる．y と x の間に標準

偏差 σ のガウスノイズを仮定すると p(y|x) は以下の形となる．

p(y|x) =
∏

n

N (yn|xn, σ2)

=
∏

n

exp

(

− 1

2σ2
(xn − yn)2

)

(2.30)

よく使われる画像分布は，画像の微分成分に対するラプラス分布であり，以下の式で定

義される．
p(x) ∝

∏

n

exp (−|f ⊗ xn|α) (2.31)

これらを用いると x の再構成は以下の式を最大化する問題となる．

max
x

∏

n

exp

(

− 1

2σ2
(xn − yn)2

)

·
∏

n

exp (−|f ⊗ xn|α) (2.32)

確率変数の積の指数値は有限精度の計算機上では扱いづらいので，(2.32) 全体の対数を

取る．これによって確率変数の積が和の形に変換される．

max
x

(

− 1

2σ2

∑

n

(xn − yn)2 −
∑

n

|f ⊗ xn|α
)

(2.33)

さらに，式全体の負値をとって最大化問題を最小化問題にする．

min
x

(

1

2σ2

∑

n

(xn − yn)2 +
∑

n

|f ⊗ xn|α
)

(2.34)
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この式は式 (2.13)の制約付き最小 2乗問題と同じとなる．これは，y と x の間の誤差

にガウス分布を想定したためである．

2.4 最適化問題

2.4.1 最急降下法

式 (2.13) の様な最適化問題を実現するための最も単純なアルゴリズムは最急降下法

である．最急降下法は，勾配降下法とも呼ばれ，目的関数の一階微分が計算可能な場合

に適用できる．ベクトル xに対して，目的関数を f(x) と定義する．この時，x を以下

の式で更新することで解に近づけていく．

x(k+1) = x(k) − γ∇f(x(k)) (2.35)

∇f(x)は f(x)の xに関する勾配である．

∇f(x) =

[

∂f(x(k))

∂x
(k)
1

,
∂f(x(k))

∂x
(k)
2

, . . . ,
∂f(x(k))

∂x
(k)
n

]T

(2.36)

γ はステップ幅を表すパラメータとなる．ステップ幅が小さいほど収束が安定するが，

解を得るのに多くの反復を必要とする．ステップ幅が大きいと最初は早く収束すること

が期待できるが，解が発散する場合もある．このため，問題に応じて適切なステップ幅

を選ぶ必要があり，探索の初期には大きなステップ幅，ある程度収束したら小さなス

テップ幅が取られる．

最急降下法をベースにした手法は多くの分野で用いられている．例えば，最急降下法

をオンライン学習に改良した確率的勾配降下法は深層学習の学習等に用いられている．

2.4.2 近接勾配法

最急降下法は目的関数の偏微分を計算できる必要があるが，凸ではあるが微分不可能

な関数でも近接写像が計算可能な問題は近接勾配法を用いて解くことができる [91]．

目的関数を以下の関数 f(x)と g(x)の合計とする．

argmin
x

f(x) + g(x) (2.37)

ここで，f は xに関する勾配が導出可能な関数，g は xに関する近接写像が導出可能な

関数である．近接写像とは

proxg(x) = argmin
v

(g(v) + (1/2)∥x − v∥2
2) (2.38)
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で定義される演算である．2.3.1節の再構成問題で用いられる制約項には近接写像が計

算可能なものが多い．これを用いて，近接勾配法は以下の式で x の更新を行うことで

解を得る．
x(k+1) := proxλ(k)g(x(k) − λ(k)∇f(x(k))) (2.39)

近接勾配法の改良として，収束速度を向上させた FISTA，拡張ラグランジュ法や

ADMM等が考案されている．

2.4.3 共役勾配法による高速な解法

共役勾配法 [92] とは，逆行列問題を解くためのアルゴリズムの一つであり，行列 A

対称正定値行列であるときに，高速に解くことができるアルゴリズムである．正定値行

列とは，エルミート行列Aと，零ベクトルでない任意の列ベクトル z に対して，

zHAz > 0 (2.40)

が常に成り立つ行列 A のことである．zH はベクトル・行列 z のエルミート転置で

ある．

共役勾配法を用いて，正定値行列Aに対し

y = Ax (2.41)

を満たす xを求めるプロセスは Algorithm 1で表される．ここでベクトル r, p, z を

中間表現，ei を残差，xstep をステップ幅としている．共役勾配法は，行列Aが正定値

性を満たす必要があるが，Aのサイズが n × nの時に，高々 nステップで収束する．ま

た零行列でない行列Aに対し，行列AHAは正定値性を満たすので，

AHy = AHAx

x = (AHA)−1AHy (2.42)

とすることで，正定値行列でない行列の逆問題を解くことも可能である [93]．
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Algorithm 1 共役勾配法の反復プロセス
1. x = y

2. r = y − Ax

3. p = r

4. e0 = rHr

5. for i = 1 to converge do

6. z = Ap

7. xstep = ei−1

pH z

8. x = x + xstepp

9. r = r − xstepz

10. ei = rHr

11. p = ei

ei−1
p

12. end for

2.5 従来の辞書ベース超解像手法

本節では画像の超解像アルゴリズムのうち，提案手法のベースとなっている Yang の

辞書ベース超解像アルゴリズム [37] について述べる．辞書ベースの超解像手法は，高解

像度のパッチを，高解像度・低解像度の辞書の組み合わせから再構成することで得る．

この方式は [30] で初めて提案されている．Yang の辞書ベース超解像アルゴリズム [37]

は ScSR (Sparse constrained super resolution) と呼ばれ，高解像度・低解像度の辞書

のペア用いてスパース再構成問題によって高解像度パッチを再構成する．この際に，組

み合わせ辞書学習を用いることで辞書のサイズを削減して，再構成の際の計算コストを

削減した点に特徴がある．
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低解像度辞書     の要素 ⾼解像度辞書     の要素

対 応

𝑫𝑙 𝑫ℎ

図 2.8 辞書行列中の高解像度パッチ・低解像度パッチの対応

2.5.1 辞書ベースの超解像

辞書ベース超解像のアルゴリズムは高解像度画像のパッチを辞書の要素とその要素に

かかる係数の形に近似する．高解像度画像からサイズ
√

n × √
nの領域を切り出した高

解像度パッチ（ベクトル表現）を x ∈ R
n，低解像度画像の同様の領域を切り出した低

解像度パッチを y ∈ R
n とする．この時に，辞書ベース手法では，高解像度パッチ x

は，高解像度用の辞書行列Dh ∈ R
n×K とその係数 α ∈ R

K を用いて，以下の形で近

似する．
x = Dhα (2.43)

辞書ベースの超解像手法 [34, 37]では，式 (2.43)の関係式が低解像度パッチ y および

低解像度様の辞書 Dl に対して同じ係数 α を用いて表現されるものと想定する．すな

わち，低解像度パッチ yは，低解像度用の辞書Dl と，高解像度と共通の係数 αの積で

表現される．
y = Dlα (2.44)

ここで，辞書Dh と Dl の各列 dh, dl は，対応する高解像度画像と低解像度画像の

組から，式 (2.43) と式 (2.44) が同じ係数 α を持つように学習されたもので，図 2.8の

様に画像のパッチの高解像度版と低解像度版の対応を含むものである．

問題の悪条件性を改善するために 式 (2.43) に α の L0 ノルム最小化の制約項を付加

した以下の表現に置き換える．

x = Dhα with ∥α∥0 ≪ K (2.45)

α0 の L0 ノルムは α 中の非ゼロの要素の数を表すため，式 (2.45) の表現は，高解像
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度パッチ x が高解像度辞書 Dh のうちの限られた要素の組み合わせで近似されている

ことを表す．α中の非ゼロの要素数を少なくしたものをスパース表現という．L0 ノル

ム最小化の制約を低解像度パッチ y にも適用する．

y = Dlα with ∥α∥0 ≪ K (2.46)

2.5.2 特徴抽出空間による近似

前節の近似が，より画像の特徴的な部分にマッチする様に，入力低解像度パッチ y に

対して特徴抽出を適用する手法が提案されている [21, 23,94]．特徴抽出フィルタは入力

画像の構造を強調するもので，典型的にはハイパスフィルタが用いられる．これは高解

像度の近似を行うためには，パッチの低周波成分よりも高周波成分のほうが重要である

と考えられるためである．辞書ベース超解像では入力低解像度画像から切り出したパッ

チ y に対して 4つの特徴抽出フィルタ f1, f2, f3, f4 を適用する．f1, f2 は画像に横，

縦の 1階微分を行う演算子，f1, f2 は画像に横，縦の 2階微分を行う演算子である．こ

れらの特徴抽出フィルタはそれぞれ以下の様に定義される．

f1 = [−1, 0, 1] f2 = fT
1

f3 = [1, 0, −2, 0, 1] f4 = fT
1 (2.47)

f1, f2 は画素のずれを回避するために中間差分を用いている．また f3, f4 は f1, f2 を

それぞれ 2回適用したものにあたるので 1と −2の間に 0が入る形になる．

特徴抽出フィルタを画像再構成問題に組み込むために，特徴抽出行列 F を考える．

これは，特徴抽出フィルタ f1 から f4 の，行列 y に対する畳込み行列を縦に並べたも

のである．

F y =









f1 ⊗ y

f2 ⊗ y

f3 ⊗ y

f4 ⊗ y









(2.48)

この特徴抽出行列を用いて，式 (2.46) の低解像度パッチの近似を以下の様に書き換

える．
F y = F Dlα with ∥α∥0 ≪ K (2.49)
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2.5.3 L1最適化による高解像度画像の再構成

式 (2.49) から係数 α を求める問題は F Dlαと F y との 2乗誤差を最小化する問題

として，以下の様に表現することができる．

α = argmin
α

∥α∥0 s.t. ∥F Dlα − F y∥2
2 ≤ ε (2.50)

εは F Dlα と F y との間の誤差をどれくらい許容するかの尺度である．しかし，L0 最

小化問題は NP困難な問題であり，最適な解を探索するのに大きなコストがかかる．問

題の NP困難性を解消し，かつ αのスパースな解を得るために，αの L0 ノルムの代わ

りに L1 ノルムの最小値を得る方法が取られる [95]．これを問題の緩和といい，上記の

問題は L1 ノルムを用いた以下の形に置き換えられる．

α = argmin
α

∥α∥1 s.t. ∥F Dlα − F y∥2
2 ≤ ε (2.51)

式 (2.51)を解析的に解くためにラグランジュ係数 λを用いて以下の形を用いる．

α = argmin
α

λ∥α∥1 +
1

2
∥F Dlα − F y∥2

2 (2.52)

λ は α のスパース性と，F Dlα，F y 間の 2乗誤差を調整する係数とみなすことがで

きる．(2.52) の前半部分をスパース制約項，後半部分を誤差項とよぶ．

2.5.4 辞書ベース超解像の流れ

以上を踏まえて，低解像度画像から，辞書行列を用いて高解像度画像を再構成する手

順は以下のようになる．

• 入力低解像度画像 Y の特定の座標から低解像度パッチ yを切り出す（図 2.9 (a)）

• 低解像度パッチに対して特徴抽出フィルタをかけ F y を得る

• F yと辞書行列 F Dl から式 (2.52) を用いて係数ベクトル αを導出（図 2.9 (b)）

• 求めた係数ベクトルを用いて式 (2.43) から高解像度パッチ x を再構成（図 2.9

(c)）

• 画像の各座標に関して x を算出して，高解像度画像X を合成
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⼊⼒低解像度画像

