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ūi−1(tk) (black circles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 State trajectories by implementing Algorithm 3.1 (blue solid lines) and
the periodic MPC (red dotted lines). . . . . . . . . . . . . . . . . . . . . . 44

3.5 Applied control inputs by applying Algorithm 3.1 (blue solid line) and
periodic MPC with sampling time interval 0.1 (red dotted line). . . . . . 45

3.6 Number of transmissions during the time interval t ∈ [0, 300] and the
average calculation time against the number of sampling patterns M . . . 46

3.7 State trajectories of x1 and x2 by implementing Algorithm 3.1 (blue solid
lines) and the periodic MPC (red dotted lines). . . . . . . . . . . . . . . . 49

3.8 State trajectories of x3 and x4 by implementing Algorithm 3.1 (blue solid
lines) and the periodic MPC (red dotted lines). . . . . . . . . . . . . . . . 50

3.9 Applied control inputs under Algorithm 3.1 (blue line) and periodic
MPC with sampling time interval 0.1 (red dotted line). . . . . . . . . . . 51

3.10 Number of transmission time instants during the time period t ∈ [0, 300]

and the calculation time against the number of sampling patterns M . . . 53
3.11 λ-contractive sets S1 (λ = 1.0), S2 (λ = 0.9), and S3 (λ = 0.8). The

contractive sets are illustrated with different shades of blue. The gray
region represents X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.12 Number of decision variables used for Problem 3.1 and Problem 3.2. . . . 65
3.13 State trajectories of x1 and x2 by implementing Algorithm 3.2 (blue solid

lines) and Algorithm 3.1 (red dotted lines). . . . . . . . . . . . . . . . . . 67



viii

3.14 State trajectories of x3 and x4 by implementing Algorithm 3.2 (blue solid
lines) and Algorithm 3.1 (red dotted lines). . . . . . . . . . . . . . . . . . 68

3.15 Applied control inputs by applying Algorithm 3.2 (blue solid line) and
Algorithm 3.1 (red dotted line). . . . . . . . . . . . . . . . . . . . . . . . . 70

3.16 Calculation times againstM under Algorithm 3.1 (blue) and Algorithm 3.2
(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 The illustration of three regions ΣV , Φ, Φf , and an example of optimal
state trajectory x∗(ξ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Based on the optimal control trajectory (black line), the controller picks
upN control input samples (red circles) and these samples are transmit-
ted to the plant and applies them as sample-and-hold fashion (red line).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 The way to find sampling intervals. L.H.S and R.H.S are the evolutions

of left-hand-side and right-hand side in (4.26). . . . . . . . . . . . . . . . 103
4.4 The illustration of Φ and the restricted terminal region Φf . . . . . . . . . 103
4.5 State trajectories of x1 and x2 by implementing Algorithm 4.1 (blue solid

lines) and the periodic MPC (red dotted lines). . . . . . . . . . . . . . . . 104
4.6 State trajectories of x3 and x4 by implementing Algorithm 1 (blue solid

lines) and the periodic MPC (red dotted lines). . . . . . . . . . . . . . . . 105
4.7 Applied control inputs by applying Algorithm 4.2 (blue solid line) and

periodic scheme with sampling time interval 0.1 (red dotted line). . . . . 106
4.8 State variables for a vehicle regulation problem in two dimensions. . . . 106
4.9 Trajectory of the vehicle by applying Algorithm 4.2. . . . . . . . . . . . . 107
4.10 Control trajectory of v and ω implementing Algorithm 4.2. . . . . . . . . 108
4.11 Trajectory of the vehicle by applying periodic MPC scheme with 0.88

sampling time interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.12 Trajectory of the vehicle by applying periodic MPC scheme with 0.1

sampling time interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.13 Number of transmission instants against the number of control samples

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Graphical representation of the two regions Φ, Φf , and the optimal state
trajectory x̂∗ (blue solid line). T ∗k denotes the time interval to reach Φf . . 116

5.2 The illustration of the problem presented in (P.1). The figure shows the
left hand side (black solid) and the right hand side (black dotted) of (5.19).123

5.3 The figure illustrates the problem of violating the feasibility described
in (P.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 State trajectories of x1 and x2 by implementing Algorithm 5.1 (blue solid
lines) and the periodic MPC (red dotted lines). . . . . . . . . . . . . . . . 133

5.5 State trajectories of x3 and x4 by implementing Algorithm 5.1 (blue solid
lines) and the periodic MPC (red dotted lines). . . . . . . . . . . . . . . . 134



ix

5.6 Control inputs by applying Algorithm 5.1 (blue line) and the periodic
scheme (red dotted line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.7 Trajectory of the vehicle by applying Algorithm 5.1. . . . . . . . . . . . . 137
5.8 Control trajectory of v and ω implementing Algorithm 5.1 and the peri-

odic one without disturbances (red dotted line). . . . . . . . . . . . . . . 138
5.9 Trajectory of the vehicle by applying the periodic MPC with 1.0 sam-

pling time interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.10 Trajectory of the vehicle by applying Algorithm 5.1 with large distur-

bance setsW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.11 Trajectory of the vehicle by applying the periodic MPC with 0.1 sam-

pling time interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141





xi

List of Tables

3.1 Convergence time when the state trajectory enters the region (||x|| ≤
0.001) and the number of transmission instants. . . . . . . . . . . . . . . . 45

3.2 Convergence time when the state trajectory enters the region (||x|| ≤
0.001) and the number of transmission instants during the time period
t ∈ [0, 30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Number of decision variables used in Algorithm 3.1 (Np = 50) and Al-
gorithm 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Convergence time when the state trajectory enters the region (||x|| ≤
0.001) and the number of transmission instants during the time period
t ∈ [0, 30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Calculation times against M under Algorithm 3.1 and Algorithm 3.2. . . 71

4.1 Convergence time when the state trajectory enters the region (||x|| ≤
0.001) and the number of transmission instants . . . . . . . . . . . . . . . 97

4.2 Convergence time when the state trajectory enters around the origin and
the number of transmission instants. . . . . . . . . . . . . . . . . . . . . . 100

4.3 Convergence time when the trajectory of the vehicle enters around the
origin and the number of transmission instants. . . . . . . . . . . . . . . 100

5.1 Convergence time when the state trajectory enters Φ and the number of
transmission instants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Convergence time when the state trajectory enters around the origin and
the number of transmission instants. . . . . . . . . . . . . . . . . . . . . . 140

5.3 Convergence time when the state trajectory enters Φ and the number of
transmission instants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142





xiii

List of Symbols, Abbreviations

N set of integers
N≥0 set of non-negative integers
N>0 set of positive integers
R set of real numbers
R≥0 set of non-negative real numbers
R>0 set of positive real numbers
Rn n-dimensional Euclidean space
Rn×m the set of all n×m real matrices
AT transpose of A
A−1 inverse of A
λmin(A) minimum eigenvalue of A
λmax(A) maximum eigenvalue of A
In n× n identity matrix
A ∩B intersection of the sets A and B

A ∪B union of the sets A and B

co{v1, · · · , vN} convex hull of the vertices v1, · · · , vN
ΨS the function ΨS : Rn → R+ is the gauge function if defined as

ΨS(x) = inf{µ : x ∈ µS, µ ≥ 0} for a given set S ⊂ Rn

K∞ a function α : R≥0 → R≥0 is a class K∞ function if it is continuous,
strictly increasing, α(0) = 0, and α(∞) =∞

||x|| Euclidean norm of x ∈ Rn

||x||Q weighted norm defined as ||x||Q =
√
xTQx

MPC Model Predictive Control
OCP Optimal Control Problem
NCSs Networked Control Systems
LTI Linear Time Invariant





xv

Abstract
Networked Control Systems (NCSs) are systems whose sensors, actuators,

and controllers are spatially distributed over communication channels. On one
hand, it is well-known that a major concern is the energy consumption of bat-
tery powered devices due to the network communications. Thus, it is of great
importance to reduce communication frequencies between the plant and the
controller. On the other hand, many control systems are typically subject to
hard constraints, such as actuator saturations. Therefore, this thesis proposes a
control framework by applying ‘aperiodic control’, which achieves communi-
cation reduction in NCSs, and ‘Model Predictive Control (MPC)’, which takes
into account hard constraints. Throughout the thesis, this combinational con-
trol scheme is referred to as ‘aperiodic MPC’.

In Chapter 1, the purpose and the outline of this thesis are given. The pur-
pose of the thesis is to provide a control framework to reduce communication
frequencies between controller and the plant, while at the same time guaran-
teeing both control performance and the satisfaction of hard constraints.

In Chapter 2, some basic methodologies of aperiodic control and MPC are
given.

In Chapter 3, a control problem of linear systems is considered to formu-
late an aperiodic model predictive control. In the aperiodic formulation, the
timings for sensors to transmit state measurements are determined based on
Lyapunov stability, so that the stabilization of the system and communication
reduction for NCSs can be achieved.

In Chapter 4, an aperiodic formulation of MPC is proposed for nonlinear
input-affine systems, which are thus provided for a more general class of sys-
tems than the ones in Chapter 2. As with Chapter 2, the way to communicate
between the plant and the controller is given based on Lyapunov stability.

In Chapter 5, an aperiodic formulation of MPC is proposed for a more gen-
eral class of systems than the ones presented in Chapter 3 and 4. In particular,
the author will derive a threshold between the predictive states and the ac-
tual state, such that feasibility of the optimal control problem and stability are
both guaranteed. The derived threshold is provided as a criterion for the com-
munication timing between the plant and the controller, so that both control
performance and communication reduction are achieved.

In Chapter 6, some conclusions are provided.
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Chapter 1

Introduction

1.1 Event-triggred and Self-triggered control

With the advent of communication technologies, there has been a growing

trend of introducing a communication network in many control applications,

such as manufacturing plants, autonomous robots, traffic systems, and so on

[1]. Typically, a control system whose sensors, actuators, and controllers are

spacially distributed and connected over communication channels is often re-

ferred to as Networked Control Systems (NCSs). The illustration of NCSs is shown

in Fig. 1.1. The advantage of incorporating the communication network is that:

(i) it enables to save maintenance cost by eliminating physical components,

such as redundant wirings; (ii) it allows to increase flexibility to reconfigure

a system for building up new control architectures; (iii) it allows to control a

system remotely in distant areas. Consequently, NCSs are becoming more and

more ubiquitous and have seen an increasing attention in recent years, see e.g.,

[1], [2] for survey papers.

In NCSs, introducing the communication network has raised new challenges

with regard to network uncertainties and constraints. For example, network

delays and packet losses are typically present while transmitting control sig-

nals or sensor data over a commnication channel. It is well-known, that the

presense of delays and packet losses can potentially degrade control perfor-

mance or even destablizing the system [3]. In view of this, various results have
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Plant

SensorActuator

Controller

Network

FIGURE 1.1: Networked Control System

…

(a) Time-triggered control 

Time

…

(b) Event / Self-triggered control 

Time

…
…

FIGURE 1.2: Illustration of time-triggered control and event and
self-triggered control. In the figure, blue arrows represent trans-

mission time instants.

been appeared to analyze the relation among network uncertainties, control

performance, and stability, see e.g., [3]–[6].

Another main challenge of NCSs lies in the fact that NCSs are subject to

a limited nature of communication and computation resources, which will be the

main focus in this thesis. In sensor networks, sensor and relay nodes are typi-

cally battery driven that are equipped with a frugal battery capacity. Therefore,

sensor nodes are subject to a limited amount of available energy, and design-

ing appropriate feedback controllers to save the energy consumptions is a cru-

cial problem to be solved. To tackle this problem, two major control schemes

have been proposed; event-triggered control and self-triggered control [7], which
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are collectively referred to as aperiodic control. In both control strategies, the

objective is to reduce communication frequencies between the plant and the

controller. Specifically, sensor data and control signals are exchanged over a

communication network only when they are needed. In contrast to the typical

time-triggered control framework where control inputs are executed period-

ically, event-triggered and self-triggered control require the executions in an

aperiodic fashion. The illustration of the time-triggered control and the aperi-

odic control is depicted in Fig. 1.2. The aperiodic scheme can potentially lead

to energy savings of battery powered devices, since the communication over

the network is known to be one of the crucial energy consumers.

Event-triggered control and self-triggered control are essentially different

in the sense that in the former case communication times are determined in

the plant side, while in the latter case those are determined in the controller

side. In the event-triggered control framework, the plant determines suitable

communication times by continuously monitoring sensor measurements and

evaluate (event-triggered) conditions, which are derived based on stability or

closed-loop control performance (for details, see Chapter 2). Only when these

conditions are violated, then the communication events are triggered. So far,

the event-triggered framework has been analyzed for many different types of

systems, including linear systems [8]–[15], nonlinear systems [16]–[18], and dis-

tributed control systems [19], [20]. In the self-triggered case, on the other hand,

the controller pre-determines the next communication time as soon as the cur-

rent sensor measurements are received from the plant. The reader can refer

to many results also for the self-triggered case for linear systems [21]–[23] and

nonlinear systems [24]. Moreover, some experimental validations of applying

the event-triggered and self-trigered control schemes have been also provided,

see e.g., [25]–[27].

In summary, event-triggered and self-triggered control have been proposed

as promising control strategies to reduce communication frequencies between

plant and controller system, which aims to save the energy consumption of
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battery powered devices in NCSs. While there has been a growing attention of

these strategies and many theoretical results have been proposed as illustrated

above, only a few attention may be paid for designing the aperiodic strategies

for constrained systems, where certain constraints such as actuator saturations

or physical constraints need to be explicitly taken into account. This motivates

us to introduce the concept of model predictive control, as provided in the next

section.

1.2 Model Predictive Control

In many control applications including NCSs, it is typical that the control sys-

tems are subject to hard constraints. For instance, control signals are in general

bounded due to actuator saturations. Autonomous robots such as unmanned

ground vehicles must avoid colliding with obstacles and humans. In robot ma-

nipulators, the joint angles may be restricted to be within a certain range due

to the structual constraint. In flight control, pitch angles must be small enough

to achieve comfort for the passengers.

Model Predictive Control (MPC), which is often referred to as receding hori-

zon control, offers a significant advantage in dealing with such hard constraints

as illustrated above. The idea of MPC is illustrated in Fig. 1.3. Roughly speak-

ing, the controller repeatedly solves a finite horizon optimal conrol problem

online to compute optimal control actions over a prediction horizon, based on

the knowledge of current state information and future system behavior from

the plant dynamics. After solving the optimal control problem, only the cur-

rent optimal control action is applied and the optimal control problem is again

solved at the next update time. In this manner, MPC scheme allows to guar-

antee constraint satisfactions explicitly by solving a constrained optimal control

problem.

MPC is categorized as an advanced control technology and firstly saw suc-

cessful control applications in process industries [28]–[30]. With the advance
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FIGURE 1.3: Basic idea of Model Predictive Control

of computation power, MPC is now applied in various control applications, in-

cluding automobiles and aircrafts [31], [32], formation control of muti-vehicles

[33], [34], power systems [35], medical engineering [36], [37], to name a few.

Moreover, MPC has also seen a number of theoretical progresses for both lin-

ear and nonlinear systems. For instance, in [38] the authors showed asymptotic

stability of an equilibrium point by applying MPC for nonlinear control sys-

tems. In particular, they showed that the optimal cost, which is regarded as a

Lyapunov function candidate, is shown to decrease by introducing the notion

of terminal constraint. Roughly speaking, the terminal constraint imposes that

the predictive state at the terminal time must belong to a local region aroung

the origin, in which a linear state-feedback controller exists to stabilize the sys-

tem. In recent years, the authors showed in [39], [40] that asymptotic stability is

still guaranteed, by using a sufficient long prediction horizon, without having

to impose such terminal constraint. Robustness properties are also analyzed by

various researchers, see e.g., [41]–[45] and the references therein. For example,
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[41] showed that the robustness properties of MPC are related to the ones of in-

finite horizon optimal control problem, by introducing the notion of Fake Alge-

braic Reccati Equation (FARE). Moreover, Input-to-State Stability (ISS) of MPC

against bounded external disturbances has been shown in [44], [45], where the

optimal cost is shown to be an ISS Lyapunov function candidate.

As above, the concept of MPC has received a lot of attention for the past

decades in terms of both control applications and theory. Note that in the ear-

lier MPC applications as well as the theoretical results illustrated in the afore-

cited papers, there has been a fundamental assumption that control inputs are

updated in a periodic fashion, i.e., the optimal control problem is solved periodi-

cally under a specific sampling time period. Thus, this formulation may not be

preferable, especially for NCSs, since solving the optimal control problem pe-

riodically leads to a high energy consumption of battery powered devices due

to the periodic communication between the plant and the controller. Therefore,

it is more useful to consider, like event-triggered and self-triggered strategies,

that the controller solves the optimal control problem only when it is needed, in-

stead of periodically. This motivates us to consider the concept of event-triggered

MPC and self-triggered MPC, which serves as the main contribution of this the-

sis.

1.3 Contributions and Outline of thesis

The main contribution of this thesis is to blend the above two important con-

trol concepts; namely, event-triggered and self-triggered control, which allows to

achieve energy-savings for NCSs, and Model Predictive Control, which mainly

allows to deal with systems subject to hard constraints. In the following, the

author call this combinational control scheme as event-triggered MPC and self-

triggered MPC, which are collectively referred to as aperiodic MPC. Specifically,

the author considers NCSs architecture illustrated in Fig. 1.1, where the plant
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system is subject to hard constraints and the controller implements MPC frame-

work, and aims to derive event and self-triggered strategies to determine suit-

able communication times (i.e., communication times to solve an optimal con-

trol problem). Note that, as previously mentioned, it has been fundamentally

assumed in the standard MPC that the optimal control problem is solved peri-

odically. Thus, this thesis is dedicated to provide theoretical analysis of MPC

when the optimal control problem is solved aperiodically. More specifically,

the communication times between the plant and the controller are determined

based on stability and feasibility of MPC, which will be analyzed for various

systems including linear and nonlinear systems.

Overall, the aperiodic schemes proposed in this thesis are categorized into

three parts according to the system description of the plant; linear systems

(Chapter 3), nonlinear input-affine systems (Chapter 4) and general nonlinear

systems (Chapter 5). Thus, the class of plant dynamics will be considered more

and more in general as the chapter moves forward. For each chapter, the author

analyzes the corresponding stability and feasibility of MPC in order to formu-

late the aperiodic strategy. The structure of this thesis is described below.

Chapter 2: Basic methodologies

In this chapter, the author reviews some basic methodologies of event-triggered

and self-triggered control. Moreover, some theoretical results of MPC, such as

recursive feasibility and asymptotic stability of periodic MPC scheme are pro-

vided by following the theoretical result provided earlier in [38]. The proofs for

the theoretical results are key ingredients to derive the event and self-triggered

strategies provided in the remaining chapters.

Chapter 3 Aperiodic MPC for linear systems

In this chapter, a control problem of Linear-Time-Invariant (LTI) systems is
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given, and an aperiodic formulation of MPC is proposed. In particular, the au-

thor proposes two different types of self-triggered MPC frameworks that aim

to achieve the communication reduction for NCSs. In the first approach, the

author formulates a set of optimal control problems such that the controller ob-

tains stabilizing control inputs under multiple candidates of transmission time

intervals. Among the multiple solutions, the controller then selects a suitable

one such that both control performance and communication load are taken into

account. Asymptotic stability of the origin is ensured by using Lyapunov tech-

niques, where the Lyapunov function is induced by the optimal cost. Although

the first approach guarantees asymptotic stability, it may lead to a high com-

putational load as it requires to solve multiple optimization problems online.

Therefore, the author secondly proposes an alternative strategy that aims to

overcome the computational drawback of the first proposal. The key idea is to

incorporate the notion of contractive set when formulating the optimal control

problem. As will be seen in this chapter, incorporating the contractive set can

potentially reduce the size of decision variables compared to the first approach,

while at the same time guaranteeing both feasibility of the optimal control

problem and asymptotic stability. Some simulation results are also illustrated

to validate the proposed control schemes. To summarize, the contribution of

this chapter is

• Two self-triggered MPC schemes for LTI systems are proposed.

• In both schemes, asymptotic stability and feasibility of the optimal control

problem are guaranteed.

• Some simulation examples illustrate the effectiveness of the proposed ap-

proaches.

The results presented in Chapter 3 are related to the following journal paper:
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• K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Aperiodic Sampled-Data

Control via Explicit Transmission Mapping: A Set Invariance Approach,” IEEE

Transactions on Automatic Control (to appear).

Moreover, the results are also related to the following peer-reviewed conference

papers:

• K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Self-triggered Model Pre-

dictive Control for Continuous-Time Systems: A Multiple Discretizations Ap-

proach,” in Proceedings of the 55th IEEE Conference on Decision and Control

(IEEE CDC), 2016, pp. 3078-3083.

• K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Self-triggered control for

constrained systems: a contractive set based approach,” in Proceedings of Amer-

ican Control Conference (ACC), 2017, pp. 1011-1016.

Chapter 4 Aperiodic MPC for Nonlinear Input-affine systems

In this chapter, the author proposes aperiodic MPC schemes for nonlinear input-

affine systems, which provides for a wider class of systems than the linear sys-

tems considered in Chapter 3. Here, an aperiodic formulation is given in a

self-triggered fashion, by evaluating the optimal cost as a Lyapunov function

candidate. Namely, communication times are determined only when the opti-

mal cost is not guaranteed to decrease. Additionally, the bandwidth limitation

of communication network will be taken into account, which means that the

controller is restricted to transmit a limited number of control samples. Specif-

ically, the controller not only solves the optimal control problem but also dis-

cretizes the obtained optimal control input trajectory into several control input

samples, so that these can be transmitted as a packet to the plant. The discretiz-

ing method is to some extent relevant to roll-out event-triggered control, which

is introduced in [46]. In this approach the authors proposed a way to pick up

the transmission time step for linear discrete time systems, and then show that
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the proposed control policy provides better performance than the conventional

periodic optimal control in terms of the reduced value function. In contrast to

the result presented in [46], the author proposes a way to adaptively select sam-

pling time intervals to reduce the communication load. While this may lead to

additional optimization problems, an efficient way of choosing the sampling

intervals will be given. Moreover, while the results presented in [46] considers

linear systems, the author deals with nonlinear systems. Finally, some simu-

lation examples are given to validate the proposed self-triggered scheme by

considering both linear and nonlinear control systems. To summarize, the con-

tribution of this chapter is

• A self-triggered MPC scheme for nonlinear input-affine systems is pro-

posed.

• Stability under the sample-and-hold implementation is shown by guaran-

teeing that the optimal cost as a Lyapunov function candidate is strictly

decreasing.

• An efficient way to adaptively select suitable control samples that should

be transmitted to the plant will be given.

• Some simulation examples are given to validate the proposed scheme by

considering both linear and non-linear systems.

The results given in this chapter are related to the following journal paper:

• K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Self-triggered Model Predic-

tive Control for Nonlinear Input-Affine Dynamical Systems via Adaptive Con-

trol Samples Selection,” IEEE Transactions on Automatic Control, vol. 62, no. 1,

pp. 177-189, 2017.

Moreover, the results are also related to the following peer-reviewed conference

paper:
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• K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Self-triggered Nonlinear

Model Predictive Control for Networked Control Systems,” in Proceedings of

American Control Conference (ACC), 2015, pp. 4239-4244

Chapter 5 Aperiodic MPC for General Nonlinear systems

In this chapter, the author will propose aperiodic MPC schemes for nonlinear

systems. The aperiodic formulations proposed in this chapter can be applicable

to general nonlinear systems (including input-affine systems), which are thus

provided for a wider class of systems than the ones presented in both Chap-

ter 3 and 4. Moreover, the author considers the case when systems are perturbed

by additive bounded disturbances. In the previous chapters, the aperiodic for-

mulations are derived by evaluating the optimal cost as a Lyapunov function

candidate. In this chapter, on the other hand, the author will provide an al-

ternative evaluation to guarantee stability and derive the triggering strategies.

In the stability derivations, the author instead evaluates the time interval when

the optimal state trajectory enters a local region around the origin. By guar-

anteeing that this time interval becomes smaller as the optimal control prob-

lem is solved, it is ensured that the state enters a prescribed set in finite time.

The triggering strategies are firstly derived in an event-triggered manner, and

the self-triggered strategy is secondly proposed as a sufficient condition to the

event-triggered strategy.

The derivation of the new stability is motivated by the fact that the aperi-

odic formulation provided in Chapter 4 includes Lipschitz constant parameters

for the stage and terminal cost. Since these parameters are in fact characterized

by the maximum distance of the state from the origin, the triggering condition

becomes largely affected by the state domain considered in the problem formu-

lation. That is, as a larger state domain is considered, the event-triggered condi-

tion becomes more conservative. Furthermore, if the exact state domain is not

known (e.g., if there exists no physical limitations), these parameters are not



12 Chapter 1. Introduction

known explicitly. Depending on the problem formulation, therefore, it is not

desirable to include these parameters in the event-triggered condition. Since

the proposed approach presented in this chapter does not evaluate the optimal

cost as a Lyapunov functon candidate, the corresponding event-triggered con-

ditions do not include such un-suitable parameters. The author will also illus-

trate through a simulation example that the proposed approach attains much

less conservative result than the result presented in Chapter 4. To summarize,

the contribution of this chapter is

• The author proposes event-triggered and self-triggered MPC schemes for

nonlinear systems with additive bounded disturabances.

• Stability analysis is given without evaluating the optimal cost as a Lya-

punov function candidate.

• Some simulation examples illustrate the effectiveness of the proposed ap-

proach. In particular, the author shows that less conservative result is

achieved than the approach presented in Chapter 4.

The results presented in this chapter are related to the following journal paper:

• K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Event-triggered Intermit-

tent Sampling for Nonlinear Model Predictive Control,” Automatica, vol. 81,

pp. 148-155, 2017.

Moreover, the results are also related to the following peer-reviewed conference

papers:

• K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “A Collision-free Communi-

cation Scheduling for Nonlinear Model Predictive Control,” in Proceedings of

the 20th IFAC World Congress (IFAC WC), 2017, pp. 8939-8944.

• K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Time-constrained Event-

triggered Model Predictive Control for Nonlinear Continuous-time Systems,” in

Proceedings of the 54th IEEE Conference on Decision and Control (IEEE CDC),
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2015, pp. 4326-4331.

Chapter 6 Conclusion and Future work

In this chapter, conclusions of this thesis and future works are provided. In

particular, the author discusses some other variants of MPC schemes such as

tube-based MPC, unconstrained MPC, and stochastic MPC, and provide po-

tential applicability of the proposed approaches.
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Chapter 2

Basic methodologies

In this chapter, the author reviews some basic concepts of event-triggered and

self-triggered control. Moreover, some theoretical backgrounds of standard

MPC are provided. In particular, some established results of recursive feasibility

and asymptotic stability of MPC are given, by following the preliminary work

presented in [38]. The proofs for these analysis are useful tool to formulate

event-triggered and sef-triggered strategies proposed in later chapters.

2.1 Event-triggered and Self-triggered control

2.1.1 Event-triggered control

In this section, an overview of the event-triggered control is given. The basic

concept of the event-triggered control is illustrated in Fig. 2.1.

