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Chapter 1

Introduction

In this thesis we investigate objects such as tilings, Delone sets, functions and measures.
In particular, we discuss the following two topics: (1) we study the distribution of con-
figurations inside these objects; (2) we study the almost periodicity of these objects. The
following two sections explain each of these two topics in detail.

1.1 Distribution of configurations inside objects such as tilings

To discuss this topic let us start with symbolic dynamics. Let {a,b} be a two-point set.
The space {a,b}” is considered as a space of words (sequences). The elements of this
space are represented as (w;)icz, where w; € {a,b} is the ith coordinate. We define
o: {a,b}? — {a,b}* by o((w;)); = wir1. In other words, the map o shifts a word to the
left. Closed subspaces X of {a,b}? which is invariant under o are called subshifts.

Now consider the following three subshifts. First, Qp = {a,b}” itself is a subshift. If
we take w € Qp, n,m € Z-¢ arbitrarily, we can say nothing about wyi1wpy2- - Wnim
from information of wyws - - - w,, if n is large.

Second, if the subshift is €, , the situation is opposite. Here, wg € {a,b}? is a periodic
one, that is, there is m > 0 such that ™ (wp) = wp. y, is the space of all the shifts of wy,
namely Q,, = {o"(wo) | k € Z}. In this case, if we take w € Q,, and n € Z arbitrarily,
we can predict perfectly what is wp1wWnt2 - - Wy from wiws -« - way,.

Third, if the subshift is the one Q7 from Morse-Thue substituiton, the situation is
in between the above two extreme cases. The words in this subshift are non-periodic and
we cannot perfectly predict what happens in one part of such a word from information
on another part. However, we can “sometimes predict the behavior in another part a
little”. In fact, if n € Zso and z1,x9,...,2, € {a,b}, the finite word x125-- -z, never
repeats three times consecutively. Namely, if w € Qpp,m € Z and wnwpmt1 -« Wngn—1 =
Wm4nWm4n+1 *** Wm4-2n—1 = T1T2 "+ Tp, then Wm4-2nWm4-2n+1 * * * Wm4-3n—1 7£ T1X2 *** Tn-
The two-times consecutive appearance of a finite word gives us the information of the



non-existence for the third appearance.

Now, tilings are geometric analogues for words. In this thesis we first ask if, for non-
periodic tilings, we can predict partially what happens in such a tiling in the distance from
what happens in one part of the tiling.

Let us informally define tilings. A collection of subsets of R? that are called tiles, such
as polygons, that intersect only on their boundaries is called a patch. If a patch covers
the whole space R?, then it is called a tiling. For example, set d = 2 and take a square
I of side-length 1. The collection Tg = {I + = | * € Z?} is an example of tiling. This is
crystallographic !: in general, a tiling 7 of R is said to be crystallographic if there is a
basis B of R? such that 7 +x = T for any = € B (T + z is the shift of the tiling 7~ by the
vector ).

As in the case of words, we call a closed space consisting of tilings that is invariant
under the R%action by translation a subshift. Again let us consider three subshifts.

First, set d = 2 and consider two squares Ig, Iy of side-length 1, one black and one
white. These Ig and Iy have the same shape but are distinguished. Just as we constructed
the periodic tiling Tg above, we juxtapose these Ip and Iy in a grid, so that we obtain
tilings, but in this case with arbitrary arrangement of colors. In other words, we consider
all the tilings that are obtained by painting tiles in Tg in a random way. Collecting all the
shifts of all such tilings, we obtain a subshift Xp, which is similar to Qg given above. If
we take 7 € Xp and x € R? arbitrarily, we can say little about what happens in 7 around
the point = from the knowledge of what happens around the origin 0: we know where the
vertices of the squares are, but can tell nothing about colors.

Second, consider the tiling 7g given above and take the subshift X7, = {Ts+ 2 |z €
R4}, If we pick S € X7, and x € R? arbitrarily, we can perfectly predict what happens
around the point z in S from information of what happens around the origin 0.

Third, consider the subshift of all Penrose tilings, which lies in between these two
extreme cases. Penrose tilings are discovered by Penrose in 1970s. These are constructed by
juxtaposing two rhombi with local matching rules (see Figure 1.1). These are not periodic:
if Tp is a Penrose tiling and =z # 0, then 7p + x # Tp. However, the arrangement of
tiles in 7p is not completely random: for example, the corresponding dynamical system for
Penrose tilings is not mixing (Theorem 2.2.41). Here, the corresponding dynamical system
for a general tiling 7 is obtained by taking the closure of the orbit {7 + z | z € R?} with
respect to a “local” topology. The group R¢ acts on this closure and for many examples,
including Penrose tilings, this topological dynamical system is uniquely ergodic, so that we
can discuss their mixing property.

In this thesis we first discuss non-existence, just as for Morse-Thue words, for non-
periodic tilings such as Penrose tilings. In Theorem 2.3.6, we show for a certain (FLC,
repetitive and FTT) tiling 7, a condition on the corresponding dynamical system is equiv-
alent to a condition on non-existence of patches. In other words, we show the following

'some authors call crystallographic tilings periodic tilings or completely periodic tilings.



Figure 1.1: Two rhombi to construct Penrose tilings. We juxtapose them in such a way
that (1)vertices meet vertices with the same color and (2)edges with arrow meet edges with
arrow of the same direction.

two conditions are equivalent:

1. 0 € R? is a limit point of the set of topological eigenvalues for the corresponding
dynamical system.

2. for any R1, R2 > 0 and € > 0, there are L1, Ly > 0 such that

(a) |Lj — Rj| < ¢ for each j =1,2, and
(b) T has (Lj, Lg)-stripe structure (Definition 2.3.4).

The first condition is on the dynamical system and the second is on the non-existence of
patches in the tiling. In plain language, a tiling 7 has (Lj, Ly)-stripe structure if, whenever
we take S € X7, we know translates of a large patch of S around the origin never appear
in § in a periodic “forbidden area”, which is obtained by juxtaposing “bands” of width
2L, with interval L; (see Figure 2.2 in page 41).

1.2 A general framework for almost periodic objects such as
tilings, Delone sets, functions and measures

The appearance of periodic region in the above result suggests that such tilings are “close
to” periodic in a sense. The second topic of this thesis is almost periodicity of objects such
as tilings, Delone sets, functions and measures.

To discuss this second topic, let us begin with a historical remark. Crystallographic
tilings have been analyzed since a long time ago. First let the dimension be 2 and consider
the crystallographic tiling 7g constructed above. In addition to translations, the tiling 7g



has symmetry by rotations and flips. The symmetry group of 7Tg consists of translations,
nm/2-rotations, where n = 1,2, 3, flips, and their compositions. It has been known since a
long time ago that there are only 17 isomorphic classes of symmetry groups of crystallo-
graphic tilings. Hilbert’s 18th problem asked if there are only finitely many such groups in
general dimensions. Bieberbach answered this problem affirmatively (see for example [24],
Theorem 7.5.3).

The obvious next step of Bieberbach’s work is to replace the group of isometries of R¢
with another Lie group and study its lattices. Here, we instead replace the crystallographic
tilings with non-periodic tilings that are almost periodic in several senses.

For example, take Penrose tilings given above. As pointed out above, any Penrose tiling
Tp is not periodic. However, Tp is almost periodic, in the sense that any finite patches
that appear in 7Tp appear infinitely often in 7p with bounded gaps. We call tilings with
this property weakly repetitive tilings.

In general, if a topological group I' acts on a metric space (€2, p), a point w € €2 is Bohr
almost periodic if for any € > 0 the set

Se={yel|plw,y 'w) <e}

admits a compact set K C I' such that S.K = I'. Weak repetitivity of a tiling is a type
of Bohr almost periodicity where €2 is a space of tilings with a “local” metric on which
I' = R? acts by translation.

Besides tilings, there are several objects that exhibit almost periodicity. Many functions
f: R — C are Bohr almost periodic: for example, f(z) = sin(z) + sin(v/2z) is an example
of Bohr almost periodic functions. Here, {2 above is in this case the space of all uniformly
continuous bounded complex-valued functions on R, on which R acts by translation. We
consider the metric from sup-norm on this space. Note that this f is non-periodic, that is,
f=fonlyift =0 (:f(s) = f(s—1)).

Likewise, certain discrete and closed subsets of R? exhibit almost periodicity. For
example, model sets are almost periodic with respect to the autocorrelation topology ([16]).

Such almost periodicity plays an important role in aperiodic order, a branch of math-
ematics which studies objects that are not periodic but are “close to” periodic in some
senses, especially in connection with quasicrystals. First, the repetitivity of certain (FLC
and FTT) tilings is equivalent to the minimality of the corresponding tiling dynamical
system (Proposition 2.1.63). Second, Gouéré [8] proved that, for certain Delone sets, hav-
ing a type of almost periodicity is equivalent to being pure point diffractive. Here, being
pure point diffractive is important in connection with the study of quasicrystals. As to
the relations between almost periodicity and pure point diffraction, [29] and [3] are also
important. Third, by Baake and Moody [3] and Moody and Strungaru [17], we see that,
for certain weighted Dirac combs, having another type of almost periodicity is equivalent
to having higher-dimensional periodic structure behind them, that is, being constructed
from a cut and project scheme. (See also [32].)



In the context above it is natural to try to understand almost periodicity. A classi-
fication of almost periodic structures is an ultimate goal. For example, as a next step
from Bieberbach’s work, one can ask whether there are only finitely many almost periodic
structures, if we restrict the subject of study to a class of almost periodic objects. In order
to achieve this goal one have to define almost periodic structure and study in a systematic
way the almost periodic structures, which, as examples, include tilings, Delone sets, func-
tions and measures. A framework for these objects is obtained by extracting the essence
of the theory of tilings. In the theory of tilings, the operation of “cutting off” of a tiling 7
by a set C C R is important; we “cut off” T by C by forgetting the tiles in 7~ which do
not lie inside C. We axiomatize the properties that the operation of “cutting off” should
have and several objects such as tilings, Delone sets, functions and measures are captured
by this axiom. These objects are called abstract patterns. The spaces of abstract patterns
are called pattern spaces.

The axiom is sufficient to define local matching uniform structures. In the literature,
“local” metrics for the space of tilings or the space of Delone sets are defined and used.
This is the topology by which we take the closure when we construct tiling dynamical
systems above. With respect to this metric, two tilings are “close” if they coincide inside a
large region after a small translation. All the structure we need to define this metric is the
R? action on the space of patches by translation and the operation of “cutting off”; thus
we can define similar “local” metric (or uniform structure) for any pattern spaces. Weak
repetitivity can be defined as the Bohr almost periodicity with respect to this metric. Thus
one type of almost periodicity is captured in the framework of pattern space.

This axiom is also sufficient to define “locally drivable (LD)” and “mutually locally
derivable (MLD)” between two abstract patterns. LD and MLD are originally defined by
Baake, Schlottmann and Jarvis ([4]) for tilings (or more generally patterns). Two tilings
P, Q that are MLD are “similar” and the distribution of finite patches in P is the same as
that of Q. We generalize this concept and make it applicable to any two abstract patterns.
Moreover, we give an affirmative answer to the following problem under a mild assumption:

Problem 1. There are several canonical maps, such as

1. the map that sends a Delone set D in a metric space X to a positive measure ) . p 0,
where 9, is the Dirac measure at a point z,

2. the map that sends a continuous bounded function f on a locally compact abelian
group G to a measure fdu, where p is a Haar measure,

and so on. Do these map send an object P to a one which is MLD with P?

See Proposition 3.2.23, Proposition 3.2.24, Proposition 3.2.25, and Proposition 3.2.31.
These show our generalized MLD is a natural concept. This LD and MLD are relevant in
the study of almost periodicity because we can show weak repetitivity is propagated by
LD (Proposition 4.2.11).

Next, as to LD and MLD, we also answer the following question:
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Problem 2. For an abstract pattern P and an interesting class X of abstract patterns,
can we describe a condition on P and X that assures that there is Q@ € ¥ which is MLD
with P?