低解像度パッチ
切り出し𝒀 𝒚 特徴抽出フィルタ𝒇

1
𝒚𝒇

2
𝒚𝒇

3
𝒚𝒇

4
𝒚

𝒚 𝑭𝒚
特徴抽出された
低解像度パッチ

(a) 低解像度パッチの切り出しと特徴抽出𝑭𝒚 ベクトル化

L1ノルム最⼩化

学習済みの低解像度辞書+特徴抽出

𝑭𝑫𝑙𝑭𝑫𝑙

係数ベクトル
𝜶 を算出

𝑙

(b) 係数ベクトルの算出

学習済みの⾼解像度辞書𝑫ℎ
係数ベクトル

⾼解像度辞書
パッチを構成𝒙

𝜶 

(c) 高解像度パッチの合成

図 2.9 辞書ベース超解像の流れ
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⼊⼒低解像度画像

𝑿再構成した画像

𝒀
𝑯 ↓2

ブレ付加 ダウンサンプル

誤差を計算
𝑯↑2

ブレ付加アップサンプル

逆投影
𝑿⾼解像度画像

繰り返し処理

図 2.10 逆投影法の処理プロセス

2.5.5 グローバル再構成問題

画像の L1 再構成問題は画像をパッチごとに処理するため，画像の境界等に不連続性

を生じやすい．この問題を解消するために，[34], [37] の手法では，超解像問題の後処理

として，以下に示すグローバル再構成問題を行っている．

X̂ = argmin
X

∥SHX − Y ∥2
2 + c∥X − X0∥ (2.53)

X0 は先の節によって再構成された高解像度画像である．

式 (2.53)の最適化は逆投影法と呼ばれる．これは，得られた高解像度画像と低解像度

画像との誤差を高解像度画像に投影するものである．逆投影法は以下の式を用いて，高

解像度画像Xt をXt+1 に更新することで最終的な高解像度画像を得る．

Xt+1 = Xt + HT ST (Y − SHXt) (2.54)

ST は画像に s 倍のアップサンプル ↑ s を適用する処理．HT は画像に H と同様のぶ

れをかける処理に相当する．2 倍拡大 s = 2 の場合の逆投影法のプロセスは図 2.10 に

示す．再構成された画像X に，ぶれH とダウンサンプル ↓ 2を加えた後，入力低解像

度画像 Y との誤差を計算する．この誤差 Y − SHX に対して，2倍のアップサンプル

とぶれを加えたものを高解像度画像X に加える（逆投影する）ことで更新された高解

像度画像Xt+1 を得る．これを繰り返すことで出力高解像度画像の精度を高めていくこ

とができる．パラメータ cは，式 (2.54)の更新の反復数に影響する．本手法ではこの反

復を 20回実行する．
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2.5.6 事前辞書の学習

辞書ベース超解像問題で用いる辞書のペア {Dl, Dh}は，学習用の高解像度画像と低
解像度画像のペアから学習されたものである．[34]の手法では，{Dl, Dh}の要素に画
像からサンプルしたパッチのペアを用いている．これは，辞書のサイズが大きくなり，

計算コストがかかる問題点がある．そこで [37]の手法では，学習用の高解像度画像と低

解像度画像のペアから比較的少数の要素をもつ辞書を学習させる方法を提案している．

辞書学習の際には高解像度の辞書に対するスパース係数と，低解像度の辞書に対するス

パース係数が同じものとなる必要がある．高解像度辞書の学習問題と，低解像度辞書の

学習問題はそれぞれ以下の様に表される．

Dh = argmin
Dh,Z

∥Xt − DhZ∥2
2 + λ∥Z∥1 (2.55)

Dl = argmin
Dl,Z

∥Yt − DlZ∥2
2 + λ∥Z∥1 (2.56)

Xt は学習用の高解像度画像からサンプルされた高解像度パッチ群，Yt は低解像度画像

からサンプルされたパッチ群である．また，Z はこれらのパッチ群を現在の辞書Dh,

Dl で近似したときのスパース係数で，高解像度パッチの近似と，低解像度パッチの近

似で共有されるものである．辞書のペアを学習する際にはこれら 2 つの問題を結合さ

せる．

{Dl, Dh} = argmin
Dl,Dh,Z

∥Xt − DhZ∥2
2 + ∥Yt − DlZ∥2

2 + λ∥Z∥1 (2.57)

さらに Dh, Dl を縦に結合させた行列 Dc を用いて以下の様に書き換える

Dc = argmin
Dc,Z

∥Xc − DcZ∥2
2 + λ∥Z∥1 (2.58)

Xc =

[

Xt

Yt

]

, Dc =

[

Dh

Dl

]

(2.59)
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ブレ付加

ダウンサンプル

学習⽤画像
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𝑯
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学習⽤パッチ
(低解像度)

スパース辞書学習

⾼解像度辞書

低解像度辞書

図 2.11 学習用画像を用いた低解像度・高解像度辞書の学習

式 (2.58)は，以下のプロセスで解くことができる．

1. Dc, Z を正規乱数で初期化する．

2. Dc を固定して，Z を以下の式で求める

Z = argmin
Z

∥X − DZ∥2
2 + ∥Z∥1 (2.60)

3. Z を固定して Dc を以下の式で求める

Dc = argmin
Dc

∥X − DcZ∥2
2 (2.61)

4. 過程 2, 3 を収束するまで繰り返す

2.5.7 カラー画像に対する処理

辞書ベース超解像は，グレースケールに対して成り立っているが，RGB 成分からな

るカラー画像に対しても適用できる．これは，図 2.12の様に RGB成分を輝度 Yと色

差 Cb, Crに変換した後，輝度成分 Y に辞書ベース超解像を適用，色差成分 Cb, Cr に

Bicubic 補間を適用し，輝度・色差成分を RGB 成分に逆変換することで実現できる．

これは人間の知覚が輝度成分の変化には敏感で，色差成分の変化には鈍感である性質を

利用したものである．
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図 2.12 カラー画像に対する辞書ベース超解像処理

2.6 従来のぶれ除去手法

本節では画像の劣化除去として，モーションぶれや焦点ぼけを取り除くぶれ除

去手法の既存手法について述べる．ぶれ除去技術は，ぶれカーネルを既知とする

か未知とするかよって Non-blind deconvolution と Blind deconvolution に分かれ，

Blind deconvolution はぶれカーネルの軌跡に想定を加えるパラメトリックな手法

と，ノンパラメトリックな手法に分かれる．本節では，Non-blind deconvolution と

Blind deconvolution の問題設定の違いを述べた後，ノンパラメトリックな Blind

deconvolution手法の一般的なフレームワークについて述べる．その後に，ノンパラメト

リックな推定手法の中でも高速なカーネル推定を実現した Choの Blind deconvolution

アルゴリズム [53] についての説明を行う．

2.6.1 Non-blind Deconvolutionと Blind Deconvolution

2.2.3節で述べたとおり，ぶれ画像 Y と，ぶれのない画像X, カーネルK の間には

以下の 2 次元畳み込みの関係が成り立つ．

Y = X ⊗ K (2.62)

ぶれ除去問題は X, K のうち，K を未知とするか，既知とするかによって，Non-blind

Deconvoltion と Blind Deconvolution の 2 つに分類することができる．

Non-blind Deconvolution は K が既知であるため，X を未知として Y をK ⊗ X
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間の 2乗誤差を最小化する問題として以下のように定義される．

X = argmin
X

∥Y − K ⊗ X∥2
2 (2.63)

K を既知とみなせるケースは，カメラの焦点特性が分かっている時や，超解像問題をぶ

れカーネルを指定して解く場合が挙げられる．式 (2.63)は後述の Blind Deconvolution

に比べて解きやすい問題ではあるが，ぶれ軌跡K を予め知っておく必要があるため，

使える状況が限られる．

Blind Deconvolution は (2.7)の畳み込みを満たすX, K を，共に未知として推定す

る問題であり，以下のように表現することができる．

{X, K} = argmin
{X,K}

∥Y − K ⊗ X∥2
2 (2.64)

しかしこの式は，X, K 共に条件が大きく欠落した劣決定問題のため，一意の解を得る

ことができない．ブレ除去の観点から言いかえれば，(2.64)の関係を満たすX, K の

組み合わせは無数に存在するということになる．このことから，Blind Deconvolution

は Nonblind に比べて解きづらいが，未知のモーションブレ以外にも焦点ボケ等を含む

ぶれ画像にも対応することができる．

問題の劣決定性を解消するために，Blind deconovlution 手法の多くはX, K のどち

らか片方を既知とし，K を求めるカーネル推定問題 (2.65)，X を求める逆畳み込み問

題 (2.66)を交互に解くことで，もっともらしいカーネル・補正画像の組を得る．

[53]の手法では Blind Deconvolution 問題を以下の 2つの部分問題に分けて解く．

K = argmin
K

∥Y − K ⊗ X∥2
2 + βρk(K) (2.65)

X = argmin
X

∥Y − K ⊗ X∥2
2 + αρx(X) (2.66)

すなわち，

1. ブレ画像 Y と画像X を用いて，式 (2.65)からカーネルの推定値K を得る．

2. ブレ画像 Y とカーネル K を用いて，式 (2.66) から逆畳み込みした画像 X を

得る．

3. これによって得た画像を 1. のカーネル推定に再度利用して，K の精度を上げる．

4. 1∼3 を何回か繰り返して最終的な推定カーネルK とする．

というプロセスを経ることで，最終的なカーネルK と，それを用いて逆畳み込みした

出力画像X を得る．
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カーネル推定問題

逆畳込み問題

推定カーネル

補正画像𝑿𝑿
𝑲⼊⼒ぶれ画像

交互に実⾏して精度を⾼める

図 2.13 典型的な Blind Deconvolutionのフレームワーク

2.6.2 カーネル推定問題のための画像の前処理

Blind Deconvolutionのカーネル推定問題 (2.65)において，画像X は未知であるた

め，入力のブレ画像 Y より何かしらの方法で擬似的なX を推定しなければいけない．

従来法では，ブレ画像よりしきい値処理にてエッジ成分を抽出した画像を作成し，カー

ネル推定問題の入力X として用いている．この擬似的なX を生成するためのプロセ

スについて説明する．

従来法 [53] では，まず入力ブレ画像 Y に対して Bilateral Filter [96,97] を用いてブ

レ画像中の細かなノイズ，ブレ成分・テクスチャ成分を取り除く．ただし，このフィル

タ操作によって本来抽出すべき画像のエッジ成分が弱まる問題があるため，これを補う

ために Shock Filter [98] を用いて失われたエッジ成分の復元を行う．これらのフィル

タ処理を経た画像は図 2.14の様に，画像の細かなブレ成分が消え，主要なエッジ成分

が強調された画像となる．

従来法では，さらにここから，画像の勾配 ∂xX, ∂yX に対ししきい値処理を行うこ

とで，画像のエッジ成分のみを残す画像X を生成する．具体的には図 2.15の様に，画

像の x方向, y 方向の微分画像を生成し，方向成分ごとに定めたしきい値を下回る勾配

は 0 とする．さらに，これによって得られた ∂xX, ∂yX を元に，元の画像X を生成

し，カーネル推定プロセスの入力とする．2回目以降のカーネル推定プロセスでは，ブ

レ画像 Y の代わりに前段の逆畳み込みプロセスで得た補正画像X に対して同様の前処

理フィルタリングとしきい値処理を行う．
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ブレ画像
(2回目以降は逆畳込み画像)

バイラテラルフィルタ
(細かいぶれやノイズを除去)

ショックフィルタ
(失われたエッジを復元)

図 2.14 従来法のカーネル推定のための画像の前処理

2.6.3 カーネル推定問題

前節で前処理を行った補正画像X に対して，カーネル推定の非線形最適化問題を解

き，カーネルの推定値を得る．従来法 [53] では高速化のために，式 (2.65) において，

カーネルの制約項に L2 ノルムを用いた以下の問題を用いる．

k = argmin
k

∑

∗

w∗∥y∗ − A∗k∥2
2 + β∥k∥2

2 (2.67)

ここで k, y は求めたいカーネル，ぶれ画像のベクトル表現，記号 ∗ は画像に対して
{∂x, ∂y, ∂xx, ∂yy, ∂xy} の 5種類の微分をかける微分方向，y∗ はぶれ画像 y に対して ∗
方向の微分をかけた画像，A∗ は補正画像 x に対して ∗ 方向の微分をかけた画像の畳み
込み行列表現である．各方向成分 ∗ は w∗ によって重み付けされる．