As shown in the figure, the event-triggered control integrates the Event Trig-

gering Mechanism (ETM). The ETM is responsible for deciding sampling time

instants to transmit state or output measurements to the controller. Basically,

the ETM evaluates the so-called event-triggered condition, which is derived

from control performance or stability. To illustrate an example, let us consider

the following Linear-Time-Invariant (LTI) system:

ẋ(t) = Ax(t) +Bu(t), (2.1)
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Plant

Sensor

Network

Controller

Actuator

ETM

FIGURE 2.1: Event-triggered control architecture incorporating
the Event-Triggering Mechanism (ETM).

where x ∈ Rn denotes the state and u ∈ Rm denotes the control input. Suppose

that a static state feedback controller u(t) = Kx(t) is applied, whereK is chosen

such that (A + BK) is Hurwitz. Denote by tk, k ∈ N the transmission time

instants determined by the ETM. During the sampling time period t ∈ [tk, tk+1],

the controller is given in a zero-order-hold fashion, i.e.,

u(t) = Kx(tk), ∀t ∈ [tk, tk+1). (2.2)

As mentioned above, the ETM determines the sampling time instants tk ∈ R

by evaluating the event-triggered condition. One possible way to derive the

event-triggered condition is to evaluate the Lyapunov function candidate [7],

[9], i.e., V (x(t)) = x(t)TPx(t), where P is an appropriately chosen positive def-

inite matrix such that (A+BK)TP +P (A+BK) = −Q holds for a given Q � 0.

Namely, sensor measurements are transmitted only when the Lyapunov func-

tion V (x(t)) is not guaranteed to decrease. In [9], the event-triggered condition

has been derived based on this Lyapunov function as

||x(t)− x(tk)|| ≤ σ||x(tk)||, (2.3)

where t denotes the current time, tk represents the latest sampling time from
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t, and σ > 0 denotes an appropriately chosen constant parameter. Namely,

at the current time instant t, the ETM checks if the error between the current

state measurement x(t) and the previous state at the latest sampling time x(tk)

exceeds a certain threshold according (2.3), and if (2.3) is violated at t, then the

ETM sets the communication time as tk+1 = t and transmit x(tk+1) to the con-

troller. It has been shown in [9] that the event-triggered condition in (2.3) yields

V̇ (x(t)) ≤ −a||x(t)||2, ∀t ∈ R for some a > 0. Namely, the triggering condi-

tion according to (2.3) renders the closed loop system asymptotically (exponen-

tially) stable in the sense of Lyapunov stability, while executing control inputs

only when it is needed.

In NCSs, the ETM is equipped in the plant side, and it monitors the state

to evaluate the condition (2.3) to determine the transmission time instants. As

described in the introduction, energy expenditure of battery powered devices

can be potentially saved by exchanging state and control inputs over commu-

nication network only when the event-triggered condition (2.3) is violated. In

addition to Lyapunov stability as mentioned above, some other performance

criteria to derive the event-triggered condition has been proposed, such as L2

and L∞ gain stability [12], [47], and Input-State-Stable (ISS) Lyapunov stability

[16]. While the above example considers linear systems, event-triggered strate-

gies for nonlinear systems have been also proposed, see e.g., [16], [18]. When

full state information is not available, event-triggered mechanisms with output

feedback controller are utilized, see e.g., [12].

2.1.2 Self-triggered control

In the event-triggered control, the ETM requires to monitor the sensor mea-

surements continuously. While the continuous monitoring is available if the

plant is equipped with a dedicated analog hardware, it may not be the case

with a digital platform. To overcome this issue, a self-triggered paradigm has
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been proposed as an alternative to the event-triggered control [7]. In the self-

triggered strategy, for each communication time tk ∈ R, the controller directly

determines the next communication time tk+1, based on the current state mea-

surement x(tk). Namely, tk+1 is determined as

tk+1 = tk + Γ(x(tk)), (2.4)

where Γ : Rn → R>0 denotes a given mapping that maps the (current) state to

the transmission time interval (tk+1− tk). In contrast to the event-triggered con-

trol, the self-triggered control directly determines the next communication time

according to (2.4), which does not require continuous monitoring of the state. In

[24], the mapping Γ is constructed by extending the event-triggered condition

(2.3) for nonlinear control systems. Some other variants of the self-triggered

control schemes are proposed, such as the one by evaluating ISS Lyapunov sta-

bility [23], [48]. In NCSs, the controller determines both control inputs and

communication times according to (2.4), and these are transmitted over a com-

munication network. As a consequence, both sensor and communication sys-

tems can be completely shut down, and, therefore, energy savings of battery

powered devices can be achieved.

2.1.3 Event-triggered and Self-triggered MPC

Event-triggered and self-triggered Model Predictive Control (MPC) are the vari-

ants of event-triggered and self-triggered strategies, in which the controller im-

plements a MPC framework. That is, control inputs are computed by solving

an optimal control problem in an online fashion, and these are transmitted over

a communication network only when it is necessary. As previously mentioned

in the introduction, MPC framework is useful when control systems are sub-

ject to hard constraints, such as actuator saturations. However, it is typical

in MPC framework [49], that the controller solves an optimal control problem
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periodically, which may induce a high communication load and it is thus of im-

portance to introduce the aperiodic control framework. When implementing

event-triggered or self-triggered schemes, one needs to design suitable event-

triggered conditions similarly to (2.3) or the mapping Γ that determines the

next communication time. The key concepts for deriving these conditions are

recursive feasibility and Lyapunov stability, as the details described in the next

section.

2.2 Theoretical background of MPC

In this section, some theoretical results of periodic MPC are reviewed. Let us

consider applying MPC to the following system:

ẋ(t) = φ(x(t), u(t)) (2.5)

for t ∈ R, where φ : Rn × Rm → Rn and x(t) ∈ Rn denotes the state, and

u(t) ∈ Rm denotes the control variable. Assume that the state and control input

must satisfy the following constraints:

x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm, (2.6)

where X and U are assumed to be compact, convex and contain the origin in

their interiors. The following standard assumptions are made (see, e.g., [38]):

Assumption 2.1. (i) The function φ : Rn × Rm → Rn is twice continuously dif-

ferentiable, and the origin is an equiliburium point, i.e., φ(0, 0) = 0; (ii) The system

(2.5) has a unique, absolutely continuous solution for any initial state x(0) and any

piecewise continuous control u : [0,∞)→ U .

Let tk = k∆, k ∈ N≥0 with t0 = 0 be the update time instants when OCPs

are solved, where ∆ ∈ N>0 denotes a given sampling time. That is, at tk the

controller finds an optimal control and state trajectories by solving an optimal
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control problem, based on the state measurement x(tk) and the predictive be-

havior according to the system dynamics in (2.5). The following cost function

to be minimized is considered:

J(x(tk), u(·)) =

∫ tk+Tp

tk

(||x(ξ)||2Q + ||u(ξ)||2R)dξ + ||x(tk + Tp)||2Pf , (2.7)

where Q = QT � 0, R = RT � 0 are the matrices for the stage cost, Pf = Pf
T

is the terminal cost, and Tp > 0 denotes the prediction horizon. The Optimal

Control Problem (OCP) is formulated as follows:

Problem 2.1 (Optimal Control Problem). For any tk, k ∈ N and given x(tk), find an

optimal control and a state trajectory u∗(ξ), x∗(ξ) for all ξ ∈ [tk, tk+T ], by minimizing

the cost function J(x(tk), u(·)), subject to the following constraints:


ẋ(ξ) = φ(x(ξ), u(ξ)), ∀ξ ∈ [tk, tk + Tp] (2.8)

u(ξ) ∈ U , x(ξ) ∈ X , ∀ξ ∈ [tk, tk + Tp] (2.9)

x(tk + Tp) ∈ Φ, (2.10)

where Φ = {x ∈ Rn : xTPx ≤ ε2} for a given ε > 0. �

The first constraint in (2.8) represents the constraint that the state should

follow the dynamics. The second constraint in (2.9) represents the constraints

that the state and input should remain in the constraint sets X , U , respectively.

The third constraint in (2.10) is the so-called terminal constraint, in which the

terminal state x(tk + T ) should be in Φf . The terminal constraint is kind of an

artificial constraint in order to ensure asymptotic stability of the origin. The set

Φ = {x ∈ Rn : xTPx ≤ ε2} is so-called terminal set, which will be character-

ized as a local set around the origin where a stabilizing, linear state feedback

controller exists according to the following assumption:

Assumption 2.2. There exists a local controller κ(x) = Kx ∈ U , satisfying

∂Vf
∂x

φ(x, κ(x)) ≤ −xT(Q+KTRK)x (2.11)
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for all x ∈ Φ, where Vf = xTPx.

Assumption 2.2 assumes that the controller κ(x) = Kx ∈ U stabilizes the

system in the sense that the Lyapunov function Vf = xTPx is guaranteed to

decrease. Therefore, the set Φ = {x ∈ Rn : xTPx ≤ ε} is an invariant set for the

nonlinear systems (2.5) under the state feedback controller κ(x) = Kx. In [38],

they showed that there always exist a non-empty set Φ and the correspond-

ing stabilizing controller κ(x) such that Assumption 2.2 is fulfilled under the

assumption of stabilizability of the linearized system around the origin.

In the standard setup of periodic MPC, the optimal control input trajectory

u∗(ξ) is applied until the next update time tk+1 = tk + ∆. Thus, the closed-loop

system for t ∈ [tk, tk+1) is given by

ẋ(t) = φ(x(t), u∗(t)), t ∈ [tk, tk+1). (2.12)

Note that since there exists no disturbance, the actual state at tk+1 corresponds

to the optimal predictive state at tk+1, i.e., we have x(tk+1) = x∗(tk+1).

2.2.1 Feasibility and stability

Having formulated the basic problem set-up, some established results are re-

viewed that have been analysed in the literature; namely, recursive feasibility

and stability. The concept of recursive feasibility states that the existence of a

feasible solution to the OCP at the initial time t0 implies the feasibility for all

the update times afterwards tk, k ∈ N>0. The concept of stability states that

the system is stabilized towards the origin asymptotically (i.e., x(tk) → 0 as

k →∞). As will be seen later, this can be achieved by showing that the optimal

cost as a Lyapunov function candidate is guaranteed to decrease.

Theorem 2.1 (Recursive feasibility [38]). Suppose that Assumption 2.2 holds and

the OCP defined in Problem 2.1 has a solution at tk, providing an optimal control
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input u∗(ξ) and the corresponding state trajectory x∗(ξ) for all ξ ∈ [tk, tk + T ]. Then,

Problem 2.1 has a solution at tk+1 = tk + ∆. �

Proof. The detailed proof is given in [38] and the overview is described below.

Consider the following dual mode controller as a feasible control candidate:

ū(ξ) =

 u∗(ξ), ξ ∈ [tk+1, tk + Tp]

κ(x̄(ξ)), ξ ∈ (tk + T, tk+1 + Tp],
(2.13)

where κ(·) denotes the state-feedback controller defined in Assumption 2.2 and

let x̄(ξ), ξ ∈ [tk+1, tk+1 + Tp] be given by the corresponding state trajectory by

applying ū(ξ), ξ ∈ [tk+1, tk+1 + T ]. To show that the controller in (2.13) provides

a feasible control input for Problem 2.1, it is required to show that ū(ξ) ∈ U ,

x̄(ξ) ∈ X for all ξ ∈ [tk+1, tk+1 + Tp] and x̄(tk + Tp) ∈ Φ. It is trivially shown

that ū(ξ) ∈ U , ∀ξ ∈ [tk+1, tk + T ] since we have u∗(ξ) ∈ U , ∀ξ ∈ [tk+1, tk + T ].

Since x(tk+1) = x∗(tk+1) and ū(ξ) = u∗(ξ), for all ξ ∈ [tk+1, tk + T ], we have

x̄(ξ) = x∗(ξ) for all ξ ∈ [tk+1, tk+Tp]. Thus, we have x̄(ξ) ∈ X , ∀ξ ∈ [tk+1, tk+Tp]

and x̄(tk + Tp) ∈ Φf from the terminal constraint given by (2.10). Since the

local state feedback controller κ(x(ξ)) is applied for all ξ ∈ (tk + T, tk+1 + Tp]

and Φf is an invariant set under the controller κ(x(ξ)), we have x̄(ξ) ∈ Φ, ∀ξ ∈

(tk + Tp, tk+1 + Tp]. Thus, we obtain x̄(ξ) ∈ Φ ⊆ X , ∀ξ ∈ (tk + T, tk+1 + Tp] and

x̄(tk+1 +Tp). Therefore, applying the controller ū(ξ), ξ ∈ [tk+1, tk+1 +Tp] in (2.13)

and the corresponding state x̄(ξ), ξ ∈ [tk+1, tk+1 + Tp] satisfy all the constraints

imposed in Problem 2.1. This completes the proof.

Theorem 2.1 states that the feasibility of Problem 2.1 at tk implies the feasi-

bility at tk+1. This implies that Problem 2.1 is feasible for all tk, k ∈ N as long as

Problem 2.1 is feasible at the initial time t0. In order to guarantee the feasibility

at t0, the prediction horizon Tp needs to be suitably chosen such that the termi-

nal constraint x(t0 +Tp) ∈ Φ is fulfilled. More specifically, Tp should be selected
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to satisfy x(0) ∈ X (Tp), where

X (Tp) = {x(t0) ∈ Rn | ∃u(t) ∈ U , t ∈ [0, Tp] : x(Tp) ∈ Φ}, (2.14)

i.e., X (Tp) denotes the set of states that is reachable to Φf within the time Tp. For

linear systems, there exist several methodologies to compute the reachability

set X (Tp), see e.g., [50]. Although there may not exist a general framework to

compute X (Tp) explicitly for nonlinear systems, several approximation meth-

ods have been proposed to compute X (Tp), see e.g., [51].

The following theorem illustrates asymptotic stability of the origin:

Theorem 2.2 (Stability [38]). Suppose that Assumption 2.2 holds and the OCP de-

fined in Problem 2.1 has a solution at t0. Then, the closed loop state trajectory is asymp-

totically stabilized towards the origin, i.e., x(tk)→ 0 as k →∞.

Proof. The detailed proof is given in [38] and the overview is described below.

Consider the dual mode controller given by (2.13). From Theorem 2.1, the con-

troller is feasible for the optimal control problem at tk+1. Let J̄(x(tk+1)) be the

corresponding cost obtained by applying (2.13), i.e.,

J̄(x(tk+1)) =

∫ tk+Tp

tk

(||x̄(ξ)||2Q + ||ū(ξ)||2R)dξ + ||x̄(tk + Tp)||2Pf . (2.15)

Now, consider the cost difference J̄(x(tk+1))− J∗(x(tk)). We obtain

J̄(x(tk+1))− J∗(x(tk))

≤
∫ tk+Tp

tk+1

(||x̄(ξ)||2Q − ||x∗(ξ)||2Q + ||ū(ξ)||2R − ||u∗(ξ)||2R)dξ

−
∫ tk+1

tk

(||x∗(ξ)||2Q + ||u∗(ξ)||2R)dξ − ||x∗(tk + Tp)||2Pf + ||x̄(tk+1 + Tp)||2Pf .

Since x(tk+1) = x∗(tk+1) and ū(ξ) = u∗(ξ), for all ξ ∈ [tk+1, tk + T ], we have

x̄(ξ) = x∗(ξ) for all ξ ∈ [tk+1, tk + Tp]. Moreover, from Assumption 2.2 we have
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||x̄(tk+1 + Tp)||2Pf − ||x
∗(tk + Tp)||2Pf ≤ 0. Therefore, we obtain

J∗(x(tk+1))− J∗(x(tk)) ≤ J̄(x(tk+1))− J∗(x(tk))

≤ −
∫ tk+1

tk

(||x∗(ξ)||2Q + ||u∗(ξ)||2R)dξ.
(2.16)

Now, we have

J∗(x(t1))− J∗(x(t0)) ≤ −
∫ t1

t0

||x∗(ξ)||2Qdξ

J∗(x(t2))− J∗(x(t1)) ≤ −
∫ t2

t1

||x∗(ξ)||2Qdξ

...

Summing over both sides of the above yields

∫ ∞
t0

xT(t)Qx(t)dt < J∗(x(t0))− J∗(x(∞)) <∞.

Since the function x(t)TQx(t) is uniformly continuous on t ∈ [0,∞) and Q � 0,

we obtain ||x(t)|| → 0 as t → ∞ from Barbalat’s lemma, see, e.g., [52]. This

completes the proof.

2.2.2 Discussions

So far, a basic problem setup of periodic MPC and theoretical results of fea-

sibility and stability are provided. Some discussions on these results and the

problem setup are in order as follows. First, let us recall that the control scheme

is assumed to apply the optimal control trajectory until the next update time.

Namely, if the optimal control trajectory u∗(ξ), ξ ∈ [tk, tk + T ] is obtained for

some tk, we set u(t) = u∗(t) for all t ∈ (tk, tk+1] (see (5.12)). While this scheme

may be useful to guarantee stability of the origin as provided in Theorem 2.2, it

may not be applicable in the practical implementation, since applying the con-

tinuous control trajectory requires a dedicated analog hardware so that the con-

trol input can be updated continuously. Moreover, when applying the control
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scheme in networked control systems, it is required that the controller needs

to transmit the continuous trajectory u(t) = u∗(t) for all t ∈ (tk, tk+1], which

requires an infinite communication bandwidth that is physically un-realizable.

In view of this problem, it may be more preferable to apply the control in-

put in a sample-and-hold fashion, rather than apply the continuous trajectory.

Namely, control input is applied as u(t) = u∗(tk) for all t ∈ (tk, tk+1]. Stability

analysis of MPC under a sample-and-hold controller may be easily handled for

Linear-Time-Invariant (LTI) systems, since we can simply obtain a discrete-time

model from the continuous one via standard discretization schemes (for details,

see Chapter 3) and we can analyse stability for the corresponding discretized

model. For nonlinear systems, however, applying MPC under a sample-and-

hold controller requires a more detailed analysis and additional constraints for

guaranteeing stability. For details, see Chapter 4 for the derivation of stability

condition and the corresponding aperiodic control strategies.

Another challenging aspect is to analyze the robustness, which shows how

much model uncertainties or disturbance can affect the control performance

and stability. To illustrate the motivation for this analysis, suppose that Prob-

lem 2.1 is solved at tk, which provides the optimal control u∗(ξ) and the cor-

responding state trajectory x∗(ξ) for all ξ ∈ [tk, tk + Tp]. If no model uncer-

tainties or disturbances are present in the dynamics in (2.5), the actual state

at t ∈ [tk, tk+1) corresponds to the predictive state, i.e., x(t) = x∗(t) for all

t ∈ [tk, tk+1). When the model uncertainties or disturbances are present, on

the other hand, the resulting actual state x(t) is no longer equal to x∗(t). One

of the interesting analysis is, therefore, to analyze how much the error between

predictive state and actual state is tolerated to guarantee stability. In Chapter 5,

the author considers nonlinear systems that are perturbed by additive bounded

disturbances, and derive such upper bound to guarantee stability and the cor-

responding event and self-triggered strategies.
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2.3 Summary

In this chapter, some basic concepts of event-triggered and self-triggered con-

trol as well as some established results (recursive feasibility and asymptotic

stability) of MPC are reviewed. Regarding feasibility, it is shown that the exis-

tence of the feasible solution to the optimal control problem implies the same

for the next update time. For stability, it is shown that the optimal cost as a

Lyapunov function candidate is guaranteed to decrease.
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Chapter 3

Aperiodic MPC for linear systems

First of all, a control problem of Linear-Time-Invariant (LTI) systems is given

to formulate aperiodic formulations of MPC. Two aperiodic MPC schemes are

proposed, i.e., multiple discretizations approach (Chapter 3.1), and contractive set-

based approach (Chapter 3.2). In both control schemes, the triggering strategies

are proposed in a self-triggered manner, in which the controller side regulates

the communication times. The two self-triggered schemes are different in the

sense that latter approach incorporates the notion of contractive sets (while the

former does not). As will be seen later, incorporating the contractive set in the

latter case leads to the reduction of computational complexity compared to the

former case, while, on the other hand, it may shrink the domain of attraction.

In both cases, asymptotic stability of the origin and feasibility of the optimal

control problem are theoretically shown. Also, some numerical simultions are

illustrated to validate the control schemes.

3.1 Multiple discretizations approach

3.1.1 Problem formulation

Consider a networked control system depicted in Fig. 1.1. The dynamics of the

plant are assumed to be given by the following LTI system:

ẋ(t) = Ax(t) +Bu(t), (3.1)
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…

FIGURE 3.1: Illustration of the piece-wise constant control policy.

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the control variable. The state

and control input are assumed to be constrained as x(t) ∈ X , u(t) ∈ U , ∀t ∈ R,

where X and U are convex, compact and contain the origin in the interiors.

Definition 3.1 (Control objective). The control objective for the MPC is to drive the

state to the origin, i.e., x(t)→ 0, as t→∞.

In the following, let t0 < t1 < t2 < · · · be the transmission time instants

between the plant and the controller. Namely, at tk, k ∈ N, the plant transmits

the state information x(tk) to the controller, and the controller solves an optimal

control problem (OCP) based on the dynamics given by (3.1). The following

cost function to be minimized is given:

J(x(tk), u(·)) =

∫ tk+Tp

tk

(||x̂(ξ)||2Q + ||u(ξ)||2R) dξ + ||x(tk + Tp)||2Pf , (3.2)

where Q � 0, R � 0 are the matrices for the stage cost, PT
f = Pf � 0 is the

matrix for the terminal cost, and Tp > 0 is the prediction horizon. More detailed

characterization of Pf will be discussed in later sections.

In order to derive a self-triggered strategy, let us first consider that the con-

trol input u(ξ), ξ ∈ [tk, tk + Tp] is constrained to be piece-wise constant with

different sampling intervals, δ1, δ2, . . . , δN , as shown in Fig. 3.1. This discretiz-

ing scheme is motivated as follows. The solution of the OCP by minimizing
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the cost (3.2) is in general given by a continuous trajectory of the optimal con-

trol input, say u∗(ξ), for all ξ ∈ [tk, tk + Tp] (see the problem formulation in

Chapter 2). If the optimal control input could be applied until tk+1, i.e., u∗(ξ),

ξ ∈ [tk, tk+1), then we could utilize the classic MPC result to guarantee the

asymptotic stability of the origin. However, applying the continuous trajec-

tory of the control input is not suited for practical NCSs applications in terms

of the two aspects. First, transmitting continuous control trajectory over the

network requires an infinite-transmission bandwidth, which is un-realizable.

Second, implementing the exact continuous control input is difficult for em-

bedded control system architectures, since they only deal with samples as a

discrete time domain, resulting in applying the control input eventually as a

sampled-and-hold implementation at a high frequency. As the actual control

trajectory for this case possibly differs from the optimal control trajectory, it

fails to guarantee the asymptotic stability of the origin.

The OCP under the piece-wise constant control policy considered in this

chapter thus provides the optimal control sequence at discrete sampling inter-

vals, i.e., {u∗(tk), u∗(tk + δ1), . . . , u∗(tk +
∑N

j=1 δj)} rather than the whole control

trajectory u∗(ξ), ξ ∈ [tk, tk + Tp]. As the procedure of transmitting control sam-

ples, the following steps are considered; (i) the controller transmits the optimal

control sample u∗(tk) to the plant; (ii) the plant then applies u∗(tk) at constant

until tk+1 = tk + δ1; (iii) the plant sends back a new state measurement x(tk+1)

to the controller to solve the next OCP at tk+1. Under the procedure described

above, the transmission time interval is then given by tk+1 − tk = δ1.

Applying the above transmission procedure not only allows the controller

to transmit control command as a sample, but also allows us to formulate the

OCP in the discrete time domain. The main difference of the problem formula-

tion with respect to the periodic (or event-triggered) MPC for general discrete

time systems is, however, that we are now free to select the sampling time in-

tervals δ1, . . . , δN in an appropriate way. Although there is a flexibility to select

δ1, . . . , δN , these intervals must be carefully determined such that:
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(i) The asymptotic stability of the origin is guaranteed under MPC with the

piece-wise constant control policy.

(ii) The reduction of communication load is achieved through the self-triggered

formulation.

In the following, one possible way to determine the sampling time intervals

δ1, . . . , δN is given such that the above problems can be tackled. By making

use of the flexibility of selecting the sampling time intervals, consider at first

that we have multiple patterns of sampling time intervals, i.e., we have M (M ∈

N≥1) different sampling patterns in total, where each i-th (i ∈ {1, 2, . . . ,M})

sampling pattern has Ni sampling intervals, δ(i)
1 , δ

(i)
2 , . . . , δ

(i)
Ni

. More specifically,

in this thesis the sampling patterns shown in Fig. 3.2 are given. Stated formally,

for givenM,Np ∈ N≥1, whereM < Np andNp represents the maximum number

of sampling intervals among all patterns, and δ = Tp/Np, the sampling time

intervals for the i-th (i ∈ {1, 2, . . . ,M}) pattern are given by

δ
(i)
1 = iδ, δ

(i)
j = δ, j = 2, 3, . . . , Ni, (3.3)

with Ni = Np − i + 1. That is, the 1st pattern has the same interval: δ(1)
1 =

· · · = δ
(1)
Np

= δ. The 2nd pattern is the same as the 1st pattern only except the first

sampling interval: δ(2)
1 = 2δ, δ(2)

2 = · · · = δ
(2)
Np−1 = δ. Similarly, for the general

i-th pattern we have δ(i)
1 = iδ, and δ for the remaining intervals. The controller

solves the corresponding OCPs under all sampling patterns above, and then

selects one sampling pattern according to the self-triggered strategy proposed

in the next section.

The main motivation of using the sampling patterns shown in Fig. 3.2, is

that it allows to evaluate the trade-off between the transmission interval and

the control performance quantitatively. According to the transmission proce-

dure given in the previous subsection, the transmission time interval is given

by δ(i)
1 = iδ. Thus, using larger patterns leads to longer transmission intervals.

From the self-triggered point of view, it is desirable to have larger patterns.



3.1. Multiple discretizations approach 31

Pa ern 1

…
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…
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…
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Pa ern 3

Pa ern M

FIGURE 3.2: Sampling patterns considered in this paper. Blue
lines represent the transmission time intervals.

However, as we will see in the analysis that follows, the control performance

instead becomes worse; this will be proved by the fact that the optimal cost

becomes larger as larger patterns are selected. In later sections, the author will

provide a framework of selecting one sampling pattern, such that the trade-

off between the transmission time interval and the control performance can be

taken into account.

For the i-th sampling pattern, denote

ui(tk) = {ui(tk), ui(tk + iδ), ui(tk + (i+ 1)δ), . . . , ui(tk + (Np − 1)δ)} (3.4)

as the control input sequence to be applied. Note that ui(tk + iδ) is used after

ui(tk), as ui(tk) is applied for the time interval iδ. The cost given by (3.2) under

the i-th sampling pattern can be re-written as

Ji(x(tk),ui(tk)) =

∫ iδ

0

{
||x(tk + ξ)||2Q + ||ui(tk)||2R

}
dξ

+

Np−1∑
n=i

∫ δ

0

{
||x(tk + nδ + ξ)||2Q + ||ui(tk + nδ)||2R

}
+ ||x(tk +Npδ)||2Pf ,

where the total cost is separated by each component of the control sequence
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ui(tk). Here it is denoted as Ji instead of J to emphasize that the piece-wise

constant control policy under the i-th sampling pattern is used. By computing

each integral in the above equation, the total cost for the i-th sampling pattern

can be translated into a summation of costs:

Ji(x(tk),ui(tk)) =F (x(tk), ui(tk), iδ) +

Np−1∑
n=i

{F (x(tk + nδ), ui(tk + nδ), δ)}

+ ||x(tk +Npδ)||2Pf ,

where F (x(t), u(t), iδ) denotes a new stage cost given by

F (x(t), u(t), iδ) =

∫ iδ

0

||x(t+ ξ)||2Q + ||u(t)||2Rdξ

= x̃(t)TΓ(iδ)x̃(t),

where x̃(t) = [xT(t) uT(t)]T and

Γ(iδ) =


∫ iδ

0

AT
ξQAξdξ

∫ iδ

0

BT
ξ QAξdξ∫ iδ

0

AT
ξQBξdξ

∫ iδ

0

(BT
ξ QBξ +R)dξ


with Aξ = eAξ, Bξ =

∫ ξ
0
eAτdτB. The OCP for the i-th sampling pattern is now

formulated as follows.