See Theorem 3.3.1. There we describe a condition on P and a one on ¥ (not on the
relations between P and X)) that assures that there is a Q € 3 which is MLD with P. The
conditions are mild enough so that many interesting examples satisfy them. This Theorem
3.3.1 enables us to “translate” an object P to an object Q in another class 3 of objects
so that we can use tools that can only be applicable to objects in . Moreover, by this
theorem we see that, in order to study abstract patterns up to MLD, in many interesting
cases, it suffices to study Delone sets or translation bounded measures. For example, we
can show results on non-existence for Delone sets (Lemma 4.3.5 and Lemma 4.3.12). The
theorem on non-existence for tilings given above is easily deduced from these results on
Delone sets by translating tilings to Delone sets by using Theorem 3.3.1.

As an application of this Theorem 3.3.1, we study pattern equivariant functions, which
were defined by Kellendonk [10] and generalized by Rand [23]. We first show that pattern
equivariant functions for an object P are the functions that are LD from P. In other words,
we can capture pattern equivariant functions in terms of LD and this simplifies the study
of pattern equivariant functions. Next, we show that two objects P and Q are MLD if and
only if the spaces of the pattern-equivariant functions are the same, under a mild condition.
The space of pattern equivariant functions has all the information of the original object up
to MLD; in order to analyze certain abstract patterns up to MLD, it suffices to investigate
its space of pattern equivariant functions.

Before finishing this introduction let us give a remark. In order to capture other types
of almost periodicity (strong and weak almost periodicity for functions, strong, weak, sup
and norm almost periodicity for translation bounded measures, and so on), we need an
additional structure on pattern spaces. We need information on the “local structures”:
for example, the local structures of a function are given by the value of the function on
each point; the local structure of a Dolone set at a point x is described by the position
of the point in D near z relative to x; the local structures of certain tilings are described
by elements of Anderson-Putnam complex ([1]). If we can gauge the distances between
two local structures, we may define other types of almost periodicity. For example, the
distance of two local structures for a function is gauged by the standard metric on C. By
this distance we can say two parts of a function are “close” or not, and thus we can define
usual strong almost periodicity. However we do not deal with such local structures in this
thesis and study only weak repetitivity. We leave the study of other almost periodicities
for further research. (See Chapter 5.)

This thesis is organized as follows. In Chapter 2 we follow [20] and give an introductory
exposition on the theory of tilings, their continuous hulls and tiling dynamical systems.
The argument is based on works by several authors such as Solomyak([27], [28], [31]),
Lee-Solomyak([14], [13]) and Robinson ([25]). In Section 2.1 we start from the definition
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of tiling and introduce their continuous hulls and tiling dynamical systems, followed by
an explanation of important concepts such as FLC and repetitivity. In Section 2.2 we
introduce substitution rules. Properties such as the non-periodicity and the repetitivity of
tilings such as Penrose tilings are proved by their self-similar structure. Such structures are
induced by (tiling) substitution rules, which are geometric versions of word substitutions
in symbolic dynamics (for word substitution, see a book [21]). We explain important
properties of tilings from substitutions.

In Chapter 3 we give a general framework for tilings, Delone sets, functions and mea-
sures to discuss local derivability among them, their weak repetitivity and corresponding
dynamical systems. In Section 3.1 we define pattern spaces, by which we can capture sev-
eral space of objects such as tilings, Delone sets, functions and measures. In Section 3.2
we incorporate group actions in the theory of pattern spaces. This enables us to generalize
local derivability (LD) and mutual local derivability (MLD). In Section 3.3 we show The-
orem 3.3.1, which answer Problem 2 given above. In Section 3.4 we discuss an application
of these theory to the theory of pattern equivariant functions.

In Chapter 4 we define local matching topology and the dynamical system which cor-
responds to a general abstract pattern. This is a generalization of the local matching
topology and the dynamical systems for tilings given in Chapter 2. We show that weak
repetitivity is captured in terms of almost periodicity (Lemma 4.2.8) and is propagated by
local derivability (Proposition 4.2.11). In Section 4.3 we discuss a theorem on non-existence
of abstract patterns in certain abstract patterns.

We will finish the thesis with appendices on dynamical systems and uniform spaces.

Notation 1.2.1. For a topological space X and its subset A, the closure of A is denoted
by A and the open kernel of A is denoted by A°.

For a metric space X, the closed ball with its center x € X and its radius r > 0 is
denoted by B(zx,r).

For a positive integer d, let p be the Euclidean metric for the Euclidean space R%. Let
E(d) be the group of all isometries on the Euclidean space R and O(d) be the orthogonal
group. There is a group isomorphism R? x O(d) — E(d), by which we can identify these
two groups. Thus elements of E(d) are recognized as pairs (a, A) of a € R? and A € O(d).
For E(d), define a metric pg, by pg g ((a, A), (b, B)) = p(a,b) + ||A — Bl|, where |- || is
the operator norm for the operators on the Banach space R? with the Euclidean norm. For
any closed subgroup I' of E(d), the restriction pr of PE( d)is a left-invariant metric for I'.
Moreover, for any v,n € I', we have

p(70,70) = pr(v,m) = p(70,10) + 2. (L.1)

For each j =1,2,....,d,let ¢; € R? be the vector of which ith component is 0 for i # j
and jth component is 1.
The standard inner product in R? is denoted by (-,-). That is, for = (z1, 22, -+ ,z4)
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and Yy = (yl:y?f o 7yd) in Rd)

d
<.’/U, y> - Z TiYi-
=1

For S C R?set —S = {—z | » € S} and for 1,52 C Rl set S; + Sy = {x+y |z €
Sl, (TS 52}

Weset T={z¢eC||z| =1}.

For any group I which acts on a set X, its isotropy group for a point « € X is denoted by
['y. Thatis, Iy, = {y € T' | yz = x}. For an abstract pattern P such as patches, uniformly
discrete sets, functions, its group of symmetry is denoted by SympP = {y € I' | vP = P}.
The orbit {yz | v € T'} of x is denoted by O,.

The identity element of any group is denoted by e.
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Chapter 2

General theory of tilings,
continuous hulls and tiling
dynamical systems

Here, we follow [20] and give an introductory exposition for the theory of tilings.

We will stress the following two points. First, we introduce two topologies on the
space of all patches on R%: the cylinder topology (Definition 2.1.8) and the local matching
topology (Definition 2.1.19). Tilings are examples of patches (Definition 2.1.2). Thus these
two topologies define two topologies on a space of tilings. We investigate properties of these
two topologies and relations between them. Often on the continuous hull of a tiling the
relative topologies of these two coincide.

Second, relations between properties of tilings and those of continuous hulls and tiling
dynamical systems are stressed. For example, relations between FLC of tilings and com-
pactness of continuous hulls (Corollary 2.1.49), and repetitivity of tilings and minimality
of tiling dynamical systems (Proposition 2.1.63) are fundamental. We can prove that for
tilings from certain substitutions the corresponding tiling dynamical systems are not mix-
ing (Theorem 2.2.41), and this is derived from a property of distribution of patches in
tilings (Remark 2.2.42).

Many results in the literature is on implications of the properties of tilings on the
continuous hulls and the corresponding dynamical systems. In Section 2.3 we conversely
deduce a property on the distribution of patches in certain tilings from a property of the
corresponding dynamical system (the converse of this is also proved).

2.1 Definition of tilings and their properties

Here we introduce patches, tilings and topological spaces consisting of patches. Such
topological spaces often admit an R? action.

14



Definition 2.1.1. For any P C 2Rd, the set supp P defined by

supp P = U T
TeP

is called the support of the set P.

The support is the closure of the area that elements T' € P cover.
Definition 2.1.2. We fix d € Z~y.

e An open, bounded and nonempty subset of R? is called a tile.

e A set P of tiles such that S,7 € P and S # T imply SNT = () is called a patch. A
patch P is said to be bounded if supp P is bounded.

e A patch 7 such that supp 7 = R? is called a tiling.

e For a tiling 7 and a vector = € R?, suppose there exists T' € T such that T+ € T.
Then we call x a return vector for 7.

Remark 2.1.3. In the literature, the word “tile” is defined in various ways. Often tiles
are defined as compact sets which are “simple”. What the word simple means depends on
the authors.

For example, it is defined as (1) a subset of R? which is homeomorphic to a closed unit
ball of R? ([1]), (2) a closed polygonal subset of R? ([33]), or (3) a subset of R? which is
compact and equal to the closure of its interior ([5]).

Here we put the simplicity assumption by defining tiles as open sets. This change is
not essential and the theory we develop becomes almost the same.

Often we consider labels on tiles in order to distinguish two tiles that are as sets the
same. For example, one can prove the unique ergodicity of certain tiling dynamical systems
from substitutions by considering labels. On the other hand, considering labels gives an
additional complexity in notation. Here we avoid considering labels, and when they are
necessary we find a way round by giving a “puncture” to each tile (i.e. remove one point
from each tile). Two tiles that are originally the same become after this procedure different
if they have different punctures (see Example 2.2.6).

Definition 2.1.4. A tiling 7 is said to be periodic if there is z € R?\ {0} such that its
translate by « coincide with itself, that is, 7+ 2 = 7. Otherwise a tiling is said to be non-
periodic. A tiling 7 of R? is said to be crystallographic if there is a basis {by,bs,...,bq}
of R% such that 7 + b; = T for all 4.

Example 2.1.5 (Square tiling). For any dimension d € Z+, a tiling 75 = {(0,1)% + v |
v € Z%} is called Square tiling. This is an example of crystallographic tiling.

15



Many interesting examples of non-periodic tilings can be constructed from substitution
rules, which we will introduce later.

Remark 2.1.6. If P is a patch, then the set P is at most countable.

Definition 2.1.7. Patch(R?) denotes the set of all patches in RY. Tiling(R?) denotes the
set of all tilings in RY.

Next we introduce two topologies on Patch(R%).

Definition 2.1.8. For P € Patch(R?) and a neighborhood U of 0 in R?, set
C(U,P) = {Q € Patch(R?) | there exists = € U such that P +z C Q}.
Such sets are called cylinder sets. The topology generated by
{C(U,P) | U: open neighborhood of 0 in RY, P € Patch(R?): bounded} (2.1)

is called the cylinder topology.

Remark 2.1.9. The subbasis (2.1) is in fact a basis. For if n € Z~g, Uy, Us, ..., U, are
open neighborhoods of 0, Py, Ps, ..., P, € Patch(R?) are bounded and

Qe(CwW: P,

then for each i there is x; € U; such that P; + 2; C Q. Set P = J,(P; + z;). Then P is a
bounded patch and if we take an open neighborhood U of 0 in R? small enough, then

Qe C(U,P)C\CU,P).

Lemma 2.1.10. If P € Patch(R?), the set
{C(U, Q) | U: neighborhood of 0 in R? and Q C P: bounded}

forms a neighborhood basis for P with respect to the cylinder topology.

Proof. Suppose P € C(U,P’) for some open neighborhood U of 0 and a bounded P’ €
Patch(R?). Then there is # € U such that P’ 4+ x C P. If a neighborhood V of 0 is small
enough,

PeC(Ve,P +z)c C(V,P +z) C CU,P).

16



Lemma 2.1.11. The group R? acts on Patch(R?) by translation:
Patch(R?) x R? 5 (P, z) — P + z € Patch(R?). (2.2)

Furthermore this map is continuous with respect to the cylinder topology.

Proof. Take P € Patch(R?) and z € R? Take also a neighborhood O with respect to
the cylinder topology of P + x. To prove the continuity of the map at (P,x), we may
assume O is of the form O = C(U,Py) where U is an open neighborhood of 0 in R%, P
is bounded and Py C P + z (cf. Lemma 2.1.10). Take a neighborhood V of z and a
neighborhood V'’ of 0 such that if y € V and 2z € V', theny —x+2 € U. If y € V and
Qe C(V',Py—x) (cf. Lemma 2.1.10), then there is z € V' such that Py —xz + 2z C Q. We
obtain Pp+y—x+2C Q+yand Q+y € C(U,Poy). O

Remark 2.1.12. If 7 € Tiling(R?) and = € R?, then 7 + z € Tiling(R?).

Next we define a uniform structure on Patch(R?) and the second topology on it. For a
generality of uniform spaces, see Appendix and [6].