上式は目的関数の k に関する勾配を 0 とおくことで解くことができる．

∑

∗

w∗AT
∗ (A∗k − y∗) + βk = 0 (2.68)

∴ k =

(

∑

∗

w∗AT
∗ A∗ + βI

)−1 (

∑

∗

w∗A∗y∗

)

(2.69)

行列
∑

∗ w∗AT
∗ A∗ + βI は正定値行列であるため，式 (2.69)の逆行列計算は共役勾配

法を用いて解くことになる．すなわち，y および Aからカーネル k を得るプロセスは

Algorithm 2で表される．このアルゴリズムの 6 行目にある
∑

∗ w∗AT
∗ A + βI の部分

は for ループの外側で予め計算しておくことが可能である．

カーネルの制約項には重み β がかかる．式 (2.65) の二乗誤差の項は過決定な問題と

なるため，β は解のエネルギーを最小化し，収束を安定させる値に調整する．
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画素を 0 に
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画像に戻す

微 分 しきい値処理 再構成

図 2.15 従来法の画像のしきい値処理

2.6.4 逆畳み込み問題

前節で推定したカーネルを元に，逆畳み込みを行い，補正画像を得る．この補正画像

は再び先のカーネル推定問題の入力となり，より精度の高いカーネル推定が行われる．

カーネル推定の時点ではそれほど高精度な逆畳み込み手法は要求されず，繰り返し実行

されるために，高速なアルゴリズムが要求される．手法 [50,53,99]では以下の式を用い

て逆畳み込みを行っている．

X = argmin
X

∑

∂∗

ω∗∥∂∗Y − K ⊗ ∂∗X∥2
2 + α∥∆X∥2

2 (2.70)

∂∗ ∈ {∂x, ∂y, ∂xx, ∂yy, ∂xy} は，画像 X の x 方向，y 方向に 1 階微分，2 階微分をか

ける演算子である．また，∆ は画像X に x方向，y 方向に 1階微分をかける演算子で

ある．
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Algorithm 2 従来法のカーネル推定プロセス

1. 初期化 k = k0

2. r = (
∑

∗ w∗A∗y∗) −
(
∑

∗ w∗AT
∗ A + βI

)

k

3. p = r

4. e0 = rT r

5. for i = 1 to converge do

6. z =
(
∑

∗ w∗AT
∗ A + βI

)

p

7. kstep = ei−1

pT z

8. k = k + kstepp

9. r = r − kstepz

10. ei = rT r

11. p = ei

ei−1
p

12. end for
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2.7 Blind Deconvolutionのための他のアプローチ

本節では，Choの手法の他に提案法と比較を行った Blind deconvolution の手法につ

いての説明を行う．

2.7.1 Fergusの手法

Fergus 他は変分ベイズ推定を用いたぶれ軌跡推定手法を提案している [47]．これに

は カーネルと画像（差分信号） K, ∆X に関する事後確率最大化を行う．

p(K, ∆X|∆Y ) ∝ p(∆Y |K, ∆X) · p(∆X) · p(K) (2.71)

尤度関数 p(∆Y |K, ∆X) にはガウス分布，∆X の事前確率 p(∆X) には混合ガウス分

布，K の事前確率 p(K) には指数混合分布を用いることで以下の表現を得る．

p(K, ∆X|∆Y ) ∝
∏

n

N (∆Y (n)|∆X(n) ⊗ K, σ2)

·
∏

n

C
∑

c=1

πcN (∆X(n)|0, νc) ·
∏

m

D
∑

d=1

πdE(K(m)|λd) (2.72)

さらに事後確率 p(K, ∆X|∆Y ) を 2 つの分布の積 q(K, ∆X) = q(K) · q(∆X) で近

似する．q(∆X) にはガウス分布，q(K) にはガウス分布の正の値のみを用いる整流ガ

ウス分布を用いる．最終的に，変分ベイズ推定を用いて，以下のカルバック・ライブ

ラー距離を最小化することでカーネル推定を行う．

KL
(

q(K, ∆X) ∥ p(K, ∆X|∆Y )
)

(2.73)

推定したカーネル K を元に画像を逆畳み込みするアルゴリズムには Richardson-

Lucy 法 [48, 49]を用いる．

2.7.2 Levinの手法

Levin 他の手法 [50]はカーネルと画像 K, X に関する事後確率最大化を行う

p(Y , X, K) = p(Y |X, K) · p(X) · p(K) (2.74)
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尤度関数に関しては，y と x ⊗ k との誤差値がガウス分布に従うものとして，以下の様

に定義する．

p(Y |X, K) =
1

(
√

2πη)N
exp

(

− 1

2η2
∥K ⊗ X − Y ∥2

)

(2.75)

画像の事前分布には，画像の縦，横の微分を混合ガウスモデル（MOG: Mixture of

Gaussians）で近似したスパース近似を用いる．γ は縦・横の微分方向を表し，fi,γ(x)

はX を γ 方向に微分した画像の i 番目の画素を表す．

p(X) =
∏

i

∏

γ

ρ(fi,γ(x)) (2.76)

ρ(fi,γ(x)) =
∑

j

πj√
2πσj

e
− 1

2σ2
j

∥fi,γ (x)∥2

(2.77)

また，カーネル K の事前分布には一様分布を想定して制約を加えない．これらを統合

した以下の式を用いることで画像X とカーネルK の推定値を得る．

− log p(Y |X, K) =
1

2η2
∥K ⊗ X − Y ∥2 −

∑

i,γ

log ρ(fi,γ(x)) + c (2.78)

2.7.3 Xuおよび Jiaの手法

Xu および Jia の手法 [51, 52] ではそれぞれカーネル推定の手法と逆畳み込みの手法

を提案している．カーネル推定には，ショックフィルタで処理した画像X に対して以

下の式を最小化することで初期のカーネルK を得る．

E(K) = ∥∆X ⊗ K − ∆Y ∥2
2 + γ∥K∥2 (2.79)

また，これによって得たカーネルに対し，Iterative support detection (ISD) 法 [100]

によって補正を行う．

逆畳み込みでは画像の微分成分に対して L0 制約をおいた以下の式を解く．

min
X







1

λ
∥K ⊗ X − Y ∥2

2 +
∑

∗∈{h,v}

∑

n

{

|l∗n|0 +
1

ε2
(∂∗xn − l∗,n)2

}







(2.80)
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第 3 章

画像の超解像問題

3.1 本章の構成

本章では画像の劣化除去として，画像の低解像度化によって発生するぼけやサンプル

行列の特性を取り除く超解像技術に焦点をあてる．辞書ベース超解像技術は高解像度画

像の細かいテクスチャ部分等の復元性能が他の手法と比べて有利である一方，事前辞書

が必要な欠点やスパース再構成の計算コストがかかる欠点が存在する．本研究はそれら

の欠点を改善し，高速で事前情報に依存しない超解像手法を提案する．

本章の構成としてまず 3.2節にて従来手法の問題点を述べそれに対する提案手法の解

決策を述べる．3.3節および 3.4節にて，計算コストの改善および事前辞書の解消のた

めの提案手法の詳細について述べる．3.5節にて，従来法との超解像画像の比較を行い，

提案手法の優位性について示す．

3.2 従来手法の問題点と提案手法の改良点

辞書ベースの従来法では，式 (2.58)の辞書学習を済ませた固定倍率の辞書をあらかじ

めシステムに用意しておく必要がある．これは，システム側に辞書を保存しておく容量

を確保する必要がある．このため，パッチサイズの変化，辞書サイズの変化，拡大率の

変化等のパラメータ変化に対応する辞書をすべて保持しておくことは難しい．また，多

くのバリエーションを持つ画像に対して，固定の辞書を用いた場合，学習辞書の質に結

果画像が依存する問題がある．

再構成問題においては，画像のパッチごとに式 (2.52) の最適化問題を解く必要があ

る．L1 制約の最適化は，行列の逆行列問題を含む 2次計画法となるため，これを画像

のパッチごとに個別に計算するのは非常に計算コストがかかる．
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類似した
構造

(b) 異なるスケールの画像間の相似性

図 3.1 画像の自己相似性

事前辞書の問題と，L1 再構成の計算コストを改善するために提案法では，以下の 2

点において改良を行った．

• L1 制約を L2 制約に変更することでパッチ再構成の計算時間を短縮した

• 入力低解像度画像（自画像）から辞書ペアを動的に生成することで事前辞書を不

要にした

高解像度パッチの再構成問題において，L1 制約を L2 制約に変更することで，従来手

法では二次計画法で解を得ていたものが，閉形式の解で得られる．この閉形式の解は予

め計算しておくことができる逆行列と低解像度パッチとの行列積で計算することができ

るため，従来手法と比較して計算コストを削減することができる．また，入力低解像度

画像から辞書ペアを動的に生成することで，従来法の，事前辞書が必要である点を解消

し，パッチサイズ，辞書サイズ等に対して柔軟に辞書を構築できるようにする．従来手

法では，学習用の高解像度・低解像度画像の組み合わせから，高解像度・低解像度の対

応関係を学習しているが，提案手法では，画像の自己相似性に基づいて，入力低解像度

画像一枚から同様の高解像度・低解像度の対応関係を取得する．自己相似性とは，画像

を局所的に見たときに，異なるスケール間で類似した構造を持つ特徴であり，図 3.1 (a)

の様に同じ画像から異なるサイズのパッチを取得したときや，同図 (b) の様に異なるス

ケールに縮小した画像からパッチを取得した際にこれらのパッチ間に類似した構造が見

られる．提案手法の辞書ベース超解像では，入力低解像度画像と，そこから更に縮小を

行った画像からパッチをサンプルすることで，画像の自己相似性の関係を抽出し，超解

像問題に適用する．

以後の節では，L2 再構成を用いた高解像度パッチの再構成法と，入力低解像度画像

からの辞書の作成法について説明する．
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3.3 L2再構成問題による高速な再構成

再構成問題では，入力低解像度画像のパッチ y は，低解像度辞書Dl の要素の線形結

合で近似される．提案手法では式 (2.52)の最適化問題の L1 ノルムを L2 ノルムに変更

する．

α = argmin
α

λ

2
∥α∥2

2 +
1

2
∥F Dlα − F y∥2

2 (3.1)

式 (3.1)の問題は以下の逆行列計算として容易に計算することができる．

α =
(

(F Dl)
T (F Dl) + λI

)−1
(F Dl)

T F y (3.2)

上式によって得た係数ベクトル α と高解像度辞書Dh を用いて高解像度パッチは以下

の式で再構成できる．
x = Dhα (3.3)

式 (3.2)のうち
(

(F Dl)
T (F Dl) + λI

)−1
(F Dl)

T (3.4)

の部分は入力低解像度パッチ y に依存しないので，入力パッチの処理前に一度だけ計

算しておけば良い．そのため，提案法の係数 α 導出のための主な計算コストは式 (3.4)

のサイズ K × K の行列の逆行列計算 1 回と，(3.2) の計算において，サイズ K × 4n

の行列の掛け算がパッチ数の分必要になる．行列の掛け算は，(2.52) の L1 最適化問題

をパッチの数だけこなすのに比べて低い計算コストですむため，L2 ノルムへの変更に

よってアルゴリズム全体の処理時間を削減することができる．

図 3.2に L1 再構成を行った時と L2 再構成を行った時に得られる係数 αの違いを示

す．L1 制約を L2 制約に変更したことで，αのスパース性がなくなり，非ゼロの係数が

ベクトル中に万遍なく配置された形となる．提案法では，辞書ベース超解像において，

α のスパース係数がなくても問題なく高解像度パッチを復元できることを示した．

3.4 自画像からのサンプリングによる辞書作成

超解像問題の再構成のために，事前辞書Dh, Dl の必要性を解消し，また事前辞書の

質によって再構成画像の精度が左右される問題点を解決するために，本手法では，入力

低解像度 Y からのパッチサンプルによって辞書 Dh, Dl を作成する方法を提案する．

以降パッチサンプルに用いる入力低解像度画像自身のことを自画像と定義する．
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(b) L2 最小化によって得られる係数