Problem 3.1 (Optimal Control Problem for i ). For given x(tk) ∈ X and i ∈ M,

find a sequence of control inputs ui(tk) = {ui(tk), ui(tk + iδ), . . . , ui(tk + (Np− 1)δ)}

and the corresponding sequence of states xi(tk) = {xi(tk), xi(tk + iδ), . . . , xi(tk +
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Npδ)}, by minimizing the cost Ji(x(tk),ui(tk)), subject to the following constraints:



x(tk + iδ) = Aiδx(tk) +Biδui(tk) (3.5)

x(tk + (n+ 1)δ)

= Aδx(tk + nδ) +Bδui(tk + nδ), ∀n ∈ {i, i+ 1, . . . , Np − 1} (3.6)

xi(tk + nδ) ∈ X , ∀n ∈ {i, i+ 1, . . . , Np} (3.7)

ui(tk + nδ) ∈ U , ∀n ∈ {0, i, i+ 1, . . . , Np − 1} (3.8)

x(tk +Npδ) ∈ Φ. (3.9)

�

The constraints (3.5) and (3.6) represent the dynamics by applying the con-

trol sequence ui(tk), and (3.7), (3.8) represent the constraints for the state and

the control input. The last constraint (3.9) represents the terminal state penalty,

where Φ = {x ∈ Rn : xTPfx ≤ ε} for a given ε > 0. Let

u∗i (tk) = {u∗i (tk), u∗i (tk + iδ), . . . , u∗i (tk + (Np − 1)δ)}

x∗i (tk) = {x∗i (tk), x∗i (tk + iδ), . . . , x∗i (tk +Npδ)}

be the optimal control and the corresponding state sequence with x∗i (tk) =

x(tk), obtained by solving Problem 3.1. Further denote J∗i (x(tk)) = Ji(x(tk),u
∗
i (tk))

as the optimal cost.

Similarly to Assumption 2.2, consider that the matrix Pf and ε are chosen

such that the following condition on the terminal region Φ is satisfied:

Assumption 3.1. There exists a local state feedback controller κ(x) = Kx ∈ U ,

satisfying

x(tk + δ)TPfx(tk + δ)− xT(tk)Pfx(tk) ≤ −F (x(tk), Kx(tk), δ) (3.10)

for all x(tk) ∈ Φ, where x(tk + δ) = (Aδ +BδK)x(tk). �

Assumption 3.1 will be used to guarantee that the optimal cost decreases

along the time by an appropriate selection of the sampling pattern. Since the
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…

FIGURE 3.3: Optimal piecewise constant control policy for the i-th
sampling pattern (blue line) and the admissible control sequence

for the (i− 1)-th pattern ūi−1(tk) (black circles).

system (3.1) is assumed to be stabilizable, the local controller κ(x) and Φ sat-

isfying (3.10), can be found off-line by following the procedure presented in,

e.g., [38]. To arrive at the self-triggered strategy, we will in the following derive

some useful properties for the optimal costs obtained under different sampling

patterns. These properties are key ingredients to quantify the control perfor-

mances for the self-triggered strategy, as well as for the asymptotic stability

provided in later sections.

Lemma 3.1. Suppose that Problem 3.1 admits a solution at tk under each sampling

pattern i ∈ {1, 2, . . . ,M}, which provides the optimal costs J∗i (x(tk)) for all i ∈

{1, . . . ,M}. Then we have

J∗1 (x(tk)) ≤ J∗2 (x(tk)) ≤ J∗3 (x(tk)) · · · ≤ J∗M(x(tk)). (3.11)

�

Proof. Let u∗i (tk), x∗i (tk), i ∈ {1, 2, . . . ,M} be the optimal control and the corre-

sponding state sequence obtained by Problem 3.1 under the i-th sampling pat-

tern. The illustration of the corresponding optimal piece-wise constant control

policy is depicted in Fig. 3.3. Under the i-th (i ≥ 2) sampling pattern, u∗i (tk) is

applied at constant for all t ∈ [tk, tk + iδ) as shown in Fig. 3.3. The control pol-

icy for the i-th (i ≥ 2) sampling pattern is thus admissible also for the (i− 1)-th
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sampling pattern, as u∗i (tk) is applied for t ∈ [tk, tk+(i−1)δ) ∈ [tk, tk+iδ). More

specifically, let

ūi−1(tk) = {ūi−1(tk), ūi−1(tk + (i− 1)δ), . . . , ūi−1(tk + (Np − 1)δ)},

where ūi−1(tk) = u∗i (tk), ūi−1(tk + (i− 1)δ) = u∗i (tk) and

ūi−1(tk + jδ) = u∗i (tk + jδ), j = i, . . . , Np − 1,

and x̄i−1(tk) = {x̄i−1(tk), x̄i−1(tk+(i−1)δ) . . . , x̄i−1(tk+Npδ)} be the correspond-

ing state sequence with x̄i−1(tk) = x(tk) (see the illustration of ūi−1 in Fig. 3.3).

Then, ūi−1(tk) provides a feasible solution to Problem 1 under the (i − 1)-th

pattern, satisfying all constraints (3.5), (3.6), (3.8) and (3.9). The last constraint

(3.9) is obtained by the fact that x̄i−1(tk +Npδ) = x∗i (tk +Npδ) ∈ Φ. Since ūi−1 is

a feasible controller for the (i− 1)-th pattern, we obtain

J∗i−1(x(tk)) ≤ Ji−1(x(tk), ūi−1(tk))

= Ji(x(tk),u
∗
i (tk))

= J∗i (x(tk)), (3.12)

and the above inequality holds for all i ∈ {2, 3, . . . ,M}. The proof is thus com-

plete.

Lemma 3.1 states that the 1st pattern provides the best control performance

in the sense that the optimal cost takes the minimum value among all patterns,

and moreover, the control performance becomes worse as larger patterns are

selected. The next lemma states that the optimal cost is guaranteed to decrease

whenever the 1st pattern is used:

Lemma 3.2. Suppose that the i-th pattern was used at tk−1 and the next time to solve

the OCP is given by tk = tk−1 + iδ. Then, under Assumption 3.1, the optimal cost
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satisfies

J∗1 (x(tk))− J∗i (x(tk−1)) ≤ −F (x(tk−1), u∗i (tk−1), iδ). (3.13)

�

Proof. Let

u∗i (tk−1) = {u∗i (tk−1), u∗i (tk), . . . , u
∗
i (tk + (Np − i− 1)δ)}

x∗i (tk−1) = {x∗i (tk−1), x∗i (tk), . . . , x
∗
i (tk + (Np − i)δ)}

be the optimal control input and the corresponding state sequence obtained at

tk−1 under the i-th pattern. From the constraint (3.9), we have x∗i (tk + (Np −

i)δ) ∈ Φ. At tk, consider the following control and the corresponding state

sequence for the 1st pattern; ū1(tk) = {ū1(tk), ū1(tk + δ), . . . , ū1(tk + (Np − 1)δ)},

x̄1(tk) = {x̄1(tk), x̄1(tk + δ), . . . , x̄1(tk + Npδ)}, where each component of ū1(tk)

is given by

ū1(tk + jδ) =

 u∗i (tk + jδ), for j = 0, . . . , Np − i− 1

κ(x̄1(tk + jδ)), for j = N − i, . . . , Np − 1.
(3.14)

Applying the local controller κ from tk + (Np − i)δ is admissible since we have

x̄1(tk + (Np − i)δ) = x∗i (tk + (Np − i)δ) ∈ Φ. Thus ū1(tk) is a feasible controller

for Problem 1 under the 1st sampling pattern, and the upper bound of the dif-

ference between J∗1 (x(tk)) and J∗i (x(tk−1)) is given by

J∗1 (x(tk))− J∗i (x(tk−1)) ≤ J1(x(tk), ū1(tk))− Ji(x(tk−1),u∗i (tk−1)). (3.15)
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Some calculations of the right hand side in (3.15) yield (3.13). The derivation is

given as follows. The optimal cost for the i-th pattern at tk−1 is given by

Ji(x(tk−1),u∗i (tk−1)) = F (x(tk−1), u∗i (tk−1), iδ) + F (x∗i (tk), u
∗
i (tk), δ)

+

Np−i−1∑
n=1

F (x∗i (tk + nδ), u∗i (tk + nδ), δ)

+ ||x∗i (tk + (Np − i)δ)||2Pf .

Furthermore, the cost at tk under the 1st sampling pattern with ū1(tk) in (3.14),

is given by

J1(x(tk), ū1(tk)) = F (x(tk), ū1(tk), δ) +

Np−1∑
n=1

F (x̄1(tk + nδ), ū1(tk + nδ), δ)

+ ||x̄1(tk +Npδ)||2Pf .

From (3.14), we have ū1(tk + jδ) = u∗i (tk + jδ) for j = 0, . . . , Np − i − 1, and

thus x̄1(tk + jδ) = x∗i (tk + jδ) for j = 0, . . . , Np − i. The difference between

J1(x(tk), ū1(tk)) and Ji(x(tk−1),u∗i (tk−1)), which is denote as ∆Jk = J1(x(tk), ū1(tk))−

Ji(x(tk−1) is then given by

∆Jk =− F (x(tk−1), u∗i (tk−1), iδ) +

Np−1∑
n=Np−i

F (x̄(tk + nδ), κ(x̄(tk + nδ), δ)

− ||x̄1(tk + (Np − i)δ)||2Pf + ||x̄1(tk +Npδ)||2Pf .

From (3.10), we have ||x̄1(tk + Npδ)||2Pf − ||x̄1(tk + (Np − 1)δ)||2Pf ≤ −F (x̄1(tk +

(Np − 1)δ), κ(·), δ). By using this inequality, we obtain

∆Jk ≤− F (x(tk−1), u∗i (tk−1), iδ) +

Np−2∑
n=Np−i

F (x̄1(tk + nδ), κ(x̄1(tk + nδ), δ)

− ||x̄1(tk + (Np − i)δ)||2Pf + ||x̄1(tk + (Np − 1)δ)||2Pf .

Similarly above, by recursively using the inequality from (3.10), we obtain

||x̄1(tk + (Np − j − 1)δ)||2Pf − ||x̄1(tk + (Np − j − 1)δ)||2Pf ≤ −F (x̄1(tk + (Np − j −
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1)δ), κ(·), δ). for j ∈ {1, 2, . . . , i− 1}, and thus

J1(x(tk), ū1(tk))− Ji(x(tk−1),u∗i (tk−1)) ≤ −F (x(tk−1), u∗i (tk−1), iδ),

and this yields (3.13), completing the proof.

3.1.2 Self-triggered strategy

In this section the author proposes the self-triggered strategy. The key idea

of the framework is to select the best pattern in the sense that it provides the

largest possible transmission time interval, while satisfying some conditions to

obtain the desired control performance. In the following proposed algorithm,

denote ik, k ∈ N as the sampling pattern selected by the controller to transmit

the corresponding optimal control sample u∗ik(tk).

Algorithm 3.1: (Self-triggered MPC via multiple-discretizations approach)

Initialization : At the initial time t0, the controller solves Problem 1 only for i = 1,

based on x(t0). The controller then transmits the optimal control sample u∗1(t0)

to the plant, i.e., i0 = 1. The plant applies the constant controller u∗1(t0) until

t1 = t0 + δ, and sends back x(t1) to the controller as a new state measurement.

For the non-initial time tk, k ∈ N+, do the following:

(i) The plant transmits the current state information x(tk) to the controller.

(ii) Based on x(tk), the controller solves Problem 3.1 1 for all i ∈ {1, . . . ,M},

which provides the optimal control sequences u∗1(tk), u∗2(tk), . . ., u∗M(tk),

and the corresponding optimal costs J∗1 (x(tk)), . . . , J
∗
M(x(tk)).

(iii) The controller selects ik ∈ {1, . . . ,M} by solving the following problem;

ik = arg max
i∈{1,...,M}

i, (3.16)
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subject to:

J∗i (x(tk)) ≤ J∗1 (x(tk)) + β (3.17)

J∗i (x(tk)) ≤ J∗ik−1
(x(tk−1))− γF (x(tk−1), u∗ik−1

(tk), ik−1), (3.18)

where β and γ are the constant parameters, satisfying 0 ≤ β, 0 < γ ≤ 1.

(iv) The controller transmits u∗ik(tk), and then the plant applies u∗ik(tk) as sample-

and-hold implementation until tk+1 = tk + ikδ. The plant then sends back

x(tk+1) to the controller as a new current state measurement. �

The main point of our proposed algorithm is the way to select the optimal

index ik given in the step (iii). From Lemma 3.1, the 1st pattern provides the

minimum cost among all sampling patterns. Thus, the first condition (3.17)

implies that larger patterns are allowed to be selected to obtain longer trans-

mission intervals, but the optimal cost should not go far from the 1st pattern;

the optimal cost is allowed to be larger only by β from J∗1 (x(tk)), so that it does

not degrade much the control performance. Thus, the parameter β plays a role

to regulate the trade-off between the control performance and the transmission

time intervals. That is, a smaller β leads to better control performance (but

resulting in more transmissions), and larger β leads to less transmissions (but

resulting in worse control performance).

The second condition (3.18) takes into account the optimal cost obtained at

the previous time tk−1, and this aims at guaranteeing the asymptotic stability

of the origin. Note that γ needs to satisfy 0 < γ ≤ 1. As will be described

in the next section, this condition ensures that Algorithm 3.1 is always imple-

mentable. Since it is desirable to reduce the communication load as much as

possible, the controller selects the pattern providing the largest transmission

interval satisfying (3.17), (3.18), i.e., ik = arg max i in (3.16).

The main advantage of using the proposed method is that the optimal cost

J∗i (tk) can be compared not only with the previous one J∗ik−1
(tk−1), but also with



40 Chapter 3. Aperiodic MPC for linear systems

the current ones obtained at tk under different sampling patterns. This allows

us not only to ensure stability, but also to evaluate how much the control per-

formance becomes better or worse according to the transmission time intervals.

Note that the control performance may also be regulated through the tuning of

γ in (3.18). However, due to the tight condition 0 < γ ≤ 1, we cannot select γ

large enough such that small patterns (good control performance) are ensured

to be obtained. Thus the desired control performance can be suitably specified

through the first condition (3.17), rather than (3.18).

Some remarks are in order regarding Algorithm 3.1.

Remark 3.1 (Relation to move-blocking MPC). The proposed algorithm is to some

extent related to move-blocking MPC [53], in the sense that the optimal control inputs

are restricted to be constant for some time period. Note that move-blocking MPC aims

at reducing the computational complexity by decreasing the degrees of freedom of the

optimal control problem [53]; the proposed approach, on the other hand, aims at reduc-

ing the communication load through the move-blocking technique, and the reduction of

computation load is not a primary objective here. �

Remark 3.2 (Effect of time delays). The main drawback of Algorithm 3.1 is the

requirement of solving multiple OCPs at the same time, which clearly induces a time-

delay of transmitting control samples in practical implementations. Regarding time

delays, several methods have been proposed to take them into account and can also

be applied to our proposed self-triggered strategy. For example, a delay compensation

strategy has been proposed in [54]. When applying this approach, the maximum total

time delay τ̄d needs to be upper bounded to satisfy δ(i)
1 < Tp − τ̄d in order to guarantee

stability. This implies that the condition i < (Tp − τ̄d)/δ is required in addition to the

conditions (3.17), (3.18) as the rule to choose the sampling pattern. �

Remark 3.3 (Effect of the noise or model uncertainties). In the above formulation,

any effects of model uncertainties or disturbances have not considered. However, the

proposed scheme can be extended to take into account these effects by slightly modify-

ing Lemma 3.2. Suppose that the actual state is given by ẋ = Ax + Bu + w, where
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w denotes additive uncertainties or disturbances satisfying ||w|| ≤ wmax. By uti-

lizing Theorem 2 in [45], it can be shown that there exists a positive Lv such that

J∗1 (x(tk)) − J∗i (x(tk−1)) ≤ −F (x(tk−1), u∗i (tk−1), iδ) + Lvwmax instead of (3.13).

Therefore, assuming that wmax is known, the corresponding self-triggered strategy is

obtained by addingLvwmax to the right hand side of (3.18). Note that the first condition

(3.17) does not need to be modified, since Lemma 3.1 still holds even for the disturbance

case. �

3.1.3 Feasibility and Stability analysis

One of the desirable properties of Algorithm 3.1 is to ensure that it is always

implementable, i.e., we need to exclude the case when all the patterns do not

satisfy both (3.17) and (3.18). Furthermore, the stability of the closed loop sys-

tem under Algorithm 3.1 needs to be verified. In the following theorem, it is

deduced that both of these properties are satisfied.

Theorem 3.1. Consider the networked control system in Fig. 1.1 where the plant

follows the dynamics given by (3.1) and the proposed self-triggered strategy (Algo-

rithm 3.1) is implemented. The followings are then satisfied:

(i) The way to obtain the pattern ik in step (iii) in Algorithm 1.1, is always feasible.

That is, there exists at least one pattern i, satisfying both (3.17), (3.18) for all

k ∈ N≥0.

(ii) The closed loop system is asymptotically stabilized to the origin. �

Proof. The proof of (i) is obtained by showing that the 1st sampling pattern

(i = 1) always satisfies (3.17) and (3.18). The first condition is clearly satisfied

when i = 1 since β ≥ 0. Furthermore, from Lemma 3.2, we obtain

J∗1 (x(tk)) ≤ J∗ik−1
(x(tk−1))− F (x(tk−1), u∗ik−1

(tk−1), ik−1)

≤ J∗ik−1
(x(tk−1))− γF (x(tk−1), u∗ik−1

(tk−1), ik−1).

Thus the second condition holds for i = 1. Thus, the proof of (i) is complete.
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The proof of (ii) is obtained by the fact that the optimal cost decreases along

the time sequence. Since the optimal cost of the selected pattern satisfies (3.18),

we have
J∗i1(x(t1))− J∗i0(x(t0)) ≤ −γF (x(t0), u∗i0(t0), i0)

< −γ
∫ t1

t0

xT(t)Qx(t)dt

J∗i2(x(t2))− J∗i1(x(t1)) ≤ −γF (x(t1), u∗i1(t1), i1)

< −γ
∫ t2

t1

xT(t)Qx(t)dt

...

where the derivation from the first to the second inequality follows from the

definition of the stage cost F given by (3.5). Summing over both sides of the

above yields

γ

∫ ∞
t0

xT(t)Qx(t)dt < J∗i0(x(t0))− J∗i∞(x(∞)) <∞.

Since the function xT(t)Qx(t) is uniformly continuous on t ∈ [0,∞) and Q � 0,

we obtain ||x(t)|| → 0 as t → ∞ from Barbalat’s lemma ([52]). This completes

the proof.

3.1.4 Simulation results

In this subsection illustrative examples are provided to validate our control

schemes. The simulation was conducted on Matlab 2016a under Windows 10,

Intel(R) Core(TM) 2.40 GHz, 8 GB RAM.

(Example 3.1): Consider the following spring-mass-damper system:

ẋ(t) =

 0 1

−k/m −c/m

x(t) +

 0

1/m

u(t), (3.19)

where x(t) = [x1(t), x2(t)]T ∈ R2 with x1(t), x2(t) being, respectively, mass
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position and its velocity, and u(t) ∈ R denotes the force applied to the mass.

m = 1 is set as the mass of the point, k = 1 is set as the spring coefficient, and

c = 0.2 is set as the viscous damper coefficient. For solving the optimal control

problem (Problem 3.1), the matrices for the stage cost are set as Q = I2, R = 0.1,

and the prediction horizon as Tp = 10. Regarding the sampling patterns, we

have δ = 0.2, M = 30 and the tuning parameters are chosen as β = 1, γ = 0.5.

For the terminal set satisfying Assumption 3.1, the approach presented in [38]

is given to compute Pf and is obtained as

Pf =

 6.82 1.23

1.23 2.43

 , (3.20)

and ε = 1.

Figure 3.4 illustrates the resulting state trajectories from the initial states

given by x(0) = [2.5; 2.0]. In the figure, blue solid lines represent the state

trajectories by applying Algorithm 3.1 and red dotted lines represent the state

trajectories when Problem 3.1 is solved periodically with 0.1 sampling time in-

terval (i.e., ik = 1, ∀k ∈ N). From the result, it is shown that all state trajec-

tories are asymptotically stabilized to the origin by applying both proposed

self-triggered strategy (Algorithm 3.1) and the periodic strategy. Moreover, the

convergence speed under Algorithm 3.1 seems to be slower than the periodic

strategy, which indicates that the periodic scheme achieves better control per-

formance (a more quantitative analysis is provided below). Figure 3.5 illus-

trates the control inputs by applying Algorithm 3.1 (blue solid lines) and the

periodic one with 0.1 sampling time interval (red dotted lines). From the fig-

ure, control inputs are updated less frequently by applying Algorithm 3.1 than

the periodic scheme and the communication reduction seems to be achieved.

To provide a more quantitative analysis, Table 3.1 illustrates the convergence

time when the state enters a small region around the origin (||x|| ≤ 0.001), as

well as the number of transmission instants during the time period t ∈ [0, 50].
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FIGURE 3.4: State trajectories by implementing Algorithm 3.1
(blue solid lines) and the periodic MPC (red dotted lines).
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TABLE 3.1: Convergence time when the state trajectory enters the
region (||x|| ≤ 0.001) and the number of transmission instants.

Algorithm 3.1 Periodic (0.1)
Convergence time 35.8 29.0

Transmission instants 12 251
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u
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FIGURE 3.5: Applied control inputs by applying Algorithm 3.1
(blue solid line) and periodic MPC with sampling time interval

0.1 (red dotted line).

From the table, Algorithm 3.1 takes 35.8 − 29.0 = 6.8 longer convergence time

than the periodic case, which means that the control performance is degraded

in contrast to the periodic case. On the other hand, the number of transmission

instants by applying Algorithm 3.1 is smaller by 251 − 12 = 239. Therefore,

it is shown that the communication reduction is achieved by applying Algo-

rithm 3.1 compared to the periodic strategy, while, on the other hand, degrad-

ing control performance.

In Fig. 3.5, the transmission time interval after the time t = 6 is always

given by 3.0 (i.e., ik = M = 30), which achieves the maximal index of sampling

patterns. Therefore, it is deduced that if M (the number of sampling patters)

is selected larger, we can potentially reduce the number of transmission in-

stants. To verify this, Algorithm 3.1 is implemented under different selection
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FIGURE 3.6: Number of transmissions during the time interval
t ∈ [0, 300] and the average calculation time against the number

of sampling patterns M .
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of M and compute the number of transmission instants during the time in-

terval t ∈ [0, 300]. Also, the average calculation times to compute the control

input and the transmission time interval (i.e., the average calculation time from

step 2 to step 3 in Algorithm 3.1) are given. The results are shown in Fig. 3.6.

In Fig. 3.6(a), each bar represents the number of transmission instants for each

M = 10j, (j = 1, . . . , 10), and Fig. 3.6(b) illustrates the average calculation times

with the correponding standard deviations. Indeed, it is shown from the figure

that the number of transmission instants is monotonically decreasing as M is

selected larger. On the other hand, the calculation time increases as M is se-

lected larger, and this is due to the fact the number of optimal control problems

to be solved increases. Thus, it is shown that we can reduce communication

load by increasing the number of sampling patterns, while increasing the com-

putational complexity of solving the optimal control problems.

To conclude, it is shown in this example that:

• Communication reduction is achieved by applying Algorithm 3.1 com-

pared to the periodic case with 0.1 sampling time interval. On the other

hand, control performance is degraded at the expense of achieving the

communication reduction.

• As M is selected larger, a more communication reduction is achieved. On

the other hand, the computational complexity becomes higher as M is

selected larger.

Although in this example the number of transmission instants decreases as M

becomes larger, it may not be the case for unstable systems, since the state may

diverge by applying constant control signals for some time period. This will be

clearly seen in the next example.
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(Example 3.2): In the previous example, we consider a spring-mass-damper sys-

tem that is a stable system. As a more interesting problem, we consider the

following linearized system of an inverted pendulum on a cart (see [13]);

ẋ =


0 1 0 0

0 0 −mg/M 0

0 0 0 1

0 0 g/` 0


x+


0

1/M

0

−1/M`


u, (3.21)

which is an unstable system. Here, we denote x = [x1 x2 x3 x4]T ∈ R4 with x1, x2

being the position of the cart and its velocity, and x3, x4 being the angle of the

pendulum and its velocity. u ∈ R represents the force applied to the cart. We

set m = 1 as the point mass, M = 5 as the mass of the cart, ` = 2 as the length

of the massless rod, and g = 9.8 as the gravity. The system is unstable having

a positive eigenvalue 1.40 in matrix A. The constraint for the control input is

assumed to be given by ||u|| ≤ 10. For solving the optimal control problem

(Problem 3.1), we set the matrices for the stage cost as Q = I2, R = 0.1, and

the prediction horizon as Tp = 10. Regarding the sampling patterns, assume

δ = 0.1 and M = 30. The matrix for the terminal constraint Pf is computed as

Pf =


29.9 38.3 139 89.6

38.3 85.0 320 207

139 320 1600 959

89.6 207 959 592


(3.22)

and ε = 0.01. The initial state is assumed to be x(0) = [1, 0, 0, 0].

Figure 3.7 illustrates the resulting state trajectories of x1 and x2, and Fig. 3.8

illustrates the ones of x3, x4 by applying Algorithm 3.1, with the tuning param-

eters as β = 1, γ = 0.5. Again, red dotted lines represent the state trajectories

when Problem 3.1 is solved periodically with 0.1 sampling time interval (i.e.,
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FIGURE 3.7: State trajectories of x1 and x2 by implementing Al-
gorithm 3.1 (blue solid lines) and the periodic MPC (red dotted

lines).
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FIGURE 3.8: State trajectories of x3 and x4 by implementing Al-
gorithm 3.1 (blue solid lines) and the periodic MPC (red dotted

lines).
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FIGURE 3.9: Applied control inputs under Algorithm 3.1 (blue
line) and periodic MPC with sampling time interval 0.1 (red dot-

ted line).

ik = 1, ∀k ∈ N). From the figure, it is shown that all state trajectories are asymp-

totically stabilized to the origin. Similarly to the result in Example 3.1, conver-

gence of states seemes to be slower under Algorithm 3.1 than the periodic case.

