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Abstract

Laser technology was first applied to spectroscopy and is now used in various fields
including medicine and microfabrication. Since the interaction between light and mat-
ter varies with laser frequency, Widely tunable lasers are desired for various appli-
cations. Frequency conversion with nonlinear optical effects usually requires a high
optical pump power because second- and third-order nonlinear coefficients are small.
High quality factor (high-Q) microcavity devices have attracted attentions, because
they allow us to compensate for small nonlinear coefficients and achieve frequency
conversion with low laser power thanks to the strong confinement of light. Recently,
a microcavity-based frequency comb (microcomb) has been generated that requires
only a continuous-wave pump and a high-Q microcavity to obtain an optical frequency
comb, which is a key technology for precise measurements. This dissertation describes
nonlinear frequency conversion in a silica toroid microcavity for generation of optical
frequency combs.

Chapter 1 provides the background and motivation for this work. Frequency comb
technologies and related studies that use high-Q microcavities to enhance third-order
nonlinearities such as four-wave mixing (FWM), stimulated Raman scattering (SRS),
and third-harmonic generation (THG) are surveyed, to clarify the motivation for this
study.

Chapter 2 describes the basic theory and fabrication of a silica toroid microcavity.
The experimental setups to measure the nonlinear processes with a fabricated silica
toroid microcavity including FWM, SRS, and THG are described.

Chapter 3 presents a demonstration of a newly proposed method for achieving mode-
locking in a microcomb system. A model based on the Lugiato-Lefever equation is
developed to analyze microcomb generation, and it reveals that the hysteresis behavior
of a nonlinear cavity will be the key to achieving mode-locking. In contrast to previous
methods, where the frequency of the input laser is scanned, it is found numerically and
experimentally that mode-locking could also be achieved by adequately sweeping the



input laser power.
Chapter 4 describes a study of the gain competition between FWM and SRS that

occurs in a microcavity. Considering the free-spectral-range (FSR) in addition to an
analysis of maximum gains of FWM and SRS, it is found that we can suppress or
enhance the modulation instability gain by changing the input power and the coupling
Q in a large FSR cavity. This will allow us to control the transition from an FWM
dominant state to an SRS dominant state.

Chapter 5 discusses the transverse mode interaction that occurs as a result of SRS
in a silica cavity, which has broad Raman gain. It is found that in such a system the
transverse mode interaction occurs from a low-Q to a high-Q transverse mode family
via an SRS process when a low-Q mode is pumped. As a result, a dual-comb-like
spectrum appears. The transverse mode interaction dependence on the Q value and the
spatial overlap between different transverse mode families are described numerically
and experimentally.

Chapter 6 describes a demonstration of visible light emission via THG. It is shown
experimentally that the FWM and SRS in the near infrared region influence the spec-
trum shape of the generated visible light.

Chapter 7 is a summary. The knowledge obtained in each chapter is summarized
and the conclusions reached in this dissertation are presented.
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Chapter 1

Introduction

A high-quality-factor (Q) optical microcavity is an efficient platform for
achieving second-order and third-order nonlinear effects at a low power
emitted by a compact light source, because the optical density inside the
cavity is strongly enhanced by long photon life and small mode volume1).
Because third-order nonlinear efficiency is proportional to the cube of
light power, a high-Q microcavity is a useful device for studying four-
wave mixing (FWM)2,3), stimulated Raman scattering (SRS)4–7), and third-
harmonic generation (THG)8,9).

One of the target applications of high-Q microcavities is optical fre-
quency comb generation10,11). An optical frequency comb is composed of
a number of frequencies that are perfectly equidistantly spaced in the
spectrum. This technology can contribute to many high-precision appli-
cations, including metrology and spectroscopy12,13). Conventionally, the
combination of a material with broadband fluorescence and a stable op-
tical resonator, as in a Ti:Sapphire laser, has been used to achieve multi-
wavelength emissions. However, a Ti:Sapphire laser generally requires
a stable, high-powered light source, a robust laboratory environment,
and professional skills such as careful optical alignment. The develop-
ment of erbium-doped fiber lasers14–16) made frequency comb sources
compact, but further developments are still needed to lower costs, widen
the operating wavelength range, and increase the repetition rate. A
high-Q microcavity-based frequency comb can meet these demands11,17).

5



CHAPTER 1. INTRODUCTION

Generation of frequency combs with a high-Q microcavity is achieved
by pumping with single continuous wave. Due to the enhanced opti-
cal density inside a cavity, wavelength conversion via four-wave mixing
readily occurs at a low input power, typically below 1 mW. Since low-
power continuous-wave lasers of various wavelengths already exist, a
microcavity-based frequency comb has the potential to be used not only
in the telecom region of the spectrum, but in the visible, mid-infrared,
and ultraviolet regions. The mechanism of microcavity-based frequency
comb generation has been investigated since 2007, and the research has
explored physics-oriented17–19), material-oriented20–23), and application-
oriented topics24–26).

This dissertation focuses on microcavity-based optical frequency comb
generation. A silica toroid whispering-gallery-mode microcavity was se-
lected as the research platform. This type of cavity exhibits ultrahigh Q

(over 100 million) and can be integrated with a silicon chip. This study
uses the physics of wavelength conversion in a cavity via third-order
non-linearity to explain cavity-based generation of optical frequency
combs.

1.1 High-Q microcavity

An optical microcavity is a micro-sized optical cavity. If the cavity length and

light frequency are matched, this creates a “resonance condition” that allows the

light to resonate. During resonance, the cavity confines the light for a length of

time determined by the cavity loss. When a cavity is small, the volume of the

confined light is small; thus, an optical microcavity confines the resonant light in

a microvolume. Light packed into a small volume has a very high optical density,

similar to the way a gas increases in pressure when confined in a small container.

A high Q corresponds to a long light confinement time, called “photon lifetime.”

This is defined as the time it takes for the light to dissipate to 1/e of its original

intensity. A Q of 106 corresponds to a photon lifetime of 0.823 ns (10−9 s) at a

wavelength of 1550 nm. When a continuous wave that satisfies the resonance
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1.1. HIGH-Q MICROCAVITY

condition enters a cavity, the light reaching the cavity first and the light entering

the cavity 0.823 ns later simultaneously exist in the cavity. This overlap causes

a local enhancement of the optical power inside the cavity. Therefore, a high-

Q microcavity has two enhancement factors. One is “micro-size,” which confines

light in a small volume, and the other is “high Q,” which allows light to be trapped

for a long time. These two characteristics make a high-Q microcavity a suitable

platform for demonstrating nonlinear optics that require high optical density of

a material.

Three types of microcavities have been investigated so far as shown in Figure

1.1: the Fabry-Perot cavity, the photonic crystal cavity, and the ring cavity1). A

simple Fabry-Perot cavity consists of two parallel mirrors that reflect light many

times. This type of cavity requires mirrors with a reflectivity higher than 99%.

It is not easy to fabricate such highly reflective mirrors on a small scale. One

solution is a multilayer dielectric mirror coating, which has a reported reflectivity

of over 99.9995%27). An advantage of this type is that an atom is able to couple

to the cavity mode, because the space between mirrors allows electrical fields

to be confined in a vacuum. However, complex measurement systems, such as

highly reflective mirrors and objective lenses, are required. Recently, however, a

fiber-type Fabry-Perot cavity was proposed as a simpler setup28). Another small

Fabry-Perot-type structure is a micropillar cavity, composed of distributed Bragg

reflectors29). In order to form Bragg reflectors, two different materials that have

different refractive indices are alternately grown on a chip using molecular beam

epitaxy. Then, a pillar structure with a typical diameter of less than 1 µm can

be formed by using a semiconductor processing technology, such as reactive-ion

etching. This style allows the integration of quantum dots in a cavity. A single-

photon source has already been used with a micropillar cavity30).

A photonic crystal cavity confines light with Bragg reflection in the horizontal

direction and total internal reflection in the vertical direction. Usually, the struc-

ture consists of a number of periodically-spaced air holes that work as Bragg

mirrors31,32). The cavity can achieve an extremely small mode volume with

a moderately high Q33,34). Precise air holes are fabricated with electron-beam

lithography, which achieves a fabrication accuracy of a few nanometers. Nowa-

days, the precision of photolithography has been improved, and a photonic crystal
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CHAPTER 1. INTRODUCTION

cavity made with a Q of 1 million has been achieved with this method35).

A ring cavity consists of a ring-shaped circuit of an optical waveguide, such

as a rib waveguide and a fiber. Light that satisfies the condition for resonance

propagates around the cavity.

Although there are a number of studies on fiber-based ring cavities, the fol-

lowing sections focus on integrated ring cavities, because the main topic of this

thesis is micro-sized cavities. Many materials are used for integrated ring cav-

ities; for example, cavities with silicon36,37), silica20,38), silicon nitride39,40), alu-

minum nitride41), and diamond22) have been reported. In contrast to cavities

with distributed Bragg reflectors and photonic crystal cavities, ring cavities have

a number of resonant frequencies spaced equidistantly in the spectrum. In other

words, the free-spetral-range (FSR) of a ring cavity is theoretically constant. This

is because the conditions for resonance require 2 pi ∗ m of phase shift per round

trip, where m is an integer. This characteristic is a key point for producing

microcavity-based frequency combs, which I describe later.

A type of cavity similar to a ring cavity is a whispering gallery mode cavity.

It has a whispering galley mode as the resonant mode. This mode propagates

along the edge of the boundary of a circular structure. It was first found by Lord

Rayleigh in 1878, with respect to a sound wave at St. Paul’s Cathedral42). Forty

years after Rayleigh’s discovery, it was found that the theory can be applied to a

light wave that is guided along a boundary edge with total internal reflection43).

A whispering gallery mode exhibits very high Q when the surface of a circular

structure is smooth, because the total internal reflection is analytically lossless.

To achieve this attractive high-Q cavity, droplet cavities, with a smooth bound-

ary due to surface tension, have been researched for applications such as micro-

lasers. However, the material of a droplet itself has absorption. For example, the

Q of a droplet made from water is limited to 1 million at the telecom. In 1989,

Braginsky et al. proposed a whispering gallery mode cavity with low absorption

made from fused silica44), which is fabricated by melting a common single-mode

silica fiber. The cavity exhibits a Q of higher than 100 million, and it paves the

way for use of nonlinear optics with low-power lasers.

High-Q whispering gallery mode cavities have been studied as platforms for

demonstrating nonlinear optics for the last twenty years. There are cavities made

8



1.2. OPTICAL FREQUENCY COMB

from silica7), calcium fluoride45), and magnesium fluoride46). Among them, the

silica toroid microcavity is of particular interest because it exhibits a Q of higher

than 100 million and can be integrated with a silicon chip. This cavity was pro-

posed by Armani et al. in 2003 and some demonstrations of nonlinear optical

effects have been reported47,48).

In this dissertation, “microcavity” will refer to a ring cavity or a whispering

gallery mode cavity.

Fig. 1.1: Performance of several microcavities.
The microcavities are organized by column according to the confinement method used and by row
according to high Q and ultrahigh Q. [K. Vahala, Nature 424, 839-846 (2003). The figure is used
with permission from Nature Publishing Group.]

1.2 Optical frequency comb

Optical frequency comb technology was developed by J. L. Hall and T. W. Hänsch

in the 1990s49,50), and they won the Nobel prize in Physics in 2005. An optical

frequency comb is a set of optical frequencies spaced perfectly equidistantly in the

frequency domain12). Strictly speaking, the phase of each frequency component

should be locked. Thus, the relationship between the spectrum and the temporal

waveform is described as in Figure 1.2. This set of lights is the most precise tool

for optical measurements, spectroscopy, metrology, and optical communications.

The first frequency comb was demonstrated with a mode-locked Ti:Sapphire

laser, which emits a transform-limited pulse train with a fixed repetition rate that

9



CHAPTER 1. INTRODUCTION

Fig. 1.2: Optical frequency comb.
a, b Consecutive pulses of the pulse train emitted by a mode-locked laser and the corresponding
spectrum. In the frequency domain, the components are spaced equidistantly at intervals of ωr.
The ωo is a carrier-envelope-offset relating to a phase shift ∆ϕ of each pulse in the time domain.
[Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233-237 (2002). The figure is used with
permission from Nature Publishing Group.]
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1.2. OPTICAL FREQUENCY COMB

corresponds to cavity length. When mode-locking is achieved, frequency compo-

nents of the pulse train are equidistant in the frequency domain and have a flat

phase relationship. If one of the frequency components is locked, a kind of atomic

clock assures an absolute number of frequencies, so one can estimate absolute

frequencies of other comb lines because they are spaced equidistantly. Before

frequency combs emerged, very complex components were required to get an ab-

solute frequency from a specific optical clock, such as a cesium atomic clock. In

contrast, since the emergence of the frequency comb, only a Ti:Sapphire laser, an

optical clock, and a few nonlinear media are required for absolute frequency mea-

surements. Figure 1.3 shows the first direct radio frequency-optical frequency

conversion using a Ti:Sapphire laser. The setup requires a methane-stabilized

He-Ne laser, a Ti:Sapphire laser, and three nonlinear crystals for frequency dou-

bling, as well as an optical frequency interval divider, to achieve a stabilized

486-nm output for the absolute frequency measurement of hydrogen 1S-2S two-

photon resonance. Compared to the conventional frequency chain, the setup has

become remarkably simple12).

Fig. 1.3: The first direct radio frequency-optical frequency conversion using a Ti:Sapphire laser.
An optical interval divider (blue box) fixes the frequency ratios to precisely 7 f : 4 f : f . f is a
reference value from a methane-stabilized He-Ne laser (3.39 µm). The frequency comb fixes the
interval 4 f − 3.5 f = 0.5 f . [Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233-237
(2002). The figure is used with permission from Nature Publishing Group.]

In 2000, a valuable method called the f-2f self-reference method was proposed,

which eliminates the necessity of some nonlinear crystals and even an optical fre-

11



CHAPTER 1. INTRODUCTION

quency interval divider49,50). It was made possible by the development of a pho-

tonic crystal fiber as a method of spectral broadening. In the first demonstration,

a 25-fs pulse train with a repetition rate of 625 MHz emitted from a Ti:Sapphire

laser propagates in a photonic crystal fiber, which exhibits a high nonlinear coef-

ficient. As a result, the spectrum becomes an octave (532–1064 nm). Comparison

between doubling frequency of the red part of the spectrum and the blue part of

the spectrum provides a carrier-envelope-offset ωo of the frequency comb. With

a frequency lock of two parameters, ωo and the repetition rate ωr, a stable fre-

quency comb is obtained. The setup of this comb requires space on one optical

bench.

Nowadays, frequency combs are researched with respect to not only a Ti:Sapphire

laser but also a fiber laser that is much simpler than the former. The fiber lasers

do away with expensive setup and the necessity for professional laser skills, be-

cause they are robust against external noise14–16). Thus, fiber-based frequency

combs are currently common for precise measurements. Today, a microcavity-

based frequency comb11) is expected to be the next new type of frequency comb.

The advantages over conventional combs are as follows:

1. high repetition rate of a pulse train (large free-spectral-range),

2. elimination of complex components,

3. low fabrication cost,

4. tunability of the center frequency of a frequency comb.

Concrete explanations of microcavity-based frequency combs appear in next parts.

1.3 Four-wave mixing and Microcomb

Among nonlinear optical effects, four-wave mixing derived from third-order non-

linearity is key for microcavity-based frequency combs(micocombs). Strictly speak-

ing, the combs are called“Kerr combs”. A number of researchers have achieved

their manufacture. The basic experimental setup is simple; it requires a continuous-

wave laser and a microcavity connected to an optical waveguide. From single

wavelength input, a microcomb occurs via four-wave mixing3,10) as described in

12



1.3. FOUR-WAVE MIXING AND MICROCOMB

Fig. 1.4: Principle of optical frequency comb generation using optical microresonators. (A) An
optical microresonator (here, a silica toroid microresonator) is pumped with a CW laser beam.
The high intensity in the resonators ( GW/cm2) gives rise to a parametric frequency conversion
through both degenerate and nondegenerate (i.e., cascaded) FWM. Upon generation of an opti-
cal frequency comb, the resulting beatnote (given by the inverse cavity round-trip time) can be
recorded on a photodiode and used for further stabilization or directly in applications. (B) Opti-
cal frequency comb spectrum, which is characterized by the repetition rate ( fr) and the carrier
envelope frequency ( fo). In the case of a microresonatorbased frequency comb, the pump laser is
part of the optical comb. The comb is generated by a combination of degenerate FWM (process
1, which converts two photons of the same frequency into a frequency upshifted and downshifted
pair of photons) and nondegenerate FWM (process 2, in which all four photons have different
frequencies). The dotted lines indicate degenerate FWM into resonator modes that differ by more
than one mode number. The presence of cascaded FWM is the underlying process that couples the
phases of all modes in the comb and allows transfer of the equidistant mode spacing across the
entire comb. [T. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555-559 (2011). The
figure is used with permission from The American Association for the Advancement of Science.]
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CHAPTER 1. INTRODUCTION

Figure 1.4. The mechanism is explained by analogy with a modulation instability

in fibers51). When a fiber exhibits anomalous dispersion at a particular wave-

length, a propagating pulse is modulated with third-order nonlinearity. This

is because phase matching is induced by a balance between the phase shift of

the anomalous dispersion and that of a Kerr effect. The modulation indicates a

wavelength conversion. For a microcomb, the wavelength conversion occurs even

though the laser input is not a pulse, because a microcavity enhances the opti-

cal power inside by as much as the peak power of a pulse that provides a large

enough Kerr effect.

Since the 1990s, there have been a number of studies on wavelength conver-

sion itself with high-Q microcavities. However, it has been difficult to specify

what kinds of nonlinear effects contribute. In 2004, Kippenberg et al. reported

pure optical parametric oscillation in a silica toroid microcavity3). They men-

tioned that four-wave mixing and stimulated Raman scattering compete, and

two parameters, a cavity detuning and a coupling efficiency between a cavity

and a waveguide, control the competition. This is because how phase matching

is satisfied largely influences the threshold power of four-wave mixing, whereas

stimulated Raman scattering does not require phase matching. Since four-wave

mixing is a completely coherent process, this research made the first step toward

mode-locking of the microcomb.

In 2007, Del’Haye et al. introduced the concept of a microcomb with a silica

toroid microcavity10). They indicated that the frequency lines of a microcomb are

stable enough to use for frequency metrology. Based on this proposal, intensive

microcomb research has been done with silica toroids18,52), silica microspheres53,54),

silicon nitride rings21,55), and others56,57). In 2011, Ferdous et al. proved that

there are two states in the microcomb: one is a tightly coherent state, and the

other is noisy58). Subsequent research19) revealed that the difference between

the two states derives from the evolution of the combs, as shown in Figure 1.5.

A high-phase noise state is caused by different offsets of secondary combs, which

are evolved from primary combs that are the first generation from a pump mode.

Each primary comb line has slightly different dispersion, so that secondary comb

lines don’t match with each other. The different offsets emerge as high-phase

noise in radio frequencies. On the other hand, when the primary combs occur

14



1.3. FOUR-WAVE MIXING AND MICROCOMB

next to the pump, all of the comb lines have the same offsets, as shown in Figure

1.5(b). State 2 indicates coherence, which can be used in practical applications.

Radio frequency measurement is a simple way to assess the state of the comb.

Further research found that Turing patterns and cavity soliton states are in

low-phase noise states, and a chaotic state exhibits high-phase noise. The Turing

pattern is a state indicated by a periodic modulation in the temporal domain, with

effectively blue detuning of the input. In a cavity soliton state with effectively

red detuning, one soliton (or multiple solitons) propagates in the cavity, which is

the same as mode-locking. It requires a balance between the phase shift of the

anomalous dispersion and that of a Kerr effect. Thus, the engineering of a cavity

dispersion is needed to achieve a mode-locked microcomb17). The way to access a

mode-locked microcomb has been researched experimentally17), theoretically59),

and numerically60–63). A simple method is a wavelength scan from blue to red

detuning of an input laser, which follows the resonant wavelength shift derived

from a Kerr effect and a thermo-optic effect64). The intracavity power gradually

becomes large, and the detuning of the input laser finally reaches effectively red

detuning. The excitation at which intracavity power is gradually changed from

zero to a particular threshold value is called soft excitation65), and it is the most

common way to produce a mode-locked microcomb. Recently, a method of con-

trol of the thermo-optic effect with a microheater66) was proposed. This method

is useful because there is not always a tunable laser in the desired wavelength

region, such as mid-infrared.

Frequency locking of a microcomb, such as f-2f self-reference interference, is

still desired. Despite much research on dispersion engineering, the spectrum

of a mode-locked microcomb itself does not reach an octave. As the spectrum

emitted by a Ti:Sapphire laser broadens, an octave microcomb is achieved with a

highly nonlinear fiber. Recently, f-2f and 2f-3f self-reference methods have been

demonstrated67,68). Thus, a microcomb can obtain the same capacity as a fre-

quency comb source. However, some additional components are required, which

eliminates the advantage of a microcomb that requires a simple setup. Thus, gen-

eration of an octave-spanning microcomb is still one of the most attractive topics

in microcomb research.