図 3.2 L1 と L2 最小化によって得られる係数 αの違い

自画像からのパッチサンプルによる辞書作成の流れを図 3.3に示す．まず入力低解像

度画像 Y から，与えられた拡大率 sに基づいて縮小を行い，更に低解像度の画像 Z を

作成する．さらにサンプルされる辞書のパターンを増やすために，Y , Z に関して，オ

リジナルの画像の他に反転 2種，回転 4種，輝度反転 2種を含む計 16種類の変換画像

を作る．ここから，ランダムな座標を選び，Y から切り出したパッチを高解像度辞書

Dh の要素，Z の対応する座標から切り出したパッチを Dl の要素とすることで，辞書

の対を構成する．これによって作成した低解像度辞書 Dl には 2.5.2節の特徴抽出行列

F をかけて F Dl とし，式 (3.4)の再構成問題に使用する．この操作によって自画像か

ら高解像度画像 X 再構成に必要な辞書 Dh, Dl を大量の画像から予め学習させておく

必要がなくなる．
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図 3.3 自画像からのパッチサンプルによる辞書作成

3.5 実験と評価

提案手法する辞書ベース超解像の優位性を示すために，サイズ 512 × 512の標準画像

24枚（図 3.4）を用いて評価を行った．

512 × 512の画像を 1/2倍の 256 × 256に縮小，超解像アルゴリズムを用いて 2倍の

512 × 512 に拡大したものを原画像と比較する．評価は PSNRによる定量的評価と，結

果画像と原画像を比較した視覚評価を行った．また，L2 再構成の計算時間評価のため

にサイズ 128から 1024までの画像サイズに関して超解像を行ったときの計算時間を測

定した．

比較対象の手法は標準の Bicubic法，L1 ベースの超解像手法 [37]の他に，自画像辞

書と L2 再構成それぞれの効果を評価するため，自画像からサンプルした辞書を元に L1

再構成を行う手法と，学習済みの辞書を元に L2 再構成を行う手法の評価を行った．

パッチの要素数 nおよび辞書のサイズ K は従来法と提案法ともに n = 5 × 5 = 25,

K = 1024 に設定した．従来法において，式 (2.52) の λ の値は 0.2 に，提案法におい

て，式 (3.1)の λの値は 0.001に設定した．λの値は本テスト画像において良好な結果

を示す値に調整した．

本手法の実装はMATLABを用いて行い，計算時間評価は CPU Intel Core i7 4GHz，

メモリ 24 GB 1867 MHz の環境で行った．

45



Aerial Airplane Barbara Boats

Bridge Building Clown Elaine

Finger Finger2 Goldhill Grass

Houses Lenna Man Mandril

Milkdrop Nw-town Pepper Room

Station Tank Tank2 Watch

図 3.4 実験に用いる標準画像 24枚
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3.5.1 2倍拡大の PSNR比較

表 3.1 に超解像 4手法の PSNR比較結果を示した．いずれの手法も Bicucic 法と比

べると高い超解像性能を保っている．画像再構成精度は L1 再構成の精度が最も優れて

いるものの，L2 再構成では，L1 再構成に比べて大きく処理時間を短縮する一方，大き

く劣化しない精度で再構成が可能である．

また，事前辞書の代わりに自画像からサンプルした辞書を用いる場合でも，L1, L2 再

構成ともに PSNR を 0.1 dB から 0.2 dB 程度低下させるのみで，画質に大きな影響を

与えていないことが分かる．

3.5.2 実行時間の比較

表 3.2に，超解像 4手法の実行時間の比較結果を示した．事前辞書を用いた L2 再構

成の手法は，従来法（事前辞書を用いた L1 再構成）と比べて大幅に計算時間を削減し

ている．これは，式 (3.1)によって，L1 再構成を L2 再構成問題に緩和したことによっ

て，パッチごとに線形計画問題を解く必要がなくなったことによる短縮である．提案手

法 (自画像辞書を用いた L2 再構成)は，事前辞書を用いた L2 再構成問題より 2.6秒ほ

ど多く計算時間がかかる．これは自画像からのサンプル時間によるものであるが，この

時間を含めても L1 再構成問題よりも高速に処理が可能である．

3.5.3 画像サイズ・辞書サイズによる実行時間の変化

図 3.5 に画像サイズ及び辞書サイズを変化させた時の提案法の処理時間計測結果を示

した．また，図 3.6に辞書サイズが 1024の時の，提案法の各プロセスにかかる処理時

間を示した．辞書のサイズ K は自画像辞書の作成時間および，式 (3.4)の逆行列算出

時間に影響するが，逆行列算出は係数 α導出前に 1度だけ計算すれば良いので全体の

計算時間に比べると非常に僅かな計算コストですむ．主な計算時間の差は画像サイズに

よるものであり，自画像からの辞書のサンプリングにかかる時間，係数 α の導出，高

解像度パッチの再構成にかかる時間に影響する．いずれの処理時間も画像の画素数，す

なわち画像の 1辺のサイズの 2乗に比例して計算時間が増加することが分かる．
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図 3.5 画像サイズと辞書サイズによる実行時間の変化
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図 3.6 辞書サイズ 1024時の実行時間の詳細
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表 3.1 2倍拡大画像の PSNR比較 (単位：dB)

画像名 Bicubic 従来法 自画像辞書 事前辞書 提案法

L1 再構成 L2 再構成

Aerial 24.742 26.009 25.782 25.658 25.658

Airplane 33.357 37.028 36.734 36.353 36.075

Barbara 25.210 27.132 26.984 27.040 27.045

Boat 29.904 31.498 31.038 30.928 30.893

Bridge 26.600 27.704 27.643 27.483 27.408

Building 25.950 26.973 26.925 26.792 26.776

Clown 32.766 35.091 34.880 34.628 34.646

Elaine 33.074 33.631 33.580 33.535 33.482

Finger 28.706 30.878 30.984 31.045 31.140

Finger2 30.639 33.047 32.902 33.089 33.029

Goldhill 31.389 32.510 32.364 32.208 32.218

Grass 27.763 29.216 29.075 29.107 29.104

Houses 23.682 25.143 24.934 24.681 24.703

Lena 32.953 37.480 37.186 36.951 37.022

Man 27.344 28.647 28.461 28.128 28.139

Mandril 23.263 25.968 25.923 25.865 25.884

Milkdrop 37.007 42.231 40.650 40.184 39.581

Nw-town 27.611 29.010 28.780 28.456 28.450

Pepper 32.222 36.936 36.397 35.948 35.823

Room 28.364 30.592 31.184 30.996 30.953

Station 29.581 32.075 32.153 31.826 32.110

Tank 32.850 33.745 33.608 33.619 33.519

Tank2 31.166 31.959 31.926 31.947 31.939

Watch 31.382 34.011 33.201 33.043 32.853

平均 29.480 31.605 31.387 31.230 31.185
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表 3.2 2倍拡大の実行時間比較 (単位：秒)

画像名 従来法 自画像辞書 事前辞書 提案法

L1 再構成 L2 再構成

Aerial 122.239 127.573 2.246 4.804

Airplane 131.274 132.876 2.397 4.912

Barbara 126.211 123.887 2.374 4.939

Boat 124.841 143.347 2.436 4.915

Bridge 128.061 129.478 2.429 4.895

Building 138.446 140.774 2.416 4.916

Clown 132.690 118.496 2.405 4.919

Elaine 124.587 126.865 2.378 4.935

Finger 128.238 142.195 2.381 5.204

Finger2 136.111 134.351 2.377 5.068

Goldhill 144.568 137.406 2.382 4.998

Grass 129.745 121.577 2.397 4.932

Houses 128.000 128.435 2.370 5.021

Lena 141.120 135.240 2.407 4.954

Man 143.691 134.479 2.395 4.955

Mandril 147.946 158.934 2.377 4.948

Milkdrop 142.401 139.635 2.392 5.011

Nw-town 128.264 106.811 2.397 4.932

Pepper 141.893 122.287 2.373 4.961

Room 126.123 95.950 2.394 4.929

Station 136.224 120.715 2.383 4.913

Tank 131.194 109.238 2.369 4.923

Tank2 155.508 143.778 2.394 4.930

Watch 125.533 121.217 2.377 4.935

平均 133.954 128.981 2.385 4.952
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3.5.4 画像の視覚評価

図 3.7に画像 Airplaneの再構成結果を示す．L1 再構成，L2 再構成ともに文字の部

分を高解像度化できている一方で低解像度画像に起因する文字の変形が両手法ともに見

られる．また自画像から作成した辞書を用いた再構成では，文字の下の部分にアーティ

ファクトが発生している．図 3.8に示した画像 Houses の再構成結果でも自画像辞書で

は文字の下あたりにアーティファクトが発生し，これが PSNR低下の原因となってい

ると考えられる．

図 3.9に画像 Tank の再構成結果を示す．この画像は全体的に目立ったエッジが少な

い画像であるが，自画像辞書を用いた再構成では星の部分等のエッジ成分を再構成でき

ていることが分かる．

図 3.10に示した画像 Room の再構成結果では，椅子のカバー等のエッジ部分をいず

れの手法も再現できている．一方で画像左上のケーブル部分では，自画像辞書を用いた

手法はブロック上のアーティファクトを発生させた．

3.6 まとめと今後の展望

本章では，従来の超解像手法における L1 再構成の計算コストと，事前辞書を予め用

意しておくことの欠点に着目して，L2 再構成と自画像辞書を用いた手法を提案した．

提案手法は，従来手法と同様に，低解像度パッチを低解像度辞書の線形結合で近似

し，その近似係数を利用して高解像度パッチの再構成を行う．この係数導出の際に提案

法は L1 ノルム最小化問題を L2 ノルム最小化問題に変更した．これによって係数算出

問題が閉形式の解となり，辞書サイズに依存する逆行列計算の回数を 1回に減らすこと

ができる．また，提案手法の計算時間に影響する処理は，パッチ再構成問題に関する係

数 α導出に行列積 1回高解像度パッチ x再構成に行列積 1回となり，二次計画法が必

要な L1 再構成に比べて低コストで計算が可能である．

また，提案手法では自画像からのサンプルによって高解像度・低解像度の辞書のペア

Dh, Dl を動的に作成する手法を提案した．これによって辞書サイズ・パッチサイズ・

拡大率等のパラメータが異なる辞書を予め用意しておく必要がなくなり，柔軟に辞書を

構築できる．

提案する超解像手法は，従来の L1 再構成と事前学習した辞書を用いた手法と比べて

若干の PSNR低下が確認されたが，実行時間の面では L2 再構成は L1 再構成と比べて
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大幅に計算コストの削減が可能である．実験結果では PSNR の低下は 0.3 dB 前後と

比較的少ない低下量であるのに対し，計算コストの削減量は 512 × 512 の画像で 30 倍

前後と計算コスト削減の利点は非常に大きいと考えられる．

一方で自画像からのサンプルされた辞書は，画像の種類によっては，縦横成分や，テ

クスチャ成分など，特定の種類のパッチのみが辞書にサンプルされ，画像中に少ない

エッジ成分等にアーティファクトを発生させる結果が確認された．これを解決するた

めには，自画像のサンプル時に辞書の要素の偏りをなくし，方向成分・エッジ・テクス

チャ部をバランスよく保持する自画像辞書の構築法の確立が望まれる．

また，自画像からのパッチのサンプル自体にかかる計算コストが画像の画素数に比例

し，特に大きなサイズの画像を処理する時に辞書作成の計算コストが無視できなくなる

問題が確認された．このため，辞書作成にあたり，画像の画素数が大きい時でも，画像

中から分散の高いパッチ群をサンプルする手法の確立が課題となる．
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(a) 拡大箇所 (b) 原画像