For instance, the state trajectory of x1 behaves oscillatory (see Fig. 3.7), while

the periodic case does not. Figure 3.9 illustrates the corresponding control in-

put by implementing Algorithm 3.1 (blue solid line) and the periodic scheme

with 0.1 sampling time interval (red dotted line). From the figure, it is shown

that control inputs are updated less frequently by applying Algorithm 3.1 than

the periodic case. Table 3.2 illustrates the convergence time when the state en-

ters the small region around the origin (||x|| ≤ 0.001), as well as the number of

transmission time instants during the time interval t ∈ [0, 30]. Indeed, from the

table the convergence time by Algorithm 3.1 is longer by 20.1− 17.8 = 2.3 than

the periodic scheme. On the other hand, the number of transmission instants

by applying Algorithm 3.1 is smaller by 301− 15 = 286. Thus, it is shown that

the communication reduction can be achieved by applying Algorithm 3.1.
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TABLE 3.2: Convergence time when the state trajectory enters the
region (||x|| ≤ 0.001) and the number of transmission instants

during the time period t ∈ [0, 30].

Algorithm 3.1 Periodic (0.1)
Convergence time 20.1 17.8

Transmission instants 15 301

So far, we have considered both stable systems (Example 3.1) and unsta-

ble systems (Example 3.2) and illustated the effectiveness of the proposed ap-

proach. Let us now compare the two results in terms of both communication

load and computational complexity. To this end, Algorithm 3.1 is simulated

again under different selection of M and compute the number of transmission

instants during the time period t ∈ [0, 300], as well as the average calculation

time to compute control input (i.e., the average calculation time from step 2 to

step 3 in Algorithm 3.1). The results are shown in Fig. 3.10. From Fig. 3.10(a),

the number of transmission instants in Example 3.2 is larger than that in Ex-

ample 3.1 for all M . Moreover, the number of transmission instants obtained in

Example 3.2 does not decrease for allM > 30 while it is monotonically decreas-

ing in the case of Example 3.1. Intuitively, this is due to the fact that for unsta-

ble systems applying a constant control signal for some time period may easily

lead to a divergence of states compared to the stable case. For unstable sys-

tems, there may thus exist an inherent upper bound of the time interval during

which control inputs are allowed to be constant to stabilize the system. From

Fig. 3.10(b), it takes more calculation times in Example 3.2 for all M than that

in Example 3.1. This is because Example 3.2 deals with higher order systems

(n = 4) than Example 3.1 (n = 2) and the number of decision variables to solve

Problem 3.1 becomes larger. Thus, a control problem of unstable, high-order

systems is harder to be handled than stable, low-order systems as it requires a

more communication load and computational complety.

To conclude, it is shown in this example that:
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FIGURE 3.10: Number of transmission time instants during the
time period t ∈ [0, 300] and the calculation time against the num-

ber of sampling patterns M .
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• Communication reduction is achieved by applying Algorithm 3.1 com-

pared to the periodic scheme with 0.1 sampling time interval. On the

other hand, control performance is degraded at the expense of achieving

the communication reduction.

• Compared to Example 3.1, the number of transmission instants cannot get

smaller for M > 30, since Example 3.2 considers unstable systems. More-

over, the computational complexity of solving Problem 3.1 is higher than

that of Example 3.1 since Example 3.2 considers higher order systems.

3.2 Contractive set-based approach

In the previous section, the author proposes a self-triggered algorithm that

solves a finite set of optimal control problems according to the discretization

scheme in Fig. 3.2. Essentially, the computational complexity of solving the

optimal control problem (Problem 3.1) heavily depends on the choice of pre-

diction horizon Np; as Np is selected larger, the number of decision variables

becomes larger. On the other hand, the prediction horizon Np must be selected

large enough to satisfy the terminal constraint as in (3.9). More specifically, if

we want to stabilize all states inX , the prediction horizonNp should be selected

to satisfy FNp ⊇ X , where

FNp = {x(0) ∈ Rn | ∃u(0), u(1), . . . u(Np − 1) ∈ U : x(Np) ∈ Φ}, (3.23)

i.e., FNp denotes the set of states that can reach the terminal set Φ within the

time steps Np. While the choice of Np according to (3.23) ensures feasibility

of Problem 3.1 (for the case i = 1) for all x ∈ X , it may be sometimes a con-

servative choice and Np may be selected unnecessarily long; in some control

applications, it may be of interest for us to consider stabilizing the system only

within a certain set S ⊂ X , instead of stabilizing all states in X . In such case,

we can potentially decrease the prediction horizon and reduce computational
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complexity of solving the optimal control problem. In particular, if the region

of interest S is characterized by a λ-contractive set of X , which will be defined

soon in the next section, it is then shown that a one step horizon controller

(Np = 1) is sufficient to stabilize the system.

In the following subsections, a new optimal control problem will be for-

mulated by incorporating the notion of contractive set, aiming at reducing

the computational complexity with respect to the multiple-discretizations ap-

proach presented in the previous section. Similarly to the previous section,

both feasibility and stability are shown for the new problem formulation, and

a simulation example is illustrated to validate the proposed scheme.

3.2.1 Set-Invariance theory

Consider the Linear-Time-Invariant (LTI) system:

ẋ(t) = Ax(t) +Bu(t), (3.24)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the control variable. Again, as-

sume that the state and the control input must belong to the constraint sets X

and U , where these sets are compact, convex and contain the origin in their in-

teriors. Here, we further assume that these sets are characterized by polyhedral

sets as follows:

X = {x ∈ Rn : Hxx ≤ hx}, (3.25)

U = {u ∈ Rm : Huu ≤ hu}, (3.26)

where Hx ∈ Rnx×n, Hu ∈ Rnu×m and hx, hu are appropriately sized vectors

having positive components.

Let t0 < t1 < t2 < · · · be the transmission time instants between the plant

and the controller; at tk, k ∈ N, the plant transmits x(tk) to the controller, and
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the controller solves an optimal control problem to compute suitable control in-

puts to be applied, and determine the next communication time tk+1. Suppose

that the current time is tk. Similarly to the multiple dicsretization approach

given in the previous section, let us first discretize the system with respect to

the sampling time interval δ under zero-order-hold controller, yielding

x(tk + δ) = Aδx(tk) +Bδu(tk), (3.27)

where Aδ = eAδ, Bδ =
∫ δ

0
eAsBds. Namely, x(tk + δ) represents the state at tk + δ

by applying a control input u(tk) constantly for the time interval δ.

In the following, the standard notions of controlled invariant set and λ-contractive

set [55] are given, which are important definitions to characterize the invariance

and convergence properties for constrained control systems.

Definition 3.2 (Controlled invariant set). For a given S ⊆ X , S is said to be a

controlled invariant set in X if and only if there exists a control law g : X → U such

that:

x(tk) ∈ S =⇒ Aδx(tk) +Bδ g(x(tk)) ∈ S. (3.28)

�

Roughly speaking, a controlled invariant set S indicates that if the state x(tk)

is inside S, there exists a controller such that the state remains in S at tk + δ.

Definition 3.3 (λ-contractive set). For a given S ⊆ X , S is said to be a λ-contractive

set in X for λ ∈ [0, 1], if and only if there exists a control law g(x) ∈ U such that:

x(tk) ∈ S =⇒ Aδx(tk) +Bδg(x(tk)) ∈ λS. (3.29)

�

A λ-contractive set S indicates that if the state is inside S , there exists a

controller such that the state can be driven into the set λS at the next time step.

From the definition, a controlled invariant set implies a λ-contractive set with
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λ = 1. In the following, several established results are reviewed for obtaining a

contractive set and the corresponding properties (see, e.g., [55]). For given λ ∈

[0, 1) and X ⊂ Rn, there are several ways to efficiently construct a λ-contractive

set in X . For a given compact and convex set D ⊂ Rn, let the mapping Qλ :

Rn → Rn be given by

Qλ(D) = {x ∈ X : ∃u ∈ U , Aδx+Bδu ∈ λD}. (3.30)

A simple algorithm to obtain a λ-contractive set in X is to compute Ωj ⊂ Rn,

j ∈ N as

Ω0 = X , Ωj+1 = Qλ(Ωj) ∩ X , (3.31)

and then it holds that the set S = limj→∞Ωj is λ-contractive, see e.g., [55]. If

Ωj+1 = Ωj for some j, the λ-contractive set is obtained as S = Ωj , which requires

only a finite number of iterations. Although such condition does not hold in

general, it is still shown, that the algorithm converges in the sense that for ev-

ery λ < λ̄ < 1, there exists a finite j ∈ N+ such that the set Ωj is λ̄-contractive

(see Theorem 3.2 in [55]). Several other algorithms have been recently proposed,

see e.g., [56], [57] and see also [58] for a detailed convergence analysis. The fol-

lowing lemma illustrates the existence of a (non-quadratic) Lyapunov function

in a given λ-contractive set:

Lemma 3.3 ([55]). Let S ⊂ X be a λ-contractive C-set with λ ∈ [0, 1] and the associ-

ated gauge function ΨS : S → R+. Then, there exists a control law g : X → U such

that

ΨS(Aδx(tk) +Bδg(x(tk))) ≤ λΨS(x(tk)), (3.32)

for all x(tk) ∈ S. �

Lemma 3.3 follows immediately from Definition 3.3. If λ < 1, (3.32) implies

the existence of a stabilizing controller in S in the sense that the output of the

gauge function ΨS(·) is guaranteed to decrease. A significant advantage here
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is that a one step horizon controller is guaranteed to exist in S, which stabi-

lizes the state to the origin. The gauge function ΨS(·) defined in S is known as

set-induced Lyapunov function in the literature; for a detailed discussion, see e.g.,

[55].

(Example 3.3): Let us go back to an example of spring-mass-damper system

considered in Example 3.1:

ẋ(t) =

 0 1

−k/m −c/m

x(t) +

 0

1/m

u(t), (3.33)

with m = 1, k = 1, and c = 0.2. The system is discretized under the sampling

time interval δ = 0.2. Assume that the constraint sets are given by X = {x ∈

R2 : ||x||∞ ≤ 4}, U = {u ∈ R : ||u||∞ ≤ 2}. Let S1, S2, S3 be the corresponding

λ-contractive sets with λ = 1.0, 0.9, 0.8, respectively. Figure 3.11 illustrates the

contractive sets by implementing the iterative procedure presented in (3.31). In

the figure, the gray region represents the constraint set X and the contractive

sets S1, S2 , S3 are illustrated with different shades of blue. As shown in the

figure, the contractive set becomes smaller as λ becomes smaller. Intuitively,

this is due to the fact that the state is restricted to converge to a tighter region

as the contractivity λ is selected smaller. �

Based on the set-invariance theory described above, let us now formulate

a new optimal control problem. For a given λ ∈ [0, 1), suppose that a λ-

contractive set S is constructed in X . Note that since X is assumed to be a poly-

hedral, compact and convex set, one can efficiently compute the λ-contractive

set through polyhedral operations according to (3.31) 1. The obtained λ-contractive

1If the iterative procedure in (3.31) does not converge in finite time, one can stop the pro-
cedure to obtain a λ̄-contractive set (λ < λ̄ < 1) in a finite number of iterations. In such case,
we can use λ̄ (instead of λ) as the parameter to design the self-triggered strategies provided
throughout this chapter.
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FIGURE 3.11: λ-contractive sets S1 (λ = 1.0), S2 (λ = 0.9), and S3

(λ = 0.8). The contractive sets are illustrated with different shades
of blue. The gray region represents X .

set S can be denoted as

S = co{v1, v2, . . . , vN} ⊆ X , (3.34)

where vn, n ∈ {1, 2, . . . , N} represent the vertices of S, and N represents the

number of them.

Assumption 3.2. The initial state is inside S , i.e., x(t0) ∈ S.

As will be seen later, Assumption 3.2 is required to guarantee feasibility of

the optimal control problems for all the transmission time instants.

In the previous section, an optimal control problem is proposed for each

i ∈ {1, . . . ,M} according to Problem 3.1, where each i indicates a candidate

of transmission time interval determined by the controller. Similarly to Prob-

lem 3.1, the author proposes the following optimal control problem for each

i ∈ {1, . . . ,M}:
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Problem 3.2 (Optimal Control Problem for i). For given x(tk), i ∈ {1, . . . ,M}

and the λ-contractive set S, find u(tk) ∈ U and ε ∈ R by solving the following

problem:

min
u(tk), ε

ε, (3.35)

subject to the following constraints:


Aiδx(tk) +Biδu(tk) ∈ εεxS, (3.36)

Ajδx(tk) +Bjδu(tk) ∈ X , ∀j ∈ {1, . . . , i} (3.37)

u(tk) ∈ U , ε ∈ [0, λ], (3.38)

where Aiδ = eAiδ, Biδ =
∫ iδ

0
eAτdτB and εx = ΨS(x(tk)). �

In (3.36),Aiδx(tk)+Biδu(tk) represents a state by applying a controller u(tk) ∈

U constantly for the time interval iδ. Moreover, from the definition of the gauge

function ΨS(·) we have x(tk) ∈ εxS. Thus, Problem 3.2 aims to find the smallest

possible scaled set εεxS, such that the state enters εεxS (from εxS) by applying

a constant control input for the time interval iδ. This means that a stabilizing

controller is found under the transmission time interval iδ. The constraint in

(3.37) implies that the state must remain inside X while applying a constant

controller, which is imposed to guarantee the constraint satisfaction.

For given x(tk) ∈ S and i ∈ {1, . . . ,M}, let u∗i (tk), ε∗i be the optimal control

input and the value of ε by solving Problem 3.2. From (3.36), the state enters

ε∗i εxS if u∗i (tk) is applied constantly for the time interval iδ, i.e., x(tk+iδ) ∈ ε∗i εxS

with x(tk + iδ) = Aiδx(tk) +Biδu
∗
i (tk), which means that we have

ΨS(x(tk + iδ)) ≤ ε∗iΨS(x(tk)) (3.39)

or

ΨS(x(tk + iδ))−ΨS(x(tk)) ≤ −(1− ε∗i )ΨS(x(tk)) (3.40)

with 0 ≤ ε∗i ≤ λ < 1. Thus, 1− ε∗i represents how much the output of the gauge

function (as a Lyapunov function candidate) decreases by applying the optimal
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controller u∗i (tk) constantly for the time interval iδ. That is, if 1 − ε∗i becomes

larger (i.e., ε∗i becomes smaller), then the state will be closer to the origin and a

better control performance is achieved.

Now, consider solving Problem 3.2 for all i ∈ M, which provides differ-

ent solutions under different transmission time intervals. In the following, let

I(x(tk)) be the set of indices (transmission time intervals) where Problem 3.2

provides a feasible solution. That is,

I(x(tk)) = {i ∈{1, . . . , M} : Problem 3.2 is feasible for i}. (3.41)

Regarding the feasible set I(x(k)), we obtain the following:

Lemma 3.4. For any x(tk) ∈ S, I(x(tk)) is non-empty.

Proof. In the following, it is shown that Problem 3.2 is feasible for i = 1 for

any x(tk) ∈ S from the property of the λ-contractive set. Let εx = ΨS(x(tk)).

We have εx ∈ [0, 1] since x(tk) ∈ S . Moreover, since x(tk) ∈ εxS , there exist

λn ∈ [0, 1], n ∈ {1, . . . , N}, such that x(tk) = εx
∑N

n=1 λnvn,
∑N

n=1 λn = 1, where

vn, n ∈ {1, . . . , N} are the vertices of S as in (3.34). From Definition 3.3, there

exist u1, . . . , uN ∈ U such that Avn +Bun ∈ λS, ∀n ∈ {1, . . . , N}. Let u(tk) ∈ Rm

be given by u(tk) = εx
∑N

n=1 λnun ∈ U . Then we obtain

Aδx(tk) +Bδu(tk) = εx

N∑
n=1

λn(Aδvn +Bδun) ∈ εxλS ⊆ X .

The above inclusion implies that Problem 3.2 has a feasible solution with u =

u(k) ∈ U and ε = λ ∈ [0, λ], since the constraints (3.37), (3.38) imposed in

Problem 3.2 are all fulfilled. This completes the proof.
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3.2.2 Self-triggered strategy

Let us now present the self-triggered strategy. After solving Problem 3.2 for all

i ∈ {1, . . . ,M}, which provides the optimal (feasible) solutions of control in-

puts u∗i (tk) ∈ U and scalars ε∗i ∈ [0, λ] for all i ∈ I(x(km)), the controller then

selects a suitable transmission time interval among them. Similarly to the self-

triggered strategy given in the previous section (Algorithm 3.1), the controller

selects the maximal index such that both the control performance and stability

are taken into account. A more detailed algorithm is described in the following

overall algorithm:

Algorithm 3.2 (Self-triggered MPC strategy via contractive set)

For any transmission time instants tk, k ∈ N, do the following:

(i) The plant transmits the current state information x(tk) to the controller.

(ii) Based on x(tk), the controller solves Problem 3.2 for all i ∈ {1, . . . ,M},

which provides the optimal control inputs u∗i (tk) ∈ U , and the corre-

sponding scalars ε∗i for all i ∈ I(x(tk)).

(iii) The controller picks up an optimal index ik ∈ I(x(tk)) by solving the

following problem:

ik = arg max
i∈I(x(tk))

i (3.42)

subject to:

ε∗i ≤ β2(ε∗1)i, (3.43)

ε∗i ≤ γ2εx, (3.44)

where εx = ΨS(x(tk)) and β2 ≥ 1, λ ≤ γ2 < 1 represent a given tuning

weight parameter. Then, set tk+1 = tk + ikδ and u(tk) = u∗ik(tk), and the

controller transmits u(tk) and tk+1 to the plant.
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(iv) The plant applies u(tk) for all t ∈ [tk, tk+1). Set k ← k + 1, and then go

back to step (i). �

The main point of our proposed algorithm is the way to select the optimal

index ik in Step (iii). Similarly to Algorithm 3.1, (3.43) represents the constraint

for achieving the control performance with respect to the optimal cost for i = 1

(i.e., ε∗1), and β ≥ 1 represents the associated tuning weight. As described in the

previous subsection, the term ε∗i represents how much the output of the gauge

function decreases by applying the optimal controller u∗i (tk) constantly for the

time interval iδ, and we will achieve better control performance if this value

becomes smaller. The second condition (3.44) imposes that the value of gauge

function will be smaller at tk + iδ than the one at the current time εx. As will be

seen the analysis that follows, this constraint is used to guarantee asymptotic

stability of the origin by guaranteeing that the gauge function as a Lyapunov

function candidate is strictly decreasing.

3.2.3 Feasibility and Stability analysis

In the multiple discretization approach, it has been shown that the self-triggered

algorithm (Algorithm 3.1) is implementable by proving that the optimal control

problem for i = 1 is always feasible. Also, asymptotic stability has been guar-

anteed by showing that the optimal cost as a Lyapunov function candidate is

decreasing. In the following, it is also shown that Algorithm 3.2 is always im-

plementable by showing that Problem 3.2 is feasible for all tk, k ∈ N. Moreover,

asymptotic stability is guaranteed by showing that the output of gauge func-

tion is strictly decreasing.

Theorem 3.2. Consider the networked control system in Fig. 1.1 where the plant fol-

lows the dynamics given by (3.24) and the proposed self-triggered strategy (Algorithm

3.2) is implemented. Suppose also that Assumption 3.2 holds. The followings are then

satisfied:
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(i) The way to select ik in step (iii) in Algorithm 3.2, is always feasible. That is, it

holds that I(x(tk)) is non-empty for all k ∈ N, and there exists at least an index

i ∈ {1, . . . ,M}, satisfying both (3.43), (3.44) for all k ∈ N≥0.

(ii) The closed loop system is asymptotically stabilized to the origin, i.e., x(t)→ 0 as

t→∞. �

Proof. We first prove I(x(tk)) is non-empty by showing that x(tk) ∈ S for all k ∈

N. By Assumption 3.2 we obtain x(k0) ∈ S and thus I(x(k0)) is non-empty (see

Lemma 3.4). Since i0 is obtained from (3.42), we have i0 ∈ I(x(k0)) which means

that Problem 3.2 has a feasible solution for i = i0. Thus, from the constraint

(3.37) in Problem 3.2, we obtain x(k1) = Ai0x(k0)+
∑i0

i=1 A
i−1Bu∗(k0) ∈ S, which

means that I(x(k1)) is non-empty. By recursively following this argument, it is

shown that x(tk) ∈ S for all k ∈ N, which follows that I(x(tk)) is non-empty for

all k ∈ N.

Let us now we prove the claim (ii). Since ik ∈ J (x(tk)), ∀k ∈ N, it holds

from (3.44) that:

ΨS(x(tk+1)) ≤ γ2ΨS(x(tk)) (3.45)

with γ2 < 1. Therefore, by regarding ΨS(·) as a set-induced Lyapunov function

candidate (see Lemma 3.3), the Lyapunov function is strictly decreasing and

the state trajectory is asymptotically stabilized to the origin. This completes the

proof.

3.2.4 Discussions on computational complexity

So far, two self-triggered strategies for LTI systems are proposed; multiple dis-

cretizations approach, and contractive-set based approach. In both approaches, a set

of optimal control problems are provided under different transmission time in-

tervals, and the controller determines a suitable one among them. The main

difference between the two approaches is that, in the second approach the no-

tion of contractive set has been incorporated, aiming to alleviate computational
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FIGURE 3.12: Number of decision variables used for Problem 3.1
and Problem 3.2.

TABLE 3.3: Number of decision variables used in Algorithm 3.1
(Np = 50) and Algorithm 3.2.

M 10 20 30 40 50
Algorithm 3.1 900 1600 2100 2400 2500
Algorithm 3.2 20 40 60 80 100

complexity of solving the optimal control problems. In this section, it is illus-

trated that the computational complexity is indeed alleviated by evaluating the

number of decision variables used in the optimal control problem.

In Problem 3.1, the total number of state and control variables used in the

optimal control problem for each i ∈ {1, . . . ,M} is given by 2(Np−i+1), i.e., the

number of state variables plus the number of control variables. Thus, the total

number of decision variables is given by 2(Np+Np−1+Np−2+· · ·+Np−M+1) =

2MNp −M2. On the other hand, in Problem 3.2, the total number of decision

variable is given by 2M , since only one state variable and one control variable

is utilized for each i ∈ {1, . . . ,M}. Thus, the number of decision variables in

Problem 3.2 is smaller by 2MNp − 2M − M2 than the ones for solving Prob-

lem 3.1. Figure 3.12 illustrates the numbers of decision variables used to solve

Problem 3.1 for all i ∈ {1, . . . ,M} (i.e., 2MNp −M2 with Np = 50) and the ones
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to solve Problem 3.2 (i.e., 2M ), which are plotted against different selections

of M . Table 3.3 illustrates detailed number of decision variables for some M .

From the figure and the table, while for both cases the number of decision vari-

ables monotonically increases as M is selected larger, Problem 3.2 uses a much

smaller number of decision variables than Problem 3.1. In the simulation ex-

ample in the next section, it is demonstrated that the calculation time becomes

indeed smaller by incorporating the contractive set.

3.2.5 Simulation results

(Example 3.4): Similarly to Example 3.2, consider again a control problem of an

inverted pendulum on a cart:

ẋ =


0 1 0 0

0 0 −mg/M 0

0 0 0 1

0 0 g/` 0


x+


0

1/M

0

−1/M`


u, (3.46)

with m = 1, M = 5, ` = 3 and g = 9.8. The system is discretized under the

sampling time interval δ = 0.1, and the λ-contractive set S is computed with

λ = 0.98 and the tuning parameters are set as β2 = 1, γ2 = 0.9.

Figure 3.13 illustrates the resulting state trajectories of x1 and x2, and Fig. 3.14

illustrates the ones of x3 and x4. In the figure, blue lines represent the state tra-

jectories by applying Algorithm 3.2, and red dotted lines represent the ones by

applying Algorithm 3.1. While applying Algorithm 3.1, the parameters are set

as Q = I2, R = 1 and Tp = 10 that is the same as the one presented in the

previous section (see Example 3.2). Figure 3.15 illustrates the corresponding

control input, and Table 3.4 illustrates the convergence time when the state en-

ters the small region around the origin (||x|| ≤ 0.001), as well as the number of

transmission instants during the time interval t ∈ [0, 30]. From these results, all
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FIGURE 3.13: State trajectories of x1 and x2 by implementing Al-
gorithm 3.2 (blue solid lines) and Algorithm 3.1 (red dotted lines).
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FIGURE 3.14: State trajectories of x3 and x4 by implementing Al-
gorithm 3.2 (blue solid lines) and Algorithm 3.1 (red dotted lines).
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TABLE 3.4: Convergence time when the state trajectory enters the
region (||x|| ≤ 0.001) and the number of transmission instants

during the time period t ∈ [0, 30].

Algorithm 3.2 Algorithm 3.1
Convergence time 19.9 20.1

Transmission instants 118 120

state trajectories are asymptotically stabilized to the origin by applying Algo-

rithm 3.2, with a similar convergence and the number of transmission instants

to those under Algorithm 3.1.

Let us now take a look at computational complexity for both Algorithm 3.1

and 3.2 as described in Section 3.2.4. Both Algorithm 3.1 and 3.2 are imple-

mented under different selection of M , and compute the average calculation

time to obtain the control input and the transmission time interval (i.e., the av-

erage calculation time from step (ii) to step (iii) in Algorithm 3.1, 3.2). Here,

the average has been taken over all transmission time instants over the time

period t ∈ [0, 30]. The results are shown in Fig. 3.16 and the concrete values

are illustrated in Table 3.5 for some M . From the figure, the calculation times

under both algorithms increase as the parameter M increases. This is because

the number of decision variables increases for both cases asM is selected larger

which has been also seen in Section 3.2.4. Still, it can be seen from the figure

and the table, that the calculation time becomes much smaller by applying Al-

gorithm 3.2 than by applying Algorithm 3.1. To conclude, it is shown in this

example that:

• Algorithm 3.2 achieves similar control performance and communication

reduction to Algorithm 3.1.

• The calculation time becomes smaller by applying Algorithm 3.2 than by

applying Algorithm 3.1, which validates the effectiveness of incorporat-

ing the contractive set.
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TABLE 3.5: Calculation times against M under Algorithm 3.1 and
Algorithm 3.2.

M 10 30 50 70 90
Algorithm 3.1 1.70 5.42 9.55 13.0 16.3
Algorithm 3.2 0.0801 0.402 0.815 1.158 1.493

3.3 Summary

In this chapter, the author proposes two different types of self-triggered MPC

schemes for LTI systems. In both control schemes, communications between

the plant and the controller as well as solving the optimal control problem are

given only when they are needed, aiming at reducing communication load for

NCSs. In the first approach, the author formulates a set of optimal control prob-

lems under a different discretization schemes, and the controller selectes the

suitable one among them by evaluating both control performance and stability.

Feasibility and stability are rigorously shown by guaranteeing that the optimal

cost as a Lyapunov function candidate is decreasing. Finally, some illustrative

examples validate the effectiveness of the proposed approach by considering

a control problem of spring-mass-damper systems and an inverted pendulum

on a cart.

In the second approach, the author incorporates the notion of contractive

set when formulating the optimal control problem, aiming at overcoming the

computational drawback of the first proposal. It is shown that incorporating

the contractive set achieves the reduction of compurational complexity by re-

ducing the number of decision variables required to solve the optimal control

problem. The proposed self-triggered strategy is given by evaluating both the

control performance and stability. Both feasibility and asymptotic stability of

the origin are rigorously guaranteed by showing that the gauge function as a

Lyapunov function candidate is decreasing. Finally, a simulation example val-

idates the effectiveness of the proposed scheme by considering a control prob-

lem of an inverted pendulum. In particular, it is shown that the calculation
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time is reduced by applying the proposed approach (Algorithm 3.2) by making

a comparison with the multiple discretization approach (Algorithm 3.1).
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Chapter 4

Aperiodic MPC for Nonlinear

Input-affine systems

In the previous chapter, self-triggered strategies are derived for LTI systems.