Not only telecom-range, but also visible- and mid-infrared-range microcombs

15



CHAPTER 1. INTRODUCTION

Fig. 1.5: (a) Transition to a low-phase-noise Kerr comb. a, Optical spectra of microresonator comb
states 1 and 2 (pump power = 6 W) in a Si3N4 resonator. State 2 evolves from State 1 when reduc-
ing the detuning of the pump laser. b, A transition is observed from multiple subcombs to a single
(sub)comb over the bandwidth of the Kerr comb reconstruction. In State 1, all subcombs have
the same mode spacing, but have different offsets ξ, which differ by a constant relative amount of
∆ξ/2π= 66 MHz. c, In the transition from State 1 to State 2, the amplitude noise peak resulting
from the beating between overlapping offset subcombs disappears (resolution bandwidth RBW =
300 kHz) d, The RF beat note shifts by ∼ 10 MHz and the signal-to-noise ratio increases (RBW
= 100 kHz). (b) Evolution of optical spectra, state 1 and 2. State 1 exhibits high-phase noise
derived from a difference of offsets of secondary combs which generate from each primary comb
line (2-FSR combs in this case). The optical spectrum of State 2 exhibits low-phase noise because
all comb lines are directly generated from a pump. [(a) T. Herr, K. Hartinger, J. Riemensberger,
C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, Nature Photonics
6, 480-487 (2012). The figure is used with permission from Nature Publishing Group.]
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1.3. FOUR-WAVE MIXING AND MICROCOMB

Fig. 1.6: Numerical simulations of soliton formation in a microresonator.
a, Average intracavity power (blue line corresponds to the transmission signal for a microcavity
with side coupling system.) during a simulated laser scan (101 simulated modes) over a resonance
in a MgF2 resonator. The step features are well reproduced. The orange lines trace out all possible
evolutions of the system during the scan. The dashed lines show an analytical description of the
steps. The green area corresponds to the area in which solitons can exist, the yellow area allows
for breather solitons with a time-variable envelope; solitons cannot exist in the red area. b,c,
Optical spectra and intracavity powers for the different positions I–XI in the laser scan.. [T. Herr,
V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nature
Photonics 8, 145-152 (2014). The figure is used with permission from Nature Publishing Group.]
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Fig. 1.7: a, Optical spectra of three selected states with one, two and five solitons, respectively.
The insets show the RF beatnote, which is resolution-bandwidth limited to a 1 kHz width in all
cases. The dashed red line in the optical spectrum of the one-pulse state shows the spectral sech2
envelope expected for solitons with a 3 dB bandwidth of 1.6 THz. b, FROG traces of the states
in a that display the signal of the single and multiple pulses. [T. Herr, V. Brasch, J. D. Jost, C.
Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nature Photonics 8, 145-152
(2014). The figure is used with permission from Nature Publishing Group.]
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Fig. 1.8: Experimental setup for f −2 f self-referencing of a microcomb.
a, The microcomb is generated by an amplified external cavity diode laser (ECDL) and phase-
optimized for the generation of Fourier-limited pulses shorter than 200 fs. Subsequent ampli-
fication and broadening in highly nonlinear fiber (HNLF) generates an octave-spanning comb
spectrum and enables the measurement of the carrier-envelope-offset frequency using an f −2 f
interferometer. Repetition rate and carrier-envelope-offset of the microcomb can be stabilized to
an atomic clock (hydrogen maser). Amp, erbium-doped fiber amplifier; PD, photodiode; PID,
proportional-integral-derivative controller; Shaping, liquid-crystal-based spatial light modula-
tor; SHG, second harmonic generation. b, Octave-spanning microcomb spectrum after nonlinear
broadening. [P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J.
Vahala, S. B. Papp, and S. A. Diddams Nature Photonics 10, 516-520 (2016). The figure is used
with permission from Nature Publishing Group.]
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are gaining attention, because there are some interesting applications in the

visible69) and mid-infrared regions70,71).

In the visible region, there are some biological applications, such as tissue

imaging and sensing in water. In the mid-infrared region, there are many ab-

sorption lines of gases for which sensing is desired. Microcombs can be applied

to these regions as long as a continuous-wave laser exists and the material ab-

sorption is small. In 2011, a mid-infrared microcomb was demonstrated with a

magnesium fluoride cavity, using dispersion engineering to achieve an anomalous

dispersion in the mid-infrared region24). Recently, a microcomb with a silicon ring

cavity reached a mode-locked state and was used for measurements of acetylene

gas23). There are some studies utilizing a quantum cascade laser as an input.

Thus, there is a possibility of developing microcomb research in the wavelength

region of 4.5–10 µm72). There are few materials to use for a microcomb in the

visible, because it is almost impossible to design an anomalous dispersion, due to

a strong material dispersion73,74). However, a diamond ring cavity should have

the potential to achieve microcomb generation in the visible. A group at Harvard

University achieved the design of an anomalous dispersion in the visible range

and fabricated a high-Q diamond ring75).

Fig. 1.9: Mid-infrared microcomb generation.
(a) Optical spectrum of microcomb generation with a silicon microring. The input laser is an op-
tical parametric oscillator emitting a wavelength of 2.6 µm23). (b) Optical spectrum of microcomb
generation with a magnesium fluoride cavity. The input laser is a quantum cascade laser emitting
a wavelength of 4.4 µm76). [(a) A. G. Griffith, R. K.W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty,
R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, Nature Com-
munications 6, 6299 (2015). The figure is used with permission from Nature Publishing Group.
(b) C. Lecaplain, C. Javerzac-Galy, E. Lucas, J. D. Jost, T. J. Kippenberg, arXiv:1506.00626. (2016).
The figure is used with permission from T. J. Kippenberg.]
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Cavity solitons require an anomalous dispersion because it compensates for

the phase shift derived from a Kerr effect. However, a microcomb with a nor-

mal dispersion has been intensively researched77–81) because most materials ex-

hibit strong normal dispersion in the visible and ultraviolet ranges, which are

attractive ranges because of some of the practical applications mentioned above.

Essentially, there is no four-wave mixing gain in the normal dispersion. Yet, a

kind of mode crossing causes a local anomalous dispersion by which wavelength

conversion is triggered. Since there is a dark soliton state in the normal disper-

sion, coherent phase-locked states can be achieved. With coupled microcavities

that can control mode crossing, a microcomb in the normal dispersion should be

reasonable. Nowadays, a number of studies have reported deep understanding of

the mechanism of dark soliton generation from a local anomalous dispersion.

Recently, some research on applications with a microcomb has been reported.

In 2014, Pfeifle et al. demonstrated coherent terabit communications with a

microcomb25). They utilized 20 comb lines with QPSK and achieved 1.44 Tbit/s.

In 2016, Suh et al. demonstrated dual-comb spectroscopy based on two micro-

combs, and they measured HCN gas82). Thus, microcombs have already been

used as a source of frequency combs, although there is still much to be under-

stood, such as dark soliton generation80,83), dispersive wave emission84,85), and

the relationship between four-wave mixing and other nonlinear optical effects,

such as stimulated Raman scattering86).

1.4 Stimulated Raman scattering and Raman comb

In 2002, Spillane et al. reported an ultra-low threshold Raman laser with a silica

microsphere with a Q of over 100 million7). Since Raman scattering is a process

that converts optical energy into molecular vibration, the wavelength is converted

to a length longer than the original line. Thus, stimulated Raman scattering is

a way to access long wavelengths efficiently. Raman lasing has been demon-

strated by using high-Q cavities made of not only silica, calcium fluoride6,87,88),

polymer89,90), diamond75), and other materials91,92). Since the amount of Stokes

shift of the Raman gain is inherent to materials, the material of a cavity should

be limited in order to obtain a very long-wavelength Raman laser. Diamond that
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has 40 THz of Stokes shift is a powerful material, and 2−µm Raman lasing with

1550-nm pumping has been demonstrated75).

Cascaded Raman lasing has been also reported by using silicon and silica high-

Q cavities5,93). Even if the Stokes shift is comparatively small, cascaded conver-

sion reaches a large amount of the shift. The silicon Raman lasing conducted

by Rong et al.93) demonstrated measurements of gases with first-order Raman

output (∼ 1680 nm) and second-order Raman output (∼ 1850 nm). Thus, mid-

infrared Raman lasers should be also accessed by using cascaded Raman lasing

with high-Q cavities.

In contrast to crystalline materials such as silicon and calcium fluoride, sil-

ica exhibits broad Raman gain because of its amorphous structure. Research

with a silica microsphere showed a number of Raman oscillation lines around

1670 nm from a continuous-wave input. The multimode Raman outputs are

spaced equidistantly due to the cavity resonance, creating what seems to be a

comb derived from stimulated Raman scattering.

In 2010, Liang et al. demonstrated a mode-locked Raman comb with a calcium

fluoride cavity94). Although calcium fluoride is crystalline with a narrow Raman

gain, they observed Raman oscillations over 40 lines spaced with a 35 GHz in-

terval. Interestingly, the phase noise measurement revealed that Raman lines

are mutually coherent, which indicates mode-locking. Thus, this research opens

the way to frequency comb generation with stimulated Raman scattering. An

advantage of stimulated Raman scattering is that it occurs in the normal disper-

sion, in contrast to four-wave mixing. So, if a mode-locked Raman comb can be

readily accessed, a Raman comb with a microcavity is useful even in the normal

dispersion.

Recently, Lin and Chembo95) reported an observation of a phase-locking tran-

sition of a Raman comb with a barium fluoride cavity. Thus, mode-locked Raman

comb generation is still attractive with respect to nonlinear physics and comb

generation in the long wavelength region.
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1.5 Third-harmonic generation and visible comb

Microcomb generation with a visible continuous-wave pump has been researched,

as mentioned above. On the other hand, a visible comb produced via second- and

third-harmonic generation has been also reported. In 2007, Carmon and Vahala9)

demonstrated visible light generation with a silica toroid microcavity. Due to a

high Q, efficiency of third-harmonic generation is much higher in spite of poor

mode overlapping. The phase matching is automatically satisfied with the selec-

tion of a third-harmonic mode of which the effective refractive index is the same

as that of a pump mode. Since a third-harmonic mode is usually a much higher-

order mode than a pump mode, the Q should be low. However, it contributes

to easy achievement of frequency matching, because the low Q means a broad

Lorentzian spectrum. Most materials exhibit a normal dispersion in the visible

region. Thus, common microcomb generation does not occur because it requires

an anomalous dispersion. Therefore, harmonic generation should be a reasonable

way to obtain a visible comb with a microcavity. Upconversion lasers emitting vis-

ible light have been also demonstrated by using doped silica cavities. Silica glass

can be doped with many kinds of rare earth trivalent ions: not only erbium, but

also ytterbium, neodymium, and thulium. Lu et al.96) reported that an erbium-

doped silica toroid cavity with a near-infrared pump emits visible light in the

range between 520 and 560 nm. A blue upconversion laser with a 1064 nm pump

has been demonstrated by using a thulium-doped silica microcavity97). Thus, up-

conversion with doped silica cavities is a promising way to obtain visible light

with near-infrared pumping. In 2011, Miller et al.98) demonstrated visible comb

generation via second-harmonic generation with a silicon nitride ring. The visi-

ble comb occurred from a continuous-wave input in the near-infrared region. This

phenomenon explains that a microcomb occurs first in the near-infrared region,

and each comb line causes second-harmonic generation, which forms lines even

in the visible region. Similar research with third-harmonic generation and with

both second- and third-harmonic generation has been reported99).

The combination of four-wave mixing, stimulated Raman scattering, and third-

harmonic generation causes multi-colored emissions with a silica microsphere100)

and a lithium niobate cavity101). Although the mechanism is still too complex to
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understand, a broad visible spectrum is obtained.

1.6 Motivation and objective of this study

I described the background of high-Q microcavities and optical frequency combs.

Then, I introduced recent progress on optical frequency comb generation with a

microcavity, via nonlinear optical effects including four-wave mixing, stimulated

Raman scattering, and third-harmonic generation. The motivations for this study

are explained in this section.

· For Microcombs
Microcombs derived from four-wave mixing have been intensively researched to

achieve mode-locking. The first demonstration of mode-locked microcombs was

performed with wavelength scanning to compensate for resonant shifts caused

by Kerr and thermo-optic effects. Theoretical research has also revealed much

important information–for example, that Turing patterns and cavity solitons oc-

cur in the effectively blue and red detunings, respectively. Such understanding

cannot be obtained without theoretical and numerical analyses.

One problem with the wavelength scanning method is that there is not always

a good tunable laser in every frequency region. It is true that almost all wave-

lengths can be accessed with optical parametric oscillators and quantum cascade

lasers. Yet, they are expensive and complex, which takes away the advantage

of microcombs in terms of cost and simplicity. The motivation of this study is to

develop a simple method that complements the wavelength scanning method for

mode-locked microcomb generation in every frequency region.

To develop a novel method, numerical simulation with a Lugiato-Lefever model

was used. Considering the hysteresis behavior of a nonlinear cavity, wavelength

scanning and input power scanning should have the same meaning for non- lin-

ear dynamics. I focus on input power control, which is readily achieved with a

kind of optical attenuator and is a versatile method in every frequency region. I

will first illustrate a mode-locked microcomb with an input power control by us-

ing numerical simulation. Second, I will prove the concept experimentally with

a silica toroid microcavity, resulting in the first demonstration a of mode-locking

operation in a silica toroid microcavity.
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· For Ramancombs
Raman lasing has been used with many kinds of microcavities. Long- wavelength

Raman lasers (around 2 µm) have been achieved and are useful for measure-

ments of gases. While single-mode lasing has been developed, multi-mode Ra-

man lasing derived from a broad bandwidth of the Raman gain is an attractive

goal. A few studies on mode-locked multi-mode Raman lasing have been done,

and further research seems promising for mode-locked Raman comb generation

and Raman soliton generation.

Silica has a broader bandwidth of the Raman gain than crystalline materials,

due to its amorphous structure. Thus, silica cavities have the ability to produce a

broad-bandwidth Raman comb. Although stimulated Raman scattering in silica

cavities has been widely investigated, experimental demonstration of multi-mode

Raman lasing is still lacking. The motivation of this study is to make the physics

of this topic clear for broad Raman comb generation.

I will study two kinds of comb spectra resulting from stimulated Raman scat-

tering in a silica toroid microcavity. The difference between them is caused by

mode interaction between transverse modes via the stimulated Raman scatter-

ing process. To explain the physics, both theoretical analyses and experiments

were conducted. I also perform numerical analyses with simultaneous Lugiato-

Lefever equations.

·For Visible combs
Frequency combs in the visible range are useful for practical applications, includ-

ing biological imaging. Simple comb sources are desired, although conventional

comb sources already exist in the visible range. Microcavity-based visible combs

are promising because of their simplicity. Upconversion via third-harmonic gen-

eration is one way to obtain a visible comb with a telecom-wavelength laser.

Some researchers have pointed out that combinations of third-harmonic gen-

eration, four-wave mixing, and stimulated Raman scattering contribute to gener-

ation of broad visible light spectra in a high-Q cavity with a telecom pump. Yet,

the relationship between spectra in the visible and near-infrared regions is still

unclear. In particular, silica cavities exhibit strong Raman oscillations in addition

to four-wave mixing, which complicates the visible spectrum.

I study broad bandwidth visible light emission via third-harmonic generation
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with a silica toroid microcavity. I measure both spectra at the same time to under-

stand the relation between the spectra in the visible and near-infrared regions.

From the results, I find how broad visible lights generate via combinations of

third-harmonic generation, four-wave mixing, and stimulated Raman scattering.

A silica toroid microcavity has the potential to produce a microcomb in the

near-infrared range, an octave-spanning Raman comb, and a visible comb via

third-harmonic generation. This dissertation paves the way for the development

of applications with silica toroid microcavity-based frequency combs.

1.7 Thesis statement and overview

This thesis explores nonlinear optical processes with silica toroid microcavities.

High-Q microcavities, including silica toroid microcavities, are efficient and con-

venient devices that induce nonlinear parametric frequency conversion via third-

order nonlinearity. Optical frequency comb generation from a continuous-wave

laser was attempted via the devices. Compact sources of optical frequency combs

allow their application possibilities to expand to practical uses, such as sensing

and spectroscopy products. This thesis demonstrates multi-frequency genera-

tion via three nonlinear optical processes (four-wave mixing, stimulated Raman

scattering, and third-harmonic generation) with a silica toroid microcavity, which

paves the way to generate an optical frequency comb with high-Q microcavities.

This thesis consists of seven chapters, including this introduction, and is orga-

nized as follows:

Chapter 1 summarizes the development of microcavity-based optical frequency

comb generation via third-order nonlinear optical processes. Recent progress in

microcomb-, Raman comb-, and visible comb-technologies are introduced. The

objective of the thesis is stated.

Chapter 2 describes the basic theory and fabrication of both a silica toroid mi-

crocavity and a tapered fiber. The experimental setups to measure the nonlinear

processes (four-wave mixing, stimulated Raman scattering, and third-harmonic

generation) with a fabricated silica toroid microcavity are described.
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Chapter 3 presents a demonstration of a newly proposed method for achiev-

ing mode-locking in a microcomb system. A model based on the Lugiato-Lefever

equation is developed to analyze microcomb generation, and it reveals that the

hysteresis behavior of a nonlinear cavity is key to achieving mode-locking. In con-

trast to previous methods, where the frequency of the input laser was scanned, it

is noted (both numerically and experimentally) that mode-locking could also be

achieved by adequately sweeping the input laser power.

Chapter 4 describes a study of the gain competition between four-wave mix-

ing and SRS that occurs in a silica microcavity. By considering the free-spectral-

range (FSR) in addition to an analysis of maximum gains of four-wave mixing and

stimulated Raman scattering, it is found that we can either suppress or enhance

the modulation instability gain by changing the input power and the coupling Q

in a large-FSR silica cavity. This will allow us to control the transition from a

four-wave mixing dominant state to an stimulated Raman scattering dominant

state.

Chapter 5 discusses the transverse mode interaction that occurs as a result

of stimulated Raman scattering in a silica cavity, which has broad Raman gain.

It is found that, in such a system, the transverse mode interaction occurs from

a low-Q to a high-Q transverse mode family via an stimulated Raman scattering

process when a low-Q mode is pumped. As a result, a dual-comb-like spectrum

appears. The transverse mode interaction dependence on the Q value and the

spatial overlap between different transverse mode families are described both

numerically and experimentally.

Chapter 6 describes a demonstration of visible light emission via third-harmonic

generation. Experimentally, it is shown that both four-wave mixing and stimu-

lated Raman scattering in the near-infrared region influence the spectrum shape

of the generated visible light.

Chapter 7 summarizes this dissertation, its contributions, and potential fu-

ture research on nonlinear optical processes with a silica toroid microcavity.

In Appendix A, a polygonal silica toroid microcavity for stable coupling is de-

scribed. An octagonal cavity shape is proposed and analyzed via a finite-domain

time-difference method. A fabrication process that includes a combination of wet

and dry etchings is developed. The experimental results are shown.

27



CHAPTER 1. INTRODUCTION

In Appendix B, theories of both the optical cavity and whispering gallery

mode are described. A relationship between the linewidth of the resonance and Q-

factor is derived. From the Helmholtz equation, general expression of whispering

gallery modes in a microsphere cavity is derived.

In Appendix C, the Lugiato-Lefever equation is derived. However, prior to

that derivation, a nonlinear Schrödinger equation is derived from a wave equa-

tion. By considering the combination of the nonlinear Schrödinger equation and

the coupled mode theory, the Lugiato-Lefever equation is then described.
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Chapter 2

Silica toroid microcavity

In this chapter, I describe mathematical expressions of a silica toroid
microcavity and evaluate a fabricated silica toroid microcavity experi-
mentally. Since the main purpose of this thesis is the study of nonlinear
frequency conversion with a silica toroid microcavity, comprehension of
theories related to high-Q cavities, tapered fibers, and nonlinear optical
processes is necessary. Experimental protocols related to the fabrica-
tion of silica toroid microcavities and tapered fibers are also discussed.
Finally, methods of measurement of nonlinearity are explained.

Section 2.1 describes quality-factor in an optical cavity. Section 2.2
describes the theory of coupling between optical components. Section
2.3 describes the spatial mode profiles of the optical modes in a silica
toroid cavity. Section 2.4 describes the thoery of optical modes in a ta-
pered fiber. Section 2.5 decribes theories of four-wave mixing, stimu-
lated Raman scattering, and third-harmonic generation in a high-Q cav-
ity. Section 2.6 explains fabrication methods for a silica toroid microcav-
ity and a tapered fiber. Section 2.7 shows methods to measure Q-factor
and nonlinearity.
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2.1 Theory of quality-factor

As described in Chapter 1, high-Q is essence for the objectives of this dissertation.

This section explains the theory of Q-factor of an optical cavity.

Q-factor expresses the extent to which dissipation is present in a resonant

system. The description is defined as follows:

Q =ωr
Storedenergy[J]

Power loss[W]
, (2.1)

where ωr is the angular frequency at a resonance. The factors for the dissipations

are related to the photon lifetime and the linewidth of the resonance. Given that

a photon lifetime and a full-width half-maximum (FWHM) of the linewidth are

expressed as τp and ∆νr, relationships yield

Q =ωrτp ≈ νr

∆νr
. (2.2)

The typical values of Q, ∆νr, and τp at the telecom are shown in Table 1.1.

When Q is discussed, the causes of propagation loss should be divided into

material-based loss, scattering-based loss, coupling loss, and so on. Since they

are parallel, the total Q is

Q−1
total =Q−1

material +Q−1
scattering +Q−1

couple +·· · . (2.3)

Note that the total Q limits the lowest Q that causes the largest loss. Figure 2.1

shows a category of causes of loss. Causes are divided into two types: intrinsic

loss and external loss. Intrinsic loss indicates the loss caused by the factors the

cavity has independently. Surface scattering loss and material absorption loss

are categorized as intrinsic loss. On the other hand, external loss means the

loss caused by perturbation from external components such as a waveguide. In

this dissertation, Qint and Qe will refer to the Q depending on intrinsic loss and

external loss, respectively. A Q measured experimentally indicates a Qtotal.
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Fig. 2.1: Different causes of propagation loss. Intrinsic loss includes kinds of loss depending
the cavity itself such as surface scattering and material absorption. External loss indicates loss
caused by perturbation from external components such as a waveguide.