Definition 2.1.13. For any subset P C 2R and any subset S C R? set
PNS={TeP|TcCS}.
The next lemma is easy to prove.

Lemma 2.1.14. If P € Patch(R?), x € R? and S C R?, then (PNS)+z = (P+z)N(S+x).
If moreover S; C Sy C R%, then (PN Sy) NS =PNS;.

Definition 2.1.15. For a compact K C R? and a compact neighborhood V of 0 in R?, set

Uy = {(P1,P2) € Patch(R?) x Patch(R?) |
there exists € V such that PyNK = (P2 +2) N K}.

Remark 2.1.16. If K1 C K3 and Vi D V3, then by Lemma 2.1.14, Ug, v; D Uk, vs-
Lemma 2.1.17. The set

{Ury | K CRY: compact and V': a compact neighborhood of 0 in R4} (2.3)
forms a fundamental system of entourages for Patch(R?).
Proof. This is a special case of Lemma 4.1.3 and so we omit the proof. O
Definition 2.1.18. Let 4 denote the set of all entourages generated by (2.3) and the

uniform space constructed in this way is represented by (Patch(R?), ).
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Recall that a uniform structure on a set defines a topology on that set. In this context
{Uk v(P) | K: a compact subset of R?, V: a compact neighborhood of 0} form a neigh-
borhood basis for P. Here U(P) = {Q € Patch(RY) | (P, Q) € U} for each U € i and
P € Patch(R?).

Definition 2.1.19. The topology on Patch(R?) defined by the uniform structure {l is
called the local matching topology.

The uniform structure is metrizable; see Lemma B.0.16. We can describe a metric
explicitly as follows.
For two patches Py, Py of RY, set

A(P1,P2) = {0 <r< 7 |there exist z,y € B(0,r) such that

(P1+2)NB(0,1/r) = (P2 +y) N B(0, l/r)}.
Then define

1
P1,P2) =inf | A(Py,P2) U — ¢ |. 2.4
p(Ps, o) = int (A1 P U { 1) (2.4
Remark 2.1.20. It is tempting in the definition of the tiling metric to replace A(Py, P2)
above with

{O <r< 7 ‘ there exists y € B(0,7) such that Py N B(0,1/r) = (P2 +y) N B(0,1/r) }

because this definition seems to simplify the following proofs. However if we define the
function p in this way p does not become a metric; it is not necessarily true that p(71, T2) =
p(T2,T1) for two tilings 71 and T2. Here is an easy counterexample: take small r > 0, and
consider three copies of a tile (—1,1)%. Give each of them a puncture in three different
ways so that we obtain three different tiles (or equivalently, put three different labels to
each of the copies so that we can distinguish them). Let S, T, U denote the three tiles. Set
Ti ={S}U ({T} + 274\ {0}) and T3 = ({S} U ({U} + 224\ {0})) + (,0,0,...0). Then
p(Th, T2) = f and p(72, 1) = m-
It is easy to prove that p in (2.4) is a metric on Patch(R%). To prove p(71,72) = 0
implies 71 = T2, we use the following lemma.

Lemma 2.1.21. Let T be a tile and P be a patch. Suppose x1,Za, ... are elements of R?
such that x, — 0 asn — oo and T + x,, € P for alln. Then T € P.
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To prove the triangle inequality, one has to use the fact that % -n > % whenever

1 1
0<6<ﬁand0<n<ﬁ.

Lemma 2.1.22. The local matching uniform structure and the uniform structure given by
the metric p are the same.

Next we collect several properties of local matching uniform structure.
Lemma 2.1.23. The local matching topology is Hausdorff.

Proof. Since it is metrizable, the statement is clear. We prove a generalization of this in
Corollary 4.1.11. O

Lemma 2.1.24. With respect to the local matching topology, the action (2.2) is jointly
continuous.

Proof. We prove this in Lemma 4.1.14 in a more general context. O
Proposition 2.1.25. The uniform space (Patch(RY),41) is complete.

Proof. We prove this in Proposition 4.1.16 in a more general setting. O
Proposition 2.1.26. The local matching topology is stronger than the cylinder topology.

Proof. Take P € Patch(R?). For any bounded patch Py C P and an open neighborhood
Up of 0 in R? (cf. Lemma 2.1.10), take a compact neighborhood U of 0 such that U C Uy
and set K =U +suppPy. If Q € Z/{;(}U(P), then there is € U such that

ONK=(P+z)NK.

Since supp(Py +2) C K, Po+x C (P4+2)NK C Q. Then Q € C(U,Py) C C(Uy, Po).-
This argument shows that Ul}lU P) Cc C(Uoy, Po). O

Lemma 2.1.27. Suppose P1,Po € Patch(Rd) and Py C Py. Take S C R? such that
suppP1 D S. Then PrNS=P,NS.

Definition 2.1.28. For each R > 0, set

Tiling p(R?) := {7 € Tiling(R?) | sup diam T < R}.
TeT

Proposition 2.1.29. For any R > 0, on TilingR(Rd), the relative topologies of the local
matching topology and the cylinder topology coincide.
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Proof. Take T € Tilingg(R?). Take also a compact K C R? and a compact neighborhood
Vof 0 € RL Set K' = K+ B(0,R) and Py = T N K'. Note that suppPy D K. If
S € C(=V,Py) N Tilingz(R?), there is € V such that Py —x C S. By Lemma 2.1.14 and
Lemma 2.1.27,

(S+2)NK=PyNnK=(TNK)NK=TnNK,
and S € Uk v(T). Hence
T € C(~V,Po) N Tilingz(RY) C U v (T).

We see on Tiling R(Rd) the cylinder topology is stronger than the local matching topology
and together with Proposition 2.1.26 we see they are equal on Tiling(R%). O

Remark 2.1.30. With respect to the local matching topology, Tiling z(R?) is a closed sub-
set of Patch(R?). However Tiling(R?) is not closed in Patch(R?) as the following example
shows.

Example 2.1.31. Consider a tiling 7; of R? defined by 7; = {(0,1)% + = | z € Z}. We
start from this tiling 75 and replace tiles with larger ones. For any n € Z, choose z,, € Z4
such that for any two distinct n and m, ((0,n)? + z,,) N ((0,m)? + z,,) = 0. To T, we
add tiles (0, n)d + Zp,n = 2,3,... and remove tiles with side-length 1 that intersect these
tiles with side-length 2,3, .... The resulting tiling is represented by 7. and this consists of

translates of (0,n)%, n = 1,2,3,.... This tiling is not in Tilingz(R?) for any R > 0 and
a sequence (7] — xp — yn)n, where y, = (%n, %n, - %n) for each n, converges to () with

respect to the local matching topology.

2.1.1 Finite local complexity and finite tile type

Definition 2.1.32. On 2%’ (the set of all subsets of R?), define an equivalence relation ~
by

A~ B <= there exists € R? such that A = B + z.
d
On the set 22° of all subsets of 2Rd, we define an equivalence relation ~ by
Py ~ Py < there exists x € R? such that P; = Py + .

Definition 2.1.33. An element P € Patch(R?) has finite local complexity (FLC) if the
quotient set

{(P+2)NK|zeR¥}/~

is finite for any compact K C R%.
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Definition 2.1.34. An element P € Patch(R%) has finite tile type (FTT) if P/~ is finite.
In this case there exists a finite set A of tiles such that

e For any P € A, we have 0 € P, and

e For any T € P, there is a unique P € A and a (necessarily unique) = € R? such that
T=P+uzx.

Such a set A is called an alphabet for the FTT patch P.
Given a finite non-empty set A of tiles that are not pairwise translationally equivalent,
for any P € Aand z € R? set c4(P+xz) = z. For P C A+RY%, set c4(P) = {ca(T) | T € P}.

In Proposition 2.1.37 we give a characterization of FLLC and FTT.

Definition 2.1.35. For a patch P € Patch(RY) and S C RY, set

PNS={TeP|TnS+#0}.

Lemma 2.1.36. For any subsets 111,115 C 22]Rd, suppose the following conditions;
o for any P1 € 11 there are Py € Ily and x € R? such that P1 +x C Pa,
e cach Py € Iy is finite, and
o Ily/~ is finite.
Then 11y /~ is finite.
Proposition 2.1.37. For P € Patch(R?), the following conditions are equivalent;
1. P has FTT and FLC.
2. P has FTT and {P' C P | diamsupp P’ < R}/~ is finite for all R > 0.
3. {PNB(z,R) |z € R4/~ is finite for any R > 0 and P has FTT.
4. AP (K + ) | x € R4} /~ is finite for any compact K C R%.
5. P has FTT and c4(P) — ca(P) is discrete and closed in R?, for any alphabet A.

Proof. 1=2. For any R > 0, if P’ C P and diamsuppP’ < R, either P’ = () or we can
take x € supp P’. In the latter case P’ C PN (x + B(0, R)) and Lemma 2.1.36 applies.
2=-3. For any = € R?% we have diam supp(P N B(z, R)) < 2R. Lemma 2.1.36 applies.
3=4. Set r = maxpepdiamT. For any compact K C R% take R > 0 such that
K C B(0,R —r). For any x € R? we have P M (K + x) C PN B(x, R) and Lemma 2.1.36
implies (4).
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4=-5. First by taking K = {0} we see P/~ is finite and so P has FTT. Take R > 0
arbitrarily. We shall show that (c4(P) — c4(P)) N B(0, R) is finite. Set K = B(0, R).
There is a finite F' C R? such that if 2 € R? there are y € F and z € R for which

PN(K+xz)=(PN(K+y)+ 2

Take a € (cA(P) — ca(P)) N B(0, R). Then there are P;, P> € A and a1, a2 € R? such that
P,+a; € P(i=1,2)and a = a; —ag. By ag € P+ ag and |la; — az|| < R, we have
Py+a; € PN(K +ay), and

a €(ca(PN(K+ay)) —ca(PN(K +a1))
=(cA(PT (K +b)) —ca(PN (K +1)))

for some b € F. Hence

(ca(P) = ca(P))NB(0,R) C | J(ca(PN(K +b)) —ca(PN(K +1b))).  (2.5)
beF

Since F is finite and P M (K + b) is finite by FTT, the right-hand side of (2.5) is finite.
5=1. Take a compact K C R? arbitrarily. Set C' = (c4(P) — ca(P)) N (K — K)
and P = A+ C. Ifz € R? and PN (K + x) # 0, then take Py € A and z9 € R?
such that Py +xg € PN (K + z). If we arbitrarily take P, € A and z; € R? such that
Py +xz € PN (K + x), then 1 — g € C. This implies that PN (K + ) — 29 C P’. Since
P’ is finite, by Lemma 2.1.36 {P N (K + ) | z € R9}/~ is finite. O

Remark 2.1.38. Example 2.1.31 is an example of tiling which has FL.C but does not have
FTT.

We then introduce another characterization of FLC.

Definition 2.1.39. Let P be a patch and take T' € P. We inductively define coronas
Cc"(T,P),n=0,1,... by

CUT,P) ={T}
C" YT, P) = P Msupp C™(T, P).
Also set C*(T',P) = U,ez., C" (T, P).

Note that if 7 has finite tile type, any of its coronas are finite sets. Now we prove
another characterization of FLC (Proposition 2.1.41), which will be useful when we try to
prove that an example of substitution rule has FLC.

Lemma 2.1.40. Let P be a non-empty finite patch. If there is a connected set C C supp P
such that CN'T # O for any T € P, then for any T € P we have P = C>(T,P).
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Proof. For S,T € P we have either
C™(T,P)=C>(S,P) (2.6)
or
supp C*°(T,P) Nsupp C*(S,P) = 0.

If the equation (2.6) holds, we set S ~ T. P/~ is a finite set and the equivalence class
including S € P is C*°(S,P). There are k € Z-o and T1,T5,...,T; € P such that
P/~ ={C>®(T1,P),C>®(T,P),...,C®(T,P)}. We have

k
C CsuppP = U supp C*(T;,P)

i=1
and for each i, supp C*°(T;,P) N C # (. By the connectivity of C, we necessarily have
k=1. Forany T € P, P = C®(T1,P) = C*(T,P). O

Proposition 2.1.41. Let T be a tiling of finite tile type. Then the following conditions
are equivalent:

1. T has FLC.

2. {CHT,T)| T €T}/ ~ is finite.