(c) 低解像度画像 (d) Bicubic 法

(e) 従来法 (事前辞書，L1) (f) 自画像辞書，L1

(g) 事前辞書，L2 (h) 提案法（自画像辞書，L2）

図 3.7 画像 Airplane の処理結果
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(a) 拡大箇所 (b) 原画像

(c) 低解像度画像 (d) Bicubic 法

(e) 従来法 (事前辞書，L1) (f) 自画像辞書，L1

(g) 事前辞書，L2 (h) 提案法（自画像辞書，L2）

図 3.8 画像 Houses の処理結果
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(a) 拡大箇所 (b) 原画像

(c) 低解像度画像 (d) Bicubic 法

(e) 従来法 (事前辞書，L1) (f) 自画像辞書，L1

(g) 事前辞書，L2 (h) 提案法（自画像辞書，L2）

図 3.9 画像 Tank の処理結果
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(a) 拡大箇所 (b) 原画像

(c) 低解像度画像 (d) Bicubic 法

(e) 従来法 (事前辞書，L1) (f) 自画像辞書，L1

(g) 事前辞書，L2 (h) 提案法（自画像辞書，L2）

図 3.10 画像 Room の処理結果
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第 4 章

画像のぶれ除去問題

4.1 本章の構成

本章では画像の劣化除去として，撮像機器の動きによるモーションぶれや撮像機器の

光学特性，被写体との焦点距離のずれに基づく焦点ぼけを取り除く，ぶれ除去に焦点を

当てる．2 章で述べたとおり，ぶれ除去技術は，ぶれ軌跡の想定を加えるかどうかで，

Non-blind deconvolution と Blind deconvolution に分けられ，Blind deconvolution

はぶれカーネルの形状に想定を加えるかどうかでパラメトリックな手法とノンパラメト

リックな手法に分類される．本研究はより実用的なアプリケーションへの応用を想定し

て，ノンパラメトリックな Blind deconvolution手法に改良を加える．

2.6節にて述べた Choの手法 [53]は，最小二乗問題に基づくカーネル推定を高速化し

たアルゴリズムであり，実行速度面と精度の両立面で他の手法より優れているため，本

研究ではこの手法をベースに実行速度のさらなる改善と補正画像の精度向上を図った．

本章では 4.2 節にて従来法の問題点とそれに対する提案手法の改良点の概要を述べ

る．次に 4.3節にて提案手法のカーネル推定の改良点を，4.4節にて提案手法の逆畳み

込み手法の改良点について詳細に述べ，4.5節にて提案手法全体のフレームワークにつ

いて説明する．最後に 4.6節にて従来手法との補正画像の比較を行い，提案手法の優位

性を示す．

4.2 従来手法の問題点と提案手法の改良点

Choの従来手法 [53]はカーネル推定を主にエッジ領域で行うために，カーネル推定

に用いるデータ点が減少し，推定精度が悪化する問題点がある．また，逆畳み込み手法

は，反復法の繰り返しごとに畳み込みの計算を含む手法が用いられており，計算時間が
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かかる問題点がある．そこで提案手法では以下の改良を行った．

• 画像の前処理に特徴抽出フィルタを用いることによるカーネル推定の改善

• 高速化した差分逆畳み込みによる逆畳み込みの実行時間改善

カーネル推定に用いる特徴抽出フィルタは，ぶれ画像 Y と前処理画像 X に対して

適用し，この特徴空間上でカーネル推定を行う．これによって，従来法のしきい値処理

では取り切れないエッジやテクスチャ成分もカーネル推定に用いることができ，推定精

度を改善することが期待される．また，カーネル推定の最適化の誤差関数を周波数上で

表現することで冗長な FFTの計算を省き，処理時間を改善した．

逆畳み込み問題では差分逆畳み込みをぶれ除去問題に適用する方法を提案した．差分

逆畳み込みは，本来の画像の代わりに，画像から短時間露光画像などのガイド画像を引

き，その差分を逆畳み込みすることで，補正画像に生じるリンギング等を削減する手法

である．提案法では，逆畳み込みの過程で，ガイド画像を動的に生成し，ガイド画像が

ない状況でも可能な差分逆畳み込み手法を考案した．また，逆畳み込みの最適化問題の

誤差関数を周波数上で表現して冗長な FFT計算時間を削減し，処理時間を大きく短縮

している．

4.3 特徴抽出を用いたカーネル推定

4.3.1 カーネル推定のための前処理の改善

従来法はボケ画像・補正画像の前処理としてバイラテラルフィルタとショックフィル

タを適用した後，画像に縦横の微分を適用し，しきい値処理を行う．このうちバイラテ

ラルフィルタ処理としきい値処理のしきい値決定に大きな計算コストがかかる．そこ

で提案法では，高速なエッジ保存平滑化フィルタである Guided フィルタ [101] を用

いた画像の前処理手法を提案する．Guided フィルタはバイラテラルフィルタと同様の

エッジ保存平滑化フィルタの一つであり，入力ノイズ画像とともにガイド画像を必要と

する．

提案法では，ガウスフィルタで大まかにノイズを取り除いた画像をガイド画像として

用いることで，リンギング成分等を増幅させることなしに，画像の細かいブレやノイズ

成分を取り除く処理を実現した．ガウスフィルタの標準偏差はサイズ 11 × 11のカーネ

ルに対して 3.0 に設定した．Guided フィルタは入力画像に対して 2 から 3 回かける．

また，Guided フィルタ処理後の画像に対してショックフィルタをかけることで失われ
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図 4.1 提案法の画像の前処理

たエッジ成分を復元させて，後段のカーネル推定問題に利用する．提案法の画像の前処

理の流れを図 4.1に示した．

4.3.2 特徴抽出フィルタを用いたカーネル推定処理

特徴抽出フィルタを P とし，ブレ画像 Y および一時的な補正画像 X に対して，こ

のフィルタを畳み込んだ P ⊗ Y および P ⊗ X に対して以下のカーネル推定問題を定

義する．
K = argmin

K

∥P ⊗ Y − K ⊗ P ⊗ X∥2
2 + β∥K∥2

2 (4.1)

また，P の畳み込み行列表現を H として，カーネルのベクトル表現 k に対して以下

の様に書き換える．
k = argmin

k

∥Hy − HAk∥2
2 + β∥k∥2

2 (4.2)

式 (4.1)を効率よく解くために提案手法では当式の二乗誤差項と制約項をそれぞれ周

波数表現に置き換える．

fk = argmin
fk

∥Fhfy − FhFxfk∥2
2 +

β

N1N2
∥fk∥2

2 (4.3)

fk, fy はカーネルおよびぶれ画像の周波数特性 F(K), F(Y ) の要素をそれぞれベク

トル上に配置したもの，Fh, Fx は特徴抽出フィルタ，前処理画像の周波数特性 F(P ),

F(X) の要素を対角行列に配置したものである．フーリエ変換の線形性・直交性より

∥P ⊗ Y − K ⊗ P ⊗ X∥2
2 と ∥Fhfy − FhFxfk∥2

2，∥K∥2
2 と ∥k∥2

2 がそれぞれ比例す
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Algorithm 3 提案法のカーネル推定アルゴリズム

1. Initialize fk to the vector of F(K0)

2. r = (FhFx)HFhfy −
(

(FhFx)H(FhFx) + βI
)

fk

3. p = r

4. e0 = rHr

5. for i = 1 to converge ei do

6. z =
(

(FhFx)H(FhFx) + βI
)

p

7. kstep = ei−1/(pHz)

8. fk = fk + kstepp

9. r = r − kstepz

10. ei = rHr

11. p = (ei/ei−1)p

12. end for

13. return K corresponding to fk

る．式 (4.3)は fk に関して微分して = 0 とすることで解を得ることができる．

2(FhFx)H (Fhfy − FhFxfk) +
2β

N1N2
fk = 0

∴ fk =

(

(FhFx)HFhFx +
β

N1N2
I

)−1

(Fhfy) (4.4)

式 (4.4)は共役勾配法を用いて，Algorithm 3 の様に実行できる．

制約項 β∥k∥2
2 は従来法の式 (2.69)と同じエネルギー最小化制約であり，従来法と同

様に，収束を安定させる値に調整する．

4.3.3 特徴抽出フィルタの設計

提案手法で用いる特徴抽出フィルタ P （行列表現 H）の設計方法について説明す

る．提案法の特徴抽出フィルタは，ぶれ画像からエッジ成分を適切に抽出し，さらにリ

ンギングが発生しやすい周波数を抑制する．そのため，本手法のフィルタは，全方向に

等しいカットオフ周波数を持つハイパスフィルタに微分フィルタを合成する形で設計を

行う．

まずカットオフ周波数 fω のハニング窓を元に，窓関数法から次数 nω の 1 次元の

FIR フィルタを作成する．カットオフ周波数 fω と次数 nω の値はそれぞれ fω = 0.2,
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図 4.2 カットオフ周波数 fω のハイパスフィルタ

nω = 11とした．次にこの 1次元カーネルを以下のマクレラン変換行列を利用して円対

称な 2次元フィルタに変換する [102]．

TM =
1

8





1 2 1
2 −4 2
1 2 1



 (4.5)

この時点でのフィルタの PSFおよび周波数特性は図 4.2のようになる．提案法で用い

る特徴抽出フィルタはこれに x および y 方向の微分カーネルを合成する．微分カーネ

ルは 1次，2次の中間差分として以下の 5種類を用いる．

∂x =
[

1 0 −1
]

, ∂y =
[

1 0 −1
]T

,

∂xx =
[

1 −2 1
]

, ∂yy =
[

1 −2 1
]T

,

∂xy =





1 −2 1
−2 4 −2
1 −2 1



 (4.6)

図 4.2のカーネルを Pw とした時に，提案法で用いる特徴抽出フィルタ P は以下の式

で合成される．w1, w2, w3 は，各微分成分の重みを表すパラメータで，低次の微分成分

と高次の微分成分のどちらを重視してカーネル推定を行うかを決定することができる．

提案法では経験的に良好なカーネル推定結果を得られる値として w1 = 0.5, w2 = 1.4,

w3 = 1.4としている．

P = (w1∂x + w1∂y + w2∂xx + w2∂yy + w3∂xy) ⊗ Pw (4.7)

式 (4.7)で合成された提案法の特徴抽出フィルタは図 4.3右側に示すような周波数特性

となる．
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図 4.3 提案法で用いる特徴抽出フィルタの設計

4.4 差分逆畳み込み

4.4.1 差分逆畳み込みのプロセス

最終逆畳み込みのプロセスには，精度を高めるために Yuan の差分逆畳み込み [103]

を改良して用いる．

差分逆畳み込みとはブレ画像 Y を逆畳込みする際に，Y を直接処理するのでなく，

Y とガイド画像XG との残差 ∆Y = Y − XG ⊗ K に対して逆畳み込みを行い，補正

画像X とXG の残差∆X = X − XG を得るというものである．ブレ画像と補正画像

の残差∆Y , ∆X の間には以下の関係が成立する．

∆Y = ∆X ⊗ K (4.8)

これは以下の過程から証明することができる．

X ⊗ K = (XG + ∆X) ⊗ K

= XG ⊗ K + ∆X ⊗ K

= XG ⊗ K + ∆Y

∴ ∆Y = ∆X ⊗ K

(4.9)

差分逆畳み込みの目的は画像のエッジ部分のリンギングの抑制にある．図 4.4に 1次元

の例を示したが，ブレ画像とガイド画像の残差を取ることで，ブレ画像におけるエッジ

近辺の画素値の変化が抑えらる．これを逆畳込みすると，元の画素値変動が大きい画像

を直接処理した場合に比べ，リンギングの幅が少なくなる．結果的に，ガイド画像を足

して元の画像にした時のリンギングが抑制される．

62



そのまま逆畳み込み
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図 4.4 差分逆畳み込みによるリンギングの抑制