Table. 2.1: Relation between Q factor, ∆ν, ∆λ and τp at λ = 1550nm

Q factor ∆ν ∆λ τp

1×106 193.4MHz 1.55pm 0.823ns

2×106 96.71MHz 0.775pm 1.646ns

1×107 19.34MHz 0.155pm 8.23ns

2×107 9.671MHz 0.0775pm 16.46ns

1×108 1.934MHz 15.5fm 82.3ns

2×108 967.1kHz 7.75fm 164.6ns

1×109 193.4kHz 1.55fm 0.823µs

2×109 96.71kHz 0.775fm 1.646µs

2.2 Theory of coupling between optical components

A coupled mode theory describes how light behaves between multiple optical

components102,103). In this section, it expresses the coupling of a light between a

cavity and a waveguide. Among the several types of cavity-waveguide systems, a

side coupling as shown in Figure 2.2 is regarded the best explanatory model for

the experimental system described later.

On a side coupling system, Ucav is set as the amplitude in a cavity, where

|Ucav|2 corresponds to the stored energy within the cavity. Considering an intrin-

sic loss and a coupling loss, Ucav yields

Ucav(t)=U0 exp( jωt)exp(−αintt)exp(−αet), (2.4)
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Fig. 2.2: Side coupling system. A cavity and a waveguide connect with a coupling coefficient κ.

where αint and αe are the loss related to Qintrinsic and Qexternal, respectively. The

time variation of Ucav is described as

dUcav(t)
dt

= ( jω−αint −αe)Ucav(t)= ( jω− 1
2τint

− 1
2τe

)Ucav(t). (2.5)

Then, input sin and output sout in a waveguide must be considered, where |sin|2
and |sout|2 correspond to the input power and the output power, respectively. With

a perturbation from the waveguide, Equation 2.5 is modified as follows:

dUcav(t)
dt

= ( jω− 1
2τint

− 1
2τe

)Ucav(t)+κsin, (2.6)

where κ is a coupling coefficient of sin to the cavity. Given steady state dUcav(t)
dt = 0,

the amplitude yields

Ucav(t)= κsin

j(ωin −ω)+ ( 1
2τint

+ 1
2τe

)
, (2.7)

where ωin is the angular frequency of an input. To understand κ clearly, the flow

of energy from a cavity to a waveguide must be discussed. Given that an intrinsic

loss αint and an input sin can be neglected, the energy in a cavity and the time

variation are derived as

|Ucav(t)|2 = |U0|2 exp(−2αet), (2.8)
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d|Ucav(t)|2
dt

=−2αe|Ucav(t)|2 =− 1
τe

|Ucav(t)|2. (2.9)

To satisfy the condition of energy conservation, |sout|2 is given by

|sout|2 = 1
τe

|Ucav(t)|2, (2.10)

sout =
√

1
τe

Ucav(t). (2.11)

Here, the coupling rate from a cavity to a waveguide and from a waveguide to a

cavity must be the same with respect to energy. Therefore, the relationship

κ=
√

1
τe

, (2.12)

is satisfied, and it is a clear description of κ. Next, considering an input sin and

an intrinsic loss αint, the output sout yields

sout = Asin +
√

1
τe

Ucav(t). (2.13)

Now, from the point of view of energy conservation, the relationship is derived as

|sin|2 −|sout|2 = d
dt

|Ucav(t)|2 + 1
τint

|Ucav(t)|2. (2.14)

Note that the difference between input and output is expressed as a summation

of the variance in stored energy in the cavity and an intrinsic loss. In the same

manner as Equations 2.6–2.9, the time variation of stored energy is given by

d
dt

|Ucav(t)|2 =−(
1

τint
+ 1
τe

)|Ucav(t)|2 +
√

1
τe

(U∗
cavsin +Ucavs∗in), (2.15)

where the third and fourth terms on the right side are descriptions with related

phases. With Equations 2.13 and 2.15, Equation 2.14 is developed as follows:
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|sin|2−|Asin+
√

1
τe

Ucav(t)|2 =−(
1

τint
+ 1
τe

)|Ucav(t)|2+
√

1
τe

(U∗
cavsin+Ucavs∗in)+ 1

τint
|Ucav(t)|2.

(2.16)

Hence, two relationships are derived as

A =−1, (2.17)

sout =−sin +
√

1
τe

Ucav(t). (2.18)

With the relationships developed so far, the transmittance of an amplitude t be-

tween a cavity and a waveguide yields

t = sout

sin
=−1+

√
1
τe

κ

j(ωin −ω)+ ( 1
2τint

+ 1
2τe

)
=

− j(ωin −ω)− 1
2τint

+ 1
2τe

j(ωin −ω)+ 1
2τint

+ 1
2τe

. (2.19)

When the frequency of input light and the resonant frequency of a cavity are

matched (the detuning is zero), a simplification is possible:

t =
− 1

2τint
+ 1

2τe

1
2τint

+ 1
2τe

=
− 1

τint
+ 1

τe

1
τint

+ 1
τe

= Qint −Qe

Qint +Qe
. (2.20)

Note that t becomes zero when Qint is equal to Qe. This condition exhibits max-

imum coupling efficiency and is called "critical coupling". Based on strength of

the coupling, conditions are distinguished as follows:


Qint <Qe for under coupling

Qint =Qe for critical coupling

Qint >Qe for over coupling

(2.21)

Experimentally, a Qtotal and a transmittance intensity T can be observed. T is

given by

34



2.2. THEORY OF COUPLING BETWEEN OPTICAL COMPONENTS

T = |t|2 = | sout

sin
|2 = |1−2

Qtotal

Qint
|2, (2.22)

Qint =
2

1∓p
T

Qtotal. (2.23)

From these relationships, the intrinsic performance Qint is calculated. Minus and

plus signs mean overcoupling and undercoupling, respectively.

From coupled mode theory, the amplification factor of the electric amplitude

of a cavity can be estimated. Electric amplitude in the cavity at a steady state is

described by Equation 2.7. The net power in a cavity at a steady state yields

|Ucav(t)|2 = 1
(ωin −ω)2 + ( 1

2τtotal
)2

Pin

τe
. (2.24)

Since the |Ucav(t)|2 is the net energy [J] in the cavity, the intracavity power Pcav

is derived as

Pcav = |Ucav(t)|2
troundtrip

= |Ucav(t)|2 ·νFSR. (2.25)

A general expression of the intracavity power yields

Pcav = 1
(ωin −ω)2 + ( 1

2τtotal
)2

Pin

τe
·νFSR, (2.26)

Pcav =
4τ2

total

4τ2
total(ωin −ω)2 +1

Pin

τe
·νFSR, (2.27)

Pcav =
4τ2

total ·νFSR

τe

1
4 · (νin−ν

∆ν )2 +1
·Pin, (2.28)

Pcav = 4Qtotal ·νFSR

ω
· Qint

Qint +Qe
· 1
4 · (νin−ν

∆ν )2 +1
·Pin. (2.29)

With Equation 2.29, given that the detuning is zero, Pcav is simplified as follows:

Pcav = 4Qtotal ·νFSR

ω
· Qint

Qint +Qe
·Pin. (2.30)
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When a critical coupling is achieved, Pcav can be written by

Pcav = 2Qtotal ·νFSR

ω
·Pin = Qtotal ·νFSR

π ·ν ·Pin. (2.31)

Now, "finesse F" is defined and the relationship between Pcav and F is described

as

Pcav = F
π
·Pin, (2.32)

F = νFSR

∆ν
= νFSR

ν
·Qtotal. (2.33)

This is the amplification factor of a cavity. Given a Qtotal of 1 million, a νFSR of

800 GHz, a ν of 193 THz, and an input power of 1 mW, the calculated intracavity

power is at most 4.15 W, which is 4150 times higher than the input power.

2.3 Theory of optical modes in silica toroid microcavity

This section explains whispering gallery modes excited in a silica toroid micro-

cavity. Theory of whispering gallery modes in microsphere cavities is detailed in

Appendix B.2.

A mathematical description of whispering gallery modes in microspheres de-

rives from a wave equation in spherical coordinates (r,θ,ϕ): radial distance r,

polar angle θ, and azimuthal angle ϕ. Given a ψ as a function of light, two sepa-

rated equations that whispering gallery modes satisfy are derived as104,105)

Y m
l

(
θ,ϕ

)= p(l,m) ·Pm
l (cosθ) · eimϕ, (2.34)

d2

dr2ψr (r)+ 2
r

d
dr

ψr (r)+ [k2
0n2 − l (l+1)

r2 ]ψr (r)= 0. (2.35)

where l, m, p, k0, and n correspond to a polar quantum number , an azimuthal

quantum number, a constant depending on l and m, the wavenumber, and the

refractive index of the material, respectively. Y and P are spherical harmonics
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and the Legendre polynomial, respectively. Figure 2.3 shows mode profiles in the

radial direction for whispering gallery modes in a silica microsphere. The first

three radial modes (r = 1,2,3) are shown because low-order modes have high-Q

due to their weak light leakage.

Whispering gallery modes in a silica toroid microcavity follow the same path

as those in a microsphere. However, because derivation of the general mathe-

matical expression106,107) is complex, numerical calculation with a finite-element

method (FEM) is usually used to analyze the spatial mode profiles in a silica

toroid microcavity108). There are two parameters (major and minor radii) that

can model a silica toroid microcavity as shown in Figure 2.4. Figure 2.5 shows

the cross-sectional spatial mode profiles of three transverse-electric (TE) mode

families (TE00, TE01, and TE10) in a silica toroid microcavity with a major ra-

dius of 50 µm. Although transverse-magnetic (TM) modes are also considered,

TE modes are the focus of this thesis because TE modes exhibit a higher-Q than

TM modes due to their weaker light leakage. The effective mode volume V for

nonlinear processes can be evaluated as

V =
∫ |E|2dV

∫ |E|2dV∫ |E|4dV
. (2.36)

Since the optical density of a cavity is proportional to 1/V , a small mode volume

is required for high efficiency for nonlinear processes. Effective mode area Aeff

is also used, where V ≈ LcavityAeff. The calculated values of the effective mode

area of three modes as shown in Figure 2.5 are 9.75, 12.78, and 17.75 µm2, re-

spectively. Thus, the fundamental mode TE00 has the minumum mode volume.

Notabry, the single mode operation in a silica toroid microcavity can be achieved

by making the minor radius small. However, it is not needed for stable operation

because the excited mode can be selected by phase matching between the mode

in the cavity and the optical mode in the tapered fiber, which is described in the

next section.
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Fig. 2.3: Intensity mode profile |Er|2 in the radial direction for a microsphere with a principal
radius of 50 µm and an azimuthal mode number m = 280 for the first three radial mode numbers
(r = 1,2,3). The wavelength corresponds to 1552.95 nm, 1505.95 nm, and 1469.52 nm, respec-
tively. The ratios of the evanescent field in the total mode profile are 0.498%, 0.839%, and 1.307%,
respectively.
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Fig. 2.4: (a) Schematic image of a silica toroid microcavity. Both the major and minor radii are
defined, as shown. A mode profile is a typical fundamental mode in the cavity. (b) A scanning
electron microscope image of a silica toroid microcavity.

Fig. 2.5: Three TE modes in a silica toroid microcavity. The major and minor radii are 50 µm and
4 µm.
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2.4 Theory of optical modes in tapered fiber

This section explains how a tapered fiber is required to measure a silica toroid

microcavity. Since the cavity excites whispering gallery modes, a coupling with

an evanescent wave is needed. To achieve this coupling, a prism, an angled fiber,

and a tapered fiber are commonly used. Recently, a free space coupling was also

achieved109). A tapered fiber is a fiber with a thin part in which an evanes-

cent field becomes large. Couplings between a prism and an angled fiber are

easy to achieve compared to those with a tapered fiber, because a tapered fiber

is easily broken. However, since a tapered fiber enables a propagation loss of

nearly zero, it is suitable for demonstrating nonlinear optical effects requiring

high power110–112). In this thesis, because nonlinear optical effects with a silica

toroid microcavity are the objective, a tapered fiber was selected. From the theory

of optical fibers, a general expression of a tapered fiber is described here.

Fig. 2.6: Schematic images of some evanescent coupling devices. (a) Prism coupling. (b) Angle-
cleaved fiber coupling. (c) Tapered fiber coupling.

The profile of an electromagnetic wave in an optical fiber follows a wave equa-

tion, which is transformed into the cylindrical coordinate system as follows:

∂2Ez

∂r2 + 1
r
∂Ez

∂r
+ 1

r2
∂2Ez

∂θ2 + ∂2Ez

∂z2 +n2k2
0Ez = 0, (2.37)

where Ez can be regarded as Hz. In an optical fiber, propagation with a direction

of z depends on a propagation constant β, which is expressed as e−iβz. On the
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other hand, propagation with a direction of θ requires periodicity to satisfy circu-

lar symmetry. Since there are various candidates to choose among, I have set it

as e−ilθ with an integer l. Considering these, the electric amplitude Ez is given

by

Ez(r,θ, z)= Ez(r)e−iβze−ilθ. (2.38)

Thus, the wave equation 2.37 is solved with respect to Ez with only r dependence

as follows:

d2Ez(r)
dr2 + 1

r
dEz(r)

dr
+ (n2k2

0 −β2 − l2

r2 )Ez(r)= 0. (2.39)

Here, refractive indices of the core and the clad are n1 and n2, respectively.

Given that the propagation constant is smaller than the wave number in the

core (β < n1k0) and is larger than that in the clad (β > n2k0), light can prop-

agate with total internal reflection in the fiber. To satisfy this condition, two

parameters (κ, γ) are defined as

κ2 = n2
1k2

0 −β2, (2.40)

γ2 =β2 −n2
2k2

0, (2.41)

where both κ and γ are real. Now the electric amplitude in the core and clad is

given by


d2Ez(r)

dr2 + 1
r

dEz(r)
dr + (κ2 − l2

r2 )Ez(r)= 0 r < a, (for core),
d2Ez(r)

dr2 + 1
r

dEz(r)
dr − (γ2 + l2

r2 )Ez(r)= 0 r > a, (for clad),
(2.42)

where a means a boundary of the core and the clad. Solutions of these differential

equations are Bessel functions of the first kind and modified Bessel functions of
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the second kind, as follows:

Ez ∝ Jl(κr) r < a, (for core).

Ez ∝ K l(γr) r > a, (for clad).
(2.43)

Several propagation modes can exist in an optical fiber if the thickness of the core

is large for the light. To explain this clearly, a parameter Vfiber is defined as

(κa)2 + (γa)2 =V 2
fiber, (2.44)

Vfiber = k0n1a

√√√√2
n2

1 −n2
2

2n2
1

. (2.45)

To have a propagation mode, each electromagnetic component must satisfy the

theory of continuity at the boundary between the core and the clad. With a

weakly-guiding approximation (n1 ≈ n2), the condition is given by

(κa)
Jl∓1(κa)
Jl(κa)

=∓(γa)
K l∓1(γa)
K l(γa)

, (2.46)

where signs ∓ correspond to HE modes and EH modes, respectively. Figure 2.7

shows relationships indicated by HE and EH modes with l = 0,1. Analytically,

the HE mode with l = 0,m = 1 always exists in a fiber. The next one is the

HE mode with l = 1,m = 1. Therefore, a single-mode operation can be achieved

with a Vfiber < 2.405.

In the thin part of a tapered fiber, the core and the clad are merged. For an

evanescent coupling to a specific whispering gallery mode, a single-mode opera-

tion is desired. Thus, propagation in the structure with the fiber (core) and the

air (clad) is focused on. The condition of a single-mode operation is described as
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Fig. 2.7: The graph of the characteristics equation for propagating optical modes. This graph
shows that the condition Vfiber < 2.405 allows single mode propagation..

Vfiber = k0n1a

√√√√2
n2

1 −n2
2

2n2
1

< 2.405, (2.47)

a < 0.57, (2.48)

with λ = 1.55 µm, n1 = 1.44, n2 = 1. This is the description of tapered fiber

required for measurements of a silica toroid microcavity.

2.5 Theory of nonlinearity

This section describes the nonlinearity studied in this thesis. Three third-order

nonlinearity-based phenomena (four-wave mixing, stimulated Raman scattering,

and third-harmonic generation) in high-Q microcavities are explained.

2.5.1 Four-wave mixing

The main frequency conversion process of third-order nonlinearity-based non-

linear optical effects is four-wave mixing. Optical parametric oscillation with a

silica toroid microcavity has been studied3), and the threshold power is basically
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Fig. 2.8: (a) The schematic image of a tapered fiber. (b) The graph of the characteristics equation
for the propagating optical mode(l = 0) in a tapered fiber with the radius of 0.55 µm. The
wavelength is 1.55 µm. The inner refractive index n1 and outer refractive index n2 are 1.44 and
1.00, respectively. The ratio of the evanescent field in the total mode profile is 14%.

Fig. 2.9: Energy diagrams of third-order nonlinearity effects. Upward and downward arrows
mean annihilation and creation of photons. FWM, four-wave mixing; SRS, stimulated Raman
scattering; THG, third-harmonic generation.
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described as

Pth = 2πn2

λn2
· V
Q2 . (2.49)

Given a Q of 1 million, a V of 1000 µm3, an n of 1.44, and an n2 of 2.0×10−20 W/m2,

the calculated threshold power is 420 mW. If Q reaches 10 million, the threshold

power rapidly decreases to 4.2 mW. Thus, a high Q is required for best results.

Simply, the point where the first comb line occurs19) is given by

mth =

√√√√ 2πc
Qλ|D2|

(

√
Pin

Pth
−1+1), (2.50)

where m indicates a mode number counted from a pump mode and the first comb

line occurs at the mth mode, and D2 means a kind of cavity dispersion defined as

ωm =ω0 +D1m+ 1
2

D2m2 + 1
6

D3m3 · · · , (2.51)

where ω0 is a pump mode, ωm is the mth mode from the pump mode, D1 is an

FSR, D2 is a cavity dispersion, and D3 is a third-order dispersion. Thus, the

cavity dispersion D2 is one of the parameters that should be designed.

2.5.2 Stimulated Raman scattering

Since Raman scattering derives from the molecular vibration that is a near-

universal phenomenon of materials, there are a number of researchers who study

it. The threshold power of stimulated Raman scattering in a silica toroid microcavity5,7)

is given by

Pth = π2n2V
λpλR gR

1
Q2

int

· 27
4

. (2.52)

where λp and λR are the respective wavelengths of the pump and a Raman mode,

gR is the nonlinear bulk Raman gain coefficient, and Qint is the intrinsic Q factor.

V is the effective mode volume.

Given a QT of 1 million, a V of 1000 µm3, an n of 1.44, a λp and a λR of 1550 and

1650 nm, and a gR of 0.6×10−11 cm/W, the calculated threshold power is 900 mW,
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which is nearly twice as high as the threshold power of four-wave mixing. Ideally,

four-wave mixing should be dominant in a microcavity.

2.5.3 Third-harmonic generation

Third-harmonic generation is a simple frequency conversion based on third-order

nonlinearity. Since high-Q cavities without second-order nonlinearity dramati-

cally enhance the circulating power inside, third-harmonic light is usually observed9,113).

Third-order nonlinearity-based polarization is described as

PNL = ϵ0χ
(3)...EEE. (2.53)

The power generated from a third-harmonic generation with a silica toroid mi-

crocavity has been studied9), and it is given by

PTH = (χ(3)η0

2ϵ0n2

)2(PinQpλp

2πnrAp

)3(2πrnQTH

ATHλTH

)4|∫r,z E3
pE∗

THdA|2
4(∆ωτTH)2 +1

, (2.54)

where λp and λTH are the respective wavelengths of the pump and a third- har-

monic mode, Ap and ATH are the effective mode areas of the pump and a third-

harmonic mode, and ∆ω is frequency mismatching between the pump mode and

the third harmonic mode. The second factor on the right side shows that a

third-harmonic power is cubically proportional to the circulating power of a pump

mode. The third factor refers to the build-up factor of the third-harmonic light.

Also, the last factor indicates a mode overlap between a pump mode and a third-

harmonic mode, which means that frequency mismatching strongly influences

the third-harmonic power.

2.6 Fabrication

2.6.1 Fabrication of a silica toroid microcavity

For this thesis, a silica toroid microcavity was selected from a number of possible

microcavities. There are four main characteristics of this type of cavity47,48):

1. ultrahigh Q (Q> 108)
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2. small mode volume (V ∼ 100µm3)

3. integration on-chip

4. silicon-based advantage

In particular, ultrahigh-Q and small mode volume are extremely important. As

noted in the discussion above, a silica toroid microcavity confines as high as

106 times the power as the input power Pin within the small space, which then

reaches the number of gigawatts per square centimeter required for nonlinear

optics. Thus, silica toroid microcavities have been researched to demonstrate Ra-

man lasing, optical parametric oscillation, and third-harmonic generation. Since

the cavity is fabricated on a common silicon chip, it is possible to integrate it with

other optical devices on a single chip. This fabrication method is compatible with

conventional semiconductor processes.

The process of fabrication of a silica toroid microcavity is as follows:

1. Silica thermal film growth on a silicon substrate

The quality of the silica influences the absorption loss of a cavity. Thus,

thermal growth is required instead of chemical vapor deposition. In ther-

mal growth, there are wet and dry methods. The wet method provides fast

growth with a reasonable quality and the dry method makes a high-quality

silica film with slow growth. A silica toroid microcavity requires 1- or 2-µm

silica films, for which wet thermal growth is commonly selected.

2. Patterning silica on a silicon chip with photolithography

Photomask patterning is utilized to make a circle of a silica film. With semi-

conductor processes, precise fabrication is possible. Within reason, shapes

other than circular ones (e.g. octagonal or slightly deformed) can be used for

a silica toroid microcavity.

3. Silicon sacrificial layer etching

To make an SiO2 disk structure on an Si post, part of the silicon is etched as

a sacrificial layer. XeF2 gas etching with a high selection rate is appropriate.