3. {C™(T,T)|TeT}/~ is finite for any n € Zp.
Proof. We use Lemma, 2.1.36 for several times.

(1)=(2): Set Iy = {CYT,T) | T € T} and II; = {T N B(x,2r) | * € R%}, where
r > maxpcT diam 7.

(2)=(3): We prove by induction on n. Suppose we have proved {C™(T,T) |T € T}/~
is finite. There is a finite set F,, C T such that, if T € T, there are F € F,, and v € R¢
for which C™(T,T) = C™(F,T) +v. By (2) it can be shown that there is a finite set

F1 C T such that, for any T' € T, there are E € F; and v € R? for which T = F + v and
CHT, T)=CYE,T)+v. For E€ Fj and F € F,, set

V(E,F)={veRY| E+veC"FT)}
Set

P=J U C(ET+V(EF).

FeF, EecF;

Then P is a finite set, which is not necessarily a patch. We can show that P D> C™(F,T)
for each F' € F,. Using this we can show that for any 7" € T there is v € R? such that
C" (T, T)+ v C P. It follows that {C"* (T, T) | T € T}/~ is finite.

23



(3)=(1): Take R > 0 and let N be an integer which is large enough. Take 2 € R%. By
Lemma 2.1.40, for any S € 7 M B(x, R),

TN B(z,R) =C>®(S,TNB(x,R)) =CN(S, TN B(z,R)) c CN(S,T).
Since {CN(T,T) | T € T}/~ is finite, T has FLC. O

Definition 2.1.42. For P € Patch(RY), set

Xp={P+z|zcR
with respect to the local matching topology.
Lemma 2.1.43. If P € Patch(R%), Q € Xp and x € RY, then Q +x € Xp.

Proof. There is a sequence (z,) of R? such that Q = lim, (P + z,). By Lemma 2.1.24
Q+x=Ulm(P+z,+z) € Xp. O

Definition 2.1.44. A subset X C Patch(R%) has FLC if
{(PN(K+2z)|zeR,PeX}/~
is finite for any compact K C R%.
Remark 2.1.45. If X is invariant under translation, X has FLC if and only if
{PNK|PeX}/~

is finite for any compact K C R?. If there are only finitely many tile types in X, that is,
(Upex P)/~ is finite, then by Lemma 2.1.36 X has FLC if and only if

{PNB(z,R) |z cR,Pec X}~
is finite for any R > 0.
Lemma 2.1.46. Take P € Patch(R?). Then the following two conditions are equivalent;
1. P has FLC.
2. Xp has FLC.

Proof. 1=2. Take any compact K C R% and a compact neighborhood V of 0 € R?. If
Q € Xp, then there is € R? such that P+ € Uy y(Q). This implies that there is y € V
such that (P+2+y)NK = QN K and so

{ONK|QeXp}={(P+2)NK |z cRY}.

Since Xp is translation invariant (Lemma 2.1.43), we see Xp has FLC.
2=-1. This direction is clear because {P + z | 2 € R4} C Xp. O
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Lemma 2.1.47. Let X be an FLC subspace of Patch(R?). For any sequence Py, Ps, ...
of X, any compact K C R% and any compact neighborhood V of 0 € R?, we can take a
subsequence Ppy, Pry, - .. of (Pn)n such that (Pn;, Pn,) € Uy for any j,k > 0.

Proof. Set K' = K — V. By FLC there is a subsequence Py, Py,, ... and 1, z2,... € RY
such that for any j > 0 we have

Po, NK' = (P, NK') + ;.

If P,,,NK'" = (), we have nothing to prove and we may assume that we can take T' € P,,, NK'.
Take x € T, then z —x; € K’ for each j and we see (z;); is a bounded sequence. By taking
subsequence again we may assume that x; —x, € V for any j, k. For any j,k > 0,

Py NK' = (Po, NK') + 2 — 2 = (P, + x5 — ) N (K" + x5 — ay,)
and by Lemma 2.1.14,
P, VK = (Pp, +xj —21) N K,
which implies (Py,, Pn;) € U,y O

Note that since the uniform space (Patch(R?), 4) is metrizable, for any X C Patch(R%)
the following two conditions are equivalent:

e X is totally bounded, that is, for any &/ € 4 there is a finite ' C X such that
X CUpertU(P).

e For any sequence in X, there is a Cauchy subsequence of it.
Note also that any X C Patch(R?) is compact if and only if it is closed and totally bounded.
Lemma 2.1.48. For any X C Patch(R?), consider the following conditions;

1. X has FLC.

2. X s totally bounded with respect to L.

Then condition 1 always implies condition 2 and the converse holds if X is invariant under
translation and the set (Upe x P)/~ is finite (that is, there are only finitely many tile types
up to translation).

Proof. 1=2. Take countably many open sets O1,02,... and a countable neighborhood
basis {V;, | n > 0} of 0 consisting of compact sets such that

e K, := 0, is compact for each n, and

e U, On=R%
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Take a sequence Pi,Po,... of X. By Lemma 2.1.47, we can take a subsequence (737(11))
of (Py) such that ( W, 7(7%)) € Uk, v, for any n,m > 0. We further take a subsequence
(Pr(L2)) of ( 7(11)) such that (73,(12)7 ,53)) € Uk, v, for any n,m > 0. Proceeding in this way
we can take subsequences (Pq(zk))n for k=1,2,.... Set Q, = 7372”) for each n, then (Qy),
is a Cauchy subsequence of (P, ).

2=>1. Assume X is invariant under translation and | Jp, x P/~ is finite. Take a compact
K c R? and a compact neighborhood V' of 0. By condition 2 there is a finite set FF ¢ X
such that

X C U UV+Kyv('P).
PeF

For any Q € X there are P € F and x € V such that (Q+z)N(K+V)=PnN (K +V),
and

(ONK)+z=(Q+2)N(K+z)C(Q+z)N(K+V)=Pn(K+V).

Since P N (K + V) is finite for each P € F, by Lemma 2.1.36 {QNK | Q € X}/~ is
finite. O

Corollary 2.1.49. Take P € Patch(R?). Consider the following two conditions;
1. P has FLC.
2. Xp is compact with respect to the local matching topology.

Then 1 always implies 2 and if P has FTT 2 implies 1.

Proof. Clear by Lemma 2.1.46, Lemma 2.1.48 and the fact that if P has FTT then
(Ugexp Q) /= is finite. O

Remark 2.1.50. If a tiling 7 has FTT, then on X7 the cylinder topology and the local
matching topology coincide (Proposition 2.1.29). Thus if a tiling 7 has FLC and FTT the
space X7 is compact with respect to the both topologies.

For some tiling 7 there is a patch P in X7 which is not a tiling (supp P # RY). For
example, for the tiling 7] in Example 2.1.31, we have () € X7-. For tilings with finite tile
type, we have the following lemma.

Definition 2.1.51. If a tiling 7 satisfies the condition

sup diam 7" < oo (2.7)
TeT

then we say T has bounded tile type.
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Note that if 7 has FTT, it has bounded tile type.
Lemma 2.1.52. If 7T has bounded tile type, then any S € X7 is a tiling.

Proof. Take S € X7 and R > 0 arbitrarily. Take ¢ € (O,%) such that % —e> R+

suprer diam 7. There is € R? such that p(S,T + x) < ¢, and there is y € R? such
that SN B(0,1 —¢) = (T +z +y) N B(0,L —¢). It follows that suppS 1 B(0, R) =

supp(T +x +y) N B(0,R) D B(0, R). O
The following another characterization of FLC will be useful.

Definition 2.1.53. For R > 0 and a tiling 7 of finite tile type with a set of proto-tiles A,
set

7 ga={(T-2)NB(0,R) |z R (T —z)NA#0D}
Remark 2.1.54. This is a tiling-version of language for sequences.

Proposition 2.1.55. Let T be a tiling of finite tile type with a set of proto-tiles A. Then
the following conditions are equivalent:

1. T has FLC.
2. Il g 4 is finite for all R > 0.

Proof. (1)= (2): It is enough to show that II7 g 4 is finite for any R > maxpc 4 diam P
since there is a surjection II7 g 4 — II7 g 4 for R’ < R.

Suppose R > maxpe 4 diam P. It suffices to show for each P € Il1 g 4, the set Zp =
{z € R? | P+ 2z € Tl g4} is finite since I3 4/~ is finite by (1). Take P € Iy g 4.
Define a map ¢: Zp — P as follows. For z € Zp, there is a unique P € (P + z) N A. In
fact, there are y € R and P € A such that P+2 = (T —y)NB(0,R) and P € (T —y) N A.
Since we assumed R was large enough, P € P + z. Set ¢(z) = P — z. This map ¢ is
injective. In fact, if p(21) = p(22), take P; € (P + 2;) N A. Then P, — 21 = P> — 23 and so
P, = P, and z; = zo. Since P is finite, we see Zp is finite.

(2)=(1): Take R > 0. Set II; = {(T —2) N B(0,R) | € R%} and we show Iy /~ is
finite. Take L > max{R, maxpec 4 diam P} and set Il = {(7 — )N B(0,L) | 2 € R%}. By
Lemma 2.1.36, it suffices to show IIy/~ is finite. Take (7 — x) N B(0,L) € II5. Choose
P e Aand y € R? such that P+y € (T —x)NB(0,L). Then ||y|| < Land P € T —x —y.
We have

(T—2)NB(O,L)—y=(T —xz—y)NB(—y,L) C (T —x—1y) N B(0,2L).

We have proved that, for any P € Iy there are y € R? and P’ € II7 21,4 such that
P —y C P'. Hrap.a/~ is finite since II7 o1 4 is finite by assumption. Therefore by
Lemma 2.1.36, IIp/~ is finite. O
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2.1.2 Repetitivity

Definition 2.1.56. A subset S C R? is said to be relatively dense if there is a compact
K c R such that S + K =R

Definition 2.1.57. Take P € Patch(R?). P is said to be repetitive if for any bounded
patch @ C P, the set

{zeR|Q+zCP}
is relatively dense.
Lemma 2.1.58. For any P € Patch(R?), the following two conditions are equivalent;
1. P 1is repetitive.

2. For any bounded Q C P, there is an R > 0 such that the following condition holds:

For any a € R? there is © € R? such that PN B(a, R) D Q + .

Proof. 1=2. Take a bounded Q@ C P. We may assume Q # (). Take a translate Q' of
Q such that 0 € supp @'. Since S = {x € R? | Q' + = C P} is relatively dense, there is
Ry > 0 such that S + B(0, Ry) = R% For any a € R? there is € S N B(a, Ry). Then
Q' +x C PN B(a, Ry + diamsupp Q). Thus 2 is satisfied for R = Ry + diam supp Q.
2=-1. For any bounded Q C P, either Q = () or there is a translate Q' of Q such that
0 € supp Q'. Consider the latter case. Let R > 0 be a constant for Q in condition 2. For
any a € R?, there is € RY such that PN B(a, R) > Q'+ z. Then z € B(a, R) and we see
Sor = {x € R | Q' + = C P} is relatively dense. Since Sg = {r € R? | Q+2 C P} isa
translate of Sg/, the set Sg is relatively dense. O

Definition 2.1.59. Let P be a patch. A patch Q is P-legal if there is z € R¢ such that
Q+zCP.

Definition 2.1.60. Define an equivalence relation ~r; on Patch(R?) as follows. For any
two patches Py, Po, we have Py ~11 Ps if and only if P;-legality and Po-legality are equiv-
alent for bounded patches, that is,

e for any bounded Q C P; there is x € R such that Q + x C P>, and
e for any bounded Q C P, there is z € R? such that Q + z C P;.

Two patches P1, P2 such that P; ~p1 P2 are said to be locally indistinguishable. The
equivalence class including P is represented by [P]rr.