The main contribution of this chapter is to propose a new self-triggered formu-

lation for nonlinear input-affine dynamical systems, which are thus provided

for a wider class of systems than the one presented in the previous chapter.

The triggering condition is given by evaluating the optimal cost as a Lyapunov

function candidate, so that the closed-loop state trajectory is asymptotically

stabilized to the origin. Moreover, the author considers the case when more

than one control samples are allowed to be transmitted over a communica-

tion network. More specifically, given that the optimal control trajectory is

obtained by solving the optimal control problem, the author provides a way

of choosing suitable control samples that should be transmitted to the plant.

Here, the control samples are selected such that both stability is guaranteed

and the transmission time interval becomes as long as possible to reduce com-

munication load. Stability analysis is given by guaranteeing that a positive

inter-transmission time interval is always guaranteed and the optimal cost as a

Lyapunov function candidate is decreasing. Finally, some simulation examples

are given to validate the proposed self-triggered scheme by considering both

linear and nonlinear control systems.
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4.1 Problem formulation

Consider again the networked control system in Fig. 1.1. In this chapter, it is

assumed that the dynamics of the plant are described by the nonlinear input-

affine dynamical systems:

ẋ(t) = φ(x(t), u(t)) = f(x(t)) + g(x(t))u(t), (4.1)

where x ∈ Rn denotes the state of the plant and u ∈ Rm denotes the control

input. Assume that the constraint for the control input is given by ||u|| ≤ umax.

Definition 4.1 (Control Objective). Our control objective is to asymptotically stabi-

lize the system (4.1) to the origin, i.e., x(t)→ 0 as t→∞.

To achieve the control objective, it is assumed that the nonlinear system

given by (4.1) satisfies the following conditions:

Assumption 4.1. The nonlinear function φ : Rn × Rm → Rn is twice continuously

differentiable, and the origin is an equilibrium point, i.e., φ(0, 0) = 0. Moreover the

function φ : Rn×Rm → Rn is Lipschitz continuous in x ∈ Rn with Lipschitz constant

Lφ. Namely, there exists 0 ≤ Lφ <∞ such that

||φ(x1, u)− φ(x2, u)|| ≤ Lφ||x1 − x2|| (4.2)

for all x1, x2 ∈ Rn and u ∈ Rm. Furthermore, there exists a positive constant LG ≥ 0,

such that ||g(x)|| ≤ LG for all x ∈ Rn.

Let tk, k ∈ N be the time instants when the plant transmits the current state

measurement x(tk), based on which the controller solves an Optimal Control

Problem (OCP). At tk, the controller solves the OCP involving the predictive

states and the corresponding control input, which are denoted as x(ξ), u(ξ),

ξ ∈ [tk, tk + Tp] respectively, with Tp being a prediction horizon. The following
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FIGURE 4.1: The illustration of three regions ΣV , Φ, Φf , and an
example of optimal state trajectory x∗(ξ).

cost function to be minimized is given:

J(x(tk), u(·)) =

∫ tk+Tp

tk

F (x(ξ), u(ξ)) dξ + Vf (x(tk + Tp)),

where F (x(ξ), u(ξ)) and Vf (x(tk + Tp)) are the stage and the terminal costs,

which are characterized in the quadratic form as follows:

F (x(ξ), u(ξ)) = ||x(ξ)||2Q + ||u(ξ)||2R, Vf (x(tk + Tp)) = ||x(tk + Tp)||2P . (4.3)

In (4.3), Q,R � 0 represent the matrices for the stage cost, and P = PT � 0

represents the matrix for the terminal cost. Based on the cost function defined

above, the following OCP is proposed:

Problem 4.1 (Optimal Control Problem). At any update time tk, k ∈ N≥0, for

a given x(tk) find the optimal control input and corresponding state trajectory
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u∗(ξ), x∗(ξ), ∀ξ ∈ [tk, tk + Tp] that minimizes J(x(tk), u(·)), subject to the follow-

ing constraints:


ẋ(ξ) = φ(x(ξ), u(ξ)), ξ ∈ [tk, tk + Tp] (4.4)

u(ξ) ∈ U (4.5)

x(tk + Tp) ∈ Φf , (4.6)

where U is the control input constraint set given by

U = {u(ξ) ∈ Rm : ||u(ξ)|| ≤ umax, ||u̇(ξ)|| ≤ Ku} (4.7)

with Ku > 0 being a given positive constant. In (4.6), Φf denotes the terminal

constraint set for a given εf > 0:

Φf = {x ∈ Rn : Vf (x) ≤ εf}. (4.8)

�

Regarding the control input constraint set in (4.7), the author additionally

considers the constraint given by ||u̇(ξ)|| ≤ Ku, which puts a certain limit on the

slope of the optimal control trajectory. Although this constraint is sometimes

utilized when the actuator has a physical limitation with the rate of its position

change (see e.g., [59]), in this chapter the author will make use of this constraint

to guarantee asymptotic stability analyzed in the subsequent sections.

As with Chapter 3, the following assumption is made regarding stabilizabil-

ity of the system aroung the origin:

Assumption 4.2. There exists a positive constant ε > 0 and a local stabilizing con-

troller κ(x) ∈ U , satisfying

∂Vf

∂x
(f(x) + g(x)κ(x)) ≤ −xT(Q+KTRK)x (4.9)
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for all x ∈ Φ, where

Φ = {x ∈ Rn : Vf (x) ≤ ε} (4.10)

and εf < ε.

Assumption 4.2 implies that the parameter εf should be chosen small enough

to satisfy εf < ε. Note that we have Φf ⊂ Φ. Denote by J∗(x(tk)) the optimal

cost obtained by solving Problem 4.1:

J∗(x(tk)) = min
u(·)

J(x(tk), u(·)).

Moreover, consider the following set as a stability region :

Definition 4.2. ΣV is the set given by ΣV = {x ∈ Rn : J∗(x) ≤ J0}, where J0 is

defined such that Φ ⊆ ΣV .

The illustration of the three regions considered in this paper ΣV , Φ, Φf , and

an example of optimal trajectory x∗(ξ) that is constrained to be in Φf by the

prediction horizon Tp, are all shown in Fig. 4.1.

In this chapter, it will be shown that if the state initially starts from inside the

set x ∈ ΣV \Φ, the state trajectory enters Φ in finite time. Since the local control

law κ(x) = Kx is given from Assumption 4.2, the system (4.1) can be stabilized

by utilizing κ(x) once the state reaches Φ, without needing to solve the OCP.

For this reason, the author considers that the control law switches from the

solution to Problem 4.1 to the utilization of κ(x) once the state enters Φ. This

control scheme is in general referred to as Dual-mode MPC, and is adopted in

many works in the literature, see e.g., [60], [42]. The following properties are

satisfied for the stage and terminal costs F , Vf :

Lemma 4.1. There existK∞ functions α1, α2 : R→ R, such that F (x, u) ≥ α1(||x||),

Vf (x) ≤ α2(||x||). Moreover, there exist 0 ≤ LF < ∞, 0 ≤ LVf < ∞ such that

F (x, u) and Vf (x) are Lipschitz continuous in x ∈ ΣV with the Lipschitz constants

0 < LF <∞, 0 < LVf <∞.
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…

…

FIGURE 4.2: Based on the optimal control trajectory (black line),
the controller picks up N control input samples (red circles) and
these samples are transmitted to the plant and applies them as

sample-and-hold fashion (red line).

Proof. For the Lipschitz continuity ofF (x, u) and Vf (x), see the proof of Lemma 1

in [61]. The existence of K∞ functions is trivial since we have

F (x, u) = ||x||2Q + ||u||2R ≥ ||x||2Q ≥ λmin(Q)||x||2, (4.11)

for all x ∈ Rn, u ∈ Rm and Vf (x) ≤ λmax(P )||x||2, ∀x ∈ Rn. Hence, letting

α1(||x||) = λmin(Q)||x||2 and α2(||x||) = λmax(P )||x||2, which are both K∞ func-

tions, we have F (x, u) ≥ α1(||x||), Vf (x) ≤ α2(||x||).

In the following, let the optimal control input and the state trajectories ob-

tained by Problem 4.1 be given by

u∗(ξ), x∗(ξ), ξ ∈ [tk, tk + Tp], (4.12)

where x∗(tk) = x(tk).

Note that in earlier results of MPC framework for continuous-time systems,

e.g., [61], [60], [62], [42], [38], the current and future continuous optimal control

trajectory u∗(ξ) is considered to be applied to the plant for ξ ∈ [tk, tk+1]. How-

ever, this situation may not be applied to the networked control systems, since

sending continuous information requires an infinite transmission bandwidth.
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Therefore, it is considered that only N (N ∈ N≥1) control input samples, i.e.,

{
u∗(tk), u

∗(tk + δ1), . . . , u∗(tk +
N∑
i=1

δi)

}
(4.13)

should be determined to be picked up by the controller and then transmitted to

the plant. The plant then applies the obtained control inputs in a sample-and-

hold fashion, see the illustration in Fig. 4.2. As shown in Fig. 4.2, tk+1 = tk +∑N
i=1 δi represents the next transmission time when the plant sends x(tk+1) as

the new current state information, and is obtained by the self-triggered strategy

provided in the next section. Furthermore, by making use of the flexibility

of selecting control samples when multiple control inputs are allowed to be

transmitted (namely when N > 1), the author will provide an efficient way of

how to pick up control samples to be transmitted, such that the reduction of

the communication load is achieved.

Remark 4.1 (On the dual-mode strategy). Since κ(x) is a continuous control law,

applying κ(x) over the network as a dual mode strategy would in fact require an infinite

transmission bandwidth. One way to avoid this issue is to apply κ(x) under sample-

and-hold fashion;

u(t) = κ(x(tk)), t ∈ [tk, tk + δl],

where the sampling time δl is constant and needs to be small enough such that asymp-

totic stability is still guaranteed in x ∈ Φ; see [63] for the related analysis. Another

way would be to apply κ(x) directly at the plant as a stand-alone to stabilize the system,

without needing any communication with the controller as soon as x enters Φ. This

situation could be the case when the computation of κ(x) is possible locally at the plant,

while at the same time it is only feasible to solve the optimal control problems through

the networked controller due to computational limitations. For this case, κ(x) does not

need to be discretized since no communication is required locally at the plant. �
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4.2 Self-triggered strategy

In this section a self-triggered condition is derived for MPC under sample-and-

hold controllers. Suppose again that at tk Problem 4.1 is solved, providing the

optimal control input and the state trajectory denoted as (4.12) and the optimal

cost as J∗(x(tk)). Denoting ∆n =
∑n

i=1 δi < Tp for 1 ≤ n ≤ N , let x(tk + ∆n)

be the actual state when sample-and-hold controllers {u∗(tk), . . . , u∗(tk + ∆n)}

are applied with sampling intervals δ1, . . . , δn. Moreover, let J∗(x(tk + ∆N))

be the optimal cost obtained by solving Problem 4.1 based on the new current

state x(tk + ∆N). Then, the self-triggered condition, which determines the next

transmission time tk+1, is obtained by checking if the optimal cost regarded as

a Lyapunov candidate is guaranteed to decrease, i.e.,

J∗(x(tk + ∆N))− J∗(x(tk)) < 0. (4.14)

For deriving this condition more in detail, let us first recap that the following

holds (see as well as Lemma 3 in [38] or Theorem 2.1 in [64]) :

J∗(x∗(tk + ∆N))− J∗(x(tk)) ≤ −
∫ tk+∆N

tk

F (x∗(ξ), u∗(ξ))dξ, (4.15)

where J∗(x∗(tk+∆N)) is the optimal cost obtained by solving Problem 4.1 if the

current state at tk + ∆N is x∗(tk + ∆N). This means that the optimal cost would

be guaranteed to decrease if the actual state followed the optimal state trajectory

x(ξ) = x∗(ξ) for ξ ∈ [tk, tk + ∆N ]. From (4.15), we obtain

J∗(x(tk + ∆N))− J∗(x(tk)) ≤ J∗(x(tk + ∆N))− J∗(x∗(tk + ∆N))

−
∫ tk+∆N

tk

F (x∗(ξ), u∗(ξ))dξ,
(4.16)

where F (x∗(ξ), u∗(ξ)), ξ ∈ [tk, tk + Tp] is known at tk when the OCP is solved.

Remark 4.2 (Feasibility of Problem 4.1). In order to obtain the stability property

given by (4.15), one can see that the feasibility of Problem 4.1 needs to be guaranteed,
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see e.g., [38]. Regarding establishing the feasibility of Problem 1, the existing proce-

dures of event-triggered MPC (see e.g., [65]) or periodic MPC (see e.g., [38]) can be

utilized; we can consider a feasible controller candidate given by ū(s) = u∗(s) for all

s ∈ [tk+1, tk + Tp] and κ(x̄(s)) for all s ∈ (tk + Tp, tk+1 + Tp], to obtain (4.15). How-

ever, compared with the existing procedures, the condition κ̇(x) ≤ Ku is additionally

required for the existence of the local controller, such that this controller candidate be-

comes admissible. More specifically, since we have κ̇(x) = ∂κ(x)
∂x

φ(x, κ(x)), Ku must

satisfy

Ku ≥ max
x∈Ω(εf )

{∣∣∣∣∣∣∣∣∂κ(x)

∂x
· φ(x, κ(x))

∣∣∣∣∣∣∣∣} ,
and this needs to be computed off-line. �

For notational simplicity in the sequel, let Ex(δ1, . . . , δn) be the upper bound

of ||x∗(tk + ∆n)− x(tk + ∆n)|| for 1 ≤ n ≤ N . The following lemmas are useful

to derive a more detailed expression of (4.16):

Lemma 4.2. Under the Assumptions 4.1 − 4.4, the optimal cost J∗(x) is Lipschitz

continuous in x ∈ ΣV , with Lipschitz constant LJ given by

LJ =

LF
Lφ

+ LVf

 eLφTp −
LF

Lφ
. (4.17)

Proof. Consider the optimal costs J∗(x1), J∗(x2) obtained by different initial

states x(0) = x1, x(0) = x2. Here the current time is assumed to be 0 without

loss of generality. Let x∗1(ξ), u∗1(ξ) (x∗1(0) = x1), and x∗2(ξ), u∗2(ξ) (x∗2(0) = x2)

be the optimal state and control trajectory for s ∈ [0, Tp], obtained by solving

Problem 1. These optimal costs are then given by

J∗(xi) =

∫ Tp

0

F (x∗i (ξ), u
∗
i (ξ))dξ + Vf (x

∗
i (Tp)) (4.18)

for i = 1, 2. Now consider the difference J∗(x1) − J∗(x2). Assume that from

the initial state x1, an alternative control input ū1(ξ) = u∗2(ξ) ∈ U (ξ ∈ [0, Tp])

is applied and let x̄1(ξ) be the corresponding state obtained by applying ū1(ξ).
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Also let J̄(x1) be the corresponding cost. Since J∗(x1) ≤ J̄(x1), we obtain

J∗(x1)− J∗(x2) ≤
∫ Tp

0

LF ||x̄1(ξ)− x∗2(ξ)||dξ + LVf ||x̄(Tp)− x∗2(Tp)||, (4.19)

where the Lipschitz continuities of F and Vf are used. From Gronwall-Bellman

inequality, we have ||x̄1(ξ) − x∗2(ξ)|| ≤ eLφs||x1 − x2|| for ξ ∈ [0, Tp]. Thus, we

obtain
J∗(x1)− J∗(x2)

≤ LF ||x1 − x2||
∫ Tp

0

eLφsds+ LVf e
LφTp||x1 − x2||

=


LF
Lφ

+ LVf

 eLφTp −
LF

Lφ

 ||x1 − x2||.

Thus the proof is complete.

In order to derive the self-triggered condition, let us first consider the case

N = 1 for simplicity. Denote by Ex(δ1) the upper bound of the error between

the predictive state and the actual state ||x∗(tk+δ1)−x(tk+δ1)||. Then, we have

the following lemma:

Lemma 4.3. Suppose that Problem 4.1 is solved at tk, which provides the optimal con-

trol trajectory u∗(ξ) and the corresponding state trajectory x∗(ξ) for all ξ ∈ [tk, tk+Tp].

Suppose also, that u∗(tk) is applied constantly for the time interval [tk, tk + δ1]. Then,

Ex(δ1) is given by

Ex(δ1) =
2KuLG
L2
φ

(eLφδ1 − 1)− 2KuLG
Lφ

δ1. (4.20)

Proof. Observe that x(tk + δ1) and x∗(tk + δ1) are given by

x(tk + δ1) = x(tk) +

∫ tk+δ1

tk

φ(x(ξ), u∗(tk))dξ,

x∗(tk + δ1) = x(tk) +

∫ tk+δ1

tk

φ(x∗(ξ), u∗(ξ))dξ.
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We obtain

||x(tk + δ1)− x∗(tk + δ1)|| ≤
∫ tk+δ1

tk

Lφ||x(ξ)− x∗(ξ)||dξ +
1

2
LGKuδ

2
1,

(4.21)

where the following is used

||g(x(ξ))(u∗(tk)− u∗(ξ))|| ≤ LGKu(ξ − tk) (4.22)

for all ξ ∈ [tk, tk + δ1] from Assumption 4.1 and the control input constraint

||u̇∗(ξ)|| ≤ Ku. Therefore, by applying the Gronwall-Bellman inequality [52],

we obtain

||x(tk + δ1)− x∗(tk + δ1)|| ≤
2KuLG

L2
φ

(eLφδ1 − 1)−
2KuLG

Lφ
δ1

and thus we have (4.20). This completes the proof.

Now, the following lemma illustrates an extension to the general case of N

control samples:

Lemma 4.4. Suppose that the sample-and-hold controllers given by (4.13) are applied

to the plant (4.1) from tk. Then, the upper bound of ||x∗(tk+∆N)−x(tk+∆N)||, which

we denote by Ex(δ1, . . . , δN), is obtained by the following recursion for 2 ≤ n ≤ N :

Ex(δ1, . . . , δn) = Ex(δ1 . . . , δn−1)eLφδn + hx(δn) (4.23)

with Ex(δ1) = hx(δ1), where

hx(t) =
2KuLG
L2
φ

(eLφt − 1)− 2KuLG
Lφ

t. (4.24)
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Proof. Assume that Ex(δ1, . . . , δn−1) is given for n ≥ 2. We obtain

||x(tk + ∆n)− x∗(tk + ∆n)||

≤ ||x(tk + ∆n−1)− x∗(tk + ∆n−1)||

+

∫ tk+∆n

tk+∆n−1

Lφ||x(ξ)− x∗(ξ)||dξ +
1

2
LGKuδ

2
n. (4.25)

The only difference between (4.21) and (4.25) is that the initial difference ||x(tk+

∆n−1)−x∗(tk + ∆n−1)|| that is upper bounded by Ex(δ1, . . . , δn−1) is included in

(4.25). By applying the Gronwall-Bellman inequality again, we obtain

||x(tk + ∆n)− x∗(tk + ∆n)||

≤ Ex(δ1 . . . , δn−1)eLφδn +
2KuLG

L2
φ

(eLφδn − 1)−
2KuLG

Lφ
δn.

Thus (4.23) holds. Therefore, the upper bound Ex(δ1, . . . , δN) is obtained by

using Ex(δ1) = hx(δ1) at first, and then recursively using (4.23) for n = 2, . . . , N .

This completes the proof.

Using Lemma 4.4, (4.16) is rewritten by

J∗(x(tk + ∆N))− J∗(x(tk))

≤ LJEx(δ1, . . . , δN)−
∫ tk+∆N

tk

F (x∗(ξ), u∗(ξ))dξ.

Therefore, letting

Ex(δ1, . . . , δN) <
σ

LJ

∫ tk+∆N

tk

F (x∗(ξ), u∗(ξ))dξ, (4.26)
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where 0 < σ < 1, we obtain

J∗(x(tk + ∆N))− J∗(x(tk)) < (σ − 1)

∫ tk+∆N

tk

F (x∗(ξ), u∗(ξ))dξ

< 0

and the cost is guaranteed to decrease. In our proposed self-triggered MPC

strategy, therefore, the next transmission time tk+1 is determined by the time

when the violation of (4.26) takes place, i.e.,

tk+1 = inf
{
t̂k+1 | t̂k+1 > tk,Γ(δ1, . . . , δN) = 0

}
, (4.27)

where t̂k+1 = tk +
∑N

i=1 δi and Γ(δ1, . . . , δN) is given by

Γ(δ1, δ2, . . . , δN) = Ex(δ1, . . . , δN)−
σ

LJ

∫ t̂k+1

tk

F (x∗(ξ), u∗(ξ))dξ.

Note that between tk and tk+1, there exists an infinite number of patterns for

the selection of sampling time intervals δ1, . . . , δN . Since Ex(δ1, . . . , δN) in the

left-hand-side (L.H.S) of (4.26) depends on these intervals, the way to select

δ1, . . . , δN clearly affects the next transmission time tk+1 obtained by (4.27). In

the next section, a way to adaptively select δ1, . . . , δN is proposed such that the

communication load can be reduced as much as possible.

Remark 4.3 (On reducing conservativeness). The R.H.S term in (4.26) becomes

smaller as x → 0, and thus the triggering condition (4.26) becomes more conserva-

tive as the state approaches origin, which needs increasingly number of transmissions.

Therefore, it is important to reduce the conservativeness of the triggering condition

even though the state becomes smaller. To achieve this, note in Ex(δ1, . . . , δN) that Ku

stays constant for all the time. However, as x → 0, we have u → 0 since φ(0, 0) = 0,

and thus the slope of the optimal control input ||u̇∗|| may also become smaller. There-

fore, one way to reduce the conservativeness would be to replace the constant parameter
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Ku in (4.26) with

K∗u(tk) = max
s∈[tk,tk+Tp]

||u̇∗(s)|| ≤ Ku, (4.28)

which varies at each transmission time. If we find K∗u(tk) < Ku, the upper bound

Ex in (4.26) becomes smaller to achieve less conservative result. Another way of re-

ducing the conservativeness is to make the Lipschitz constant LJ in (4.17) as small

as possible, and this corresponds to achieving smaller Lipschitz constants LF and LVf .

Several ways to reduce these values, such as changing the type of norm or using control

parametrizations, are described in [66]. �

4.3 Choosing sampling time intervals

In this section an efficient way of adaptively selecting sampling intervals δ1,

δ2, . . ., δN is given, aiming at reducing the communication load for networked

control systems. In the following, let δ∗1, δ∗2, . . . , δ∗N be the selected sampling in-

tervals by the controller to transmit corresponding optimal control samples. In

order to satisfy (4.26) as long as possible, one may select the intervals δ∗1, . . . , δ∗N

such that Ex(δ1, . . . , δN) is minimized. This is formulated as follows:

tk+1 = inf{t̂k+1 | t̂k+1 > tk, Γ(δ∗1, . . . , δ
∗
N) = 0}, (4.29)

where t̂k+1 = tk +
∑N

i=1δ
∗
i and δ∗1, . . . , δ

∗
N are optimal sampling time intervals

between tk and t̂k+1, such that Ex(δ1, . . . , δN) is minimized, i.e.,

δ∗1, δ
∗
2, . . . , δ

∗
N = arg min

δ1,δ2,...,δN

Ex(δ1, . . . , δN), (4.30)

subject to t̂k+1 = tk +
∑N

i=1
δi. In this approach, it is required to solve the opti-

mization problem (4.30) for each t̂k+1 and check if the self-triggered condition

(4.26) is satisfied. This means that the controller needs to both solve (4.30) and

check (4.26) until the violation Γ(δ∗1, . . . , δ
∗
N) = 0 occurs. Therefore, trying to
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obtain (4.29) is in fact not practical from a computational point, since the op-

timization problem (4.30) needs to be solved for a possibly large number of

times. Moreover, since the solution to (4.30) does not provide an explicit solu-

tion, numerical calculations of solving (4.30) would become more complex as

N becomes larger.

Therefore, the author proposes a following alternative algorithm to make

the problem of searching for the sampling intervals easier. In contrast to the

above approach, this scheme requires only N local optimizations to obtain the

sampling intervals, and furthermore, a more explicit solution can be found.

Algorithm 4.1 (Choosing sampling time intervals)

(i) Suppose that only u∗(tk) is applied for t ≥ tk as a constant controller, and

find the time tk + τ1 when the triggering condition (4.26) is violated, see

the illustration in Fig. 4.3 (a). We obtain Ex(τ1) as the upper bound of

||x∗(tk + τ1)− x(tk + τ1)||. If N = 1, we set δ∗1 = τ1.

(ii) If N ≥ 2, we set δ∗1 ∈ [0, τ1] in the following way. Suppose that u∗(tk) and

u∗(tk + δ1) are applied for [tk, tk + δ1], [tk + δ1, tk + τ1] respectively. This

means we obtain Ex(δ1, τ1−δ1) as the upper bound of ||x(tk +τ1)−x∗(tk +

τ1)||. Then, find δ∗1 ∈ [0, τ1] which maximizes the difference of two upper

bounds, i.e.,

δ∗1 = arg max
δ1∈[0,τ1]

{Ex(τ1)− Ex(δ1, τ1 − δ1)},

see Fig. 4.3 (b). As shown in Fig. 4.3 (c), by maximizing the above differ-

ence, u∗(tk + δ∗1) can continue to be applied until the time when (4.26) is

again violated. Denote τ2 as the time interval when the violation of (4.26)

takes place after the time tk + δ∗1 . If N = 2, we set δ∗2 = τ2.

(iii) We follow the above steps until we get N intervals. That is, given n − 1

sampling intervals δ∗1, . . . , δ∗n−1 for 2 ≤ n < N , find τn when the triggering

condition is violated to obtain Ex(δ
∗
1, . . . , δ

∗
n−1, τn). Then, find δ∗n ∈ [0, τn]



88 Chapter 4. Aperiodic MPC for Nonlinear Input-affine systems

maximizing Ex(δ∗1, . . . , δ∗n−1, τn)− Ex(δ∗1, . . . , δ∗n, τn − δ∗n), i.e.,

δ∗n = arg max
δn∈[0,τn]

{Ex(δ∗1, . . . , δ∗n−1, τn)− Ex(δ∗1, . . . , δ∗n, τn − δ∗n)}.

For the last step at n = N , we set δ∗N = τN , as the final time interval. �

Instead of solving the optimization problem (4.30) possibly for a very large

number of times, Algorithm 4.1 requires only N local optimization problems

to obtain the sampling intervals δ∗1, . . . , δ∗N . Algorithm 4.1 may not provide the

largest possible next transmission time, since it does not minimizeEx(δ1, . . . , δN).

However, as we will see through several comparisons in simulation results, Al-

gorithm 4.1 is more practical than the method to obtain (4.29), as it requires

much less computation time. Furthermore, compared with (4.30) that provides

no explicit solutions, the following lemma states that the solutions to the local

optimization problems can be obtained by a simple numerical procedure.

Lemma 4.5. Given δ∗1, δ
∗
2, . . . , δ

∗
n−1, and τn for 1 ≤ n < N , the transmission inter-

val δ∗n maximizing Ex(δ∗1, . . . , δ∗n−1, τn) − Ex(δ
∗
1, . . . , δ

∗
n, τn − δ∗n) in Algorithm 4.1,

step (iii), is obtained by the solution to

eLφ(τn−δ∗n) =
1

(1− Lφδ∗n)
. (4.31)

Furthermore, there always exists a solution of (4.31) satisfying 0 < δ∗n < τn.