式 (4.9)の関係を ∆X に関する最小二乗問題とすることで，以下の形式で逆畳込み

問題を実現できる．
∆X = argmin

∆X

∥∆Y − ∆X ⊗ K∥2
2 (4.10)

微分しやすいように ∆Y , ∆X をベクトル表現の ∆y, ∆x，K を畳み込み行列の C

に置き換えた以下の表現に書き換える．

∆x = argmin
∆x

∥∆y − C∆x∥2
2 (4.11)

また，逆畳み込み中のリンギング発生を抑制するために，∆x に対して縦横の微分を行

う行列 D を用いて ∆x の Total Variation ∥D∆x∥2 を制約として付加する．

∆x = argmin
∆x

∥∆y − C∆x∥2
2 + α∥D∆x∥2 (4.12)

4.4.2 周波数軸における共役勾配法を用いた解法

提案手法は差分逆畳み込みの表現をフーリエ変換の線形性・直交性を利用して周波数

軸上に移行する．提案法の逆畳み込みアルゴリズムは式 (4.12)の∆x, ∆y, C, D を周

波数変換した F(∆X), F(∆Y ), F(K), F(D) に置き換えて以下の形式にする．

F(∆X) = argmin
F(∆X)

∥F(∆Y ) − F(K) ◦ F(∆X)∥2
2 + α∥F(D) ◦ F(∆X)∥2 (4.13)

フーリエ変換の直交性から (4.12) と (4.13) の二乗誤差項，制約項は共に比例するため，

この 2 つは同じ逆畳み込み問題を実現することができる．F(∆X), F(∆Y ) の要素を
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列ベクトルに配置した fx, fy，F(K), F(D) の要素を対角行列に配置した行列 Fk, Fd

を用いて式 (4.13)を以下の様に書き換える．

fx = argmin
fx

∥fy − Fkfx∥2
2 + α∥Fdfx∥2 (4.14)

これを fx で微分することで以下の式を得る．

−2F H
k (fy − Fkfx) +

α

∥Fdfx∥2
F H

d Fdfx = 0

∴ fx =

(

F H
k Fk +

α

∥Fdfx∥2
F H

d Fd

)−1

F H
k fy (4.15)

式 (4.15)の右辺に fx が残っているため，この式で解の fx を得ることはできない．し

かし提案手法は逆畳み込みアルゴリズムを繰り返し行うため，右辺の fx に前回の逆畳

み込みの出力 f ′
x を用いることで，解を得ることができる．この方式に関しては後の 4.5

節で述べる．

fx =

(

F H
k Fk +

α

∥Fdf ′
x∥2

F H
d Fd

)−1

F H
k fy (4.16)

式 (4.16)は共役勾配法を用いて Algorithm 4 の様に解くことができる．
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Algorithm 4 提案手法の逆畳み込みアルゴリズム

1. Set fy to the vector of F(∆Y ) = F(Y − XG ⊗ K).

2. Initialize fx = fy

3. r = F H
k fy −

(

F H
k Fk +

α

∥Fdf ′

x∥2
F H

d Fd

)

fx

4. p = r

5. e0 = rHr

6. for i = 1 to converge ei do

7. z =
(

F H
k Fk + α

∥Fdf ′

x∥2
F H

d Fd

)

p

8. xstep = ei−1/
(

pHz
)

9. fx = fx − xstepp

10. r = r − xstepz

11. ei = rHr

12. p = (ei/ei−1) p

13. end for

14. Set ∆X to the F−1 of fx’s matrix form

15. return X = XG + ∆X
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4.4.3 冗長な DFT計算の削減による高速化

前節で 2乗誤差項と制約項を周波数軸に移行した理由は計算時間を削減するためであ

る．図 4.5に，Algorithm 4 の共役勾配法を空間軸の 2乗誤差 ∥y − Cx∥2
2 に対して解

いた場合と，周波数軸の 2乗誤差 ∥fy − Fkfx∥2
2 に対して解いた場合の比較を示した．

左の空間軸処理は，画像 xを求める問題，右の周波数軸処理は画像の周波数特性 fx

を解く問題となる．p, r, z が空間軸処理では空間軸の値，周波数軸処理では周波数軸

の値になる．また，周波数軸処理では p, r, z が複素数の値になるため，転置 T が複素

共役転置 H に置き換わる．

右の提案手法は，p, z を周波数軸の値としたことによって，7 行目 の F H
k Fk +

α
∥Fdf ′

x∥2
F H

d Fd の計算の際にフーリエ変換および逆フーリエ変換が不要になり，この分

の計算時間を削減できる．8行目から 12行目の値が複素数となるため，計算量が 2倍

となるが，7行目の計算時間削減と比較して影響は少ない．
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図 4.5 空間軸処理と周波数軸処理のコスト比較
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4.4.4 ガイド画像の生成

差分逆畳み込みの従来法では，ガイド画像XG に短時間露光画像等の別画像を用いる

必要があったが，提案法ではぶれ画像自身や，前回の逆畳み込み結果を利用して，ガイ

ド画像がなくても逆畳み込みできる方式を考案する．提案手法は，ガイド画像がある場

合とない場合で処理を分ける．

ガイド画像はある程度エッジ成分を持っているほうが画像のエッジ部分からのリンギ

ングの発生を抑制できると考えられる．一方で，ガイド画像がリンギング成分を持って

いると出力画像が ∆X + XG であるため，XG にリンギングの影響があると最終出力

画像にもリンギングが残ってしまう．

そのため，前回の逆畳み込み出力をガイド画像として用いる場合，逆畳み込み出力か

らリンギングを取り除き，かつ，エッジ成分を強調した画像をガイド画像として用いる．

このために，提案手法では，入力ガイド画像に対して Guided フィルタでノイズやリン

ギングの影響を取り除く．その後，ショックフィルタをかけて画像の主となるエッジ成

分を復元させる．これによって得たXG を提案手法の∆Y , ∆X 算出に用いる．

ガイド画像がない場合入力ぶれ画像からガイド画像を動的に生成する．入力ぶれ画像

にはモーションブレの影響がある一方で，リンギング成分はないものと考えられる．そ

のため，入力ぶれ画像に対して，カーネル K を上下左右反転させたミラーカーネルを

かけてモーションぶれの影響を軽減させる．その後ショックフィルタをかけて画像の主

となるエッジ成分を復元させたものをガイド画像XG とする．

ぶれ画像 Y とガイド画像の差分 Y − ∆XG ⊗ K を算出する際には，図 4.6の様に

∆XG ⊗ K の外側部分を Y に置換する．これによって ∆Y の外側部分が 0 となり，

境界面での不連続性が解消されるため，画像端からのリンギングの発生を抑えることが

できる．
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4.5 提案する Blind Deconvolutionのフレームワーク

4.3 節のカーネル推定および 4.4 節の逆畳み込みアルゴリズムを利用して提案法の

Blind Deconvolution のフレームワーク図 4.7 の様に構築する．

カーネル推定の際に，カラー画像はグレースケールに変換して推定を行う．1回目の

カーネル推定はカーネルの発散を防ぐために式 (4.2) の空間軸におけるカーネル推定問

題を使用する．また，前回の逆畳み込みの結果が存在しないため，式 (4.15) の逆畳み

込みは α = 0 すなわち TV 制約なしで解く．2回目以降のカーネル推定では，周波数

軸で二乗誤差を取った式 (4.3) を用いてカーネル推定を行い，前回の逆畳み込み結果を

TV 制約に用いた式 (4.16) を用いて逆畳み込みを行う．逆畳みこみを行って得た補正

画像を次のカーネル推定に用いて精度の向上をはかる．この繰り返しは初回のカーネル

推定を含めて 5回ほど行う．

最終的に得られたカーネル推定結果を元に元のカラー画像の逆畳み込みを行う．はじ

めに TV 制約・ガイド画像算出のために，式 (4.15) の逆畳み込みを α = 0，すなわち

TV 制約なしで解く．次に，これによって得た画像をガイド画像 XG と，TV 制約算

出の f ′
x に用いて式 (4.16)で逆畳込みを行う．これによって得た画像を最終出力画像と

する．

4.6 実験と評価

4.6.1 実験の設定

提案手法の性能を評価するために，Tecnick TESTIMAGES [104] で提供されている

サイズ 600 × 600の画像 40種類（図 4.8）に逆畳み込みアルゴリズムを適用し，比較を

行った．

実験は，カーネルを既知として逆畳み込みアルゴリズムのみを行った Non-blind

deconvolution の精度比較と，カーネルを未知としてカーネル推定・逆畳込みの両方を

行う Blind deconvolution の精度比較を行った．

Non-blind deconvolution の評価では，原画像にカーネルを畳み込みし，逆畳み込み

アルゴリズムを適用した後，原画像との PSNRを算出し，比較を行う．カーネルには

図 4.9に示すサイズ 11 × 11のカーネル 8種および図 4.10の 35 × 35カーネル 5種に

関して評価を行った．結果の PSNR はカーネル 8種を補正した際の結果を平均したも
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のを用いる．

比較対象の手法として，ウィナーフィルタ，Richardson Lucy 法 [49]，Levin の手法

の逆畳み込みプロセス [50]，Levin の手法と同様にスパース制約を用いる Krishnan の

手法 [105] を用いた．

Blind deconvolution の評価では Non-blind と同様に図 4.9のサイズ 11 × 11のカー

ネルを画像に適用し，カーネル推定と逆畳み込みを行う．Blind deconvolution アルゴ

リズムの比較対象手法には Fergus の手法 [47]，Cho and Lee の手法 [53]，Levin の手

法 [50]，Xu および Jia の手法 [51, 52] を用いた．

図 4.9の比較に用いるサイズ 11 × 11のカーネルは主にモーションぶれのみからなる

カーネル（1から 4）とモーションぶれと焦点ぼけの両方を含むカーネル（5から 8）を

含む．またそれぞれのカーネルにおいて，直線ぶれからなるもの（1, 2, 5）と，より複

雑なぶれ軌跡を持つものを含んでおり，それぞれのカーネルの補正結果を平均すること

で，カーネル推定手法および逆畳込み手法ともに，多くの種類のカーネルに対応できる

手法同士の比較が実現できると考えられる．Non-blind deconvolution 比較に用いた図

4.10のサイズ 35 × 35のカーネルは，より複雑なぶれ軌跡の補正を評価できる様，あら

ゆる方向成分を含むカーネルを用いた．

従来手法である Choの手法において，式 (2.69) カーネル推定問題の制約は β = 5.0

とした．提案手法においては式 (4.4) のカーネル推定問題の制約は β = 5.0, 式 (4.16)