Lemma 2.1.61. Take R > 0 and T € Tilingz(RY) arbitrarily. Then [T|LiNTilingp(RY) C
Xr.
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Proof. Take T' € [T 1 N Tilingz(R?). For any compact K C R? and a compact neighbor-
hood V of 0 € R, there is 2 € R? such that 7'M K +a C 7. Since 7' M K covers K, by
Lemma 2.1.27 we have T'N K = (T —z) N K. This implies that 7 — z € Ug,(T"). Since
K and V were arbitrary, 7' € X7. O

Lemma 2.1.62. For any tiling T of RY, S € X7 and bounded P C S, there is v € R?
such that P +x C T.

Proof. Set K = supp P and take an arbitrary compact neighborhood V of 0 € R%. There
is € R? such that T + 2 € Uk y(S). Then there is y € V such that P = SN K =
(T+z+y)NnK,andP—-—z—yCT. O

Proposition 2.1.63. Take R > 0 and T € Tilingg(RY) arbitrarily. Consider the following
three conditions;

1. T is repetitive.
2. [T N Tilingz(RY) = X7
3. The action R* ~ X7 is minimal.

Then always condition 1 implies condition 2 and condition 2 and condition 3 are equivalent.
If T has FLC, then condition 2 implies condition 1.

Proof. 1=2. Take T' € X. If P C T is a bounded patch, there is Ry > 0 such that for any
a € R% there is z € R? with TN B(a, Ry) D P+z. Set K = B(0, Ry) and take an arbitrary
compact neighborhood V of 0 € RY. There exists z € R? such that 7 + 2 € Uk v (T").
This means that there is y € V such that (7 +z +y) N K = 7' N K. By the property of
Ry there is z € R? such that 7N B(—z — y, Ry) D P + z. Then

Pt+z+y+2C(TH+z+y)NK=T'NK,

and so P+ 2 +y+ 2z C T'. By Lemma 2.1.62 we have 7’ € [T|r ;. Hence X7 C [T]r.
Since Tilingz(RY) is closed with respect to the local matching topology in Patch(R9),
X7 C Tilingz(R%) and together with Lemma 2.1.61 we obtain condition 2.

2.=3. Take 7', 7" € X7. Take a compact K C R? and a compact neighborhood V
of 0 € R% By condition 2 there is z € R? such that 7/ N (K + B(0,R)) +z C 7", and
T'NK = (T" —2)N K by Lemma 2.1.27. This means that 7" — z € Ug v (T").

3=2. Take 7' € Xy. Take an arbitrary bounded non-empty patch P C 7. Set
K = supp P and take a compact neighborhood V of 0 € R%. By minimality there is z € R?
such that 7"+« € Uk v (T). There is y € V such that (7' +z+y)NK =T NK D P and
P—x—y CT'. ByLemma 2.1.61 and Lemma 2.1.62 we obtain condition 2.

Finally we assume that 7 has FLC and satisfies condition 2 and we will prove condition
1. Suppose conversely that T is not repetitive. Then there are bounded P C T, a1,a2,... €
R? and Ry, Rs, ... > 0 such that
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e The sequence (R;,) is monotone increasing and lim R,, = co, and
e For each n the patch 7 N B(ay, Ry,) does not contain any translates of P.

By Corollary 2.1.49 we can take a subsequence (7 — ay;); of the sequence (7 — a,), that
converges to a tiling 7o € X7. For any R > 0 and any compact neighborhood V of 0 € R?
there is jg € Z~¢ such that

J=Jo=T —an; € Ugggy v (To)-

For large j, there is x; € V such that

ToN B(0,R) = (T — an; +xj) N B(0, R)
C ((T = an,;) N B(0, Ry;)) + ;.

This means there are no translates of P inside 7o N B(0, R). Since R was arbitrary, there
are no translates of P inside Ty and so 7o ¢ [T]r1. This contradicts condition 2. d

2.2 Substitution rules

As was mentioned there are several ways to construct tilings of R?. In this section we
introduce one of the ways, namely the way from substitution rules. After definitions we
introduce some of important results.

Definition 2.2.1. Let A be a finite set of tiles in R%. Set
Patch 4(R?) = {P € Patch(R?) | any tile T € P is a translate of a tile in A}.

Lemma 2.2.2. The set Patcha(RY) is a closed subset of Patch(R?) with respect to the
local matching topology.

Proof. Take P € Patch 4(R?) and T € P. This patch P and an element Q € Patch 4(R?)
coincide, after a small translation, inside a large ball around the origin. Thus for some
Q € Patch 4(RY) a translate of T' appears in Q and T is a translate of an element of A. [

Definition 2.2.3. A linear map ¢: R? — R? is said to be expanding if |A\| > 1 for any
eigenvalue A for .

Definition 2.2.4. A substitution rule (of R%) is a triple (A, ¢,w) where
e A is a finite nonempty set of tiles in R,

e ¢ is an expanding linear map of R?, and
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e wis a map w: A — Patchy(RY) such that

suppw(P) = ¢(P).

Tiles in A are called proto-tiles for the substitution rule.

Remark 2.2.5. In plain language, a substitution rule is an operation to expand each proto-
tile, subdivide it and obtain a patch consisting of translates of proto-tiles. The following
example will illuminate this point.

We can also consider substitution rules with rotations or flips. Radin’s pinwheel tiling
[22] is an example. We do not deal with such substitution rules in this article.

Example 2.2.6 (Figure2.1). Set 7 = 1+—2‘/5 Take the interior of the triangle which has
side-length 1,1, and 7, and remove one point anywhere from the left side or the right side.
Moreover take the interior of the triangle of the side-length 7,7 and 1, and remove one
point from the left side or the right side. The proto-tiles of this substitution are the copies
of these two punctured triangles by 2nm/10-rotations and flip, where n = 0,1,...,9. There
are 40 proto-tiles.

The expansion map is 71, where [ is the identity map. The map w is depicted in Figure
2.1. The image of the other proto-tiles by w is defined accordingly, so that w and rotations,
w and flips will commute.

Tilings for this substitution are called Robinson triangle tilings. Such tilings are known
to be related (MLD) to Penrose tilings by kites and darts.

w

enlarge 5ubd1v1de

\/‘y

w

Figure 2.1: Example of substitution
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Definition 2.2.7. For a substitution rule (A, p,w), P € A and 2 € R%, we set a patch
w(P + ) € Patch4(R?) by

W(P + 1) = w(P) + ().
An easy computation shows the next lemma:

Lemma 2.2.8. Let (A, p,w) be a substitution rule. Then suppw(P +x) = ¢(P)+ ¢(z) =
o(P+ ).

Definition 2.2.9. Let 0 = (A, ,w) be a substitution rule. Define a map w,: Patch4(R?) —
Patch 4(R%) by

TP

Lemma 2.2.10. For any substitution rule o, the map w, is well defined, that is, for any
P € Patch 4(R?) we have wy(P) € Patchy(R?). Moreover the following conditions hold:

e For any Py, Pa,... € Patcha(RY), if U, Pn is a patch, then we have w,(|JPp) =
Uwe(Pr).

e For any P € Patch4(R?), suppw,(P) = ¢(supp P).
e For any P € Patch4(R?Y), x € R? and m € Zwg, WT(P + ) = w™(P) + ¢ (z).
The following lemma also holds for the local matching topology, but we omit the proof.

Lemma 2.2.11. For any substitution rule o = (A, p,w), the map w, is continuous with
respect to the cylinder topology.

Proof. Take P € Patch4(R?%). Take any finite @ C w,(P) and a neighborhood U of 0
in R? (cf. Lemma 2.1.10). For any T € Q there is Sy € P such that T € w(St). Set
P'={Sr|T € Q}and U’ = ¢~ (U). Then w,(C(U’,P') N Patch4(RY)) c C(U,Q). O

Remark 2.2.12. Often in the literature the letter o is suppressed and w, is simply written
as w. Clearly, w,({P +x}) = w(P + ) for P € A and x € R,

Definition 2.2.13. A substitution rule (A, ¢,w) is said to be primitive if there is K € Z~g
such that for any P, P’ € A there is z € R? with P+ z € wX ({P'}).

Definition 2.2.14. Let 0 = (A, ¢,w) be a substitution rule. A patch P € Patch(R?) is
said to be o-legal if there are P € A,n € Zo and = € R? such that

P Cwi({P+z}).
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Definition 2.2.15. Let o = (A, ,w) be a substitution rule of R%. Define
X, = {T € Tiling(R?) | if P C T is a finite patch, then P is o-legal}.
In the following arguments we show X, is not empty.

Lemma 2.2.16. Let 0 = (A, p,w) be a substitution rule. There are P € A, m > 0, and
z € R? such that

o P+xecwl{P}), and
e P+1xC¢™(P).
Proof. Since ¢ is expanding, for any P € A, there are m > 0,z € R and P’ € A such that
P'+ 1z e w]'({P}), and
Ptz Co™(P).

If for some m,x the conditions (2.8) and (2.9) hold, we write P ~ P’.

We have a sequence Py, Ps,... of A such that for each n we have P, ~» P,y1. Since
A is finite, for some k,l with k& < [ we obtain P, = P,. Thus it suffices to show that if
PP, P"arein A and P ~ P’ and P’ ~ P” hold, then P ~» P”. But this is clear by a
simple computation. O

Lemma 2.2.17. Take a finite nonempty set A of tiles. Let p: R? — R? be an expanding
linear map. Let w: Patch 4(RY) — Patch4(R?) be a map such that supp w(P) = @(supp P)
for each P € Patch4(R?). Suppose there is Py € Patch 4(RY) such that

o Py C OJ(P()), and
e supp Py C ¢(supp Po)°.
Then there is 7 > 0 such that suppw™(Po) D ¢"(B(0,1)) for any n € Zso.

Proof. For each n we have (suppP)° D ¢ "(suppPo) D ¢ " (suppPy). Take x €
¢ Y(suppPy). Then 0 = lim, o "(x) € ¢ (suppPo) C (suppPp)°. There exists r > 0
such that B(0,r) C supp Py. For each n

suppw"(Py) = p(suppw” 1 Py)
= *(suppw™ *Pp)
= " (supp Po)
D " (B(0,r)).
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Proposition 2.2.18. Let 0 = (A, p,w) be a substitution rule. Then there are P € A,
b e R and m € Z~q such that P +b € w™({P + b}) and

Jewrm{p+})
n>0
s a tiling in X,.

Proof. By Lemma 2.2.16, there are P € A,a € R? and m € Z~q such that
P+acwl({P}), and
P+acCm(P).

Since ¢ is expansive, the linear map I — ™ is invertible. Set b = (I —¢™)"!(a). Then we
have

P+bewl{P+0b}), and (2.10)
P+bcC¢p™(P+b). (2.11)
Set
T=Jwim({P+1b}).
n>0

By (2.10), T is a patch. Moreover suppw?(P) = ¢™(supp P) for any P € Patch4(R?)
and supp{P + b} C ™ ((supp{P + b})°). Applying Lemma 2.2.17 for Py = {P + b} and
w = w, we see suppT = R? and so 7T is a tiling.

Finally if P is a finite subset of T, then for some n, the patch P is included in w" ({ P+
b}) and so P is o-legal. Thus T is in X,. O

Lemma 2.2.19. Let T be a tiling of R? such that suprer diamT < r for some r > 0.
Then for any subset S C R, suppT N (S + B(0,r)) D S.

Lemma 2.2.20. Let 0 = (A, p,w) be a substitution rule. Then X, is closed in Patch(R?)
(and in Patch 4(RY)) with respect to the local matching topology.

Proof. Take T € X,. For any compact K C R? and any compact neighborhood V' of
0 € RY, there is 7' € Uk v(T) N X,. We can take z € V such that TNK = (7' + ) N K.
Thus if P is a finite subset of T, by taking K large enough, we see that there are 77 € X,
and z € R? such that P — 2 C 7". Since P — x is o-legal, P is also o-legal. Next, for any
compact L set K = L + B(0,7) where r > maxpc 4 diam P. By the above argument and
Lemma 2.2.19,

suppT DsuppT N K
=supp(7T’ +2)NK
DL

for some 7’ € X, and = € R?. It follows that supp7 = R% and so T € X,. dJ
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Remark 2.2.21. By Proposition 2.1.29, X, is closed in Tiling(R?) with respect to the
cylinder topology for any R > maxpc 4 diam P.