Proof. From (4.23), Ex(δ∗1, . . . , δ∗n−1, τn) is given by

Ex(δ
∗
1, . . . , δ

∗
n−1, τn) = Ex(δ

∗
1, . . . , δ

∗
n−1)eLφτn + hx(τn). (4.32)
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R.H.S

L.H.S

(a) Step (i): Assume u∗(tk) is applied,
and find τ1 when (4.26) is violated.

R.H.S

L.H.S

(b) Step (ii): Find 0 < δ∗1 < τ1
maximizing the difference Ex(τ1) −
Ex(δ1, τ1 − δ1).

R.H.S

L.H.S

(c) Step (ii): We can continue to use
u∗(tk + δ∗1) to find the time interval τ2
until (4.26) is violated.

R.H.S

L.H.S

(d) Step (iii): Similarly to (b), find
0 < δ∗2 < τ2 maximizing the difference
Ex(δ∗1 , τ2) − Ex(δ∗1 , δ2, τ2 − δ2) and fol-
low the steps until we obtain N sam-
ples.

FIGURE 4.3: The way to find sampling intervals. L.H.S and R.H.S
are the evolutions of left-hand-side and right-hand side in (4.26).
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For Ex(δ∗1, . . . , δ∗n−1, δn, τn − δn), we obtain

Ex(δ
∗
1, . . . , δn, τn − δn)

= Ex(δ
∗
1, . . . , δ

∗
n−1, δn)eLφ(τn−δn) + hx(τn − δn)

= Ex(δ
∗
1, . . . , δ

∗
n−1)eLφτn + hx(τn)−

2KuLG

Lφ

(
eLφ(τn−δn) − 1

)
δn.

Thus, we obtain

Ex(δ
∗
1, . . . ,δ

∗
n−1, τn)− Ex(δ∗1, . . . , τn − δn)

=
2KuLG

Lφ
δn
(
eLφ(τn−δn) − 1

)
> 0. (4.33)

Therefore, by differentiating (4.33) with respect to δn and solving for 0, we ob-

tain (4.31).

Now it is shown that we can always find 0 < δ∗n < τn satisfying (4.31). As

δn → 0, we get

eLφ(τn−δn) >
1

1− Lφδn
.

Moreover, we obtain

eLφ(τn−δn) <
1

1− Lφδn

as δn → τn if τn < 1/Lφ, or δn → 1/Lφ if τn > 1/Lφ. Therefore, there always

exists δ∗n satisfying 0 < δ∗n < τn. This completes the proof.

Lemma 4.5 states that δ∗n can be found by solving (4.31), once τn is obtained.

Note that the difference (4.33) is positive for any 0 < δn < τn. This means that

if we use larger N , then we obtain longer transmission intervals.

To conclude, the over-all self-triggered algorithm, including the OCP and

Algorithm 4.1, is now stated:

Algorithm 4.2: (Self-triggered strategy via adaptive control samples selection)
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(i) At an update time tk, k ∈ N≥0, if x(tk) ∈ Φ, then switch to the local con-

troller κ(x) to stabilize the system. Otherwise, solve Problem 4.1 to obtain

u∗(ξ), x∗(ξ) for all ξ ∈ [tk, tk + Tp].

(ii) For a given N , calculate δ∗1, δ∗2, . . . , δ∗N and obtain the next transmission

time tk+1 = tk +
∑N

i=1δ
∗
i , according to Algorithm 4.1. Then the controller

transmits the following control samples to the plant;

{
u∗(tk), u

∗(tk + δ∗1), . . . , u∗(tk +
N∑
i=1

δ∗i )

}
. (4.34)

(iii) The plant applies (4.34) in a sample-and-hold fashion, and transmits x(tk+1)

to the controller as the new current state to solve the next optimal control

problem.

(iv) k ← k + 1 and go back to step (i). �

Some remarks are in order below regarding Algorithm 4.2.

Remark 4.4 (Effect of time delays). So far some time delays arising in transmissions

or calculations solving optimal control problems have been ignored. In practical appli-

cations, however, it may be important to take delays into account. A method for dealing

with the delays for MPC has been proposed in [62], where the authors proposed delay

compensation schemes by using forward prediction, i.e., even though the delays occur,

the actual state is still able to be obtained from the system model (4.1) (see Eq. (11) in

[62]). Note, however, that in order to compensate time delays and guarantee stability,

the network delays need to be upper bounded. More specifically, denoting τ̄d as the total

maximum time delay which could arise, then τ̄d needs to satisfy τ̄d < Tp −∆N so that

the inter-sampling time and the delay cannot exceed the prediction horizon Tp. Thus,

assuming that τ̄d is known, the condition

∆N < Tp − τ̄d, (4.35)

is required in the self-triggered strategy in addition to (4.26). �
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Remark 4.5 (Effect of model uncertainties). For simplicity reasons, the effect of model

uncertainties or disturbances has not yet considered. However, with a slight modifi-

cation of the self-triggered condition, these effects can be taken into account. Suppose

that the actual state is xa(t) and the dynamics are given by ẋa = φ(xa, u) + w where

w represents the disturbance or modeling error satisfying ||w|| ≤ wmax. In this case,

the new upper bound of ||x∗(tk + ∆N) − xa(tk + ∆N)||, denoted as Êx(δ1, . . . , δN) is

given by

Êx(δ1, . . . , δN) = Ex(δ1, . . . , δN) +
wmax

Lφ

(
eLφ∆N − 1

)
,

where Gronwall-Bellman inequality ( [61]) is used for the related analysis. The cor-

responding self-triggered condition is thus given by replacing Ex with Êx in (4.26).

Similarly to Algorithm 4.1, it is required to obtain δ∗n by maximizing the difference of

two upper bounds Êx. However, we can easily see that

Êx(δ
∗
1, . . . ,δ

∗
n−1, τn)− Êx(δ∗1, . . . , τn − δn)

= Ex(δ
∗
1, . . . , δ

∗
n−1, τn)− Ex(δ∗1, . . . , τn − δn)

as the effect of the disturbance can be canceled by taking the difference of the two Êx.

Thus, Algorithm 4.1 does not need to be modified as the way to obtain sampling time

intervals is not affected. �

Remark 4.6 (On the selection of the number of control samples). From (4.33) the dif-

ference of two upper bounds is always positive, so that more time is allowed for the

self-triggered condition to be satisfied by setting a new sampling time (see the illustra-

tion in Fig. 4.3(c)). Thus we obtain longer transmission time intervals as N is chosen

larger. However, N needs to be carefully chosen such that the network bandwidth limi-

tation can be taken into account; large values of N may not be allowed for the network

due to narrow bandwidth. Moreover, even though Algorithm 4.2 makes efficient calcu-

lations ofN sampling intervals, a larger selection ofN means more iterations of (4.31),

which may induce larger network delays. As is already mentioned in Remark 4.4, the

delays can be compensated. However, the allowable delays must be limited as shown in
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(4.35). Thus, when implementing Algorithm 4.2, N needs to be appropriately selected

such that it satisfies not only the constraint for network bandwidth but also for network

delays fulfilling (4.35). �

4.4 Stability analysis

In this section, stability analysis under our proposed self-triggered strategy is

given. As the first step, it is shown that if the current state x(tk) is outside of

Φ, there always exists a positive minimum inter-execution time for the self-

triggered condition (4.26), i.e., there exists δmin > 0 satisfying (4.26) for all

[tk, tk + δmin]. It will be shown only for the case where one control sample is

transmitted, i.e, N = 1, since larger N allows for longer transmission intervals

according to Lemma 4.5 and Remark 4.6.

The self-triggered condition for the case N = 1 is given by

Ex(δ1) <
σ

LJ

∫ tk+δ1

tk

F (x∗(ξ), u∗(ξ))dξ, (4.36)

where x∗(tk) = x(tk) and Ex(δ1) = hx(δ1). By using F (x, u) ≥ α1(||x||) from

Lemma 4.1, the condition can be replaced by

∫ δ1

0


σ

LJ
α1(||x∗(tk + η)||)−

2KuLG

Lφ
(eLφη − 1)

 dη > 0, (4.37)

where hx(δ1) is included in the integral. A sufficient condition to satisfy (4.37)

is that the integrand is positive for all 0 ≤ η ≤ δ1, i.e.,

α1(||x∗(tk + η)||) >
2KuLGLJ

Lφσ
(eLφη − 1) (4.38)

for all 0 ≤ η ≤ δ1. We will thus show that if x(tk) ∈ ΣV \Φ there exists a positive

time interval δmin > 0 satisfying (4.38) for all 0 ≤ η ≤ δmin.
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Suppose at a certain time tk + δε, the optimal state x∗(tk + δε) enters Φ from

x(tk) ∈ ΣV \Φ, i.e., x∗(tk+δε) ∈ ∂Φ, and it enters Ω(εf ) at tk+δεf , i.e., x∗(tk+δεf ) ∈

∂Φf , as shown in Fig. 4.4. Since Ω(εf ) ⊂ Φ, it holds that δεf − δε > 0.

To guarantee the existence of δmin, the following two cases are considered:

(i) x∗(tk + η) is outside of Φf for all the time until (4.38) is violated. That is,

x∗(tk + η) /∈ Φf for all η ∈ [0, η̄], where

α1(||x∗(tk + η̄)||) =
2KuLGLJ

Lφσ
(eLφη̄ − 1). (4.39)

(ii) x∗(tk + η) enters Φf by the time (4.38) is violated. That is, there exists

η′ ∈ [0, η̄] where we obtain x∗(tk + η′) ∈ ∂Φf .

Denote δmin,1, δmin,2 as minimum inter-execution times for the above cases (i),

(ii), respectively. For the case (i), it holds that α1(||x∗(tk+η)||) ≥ α1(α−1
2 (εf )) > 0,

since we have F (x, u) ≥ α1(||x||) and Vf (x) ≤ α2(||x||) from Assumption 4.1.

Thus the minimum inter-execution time δmin,1 is given by the time interval

when the R.H.S in (4.38) reaches α1(α−1
2 (εf )), i.e.,

δmin,1 =
1

Lφ
ln

1 +
σLφα1(α−1

2 (εf ))

2KuLGLJ

 > 0. (4.40)

For the case of (ii), the minimum inter-execution time is δmin,2 = δεf − δε, since

x(tk) ∈ ΣV \Φ and it takes at least δεf − δε for the state to reach Φf . Thus, con-

sidering both cases, the over-all minimum inter-execution time δmin is positive

and given by δmin = min {δmin,1, δmin,2}.

Based on this result, we finally obtain the following stability theorem.

Theorem 4.1. Consider the networked control system in Fig. 1.1 where the plant

follows the dynamics given by (4.1), and the proposed self-triggered strategy (Algo-

rithm 2) is implemented. Then, if the initial state starts from x(t0) ∈ ΣV \Φ, then the

state is guaranteed to enter Φ in finite time.
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FIGURE 4.4: The illustration of Φ and the restricted terminal re-
gion Φf .

Proof. The statement is proved by contradiction. Starting from x(t0) ∈ ΣV \Φ,

assume that the state is outside of Φ for all the time, i.e., x(t) ∈ ΣV \Φ, for all

t ∈ [t0,∞).

Since there exists δmin > 0, we obtain

J∗(x(tk))− J∗(x(tk−1))

< (σ − 1)

∫ tk

tk−1

F (x∗(ξ), u∗(ξ))dξ

< (σ − 1)

∫ tk−1+δmin

tk−1

α1(α−1
2 (εf ))dξ

= −(1− σ)α1(α−1
2 (εf )) δmin

= −δ̄J < 0,

where δ̄J = (1− σ)α1(α−1
2 (εf )) δmin. Thus, we obtain

J∗(x(tk))− J∗(x(tk−1)) < −δ̄J

J∗(x(tk−1))− J∗(x(tk−2)) < −δ̄J

J∗(x(tk−2))− J∗(x(tk−3)) < −δ̄J
...

J∗(x(t1))− J∗(x(t0)) < −δ̄J . (4.41)

Summing over both sides of (4.41) yields

J∗(x(tk)) < −kδ̄J + J∗(x(t0)) < −kδ̄J + J0, (4.42)
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where J0 is defined in Definition 4.2. This implies J∗(tk) → −∞ as k → ∞,

which contradicts the fact that J∗(x(tk)) ≥ 0. Therefore, there exists a finite

time when the state enters Φ.

Note again that as soon as the state reaches Φ, the local control law κ(x) is

applied as a dual mode strategy. Therefore, our control objective to asymptoti-

cally stabilize the system to the origin is achieved, i.e., x(t)→ 0 as t→∞.

4.5 Simulation results

In this section the proposed self-triggered scheme is illustrated by considering

both linear and nonlinear systems. As with the previous chapter, simulations

were conducted on Matlab 2016a under Windows 10, Intel(R) Core(TM) 2.40

GHz, 8 GB RAM. As a software package, the author used Imperial College

London Optimal Control Software (ICLOCS) [67], in order to solve (non)linear

optimal control problems in the continuous-time domain.

(Example 4.1): Let us consider the following linearized system of an inverted

pendulum on a cart:

ẋ(t) = φ(x(t), u(t)) = Ax(t) +Bu(t),

where x = [x1, x2, x3, x4]T ∈ R4, u ∈ R and

A =


0 1 0 0

0 0 −mg/M 0

0 0 0 1

0 0 g/` 0


, B =


0

1/M

0

−1/M`


. (4.43)

As with Example 3.2 and Example 3.4, x1, x2 represent the position of the cart

and its velocity, and x3, x4 represents the angle of the pendulum and its velocity.

Set m = 1 as the point mass, M = 5 as the mass of the cart, ` = 3 as the length
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of the massless rod, and g = 9.8 as the gravity. The constraint for the control

input is assumed to be given by ||u|| ≤ 10. The computed Lipschitz constants

Lf and LG are given by Lf = 5.28, LG = 0.501. The stage and the terminal cost

are assumed to be quadratic and given by F (x, u) = ||x||2Q + ||u||2R where Q = I4

and R = 0.1.

The matrix for the terminal constraint Pf is computed as

Pf =


29.9 38.3 139 89.6

38.3 85.0 320 207

139 320 1600 959

89.6 207 959 592


(4.44)

and ε = 0.43. The parameters are set as εf = 0.2, Ku = 1.0, and σ = 0.9. The

prediction horizon is Tp = 10 and the number of control sample is simply given

by N = 1. The initial state is assumed to be x0 = [1, 0, 0, 0].

Figure 4.5 illustrates the resulting state trajectories of x1, x2 and Fig. 4.6 il-

lustrates those of x3, x4, by applying Algorithm 4.2 (blue solid lines) and the

periodic MPC with a constant sampling time interval 0.1 (red dotted lines). Ta-

ble 4.1 illustrates the resulting convergence time when the state enters the set

around the origin (||x|| ≤ 0.001) and the total number of transmission instants

during the time period t ∈ [0, 30]. Also, Fig. 4.7 illustrates the applied control

input trajectory by applying the proposed scheme (blue solid line) and the pe-

riodic MPC scheme with 0.1 sampling time interval. From the figure and the

table, all state trajectories are asymptotically stabilized to the origin by apply-

ing Algorithm 4.2, with providing a similar convergence to the periodic case

and reducing communication load as shown in Table 4.1. Also, from Fig. 4.7

the control trajectory fulfills the input constraint |u(t)| ≤ 10 for all t ∈ R.

In Chapter 3, the author proposed a multiple discretization approach as a

different self-triggered scheme, which can be appllicable to this example since

linear systems are considred. To compare the approach with the one presented
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(a) State trajectories of x1.
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(b) State trajectory of x2.

FIGURE 4.5: State trajectories of x1 and x2 by implementing Al-
gorithm 4.1 (blue solid lines) and the periodic MPC (red dotted

lines).
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(a) State trajectories of x3.
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(b) State trajectories of x4.

FIGURE 4.6: State trajectories of x3 and x4 by implementing Algo-
rithm 1 (blue solid lines) and the periodic MPC (red dotted lines).
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Periodic (0.1)

FIGURE 4.7: Applied control inputs by applying Algorithm 4.2
(blue solid line) and periodic scheme with sampling time interval

0.1 (red dotted line).

in this chapter, Table 4.1 illustrates the resulting convergence time and the num-

ber of transmission instants by applying Algorithm 3.1. When applying Algo-

rithm 3.1, the tuning parameters are selected as β = 1.0, γ = 0.5. From the ta-

ble, Algorithm 4.2 is shown to achieve a faster convergence than Algorithm 3.1.

However, Algorithm 4.2 requires a more transmission instants by 74− 15 = 19

than Algorithm 3.1. This means that the self-triggered condition derived by Al-

gorithm 4.2 is more conservative than Algorithm 3.1. Intuitively, this is due to

the fact that a sufficient condition of Lyapunov stability (4.14) is derived in order

to deal with nonlinear systems when deriving the self-triggered strategy. Since

the optimal cost is directly evaluated for the multiple discretizations approach

(see step (iii) in Algorithm 3.1), Algorithm 4.2 yields a more convervative re-

sult than Algorithm 3.1 for selecting transmission time intervals. In fact, we

can calculate the maximum time interval for the periodic MPC scheme where

the stabilization of the origin is guaranteed. Indeed, this can be simply done

by starting with a very small value of the sampling time δ, and gradually in-

crease this value until the state is destabilized. In this example, this is obtained
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TABLE 4.1: Convergence time when the state trajectory enters the
region (||x|| ≤ 0.001) and the number of transmission instants

Algorithm 4.2 Periodic (0.1) Algorithm 3.1
Convergence time 16.23 16.24 20.1

Transmission instants 74 201 15

as 2.5. Clearly, this critical value is much larger than the average transmis-

sion time interval obtained by Algorithm 4.2 (i.e., 16.23/74 = 0.22). While the

conservativeness is a drawback of Algorithm 4.2, it is still advantageous over

Algorithm 3.1 as it can be applied for nonlinear systems, as illustrated in the

next example.

To couclude, it is shown in this example that:

• Communication reduction is achieved by applying Algorithm 4.2 com-

pared with the periodic case with 0.1 sampling time interval, while at the

same time achieving a similar control performance.

• Due to the conservativeness of Algorithm 4.2, Algorithm 3.1 yields a more

communication reduction than Algorithm 4.2.

(Example 4.2): The proposed approach can be applied to the nonlinear input-

affine systems. To illustrate this, consider a control problem of non-holonomic

vehicle in two dimensions, whose dynamics are borrowed from [33]:

d

dt


x

y

θ

 =


cos θ 0

sin θ 0

0 1


 v

ω

 , (4.45)

where the state is denoted as χ = [x, y, θ] ∈ R3, consisting of the position of

the vehicle [x, y], and its orientation θ (see Fig. 4.8). u = [v, ω] ∈ R2 is the

control input and the constraints are assumed to be given by ||v|| ≤ v̄ = 2.0 and

||ω|| ≤ ω̄ = 1.0. This problem may be applicable to practical implementations,
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FIGURE 4.8: State variables for a vehicle regulation problem in
two dimensions.

especially when the robot aims at suveying some regions interest such as haz-

ardous areas which humans are not allowed to enter. In such dangerous areas,

sensor nodes equipped in the plant side and relay nodes that deliver the sensor

information are typically battery driven with limited life time of battery capac-

ity, which thus motivates us to utilize our proposed framework. The computed

Lipschitz constant Lφ and a positive constant LG are given by Lφ =
√

2v̄ and

LG = 1.0. The stage and the terminal cost are given by F = χTQχ+ uTRu, and

Vf = χTχ where Q = I3 and R = I2. The prediction horizon is Tp = 6. Since the

linearized system around the origin is uncontrollable, the procedure presented

in [68] is adopted to obtain a local controller satisfying Assumption 4.2, and the

parameter for characterizing the terminal set is ε = 0.8. Set εf = 0.4 and the

local controller is admissible if Ku = 1.5.

Figure 4.9 shows the trajectory of the vehicle under Algorithm 4.2 with

σ = 0.99 and N = 1, starting from the initial point [−10, −5, π/2] and its

goal is the origin. The red dotted line represents the state trajectory by ap-

plying Algorithm 4.2, and the blue triangles show the position of the vehicle,

where the triangle appears when control samples are transmitted to solve the

OCP. The heading of the triangle shows the moving direction of the vehicle.

From the figure, it is shown that the trajectory of the vehicle is asymptotically

stabilized towards the origin by applying Algorithm 4.2. Figure 4.10 shows the



4.5. Simulation results 103

corresponding control inputs v, ω. From the figure, it is shown that the control

inputs satisfy the constraints ||v(t)|| ≤ v̄ = 2.0, ||ω(t)|| ≤ ω̄ = 1.0, and these are

updated only when they are needed by applying Algorithm 4.2. In the figure,

the control inputs are given constant for the time interval t ∈ [0, 2.0]. However,

the transmission has actually occurred at the time t = 1.1, which implies that

the useless transmission is given even in the aperiodic control strategy. This

may be due to the fact that the proposed self-triggered strategy is conservative

since it has been derived based on a sufficient condition to the Lyapunov sta-

bility; namely, longer transmission time interval than the one obtained by the

proposed strategy must be allowed to guarantee stabilization of the origin. The

time when the state enters around the origin (||χ|| ≤ 0.001) is 9.7, and the num-

ber of transmission instants until the state converges the region is given by 11

(i.e., the average transmission time interval is 0.88).

To make comparisons, Fig. 4.11 illustrates the resulting state trajectory by

applying the periodic MPC scheme with 0.88 sampling time interval (i.e., tk =

0.88k, ∀k ∈ N), which is equal to the average transmission time interval by ap-

plying Algorithm 4.2. From the figure, it is shown that the state trajectory does

not converge to the origin but is wobbling around the origin. This is due to

the fact that the transmission time interval is not suitably selected to guarantee

stability when the periodic scheme is employed. Figure 4.12 illustrates the re-

sulting state trajectory by applying the periodic MPC scheme with 0.1 sampling

time interval (i.e., tk = 0.1k, ∀k ∈ N), which is much smaller than the average

transmission time interval by Algorithm 4.2. Table 4.2 illustrates the conver-

gence time when the state enters the local set around the origin (||χ|| ≤ 0.001),

as well as the number of transmission instants until the state enters the set.

From the table, Algorithm 4.2 achieves the number of transmission instants

smaller by 72−11 = 61 than the periodic case. On the other hand, Algorithm 4.2

requires 8.9 − 7.2 = 1.7 longer convergence time than the periodic one, which

indicates that the periodic sceme achieves better control performance. There-

fore, it is shown in this exmple that there exists a tradeoff between achieving



104 Chapter 4. Aperiodic MPC for Nonlinear Input-affine systems

-10 -8 -6 -4 -2 0
x

-5

-4

-3

-2

-1

0

1

y

FIGURE 4.9: Trajectory of the vehicle by applying Algorithm 4.2.

TABLE 4.2: Convergence time when the state trajectory enters
around the origin and the number of transmission instants.

Algorithm 4.2 Periodic (0.1)
Convergence time 8.9 7.2

Transmission instants 11 72

the communication reduction and the control performance.

So far, we have considered the case when N = 1, and the number of trans-

mission instants are expected to be smaller as N is chosen larger. To analyse

how the number of transmission instants is affected by the selection of N , Al-

gorithm 4.2 is again simulated under different selection of N . Table 4.3 illus-

trates the resulting convergence time when the enters the local set around the

origin (||χ|| ≤ 0.001) and the number of transmission instants during the time

interval t ∈ [0, 10] under different selections of N (N = 1, 5). From the table, all

trajectories are asymptotically stabilized to the origin, with providing a similar

convergence for both cases. Moreover, it is shown that selecting N = 5 yields

12− 7 = 5 smaller number of transmission instants than the case N = 1. There-

fore, selecting N = 5 yields not only less communication load but also similar
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FIGURE 4.10: Control trajectory of v and ω implementing Algo-
rithm 4.2.
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FIGURE 4.11: Trajectory of the vehicle by applying periodic MPC
scheme with 0.88 sampling time interval.

TABLE 4.3: Convergence time when the trajectory of the vehicle
enters around the origin and the number of transmission instants.

Algorithm 4.2 (N = 1) Algorithm 4.2 (N = 5)
Convergence time 9.7 9.8

Transmission instants 12 7

convergence to the case when N = 1.

To provide a more concrete analysis on the selection of N , Algorithm 4.2 is

again simulated under different selections of N , which ranges from 1 to 100.

Figure 4.13 plots the resulting number of transmission instants during the time

period t ∈ [0, 100] as a bar graph. From Fig. 4.13, the number of transmission

instants tends to be smaller as N is selected larger, which means that the com-

munication reduction is indeed achieved by increasing the number of control

samples. Note that while a more communication reduction is achieved by se-

lecting larger N , the communication bandwidth must be large enough such

that N control samples can be transmitted once for each communication time.
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FIGURE 4.12: Trajectory of the vehicle by applying periodic MPC
scheme with 0.1 sampling time interval.

To conclude, it is shown in this example that:

• Algorithm 4.2 achieves communication reduction while at the same time

ensuring stability. On the other hand, control performance may be de-

graded at the expense of achieving the communication reduction by com-

paring with the periodic case with 0.1 sampling time interval.

• A more communication reduction is achieved by increasing the number

of control samples.

4.6 Summary

In this chapter, the author proposes an aperiodic formulation of MPC for non-

linear input-affine dynamical systems. In the proposed scheme, the controller

not only solves an optimal control problem but also determine the next commu-

nication time by evaluating a self-triggered condition, which is derived based

on evaluating the optimal cost as a Lyapunov function candidate. Moreover,
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FIGURE 4.13: Number of transmission instants against the num-
ber of control samples N .

an efficient way to select the control samples is given to achieve the next com-

munication time as long as possible. Stability under sample-and-hold imple-

mentation os shown by guaranteeing a positive minimum inter-execution time

of the self-triggered strategy and showing that the optimal cost as a Lyapunov

function candidate is decreasing. The proposed scheme is illustrated through

several numerical examples. A control problem of an inverted pendulum on

a cart is first considered and it is shown that the communication reduction is

achieved by implementing the proposed scheme. While the proposed approach

is applicable to nonlinear systems, it yields a more conservative result than the

multiple discretization approach presented in Chapter 3, since it derives a suffi-

cient condition of Lyapunov stability. In the second example, a control problem

of vehicle regulation is considered, and the effectiveness of the proposed ap-

proach for nonlinear control systems is given. In the example, it is shown that

the proposed scheme successfully achieves the communication reduction than

the periodic case, while, on the other hand, degrading the control performance.
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Chapter 5

Aperiodic MPC for General

Nonlinear systems

The main contribution of this chapter is to propose an periodic MPC scheme for

a more general class of systems than the ones presented in the previous chap-

ters; namely, the author will propose an aperiodic MPC for general nonlinear

systems, which are not necessarily to be input affine systems, and, moreover,

are perturbed by additive bounded disturbances. In particular, the author will

derive a threshold between the predictive states and the actual state, such that

feasibility of the optimal control problem and stability are both guaranteed.