Another approach is wet etching with an HNA (hydrofluoric acid, nitric acid,

and acetic acid) system, which can be utilized with the same purpose.
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4. CO2 laser reflow to melt silica

A CO2 laser irradiates the silica film from the top. The silica absorbs heat

from the CO2 laser and eventually reaches the melting point. The melted

part shrinks and forms a toroidal structure, due to a surface tension. The

silicon post works as a heat sink that stops the melting. When heating and

cooling are balanced, further melting will not occur unless the irradiating

power is increased.

Figure 2.11 shows experimental results of the fabrication of a silica toroid mi-

crocavity. In this study, mask patterns were used to make circular shapes with

diameters of 100 or 150 µm.

Fig. 2.10: The process of fabrication of a silica toroid microcavity. (1) Thermal oxidizing silicon
substrate. (2) Photolithography for patterning circular silica forms. (3) Sacrificial layer etching
for making a silica disk cavity. (4) Laser reflow process to form a silica toroid structure.

Fig. 2.11: Optical microscope images of (a) a mask pattern with diameters of 100 µm (b) a disk
cavity (c) a silica toroid cavity. The white circle in (b) and (c) is the silicon post supporting the
silica disk.

2.6.2 Fabrication of a tapered fiber

In this thesis, a tapered fiber was used as an evanescent coupler between a light

and a silica toroid microcavity. As mentioned above, a tapered fiber is easily

broken because its diameter at the thinnest part is nearly 1 µm, so it is sufficient

for a single-mode operation.
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A fabrication method is as follows:

1. The coating of a commercial single-mode fiber is removed.

2. The fiber is heated until it reaches the softening point of silica glass.

3. The fiber is pulled slowly to prevent thermal cracking.

A special device is used to fabricate a tapered fiber by this process. It uses a

burner, from which a mixture of gases (oxygen and propane) flows. Figure 2.12

shows transmittance fluctuation during the pulling. At first, the transmittance

is stable because a single-mode propagation occurs in the core and the clad. How-

ever, a large fluctuation occurs in the middle of the pulling, because the core and

the clad are merged by compression and reach multi-mode operation. Finally, the

transmittance becomes stable again. It is thought that a single-mode operation is

achieved with a core of fiber and a clad of air. In the experiment, the parameters

that control heating and pulling are strict and are selected to prevent thermal

cracking that would severely decrease the transmittance.

Fig. 2.12: A graph showing transmittance power in a tapered fiber while the fiber is being pulled
by a machine. The first region shows this fiber as a single-mode fiber. The second region shows
the fiber allowing the multi-mode to propagate, due to the change in width of the core and the
clad. The final region shows the fiber becoming a single-mode fiber, where the core is glass and
the clad is air.
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2.7 Optical measurement methods

In this section, optical measurement methods are showed. First, Q-factor mea-

surement is explained. Q-factor is the most important factor of experiments of

third-order nonlinearity because it strongly determines the threshold powers.

Next, measurements of nonlinearity are explained.

2.7.1 Measurement of Q-factor

To measure Qs experimentally, there are two main methods:

1. Measurement of the FWHM of a resonant spectrum ∆ν with a tunable laser

diode.

2. Measurement of the photon lifetime τp with a repeatable pulse train (ring-

down method).

The former is a simple method requiring a tunable laser with a scanning func-

tion. Although the latter requires multiple devices (a continuous-wave laser, an

electro- optic modulator, and an oscilloscope), its precision is higher than that of

the former, which is determined by the accuracy of the wave meter in the tunable

laser.

First, FWHM measurement is expained. Figure 2.13(a) is the experimental

setup to obtain the data as shown in Figure 2.14 (a). Note that careful control of

the coupling point is required for efficient coupling. To achieve phase-matching

between the cavity mode and the mode in the tapered fiber, changes of the cou-

pling point of the fiber is effective because the diameter of the fiber determines

a propagation constant of the mode in the fiber. The spectrum was obtained us-

ing the wavelength scan of a tunable laser diode with 200 kHz linewidth (Santec

TSL-710) and a power meter (Agilent 8163B) to measure the transmittance. The

dips spaced equidistantly indicate a whispering gallery mode, and a Q of 4.0×105

was calculated from the FWHM. Next, the ringdown method is described. The

Q is calculated from the photon lifetime (the decay rate) directly. The advan-

tage of this method is the robustness against the heat in a cavity, in addition

to the high precision. A thermo-optic effect is the main cause of deformation

of the spectrum, because it changes resonant frequencies dynamically during a
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Fig. 2.13: Experimental setup of measurement of Q-factor
(a) Experimental setup for measurement of the FWHM. TLD, tunable laser diode (Santec TSL-
710); FPC, fiber polarization controller (Thorlabs FPC560); PM, power meter (Agilent 8163B). A
tapered fiber is aligned closely at the surface of the toroid microcavity to couple light evanescently.
(b) Experimental setup for measurement of the photon lifetime. EO, electro-optic modulator; OSO,
optical sampling oscilloscope.
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measurement. Since the ringdown method is not influenced by heat, the Q of a

cold cavity can be measured with high reliability. Figure 2.13(b) shows an exper-

imental setup that contains an electro-optic modulator generating a repeatable

rectangular wave. The output signal is shown in Figure 2.14(c). After trailing

edge of the pulse, the cavity releases the confined light with a certain decay rate.

By measuring the decay rate, the Q is calculated as shown in Figure 2.14(d).

Fig. 2.14: Calculation method from the experimental data
(a) Typical transmission spectrum of side coupling systems. Equidistant dips mean resonant
wavelength of a measured cavity. (b) Magnification of (a). Lorentz fitting shows the FWHM and
the Q. (c) Typical transmission signal when a square pulse is inputted. A shadow means the
inputted pulse width. (d) Magnification of (c). The decay rate shows the photon lifetime of the
cavity.

2.7.2 Measurement of nonlinearity

To measure nonlinearity, some specific components are required in addition to

the setup for Q-factor measurement.

Third-order nonlinearity requires high optical power even though high-Q cav-
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ities build up the optical power inside. To compensate it, erbium-doped fiber

amplifier (EDFA) is used. A common EDFA amplifies an input power up to 1 W,

which is sufficient to induce nonlinearity in cavities. The precise control of the

input power is required for control of nonlinearity. Thus, a variable optical at-

tenuator which controls the attenuation with the unit of 0.01 dB is used. Output

signal is evaluated with an optical spectrum analyzer and a power meter. SHG

auto-correlator is used for pulse-width measurement. Figure 2.16(a) is a mea-

sured spectrum. The pump at 1553 nm is inputted to the cavity and five lines are

generated via four-wave mixing. They are coupled to the tapered fiber and evalu-

ated with the optical spectrum analyzer. Since four-wave mixing is the coherent

process, the linewidth of generated lines should be around 200 kHz which is the

linewidth of the input laser. Figures 2.16(b) and (c) are optical images of visible

light emission resulting from third-harmonic generation. Visible light is not cou-

pled to the tapered fiber due to phase-mismatching. Thus, telescopes collect light

in space and couple it to a multimode fiber connecting with a spectrometer.

To measure the efficiency of third-harmonic generation, there are two meth-

ods. One is that the third-harmonic light is withdrown with a tapered fiber which

is for visible light114). This way makes, however, the experimental setup more

complex because a thinner or a bended tapered fiber is required for collecting

visible light. Another is that the efficiency is estimated by the scattered light col-

lected with telescopes115). The scattered light power depends on intracavity third-

harmonic power and surface roughness of the cavity, and the surface roughness

can be estimated by the surface tention of the material or measured with atomic

force microscopy. With the scattered light power and the surface roughness, the

intracavity power can be estimated.

When the high power (≈ 1 W) is used, the intracavity power exceeds 4000 W for

the cavity with the Q of 1 million. Moreover, the optical density Pcav/V reaches the

order of GW/cm2. Although the absorption loss of the cavity is considerably small,

the influence of appearing heat should be noted. The heating can be estimated by

resonance shifts by a thermo-optic effect64,116). The amount of the thermal shift

∆λ is given by

∆λ= Cλ0∆T, (2.55)
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Fig. 2.15: Experimental setup for measurement of nonlinearity
(a) Experimental setup of measurement of four-wave mixing and stimulated Raman scattering.
TLD, tunable laser diode (Santec TSL-710); EDFA, erbium-doped fiber amplifier (Pritel PMFA-
30); VOA, variable optical attenuator (OZ Optics DA-100); FPC, fiber polarization controller
(Thorlabs FPC560); OSA, optical spectrum analyzer (Yokogawa AQ6375); PM, power meter (Agi-
lent 8163B); AC, SHG autocorrelator (APE Berlin pulseCheck);. A tapered fiber is aligned closely
at the surface of the toroid microcavity to couple light evanescently. (b) Experimental setup for
measurement of third-harmonic generation. Spectrometer is used to evaluate visible light emit-
ted from the cavity. Visible light is collected with telescopes. Spec, spectrometer (Ocean Optics
USB2000+).

Fig. 2.16: (a) Optical spectrum resulting from four-wave mixing. Blue line shows outputs mea-
sured with OSA. Black line shows transmittance spectrum of the cold cavity measured with PM.
(b) Optical image of the side view of the cavity connecting a tapered fiber. The object is observed
with telescopes. (c) Green light emission from the cavity. The visual point is same as (b). The
emission is evaluated with a spectrometer.

54



2.8. SUMMARY

where C, λ0 and ∆T are the thermo-optic coefficient, the resonant wavelength of

the cold cavity, and the amount of internal temperature change, respectively. Fig-

ure 2.17 shows the typical thermal shifts when the input wavelength is scanned

from short to long wavelength. The measured shift is 0.55 nm. Since the C = 5.2 × 10−6 K−1

for silica, the internal temperature rises by about 70 K. Considering the room air

temperature is 20◦C, the internal temperature should be 90◦C. Most heat dis-

sipates through the silicon post of the cavity because of the high thermal con-

ductivity of silicon. Although the dissipation through the air can be considered,

it is negligible because the thermal conductivity of air is 5 orders of magnitude

smaller than that of silicon.

Fig. 2.17: Thermal shift of the resonance when the input wavelength is scanned from short to
long wavelength. Black and blue lines show transmittance spectrum with low-power scanning
and high-power scanning, respectively. At high-power scanning, the shift caused by thermo-optic
effect is about 0.55 nm, which indicates that the internal temperature change of the cavity is
about 70 K.

2.8 Summary

In this chapter, mathematical descriptions related to high-Q cavity, build-up fac-

tor, optical modes in silica toroid microcavity and tapered fiber were explained.

Third-order nonlnearity-based optical processes (four-wave mixing, stimulated

Raman scattering, and third-harmonic generation) in a cavity were described.

Moreover, fabrication methods of a silica toroid microcavity and a tapered fiber
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were described. Finally, measurements of Q-factor and nonlinearity with a silica

toroid microcavity were explained.
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Chapter 3

Hysteresis behavior of microcomb
generation

This chapter describes hysteresis behavior of microcomb generation us-
ing a silica toroid microcavity. This mechanism of microcomb gener-
ation has been researched for the last decade, and many studies have
demonstrated how to control the generation, especially mode-locked mi-
crocomb generation. This chapter focuses on hysteresis behavior of non-
linear cavities and explores the dependence of a microcomb on the his-
tory of the cavity. In this context, a novel method for producing a mode-
locked microcomb was proposed and experimentally demonstrated.

Section 3.1 shows a Lugiato-Lefever equation developed from a non-
linear Schrödinger equation, which is a reasonable model for analyzing
microcomb generation. Section 3.2 explains dispersion engineering of
a silica toroid microcavity, which is needed for obtaining a microcomb.
Section 3.3 describes hysteresis behavior of a nonlinear cavity with a
Lugiato-Lefever model. Section 3.4 shows experimental results indicat-
ing that a mode-locked microcomb can be generated by a novel method.
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3.1 Lugiato-Lefever equation

This section describes a Lugiato-Lefever equation, which is a reasonable model

for analyzing microcomb generation117,118). For a ring cavity with a continuous-

wave input, the combination of a nonlinear Schrödinger equation and a coupled

mode theory is required for understanding the nonlinear dynamics in the cav-

ity. A Lugiato-Lefever equation is a simplified form that combines two equations

with a generalized mean-field approximation119). A Lugiato-Lefever equation can

be calculated with a split-step Fourier algorithm51), and it clearly describes the

behavior of a nonlinear cavity.

With the slowly varying envelope approximation, a Luagito-Lefever model is

described as60)

tR
∂E(n,τ)

∂n
= (−αL

2
− T

2
− iδ+ iL

∑
k≥2

βk

k
(−i

∂

∂τ
)k + iγL|E|2)E+

p
TEin, (3.1)

where E(n,τ) is the electric field in a cavity. n and τ are the round trip number,

a short time, respectively. tR, α, T, L, δ, βk, γ, and Ein correspond to a round

trip time, intrinsic loss per unit length, a coupling coefficient, a cavity length,

a wavelength detuning, k-th order dispersion, a nonlinear coefficient, and the

driving field, respectively. With a split-step Fourier algorithm, Equation 3.1 can

be solved and nonlinear dynamics in the cavity is analyzed.

It is worth pointing out a relationship between Q and some parameters in a

Lugiato-Lefever equation, because it is simpler to measure a Q than to measure

propagation loss. First, a Q is described as

Q =ωτp =ω
1

cαr
, (3.2)

where αr is the loss coefficient per unit length. From this, the relationship be-

tween Q and propagation loss is derived as

αL = ω

cQint
L. (3.3)
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Here, the Q in Equation 3.2 corresponds a Qint. The coupling T has a relationship

written as

T = ω

cQc
L. (3.4)

With Equations 3.3 and 3.4, a measured Q can be used in the analysis of a

Lugiato-Lefever equation.

3.2 Dispersion parameters of a silica toroid microcavity

In a Lugiato-Lefever equation, cavity dispersion is a key factor for determining

the behavior of a nonlinear ring cavity. For example, there is hardly any gain of

four-wave mixing in the normal dispersion region. Thus, anomalous dispersion is

essentially required for microcomb generation, so that the dispersion engineering

of a cavity is needed120–126). In this section, the cavity design of a silica toroid

microcavity is explained.

A cavity dispersion consists of a material-based and a geometry-based disper-

sion. The former depends on the material of a cavity, and the parameters of each

material must already be known through use of the Sellmeier equation. The

Sellmeier equation shows the frequency dependence of the refractive index of a

material. It is described as

n2(ω)= 1+
m∑

j=0

A jω
2
j

ω2
j −ω2

(3.5)

where A j and ω j are peculiar constants of a material. For fused silica, these are

as follows127):

A1 = 0.6961663 , λ1 = 0.0684043 µm,

A2 = 0.4079426 , λ2 = 0.1162414 µm,

A3 = 0.8974794 , λ3 = 9.896161 µm. (3.6)
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Next, a geometric dispersion is discussed. It physically derives from the fre-

quency dependence of the spatial profile of a mode. For a typical ring cavity, the

longer a wavelength, the smaller the effective refractive index of the mode. This

is because the mode area becomes large and is felt strongly outside the cavity.

For a silica toroid microcavity, not only the extent of the mode profile but also the

effective radius of the mode is frequency-dependent. Generally, it is hard to esti-

mate the geometric dispersion analytically. Thus, a finite-element method (FEM)

is commonly used.

There are two main parameters of a silica toroid microcavity as shown in Fig-

ure 3.1: the major radius and the minor radius. Since the thickness of a silica

film on silicon can be changed, it is possible to control the minor radius experi-

mentally. The major radius determines the cavity length and the FSR, which is

selected according to need. In contrast, the minor radius can be designed mainly

for dispersion engineering.

Figure 3.2 shows the dispersion of the fundamental mode (TE00) when the

cavity parameters are changed. The major radius dependence of the cavity dis-

persion appears in Figure 3.2(a) in which three major radii (30, 50 and 80 µm)

are considered. Figure 3.2(b) shows the minor radius dependence of the cavity

dispersion. From these results, a large major radius and a small minor radius

are required for obtaining anomalous dispersion in the telecom region.

Mode dependence of the cavity is shown in Figure 3.3. Three modes (TE00,

TE01, and TE10) are considered. The dispersions are clearly different. Although

the selection of modes seems to be important, the TE00 is used because the TE00

usually exhibits the highest-Q among all the modes.

3.3 Hysteresis behavior of microcomb generation

In this section, hysteresis behavior of nonlinear cavities and microcomb gener-

ation are discussed. First, the steady state of a Lugiato-Lefever equation is ex-

plained. A nonlinear cavity exhibits a bistability caused by the Kerr effect. Since

intracavity power influences a microcomb, analysis of the behavior of the intra-

cavity power makes the mechanism of a microcomb clear. This section uses a

numerical simulation to analyze microcomb generation. Then, a novel way to
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Fig. 3.1: Schematic images of a silica toroid microcavity (a) before CO2 laser reflow and (b) after
CO2 laser reflow.

Fig. 3.2: Calculated dispersion of the fundamental mode in a silica toroid microcavity. Anomalous
dispersion is required for optical parametric conversion. (a) Different major radii with a minor
radius of 5 µm. (b) Different minor radii with a major radius of 50 µm.
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Fig. 3.3: Calculated dispersion of different modes in a silica toroid microcavity with a major radius
of 50 µm and a minor radius of 4 µm.

achieve a mode-locked microcomb is proposed.

Before numerical analysis, a bistability caused by the Kerr effect is explained.

A bistability means that a system provides two independent stable outputs from

the same input. Output selection depends on the history of the system. Thus,

how an input is controlled is interesting in the context of bistability. A bistabil-

ity caused by the Kerr effect is expressed with the equation developed by Gibbs

et al.128). Given a steady-state of a Lugiato-Lefever equation, the equation is

derived as

E2
in = |Ecavity|2{1+ (|Ecavity|2 −∆)2}, (3.7)

where ∆ is the normalized detuning, which is a decisive parameter. Following

variable transformation, a steady-state of Equation 3.1 transforms Equation 3.7:
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αL+T
2

→αnorm, n → αnorm

tR
t, τ→

√
2αnorm

|β2|L
τ

E

√
γL

αnorm
→ E, Ein

√
γLT
α3

norm
→ S, ∆= δ

αnorm

Note that the normalized Lugiato-Lefever equation129,130) is described as

∂E(t,τ)
∂t

= {−1+ i(|E|2 −∆)− iη
∂2

∂τ2 }E+S, (3.8)

where η is a sign of β2. Given that |Ein|2 = X and |Ecavity|2 = Y , the relationship

is derived as

X =Y 3 −2∆Y 2 + (∆2 +1)Y . (3.9)

With Equation 3.8, the behavior of a steady-state of a cavity is analyzed. Figure

3.5(a) shows a set of solutions when Qint = 2× 107 and Qcouple = 2× 107. It

is clear that the detuning, δ, strongly influences the intracavity power. Figure

3.5(b) mentions that coupling of Q depends on the intracavity power. The weaker

the coupling, the smaller the fluctuation of the intracavity power. This analysis

of a steady-state shows that the hysteresis of the cavity should be considered in

controlling nonlinear dynamics.

Next, a mode-locked microcomb is calculated with a simple case. The calcu-

lated parameters are: Qint = 1 × 107, Qcouple = 1 × 107, β2 = −3 ps2/km,

β3 = −0.01 ps3/km, γ = 5 × 10−9 W−1 µ m−1, fFSR = 200 GHz, L = 1.041 mm,

and calculated mode number N = 128.

Table. 3.1: The parameters for the calculation for Figure 3.8.
Qint 1×107 γ 5×10−9 W−1µm−1

Qcouple 1×107 fFSR 200 GHz

β2 −3ps2/km L 1.041 mm

β3 −0.01ps3/km N 128
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Fig. 3.4: Bistability system caused by the Kerr effect.
1. A red-detuned driving field is inputted. 2. The Kerr effect causes a red frequency shift of
the resonant frequency, which makes the intracavity power drastically high. 3. Too high input
power causes a large frequency shift. 4. Input power decreases. 5. A high intracavity power is
maintained in spite of the decreased input power. This is the upper state of the bistability. 6. The
system exhibits one output.
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Fig. 3.5: (a) The behavior of the intracavity power when the launched power is changed. Each
condition is different in terms of detuning. (b) The behavior of the intracavity power when the
launched power is changed. Each condition is different in terms of coupling Q.
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Figure 3.6(a) shows an intracavity power transition during a wavelength scan

with an input power of 20 mW. On the x-axis, zero means the original frequency

of the pump mode. Due to the Kerr effect, which causes an increase in the re-

fractive index, the resonant frequency is shifted towards red. The scan follows

the redshift, and the intracavity power gradually becomes high. When the in-

tracavity power is over a threshold of four-wave mixing, frequency conversion

starts to occur. The first stage of frequency conversion in microcomb generation

is called the Turing pattern, which occurs with effectively blue detuning. Tur-

ing patterns have a modulation-like temporal waveform. With further increase

of the intracavity power, a chaotic oscillation occurs. Following the chaotic state,

there are step-like transitions. In this region, the detuning is effectively red, and

cavity solitons occur, which also leads to mode-locking. The step-like transition

means that the number of cavity solitons decreases one by one (though multiple

decreases can also occur). Thus, the final state has a single soliton in the cavity.

This is called the "soliton step," and it proves that cavity solitons occur. The rea-

son the transitions occur is that each pulse behaves to satisfy a soliton condition

requiring a balance between a dispersion and the Kerr effect, in addition to a bal-

ance between gain and loss. When a certain soliton cannot satisfy the condition,

the soliton collapses, and the rest of the energy from the collapsed soliton moves

to other existing solitons, which makes the others stable again. From the point

of view of hysteresis, this region is the upper state of an "S-character" curve, be-

cause the intracavity power has already experienced a much higher state with

a chaotic oscillation. Thus, a wavelength scan is not always required. Figure

3.6(c) shows an intracavity power transition with an input power control at a

fixed detuning. The power is controlled from low to high and from high to low. At

the downward slope, cavity solitons occur. It is clear that microcomb generation

depends on hysteresis of the cavity. This is the complementary way for the wave-

length scanning method to obtain a microcomb17). It is worth noting that the

input power control should be more effective than the input wavelength control,

because a severe control is required at the soliton steps, and a precise scanning

laser is more expensive than a precise attenuation tool for controlling the input

power. In addition, there is no reasonable scanning laser for the ultraviolet, vis-

ible, and mid-infrared regions. Therefore, I propose the input power control as a
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novel way to obtain a mode-locked microcomb.