Remark 2.2.22. Since a translate of o-legal patch is again o-legal, it is clear that X, is
invariant under translation.

Lemma 2.2.23. If T € X,, then ws(T) € X,.

Proof. Take a finite P C wy(7). For any T' € P there is S7 € T such that T € w(Sr).
Set P! = {Syp | T € P}, then P C w,(P’). Since P’ is o-legal, there are P, z,n such that
P C w({P+z}), and P C w2 ({P + z}). This means that P is o-legal. Moreover
supp wy (7)) = @(supp T) = R? by Lemma 2.2.10. O

Proposition 2.2.24 ([1], Proposition 2.2). Let (A, ¢,w) be a substitution rule. Then
wy: Xo — Xy 18 surjective.

The following easy lemmas will be useful later.

Lemma 2.2.25. Let 0 = (A, p,w) be a substitution rule and take n € Z~y. Then
wp(P) = |J wr({T}h)
TeP

for any P € Patch4(RY).

Definition 2.2.26. For a substitution rule o = (A, ¢, w) and n € Z~, define a substitution
rule o by 0" = (A, ¢",w™) where w"(P) = w}({P}) for each P € A.

Remark 2.2.27. If o is primitive, then so is ¢” for any n.

Lemma 2.2.28. Let 0 = (A, ¢,w) be a substitution rule and take n € Zg. Then (wy)" =
(W™)gn (the iterate of w, coincides with the map associated to o™ in regard to Definition

2.2.9).

Lemma 2.2.29. Let o be a primitive substitution. Then for any n € Z~y we have X, =
Xon.

Proof. Take T € X n and a finite subset P C 7. There are P € A,m > 0 and = € R? such
that P C wl™({P + z}) (cf. Lemma 2.2.28). This shows that P is o-legal and T € X,.

Next, take 7 € X, and finite P C 7. There are P € A,;m > 0 and = € R? such that
P C wl({P + z}). There is K € Z~¢ as in Definition 2.2.13. Take [ € Z~q such that
nl > K +m. We can take y € R? such that P +y € w®~™({P}). Then

P C (wi)' ({P+¢™ (@ —y)}),

and so P is o"-legal. O
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Definition 2.2.30. Let 0 = (A, p,w) be a substitution rule. If the set
{w2{P})NB(x,R) | P € An> 0,2 € R} /~
is finite for each R > 0, then o is said to have FLC.

Note that by Proposition 2.1.29, on X, the relative topologies of the local matching
topology and the cylinder topology coincide. We endow X, this relative topology.

Lemma 2.2.31. Let 0 = (A, p,w) be a primitive substitution rule. Then the following
conditions are equivalent:

1. 0 has FLC.
2. X, has FLC.
3. X, is compact.

Proof. 1=2. Suppose o has FLC. Take a positive number R > 0. Take T € X, and = € R¢,
and set P = TN B(xz, R). By definition of X, there are P € A,n > 0 and y € R? such that
P C wl({P + y}). For some z € R? a translate of P appears inside w?({P}) N B(z, R).
Thus by Lemma 2.1.36,

{TNB(z,R) |z € R, T € X,}/~

is finite.

2=1. Take R > 0 arbitrarily. If P € A, then by primitivity and Lemma 2.2.23, there
is T € X, such that P € T. Take n € Z~g and z € R% Then w?({P}) N B(x,R) C
w(T)N B(z, R). Since w}(T) € X, (Lemma 2.2.23), by Lemma 2.1.36 and condition 2,

{w2({P})NB(z,R)| P An>0,z¢ Rd}/w

is finite.
The equivalence of 2 and 3 follows from Lemma 2.2.20 and Lemma 2.1.48. O

Remark 2.2.32. It is known that given a substitution rule o = (A, p,w), it is often
possible to prove FLC of o by observing coronas (Definition 2.1.39) in iterates w}({P}) for
any P € A and small n € Z~.

Remark 2.2.33. By Lemma 2.2.29 and Lemma 2.2.31, we see that for any primitive o
and n > 0, ¢ has FLC if and only if ¢” has FLC.

If 0 has FLC we obtain a topological dynamical system (X,,RY) by the action of
translations.

Proposition 2.2.34. If 0 = (A, p,w) is primitive, then (X,,R%) is minimal and any
T € X, is repetitive.
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Proof. Let K be a positive integer appearing in Definition 2.2.13. Take r > maxpc 4 diam P.
Take 7,S € X, and a finite P C 7T arbitrarily. By the definition of X,, there are
P e Ay € R and n > 0 such that P C w?({P + y}). Take R > 0 such that
et B(0,7) C B(0, R). We claim

for any = € R?, there is a translate of P in S N B(x, R). (2.12)

Take z € R%. By Proposition 2.2.24, there is &' € X, such that w?*t#(S’) = S. We can
take T' € S’ such that =" X (x) € T. Then there is a translate of P in wX ({T'}), and there
is a translate of P in w? X ({T}). Since S D w2 X ({T}) and suppw?* X ({T'}) C B(z, R),
there is a translate of P in SN B(z, R). Thus the claim (2.12) is proved. This firstly means
that a translate of S contains P. By Lemma 2.1.10, this implies that for any neighborhood
of T, a translate of S is a member of that neighborhood. This means that (X,,R%) is
minimal. Secondly the claim (2.12) shows that (by considering the case where S = T) T
is repetitive. ]

Remark 2.2.35. This proposition shows that, if ¢ is primitive then X, = Xg for any
SeX,.

Definition 2.2.36. Let 0 = (A, p,w) be a substitution rule. A tiling 7 € Patch 4(R?) is
called a fixed point if w,(7) = T. A repetitive tiling of FL.C which is a fixed point of some
substitution rule is called a self-affine tiling.

Lemma 2.2.37. Let o be a substitution rule and T be its fized point. If T is repetitive,
then T € Xo. If o is primitive and T € X, then T is repetitive.

Proof. Suppose T is repetitive. Take a finite P C T. There exists R > 0 such that for
any z € R? there is y € R? with 7 N B(z,R) D P + y. For arbitrary T € T, if n is large
enough the support of the patch w?({T'}) contains a ball of radius R. Hence a translate
of P appears in w}({T}), and so P is o-legal. Hence 7 € X,. The converse under the
assumption of primitivity is proved in Proposition 2.2.34. O

Lemma 2.2.38. For any primitive substitution rule o there is n > 0 such that ™ admits
a repetitive fixed point.

Proof. This is clear by Proposition 2.2.18, Lemma 2.2.29 and Lemma 2.2.37. O

Remark 2.2.39. Often we assume a primitive substitution admits a repetitive fixed point
because we may replace the original substitution o with ¢ for some n.

Theorem 2.2.40 ([27], [13]). If a substitution rule o is primitive and FLC, then the
corresponding topological dynamical system (X,,RY) is uniquely ergodic, that is, it admits
a unique invariant probability measure.

We recall mixing property of dynamical systems in Definition A.0.9.
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Theorem 2.2.41 ([27], Theorem 4.1). Let o be a primitive substitution of FLC. Then the
dynamical system (X,,R%, 1) is not mizing, where p is the unique invariant probability
measure.

Remark 2.2.42. The proof of the previous theorem is decomposed into two parts. Let
T be a repetitive fixed point. First, we can prove the following: take any T € T and any
vector x such that T+ z € T. Then there is ¢ > 0 such that for any finite patch P and
n € Z~g, we have

lim L(PU(P+ ¢"(x)), T NAN)
N m(AN)

L(P,w™(T))
m(p™(T))

Zc

(2.13)

Here,

e L(P,Q) = card{z € RY | P + 2 C Q} (the number of translates of P inside Q) for
any patch P, Q.

e Ay is the ball of radius N with its center 0, or more generally (Ay) is a van Hove
sequence.

The left-hand side of inequality (2.13) is called the frequency of the patch PU (P + ¢"(x)).
In plain language, this inequality means that there is positive probability of finding another
translate of P after finding a translate of P in the tiling 7 and moving our attention by a
vector ¢"(x) from that position.

Next, from this fact about the distribution of patches we can prove the property of
the dynamical system, i.e. , that the dynamical system is not mixing. This is an example
of a relation between distribution of patches in tilings and corresponding tiling dynamical
systems.

Solomyak [28] proved the recognizability of certain substitution rules, which is a tiling
analogue of [18].

Theorem 2.2.43 ([28]). Let o be a primitive substitution rule of FLC. Then wy: X; — Xo
is injective if and only if each T € X, is non-periodic.

In this theorem the “if” part is hard to show. For the “only if” part see for example
[1], Proposition 2.3.

For examples of substitution rule the following lemma is useful to prove that w, is
injective.

Lemma 2.2.44. Let 0 = (A, p,w) be a substitution rule. Suppose that the following three
conditions

e Pc A,

e P is a o-legal finite patch, and
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e w(P) Cwys(P),
mmply P € P. Then wy: Xo — X5 is injective.

Proof. Take T, S € X, and assume w, (7)) = w,(S). Take T € T arbitrarily. Set P = SMT.
Then suppw(T) C suppwy(P). Since w(T) C wy(S), we have w(T) C wy(P). There are
P € Aand z € R? such that T = P+2z. We have w(P) C w, (P —2) and by the assumption
of this lemma we obtain P€ P —z,andso T € PCS. Hence T CSandso 7T =8. O

By the following theorem we see for certain dynamical systems from substitution, topo-
logical and measurable eigenvalues coincide and any measurable eigenfunction can be taken
continuous. (These notions are explained in Appendix.)

Theorem 2.2.45 ([31], Theorem 3.13). Let (A, p,w) be a primitive tiling substitution of
FLC. Assume there is a repetitive fized point T for this substitution. Then for € € RY, the
following conditions are equivalent:

1. € is a topological eigenvalue for the topological dynamical system (X, R%);

2. ¢ is a measurable eigenvalue for the measure-preserving system (Xo,R%, 1), where p
s the unique invariant probability measure;

3. & satisfies the following two conditions:
(a) For any return vector z (cf. Definition 2.1.2) for T, we have
lim ™" (28 — 1, (2.14)

n—oo

and
(b) if 2 €R% and T + 2 =T, then

627TZ'<Z,§> — 1

Definition 2.2.46. e An algebraic integer A > 1 is called a Pisot number if any Galois
conjugates p except A itself satisfy |u| < 1.

e Let A be a finite non-empty set of algebraic integers. We say A is a Pisot family if
the following condition holds:

if A€ A, p¢ A and X and p are Galois conjugate, then |u| < 1.

For example, 7 = 1‘*'2—\/5 is a Pisot number because 7 and 1_2‘@ are all of its Galois
conjugates. A one-point set {7} forms a Pisot family.

For a linear map ¢: RY — R?, its spectrum sp(y) is by definition the set of all eigen-
values.

For a linear map ¢: R? — R?, its adjoint is denoted by ¢* and its spectrum is denoted
by sp(¢).
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Theorem 2.2.47 ([14], Theorem 2.8). Let (A, ¢,w) be a primitive substitution rule of
FLC. Assume ¢ is diagonalizable over C and all the eigenvalues are algebraic conjugates
of the same multiplicity. Then the following conditions are equivalent:

1. The set sp(¢) is a Pisot family.

2. The set of (topological and measurable) eigenvalues for (X, R?) is relatively dense.

d
Finally we briefly mention pseudo-self-affine tilings. For the definition of S and MLD,
see Definition 3.2.16.

Definition 2.2.48 ([30]). A repetitive FLC tiling 7 is called a pseudo-self-affine tiling if
d

o(T) BT for some expanding linear map ¢: R — R%.

Remark 2.2.49. Self-affine tilings are pseudo-self-affine tilings.

Theorem 2.2.50 ([30]). Let T be a pseudo-self-affine tilings with an expansion map ¢.
Then for any k € Z~q sufficiently large, there exists a tiling T’ which is self-affine with
expansion ¢F such that T is MLD with T".

2.3 Results on relation between properties of tilings and
properties of the corresponding dynamical systems
Proposition 2.1.63 describes a relation between the distribution of patches in a tiling and

a property of the corresponding dynamical system. Here we mention another relation.