The derived condition provides a key criteria to propose both event-triggered

and self-triggered conditions, so that the optimal control problem is solved only

when it is needed. In contrast to the triggering strategies provided in previous

chapters, the optimal cost will not be evaluated to derive the triggering con-

dition. Instead, the time interval when the optimal state trajectory enters the

local set around the origin will be evaluated. An interesting feature of this

scheme is that a less conservative result is obtained than the aperiodic MPC

strategies for nonlinear systems presented in Chapter 4. As will be described

later, this is because the proposed scheme does not include parameters (e.g.,

Lipschitz constant parameres for stage cost) as a potential source of conser-

vativeness. Moreover, in the standard event-triggered strategy, it is required

that the plant must monitor the state continuously, which may not only require
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a dedicated analog hardware but also arise a high sensing cost. In order to

alleviate such continuous requirement, the author proposes an event-triggered

strategy, which evaluates an event-triggered condition at certain sampling time

instants, instead of continuously. The self-triggered strategy is also given as a

sufficient condition of the event-triggered strategy. Finally, some simulation

examples are illustrated to validate the proposed schemes.

5.1 Problem formulation

In this section the problem formulation is defined. Consider applying MPC to

the following nonlinear systems with additive disturbances:

ẋ(t) = φ(x(t), u(t)) + w(t), (5.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, w(t) ∈ Rn is an

additive bounded disturbance. Note that in contract to the system description

(4.1) in Chapter 4, the dynamics are not necessary to be input-affine systems.

The control input u and the disturbance w are assumed to satisfy the following

constraints:

u(t) ∈ U ⊆ Rm, w(t) ∈ W ⊆ Rn, ∀t ≥ R. (5.2)

Similarly to Chapter 4, it is assumed that the following is satisfied:

Assumption 5.1. The nonlinear function φ(x, u) : Rn × Rm → Rn is twice con-

tinuously differentiable, and the origin is an equilibrium point, i.e., φ(0, 0) = 0. The

constraint sets U andW are compact, convex and 0 ∈ U .

Assumption 5.2. For the linearized system around the origin with no disturbances;

ẋ(t) = Afx+Bfu, (5.3)

where Af = ∂φ/∂x(0, 0) and Bf = ∂φ/∂u(0, 0), the pair (Af , Bf ) is stabilizable.
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In the following, let tk, k ∈ N≥0 be the transmission instants when the plant

transmits the state information to the controller, and let ∆k = tk+1 − tk be the

transmission time intervals. Namely, at tk, k ∈ N, the controller solves an OCP

based on the state measurement x(tk) and the predictive behavior of the sys-

tems described by (5.1). In this paper, the following cost to be minimized is

given:

J(x(tk), u(·)) =

∫ tk+Tk

tk

||x̂(ξ)||2Q + ||u(ξ)||2Rdξ, (5.4)

where Q = QT � 0, R = RT � 0 and Tk > 0 is the prediction horizon. x̂(ξ)

denotes the nominal trajectory of (5.1) given by

˙̂x(ξ) = φ(x̂(ξ), u(ξ)) (5.5)

for all ξ ∈ [tk, tk + Tk] with x̂(tk) = x(tk). Although the prediction horizon is

given constant for any update times in the standard formulation of MPC (see

Chapter 4), the author considers here that Tk is adaptively selected based on the

previous results of OCPs. This variable horizon strategy will be a key idea to

prove stability for perturbed nonlinear systems. More characterization of Tk is

provided in this section when formulating the OCP.

The following property holds regarding the existence of a local controller:

Lemma 5.1. Suppose that Assumption 5.1 holds. Then, there exists a positive constant

0 < ε <∞, a matrix Pf = PT
f � 0, and a local controller κ(x) = Kx ∈ U , satisfying

∂Vf

∂x
φ(x, κ(x)) ≤ −

1

2
xT(Q+KTRK)x (5.6)

for all x ∈ Φ, where Vf (x) = xTPfx and

Φ = {x ∈ Rn : Vf (x) ≤ ε2}.
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Furthermore, Φ is a positive invariant set for the system (5.1) with κ(x) = Kx ∈ U , if

the disturbance w satisfies ||w||Pf ≤ ŵmax, where

ŵmax =
ε

4λmax(Q̂P )
, (5.7)

with Q̂P = P
−1/2
f (Q+KTRK)P

−1/2
f .

Proof. Consider a linearization of (5.1) around the origin for the non-disturbance

case; ẋ(t) = Afx(t) + Bfu(t), where Af = ∂φ/∂x(0, 0) and Bf = ∂φ/∂u(0, 0).

Since the linearized system is stabilizable from Assumption 5.1, we can find

a state feedback controller κ(x) = Kx such that Ac = Af + BfK is Hurwitz

and the closed loop system ẋ = Acx is thus asymptoptically stable. Choose

a matrix P such that the following Lyapunov equation holds: PAc + AT
c P =

−(Q + KTRK) where Q and R are matrices for the stage cost defined in (5.4).

Then, the time derivative of the function Vf = xTPx along a trajectory of the

nominal system ẋ = φ(x, κ(x)) yields:

V̇f (x) = −xT(Q+KTRK)x+ 2xTPφ(x)

≤ −xT(Q+KTRK)x

1−
2||φ(x)||P

λmin(Q̂P )||x||P

 ,

where ψ(x) = φ(x, κ(x)) − Acx, and Q̂P = P−1/2(Q + KTRK)P−1/2. Since

||ψ(x)||P/||x||P → 0 as ||x||P → 0, there exists a positive constant 0 < ε0 < ∞

such that ||ψ(x)||P/||x||P ≤ λmin(Q̂P ))/4 for ||x||P ≤ ε0. Let 0 < ε ≤ ε0 such that

for all ||x||P ≤ ε, κ(x) = Kx ∈ U . By letting Φ = {x ∈ Rn | Vf (x) ≤ ε2}, we

obtain V̇f (x) ≤ −0.5xT(Q+KTRK)x for all x ∈ Φ.
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Now, consider the time derivative of the function Vf along a trajectory of

the nonlinear system with additive disturbances ẋ = f(x, κ(x)) + w:

V̇f (x) = −xT(Q+KTRK)x+ 2xTPψ(x) + 2xTPw

≤ −xT(Q+KTRK)x

1−
2||φ(x)||P

λmin(Q̂P )||x||P
−

2||w||P
λmin(Q̂P )||x||P

 ,

and consider also a compact set as a boundary of Φ; ∂Φ = {x ∈ Rn | Vf (x) = ε2}.

From above, we obtain V̇f ≤ 0 for x ∈ ∂Φ, if ||w||P ≤ ελmin(Q̂P )/4. Thus, Φ is

a positive invariant set for the closed loop system ẋ = φ(x, κ(x)) + w if the

disturbance satisfies ||w||P ≤ ελmin(Q̂P )/4. This completes the proof.

Definition 5.1 (Control Objective). The control objective of MPC is to steer the state

x to the local region Φ in finite time.

Similarly to Chapter 4, applying dual-mode MPC is considered, in which the

local controller κ is applied as soon as the state enters Φ. Note that since the

plant is controlled over a network, applying the local controller κ(x) may re-

quire a continuous control update and may not be suitable under limited com-

munication capabilities. One way to avoid this issue is to apply the local con-

troller in a sample-and-hold fashion, i.e., u(t) = κ(x(tk)), t ∈ [tk, tk + δ]. Here,

0 < δ < ∞ can be chosen small enough such that asymptotic stability is still

guaranteed, see [63] for a detailed analysis. Based on the local set Φ, further

define the restricted set Φf given by

Φf = {x ∈ Rn : Vf (x) ≤ ε2
f},

where 0 < εf < ε. Since εf < ε, the set Φf is contained in Φ, i.e., Φf ⊂ Φ. An

example of these regions is illustrated in Fig. 5.1.

Assumption 5.3. The nonlinear function φ(x, u) : Rn × Rm → Rn is Lipschitz

continuous with the weighted matrix Pf , with the Lipschitz constant 0 ≤ Lφ < ∞.



114 Chapter 5. Aperiodic MPC for General Nonlinear systems

FIGURE 5.1: Graphical representation of the two regions Φ, Φf ,
and the optimal state trajectory x̂∗ (blue solid line). T ∗k denotes

the time interval to reach Φf .

Namely, there exists 0 ≤ Lφ < ∞ such that

||φ(x1, u)− φ(x2, u)||Pf ≤ Lφ||x1 − x2||Pf (5.8)

for all x1, x2 ∈ Rn and u ∈ Rn.

Assumption 5.3 will be used to derive several conditions to guarantee feasi-

bility of the OCP. In the formulation of MPC, the controller finds at each update

time tk, k ∈ N≥0, an optimal state and a control trajectory x̂∗(ξ), u∗(ξ) for all

ξ ∈ [tk, tk + Tk], by minimizing the cost given by (5.4). Regarding constraints,

it is imposed that the optimal state reaches Φf within the prediction horizon

Tk, i.e., x̂∗(tk + Tk) ∈ Φf . Since x̂∗(tk + Tk) ∈ Φf , there exists a positive time

interval when the optimal state enters the boundary of Φf . Let T ∗k (T ∗k ≤ Tk) be

such time interval obtained at tk, i.e., x̂∗(tk + T ∗k ) ∈ ∂Φf . The time interval T ∗k is

illustrated also in Fig. 5.1.

Based on the above notations, the following OCP is proposed:

Problem 5.1 (Optimal Control Problem). For the non-initial time tk, k ∈ N≥1,

given x(tk) and T ∗k−1, find the optimal control input and the corresponding state tra-

jectory u∗(ξ), x̂(ξ), ∀ξ ∈ [tk, tk + Tk], by minimizing J(x(tk), u(·)), subject to the
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following constraints:


˙̂x(ξ) = φ(x̂(ξ), u(ξ)), ξ ∈ [tk, tk + Tk] (5.9)

u(ξ) ∈ U (5.10)

x̂(tk + Tk) ∈ Φf , (5.11)

where Tk = T ∗k−1 − α∆k−1 for a given 0 < α < 1 and ∆k−1 = tk − tk−1. For the

initial time t0, minimize the cost J(x(tk), u(·)) given by (5.4), subject to (5.9), (5.10)

and x̂(t0 + T0) ∈ Φf for a given T0 > 0. �

For the initial time t0, Problem 5.1 is solved with a given T0 > 0. In order to

guarantee feasibility at t0, T0 needs to be suitably chosen such that the terminal

constraint x̂(t0 +T0) ∈ Φf is fulfilled. More specifically, T0 should be selected to

satisfy x(t0) ∈ X (T0), where X (T0) = {x(t0) ∈ Rn | ∃u(t) ∈ U , t ∈ [t0, t0 + T0] :

x̂(t0 + T0) ∈ Φf}, i.e., X (T0) denotes the set of states that can reach Φf within

the time t0 +T0. Although there may not exist a general framework to compute

X (T0) explicitly for nonlinear systems, several approximation methods have

been proposed to compute X (T0), see e.g., [51]. The initial feasibility is essen-

tially required for guaranteeing recursive feasibility, which is analyzed in the

next section.

For the non-initial time tk, k ∈ N≥1, it is required by (5.11) that the opti-

mal state enters Φf within Tk = T ∗k−1 − α∆k−1, where T ∗k−1 is the time inter-

val obtained by the previous calculation of OCP. This implies that T ∗k satisfies

T ∗k ≤ Tk = T ∗k−1−α∆k−1 < T ∗k−1 ≤ Tk−1, which guarantees that the time interval

T ∗k and the prediction horizon Tk become strictly smaller than the previous one

at tk−1. In later sections, the author will make use of this property to show that

the state enters Φ in finite time.

Remark 5.1 (Terminal and without terminal constraint). Although various anal-

ysis and control strategies have been proposed for MPC, approaches to guarantee sta-

bility can be mainly divided into two categories; the OCP with a terminal constraint

(see e.g., [38]), and the OCP without a terminal constraint (see e.g., [39], [40]). While
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the OCP becomes in general harder to be solved when the terminal constraint is im-

posed, this paper follows the former approach to guarantee stability and to derive an

event-triggered strategy. Note that our problem formulation slightly differs from the

standard formulation [38], since the prediction horizon is not constant but is adaptively

selected for each calculation time of the OCP. �

When applying MPC, it is considered that the optimal control input trajec-

tory u∗(ξ) is applied until the next update time tk+1, where tk+1 is determined by

the proposed event-triggered (self-triggered) strategy. Namely, the controller

transmits the optimal control trajectory u∗(ξ), for all ξ ∈ [tk, tk + T ∗k ], and the

plant applies it for all ξ ∈ [tk, tk+1] according the event-triggered strategy. The

closed-loop system for t ∈ [tk, tk+1) is thus given by

ẋ(t) = φ(x(t), u∗(t)) + w(t), t ∈ [tk, tk+1). (5.12)

5.2 Feasibility analysis

The main result of this section is to provide several conditions to guarantee

recursive feasibility, which states that the existence of a feasible solution at an

initial update time t0 implies the feasibility at any update times afterwards tk,

k ∈ N≥1, if the difference between the predictive and the actual state does not

exceed a certain threshold. The obtained feasibility conditions are key ingredi-

ents to derive the event-triggered strategy, which will be discussed in the next

section.

Theorem 5.1. Suppose that the OCP defined in Problem 5.1 has a solution at tk, pro-

viding an optimal control input u∗(ξ) and the corresponding state trajectory x̂∗(ξ) for

all ξ ∈ [tk, tk + Tk], and the time interval T ∗k . Then, Problem 5.1 has a solution at
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tk+1(> tk), if the followings are satisfied:


||x(tk+1)− x̂∗(tk+1)||Pf ≤ (ε− εf )e−LφT

∗
k (5.13)

∆k = tk+1 − tk ≤ T ∗k , (5.14)

||w||Pf ≤ w̃max, (5.15)

where w̃max is given by

w̃max =
λmin(Q̂P )

4eLφT
∗
0

(1− α)εf . (5.16)

�

Proof. Consider the following feasible control trajectory candidate:

ū(ξ) =

 u∗(ξ), ξ ∈ [tk+1, tk + T ∗k ]

κ(x̄(ξ)), ξ ∈ (tk + T ∗k , tk+1 + Tk+1],
(5.17)

where Tk+1 = T ∗k − α∆k. Here we have tk+1 + Tk+1 > tk + T ∗k since

tk+1 + Tk+1 = tk + ∆k + T ∗k − α∆k

= tk + (1− α)∆k + T ∗k > tk + T ∗k .

x̄(ξ) denotes the predictive state trajectory obtained by applying ū(ξ), i.e., ˙̄x(ξ) =

φ(x̄(ξ), ū(ξ)) with x̄(tk+1) = x(tk+1).

To prove that (5.17) is a feasible controller, it is shown that the following

three claims are satisfied:

(i) By applying ū(ξ), ξ ∈ [tk+1, tk + T ∗k ], the predictive state enters Φ by the

time tk + T ∗k . That is, x̄(tk + T ∗k ) ∈ Φ. This ensures that applying the local

controller κ from tk + T ∗k is admissible.

(ii) Tk+1 = T ∗k − α∆k > 0. This ensures that the time interval to reach Φf in

the constraint (5.11) is always positive at the update time tk+1.
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(iii) By applying ū(ξ), ξ ∈ (tk +T ∗k , tk+1 +Tk+1], the predictive state x̄ enters Φf

by the time tk+1 + Tk+1. That is,

x̄(tk+1 + Tk+1) ∈ Φf .

To prove the claim (i), first use the fact that the difference between x̄ and x̂∗

is upper bounded by

||x̄(ξ)− x̂∗(ξ)||Pf ≤ ||x(tk+1)− x̂∗(tk+1)||Pf eLφ(ξ−tk+1)

for ξ ∈ [tk+1, tk +T ∗k ]. Supposing that (5.13) holds and by letting ξ = tk +T ∗k , we

obtain

||x̄(tk + T ∗k )− x̂∗(tk + T ∗k )||Pf ≤ e−LφT
∗
k (ε− εf )eLφ(tk+T ∗k−tk+1)

= (ε− εf )e−Lφ(tk+1−tk).

From the triangular inequality, we obtain

||x̄(tk + T ∗k )||Pf ≤ ||x̂∗(tk + T ∗k )||Pf + (ε− εf )e−Lφ(tk+1−tk)

≤ εf + ε− εf

= ε.

Thus it holds that x̄(tk + T ∗k ) ∈ Φ and the proof of (i) is completed.

The proof of (ii) is obtained from the fact that we have ∆k ≤ T ∗k from the

event-triggered strategy, and thus T ∗k − α∆k ≥ (1− α)T ∗k > 0.

Let us now prove the statement given in (iii). By using x̄(tk + T ∗k ) ∈ Φ and

from (5.6), we obtain

V̇f (x̄(ξ)) ≤ −
1

2
x̄T(ξ)(Q+KTRK)x̄(ξ)

≤ −
1

2
λmin(Q̂P )Vf (x̄(ξ))

(5.18)
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for ξ ∈ (tk + T ∗k , tk+1 + T ∗k − α∆k]. Furthermore, from the Gronwall-Bellman

inequality and by supposing that (5.15) holds, we obtain

||x̄(tk + T ∗k )||Pf ≤ ||x̂∗(tk + T ∗k )||Pf +
w̃max

Lf
eLφT

∗
k (1− e−Lφ∆k)

≤ εf +
(1− α)

4Lf
εfλmin(Q̂P )(1− e−Lφ∆k).

Denoting η = (1−α)
4Lφ

λmin(Q̂P ), and by using comparison lemma, we obtain

Vf (x̄(tk+1 + T ∗k − α∆k)) ≤ Vf (x̄(tk + T ∗k ))e−0.5λmin(Q̂P )(1−α)∆k

≤ ε2
f

(
1 + η(1− e−Lφ∆k)

)2
e−2Lφη∆k

≤ ε2
f .

The 3rd inequality is obtained by the fact that the function gε(∆k) = (1 + η(1−

e−Lφ∆k))e−Lφη∆k is shown to be a decreasing function of ∆k with gε(0) = 1. Thus

we obtain Vf (x̄(tk+1 + T ∗k − α∆k)) ≤ ε2
f , and the proof of (iii) is completed.

Based on above, the controller given by (5.17) provides a feasible solution to

Problem 5.1 for tk+1(> tk), provided that the conditions (5.14), (5.13), and (5.15)

are satisfied. This completes the proof.

5.3 Event-triggered strategy

Suppose again that the OCP is solved at tk, providing a pair of optimal control

u∗(ξ) and the corresponding state x̂∗(ξ) for all ξ ∈ [tk, tk+Tk]. Through an event-

triggered condition, the author considers to determine the next OCP update

time tk+1(> tk) (i.e., the next communication time) such that the feasibility is

ensured.

The simplest way to determine tk+1 might be to use the original feasibility

conditions directly as the event-triggered conditions. That is, for each t > tk,
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check the feasibility according to (5.14) and (5.13), i.e.,

||x(t)− x̂∗(t)||Pf ≤ (ε− εf )e−LφT
∗
k , (5.19)

t− tk ≤ T ∗k . (5.20)

Only when either of the above conditions is violated, then we set tk+1 = t

as the next update time. This strategy ensures the feasibility of the OCP and

may reduce a computational load of solving OCPs. However, checking the

above conditions for each t > tk requires continuous monitoring of the state x(t)

and evaluations of the above conditions, which clearly leads to a high cost of

sensing and a computation load.

Therefore, the author proposes here an alternative approach by relaxing the

above continuous requirements. The key idea of our approach is to measure

the state and evaluate event-triggered conditions only at certain sampling time

intervals, instead of continuously. The overview of the proposed approach is

described as follows. Once the OCP is solved by MPC at an update time instant,

say tk, and T ∗k is obtained, the controller computes δ∗k ∈ R>0, which represents

the sampling time interval at which the event-triggered condition is evaluated.

Namely, from the obtained δ∗k the plant measures the state and checks the event-

triggered condition only at tk + mδ∗k, m ∈ N≥1, in order to determine the next

update time tk+1.

Regarding the proposed framework outlined above, we need to derive both

mechanisms to determine δ∗k and the event-triggered conditions. One might di-

rectly utilize (5.19), (5.20) as the event-triggered conditions, and evaluate them

with a given arbitrary value of δ∗k. However, this cannot be applied due to the

following two problems regarding the violation of feasibility:

(P.1) If a large value of δ∗k would be chosen, the feasibility would not be satis-

fied at the next evaluation time tk + δ∗k. This issue is illustrated in Fig. 5.2.
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FIGURE 5.2: The illustration of the problem presented in (P.1). The
figure shows the left hand side (black solid) and the right hand

side (black dotted) of (5.19).

As shown in the figure, if δ∗k would be selected too large (blue cross mark),

then feasibility is not guaranteed at tk + δ∗k.

(P.2) If we would directly use (5.19) as the event-triggered condition, the feasi-

bility might be violated between two consecutive evaluation times. This

issue is illustrated in Fig. 5.3. In the figure, blue marks represent the se-

quence of the left hand side in (5.19) measured at the sampling interval

δ∗k, and the red mark represents the exact time when the violation of (5.19)

takes place. As shown in the figure, the feasibility is violated between two

evaluation times; the event-triggered strategy fails to be obtained due to

the loss of feasibility (represented as green mark). The critical problem

here is that the controller does not know whether the feasibility is violated

between two evaluation times; when arriving at a certain evaluation time

(e.g., green cross mark in Fig. 5.3), it is possible that the error ||x(t)−x̂∗(t)||

already exceeds the threshold, and a loss of feasibility occurs.

In the following, the solutions to each problem above are given and provide

the over-all event-triggered strategy. Consider first to solve (P.1). In order to

deal with the problem, δ∗k needs to be chosen small enough such that the feasi-

bility is guaranteed for all t ∈ [tk, tk + δ∗k]. Thus a minimum inter-event time of

the feasibility conditions given by (5.19), (5.20), is evaluated. Assume that the

size of the disturbance satisfies ||w(t)||Pf ≤ w̃max, ∀t ≥ t0, which ensures from
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FIGURE 5.3: The figure illustrates the problem of violating the
feasibility described in (P.2).

Theorem 5.1 that the effect of disturbances does not violate the feasibility. By

using Gronwall-Bellman inequality, we obtain

||x(t)− x̂∗(t)||Pf ≤
w̃max

Lφ
(eLφ(t−tk) − 1) (5.21)

for t ∈ [tk, tk + Tk]. Thus, a sufficient condition to satisfy (5.19) is

λmin(Q̂P )(1− α)εf

2LφeLφT
∗
0

(eLφ(t−tk) − 1) ≤ (ε− εf )e−LφT
∗
k .

Solving the above for t yields t ≤ tk + ∆min
k , where ∆min

k is given by

∆min
k =

1

Lφ
ln

1 +
2Lφ(ε− εf )eLφ(T ∗0−T ∗k )

λmin(Q̂P )(1− α)εf

 > 0. (5.22)

This implies that the condition (5.19) is satisfied for all t ∈ [tk, tk + ∆min
k ]. By

taking into account the other feasibility condition (5.20), the over-all minimum

inter-event time is now given by min{∆min
k , T ∗k }. For the case we have ∆min

k ≤

T ∗k , the minimum inter-event time becomes ∆min
k . Thus, if the sampling time

interval δ∗k is selected such that δ∗k = γ∆min
k ≤ ∆min

k for a given 0 < γ ≤ 1, the

feasibility is guaranteed for all t ∈ [tk, tk + δ∗k]. On the other hand, for the case

we have ∆min
k > T ∗k , (5.19) is satisfied for all t ∈ [tk, tk + T ∗k ]. This means that
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(5.20) is violated earlier than (5.19). Thus, for the case we have T ∗k < ∆min
k , we

can directly set the next time as tk+1 = tk + T ∗k .

Based on the above analysis, the following strategy can be provided as a

solution to (P.1):

(i) If T ∗k ≥ ∆min
k , then set δ∗k = γ∆min

k for a given 0 < γ ≤ 1.

(ii) If T ∗k < ∆min
k , then set tk+1 = tk + T ∗k as the next update time.

Remark 5.2. One may argue that the inter-event time is given by T ∗k for case (b) and

that it may thus tend to 0 since T ∗k is decreasing. Note however, that T ∗k > 0 always

holds while the MPC is implemented (i.e., x(tk) /∈ Φ); if x(tk) is outside of Φ, there

always exists a strictly positive time interval for the optimal state to reach Φf . Thus,

this guarantees that the inter-event time remains always positive while implementing

the MPC. �

Next, let us solve (P.2) by modifying the original feasibility conditions. Based

on the obtained δ∗k, the time instants to measure the state and evaluate the

event-triggered condition are now given by tk +mδ∗k, m ∈ N≥1. To avoid losing

the feasibility between two evaluation times, the feasibility condition at one

step future time is evaluated, instead of the current time instant. That is, at an

evaluation time t = tk + mδ∗k, m ∈ N≥1, the state x(t) is measured and then the

feasibility is checked for t + δ∗k instead of t. If the feasibility at t + δ∗k is guaran-

teed, then we move on to the next evaluation time t+ δ∗k. On the other hand, if

the feasibility at t+ δ∗k is not guaranteed, then we set tk+1 = t. Since we prelimi-

nary check the feasibility at one step future time, the loss of feasibility does not

occur between two evaluation times.

The feasibility at one step future time can be given by modifying the original

feasibility conditions. Suppose at an evaluation time t = tk + mδ∗k, m ∈ N≥1,

the feasibility at t + δ∗k is checked based on the state measurement x(t). The
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difference between the actual state and the optimal state at t+ δ∗k is given by

||x(t+ δ∗k)− x̂∗(t+ δ∗k)||Pf

≤ eLφδ
∗
k ||x(t)− x̂∗(t)||Pf +

w̃max

Lφ
(eLφδ

∗
k − 1)

≤ eLφδ
∗
k ||x(t)− x̂∗(t)||Pf

+
λmin(Q̂P )

4eLφT
∗
0

(1− α)εf (e
Lφδ

∗
k − 1), (5.23)

where the condition (5.15) is used to derive the inequality. From the feasibility

conditions (5.19), (5.20), the feasibility at t + δ∗k is guaranteed if both of the

following conditions are satisfied:

||x(t+ δ∗k)− x̂∗(t+ δ∗k)||Pf < (ε− εf )e−LφT
∗
k

t+ δ∗k − tk ≤ T ∗k .

From (5.23), sufficient conditions to satisfy the above equations are then given

by

||x(t)− x̂∗(t)||Pf < (ε− εf )e−Lφ(T ∗k+δ∗k) −
λmin(Q̂P )

4eLφT
∗
0

(1− α)εf (1− e−Lφδ
∗
k), (5.24)

(m+ 1)δ∗k ≤ T ∗k . (5.25)

Note that if (5.24), (5.25) are both satisfied the feasibility is guaranteed at t +

δ∗k, and these conditions can be evaluated based on x(t). Therefore, by using

(5.24) and (5.25) as the event-triggered conditions, the violation of the feasibility

between two evaluation times will not occur, providing thus a solution to (P.2).

Based on the above results, the over-all proposed algorithm of the event-

triggered strategy is summarized below:
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Algorithm 5.1: (Event-triggered strategy via intermittent sampling)

(i) At any update times tk, k ∈ N≥0, if x(tk) ∈ Φ, then switch to the local

controller κ(x) as a dual mode strategy. Otherwise, the plant transmits

x(tk) to the controller and go to the step (ii).

(ii) The controller solves Problem 5.1 and obtain the optimal control trajectory

u∗(ξ) and the corresponding state x̂∗(ξ) for all ξ ∈ [tk, tk + Tk]. Then,

calculate T ∗k as the time interval when the state reaches Φf , i.e., x̂∗(tk +

T ∗k ) ∈ ∂Φf . The controller then computes the sampling time δ∗k or the next

update time tk+1 in the following way:

(a) If T ∗k ≥ ∆min
k , where ∆min

k is given by (5.22), then set δ∗k = γ∆min
k for a

given 0 < γ ≤ 1, and go to step (iii).