Next, a silica toroid microcavity is set as a model. The parameters are: major

radius = 30 µm, minor radius = 2 µm, Qint = 5 × 106, Qcouple = 5 × 106,

γ = 3.686 × 10−8 W−1 µ m−1, fFSR = 1100 GHz, and calculated mode number

N = 128. The dispersion is calculated to fit the model.

Table. 3.2: The parameters for the calculation for Figure 3.9.
Qint 5×106 γ 3.686×10−8 W−1µm−1

Qcouple 5×106 fFSR 1100 GHz

Major radius 30µm N 128

Minor radius 2µm

When the normalized detuning, ∆, is set higher than
p

3/2 times the FWHM,

hysteresis of the system is obtained. Since the theoretical Equation 3.8 shows

the behavior of the intracavity power with no frequency conversion, the point at

which a deviation from the theoretical curve occurs indicates the threshold power

of frequency conversion. The black lines in Figures 3.7(b) and (c) show a theoret-

ical curve for Equation 3.8. Figure 3.7(b) shows an intracavity power transition

as a function of the input power when ∆ = p
3/2. The power in the cavity is

recorded at 0.55 mW/µm while input power changes. Note that the point where

input power is 12 mW is the threshold of frequency conversion. Figure 3.7(b)

shows that only 2-FSR mode-locking is obtained. When the input is increased,

the cavity enters an unstable regime. Figure 3.7(b) also shows that 1-FSR mode-

locking cannot be obtained even when the input power is carefully controlled.

The result shown in Figure 3.7(c) is the case where the normalized detuning is

∆ = 1.25. A single soliton state can be obtained when the input power is de-

creased after strong pumping. Thus, these numerical results show the possibility

of obtaining a mode-locked microcomb in a silica toroid microcavity with a certain

method.

3.4 Experimental results

In this section, I show experimental results with a fabricated silica toroid micro-

cavity. First, changes in comb spacing with changes in input power and coupling
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Fig. 3.6: Calculated results for a simple condition. (a) Intracavity power with wavelength sweep.
(b) Magnification of a part of (a). (c) Intracavity power with input power change. (d) Magnification
of a part of (c). (e-h) Spectra and temporal waveforms of each point in (b) and (d).
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Fig. 3.7: (a) Calculated dispersion of a silica toroid microcavity with a major diameter of 60 µm.
(b) Calculated intraca/vity power as a function of the input power when the normalized detuning
of the input laser is ∆ = p

3/2 from the resonance of the cavity. (c) Same as (b), but with detuning
of ∆ = 1.25. (d-i) Spectra and temporal waveforms at different input powers. The corresponding
points are shown in (c).
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strength are demonstrated. Next, the measurement of soliton steps is explained,

which is in agreement with a numerical simulation. Finally, some data on the

temporal waveform of a microcomb are shown.

The experimental setup is shown in Figure 3.8. Although a typical Q of a silica

toroid is nearly 100 million, the device in this experiment exhibited a Q of 5 mil-

lion for several reasons, including OH absorption. Thus, EDFA, which amplifies

up to 1 W, was used. After EDFA, there is a variable attenuator to control in-

put power precisely. I used a wavelength scan partially although an input power

control should be demonstrated. This is because very high input power was re-

quired for eliciting hysteresis behavior, due to the fact that the fabricated device

had a comparatively low Q. However, an advantage of input power control is pre-

cise control in soliton step regions. Thus, a wavelength scan was used for rough

control and an input power control for precise control in this experiment. Figure

3.9(a) shows the optical spectrum when the cavity was pumped at 433 mW. The

spectrum shows a 2-FSR microcomb, which should be in the upper branch with

respect to hysteresis. Hence, with careful decrease of the input power, the spectra

as shown in Figures 3.9(b) and (c) were observed. It was demonstrated that the

2-FSR microcomb changed to a 1-FSR microcomb with only input power control.

Next, since a tapered fiber was used in this experiment, its control ability was in-

vestigated. First, an optical spectrum was obtained, as shown in Figure 3.10(a).

The distance between the fiber and the cavity was changed, which meant that the

coupling coefficient was controlled. Figures 3.10(a-d) show optical spectra (1, 2, 3,

and 4-FSR comb) with an approach distance of 50, 190, and 240 nm, respectively.

This control also influences microcomb formation, although this is not usually

feasible, because a tapered fiber is vulnerable to the external environment.

Next, the measurement of a soliton step with a silica toroid microcavity is

described. A power meter is required to measure a transmitted power indicating

an intracavity power indirectly. First, a 2-FSR microcomb was obtained with a

wavelength scan. After that, the input power was decreased while measuring

the transmitted power. Figure 3.11(b) shows the transition of the transmitted

power during the decrease of the input power. At the beginning, the transmitted

power decreased without a change in the spectrum. At an input power of around

100 mW, a sharp transition occurred, and the spectrum changed to a 1-FSR comb,
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Fig. 3.8: Experimental setup for microcomb generation. TLD, tunable laser diode (Santec TSL-
710); EDFA, erbium-doped fiber amlifier (Pritel PMFA-30);FPC, fiber polarization controller
(Thorlabs FPC560); VOA, variable optical attenuator (OZ Optics DA-100); OSA, optical spectrum
analyzer (Yokogawa AQ6375); PM, power meter (Agilent 8163B); AC, auto-correlator (APE Berlin
pulseCheck).

as shown in Figure 3.11(f). This change is in accordance with calculated results.

Therefore, a mode-locked microcomb generated by a silica toroid microcavity was

achieved with the input power control method. The vibration of the transmitted

power at an input power of around 90 mW was also observed. Although this

might have been affected by optomechanics of the cavity, such an effect is beyond

the scope of this study.

Finally, temporal waveform measurements of a microcomb are reported. An

autocorrelation based on second-harmonic generation (SHG) was used for these

measurements. Figure 3.12 shows the optical spectra and the SHG autocorre-

lation traces under different conditions. Since microcomb generation requires a

high-power continuous-wave laser, the comb measured with an optical spectrum

analyzer usually contains the high-power component caused by the input pass-

ing through the cavity. This phenomenon is often an obstacle to measurement

of optical pulses, because it pushes the noise level too high. There are some pro-

posed methods for eliminating the obstacle component. For example, it can be cut

with a fiber Bragg grating or a wave shaper. With an add-drop setup, the comb

measured in the drop port is not affected by the input.
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Fig. 3.9: Experimental output optical spectra when the cavity is pumped at (a) 433 mW, (b) 419
mW, and (c) 407 mW. The pumping power was gradually reduced during the experiment.
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Fig. 3.10: Experimental output optical spectra when the gap is tuned at the points approaching
with (a) 0 nm, (b) 50 nm, (c) 190 nm, (d) 240 nm.
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Fig. 3.11: (a) Calculated and (b) experimental transmitted powers as a function of input power.
(c-f) show the output spectra at the corresponding input powers. Both show a case when the input
power is decreased.
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Fig. 3.12: (a) Spectrum of the Kerr comb generation at 1-FSR spacing. (b) SHG autocorrelation
trace for the output shown in (a). (c, e) The same as (a) but with different input power and
wavelength. (d, f) Corresponding SHG auto-correlation traces for (c) and (e).
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3.5 Summary

In this chapter, descriptions of a Lugiato-Lefever equation were explained. The

Lugiato-Lefever equation fits a model for analyzing microcomb generation. With

a view towards use for calculations, dispersion parameters of a silica toroid mi-

crocavity were described. Based on the model, hysteresis behavior was analyzed

in terms of microcomb generation. It was found that a mode-locked microcomb

can be achieved with only an input power control. Numerical simulation for a

silica toroid microcavity showed that a mode-locked microcomb can be obtained,

and I also showed this experimentally. To my knowledge, this is the first time a

soliton step indicating a mode-locked microcomb with a silica toroid microcavity

has been observed.
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Chapter 4

Influence of stimulated Raman
scattering on microcomb
generation in a silica cavity

This chapter describes the influence of stimulated Raman scattering on
microcomb generation in a silica cavity. With a Lugiato-Lefever equa-
tion that includes a Raman effect, some differences from the simple
model described in Chapter 3 are shown. Next, modulation instability
gain is explained, which reveals that a large-FSR cavity behaves differ-
ently from a small-FSR cavity. Finally, a method to control four-wave
mixing and stimulated Raman scattering is proposed.

Section 4.1 shows a mathematical description of a Raman effect and
an extended model of a Lugiato-Lefever equation. Section 4.2 explains
modulation instability gain in a cavity, which indicates that a large-FSR
cavity behaves differently from a small-FSR cavity. Section 4.3 proves
this numerically.
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CHAPTER 4. INFLUENCE OF STIMULATED RAMAN SCATTERING ON MICROCOMB
GENERATION IN A SILICA CAVITY

4.1 Raman scattering in silica

This section explains a numerical model that describes the behavior of a non-

linear cavity in which four-wave mixing and stimulated Raman scattering occur

simultaneously.

The starting point is the nonlinear Schrödinger equation given by

∂A
∂z

=−α

2
A− i

2
β2

∂2A
∂T2 + iγ|A|2A. (4.1)

Considering a high-order nonlinear effect, the equation is described as51)

∂A
∂z

=−α

2
A− i

2
β2

∂2A
∂T2 + iγ{A(z, t)

∫ ∞

0
R(t′)|A(z, t− t′)|2dt′}, (4.2)

where R is a nonlinear response function given by

R(t)= (1− fR)δ(t)+ fRhR, (4.3)

where fR represents the fractional contribution of the delayed Raman response.

The Raman response function hR in silica is shown in Figure 4.1. Thus, the

first term and the second term on the right side of Equation 4.3 mean the Kerr

response (immediate response) and the Raman response (delayed response), re-

spectively.

With Equation 4.2, an expanded Lugiato-Lefever equation is derived as

tR
∂E(n,τ)

∂n
= (−αL

2
− T

2
− iδ− i

2
β2L

∂2

∂τ2 +N)E+
p

TEin, (4.4)

N = iγL
(∫ ∞

0
{(1− fR)δ(t)+ fRhR}|E(n, t− t′)|2dt′

)
. (4.5)

For silica, fR = 0.18 is a common value. With this Lugiato-Lefever equation,

calculated results are shown in Figure 4.2. Calculated parameters are: Qint =
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Fig. 4.1: Temporal variation of the Raman response function hR(t) in fused silica. And, Raman
gain spectrum of silica fiber at a wavelength of 1550 nm.

1×107, Qcouple = 1×107, β2 =−4 ps2/km, γ= 5×10−9 W−1µm−1, fFSR = 500 GHz,

L = 416 µm, and calculated mode number N = 256.

Table. 4.1: The parameters for the calculation for Figures 4.2 (a) and (b).
Qint 1×107 γ 5×10−9 W−1µm−1

Qcouple 1×107 fFSR 500 GHz

β2 −4ps2/km L 416 µm

input power 20mW N 256

Table. 4.2: The parameters for the calculation for Figures 4.2 (c) and (d).
Qint 1×107 γ 5×10−9 W−1µm−1

Qcouple 1×107 fFSR 500 GHz

β2 5ps2/km L 416 µm

input power 20mW N 256

With an input power of 20 mW, a soliton state is shown in Figures 4.2(a) and

(b). It is worth noting that the center of the microcomb is shifted to 1612 nm

from a pump wavelength of 1550 nm. This is similar to the effect of intrapulse

Raman scattering in an optical fiber. For a microcomb system, the amount of shift

is described as131)

fshift =−32π
15

( δ

D2

)
fR

(2πτR

tR

)
D1, (4.6)
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where δ is a cavity detuning term, and τR is a Raman shock term (with τR = 89 fs

for silica). Thus, the Raman shift depends on the FSR of the cavity, the cavity

dispersion, and the cavity detuning. The behavior of the anomalous dispersion

is clearly different from the normal dispersion. Figures 4.2(c) and (d) show a

spectrum and a temporal wave with a normal dispersion of β2 = 5 ps2/km, and

others are the same as Figures 4.2(a) and (b), which that show stimulated Raman

scattering is dominant. As explained later, there is hardly any four-wave mixing

gain in the normal dispersion. These results show a gain competition between

four-wave mixing and stimulated Raman scattering in the cavity.

Fig. 4.2: (a) Typical cavity soliton state with the Raman effect. The center of the sech spectrum is
shifted by the Raman effect. (b) Temporal waveform of (a). (c) Spectrum when stimulated Raman
scattering is dominant. (d) Temporal waveform of (c).

4.2 Modulation instability gain

In this section, modulation instability gain in a cavity is explained. With some

assumptions, it is found that a silica cavity with a large FSR behaves uniquely.
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Modulation instability is a result of an interplay between the nonlinear and

dispersive effects. It induces amplitude modulation of continuous wave input. It

is also regarded as a degenerate four-wave mixing process and has been studied

widely in fiber optics, a topic that applies to microcomb generation because it

occurs from a continuous-wave input via degenerate four-wave mixing. A common

gain equation for modulation instability is described as51)

g(Ω)= |β2Ω|
√

4γP0

|β2|
−Ω2, (4.7)

where P0 is the peak power of a pulse. Thus, the higher the value of P0, the

higher the modulation instability gain, as shown in Figure 4.3(a). The process

can be interpreted as four-wave mixing that requires phase matching derived

from a balance between anomalous dispersion and self-phase modulation caused

by P0. On the other hand, there is another phase term for the cavity, which is the

cavity detuning δ0. Thus, Equation 4.7 is transformed into132,133)

g(Ω)=
√

(γLP0)2 − (δmiss)2, (4.8)

δmiss = δ0 − β2L
2

Ω2 −2γLP0, (4.9)

where g is the modulation instability gain per roundtrip of the cavity. As shown

in Figure 4.3(b), the gain is shifted to follow the increase in input power due to a

balance of three phase terms. Significantly, the gain near the pump disappears

when the pump power increases because the solution of the gain in Equation

4.8 becomes imaginary. In other words, the input power influences the effective

cavity detuning, which causes fluctuations in the phase-mismatching term. When

the term δmiss is zero, the gain is at its maximum. The frequency of the maximum

gain is given by
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Ω2
max =

2
Lβ2

(δ0 −2γLP0). (4.10)

Considering resonant frequencies in the cavity, a unique behavior should occur in

a silica cavity. A schematic image of this behavior is shown in Figure 4.4. First,

when an input power is small, the gain covers a set of resonant frequencies at

1-FSR. Since the gain of four-wave mixing is ideally higher than that of Raman

gain, four-wave mixing is dominant. The higher the input power, the farther the

gain is shifted. Thus, when the gain is located between two resonant frequencies,

the frequencies hardly experience the four-wave mixing gain and Raman scatter-

ing becomes dominant. Then, a further high input power causes the gain, which

is dominant, to meet the next resonant frequency critically. This mechanism of

gain is a novel finding, although a number of studies on competition between

four-wave mixing and stimulated Raman scattering in the context of values of

maximum gain have been conducted. However, previous studies focused on the

comparison of maximum gains of four-wave mixing and stimulated Raman scat-

tering, which neglects the case that resonant frequencies cannot experience the

maximum gain3,5,134). This transition requires a large-FSR silica cavity unless

the four-wave mixing gain always covers one or multiple resonant frequencies.

4.3 Numerical simulation

To prove the theoretical considerations, a numerical simulation is used. Some of

the numerical results are in close agreement with the theoretical analysis.

The calculated parameters are: Qint = 5 × 107, γ = 3.686 × 10−8 W−1 µ m−1,

fFSR = 1100 GHz. The silica toroid microcavity has a major diameter of 60 µm

and a minor diameter of 4 µm. To compare the gains of four-wave mixing and

stimulated Raman scattering, the Raman gain is set as

gRaman = gR
bulk

P0

Aeff
Leff − loss, (4.11)
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Fig. 4.3: Typical gain spectra of modulation instability at three power levels for (a) an optical fiber
and (b) an optical cavity.
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Fig. 4.4: Schematic image of the transition caused by gain competition between four-wave mixing
and stimulated Raman scattering. When an input power is small, the first mode from the pump
can experience a large gain of four-wave mixing. However, the increased input power shifts the
four-wave mixing gain far from the pump, which causes the gain experienced by the resonant
frequencies to be small. Thus, stimulated Raman scattering is dominant. When the input power
is high, the four-wave mixing gain meets the resonant frequency again, which causes a 2-FSR
comb.
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Leff =
1

αtotal
{1−exp(−αtotalL)}, (4.12)

where gR
bulk = 0.631× 10−11, and Aeff = 3 µm2. The variables αtotal and L

correspond to the Q and the FSR, respectively.

Table. 4.3: The parameters for the calculation for Figures 4.5 (a) and (b).
Qint 5×107 γ 3.686×10−8 W−1µm−1

Qcouple in (a) 1×108 fFSR 1100 GHz

Major radius 30µm detuning 0.01

Minor radius 2µm input power in (b) 10mW

The relationship between the intracavity power and the input power is re-

quired for an estimation of P0. It is described as

TPinput = (γL)2P3
0 −2δ0γLP2

0 + (δ2
0 +α2

total)P0. (4.13)

Using Equations 4.8, 4.11, and 4.13, the competition between four-wave mixing

and stimulated Raman scattering is analyzed. Figure 4.5(a) shows each gain with

a coupling Q of 100 million. The four-wave mixing gain is divided into each res-

onant frequency, i.e. the first mode and the second mode from the pump. The

Raman gain is assumed to be homogenous and always at its maximum because

the gain covers over 10 THz, which is much larger than the FSR. When the input

power is between 9 and 20 mW, the four-wave mixing gain disappears, because

the gain is located in a valley between the first and second modes, whereas the

Raman scattering is dominant even if the maximum gain of the four-wave mixing

is higher than that of the Raman scattering. Conventional analysis has been sug-

gested in the context of maximum gain. Thus, this mechanism is novel because

consideration of the FSR is a key point. Figure 4.5(b) indicates the gains with a

fixed input when the coupling Q is changed. There is also a valley where the four-

wave mixing gain disappears. A coupling Q works for changing the intracavity

power when the input power is changed directly.

Figure 4.6 exhibits numerical simulation results with a Lugiato-Lefever model.
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Fig. 4.5: (a) Gain of four-wave mixing for each resonant frequency and stimulated Raman scat-
tering with respect to input power. (b) Same as (a) but with respect to coupling Q. The calculated
parameters are a major diameter of 60 µm, a minor diameter of 4 µm, a cavity detuning of 0.01,
and an FSR of 1100 GHz.
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The parameters are same as those used in Figure 4.6 (b). First, a 2-FSR comb is

obtained with a coupling Q of 3.0 × 107, which is reason- able because the gain of

the second mode from the pump is much higher than the Raman gain. Next, the

coupling Q is set as 1× 108, where there is a valley in the four-wave mixing gain.

Here, stimulated Raman scattering is dominant. Then, a coupling Q of 9 × 108

causes a 1-FSR comb. Thus, numerical simulation confirms the novel mechanism

of gain competition between four-wave mixing and simulated Raman scattering

in a large-FSR silica cavity.

Finally, an experimental result is shown in Figure 4.7. First, a 4-FSR comb

and some Raman oscillations were obtained under certain conditions. After that,

the input wavelength was slightly detuned to the red, causing the four-wave mix-

ing lines to disappear and only the Raman oscillations to exist. With a little more

red detuning, a 3-FSR comb was obtained. Although Raman oscillations always

exist, the transition shown in the three panels indicates that the four-wave mix-

ing gain is clearly influenced by the width of the free spectral range

4.4 Summary

The influence of stimulated Raman scattering on microcomb generation was de-

scribed in this chapter. An extended model of a Lugiato-Lefever model that

includes a Raman effect was developed, and typical results in the anomalous

and normal dispersion regimes were discussed. Modulation instability gain in

a cavity was explained theoretically. From the analysis, a novel mechanism of

gain competition between four-wave mixing and simulated Raman scattering in

a large-FSR silica cavity was suggested and then verified by numerical simula-

tion and experiments. This discussion contributes to ideas on how to operate a

large-FSR silica cavity such as a silica toroid microcavity.
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Fig. 4.6: Transition of comb spectra caused by gain competition between four-wave mixing and
stimulated Raman scattering. 1.) A 2-FSR comb is obtained with a coupling Q of 3.0 × 107. 2.)
A Raman comb is dominant with a coupling Q of 1.0 × 108. 3.) A 2-FSR comb appears with
a coupling Q of 9.0 × 108. The calculated parameters are a major diameter of 60 µm, a minor
diameter of 4 µm, a cavity detuning of 0.01, and an FSR of 1100 GHz.
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Fig. 4.7: Experimental results of transition of comb spectra caused by a valley in the four-wave
mixing gain. (a) A 4-FSR comb and multiple Raman oscillations appear under certain condi-
tions. (b) With a small amount of red detuning of the input wavelength, four-wave mixing lines
disappear and Raman lines appear. (c) With a little more red detuning, a 3-FSR comb emerges.
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Chapter 5

Transverse mode interaction via
stimulated Raman scattering
combs in a silica toroid
microcavity

This chapter describes transverse mode interaction via stimulated Ra-
man scattering in a silica toroid microcavity. Since every material has
a Raman gain of a certain width, there are usually several transverse
modes apart from the desired mode. In particular, silica has a broad
Raman gain covering a width of 260 cm−1, which corresponds to approx-
imately 100 nm around 1550 nm. Although transverse mode interaction
via stimulated Raman scattering seems to occur frequently, it can be
suppressed by the selection of a pump mode. The relationship between
the quality factor of a pump mode and a Raman mode determines the
strength of the mode interaction.