Definition 2.3.1. We endow a metric pr on T by identifying T with R/277Z. In other
words we set

pqy(e%w, 62”0/) =min |0 — 0" + n|
ne’

for any 0,60’ € R. This gives a well-defined metric on T that generates the standard topology
of T.

Definition 2.3.2. Take a,b € R? such that |la|| = 1. Take also positive real numbers
Ri,Ry > 0. Set

S(a,b, R, Ry) = {x € R? | (x — b,a) € R1Z + [~ Ry, Ro]}.
Remark 2.3.3. S(a,b, R, R2) is the union of “bands” with width 2R and intervals R;.

Definition 2.3.4. Let 7 be a tiling of R and Ly, Ly > 0. We say 7 has (L1, Lo)-stripe
structure if there are a € R? with |a|| = 1 and Ry > 0 such that

{y eR| (T —2)NB(0O,R) = (T —y) N B(0,R)} C S(a,x, Ly, La) (2.15)

for each z € RY.
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Remark 2.3.5. In plain language, the inclusion (2.15) means that, if we take a patch
P C T around the point x which is large enough, there is a “forbidden area” of the
appearance of the translate of P. The forbidden area is a periodic one which is obtained
by juxtaposing bands of width 2Ly. (See Figure 2.2 in page 41.) This is a statement on
non-existence which we discussed in Introduction.

We will show the following theorem. That the first condition implies the the second is
essentially [19], Theorem 3.5.

Theorem 2.3.6. Take a tiling which is of FTT and has FLC. Consider the following two
conditions:

1. 0 € R% is a limit point of the group of eigenvalues of the corresponding dynamical
system (X7, R%).

2. For any Ry, Ro,e > 0, there are Ly, Lo > 0 such that

(a) |[Rj — Lj| <€ for each j = 1,2, and
(b) T has (L1, Lo)-stripe structure.

Then the first condition always implies the second and if T is repetitive the second one
implies the first.

Proof. We show a generalization of this theorem in Theorem 4.3.7 and Theorem 4.3.13. [

Figure 2.2: (Lj, Lo)-stripe structure. The situation of the tiling 7 around the point x is
different from the one around the points, such as y, oudside the shaded region.
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Remark 2.3.7. Consider a primitive FLC substitution with injective substitution map
and such that the expansion map is diagonalizable and all the eigenvalues are algebraic
conjugates of the same multiplicity. If the spectrum of the expansion map is a Pisot
family, the self-affine tilings T for this substitution satisfies the first condition in Theorem
2.3.6. Indeed, T is non-periodic and so by Theorem 2.2.45, a € R? is an eigenvalue if
lim,, €27(@¢"(®)) = 1 for any return vector z. There is a non-zero eigenvalue a by Theorem
2.2.47; by the above remark (¢*)~*(a), where * denotes the adjoint, is an eigenvalue for
all k > 0; since limy,(¢*)7%(a) = 0, we have arbitrary small non-zero eigenvalues.

Remark 2.3.8. Even if we know 7 has stripe structure, we do not know how large the
R > 0in Definition 2.3.4 is. If T is a self-affine tiling with the same condition as in Remark
2.3.7, a Delone set D (consisting of what is called control points) is locally derivable from
T. The set D in this case is a Meyer set([14], Corollary 2.13); by the characterization of
Meyer sets [15], we see

{x € (R | for any = € D, we have |x(z) — 1| < ¢}

is relatively dense for any € > 0. Thus we have a forbidden area of the appearance of any
small but nonempty patches.
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Chapter 3

A general framework for objects
such as tilings, Delone sets,
functions and measures

3.1 General theory of pattern spaces

In this section X represents a nonempty topological space unless otherwise stated. First
in Subsection 3.1.1, we define “pattern space”. Several spaces such as the space of patches
and space of point sets have an operation of “cutting off”: for example, for a discrete set
D c R? and a subset C of R%, we can “cut off” D by the window C' by taking intersection
D N C. We axiomatize the properties that such cutting-off operation should have and
obtain the notion of pattern space. Several space of objects such as patches, point sets,
functions and measures are captured in this framework. In Subsection 3.1.2 we introduce
an order relation on pattern spaces, which is the inclusion between two patches when the
pattern space is the set of all patches. In Subsection 3.1.3 we study the operation of
“gluing” objects to obtain a new objects. This is an abstract framework to capture the
usual operation of taking union. Finally, in Subsection 3.1.4 we define zero elements, which
is the empty-set in the pattern space of all patches and is zero function in the pattern space
of all functions.

3.1.1 Definition and examples of pattern space
Definition 3.1.1. The set of all closed subsets of X is denoted by C(X).

Definition 3.1.2. A non-empty set Il equipped with a map
IxC(X)>(P,C)—PnNnCell (3.1)

such that
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1. (PNC)NCy=PnN(CLNCy) for any P € II and any C1,Cs € C(X), and
2. for any P € II there exists C'p € C(X) such that
PNC =P < CDCp,
for any C' € C(X),

is called a pattern space over X. The map (3.1) is called the scissors operation of the
pattern space II. The closed set Cp that appears in 2. is unique. It is called the support
of P and is represented by supp P. Elements in 1I are called abstract patterns in II.

Remark 3.1.3. Note that the symbol N is used for two different meanings: sometimes
it refers to the scissors operation given to a pattern space; sometimes it refers to the
intersection of two subsets of X.

Lemma 3.1.4. Let IT be a pattern space over X. For any P € Il and C € C(X), we have
supp(PNC) C (suppP)NC.

Proof.
(PNnC)n((suppP)NC)=(PNnsuppP)NC =PNC.
O

Example 3.1.5 (The space of patches in a metric space). Let X be a metric space. An
open, nonempty and bounded subset of X is called a tile (in X). A set P of tiles such that
if S,T € P, then either S =T or SNT = () is called a patch (in X). The set of all patches
in X is denoted by Patch(X). For P € Patch(X) and C € C(X), set

PNC={TeP|TcCC}

With this scissors operation Patch(X) becomes a pattern space over X. For P € Patch(X),
its support is

suppP = U T.
TeP

Patches P with suppP = X are called tilings.

Example 3.1.6 (The space of all locally finite subsets of a metric space). Let X be a
metric space. Let LF(X) be the set of all locally finite subsets of X; that is,

LF(X)={Dc X |forall z € X and r > 0, DN B(x,r) is finite}.

With the usual intersection LF(X) x C(X) 2 (D,C) — DN C € LF(X) of two subsets of
X, LF(X) is a pattern space over X. For any D € LF(X), its support is D itself.
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Example 3.1.7 (The space of all uniformly discrete subsets). We say, for » > 0, a subset
D of a metric space (X, p) is r-uniformly discrete if p(x,y) > r for any x,y € D with
x # y. The set UD,(X) of all r-uniformly discrete subsets of X is a pattern space over
X by the usual intersection as a scissors operation. If D is r-uniformly discrete for some
r > 0, we say D is uniformly discrete. The set UD(X) = (J,-, UD;(X) of all uniformly
discrete subsets of X is also a pattern space over X.

Example 3.1.8. With the usual intersection of two subsets of X as a scissors operation,
the set 2% of all subsets of X and C(X) are pattern spaces over X.

Example 3.1.9 (The space of maps). Let Y be a nonempty set. Take one element yy € Y
and fix it. The pattern space Map(X, Y, yo) is defined as follows: as a set the space is equal
to Map(X,Y) of all mappings from X to Y; for f € Map(X,Y,y9) and C € C(X), the
scissors operation is defined by

flz) ifzeC

(fnC)w) = {yo ifx ¢ C.

With this operation Map(X, Y, yo) is a pattern space over X and for f € Map(X,Y,yo) its
support is supp f = {z € X | f(z) # yo}-

Example 3.1.10 (The space of measures). Let X be a locally compact o-compact metric
space. Let C.(X) be the space of all continuous and complex-valued functions on X which
have compact supports. Its dual space C.(X)* with respect to a suitable topology consists
of Radon charges, that is, the maps ®: C.(X) — C such that there is a unique positive
Borel measure m and a Borel measurable map u: X — T such that

B(p) = [ pum

for all ¢ € C.(X). For such ® and C € C(X) set

(@1 C)(p) = /C pudm

for each ¢ € C.(X). Then the new functional ®NC is a Radon charge. With this operation
Ce(X)* xC(X) 3 (9,0) —» &N C € Cc(X)*, the space Co(X)* becomes a pattern space
over X.

Note that if m is a positive measure on X and u: X — C is a bounded Borel map (not
necessarily T-valued), then ®: Ce(X) > ¢ — [ pudm is a Radon charge. If C' € C(X),
then

(@1 0)(p) = /C oudm,

for each p € C(X).
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Next we investigate pattern subspaces. The relation between a pattern space and
its pattern subspace is similar to the one between a dynamical system and its invariant
subspace.

Definition 3.1.11. Let II be a pattern space over X. Suppose a non-empty subset IT' of
II satisfies the condition

Pellland CeC(X)=PnC eIl

Then II is called a pattern subspace of P.

Remark 3.1.12. If I is a pattern subspace of a pattern space II, then II' is a pattern
space by restricting the scissors operation.

Example 3.1.13. Let X be a topological space. Then C(X) is a pattern subspace of 2.
If X is a metric space, then LF(X) is a pattern subspace of C(X) and UD,(X) is a pattern
subspace of UD(X) for each r > 0. If moreover the closed balls are compact, UD(X) is a
pattern subspace of LF(X).

Next we investigate two ways to construct new pattern spaces from old ones; taking
product and taking power set.

Lemma 3.1.14. Let A be an index set and I\, \ € A, is a family of pattern spaces over
X. The direct product [, I becomes a pattern space over X by a scissors operation

(Pa)rea NC = (PxNC)xea-

Jor (Px)x € [[LIIx and C € C(X). The support is given by supp(Px)x = J, supp Ph.

Definition 3.1.15. Under the same condition as in Lemma 3.1.14, we call [JII, the
product pattern space of (IIy)x.

Lemma 3.1.16. Let II be a pattern space over X. The set 2 of all subsets of 11 is a
pattern space over X by a scissors operation

ENC={PnNnC|PeZ} (3.2)
for any = € 2" and C € C(X). The support is given by supp = = Upezsupp P.

Definition 3.1.17. The power set 2! of a pattern space II, endowed with the scissors
operation in equation (3.2), is called the power pattern space of II.

Next, we define a notion which will be useful later. Maps and elements of 2% (and so
uniformly discrete subsets of X) always satisfy this condition; a patch (and so a tiling)
satisfies this condition if and only if the diameters of tiles in that patch are bounded from
above.

Definition 3.1.18. Let II be a pattern space over a metric space X. For any element
P e 11, we say P consists of bounded components if there is Rp > 0 such that for any
x € supp P, we have = € supp(P N B(z, Rp)).
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3.1.2 An order on pattern spaces

Definition 3.1.19. Let II be a pattern space over X. We define a relation = on II as
follows: for each P, Q € II, we set P = Q if

P Nsupp Q@ = O.
Lemma 3.1.20. 1. If P = Q, then supp P D supp Q.

2. The relation = 1s an order on II.

Proof. If P 2 Q, then
ONsuppP =PNsuppP Nsupp Q@ =P Nsupp @ = Q.

Thus suppP D supp Q. Next we prove that = is an order. P = P is clear. If P = Q
and Q = P, then suppP = supp Q and P = PNsuppP = P Nsupp @ = Q. Finally, if
P=>Q2R, then suppP D supp @ D suppR and P NsuppR = PNsupp @NsuppR =
ONsuppR =R, and so P = R. m

Lemma 3.1.21. 1. IfPe€ll and C € C(X), then P =2PNC.
2. If P,Qell,CeC(X) and P2 Q, thenPNC =2 QnNC.

Proof. The statements follow from Lemma 3.1.4.
1. Pnsupp(PNC)=PnNsuppPNCNsupp(PNC)=PnNCnNsupp(PNC)=PNC.
2. PNnCnsupp(QNC)=PnNsupp QN CNsupp(QNC)=9nC. O

Definition 3.1.22. Let = be a subset of II. If the supremum of = with respect to the
order 2 defined in Definition 3.1.19 exists in II, it is denoted by \/ Z.