(b) If T ∗k < ∆min
k , then set tk+1 = tk + T ∗k and go to step (iv).

Once these are computed, the controller transmits δ∗k (or tk+1) and the

optimal control trajectory u∗(ξ) , ξ ∈ [tk, T
∗
k ] to the plant.

(iii) If the plant receives tk+1, it sets tk+1 as the next update time. If δ∗k is re-

ceived, it determines the next update time tk+1(> tk) in the following

way:

(a) Set m = 1.

(b) At an evaluation time t = tk + mδ∗k, m ∈ N≥1, measure the state x(t),

and check the event-triggered conditions given by (5.24), (5.25).

(c) If (5.24) and (5.25) are both satisfied, then apply u∗(ξ) for ξ ∈ [t, t+δ∗k).

Then, set m← m+ 1 and go back to step (b). Otherwise, set tk+1 = t

and go to step (iv).

(iv) k ← k + 1 and go back to step (i). �

Remark 5.3 (On tuning the parameter γ). If γ is chosen larger, then we obtain

larger δ∗k(= γ∆min
k ), and thus a smaller number of state measurements and evaluations
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may be obtained. However, due to the increased value of δ∗k, the right hand side of

(5.24) becomes smaller and the event-triggered condition becomes more conservative,

resulting in a larger number of OCPs. Therefore, there exists a trade-off between the

number of OCPs and the number of state measurements, and the parameter γ plays an

important role to regulate this trade-off. This property serves as one of the benefits of

our proposed strategy, as we can now appropriately select γ according to whether we

would like to focus on reducing the number of OCPs or number of state measurements.

�

5.4 Self-triggered strategy

In the self-triggered strategy, the next update time tk+1 is pre-determined at tk

as soon as the OCP is solved, without having to evaluate the event-triggered

condition. To obtain the self-triggered strategy, recall that the minimum inter-

event time of satisfying (5.19) and (5.20) is min{∆min
k , T ∗k }, where ∆min

k is given

by (5.22). Since ∆min
k , T ∗k can be obtained at tk (immediately after solving the

OCP), the controller can simply set tk+1 as

tk+1 = tk + min{∆min
k , T ∗k }. (5.26)

Although considering the minimum inter-event time may lead to more conser-

vative result than the previous even-triggered strategy, the evaluations of the

event-triggered condition and the state measurements are no longer required

between two update times of the OCP. Thus, the following self-triggered strat-

egy is obtained:

Algorithm 5.2: (Self-triggered Strategy)

(i) At any update times tk, k ∈ N≥0, if x(tk) ∈ Φ, then switch to the local

controller κ(x) as a dual mode strategy. Otherwise, the plant transmits

x(tk) to the controller and go to the step (ii).
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(ii) The controller solves Problem 5.1 and obtain the optimal control u∗(ξ) and

the corresponding state trajectory x̂∗(ξ) for all ξ ∈ [tk, tk + Tk]. Then,

calculate T ∗k as the time interval when the state reaches Φf , i.e., x̂∗(tk +

T ∗k ) ∈ ∂Φf . Furthermore, calculate ∆min
k according to (5.22). Then, the

controller sets the next update time tk+1 as

tk+1 = tk + min{∆min
k , T ∗k } (5.27)

and applies u∗(t) for all t ∈ [tk, tk+1).

(iii) k ← k + 1 and go back to step (i). �

5.5 Stability analysis

For a given initial prediction horizon T0 > 0, let X (T0) be the set of states such

that a feasible solution to Problem 5.1 exists. The author will prove in the fol-

lowing that, any state trajectories starting from inside X (T0) will eventually

enter Φ within a prescribed finite time interval.

Theorem 5.2. Consider the nonlinear system given by (5.1), and suppose that the

event-triggered strategy (Algorithm 5.1) or the self-triggered strategy (Algorithm 5.2)

is implemented. Then, for any w(t) satisfying ||w(t)||Pf ≤ min{ŵmax, w̃max}, ∀t ≥ t0,

where ŵmax and w̃max are given by (5.7), (5.15) respectively, any state trajectories

starting from x(t0) ∈ X (T0) enter Φ within the time interval T ∗0 /α, and remain in Φ

for all the future times.

Proof. The statement is proved by contradiction. Assume at tk that we have

tk−t0 ≥ T ∗0 /α, and x(tk) is outside of Φ, i.e., x(tk) /∈ Φ. Since x(tk) /∈ Φ and Φf ⊂

Φ, we have T ∗k > 0. As x(t0) ∈ X (T0) and ||w(t)||Pf ≤ w̃max, ∀t ≥ t0, applying

Algorithm 5.1 or Algorithm 5.2 ensures that the feasibility is guaranteed for all
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t0, t1, . . . , tk. Thus, we recursively obtain from (5.11) that:

T ∗k ≤ T ∗k−1 − α∆k−1 ≤ T ∗k−2 − α(∆k−1 + ∆k−2)

≤ · · · ≤ T ∗0 − α
k−1∑
l=1

∆l

= T ∗0 − α(tk − tk−1 + tk−1 − tk−2 + · · ·+ t1 − t0)

= T ∗0 − α(tk − t0).

Thus, by the assumption tk−t0 ≥ T ∗0 /α, we obtain T ∗k ≤ 0. However, this clearly

contradicts to the fact that we have T ∗k > 0. Thus, it is shown that the state

enters Φ within the time interval T ∗0 /α. Furthermore, since from Lemma 5.1, Φ

is a positively invariant set with the disturbance satisfying ||w(t)|| ≤ ŵmax, the

state remains in Φ for all future times. This completes the proof.

Remark 5.4 (On the novelty of convergence times). Aside from the event-triggered

strategy, one of the important results of this paper is that, by guaranteeing stability

without using optimal cost, the maximum time of convergence is explicitly obtained by

Theorem 5.2. Although the convergence time has been analyzed for linear discrete-time

systems, e.g., [69], this paper derives it for nonlinear continuous-time systems with

additive bounded disturbances. �

Remark 5.5 (On the control performance). In Theorem 5.2, stability is proven by

evaluating a time interval to reach Φf , and not by the optimal cost. Although this may

be unconventional with respect to a control performance view point, our approach is

advantageous and practical from a event-triggered control view point, since the event-

triggered condition provides less conservative results than the approache presented in

Chapter 4. Moreover, the control performance can be evaluated by tuning the parameter

α; for more details, please see Remark 5.6 below. �

Remark 5.6 (Convergence time v.s. Disturbance). If α is chosen larger, then we

obtain smaller T ∗0 /α and faster convergence is obtained. However, this in turn means

from (5.15) that the allowable size of disturbance becomes smaller, which implies that

the robustness to the noise or model uncertainty may be degraded. Therefore, there
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exists a trade-off between the convergence time of the state trajectory and the allowable

size of the disturbance, and this trade-off can be regulated by tuning α. �

5.6 Simulation results

In this section the author illustrates the effectiveness of our proposed ape-

riodic MPC schemes. Again, simulations were conducted on Matlab 2016a

under Windows 10, Intel(R) Core(TM) 2.40 GHz, 8 GB RAM. As a software

package, the author used Imperial College London Optimal Control Software

(ICLOCS) (see [67]), in order to solve (non)linear optimal control problems in

the continuous-time domain.

(Example 5.1): Consider the following linearized system of an inverted pendu-

lum on a cart:

ẋ(t) = Ax(t) +Bu(t) + w(t),

where x = [x1 x2 x3 x4]T ∈ R4, u ∈ R and

A =


0 1 0 0

0 0 −mg/M 0

0 0 0 1

0 0 g/` 0


, B =


0

1/M

0

−1/M`


(5.28)

with m = 1, M = 5, ` = 2, and g = 9.8. The constraint for the control input is

given by U = {u ∈ R : |u| ≤ 10}. The computed Lipschitz constant is Lf = 5.28

and we have ε = 0.08, εf = 0.05, and α = 0.8, γ = 0.5. The initial state is

assumed to be given by x(t0) = [1, 0, 0, 0], and the initial prediction horizon is

T0 = 10. From Theorem 5.1, the feasibility is guaranteed if w̃max = 8.3×10−4 and

from Lemma 5.1 the region Φ is positively invariant if ŵmax = 2.0×10−3. Taking

into account both restrictions, assume thatW = {w ∈ R2 : ||w||Pf ≤ 8.3×10−4}.
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In this set up, from Theorem 5.2 it is guaranteed that the state enters the local

set Φ within the time interval T0/α = 12.5.

Figure 5.4 illustrates the resulting state trajectories of x1, x2, and Fig. 5.5 il-

lustrates those of x3, x4, by applying the event-triggered strategy (Algorithm 5.1).

From the figure, it is shown that the state trajectories are stabilized around the

origin by applying Algorithm 5.1. The time when the state enters the set Φ is

given by 7.98, and the number of transmission instants to achieve the conver-

gence is given by 9 (i.e., the average transmission time interval is 0.88). In the

figures, the state trajectories by applying periodic MPC scheme with 0.1 sam-

pling time interval are also illustrated. From the figure, it is shown that the

trajectory also converges to the origin while achieving similar convergence to

Algorithm 5.1. In both proposed scheme and the periodic scheme, the state tra-

jectories are wobbling around the origin (see in particular Fig. 5.5) due to the

effect of disturbances. Figure 5.6 illustrates the applied control input by Algo-

rithm 5.1 (blue) and the periodic case (red dotted line). From the figure, due

to the effect of disturbances, control inputs under Algorithm 5.1 behave differ-

ently from the periodic case. Note that as shown in Fig. 5.6, control inputs are

given as a continuous trajectory rather than a sample-and-hold implementa-

tion, since it is assumed that for each tk, k ∈ N the optimal control trajectory

u∗(t), ∀t ∈ [tk, tk+1] is transmitted to the plant (see (5.12)).

Table 5.1 illustrates the convergence time when the state enters the local

set Φ, as well as the number of transmission instants during the time inter-

val t ∈ [0, 30]. In Theorem 5.2, it is shown that the state trajectory converges

to the local set Φ within T0/α = 12.5. From the table, the convergence time to

Φ is indeed smaller than T0/α, which validates the result in Theorem 5.2. The

convergence time by applying Algorithm 5.1 is almost the same as the one by

applying the periodic case. Moreover, the number of transmission instants by

applying Algorithm 5.1 is smaller by 84− 5 = 79 than the periodic case, which

shows that the communication reduction is achieved by applying the proposed

scheme.
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(a) State trajectories of x1.
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(b) State trajectory of x2.

FIGURE 5.4: State trajectories of x1 and x2 by implementing Al-
gorithm 5.1 (blue solid lines) and the periodic MPC (red dotted

lines).
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(a) State trajectories of x3.
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(b) State trajectory of x4.

FIGURE 5.5: State trajectories of x3 and x4 by implementing Al-
gorithm 5.1 (blue solid lines) and the periodic MPC (red dotted

lines).



5.6. Simulation results 133

TABLE 5.1: Convergence time when the state trajectory enters Φ
and the number of transmission instants.

Algorithm 5.1 Periodic (0.1)
T0/α 12.5 12.5

Convergence time 7.98 7.96
Transmission instants 5 84

0 10 20

Time

-1

0

1

u

Algorithm 5.1
Periodic (0.1)

FIGURE 5.6: Control inputs by applying Algorithm 5.1 (blue line)
and the periodic scheme (red dotted line).

To conclude, it is shown in this example that:

• A more communication reduction is achieved by applying Algorithm 5.1

than by applying the periodic scheme with 0.1 sampling time interval.

• By applying Algorithm 5.2, the state trajectories enter the local set Φ within

T0/α, which validates the result of Theorem 5.2.
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(Example 5.2): As with Example 4.2, consider a control problem of non-holonomic

vehicle in two dimensions, where the dynamics are given by

d

dt


x

y

θ

 =


cos θ 0

sin θ 0

0 1


 v

ω

 , (5.29)

where the state is denoted as χ = [x, y, θ] ∈ R3, consisting of the position of

the vehicle [x, y], and its orientation θ. u = [v, ω] ∈ R2 is the control input and

the constraints are assumed to be given by ||v|| ≤ v̄ = 2.0 and ||ω|| ≤ ω̄ = 1.0.

The computed Lipschitz constant Lφ is given by Lφ =
√

2v̄. The stage and the

terminal cost are given by F = χTQχ + uTRu, and Vf = χTχ where Q = I3

and R = I2. The prediction horizon is T0 = 10 and α = 0.8. The parameter for

characterizing the terminal set is ε = 0.8 and εf = 0.4. Again, assume that the

initial state is given by χ(0) = [x(0); y(0); θ(0)] = [−10; −5; π/2]. Theorem 5.1

states that feasibility is guaranteed if w̃max = 2.0 × 10−3 and from Lemma 5.1

the region Φ is positively invariant if ŵmax = 1.5 × 10−3. Taking into account

both restrictions, it is assumed thatW = {w ∈ R2 : ||w||Pf ≤ 1.5 × 10−3}. In

this set up, from Theorem 5.2 it is guaranteed that the state enters the local set

Φ within T0/α = 12.

Figure 5.7 illustrates the resulting trajectory of the vehicle by applying Al-

gorithm 5.1. From the figure, the trajectory of the vehicle is stabilized around

the origin, while it is perturbed by additive bounded disturbances. Figure 5.8

illustrates the resulting control input by applying Algorithm 5.1. From the fig-

ure, it is shown that the control inputs satisfy the constraints ||v(t)|| ≤ v̄ = 2.0,

||ω(t)|| ≤ ω̄ = 1.0, and the optimal control problem is updated only when

they are needed by applying Algorithm 5.1. The time when the state enters

Φ is 9.0, and the number of transmission instants until the state converges the

region is given by 9.0 (i.e., the average transmission time interval is 1.0). To
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FIGURE 5.7: Trajectory of the vehicle by applying Algorithm 5.1.

make comparisons, Fig. 5.9 illustrates the resulting state trajectory by apply-

ing the periodic MPC scheme with 1.0 sampling time interval (i.e., tk = 1.0k,

∀k ∈ N), which is equal to the average transmission time interval by applying

Algorithm 5.1. From the figure, it is shown that the state trajectory does not

converge around the origin. Again, this is due to the fact that the transmission

time interval is not suitably selected to guarantee stability when the periodic

scheme is employed.

Figure 5.11 illustrates the resulting state trajectory by applying the periodic

MPC scheme with 0.1 sampling time interval (i.e., tk = 0.1k, ∀k ∈ N), which

is much smaller than the average transmission time interval by Algorithm 5.1.

Table 5.2 illustrates the convergence time when the state enters Φ, as well as

the number of transmission instants until the convergence is attained. From

the table, Algorithm 5.1 achieves the number of transmission instants smaller

by 67 − 11 = 56 than the periodic case. On the other hand, Algorithm 5.1 re-

quires 9.0 − 6.7 = 2.3 longer convergence time than the periodic one, which
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(b) Control trajectory of ω.

FIGURE 5.8: Control trajectory of v and ω implementing Algo-
rithm 5.1 and the periodic one without disturbances (red dotted

line).
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FIGURE 5.9: Trajectory of the vehicle by applying the periodic
MPC with 1.0 sampling time interval.

indicates that the periodic sceme achieves better control performance. There-

fore, as with Chapter 4, it is shown in this exmple that there exists a tradeoff

between achieving the communication reduction and the control performance.

To analyze the effect of disturbances, Algorithm 5.1 is again implemented

withW = {w ∈ R2 : ||w||Pf ≤ 6.0×10−3}, which is larger than the former case.

Fig. 5.10(a) illustrates the resulting trajectory of the vehicle by applying Algo-

rithm 5.1. It is shown that the vehicle still enters the set Φ, even though the dis-

turbance size is bigger than the allowable size obtained from Theorem 5.1. This

is due to the fact that Theorem 5.1 provides only sufficient (conservative) condi-

tions, which means that a larger disturbance size may be allowed to guarantee

feasibility and stability. Figure 5.10(b) illustrates the resulting trajectory of the

vehicle by applying Algorithm 5.1 withW = {w ∈ R2 : ||w||Pf ≤ 1.0 × 10−2}.

In this case, it is shown that the trajectory does not converge Φ in finite time,

which has been occurred since the disturbance size has been selected too large.

To provide a further analysis, Table 5.3 illustrates the resulting convergence
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≤ 6.0× 10−3}.

-10 -8 -6 -4 -2 0
x

-5

-4

-3

-2

-1

0

1

y

(b) W = {w ∈ R2 : ||w||Pf
≤ 1.0× 10−2}.

FIGURE 5.10: Trajectory of the vehicle by applying Algorithm 5.1
with large disturbance setsW .

TABLE 5.2: Convergence time when the state trajectory enters
around the origin and the number of transmission instants.

Algorithm 5.1 Periodic (0.1)
Convergence time 9.0 6.7

Transmission instants 11 67
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FIGURE 5.11: Trajectory of the vehicle by applying the periodic
MPC with 0.1 sampling time interval.

time and the number of transmission instants until the trajectory enters the lo-

cal set Φ, by applying Algorithm 5.1, 5.2, and 4.2 with disturbances taken into

account (see Remark 4.5). Note that as shown in the table, T0/α is not defined

when applying Algorithm 4.2. From the table, the convergence times to the set

Φ are indeed smaller than T0/α for both Algorithm 5.1 and 5.2, which validates

the theoretical result in Theorem 5.2 also for the nonlinear case. The number of

transmission instants by applying Algorithm 5.1 and 5.2 becomes much smaller

than Algorithm 4.2. As previously mentioned, this is due to the fact that Algo-

rithm 4.2 tends to be conservative as it includes unsuitable parameters as a

potential source of conservativeness. The number of transmission instants by

applying Algorithm 5.1 (event-triggered strategy) is smaller by 18 − 12 = 6

than the ones by applying Algorithm 5.2 (self-triggered strategy), which means

that the event-triggered strategy achieves a less communication load than the

self-triggered strategy. This is due to the fact that the self-triggered strategy

is a sufficient condition to the event-triggered one, meaning that the latter one

becomes more conservative than the former case.
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TABLE 5.3: Convergence time when the state trajectory enters Φ
and the number of transmission instants.

Algorithm 5.1 Algorithm 5.2 Algorithm 4.2
T0/α 12 12 —

Convergence time 9.5 9.5 9.4
Transmission instants 12 18 25

To conclude, it is shown in this example that:

• By applying Algorithm 5.1 and 5.2, the trajectory of the vehicle enters the

local set Φ within T0/α, which validates the result of Theorem 5.2.

• Algorithm 5.1 and 5.2 require less communication load than Algorithm

4.2, which validates that a less conservative result is obtained than by

using Lyapunov stablity.

• Algorithm 5.1 (event-triggered strategy) achieves less communication load

than Algorithm 5.2, which is due to the fact that the latter one is more con-

servative than the former one.

5.7 Summary

In this chapter, an aperiodic formulation of MPC is proposed for nonlinear sys-

tem under additive bounded disturbances. The new aperiodic scheme is de-

rived based on recursive feasibility, in which the optimal control problem has a

solution when the error between the predictive states and the optimal states is

below a certain threshold. In the event-triggered strategy, the triggering condi-

tion is given such that the plant requires to measure the state information only

at a certain sampling time instants. This leads to an alleviation of sensing cost

to evaluate the event-triggered condition by not having to measure the state

continuously. A self-triggered strategy is also given by deriving a sufficient
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condition to the event-triggered strategy. Stability is rigorously shown by guar-

anteeing that the state trajectories converge to a prescribed local set Φ in finite

time. Here, in contrast to the approaches presented in the previous chapters,

the time interval when the state trajectory enters the local set Φ is evaluated,

instead of evaluating the optimal cost. Some numerical examples validate the

effectiveness of the proposed approach by considering both linear and non-

linear systems. For linear case, a control problem of an inverted pendulum on

a cart is considered, and show that the state trajectory is stabilized around the

origin while at the same time reducing the communication load compared to

the periodic case. For nonlinear case, we consider a control problem of vehicle

regulation, and show that the state trajectories are stabilized around the origin

within the prescribed time interval according to the stability theorem.
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Chapter 6

Conclusion and future work

Finally, some conclusions of this thesis and future works are provided in this

chapter.

6.1 Conclusion

In this thesis, various formulations of aperiodic MPC schemes for networked

control systems are proposed, including both linear and non-linear systems.

In the proposed schemes, the plant transmits the state information to the con-

troller and it solves an optimal control problem only when it is needed, aiming

at reducing the communication load for networked control systems.

First of all, the author considers a control problem for LTI systems and pro-

poses two self-triggered strategies (Chapter 3). The main idea is that the con-

troller solves a multiple optimal control problems under different discretiza-

tion schemes, and the controller determines suitable transmission time inter-

vals by evaluating both control performance and communication reduction.

Moreover, a method to reduce computational complexity of solving an optimal

control problem is given by incorporating the notion of contractive set. The

effectiveness of the proposed approaches are validated by considering several

simulation examples.

Next, a self-triggered strategy is developed for nonlinear input-affine sys-

tems as provided in Chapter 4. The main contribution is that a sufficient condi-

tion to guarantee a Lyapunov stability is derived, such that the optimal cost as
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a Lyapunov function candidate is guaranteed to decrease under a sample-and-

hold implementation. Moreover, the author considers a case when multiple

control samples are allowed to be sent, and provide an efficient strategy to de-

termine suitable control samples to be transmitted. The proposed scheme is

illustrated by considering some simulation examples, in particular a control

problem of continuously stirred tank reactor system.

Finally, event and self-triggered strategies for nonlinear systems are devel-

oped in Chapter 5, which are provided for a more general class of systems than

Chapter 3 and 4. The event-triggered strategy is first derived as a condition to

guarantee recursive feasibility, and a sufficient condition is given to derive the

corresponding self-triggered condition. Regarding stability, it is shown that

the state trajectory enters a terminal region within a prescribed time interval

by guaranteeing that the time interval of an opitmal state trajectory to enter a

terminal region is strictly decreasing until it achieves the convergence.

6.2 Future work

The proposed strategies may have the potential to apply and extend to various

types of MPC formulations and applications, as the detail is described below.

In this thesis, a terminal constraint is basically imposed in the optimal con-

trol problems such that stability of the origin is guaranteed. While this con-

straint is useful in guaranteeing stability in a theoretical manner, such arbitrary

constraint makes an optimal control problem generally hard to be solved. To

overcome this issue, a MPC framework that does not utilize the terminal con-

straint has been developed in recent years, see e.g., [39], [40], and a relation to

the case with terminal constraint is also discussed in [70]. In those results, feasi-

bility and stability are analyzed without imposing the terminal constraint in the

optimal control problem. Therefore, our future work involves deriving an ape-

riodic formulation of MPC for such unconstrained setup, aiming at alleviating

computational complexity of solving the optimal control problem.
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In Chapter 5, an aperiodic formulation of MPC has been developed for non-

linear systems under additive disturabances. In the proposed method, the ba-

sic methodology is followed from [71], where an optimal control trajectory

is applied in an open-loop fashion until the next update time. However, as

pointed out in [69] this open-loop formulation may yield a tight (or conserva-

tive) condition to guarantee feasibility and stability. Indeed, the maximum al-

lowable disturbance size derived in Example 5.1 is given by wmax = 8.3× 10−4,

which is very small. To overcome this conservativeness, the so-called tube-

based MPC has been developed as an alternative methodology, see e.g., [69],

[72]. In the tube based appraoch, an optimal control policy rather than the open

loop controller is designed. Here, the control policy means that the controller

designs the closed-loop, state feedback controller (e.x., u∗(ξ) = Kx(ξ) + v,

∀ξ ∈ [tk, tk + Tp] for each update time tk), rather than obtain the open-loop con-

trol trajectory. As has been already illustrated in [69], the tube-based strategy

yields a less conservative result than the open-loop formulation. Therefore, it is

of interest to extend our proposed framework to tube based MPC and develop

a strategy such that a larger disturbance size is allowed to guarantee reacursive

feasibility.

In Chapter 5, the author considers a control problem of nonlinear systems

with bounded disturbances. A more interesting and useful setup may be to

consider system with unbounded disturbances, such as gaussian noise. Sev-

eral MPC formulations have been proposed in the literature, such as chance

constrained MPC [73]. In this approach, the authors consider probabilistic con-

straints, which are in general translated to the deterministic one when solving

an optimal control problem (see e.g., [73]). Thus, it may be of interest and has

the potential to extend our approach to the probabilistic formulation, such that

unbounded disturbances can be taken into account.

In networked control systems, transmitting control packets over a commu-

nication network may induce network constraints and uncertainties, such as
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limited communication bandwidth, time delays and packet losses. In this the-

sis, a limited nature of communication is taken into account in Chapter 3 and

Chapter 4. While we can utilize several existing techniques to compensate net-

work delays and packet losses (for details, see Remark 4.4), some theoretical

challenges still remain to be considered. For example, in the approach pre-

sented in Remark 4.4, which basically employs the result in [62], the controller

provides the forward prediction of the state in order to compensate network

delays and packet losses. However, this forward prediction may not be ap-

plicable for systems under model uncertainties or disturbances, since the pre-

dicted states do not necessarily coincide with the actual states. Moreover, these

compensation techniques do not provide an inherent robustness of the system

against network delays or packet losses. Therefore, our future work involves

analyzing how much network delays or packet losses can be torelated theoret-

ically in the system in order to guarantee feasibility and stability.
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Appendix A

Mathematical preliminaries

In this appendix, some basic mathematical premilinaries that have been used

in this thesis are provided.

A.1 Lyapunov Stability

Consider the autonomous system:

ẋ(t) = f(x(t)), (A.1)

where x ∈ Rn. Without loss of generality, assume that the origin is an equi-

librium point, i.e., f(0) = 0. The concept of Lyapunov stability is defined as

follows.

Definition A.1 (Lyapunov stability). The equilibrium point x = 0 is

• stable, if for each ε > 0, there is δ = δ(ε) such that

||x(0)|| < δ ⇒ ||x(t)|| < ε, ∀t ≥ 0 (A.2)

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)|| < δ ⇒ lim
t→∞

x(t) = 0. (A.3)
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State in words, the equilibrium point is stable if for every ε > 0 there exists a

corresponding value of δ, which may be dependent on ε, such that the state re-

mains in ε neighborhood of the origin. The equilibrium point is asymptotically

stable if the state converges to the origin as the time goes infinity.

Lyapunov stability theorem is a useful tool to check the above stability con-

cepts without needing to evaluate the differential equation (A.1) explicitly.

Theorem A.1 (Lyapunov stability theorem). Let V : Rn → R be a continuously

differentiable function such that V (0) = 0, V (x) > 0, ∀x ∈ R\{0} and V̇ (x) ≤ 0,

∀x ∈ R. Then, the origin is stable. Moreover, if V̇ (x) < 0, ∀x ∈ R\{0}, the origin is

asymptotically stable.

Roughly speaking, the origin is stable if there exists a positive definite func-

tion V such that the time derivative is non-negative for all x ∈ R. If the time

derivative is strictly decreasing, then the origin is asymptotically stable.

A.2 Gronwall-Bellman inequality

Lemma A.1. For a given λ ∈ R and µ ∈ R if a continuous function y : [0, a] satisfies

y(t) ≤ λ+

∫ t

a

µy(ξ)dξ (A.4)

then, we have

y(t) ≤ λ exp(µt) (A.5)

for all t ∈ [0, a].

For proof, see Lemma A.1 in [52]. Lemma A.1 has been utilized in (4.21),

where y(t) = ||x(t)− x∗(t)||, µ = Lφ and λ =
1

2
LGKuδ

2
1 .
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