逆畳み込み問題の制約は α = 0.001とした．
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図 4.7 提案手法のカーネル推定・逆畳込みのフレームワーク
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almonds apples baloons bananas billiard_balls_a billiard_balls_b

building cards_a cards_b carrots chairs clips

coins cushions ducks fence flowers garden_table

guitar_bridge guitar_fret guitar_head keyboard_a keyboard_b lion

multimeter pencils_a pencils_b pillar plastic roof

scarf screws snails socks sweets tomatoes_a

tomatoes_b tools_a tools_b wood_game

図 4.8 実験で用いる 40画像
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1 2 3 4

5 6 7 8

図 4.9 実験で用いるサイズ 11 × 11のカーネル 8種

1 2 3 4 5

図 4.10 実験で用いるサイズ 35 × 35のカーネル 5種

73



4.6.2 Non-blind deconvolution手法との比較

表 4.1に 11 × 11のカーネルを逆畳み込みした画像の PSNR比較を示す．また表 4.2

に 35 × 35のカーネルを逆畳み込みした画像の PSNR比較を示す．サイズ 11 × 11の

カーネル補正結果では Levin の手法や Krishnan の手法と比べて PSNR で 3 dB 前後

向上しており，差分逆畳み込み導入による画像補正精度の改善ができていることがわか

る．サイズ 35 × 35のカーネル補正結果では Krishnanの手法と比べて PSNRで 3 dB

ほど改善しており本手法の逆畳み込みがより複雑なカーネルの補正にも対応できること

が分かる．

図 4.11に画像 Bananasにサイズ 11 × 11のカーネルをかけて逆畳み込みした結果画

像を示す．図の左上に原画像全体と用いたカーネル，画像の拡大位置を示し，(a)に原

画像の拡大画像，(b)にぶれ画像の拡大画像，(c)から (g)に各手法の拡大画像を示して

いる．各手法の補正精度は (a)の原画像と比較することで評価することができる．提案

法は Levin や Krishnan の手法と比較して，ヘタの部分や背景のテクスチャ再現性に優

れており，これが PSNR向上に寄与したものと考えられる．Wiener フィルタは提案法

同様とテクスチャ部の再現ができているが画像端からのリンギングが復元精度を大きく

悪化させている．

図 4.13の画像 Snailでは，目の部分のテクスチャを再現しつつ，Wienerフィルタや

Richardson Lucy 法に比べてリンギングの影響を低減させている．しかし，背景の平坦

な部分では，スパース制約を用いる Levin，Krishnan 2手法と比べてリンギングが残っ

ている問題がある．図 4.13の画像 Cardsも同様に，カードの絵柄のテクスチャ再現性

を再現しつつも，平坦な部分にリンギングを残す結果となっている．

図 4.14に画像Multimeterに 35 × 35のカーネルをかけて逆畳み込みした結果画像を

示す．35 × 35の大きなカーネルではスパース制約を用いる Levinの手法と Krishnan

の手法では Krishnanの手法のほうが復元性能が高い．提案法は文字の部分の復元性能

を確保しつつ，Wienerフィルタで発生している激しいリンギングの影響を低減させた

復元ができている．
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表 4.1 サイズ 11 × 11のカーネルの逆畳み込み精度比較 (単位：dB)

画像 Wiener Lucy Levin Krishnan 提案法

almonds 29.576 31.687 30.815 30.889 33.737

apples 36.464 39.315 38.618 38.745 43.300

baloons 29.265 33.030 36.441 36.270 38.695

bananas 28.883 34.231 36.808 37.269 41.758

billiard_balls_a 29.322 34.699 38.938 38.710 40.443

billiard_balls_b 32.904 35.852 35.715 35.845 37.703

building 31.743 33.502 31.425 31.267 34.795

cards_a 25.749 27.162 26.718 27.135 29.392

cards_b 27.801 28.942 29.902 30.497 32.024

carrots 29.705 32.089 32.037 32.225 35.806

chairs 28.892 34.948 40.904 40.294 42.828

clips 25.059 27.801 26.658 26.796 28.301

coins 31.848 32.352 29.538 29.530 33.907

cushions 30.279 34.958 38.744 38.786 42.395

ducks 28.793 34.194 39.671 39.377 42.419

fence 27.109 30.644 32.700 33.138 34.269

flowers 27.672 30.359 29.793 29.792 32.513

garden_table 29.151 31.527 28.858 28.928 33.274

guitar_bridge 33.760 35.633 32.507 32.991 35.994

guitar_fret 28.538 31.996 33.231 32.957 35.625

guitar_head 31.399 32.450 29.098 29.036 32.835

keyboard_a 32.195 33.259 28.322 28.493 31.905

keyboard_b 32.526 30.058 31.229 31.507 33.465

lion 27.658 30.896 30.978 31.096 34.100

multimeter 33.965 34.440 32.431 32.595 35.924

pencils_a 31.227 32.884 33.215 32.778 36.168

pencils_b 27.191 31.423 33.585 33.511 36.729

pillar 31.339 33.252 31.471 31.245 35.221

plastic 33.859 36.850 35.128 35.506 40.905

roof 26.237 28.582 29.045 29.223 32.658

scarf 26.621 29.354 27.071 26.979 29.758

screws 28.510 27.411 24.589 25.095 27.350

snails 28.036 33.247 35.830 35.506 39.827

socks 29.505 31.948 28.867 29.007 33.693

sweets 28.949 32.716 34.438 34.340 36.987

tomatoes_a 29.699 34.374 38.844 39.006 41.433

tomatoes_b 32.124 37.103 39.067 38.980 40.780

tools_a 30.080 31.107 30.606 30.472 33.576

tools_b 29.836 34.346 35.668 35.781 39.132

wood_game 44.762 39.466 38.320 38.066 41.549

平均 30.206 32.752 32.946 32.992 36.079
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表 4.2 サイズ 35 × 35のカーネルの逆畳み込み精度比較 (単位：dB)

画像 Wiener Lucy Levin Krishnan 提案法

almonds 24.784 24.876 18.361 24.002 26.594

apples 33.400 32.130 26.799 33.080 36.571

baloons 25.362 25.728 21.280 27.505 30.188

bananas 25.895 26.925 25.032 32.145 33.973

billiard_balls_a 25.819 27.180 21.865 29.268 31.202

billiard_balls_b 29.228 28.510 20.717 28.334 30.609

building 27.175 26.280 21.248 24.501 27.512

cards_a 22.137 20.743 15.579 20.898 23.089

cards_b 23.528 22.348 17.316 23.639 25.351

carrots 25.433 24.533 21.531 26.388 29.099

chairs 25.627 28.065 25.880 31.229 34.223

clips 20.339 19.467 11.866 19.072 21.049

coins 27.616 26.057 20.643 24.591 27.947

cushions 27.062 28.139 26.381 31.712 35.603

ducks 25.723 26.964 24.854 31.637 34.400

fence 23.304 23.513 16.592 24.935 27.215

flowers 23.427 23.243 17.254 22.985 25.777

garden_table 25.785 25.224 20.767 24.184 26.984

guitar_bridge 30.123 29.319 21.442 28.265 30.357

guitar_fret 25.024 25.039 20.326 26.385 30.383

guitar_head 29.256 27.286 19.726 24.351 28.164

keyboard_a 27.285 26.208 19.059 23.007 26.120

keyboard_b 28.051 25.439 18.183 25.195 28.254

lion 24.798 24.605 18.496 25.257 28.539

multimeter 29.921 28.198 20.969 27.010 30.248

pencils_a 24.907 25.165 20.193 25.021 30.367

pencils_b 22.996 23.553 19.405 25.043 29.381

pillar 27.771 26.973 21.173 25.557 29.707

plastic 30.629 30.184 27.282 31.903 34.834

roof 23.944 22.924 18.282 21.684 26.897

scarf 23.253 22.632 16.111 20.247 24.061

screws 24.763 21.933 14.856 18.965 22.889

snails 24.774 26.625 23.235 28.612 32.411

socks 25.046 25.041 18.792 24.701 27.627

sweets 25.017 25.331 20.416 26.339 29.101

tomatoes_a 26.041 26.290 22.745 29.948 31.721

tomatoes_b 26.790 28.757 22.092 28.882 31.482

tools_a 24.835 24.079 17.816 23.779 27.129

tools_b 25.717 26.963 21.765 28.315 30.612

wood_game 39.545 32.345 24.471 30.823 34.335

平均 26.303 25.870 20.520 26.235 29.300
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(a) 原画像

(b) ぶれ画像 (c) Wiener

(d) Richardson Lucy (e) Levin

(f) Krishnan (g) 提案法

図 4.11 画像 Bananas，サイズ 11 のカーネルの Non-blind補正結果
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(a) 原画像

(b) ぶれ画像 (c) Wiener

(d) Richardson Lucy (e) Levin

(f) Krishnan (g) 提案法

図 4.12 画像 Snails，サイズ 11 のカーネルの Non-blind補正結果
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(a) 原画像

(b) ぶれ画像 (c) Wiener

(d) Richardson Lucy (e) Levin

(f) Krishnan (g) 提案法

図 4.13 画像 Cards，サイズ 11 のカーネルの Non-blind補正結果
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(a) 原画像

(b) ぶれ画像 (c) Wiener

(d) Richardson Lucy (e) Levin

(f) Krishnan (g) 提案法

図 4.14 画像 Multimeter，サイズ 35 のカーネルの Non-blind補正結果
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4.6.3 Blind deconvolution手法との比較

表 4.3 にサイズ 11 × 11のカーネルをかけ，カーネル推定・逆畳込みを行った際の復

元 PSNR の比較結果を示す．提案手法はベースとした Cho の手法と比べて PSNR を

2.1 dB 前後改善させている．またいくつかの画像では Levin の手法，Xu および Jia

の手法より高い PSNR を示した画像がある．平均 PSNR では Xu および Jia の手法

より 0.3 dB 劣っているが，この手法に対しては後述の実行時間の点で優位性がある．

表 4.4 にカーネルごとに補正した PSNR を算出した値を全画像で平均した値を示す．

提案手法はベースとした Choの手法と比べて，カーネルによらず補正 PSNRを改善で

きていることが分かる．また，提案手法は Levin の手法と比べて直線的なカーネルの

補正に優れ，Jia の手法と比べてぼけを含むカーネルの補正に優れていることが分かる．

Levin の手法や Jia の手法とは一部補正 PSNR が劣っている部分があるが，これらの

手法に対しては実行時間の点で優位性がある．

Blind deconvolution アルゴリズムの精度は，カーネル推定プロセスにおいてどれく

らい正確なカーネルが推定できたか，逆畳み込みプロセスにおいてどれほどリンギング

やアーティファクトを発生させずに画像補正を行うかに依存する．提案法のカーネル推

定は周波数軸上の二乗誤差最小化によって推定を行い，カーネルの周波数特性を解とし

て得るが，この方式でも問題なくカーネル推定を実現できている事がわかる．また，提

案法の逆畳み込みアルゴリズムは Non-blind での検証の際にも述べたとおり，テクス

チャ部の復元精度に優れる一方，平坦部にリンギングが残りやすいアルゴリズムである

が，画像の二乗誤差基準で見た場合に全体的に復元誤差を改善できているものと考えら

れる．
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表 4.3 サイズ 11 × 11カーネルの Blind Deconvolution精度比較 (単位：dB)

画像 Cho Fergus Levin XuJia Proposed

almonds 23.594 21.871 28.984 27.382 27.865

apples 36.013 30.401 33.270 36.003 38.885

baloons 28.034 26.203 31.253 31.649 31.536

bananas 31.133 28.575 32.516 33.148 34.892

billiard_balls_a 31.293 27.105 31.771 32.331 34.812

billiard_balls_b 26.435 25.331 30.803 31.274 29.084

building 24.220 23.481 24.513 26.495 24.950

cards_a 19.510 17.753 23.992 23.420 22.338

cards_b 23.736 20.601 26.068 26.612 27.000

carrots 23.677 24.324 26.001 26.176 25.260

chairs 30.359 30.111 32.683 31.181 32.241

clips 16.107 14.066 18.174 21.423 21.993

coins 22.570 23.152 27.641 26.928 23.691

cushions 33.197 30.409 33.664 34.915 36.739

ducks 32.387 28.916 33.067 34.075 38.499

fence 23.473 21.967 25.279 27.542 28.145

flowers 21.577 20.969 25.840 26.077 26.191

garden_table 24.384 22.737 26.349 26.302 24.877

guitar_bridge 25.652 24.874 26.806 27.453 25.168

guitar_fret 23.940 24.768 26.064 25.120 23.047

guitar_head 22.707 22.458 24.262 25.311 22.944

keyboard_a 20.601 20.912 23.644 24.179 20.071

keyboard_b 22.372 22.108 22.739 25.654 22.744

lion 24.733 22.959 26.178 28.128 26.808

multimeter 27.009 24.706 28.115 29.084 27.022

pencils_a 23.211 25.901 25.148 24.147 23.163

pencils_b 25.343 22.715 26.968 27.716 25.013

pillar 23.647 24.028 27.918 27.756 26.163

plastic 27.789 29.380 31.431 27.867 27.397

roof 19.998 20.073 20.040 20.785 20.598

scarf 17.870 13.616 22.232 20.027 18.512

screws 15.359 14.258 18.423 17.671 15.261

snails 31.421 27.422 31.780 32.588 33.377

socks 22.357 20.314 24.302 23.793 24.876

sweets 28.767 24.781 30.416 30.695 32.421

tomatoes_a 30.328 27.499 30.861 32.682 34.444

tomatoes_b 31.366 27.199 31.153 32.993 35.142

tools_a 21.211 22.408 25.985 25.684 22.937

tools_b 29.661 26.147 30.101 30.252 32.016

wood_game 33.567 28.290 33.913 36.000 36.534

Average 25.515 23.870 27.509 27.963 27.616
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表 4.4 カーネルごとの Blind Deconvolution 精度比較 (単位：dB)