Section 5.1 describes stimulated Raman scattering in a silica toroid
microcavity. With a theoretical analysis, the possibility of the mode
interaction via stimulated Raman scattering is discussed. Section 5.2
shows experimental results verifying that transverse mode interaction
occurs in the cavity. It is found that the control of the mode interac-
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tion can be performed with a selection of a pump modes. Section 5.3 ex-
plains numerical simulation results with coupled Lugiato-Lefever equa-
tion. Calculated results are in close agreement with the theoretical anal-
ysis and the experimental results.
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5.1. STIMULATED RAMAN SCATTERING

5.1 Stimulated Raman scattering

Since the Raman effect is based on molecular vibration, it is a universal effect in

optics. It is derived from third-order nonlinearity, so that the threshold of Raman

lasings is essentially high. Here, a high-Q microcavity that enhances optical

power inside is an appropriate platform for demonstrating applications with the

Raman effect. In high-Q silica cavities, it is easy to utilize Raman lasing because

the Raman gain covers a width of 260 cm−1, which corresponds to approximately

100 nm around 1550 nm. Thus, precise control of resonant frequencies is not

required to match the gain and the resonant frequency because a broad width

of the gain contains one or multiple resonant frequencies by accident. In 2002,

Raman lasing in a high-Q cavity was demonstrated with a silica microsphere7).

Since then, a number of studies have been conducted. The threshold power of

stimulated Raman scattering is described as5)

Pth = π2n2V
λpλR gR

( 1
Qint

)
P

( 1
Qint

)
R
· (1+KR)(1+KP)2

KP
, (5.1)

where λp and λR are the respective wavelengths of the pump and a Raman mode,

gR is the nonlinear bulk Raman gain coefficient, V is the effective mode volume,

and Qint is the intrinsic Q factor, in which the subscript means a pump mode (P)

and a Raman mode (R). K is a coupling factor and defined as K = Qint/Qcoup.

Thus, if the mode is at critical coupling, K should be 1. Given that the values

of Qs of two modes are the same, and both modes are at critical coupling, the

equation is simplified to

Pth = π2n2V
λpλR gR

( 1
Qint

)2 ·8. (5.2)

Note that the minimum threshold is obtained when K = 1/2, which means an

undercoupling condition.

Pmin
th = π2n2V

λpλR gR

( 1
Qint

)2 · 27
4

. (5.3)

Here, transverse mode interaction is considered. In other words, a situation in

which a pump mode excites a Raman oscillation in a different mode family is dis-
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cussed. Transverse mode interaction via stimulated Raman scattering is often

observed experimentally unlike via four-wave mixing. Although there is a report

on transverse mode interaction via four-wave mixing73), it requires complex de-

sign of the dispersions of three mode families (pump, signal, and idler modes).

Thus, the only path of stimulated Raman scattering is considered in this section.

Nonlinear effective mode volume, which expresses a mode overlap, is given by

V =
∫ |EP|2dV

∫ |ER|2dV∫ |EP|2|ER|2dV
, (5.4)

Three mode families (TE00, TE01, and TE10) in a silica toroid microcavity with a

major diameter of 100 µm and a minor diameter of 8 µm are considered. The spa-

tial mode profiles of the modes are calculated with an FEM as shown in Figure

5.1. Since the relationship that V = 2πrAeff, where r is a radius, is reasonable,

an effective mode area Aeff is used from now on. Effective mode areas of each

combination are evaluated as shown in Table 5.1, where the value of the combi-

nation of one mode with itself corresponds to the value of the common effective

mode area.

Fig. 5.1: Cross-sectional mode profiles of a silica toroid microcavity. These results were obtained
using the finite-element method (COMSOL Multiphysics). The diameter of the microcavity is
100 µm and the minor diameter is 8 µm. The results are for the TE00, TE01, and TE10 mode.

Table. 5.1: Effective mode area considering mode interaction.
Aeff [µm2] TE00 TE01 TE10

TE00 9.7549 18.1876 21.6853

TE01 18.1876 12.7816 29.4491

TE10 21.6853 29.4491 17.7464

To compare the threshold power of the excitation of a different mode family
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via the SRS process, I define the power ratio C as

C = Pth−same

Pth−diff
= Asame

Adiff
· Qt

diff

Qt
same

, (5.5)

where, Qt
same and Qt

diff are total Qs of the same mode as a pump mode and the

different mode, respectively. The ratio expresses which modes have a low thresh-

old power from a pump mode. In essence, since the mode overlap is small (Adiff

is considerably larger), the C is less than 1, which means a mode interaction will

not occur, because the threshold power for exciting the same mode via stimulated

Raman scattering is lower. However, even if a mode overlap is not perfect, a re-

lationship between Qs can compensate for it. Figure 5.2 shows the function C

with different Qs. In a silica toroid microcavity, since a lower-order mode has

higher Q, I assume only three transitions of TE01 → TE00, TE10 → TE00, and

TE01 → TE10. Note that the value of C is always below 1 when both Qs are the

same (Qt
diff/Q

t
same = 1), because mode overlapping must be inperfect. When C is

greater than 1, the threshold power of excitation of the different mode family is

lower, which indicates the a mode interaction should occur. It is found that the

ratio of Qt
diff/Q

t
same of only 1.5 causes a mode interaction that is dominant with re-

spect to the threshold power. The analytical results reveal that high-order mode

pumping easily causes a mode interaction via stimulated Raman scattering.

5.2 Experimental results

In this section, experimental results on stimulated Raman scattering in a silica

toroid microcavity are shown. In particular, a mode interaction is focused on, in

order to confirm the theory discussed above.

Figure 5.3(a) shows the experimental setup. A tunable laser diode scans the

input laser wavelength, and an erbium-doped fiber amplifier amplifies the input

power up to 1 W. A tapered fiber with a diameter of about 1 µm is used as an

evanescent coupler. The output is measured with a power meter and an optical

spectrum analyzer. Figure 5.3(b) shows a microscope image obtained from the top

of a fabricated cavity. A typical Raman gain for silica is shown in Figure 5.3(c).

First, I pumped one of the modes and observed the spectrum, as shown in Fig-
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Fig. 5.2: Calculated threshold coefficient C. The blue, red, and black lines indicate combina-
tions ofTE01(pump) -TE00(Raman), TE10(pump) -TE00(Raman), and TE10(pump) -TE01(Raman),
respectively. That the coefficient C is greater than 1 means that the threshold of excitation for
a different mode family is lower than that for the same mode family, indicating that a mode
interaction should occur.
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5.2. EXPERIMENTAL RESULTS

Fig. 5.3: (a) Schematic image of our experimental setup. TLD, tunable laser diode (Santec TSL-
710); EDFA, erbium-doped fiber amplifier (Pritel PMFA-30); VOA, variable optical attenuator
(OZ Optics DA-100); FPC, fiber polarization controller (Thorlabs FPC560); OSA, optical spectrum
analyzer (Yokogawa AQ6375); PM, power meter (Agilent 81634B). A tapered fiber is used as an
evanescent coupler to couple light with the microcavity. (b) An optical microscope image showing
the top view of a fabricated silica toroidal microcavity. A tapered fiber is aligned close to the
cavity. The diameter is about 100 µm. (c) Typical Raman gain f or silica at 1550 nm135,136).
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ure 5.4(a). A comb spectrum ranging from 1400–2000 nm was observed. Figure

5.4(c) is a magnified view of Figure 5.4(a), which shows that the stimulated Ra-

man scattering occurred in the same mode family as the pump mode. Next, I

pumped a different mode. The result, where I observed a dual-comb-like spec-

trum, is shown in Figure 5.4(b). The magnified view shown in Figure 5.4(d)

clearly shows that a different mode family is excited via the stimulated Raman

scattering process. Note that the transverse mode is not generated through FWM

because of the energy and momentum mismatch. The frequency difference be-

tween these two mode families is about 180 GHz.

Fig. 5.4: Optical spectra pumped with different modes. Same cavity was used for all. Graphs show
the spectrum when the pump wavelength was (a) 1548.96 nm and (b) 1543.08 nm. The pump
power was about 1 W after the EDFA. (c) and (d) are magnified views of (a) and (b), respectively.
The equidistant vertical gray lines in (c) show that the SRS comb was generated in the same mode
family as the pump mode.

Next, I measured the Qs of the pump and the stimulated Raman scattering

comb modes. The measured modes are indicated in Figure 5.4 as H0 and L0 for

two different pump modes and L1, L2, H1, and H2 as two different sets of mode

families. I performed a conventional transmittance spectrum measurement us-
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ing a tunable wavelength sweep laser, and I obtained Qs of 1.1 × 107 for the

1548.96−−nm mode (H0 mode) and 3.1 × 106 for the 1543.08−−nm mode (L0

mode), as shown in Figures 5.5(a) and (b), respectively. It should be noted that the

resonant wavelengths were shorter than those in Figure 5.4 due to the presence

of the thermo-optic effect. Figures 5.6(a) and (b) are the transmittance spectra

for the H1 and H2 modes, which exhibited Qs of 1.6 × 107 and 1.9 × 107, respec-

tively. On the other hand, the Qs for the L1 and L2 modes were only 5.2 × 106

and 4.7 × 106, respectively. From this result, I confirmed that an energy transfer

occurred when I pumped in a low-Q mode, but no transverse mode coupling oc-

curred when I pumped the cavity in the highest-Q mode. Therefore, to suppress

the generation of a different longitudinal mode family, one must pump the cavity

at the highest-Q mode. This transverse mode coupling even allows one to find the

lowest order mode, because the lowest order mode ultimately has the highest Q

in the cavity. This experimental result is in close agreement with our theoretical

understanding that stimulated Raman scattering converts energy from a low-Q

mode to a high-Q mode.

Fig. 5.5: (a) Transmittance spectrum for the 1548.96 nm mode used in Figs. 5.4(a). (b) Same as
(a) but for 1543.08 nm. It should be noted that the resonant is at shorter wavelength for Figs.
5.4(a) and (b) due to the presence of the thermo-optic effect, but we are measuring the same mode.

Figure 5.7 confirms our ideas by showing pumping performed at different

wavelengths. Figure 5.7(a) explains the high- and low-Q values of the pump

modes. The spectra obtained when I pumped at H0 and L0 are already shown in

Figures 5.4(a) and (b). When I compared Figures 5.7(c) and 5.4(a), which shows
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Fig. 5.6: Transmittance spectra of the modes where combs were generated: (a) H1, (b) H2, (c) L1,
and (d) L2 modes. The obtained Qs are shown in the panels.
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the spectrum when I pumped at mode (c), I found that they were almost identical,

showing only one longitudinal mode family. This indicates that the stimulated

Raman scattering process occurred in the same mode family as the pump. In-

deed, I confirmed that the anti-Stokes light is also in the same mode family. On

the other hand, Figure 5.7(b), when I pumped at mode (b), had the same trend as

Figure 5.4(b), which shows a twin comb spectrum. Figure 5.7(b) shows that anti-

Stokes stimulated Raman scattering light is excited at 1450 nm, and it is also in

a different mode family from the pump but in the same mode family as the stim-

ulated Raman scattering mode. Thus, the generation of the high-Q mode family

dominates the generation of the low-Q mode in the stimulated Raman scattering

process. These results indicate that mode interaction behavior depends solely on

the relationship between the Qs of the modes used for the pump and the gener-

ated stimulated Raman scattering light.

5.3 Numerical simulation with a coupled Lugiato-Lefever

equation

In this section, a numerical model is explained that describes the behavior of

a nonlinear cavity in which four-wave mixing and stimulated Raman scattering

occur simultaneously. With a developed numerical model, I confirm experimental

results and theoretical analyses.

To obtain a full understanding of the behavior of a nonlinear cavity, I modi-

fied the Lugiato-Lefever equation and took the nonlinear energy transition via

stimulated Raman scattering into account. The equations137) are as follows:

tR
∂Ep

∂r
= (−αp

2
− κp

2
− iδp + iL

∑
k≥2

β(k)
p

k!

(
− i

∂

∂τ

)k + iL(1− fR)(γp|Ep|2 +2γp|Es|2)Ep + fR

{
γpEp

∫ ∞
−∞

hR(t′)

|Ep(t− t′)|2dt′+ΓpEp

∫ ∞
−∞

hR(t′)|Es(t− t′)|2dt′+ΓpEs

∫ ∞
−∞

hR(t′)Ep(t− t′)E∗
s (t− t′)dt′

}
+p

κEin, (5.6)

tR
∂Es
∂r

= (−αp

2
− κp

2
− iL(β(1)

s −β(1)
p )(−i

∂

∂τ
+ iL

∑
k≥2

β(k)
s
k!

(
− i

∂

∂τ

)k + iL(1− fR)(γs|Es|2 +2γs|Ep|2)Es + fR{
γsEs

∫ ∞
−∞

hR(t′)|Es(t− t′)|2dt′+ΓsEs

∫ ∞
−∞

hR(t′)|Ep(t− t′)|2dt′+ΓsEp

∫ ∞
−∞

hR(t′)Es(t− t′)E∗
p (t− t′)dt′

}
, (5.7)
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Fig. 5.7: (a) Explanation of the high and low Q modes of the pump in the experimental cavity. (b)
Optical spectrum when we pump at mode b. (c) Same as (b) but when we pump the cavity at mode
c.
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where Ep and Es are the electrical fields of the pump and signal (Raman) light.

The variables r, t, tR, L, and Ein are the propagation coordinate (step), (short)

time, round-trip time, cavity length, and pump light, respectively. The variables

α, κ, δ, β(k), γ, and Γ are the intrinsic cavity loss, coupling loss with the waveg-

uide, detuning of the frequency from the resonance (detuning from the center

frequency), cavity dispersion, effective nonlinear coefficients, and effective non-

linear coefficients considering mode overlapping, respectively. The subscripts de-

note pump and signal light. Cavity dispersion is calculated with a finite-element

method as shown in Figure 5.8.

Fig. 5.8: Dispersions used for numerical calculation. The cavity is the same as that shown in
Fig. 5.1. The major diameter is 100 µm and the minor diameter is 8 µm. (a) β1 is the inverse
of the group velocity. (b) β2 is the second-order dispersion including material and geometrical
dispersion.

Equation 5.6 shows the behavior of a pump mode that couples with a signal

mode via cross-phase modulation and Raman scattering. The Raman scattering

terms include the response from its own intensity, the coupled light intensity, and

the interaction between two modes. It should be noted that only the pump mode

is excited by an external source. Therefore, the signal mode receives energy only

through the Raman scattering, as described in Equation 5.7. Mode overlapping

is considered with effective mode area Aps and described as
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Γ= n2ω

cAps
, (5.8)

Aps =
Î |Ep(x, y)|2dxd y

Î |Es(x, y)|2dxd yÎ |Ep(x, y)|2|Es(x, y)|2dxd y
, (5.9)

where n2 is the nonlinear coefficient of a material. When calculating Lugiato-

Lefever equations, we assume that Γp and Γs have the same value, for simplifi-

cation. The Raman scattering terms, namely the Raman contribution fR and the

Raman response function hR, are well-known values where fR = 0.18 and hR is

described as

hR = τ2
1 +τ2

2

τ1τ
2
2

exp
(
− t
τ2

)
sin

(
− t
τ1

)
, (5.10)

Here, τ1 = 12.2 fs and τ2 = 32 fs51). Although Raman scattering has gain in the

orthogonal modes, the efficiency is small, and the conversion to orthogonal modes

can be neglected138). Thus, we consider Raman modes to have the same polariza-

tion as a pump mode.

Table. 5.2: The parameters for the calculation for Figures 5.9.
QTE00 in (c) 1.5×107 n2 2.2×10−20 W/m2

QTE01 5×106 fFSR 660 GHz

Major radius 50µm detuning 0

Minor radius 4µm input power 1W

To explain the experimental results, we set a pump mode with a Q of 5.0 × 106.

Based on a theoretical understanding, the Q factor ratio, QRaman/Qpump, was used

as a parameter. Figure 5.9(a) shows the calculated results when TE01 and TE00

were set as the pump and Raman modes, respectively. The vertical axis is the in-

tegrated light power of the generated stimulated Raman scattering mode. Since

each calculation time is tens of thousands of round-trip times, the cavity should

be in a steady state. When the Q factor ratio is 2, the Raman power suddenly

increases, which means that the gain overcomes the cavity loss. The value agrees

with the theoretical prediction, as discussed above and shown in Figure 5.9(b).

The optical spectrum for a ratio of 3, which corresponds to our experimental val-
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ues, is shown in Figure 5.9(c). The spectrum had the same shape as the exper-

imental result shown in Figure 5.4(b). On the other hand, when we pumped at

a higher mode, we obtained the spectrum shown in Figure 5.9(d). The Raman

power did not increase, and this is in close agreement with Figure 5.4(a). This

calculation confirmed that the origin of the dual comb-like spectrum was the re-

sult of mode interaction between the pump and Raman modes via Raman scat-

tering. Also, the ratio of the Q values played an important role in determining

the strength of the mode interaction.

Fig. 5.9: Simulation results with the model we used in experiments. Input power is set as 1 W. (a)
Integrated power of SRS modes versus QTE00 /QTE01 . The Q of the TE01 mode is defined as 5.0×106.
As QTE00 /QTE01 increases and exceeds 2, the SRS mode power increases rapidly, because the gain
exceeds the threshold of SRS. (b) The theoretical threshold coefficient C mentioned in section 5.2.
(c) The optical spectrum when QTE00 /QTE01 = 3. (d) High-Q mode pumping with the same Q ratio
as (c). No transverse mode coupling was observed.

5.4 Summary

In this chapter, transverse mode interaction via stimulated Raman scattering in

a silica toroid microcavity was discussed. Theoretical analysis suggested that

a mode interaction is dominant when a low-Q mode is pumped. Experimental

results confirmed the theoretical analysis. Interestingly, a mode interaction via
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stimulated Raman scattering and common four-wave mixing form a dual-comb

like spectrum. Finally, a numerical model was developed, and the numerical re-

sults were also in close agreement with the theoretical and experimental results.
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Chapter 6

Broad bandwidth third-harmonic
generation via four-wave mixing
and stimulated Raman scattering

This chapter describes broad-bandwidth third-harmonic generation as-
sisted by four-wave mixing and stimulated Raman scattering in a sil-
ica toroid microcavity. Third-harmonic generation is basically a simple
triple frequency that occurs from the frequency of a pump due to third-
order nonlinearity. However, a more complex process, called third-order
sum-frequency generation, often occurs in a high-Q silica toroid micro-
cavity, so that not only third-harmonic generation but also four-wave
mixing and stimulated Raman scattering play key roles in determining
third-harmonic light emission. Experimentally, a comb-like spectrum
covering 498–611 nm is observed with a near-infrared pump.

Section 6.1 describes third-harmonic generation in a silica toroid mi-
crocavity. How phase-matching is satisfied in the cavity is discussed.
Section 6.2 shows some experimental results, which verify that four-
wave mixing and stimulated Raman scattering influence third- harmonic
light emission. Section 6.3 explains dispersive wave emission, which
provides access to a blue-color emission.
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6.1 Third-harmonic generation

While a frequency comb in the visible range has many promising applications,

and its development is desired, microcomb research is still too sparse to be used

practically. This is because the anomalous dispersion required for microcomb

generation cannot be designed, due to strong normal material dispersion. Thus,

since third-harmonic generation can occur even in a normal dispersion, it should

provide a way to generate visible light with a high-Q cavity.

Third-harmonic generation requires two main conditions, as follows:

ωTH = 3ωpump, (6.1)

βTH = 3βpump, (6.2)

where the former is "frequency matching" and the latter is "phase matching." For

a silica toroid microcavity, the modes satisfying them are calculated with an FEM.

Since the angular momentum l of a whispering gallery mode indicates the num-

ber of nodes of the travelling waves, phase matching is automatically achieved

when we select the modes with the relationship lTH = 3lpump
9). Thus, the fre-

quency matching is worthy of attention. The considerations are different from a

ring cavity, for which the effective refractive index is focused on. The difference is

derived from a whispering gallery mode affected by not only the effective refrac-

tive index but also the physical mode radius. In essence, the longer a resonant

wavelength, the more deeply the whispering gallery mode propagates inside. Fig-

ure 6.1 shows the calculated frequency mismatch between the pump mode and

third-harmonic modes in a silica toroid microcavity with a major diameter of 80

µm and a minor diameter of 6 µm. Typically, frequency matching is satisfied

when a fundamental mode is selected as a pump mode and a high-order mode

is selected as a TH mode. Here, although only four modes are considered, there

are many high-order modes in the cavity. Other modes can be found where third-

harmonic generation occurs. It has been shown that certain kinds of high-order

modes can turn into third-harmonic modes by chance.

Next, the theoretical analysis is described. The starting point is a coupled
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Fig. 6.1: (a) and (b) show calculated resonant frequencies of four TH modes. Since phase-matching
is already satisfied by selections of the angular momentum relationship lTH = 3lpump, frequency-
matching should be focused on for third-harmonic generation. The pump mode is a fundamental
mode in a silica toroid microcavity. Four modes in the visible range are calculated, shown in TE00
and c-1, c-2, and c-3). Light blue and dark blue areas in (b) show the bandwidths of resonant
frequencies with Qs of 100 and 500.
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nonlinear Schrödinger equation given by

∂A
∂z

=−αA

2
A− i

2
β2A

∂2A
∂T2 + iγA|A|2A+ iκBA∗A∗e−i∆kz, (6.3)

∂B
∂z

=−αB

2
B− i

2
β2B

∂2B
∂T2 + iγB|B|2B+ iκAAAei∆kz, (6.4)

where A and B are electric amplitudes of a pump and a TH mode. The variables

α, β2, γ, and κ mean propagation loss, dispersion, a nonlinear coefficient, and cou-

pling between two modes, respectively. ∆k shows the phase mismatch kB − 3kA.