カーネル Cho Fergus Levin XuJia Proposed

1 26.249 24.764 25.207 28.285 27.048

2 26.136 24.405 24.734 28.314 27.639

3 23.189 22.411 27.810 27.626 26.150

4 23.863 23.098 28.268 27.927 26.938

5 27.734 24.735 27.074 28.462 30.730

6 26.082 24.281 28.787 27.998 28.482

7 23.450 22.524 29.892 27.124 25.345

8 27.420 24.739 28.298 27.965 28.599

Average 25.515 23.870 27.509 27.963 27.616

4.6.4 画像の視覚評価

図 4.15に画像 Bananasをカーネル 1で畳み込みした画像の，図 4.16に画像 Garden

Table をカーネル 3 で畳み込みした画像の，カーネル推定・画像補正結果を示す．図の

(a)は原画像，(b)には入力ぶれ画像を表しており，(b)の赤枠内には，入力ぶれ画像を

作成するのに用いたカーネルを示した．図の (c)から (g)に，従来手法 4種の補正画像

および推定カーネルを示した．それぞれの手法のカーネル推定結果は (b)の赤枠のカー

ネルと比較することで，補正画像は (a)の原画像と比較することで評価することができ

る．カーネル 1, 3 はともにモーションのみからなり焦点ボケを含まないカーネルであ

る．これらのカーネルに対しては，Cho の手法と提案手法がカーネルを比較的忠実に推

定できていることが分かる．Cho の手法は空間軸上の二乗誤差，L2 ノルム制約でカー

ネルを解く手法，提案法は周波数軸上の二乗誤差，L2 ノルム制約でカーネルを解く手

法であり，いずれを用いてもカーネル推定問題を実現できることが分かる．補正画像の

比較では，提案法は Bananas のヘタ部分や Garden Table の天板部分等，主にテクス

チャ部の復元に優れている．Cho の手法でも同等の傾向が見られるが，提案手法ではよ

りリンギングの影響が抑えられている．

図 4.17 に画像 Almonds をカーネル 5 で畳み込みした画像の，図 4.18 に画像 Tools

をカーネル 6で畳み込みした画像のカーネル推定・画像補正結果を示す．画像 Almonds

では Cho, Levin, Xu, 提案法が，画像 Tools では提案法が比較的高精度にカーネル推

定を実現している．補正画像では，Levin や Xu の手法ではテクスチャ部を平滑化させ

ている一方で，提案法は Almonds の表面や Tools のネジの部分などの復元性能が高い

一方で，背景部分などの平坦な部分にリンギングの影響が出た出力となっている．
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(a) 原画像

(b) ぶれ画像 (c) Fergus

(d) Cho and Lee (e) Levin

(f) Xu and Jia (g) 提案法

図 4.15 画像 Bananas の推定カーネルと補正結果
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(a) 原画像

(b) ぶれ画像 (c) Fergus

(d) Cho and Lee (e) Levin

(f) Xu and Jia (g) 提案法

図 4.16 画像 Garden table の推定カーネルと補正結果
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(a) 原画像

(b) ぶれ画像 (c) Fergus

(d) Cho and Lee (e) Levin

(f) Xu and Jia (g) 提案法

図 4.17 画像 Almonds の推定カーネルと補正結果
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(a) 原画像

(b) ぶれ画像 (c) Fergus

(d) Cho and Lee (e) Levin

(f) Xu and Jia (g) 提案法

図 4.18 画像 Tools の推定カーネルと補正結果
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表 4.5 Blind Deconvolution 実行時間の比較 (単位：秒)

画像サイズ Fergus Cho Levin XuJia Proposed

300 42.39 3.15 33.32 177.27 2.51

480 96.70 6.86 92.49 351.26 4.60

600 135.56 10.02 96.66 486.76 7.15

4.6.5 実行時間の評価

表 4.5に Blind deconvolution アルゴリズムの処理時間の比較結果を示す．提案手法

は高速な手法である Cho の手法より処理時間を短縮することができており，比較対象

の手法の中で最も高速に動作する．これは，4.3.1節の前処理フィルタの改善による処

理時間の短縮と式 (4.13)の周波数ベースの逆畳み込みによる DFT計算の削減が主な要

因である．

4.7 まとめと今後の展望

本章ではノンパラメトリックな Blind deconvolution である Choの手法をベースに

カーネル推定部と逆畳み込み部分の改善を行った．

カーネル推定部では，Guided フィルタによる前処理と周波数軸上で特徴抽出フィル

タを用いたカーネル推定問題を提案した．Guided フィルタを用いた前処理では，ぶれ

画像や逆畳み込みによって生じるノイズやリンギングを除去しつつ，従来法の前処理

フィルタよりも高速な処理を実現している．また，特徴抽出フィルタを用いることで，

従来法のしきい値処理の計算コストを省きつつ，しきい値処理では取れない細かな画像

のエッジ・テクスチャ部を最適化問題に適用することでカーネル推定精度を向上させて

いる．

逆畳み込みの過程では，周波数軸上でガイド画像を用いない差分逆畳み込みの手法を

提案した．この手法は画像自身の代わりに画像とガイド画像の差分を逆畳み込みするこ

とで，リンギング成分が増幅されるのを防ぐ．また最適化問題の誤差項・制約項をそれ

ぞれ周波数軸の値とし，共役勾配法を用いて解くことで反復法の各反復における冗長な

DFT/IDFT算出の計算コストを削減した．

提案手法は従来の Blind Deconvolution 手法と比較して高速な処理を実現しつつ，よ
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り高いカーネル推定精度とテクスチャ部分の復元性にすぐれる逆畳み込みを実現した．

しかしながら，提案手法の逆畳み込みは，スパース制約を用いない主に平坦な部分に

リンギングが発生しやすい問題点があり，Non-blind, Blind 問題ともに出力画像の見た

目に悪影響を与えている問題点が見受けられ，その改善が望まれる．
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第 5 章

結 論

本論文では，辞書ベースの超解像および，ぶれ推定・ぶれ除去問題に関して既存手法

の問題点を明らかにするとともに，その解決策を提案した．本章ではそれらを統括する

とともに，提案法における問題点や将来の展望について述べる．

辞書ベースの超解像手法

本論文の第 3 章において，一枚の画像に対する辞書ベースの超解像手法を取り扱っ

た．この手法は，入力画像を予め Bicubic法等で拡大したものを低解像度画像とし，低

解像度画像から切り出した低解像度パッチを低解像度辞書と係数ベクトルの線形結合で

近似する．従来手法では，L1 再構成を用いた係数ベクトル算出の計算コストがかかる

点，低解像度・及び高解像度の辞書を予め用意しておく必要がある点に問題であった．

提案手法では係数ベクトル算出の L1 再構成問題を L2 再構成に変更した超解像手法を

提案した．L2 再構成を用いた場合，係数 α の導出問題を行列の積のみで計算が可能と

なるため，最適化問題が必要な L1 再構成問題と比較して計算コストを削減することが

できる．また，入力低解像度画像からパッチをサンプルすることによって再構成問題に

用いる低解像度辞書・高解像度辞書のペアを動的に生成する手法を提案した．これに

よって辞書サイズ・パッチサイズ等のパラメータが異なる辞書を予め用意しておく必要

がなくなり，柔軟に辞書を構築できる．標準画像を用いた評価の結果，高解像度パッチ

の再構成において，L2 再構成を用いた場合でも L1 再構成を用いる従来法から PSNR

を大きく落とすことなしに画像再構成を可能であることを示した．また，事前辞書を用

いた再構成と，自画像からサンプルした辞書を用いた再構成の比較から，自画像からサ

ンプルした辞書を用いても事前辞書と同等の PSNRをもつ画像再構成が可能であるこ

とを示した．
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提案手法の問題点として，画像中の方向成分の偏りなどによって，辞書中にサンプル

されるパッチの種類に偏りが生じ，画像の再構成精度を悪化させる問題が発生した．ま

た，自画像からのパッチのサンプルにかかる時間が画像の画素数に比例して大きくなる

ため，特に大きなサイズの画像を処理する際の計算コスト改善が望まれる．

画像のぶれ除去手法

本論文の第 4 章では，モーションぶれと焦点ぼけを含む劣化画像の補正としてぶ

れ除去問題を取り扱った．ぶれ除去には既知のぶれ軌跡を取り除く Non-blind De-

convolutionと，ぶれ軌跡が未知の Blind Deconvolution があるが，本論文では Blind

Deconvolution を取り扱った．また，Blind Deconvolution 手法にはぶれ軌跡に直線・

折れ線などの想定を加える手法が存在するが，本手法では，これらの想定を行わないた

め，モーションぶれ・焦点ぼけの両方に対応できる．

従来手法では，前処理フィルタをかけた画像からエッジ検出を行い，これに対して

カーネル推定を行う．また，これによって得られたカーネルをもとに画像のぶれ補正を

行い，次のカーネル推定に用いる補正画像を得る．

提案手法ではカーネル推定問題の前処理過程を高速化・精度向上させると共に，特徴

抽出フィルタを導入することで，従来手法のエッジ検出処理の計算コストを省きつつ，

画像のエッジ・テクスチャ部をカーネル推定問題に適用することで，カーネル推定精度

を向上させた．逆畳込み問題では，周波数軸上でガイド画像を用いない差分逆畳み込み

の手法を提案した．この手法は，画像とガイド画像の差分値を逆畳み込みすることで，

リンギング成分の増幅を抑えることができる．また，誤差関数・制約項を周波数空間の

値とすることで冗長な DFT計算を削減し，処理時間の削減を実現した．テスト画像を

用いた性能評価では，提案手法は従来の手法と比較して高速な処理を実現しつつ，より

高いカーネル推定精度とテクスチャ部分の復元性に優れる逆畳み込みを実現した．

本論文では，画像の劣化過程のうち，画像のぼけ行列，ダウンサンプル，モーション

ぶれに着目した．画像のぼけ行列とダウンサンプルを劣化過程に含む画像には超解像問

題，ぼけ行列とモーションぶれを含む画像にはぶれ除去問題が適用できる．画像の劣化

復元手法の改良とともに，本論文では，アルゴリズムの処理時間短縮を主眼に入れた改

善を行った．画像の超解像手法では，ノルム制約の緩和によって閉形式の解を得ること

で，画像のぶれ除去手法では冗長な周波数変換計算の削減によって高速化を実現した．

近年，撮像機器・表示機器の高解像度化は著しく，これら高解像度の画像を実用的な時
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間で処理できるかどうかはアルゴリズムの実用化の観点から重要な課題となっている．

本論文のアルゴリズムは画像の超解像・ぶれ除去の手法を実用化に一歩近づけるととも

に，他の最適化ベースの画像再構成手法を高速化する方法の一つを提案できたものと考

えている．

画像に含まれる劣化過程の要因には多岐に渡り，それぞれの劣化に対する復元の過程

はそれぞれ異なったものとなる．これらの劣化過程を取り除き，劣化のない画像情報を

提供することは，画像信号の利用者によりよい経験をもたらす他，商業的・工業的な利

用価値を高めることにもつながる．本研究で得られた知見がそのような画像の劣化画像

の復元技術，ひいては画像処理技術のさらなる発展につながることを願い，本論文を

結ぶ．
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