Equation 6.3 is transformed by the same manner139) shown in Appendix C as

An = An−1 +
∫ L

0

∂A
∂z

dz, (6.5)

An = An−1 +L
[
− αA

2
− i

2
β2A

∂2

∂T2 + iγA|A|2
]
A+

∫ L

0
iκBA∗A∗e−i∆kzdz, (6.6)

where since the last term in the right side is a function of z, the integral can be

calculated as

∫ L

0
ie−i∆kzdz = 1

−∆k

[
e−i∆kz

]L

0

= 1
−∆k

(
e−i∆kL −1

)
= 1

−∆k

(
−2sin

∆kL
2

)
e−i ∆kL

2

= L
sin ∆kL

2
∆kL

2

e−i ∆kL
2

= L ·sinc
(∆kL

2

)
e−i ∆kL

2 . (6.7)

With Equation 6.7, a Lugiato-Lefever equation, including third-harmonic gener-
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ation is described as

An = An−1(1− 1
2

T − iδ)+
∫ L

0

∂A
∂z

dz+
p

TEin, (6.8)

An − An−1 =
[
− αA

2
L− 1

2
T − iδ− i

2
β2AL

∂2

∂T2 + iγAL|A|2
]
A

+κBA∗A∗L ·sinc
(∆kL

2

)
e−i ∆kL

2 +
p

TEin. (6.9)

Note that third-harmonic generation depends on a sinc function for values of

∆kL/2 denoting the phase mismatch. Here, I evaluate the phase mismatch with

respect to the angular momentum l. When the angular momentum of a pump

mode and that of a TH mode are lp and lTH, respectively, the phase mismatch is

given by

βTH −3βp = nTHkTH −3npkp

= nTH
2π fTH

c
−3np

2π fp

c

= nTH
2π
c

lTH
c

2πnTHR
−3np

2π
c

lp
c

2πnpR

= 1
R

(lTH −3lp)=∆k, (6.10)

where R is the radius of a ring cavity. With Equation 6.10, the sinc function is

described as

sinc
(∆kL

2

)
= sinc

(2πR(lTH −3lp)
2R

)
= sinc{π(lTH −3lp)}. (6.11)

Thus, third-harmonic generation in a ring cavity occurs when lTH = 3lp is achieved,

in addition to frequency matching. If not, the sinc function exhibits zero.
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6.2 Experimental results

In this section, experimental results of third-harmonic generation with a silica

toroid microcavity are shown. The results reveal that not only third- harmonic

generation but also other nonlinear effects can result in visible light emission.

The relationship between third-harmonic generation and four-wave mixing

in the near-infrared region is explained here. Figure 6.2(a) shows the optical

spectra seen when four-wave mixing occurs from a pump at 1550 nm. Seven

lines are observed in the visible range. They are spaced similarly to lines with

a 4.5-THz distance in the near-infrared. A "*" marks a frequency of 3 fpump.

This demonstrates that third-order sum-frequency generation100) or Bragg scat-

tering four-wave mixing140) occurs. Third-order sum-frequency generation is a

frequency conversion described as ωTSFG = ωA +ωB +ωC, which is the same as

third-harmonic generation when A, B, and C are all the same. Bragg scattering

four-wave mixing is a conversion given by ωTSFG = ωTH + (ωB −ωA), which is ex-

plained as a modulation of ωTH caused by ωB −ωA. The latter requires initial

third-harmonic generation while the former doesn’t. Although this result does

not provide clear evidence, it does show later that third-order sum-frequency gen-

eration seems to be dominant.

Next, the relationship between third-harmonic generation and stimulated Ra-

man scattering is shown in Figure 6.2(b). This is clear evidence that other co-

herent mixing processes occur besides third-harmonic generation. The numbers

"1,2,3,4" show frequencies of 3ωp, 2ωp +ωRS, ωp +2ωRS, and 3ωRS, respectively.

Thus, it is seen that the stimulated Raman scattering light is coherent with the

pump, and it causes coherent mixing that generates visible light. Figure 6.2(c)

shows the result when cascade-stimulated Raman scattering occurs. Five lines

are observed in the visible range, showing that multi-wavelength generation in

the near-infrared region is needed to obtain the same number of lines in the visi-

ble region. Figures 6.3(a) and (b) show broad visible light emissions covering over

100 THz. In the near-infrared region, the broad-bandwidth spectrum is obtained

via the combination of four-wave mixing and stimulated Raman scattering, which

causes broad-bandwidth visible light emission through third-harmonic genera-

tion. Comparison between Figures 6.3(a) and (b) shows that short wavelengths
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(< 500 nm) are obtained only in (a), while long wavelengths (> 620 nm) are only in

(b). This result is indirectly influenced by the spectra in the near-infrared, which

suggests that the control of those spectra has the potential to achieve the desired

spectrum in the visible region.

6.3 Dispersive wave emission

This section discusses blue light emission with a dispersive wave caused by third-

order dispersion. A dispersive wave is a kind of four-wave mixing process that

occurs in a pulse propagation141). In the context of microcomb generation, it

occurs simply because of phase matching, even from a continuous wave. In a

dispersive wave emission, blue light, which is shorter than green, is generated by

a pump at 1550 nm.

In a microcavity, a dispersive wave requires phase matching, and the point

where it occurs is described as84,85)

Dint =
1
2

D2µ
2
DW + 1

6
D3µ

3
DW = 0, (6.12)

µDW =−3
D2

D3
, (6.13)

where µDW is the mode number from the pump mode at which a dispersive wave

occurs. The other parameters have a relationship given by

ωµ =ω0 +D1µ+ 1
2

D2µ
2 + 1

6
D3µ

3, (6.14)

where ω0 is the pump mode, ωµ is the µ-th mode from the pump, D1 is a FSR,

D2 is a cavity dispersion, and D3 is a third-order dispersion. Thus, a dispersive

wave is generally observed with the D2 of near zero. Dint = 0 means that the ef-

fective refractive index of the µ-th mode is same as that of the pump mode, which

satisfies phase-matching. The underlying physics of the wavelength conversion

of the dispersive wave emission is not clear yet although it is regarded as a kind

of Cherenkov radiation141).

Figure 6.4(a) shows a typical spectrum of dispersive wave emission in a sil-
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Fig. 6.2: (a) IR and visible spectra when the pump laser operated at 1545.9 nm and 0.94 W. The
longitudinal mode spacing of the Kerr comb was 5-FSR. The thick line width of each longitudinal
mode was due to the limited wavelength resolution of the spectrometer. (b) Spectra obtained when
we pumped the cavity with 1542.2 nm at 0.5 W. A single Stokes signal at 1630 nm was obtained.
(c) Measured spectra when the pump laser operated at 1542.56 nm at 0.5 W. High-order SRS
at an 11-FSR interval was observed at the IR wavelength. The generated visible light had a
bandwidth of 50 THz with a frequency spacing of 11 FSR. The resolution of the spectrometer
used to measure the visible light was insufficient to resolve each FSR line, but each spectral
component had a frequency spacing of 11 FSR.

114



6.3. DISPERSIVE WAVE EMISSION

Fig. 6.3: (a) Measured spectra when the pump laser operated at 1551.6 nm and 1 W. The band-
width of the generated light was very large, at 110 THz. (b) Different pump conditions.
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ica toroid microcavity. The 22nd mode is a peak influenced by dispersive wave

emission. Figure 6.4(b) describes calculated Dint of the fundamental mode of sil-

ica toroid microcavities with different major diameters (26, 26.5, and 27 µm) at

a 1550-nm pump. Although the peak point strongly depends on the structure of

the cavity, it should be noted that engineering of the point is possible when de-

signing the cavity structure. For a silica toroid microcavity with a diameter of

around 50 µm, the dispersive wave point tends to be located at a shorter wave-

length than the pump. Thus, it is a way to generate high-power short wave-

lengths (< 1550 nm pump), which contributes to generation of blue and shorter

wavelengths.

Figures 6.5(a), (b), and (c) indicate 433- and 457-nm light emissions in a sil-

ica toroid microcavity. First, 1300- and 1860-nm light occurred from a 1550-nm

pump. Because the wavelengths are very different from the pump, they should

be categorized not as stimulated Raman scattering but as dispersive wave emis-

sion, described by Equation 6.12. In the visible region, 433-nm light and third-

harmonic generation of the 1300-nm light were observed. Then, the detuning of

the input was changed so that more power was coupled to the cavity. As a result,

457-nm light, third-order sum-frequency generation of two 1300-nm lights, and

one 1550-nm light occurred, as seen in Figures 6.5(b) and (c). Thus, we found

that it is possible to design visible light emission through engineering of disper-

sive wave emission in a silica toroid microcavity.

6.4 Summary

In this chapter, I described how third-harmonic generation is achieved in a silica

toroid microcavity. In particular, attention should be paid to frequency-matching,

because the phase-matching is satisfied by the selection of modes given by lTH = 3lp.

Double measurements of near-infrared and visible regions show clear relation-

ships between them, which indicate that four-wave mixing and stimulated Ra-

man scattering affect visible light emission. Dispersive wave emission also af-

fects blue light emission, which shows the possibility of generating purple and

ultraviolet light.
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Fig. 6.4: (a) Typical dispersive wave emission with a silica toroid microcavity. Mode number µ= 22
is the emitting point. (b) Calculated dispersion parameters with different geometrical parameters
in a silica toroid microcavity.
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Fig. 6.5: Optical spectra with pump conditions of (a) 1539.72 nm, (b) 1539.75 nm, and (c)
1539.80 nm. As coupled power was increased, dispersive wave emission and blue light emission
also increased.
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Chapter 7

Summary and outlook

7.1 Summary

This dissertation studied nonlinear optical processes with a silica toroid micro-

cavity for optical frequency comb generation. The underlying physics of the gen-

eration of the discrete spectrum from a continuous-wave pump via third-order

nonlinearity-based optical effects in silica (four-wave mixing, stimulated Raman

scattering, and third-harmonic generation) were investigated. High-Q cavities

including a silica toroid microcavity enables application using nonlinear optical

effects to be readily accessed. This dissertation pave the way for achieving opti-

cal frequency comb generation in the visible and the telecom with a silica toroid

microcavity.

Hysteresis behavior of microcomb generation (Chapter 3)
A novel way to achieve a mode-locked microcomb was presented. It was found

that input power scanning can induce mode-locking, because it moves the non-

linear cavity system to the upper branch from the lower, which has the same

effect of input wavelength sweeping. Input power control is useful in the region

where there is no reasonable tunable laser, such as the mid-infrared. This is the

first demonstration that a mode-locked microcomb can be generated with a silica

toroid microcavity, which, because it exhibits ideally ultrahigh-Q, has the poten-

tial to access mode-locked microcombs below 1 mW.
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Influence of stimulated Raman scattering on microcomb generation in a
silica cavity (Chapter 4)
Gain competition between four-wave mixing and stimulated Raman scattering

was studied. Although comparison of maximum gains was conducted, the effect

of free-spectral range also affects the competition. It was found that the un-

known transition between two states, where either four-wave mixing or Raman

scattering is dominant, occurs in a silica cavity. The effect of free-spectral range

is striking in a large-FSR silica cavity like a silica toroid microcavity. This study

contirbuted to the development of the method to control Raman lasing and mi-

crocomb generation in a large-FSR silica cavity.

Transverse mode interaction via stimulated Raman scattering combs in
a silica toroid microcavity (Chapter 5)
A mode interaction via stimulated Raman scattering in a silica toroid microcavity

was investigated analytically and experimentally. Mode interaction depends on

the relationship of Qs of the pump mode and the Raman mode. When the pump

is in a low-Q mode family, mode interaction occurs, and the Raman comb is ex-

cited in a higher-Q mode family. As a result of mode interaction, a dual-comb-like

spectrum was obtained. Numerical simulation was also performed, and the cal-

culated results agreed well with the experimental results. This study gave a deep

understanding of the mode interaction and contributed to the development of the

method to generate broad Raman comb or dual-mode combs in a silica toroid mi-

crocavity.

Broad bandwidth third-harmonic generation via four-wave mixing and
stimulated Raman scattering (Chapter 6)
In a silica toroid microcavity, third-harmonic and third-order sum-frequency gen-

eration were presented. By measuring spectra in the near-infrared and the visi-

ble, clear relationships were found. A comb spectrum in the near-infrared, result-

ing from four-wave mixing and stimulated Raman scattering, induced a visible

comb via third-harmonic generation. Thus, broad spectrum in the near-infrared

is required for broadening the visible spectrum. Therefore, engineering a spec-

trum in the near-infrared is necessary to obtain the desired spectrum in the vis-
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ible. It was also found that dispersive wave emission is one method of achieving

blue light emission. This study paves the way to generate broad visible spectrum

with a continuous-wave input, which is useful for biological imaging and optial

clocks.

7.2 Outlook

Nonlinear optical processes with high-Q cavities has been extensively researched.

With the knowledge accumulated so far, some applications are foreseen and may

be realized in the near future.

Visible combs
Although microcomb generation in the near-infrared has been investigated for a

decade, microcomb generation in the visible and ultraviolet are still in progress.

Silica toroid microcavities have high high-Q even in the visible because the sur-

face scattering is ultimately low, due to the laser reflow process. Rayleigh scatter-

ing is the main cause of decreased high-Q in the short wavelengths because the

scattering loss is inversely proportional to the fourth power of the wavelength.

Therefore, silica toroid microcavities, which have the ultimate smooth surface,

are promising for achieving microcomb generation in the visible. Recently, micro-

comb generation in the normal dispersion has been extensively researched; these

studies should provide useful information for our objectives, because strong ma-

terial dispersion is inevitable in silica toroid microcavities.

Mode-locked Raman combs
Broad bandwidth of Raman gain is a unique characteristic of silica toroid cavi-

ties. Although single-mode Raman lasing has been much researched, multi-mode

Raman lasing is still unclear, though interesting from the point of view of mode-

locking. Recently, some groups have reported mode-locking operations of Raman

combs94,95). Thus, if a broad Raman comb generated in a silica toroid microcavity

can be mode-locked, this is also a reasonable way to obtain a mode-locked comb

in the long wavelengths. The dual-mode family, as discussed, may be used for

dual-comb generation if we can obtain mode-locking at both modes.

121



CHAPTER 7. SUMMARY AND OUTLOOK

Engineering of visible light emission
Visible light emission via third-harmonic generation is controlled by the spec-

trum in the near-infrared. By engineering the spectrum in the near-infrared,

arbitrary visible light emission is achieved. For example, dispersive wave emis-

sion is a strong way to generate blue and shorter-wavelength lights. Purple and

ultraviolet light generation with a silica toroid microcavity is a topic of interest.

This dissertation investigated nonlinear optical processes (four-wave mixing, stim-

ulated Raman scattering, and third-harmonic generation) with a silica toroid mi-

crocavity for optical frequency comb generation. Silica toroid microcavities have

great potential to be used as comb sources. The cavity with the Q of beyond 100

million realizes a low-consumption comb source, which requires a continuous-

wave input below 1-mW. The finding of the method to achieve mode-locking in

the thesis eliminates the necessity of tunable laser. Thus, fixed wavelength lasers

such as semiconductor lasers can work as the input, which makes the setup sim-

ple and compact. A coupling with a tapered fiber contributes high efficiency.

However, the integration of a silica waveguide for a silica toroid microcavity is

demonstrated142). Thus, the silica toroid microcavity will be a compact and highly

efficient comb source for the near future. This study may be a guide and refer-

ence for future research on nonlinear optical processes, and it paves the way for

achieving practical applications with a compact comb source.
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Appendix A

Polygonal silica toroid
microcavities for stable coupling

A.1 Polygonal cavities

In this section, octagonal-shaped cavities are analyzed. Unlike circles, octagons

have several corners and sides. Using an analogy of directional couplers, a cou-

pling with a side should be different from that with a corner. With an FDTD

calculation, the performance of octagonal cavities is evaluated.

First, a representative model is shown in Figure A.1(a). I modeled a curved

octagonal shape because the edges are smoothed by laser reflow. The radius r,

the side length d, and curvature radius rp were 50 µm, 10 µm, and 38.1 µm, re-

spectively. Calculated areas were 3r × 3r, and the thickness of a perfect matching

layer was 3, as shown in Figure A.1(b). The resolution was defined as 1/∆x, which

determined the time step ∆t = 0.5∆x. In this appendix, ∆x = 0.05 was used.

Using an FDTD calculation, two whispering gallery modes were calculated

as shown in Figure A.2. A quasi-whispering-gallery mode with a Q of 4.5×104,

which reflects from each side, is shown in Figure A.2(b). On the other hand, the

perturbed whispering gallery mode in Figure A.2(a) exhibits a Q of 8.8×106. Note

that the trajectory is close to the surface at the corner and far from the surface

at the side. The latter has a reasonably high Q for nonlinear optics. It should be

noted that both modes propagate in a unique trajectory. For a quasi-whispering

gallery mode, each side is a reflection point at which the evanescent field strongly
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Fig. A.1: (a) Calculated model of a polygonal cavity. The profile of the refractive index is set for
silica toroid cavities. The curvature radius is formed by a laser reflow process. (b) Calculation
area in the FTDT simulation. Resolution is defined as ∆x.

leaks. In contrast, a large evanescent field occurred at the corners in a perturbed

whispering gallery mode, as shown in an inset in Figure A.2. By utilizing these

differences, the control of coupling coefficiency should be achieved.

Figure A.3 shows coupling Q factors of a perturbed whispering gallery mode

with different cavity-fiber gaps. The waveguide is assumed to be a 1-µm tapered

fiber of which the refractive index is 1.44. Blue stars and red dots are coupling

Qs when it is at parallel coupling and corner coupling, respectively. Note that

every point with parallel coupling is higher than those with corner coupling at

the same gap. Coupling Qs when there is contact between the cavity and the

fiber are 3.2×105 for a parallel coupling and 3.5×104 for a corner coupling. With

a further optimally designed cavity, a much higher Q should be obtained even

when in the contact condition, which provides stable operation of a silica toroid

cavity, thus maintaining high Q.

A.2 Fabrication process

In this section, the fabrication process of an octagonal silica toroid cavity is out-

lined. A solution for anisotropic etching was used and, as a result, an octagonal

silicon post was formed. The silica toroid shape was fabricated after CO2 laser

reflow. The fabricated cavity exhibited an experimental Q of 2.2×104.

The shape of a silica toroid cavity is defined by the shape of the silicon post
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Fig. A.2: Calculated whispering gallery mode an octagonal cavity exhibits. (a) Perturbed whis-
pering gallery mode. (b) Quasi-whispering gallery mode. Inset: the trajectory of the perturbed
whispering gallery mode.
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Fig. A.3: Coupling Q with different-sized gaps between the fiber and the cavity. Parallel coupling
is robust with respect to the gap. Right panels show schematic images of parallel and corner
coupling.

supporting the silica disk before the laser reflow process. The post works as a

heat sink for the heat caused by absorption of the CO2 laser by the silica disk.

Therefore, the heat distribution depends on the capacity of the heat sink. Gen-

erally, a silica toroid microcavity is formed from a circular photomask pattern

and an isotropic etching, which makes a complete cavity circle that exhibits the

highest Q. A kind of anisotropic etchant is used for making a polygonal silicon

post.

The solution used for anisotropic etching is potassium hydroxide (KOH). The

reaction of KOH with silicon exhibits anisotropy. The reaction system is as fol-

lows:

Si+4KOH− → Si(OH)4 +4e−, (A.1)

4H2O+4e− → 4OH−+2H2. (A.2)

This reaction directly etches the silicon, so that the bond structure of the silicon

influences the etching. According to Seidel et al.143), the etching speed of KOH
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on each crystal plane of the silicon, which is classified as having a diamond cubic

crystal structure, has a relationship given by

< 100>:< 110>= 2 : 3. (A.3)

If the orientation of a silicon substrate is set as shown in Figure A.4(a), the part

building a silicon post is surrounded by crystal planes < 100 > and < 110 >. So,

the crystal plane < 100>, for which the etching speed is slow, is dominant. When

etching time is relatively long, a square shape covered by < 100> should be made.

For the three dimensional structure, the etching rate < 100 >:< 111 >= 400 : 1 is

known. However, with respect to two dimensions, we can obtain an octagonal

shape by using relevant-time KOH etching, as shown in Figure A.4(b).

Fig. A.4: (a) A profile of crystal planes for fabricating an octagonal cavity. (b) Crystal planes from
the top view.

The fabrication method is as follows:

1. KOH solution (48%) is prepared in a Teflon beaker.

2. The solution temperature is controlled at ◦C with a thermostat chamber.

3. A silicon chip placed in a Teflon cage and put in the beaker.

4. After a certain time, the cage is withdrawn and rinsed with ultra-pure water.

Figures A.5(a) and (b) show optical images after 4.5 h and 6h of KOH etching,

respectively. Although octagonal shapes were obtained, the amount of under-

etching was not enough to move the next step, the laser reflow. It does not work
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to use a longer etching time, because the octagonal post will collapse and become

a square post. Thus, to obtain better under-etching with an octagonal post, a

combination of isotropic and anisotropic etching was used.

Fig. A.5: Optical images after KOH etching in which the etching time is (a) 4.5 hours and (b) 6
hours.

Figure A.6(a) shows optical images after photolithography, after isotropic etch-

ing, and after anisotropic etching. Due to additional isotropic etching, enough

underetch was obtained after the anisotropic etching so that an octagonal post

remained. With a laser reflow process, an octagonal silica toroid microcavity can

be fabricated, as shown in Figure A.6(b).

Finally, an experimental result is shown in Figure A.7. Red and black lines

are transmittance spectra with tapered-fiber contact around a reasonably high-Q

mode supposed as a perturbed whispering gallery mode. The loaded Qs were 2.2×
104 with parallel coupling and 6.3×103 with corner coupling. These values are in

close agreement with the numerical results, which suggests that parallel coupling

has a high coupling Q because the evanescent field on a side leaks less than that

on a corner. This proves that coupling coefficiency is controlled by changing the

coupling point, because a deformed polygonal cavity with a perturbed whispering

gallery mode has a unique trajectory.
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Fig. A.6: (a) Optical microscope images of a disk cavity for forming an octagonal silicon post. (a-1)
After photolithography. (a-2) After isotropic etching. (a-3) After anisotropic etching. (b) Scanning
electron microscope image of a fabricated octagonal toroidal microcavity after the laser reflow.
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Fig. A.7: Experimental transmittance spectra with a fiber-contact condition at a parallel coupling
and a corner coupling.
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Appendix B

Theory of optical cavity

B.1 Derivation of a relationship between FWHM and Q-factor

To understand the theory of optical microcavities clearly, it is helpful to use a

model of a Fabry-Perot cavity with two mirrors placed parallel to each other in

space. In the model, light is propagated in the space and reflects off the mirrors

repeatedly. The cavity confines light that satisfies a condition determined by

the cavity length L. The condition is that the amount of phase shift the light

experiences during a round trip is proportional to 2 pi * n, wheren is an integer.

Therefore, the resonant condition is expressed as follows:

k ·2L = m ·2π, (B.1)

Fig. B.1: Fabry-Perot resonator model. The cavity length per one round trip is 2L.

where k is the wavenumber of the light, and m is an integer. From here, resonant

conditions with respect to frequency and wavelength are described as
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νm = m · c
2L

, (B.2)

λm = 2L
m

. (B.3)

Equations B.2 and B.3 show that the resonant frequencies in a Fabry-Perot cav-

ity are spaced equidistantly, whereas the resonant wavelengths are not. The

distance of the mode spacing is called the "Free Spectral Range" (FSR):

νFSR = c
2L

, (B.4)

λFSR = λ2

2L
. (B.5)

Fig. B.2: Schematic of a resonant frequency spectrum. In the frequency domain, the resonant
frequencies are spaced equidistantly at intervals of νFSR.

Theoretically, the linewidth of a resonance is zero, namely the resonant spectrum

is a delta function. But, when a cavity exhibits light loss, the linewidth of the

resonant frequency broadens. When α and φ= k ·2L = 4πνL
c stand for propagation

loss coefficient and an amount of phase change per a round trip (2L) in a cavity,

an electric amplitude in the cavity is described as
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E = E0 +αe−iφE0 + (αe−iφ)
2
E0 + (αe−iφ)

3
E0 · · · (B.6)

= E0

1−αe−iφ . (B.7)

With this infinite geometric series, the electric intensity in the cavity yields

I = |E|2 = |E0|2∣∣1−αe−iφ
∣∣2 = I0(

1+α2 −2αcosφ
) (B.8)

= I0[
(1−α)2 +4αsin2 φ

2

] , (B.9)

Imax = I0

(1−α)2 . (B.10)

Here, at a point approximately near the peak of the intensity, sin(φ/2) can be

approximated as φ/2. Note that the electric intensity near the peak is a Lorentz

function of the phase change φ or the wave number k. Now, it is possible to derive

a full-width half-maximum (FWHM) of the Lorentz function as

∆ν= c (1−α)
2πL

p
α

, (B.11)

∆λ= λ2 (1−α)
2πL

p
α

. (B.12)

A detailed description of propagation loss follows. The decay rate of electric am-

plitude per round trip can be regarded as an exponential function, described as

α= exp(−αr ·2L) , (B.13)

where αr is the decay rate per unit length. The counterpart per unit time yields

αt = cαr. (B.14)
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Fig. B.3: FWHM of resonant frequency spectrum. α= 1.0 means no propagation loss.

Here, a photon lifetime is defined as the time required for the decay of the inten-

sity to 1/e. The photon lifetime τphoton yields

exp
(
−1

2

)
= exp(−αt · t)= exp

(
−αt · 1

2αt

)
, (B.15)

τp = 1
2αt

= 1
2cαr

. (B.16)

Note that photon lifetime is an indicator of how strongly the cavity confines the

light. With the photon lifetime τphoton and energy of the resonant light ħωr, the

guide to the stored energy in the cavity, called a quality factor (Q), is described as

Q =ωrτp (B.17)

Q, a dimensionless number, is a common index for expressing performance of a

cavity. In this thesis, Q is representative of other parameters, such as photon

lifetime. To obtain Q experimentally, one would measure the time required for

decay of the intensity in the cavity to 1/e, which is called the "ringdown" method.

Another interpretation of Q is as follows:
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Q =ωr
Storedenergy[J]

Power loss[W]
. (B.18)

Since the decay of electric amplitude per unit time in the cavity is exp(−αtt), the

decay of intensity per unit time yields

I (t+∆t)= exp(−2αt∆t)× I (t) , (B.19)

dI
dt

=−2αt × I, (B.20)

Q =ωr
I

dI
dt

=ωr
I

−2αt × I
. (B.21)

Note that Equation B.21 has the same meaning as B.18. Also, Q relates to the

spectrum of a resonant frequency. The FWHM of the resonant frequency is de-

scribed as

∆ν= c (1−α)
2πL

p
α

= νFSR
(1−α)
π
p
α

. (B.22)

Here, given that the propagation loss α is regarded as exp(−αr ·2L), with the con-

dition that (−αr ·2L)≪ 1, an approximation of exp(−αr ·2L)≈ (1−αr ·2L) is suffi-

cient. With the approximation, a common description indicating the relationship

between Q and a spectrum of the resonant frequency yields the following:

∆ν= νFSR
[1−exp(−αr ·2L)]

πexp(−αr ·L)
≈ νFSR

1− (1−αr ·2L)
π (1−αr ·L)

≈ νFSR
αr ·2L

π
, (B.23)

Q =ωrτp =ωr
1

2cαr
= 2πνr

2cαr
= νr

π

cαr
≈ νr

∆νr
≈ λr

∆λr
. (B.24)
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B.2 Theory of whispering gallery mode

This section describes a mathematical expression of a whispering gallery mode

in a microsphere cavity104,105,144,145).

A description of a whispering gallery mode starts from a wave equation as

follows:

(
∇2 − 1

ν

∂2

∂t2

)
ψ (r, t)= 0. (B.25)

Given that light vibrates with a frequency, a differentiation of Equation B.25 with

respect to time can be calculated independently. It is described as

(∇2 +k2
0n2)ψ (r)= 0, (B.26)

where ψ, k, and n are a function of light, a wavenumber of the light in a vacuum,

and the refractive index of the material, respectively. This form is called the

"Helmholtz equation". Next, a spherical coordinate form of this equation is given

by

1
r2

∂

∂r

(
r2 ∂

∂r
ψ

)
+ 1

r2 sinθ

∂

∂θ

[
sinθ

∂

∂θ
ψ

]
+ 1

r2 sin2θ

∂2

∂ϕ2ψ+k2
0n2ψ= 0. (B.27)

Here, considering a separtion of variables such as ψ
(
r,θ,ϕ

)
= ψr (r) ψθ (θ) ψϕ

(
ϕ

)
,

the function is as follows:

r2

ψr (r)ψθ (θ)ψϕ

(
ϕ

) , (B.28)

and multiplies both sides of Equation B.27.

136



B.2. THEORY OF WHISPERING GALLERY MODE

1
ψr (r)

∂

∂r

(
r2 ∂

∂r
ψr (r)

)
+ 1
ψθ (θ)sinθ

∂

∂θ

[
sinθ

∂

∂θ
ψθ (θ)

]
+ 1
ψϕ

(
ϕ

)
sin2θ

∂2

∂ϕ2ψϕ

(
ϕ

)+k2
0n2r2 = 0. (B.29)

Here, considering the independent variable ϕ, a relationship is derived as

1
ψϕ

(
ϕ

) ∂2

∂ϕ2ψϕ

(
ϕ

)= const.. (B.30)

Therefore, a constant m as follows:

1
ψϕ

(
ϕ

) ∂2

∂ϕ2ψϕ

(
ϕ

)=−m2. (B.31)

can be set. Next, considering θ as well, relationships are given by

1
ψθ (θ)sinθ

∂

∂θ

[
sinθ

∂

∂θ
ψθ (θ)

]
− m2

sin2θ
= const., (B.32)

1
ψθ (θ)sinθ

∂

∂θ

[
sinθ

∂

∂θ
ψθ (θ)

]
− m2

sin2θ
=−l (l+1) , (B.33)

where, l is a constant. A solution of Equation B.33 is the Legendre polynomial,

as follows:

ψθ (θ)= Pm
l (cosθ) . (B.34)

Since the angle components ϕ and θ can be merged, the form is called a "spherical

harmonics", which is given by

Y m
l

(
θ,ϕ

)= p(l,m) ·Pm
l (cosθ) · eimϕ, (B.35)
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where l, m, and p correspond polar quantum number and azimuthal quantum

number, and a constant depending on l and m, respectively.

Next, the radial direction r is considered. With the equations given so far,

Equation B.29 is transformed into

1
ψr (r)

d
dr

(
r2 d

dr
ψr (r)

)
+k2

0n2r2 − l (l+1)= 0, (B.36)

d
dr

(
r2 d

dr
ψr (r)

)
+ [k2

0n2r2 − l (l+1)]ψr (r)= 0, (B.37)

r2 d2

dr2ψr (r)+2r
d
dr

ψr (r)+ [k2
0n2r2 − l (l+1)]ψr (r)= 0, (B.38)

d2

dr2ψr (r)+ 2
r

d
dr

ψr (r)+ [k2
0n2 − l (l+1)

r2 ]ψr (r)= 0. (B.39)

Here, the solution of Equation B.39 is a spherical Bessel function, as follows:

ψr (r)= jl (kr) . (B.40)

Given that a dielectric sphere with a radius of a is located in the air, the solutions

for radial direction are described as

Al jl (kr) · · · r ≤ a,

Blhl (kr) · · · r > a,
(B.41)

where hl (r) is a Hankel function. Since whispering gallery modes overlap the

boundary between a dielectric material and the outside, conditions that satisfy

the equation of continuity are required, as follows:
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s
∂

∂xr
[xr jl (nxr)]

jl (nxr)

∣∣∣
r=a

=
∂

∂xr
[xrhl (xr)]

hl (xr)

∣∣∣
r=a

, s =
m for TE

1/m for TM
, (B.42)

where n is the refractive index of the material and xr = k0r, k0 is the wavenumber.

From these relationships, transverse electric (TE) mode satisfies

n
jl−1 (nxa)
jl (nxa)

= hl−1 (xa)
hl (xa)

, (B.43)

where xa = k0a. In contrust, transverse magnetic (TM) mode follows

jl−1 (nxa)
jl (nxa)

= n
hl−1 (xa)
hl (xa)

− nl
xa

+ l
nxa

. (B.44)

These are the mathematical expressions of a whispering gallery mode. Figure

2.3 shows intensity mode profiles in the radial direction for a microsphere and

azimuthal mode number l = 280 for the first three radial mode numbers (r = 1,

2, 3). Note that the high-order modes are more affected by the surface condi-

tion of the microsphere because the ratio of the evanescent field is higher than

that for low-order modes, which causes larger surface scattering loss. Thus, the

fundamental mode (r = 1) is usually the highest-Q mode in the cavity.

Whispering gallery modes have been analyzed as morphology-dependent res-

onance in the context of Mie scattering from the beginning146,147). Using Mie

scattering theory, the resonance frequency of a whispering gallery mode in a mi-

crosphere can be calculated as an asymptotic expansion as follows:

fn,l,m,p = c
2πnoutR

[ l+ 1
2

m
+ t0

n

m

(
l+ 1

2

2

) 1
3

+ −p√
m2 −1

+
(

l+ 1
2

2

)− 1
3

(
t0
n
)2

20m
+O

(
l+ 1

2

2

)− 2
3 ]

, (B.45)

where, nout is the refractive index of the outside of a microsphere, m= nmat/nout,
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R is the radius of a microsphere, l is the angular momentum, p= 1 for TE mode,

p= 1/m2 for TM mode，t0
n is the nth root of Airy function. The number n indicates

a radial mode, such as a first-order mode or a second-order mode. From the

equations given so far, a profile of a whispering gallery mode can be expressed.
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Derivation of Lugiato-Lefever
equation

C.1 Nonlinear Schrödinger equation

Before developing a Lugiato-Lefever model to analyze the microcomb, I describe

here a common numerical model for calculating the propagation of an optical

pulse51). A split-step Fourier algorithm is also mentioned for solving a nonlinear

Schrödinger equation numerically.

The propagation of light follows a wave equation:

∇2Ẽ+ϵ(ω)k2
0Ẽ = 0, (C.1)

where ϵ is a dielectric constant of a material with frequency dependence. This

equation can be solved with separation of variables. A solution is assumed as

Ẽ(r,ω−ω0)= F(x, y)Ã(z,ω−ω0)exp(iβ0z). (C.2)

Ã(z,ω) is a slowly varying function with z direction. F(x, y) refers to a spatial

distribution. β0 is a propagation constant. With Equation C.2, Equation C.1 is

divided into two parts as follows:
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∂2F
∂x2 + ∂2F

∂y2 + [ϵ(ω)k2
0 − β̃2]F = 0, (C.3)

2iβ0
∂Ã
∂z

+ (β̃2 −β2
0)Ã = 0, (C.4)

where Equation C.3 can be solved in the same manner as a common propagation

in a fiber, as in Equation (2.79). A slowly varying envelope approximation is ap-

plied, which neglects ∂2 Ã
∂z2 in Equation C.4. Next, a nonlinear term is implemented

as follows:

β̃(ω)=β(ω)+∆β, (C.5)

where ∆β derives from a refractive index change ∆n = n2|E|2 + iα
2k0

, of which the

real and imaginary parts mean nonlinearity and absorption loss, respectively.

Considering an approximation described as

β̃2 −β2
0 ≈ 2β0(β̃−β0), (C.6)

Equation C.4 is simplified to the following:

∂Ã
∂z

= i[β(ω)+∆β−β0]Ã. (C.7)

A(z, t) can be obtained from an inverse Fourier transformation of Equation C.7.

To do that, β(ω) is expanded to a Taylor series around a carrier frequency ω as

follows:

β(ω)=β0 + (ω−ω0)β1 + 1
2

(ω−ω0)2β2 + 1
6

(ω−ω0)3β3 +·· · , (C.8)
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βn = (
dnβ

dωn )ω=ω0 . (C.9)

Although Taylor series mean an infinite sum of terms, high-order terms can gen-

erally be neglected. Here, the first, second, and third terms are considered.

β1 = 1
c

[n+ω
dn
dω

]= ng

c
= 1

νg
, (C.10)

β2 = dβ1

dω
= 1

c
[2

dn
dω

+ω
d2n
dω2 ]≈ ω

c
d2n
dω2 ≈ λ3

2πc2
d2n
dλ2 . (C.11)

With Equations C.10 and C.11, an inverse Fourier transformation of Equation

C.7 is given by

∂A
∂z

=−β1
∂A
∂t

− i
2
β2

∂2A
∂t2 + i∆βA. (C.12)

With the division of ∆β into a nonlinear term and a loss term, a general form of

the propagation is derived as

∂A
∂z

+β1
∂A
∂t

+ i
2
β2

∂2A
∂t2 + α

2
A = iγ|A|2A, (C.13)

where α means propagation loss, γ is a nonlinear coefficient defined as

γ= n2ω0

cAeff
, (C.14)

and n2 and Aeff are a nonlinear refractive index and an effective mode area,

respectively. To further simplify, a frame of reference moving with the pulse at

the group velocity vg (called a retarded frame) is used as follows:
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T = t− z
vg

= t−β1z. (C.15)

With Equation C.15, Equation C.13 is derived as

∂A
∂z

+ i
2
β2

∂2A
∂T2 + α

2
A = iγ|A|2A. (C.16)

∂A
∂z

=−α

2
A− i

2
β2

∂2A
∂T2 + iγ|A|2A. (C.17)

Here, the first, second, and third terms in the right side indicate propagation

loss, dispersion, and self-phase modulation, respectively. Note that the derived

equation is a kind of nonlinear Schrödinger equation and, in general, cannot be

solved analytically. Thus, to understand a pulse propagation with nonlinearity,

a numerical analysis is often used. A number of calculation methods have been

proposed. Among them, a split-step Fourier algorithm is reasonable with respect

to calculation time, because it employs a fast Fourier transform (FFT) algorithm.

A split-step algorithm divides Equation C.17 into two parts as follows:

∂A
∂z

= (D̂+ N̂)A, (C.18)

where D̂ and N̂ indicate linear effects (loss and dispersion) and a nonlinear effect,

respectively.

D̂ =−α

2
− i

2
β2

∂2

∂T2 , (C.19)

N̂ = iγ|A|2. (C.20)

Generally, linear and nonlinear effects occur simultaneously during a propaga-
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tion. A split-step algorithm considers them to be independent and occurring al-

ternately over a short distance h. Thus, a simple calculation has two steps. The

first step considers only the nonlinear terms, so that D̂ is set to zero. The next

step calculates only the linear terms, so that N̂ is set to zero. The expressions are

given by

A(z+h,T)≈ exp(hD̂)exp(hN̂)A(z,T), (C.21)

where the exponential operator exp(hD̂) can be evaluated in the frequency do-

main as follows:

exp(hD̂)B(z,T)= {F−1 exp[hD̂(iω)]F}B(z, t) (C.22)

where F denotes the Fourier-transform operation, D̂(iω) is obtained by replac-

ing the differential operator ∂/∂T by iω, and ω is the angular frequency. In the

frequency domain, D̂(iω) becomes constant, so that calculation time can be com-

pressed using an FFT algorithm. Since the accuracy of the numerical simulation

depends on a calculation step h, the calculation time becomes longer if a high ac-

curacy is required. However, some improved calculation methods (symmetrized

split-step51), RKIP148), etc.) have been proposed, which require comparatively

short calculation times.

C.2 Lugiato-Lefever equation

A derivation of a Lugiato-Lefever equation is described in this section. A Lugiato-

Lefever equation can be calculated with a split-step Fourier algorithm, and it

clearly describes the behavior of a nonlinear cavity.

A system for microcomb generation consists of a ring cavity and a waveguide

providing energy to the ring cavity. First, an electric field Ez is described as

Ez+dz = Ez + dE
dz

·dz. (C.23)
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Fig. C.1: (a) Schematic image of calculation of a Lugiato-Lefever equation. (b) Schematic image
of the relationship between a side coupling system and Lugiato-Lefever equation.

In a ring cavity, an electric field in the nth round trip is considered in the same

manner, as follows:

En = En−1 + dE
dz

·L, (C.24)

where n is a roundtrip number. When n increases by 1, it denotes a propagation

around a cavity with length L. For a waveguide and a continuous-wave-driving

field E in, a relationship is given by

En = [En−1 + dE
dz

·L]
p

Re−iδ+
p

TEin, (C.25)

where R is an intensity reflection coefficient from a cavity to a waveguide, and

T is an intensity transmittance coefficient from the waveguide to the cavity. δ

expresses the amount of phase shift that the field accumulates in a round trip.

Thus, the phase of the driving field is a standard. The relationship between R

and T is described as

R = 1−T. (C.26)

Given that T is very small (R is much higher), an approximation
p

R =p
1−T ≈

1− 1
2 T is adequate; it assumes that a ring cavity exhibits a high Q because R

is nearly 1. In addition to this approximation, another approximation of e−iδ is

considered. When the phase shift δ is an integer multiplied by 2π, the phase shift
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can be practically zero in the ring cavity. Thus, a deviation from the integer mul-

tiplied by 2π should be noted. With the assumption that the deviation is small,

an approximation e−iδ ≈ 1− iδ is used. Using two approximations, Equation C.25

is derived as

En = [En−1 + dE
dz

·L](1− 1
2

T)(1− iδ)+
p

TEin. (C.27)

Note that we can neglect the term of a small T multiplied by a small δ, so that

Equation C.27 is simplified as follows:

En = [En−1 + dE
dz

·L](1− 1
2

T − iδ)+
p

TEin. (C.28)

Here, with the assumption that a change in propagation during a round is small,

the further simplified form is derived as

En = En−1(1− 1
2

T − iδ)+ dE
dz

·L+
p

TEin. (C.29)

With Equations C.17 and C.29, a Lugiato-Lefever equation is derived as

En −En−1 = (−αL
2

− T
2
− iδ− i

2
β2L

∂2

∂T2 + iγL|E|2)E+
p

TEin. (C.30)

Considering the relationship of a round trip time tR and a cavity length L, the

form E(n,τ), in which τ is a short time, is expressed as follows:

tR
∂E(n,τ)

∂n
= (−αL

2
− T

2
− iδ− i

2
β2L

∂2

∂τ2 + iγL|E|2)E+
p

TEin. (C.31)

Here, only second-order dispersion is considered. The expression that includes

higher-order dispersion is given by
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tR
∂E(n,τ)

∂n
= (−αL

2
− T

2
− iδ+ iL

∑
k≥2

βk

k
(−i

∂

∂τ
)k + iγL|E|2)E+

p
TEin. (C.32)

With a Lugiato-Lefever equation, nonlinear dynamics in a fiber ring cavity has

been studied at the beginning. In 2013, Coen et al.60) proposed that the equation

could be applied to microcomb generation in a nonlinear microcavity. On the

other hand, spatial soliton research has also employed the same equation149). In

the context of spatial solitons, the dispersion and self-phase modulation terms

correspond to the diffraction and self-focusing effects in space.

Fig. C.2: Split-step calculation for a Lugiato-Lefever equation.
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平成 26年 9月 17日～20日．

4. 加藤拓巳*，鈴木 良，小畠知也，田邉孝純，「微小光共振器光カーコム-超高繰り返し光パル
ス列の繰り返し周波数の能動制御」　レーザー学会創立 40周年記念学術講演会第 34回年
次大会，21aVII-2，北九州国際会議場，平成 26年 1月 20日～22日．
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