Lemma 3.1.23. If a subset = C II admits the supremum \/ Z, then supp \/ E = Jpz supp P.

Proof. Set C' = |Jpezsupp P. Since \/ Z 2 P for any P € Z, by Lemma 3.1.21 supp \/ Z D
supp P for each P € =. Since the support is closed, we have supp\/ = D C. If suppV E
is strictly larger than C' we have a following contradiction. Since (supp\/Z)NC C C #
supp \/ Z, the two abstract patterns \/ Z and (\/ Z) N C are different and \/= = (\/E)NC
by Lemma 3.1.21. On the other hand, (\/ Z) N C' majorizes =. These contradict the fact
that \/ Z is the supremum. O

Remark 3.1.24. It is not necessarily true that any element Py in II that majorizes = and
supp Po = [Upez supp P is the supremum of Z.

The following lemma will be useful later.
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Lemma 3.1.25. Let F}; be a finite subset of X for j = 1,2. Take a positive real number
r such that for each j = 1,2, any two distinct elements x,y € F; satisfy p(x,y) > 4r.
Suppose for each j and x € Fj, there corresponds PJ € 11 such that 0 # supp P2 C B(x,r).
Suppose also there is Q7 = \/{P% | © € F}} for j =1,2. Then the following statements
hold:

1. If supp Q' C supp @2, then for each x € F| there is a unique y € F» such that
supp P N supp 'PS #£ (. In this case supp P} C supp 795 holds.

2. If supp Q' = supp Q?, then for each x € Fi there is a unique y € Fy such that
supp 739[),1 = supp 733.

3. If Q' = Q2 then for each x € Fy there is a unique y € Fy such that P} = 735.

Proof. 1. By Lemma 3.1.23, supp QJ = UzeFj suppP% for each j = 1,2. For each x € F1,
there is y € F» such that supp Pl N supp 775 # (). If there is another 3’ € Fy such that
supp P N supppg, # 0, then B(z,r) N B(y,r) # 0 and B(z,r) N B(y',r) # 0 and so
p(y,y’) < 4r. By definition of r, we have y = y’. This shows the uniqueness of y. The
uniqueness implies the last statement.

2. By 1., for each o € Fy there is y € F such that supp P} C supp 773. Applying 1.
again, there is 2’ € Fy such that supp 735 C supp le,. We have supp P} C supp 79;, and by
applying the uniqueness in 1., we see x = 7.

3. By 2., for each x € Fy there is y € F such that supp P} = supp 735. Then

P, = Q' Nsupp P{ = Q> Nsupp Py = P,.

The uniqueness follows from the uniqueness in 1. ]

3.1.3 Glueable pattern spaces

In this subsection X is a metric space with a metric p and II is a pattern space over X.

Often we want to “glue” abstract patterns to obtain a larger abstract pattern. For
example, suppose = is a collection of patches such that if P,Q € 25, S € Pand T € Q,
then we have either S =T or SNT = (). Then we can “glue” patches in =, that is, we
can take a union | Jp.z P, which is also a patch. Pattern spaces in which we can “glue”
abstract patterns are called glueable pattern spaces (Definition 3.1.28).

Definition 3.1.26. 1. Two abstract patterns P, Q € II are said to be compatible if
there is R € Il such that R = P and R = Q.

2. A subset = C II is said to be pairwise compatible if any two elements P, Q € II are
compatible.
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3. A subset Z C II is said to be locally finite if for any + € X and r > 0, the set
=N B(x,r), which was defined in (3.2), is finite.

Lemma 3.1.27. Let = be a subset of I and take C € C(X). Then the following hold.
1. If = is locally finite, then so is 2N C.

2. If = is pairwise compatible, then so is =N C.

Proof. 1. Suppose there are x € X, r > 0 such that =N C N B(x,r) is infinite. There are
P1,Pa, ... in Z such that P,, N C N B(x,r) are all distinct. However by local finiteness of
=, there are distinct n and m such that P, N B(x,r) = Py, N B(z,r); this implies that
Po.NCNB(xz,r) =Py, NCNB(x,r) and leads to a contradiction.

2. Take P, Q € E arbitrarily. By Definition 3.1.26, there is R € Z such that R = P
and R = Q. By Lemma 3.1.21, we have RNC =2 PNC and RNC = Q@NC and so PNC
and @ N C are compatible. O

Definition 3.1.28. A pattern space Il over a metric space X is said to be glueable if the
following two conditions hold:

1. If 2 C IT is both locally finite and pairwise compatible, then there is the supremum

V E for E.
2. If 2 C II is both locally finite and pairwise compatible, then for any C' € C(X),
VEno) =(\/E)ncC (3.3)

Remark 3.1.29. By Lemma 3.1.27, for = C II which is locally finite and pairwise com-
patible and C' € C(X) the left-hand side of the equation (3.3) makes sense.

Lemma 3.1.30. Let II be glueable and A be a set. For each A € A, let =\ C II be a subset
and suppose | J, Zy is locally finite and pairwise compatible. Then for each X, the set 2
is locally finite and pairwise-compatible and if we set Q) = \/ Zy, the set {Qx | A € A} is
locally finite and pairwise-compatible and

Uz =Viarreas
A

Proof. Set P =\/J,Ex. For each A € A and Q € Z), we have P 2 Q and so P = Q,.
This in particular shows that {Q, | A} is pairwise compatible. Moreover, since for each

xe X andr >0,
{QxNB(x,r) [ A€ A} ={\/ErNB(x,7)) | A € A}, (3.4)

ExNB(z,r) C (UyEx)NB(z,r) and (J=)) N B(x,r) is finite by assumption, the set (3.4)
is finite: the set {Q) | A} is locally finite.

If P’ is a majorant for {Qy | A}, then P’ = Q foreach A € Aand Q € £, and so P’ = P.
As was mentioned above, P is a majorant for {Q) | A}, and so it is its supremum. O
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We finish this subsection with examples.

Example 3.1.31. Consider II = Patch(X) (Example 3.1.5). In this pattern space, for two
elements P, Q € Patch(X), the following statements hold:

1. P2Q < PDO.

2. P and Q are compatible if and only if for any T" € P and S € Q, either S = T or
SNT =0 holds.

If £ C Patch(X) is pairwise compatible, then Pz = (Jpcz P is a patch, which is the
supremum of Z. If C' € C(X), then

\Vanc=(Jrnc=Jrnc)=\/EnQO).

Pes
Patch(X) is glueable.

Example 3.1.32. For the pattern space 2% in Example 3.1.8, two elements A, B € 2%
are compatible if and only if

ANBCAand ANBC B. (3.5)
In fact, if A and B are compatible, then there is a majorant C. By C' D AU B,
AU(ANB)=(AUB)NA=CNAN(AUB)=AN(AUB) = 4,

and so ANB C A. A similar argument shows that BN A C B. Conversely, if the condition
(3.5) holds, then (AUB)NA =AU (BN A)= A and similarly (AU B)N B = B, and so
AU B is a majorant for A and B.

Suppose = C 2% is locally finite and pairwise compatible. Note that Use= A= Unez A
Set Az = ez A Foreach A€ 2, Az=NA=Jp=(BNA)=A; Az is a majorant of Z.
If B is also a majorant for =, then

BnAz=Bn(|J A =JBnA)=|]A=4:,

Ae= Ae= Ae=

and so B = A=. It turns out that Az is the supremum for Z. Moreover, if C' € C(X), then
AzNC =Uye=(ANC)=V(ENC). Thus 2% is a glueable space.

Remark 3.1.33. Let Il be a glueable pattern space and II; C Ily a pattern subspace.
For any subset = C Iy, if it is pairwise compatible in IIy, then it is pairwise compatible in
IIy. Moreover, whether a set is locally finite or not is independent of the ambient pattern
space in which the set is included. For a subset = C II; which is locally finite and pairwise
compatible in IIy, since IIj is glueable, there is the supremum \/ Z in IIy. If this supremum
in Il is always included in I, then II; is glueable.
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By this remark it is easy to see the pattern spaces C(X) (Example 3.1.8), LF(X)
(Example 3.1.6), and UD,(X) (Example 3.1.7, r is an arbitrary positive number) are
glueable.

However, UD(X) (Example 3.1.7) is not necessarily glueable. For example, set X = R.
Set P, = {n,n + 1} for each integer n # 0. Each P, is in UD(R), E = {P, | n # 0} is
locally finite and pairwise compatible, but it does not admit the supremum.

For the rest of this subsection we show that Map(X,Y,yo) (Example 3.1.9) is glueable,
where X is a metric space, Y a set and yg € Y.

Lemma 3.1.34. Two maps f,g € Map(X,Y,yo) are compatible if and only if f|supp frsuppg =

g |supp fNsuppg-

Proof. Suppose f and g are compatible. Take a majorant h € Map(X,Y,yo). For each
x € supp f Nsupp g,

f(z) = (hnsupp f)(z) = h(z) = (hNsupp g)(x) = g(z).
Conversely suppose f|supp frsuppg = 9lsupp frsuppg- Define a map h € Map(X, Y, yo) by
f(x) ifxzesuppf

h(z) = ¢ g(x) ifx €suppyg
%0 otherwise.

This is well-defined. Next, h = f because

h(z) if z € supp f
yo  if 2 ¢supp f
) f(x) ifxesuppf
_{yo if z ¢ supp f
=f(z)

for any x € X. Similarly h = g and so f and g are compatible. ]

(h Nysupp f)(z) = {

Lemma 3.1.35. For f € Map(X,Y,yo), z € X and two positive numbers r > s > 0, we
have supp(f N B(x,r)) D (supp f) N B(x,s). Consequently, (supp(f N B(z,r)))NB(z,s) =
(supp f) N Bz, s).

Proof. Take ' € (supp f) N B(x,s). For any £ > 0, there is 2”7 € B(2/,¢) such that
f(@") # yo. If £ is small enough, this 2" is in B(z,r) and so (f N B(z,r))(z"”) # yo. Since
e was arbitrary, 2’ € supp(f N B(z,7)). O
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Lemma 3.1.36. Let Z be a subset of Map(X,Y,yo). Take x € X and two numbers r, s
such that r > s > 0. Then if EN B(xz,r) is finite, then {(supp f) N B(x,s) | f € E} is
finite.

Proof. Clear by Lemma 3.1.35. O

Lemma 3.1.37. If = C Map(X,Y,yo) is locally finite, then Uf€E supp f is closed.

Proof. Take z € X\ (Ujezsupp f). Since ENB(z, 1) is finite, by Lemma 3.1.36, {(supp f)N
B(z,%) | f € E} is finite. There is 7 > 0 such that B(z,r) Nsupp f =0 for any f € =. O
Proposition 3.1.38. Map(X,Y,yo) is glueable.

Proof. Suppose = C Map(X,Y, o) is locally finite and pairwise compatible. Set

f(x) if there is f € = such that x € supp f
f=(x) = .
Y0 otherwise

) f(x) if there is f € = such that f(z) # yo
B Y0 otherwise.

This is well-defined by Lemma 3.1.34. For each f € Z and z € X,

f=(x) if x € supp f
yo  ifw¢suppf

_ f(z) ifz€suppf
yo  if z ¢ suppf
=f (=),

and so f= = f. In other words, f= is a majorant for =.

Next, we prove that f=z is the supremum for =. To this end, we first claim supp fz =
UfeE supp f. It is clear that {x € X | f=(x) # yo} C UfeE supp f because if f=(z) # yo,
then there is f € Z such that f(x) # yo. Together with Lemma 3.1.37, we see supp fz C
U fez SUpp f. Since fz is a majorant for =, the reverse inclusion is clear, and so supp fz =
Ujez supp f-

To prove that f= is the supremum, we next take a majorant g for = arbitrarily. Since
for f € Z and x € supp f, we have g(z) = (¢ Nsupp f)(x) = f(z), and we obtain

(f= Nsupp f)(z) = {

g (| supp f)(x) =

{g(z) if there is f € = such that z € supp f
fee

Y0 otherwise

B {f(a;) if there is f € = such that x € supp f

Y0 otherwise

=fz(z)
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for each x € X, and so g N (supp f=) = f=, namely g = f=. We have shown fz is the
supremum for Z; fz = \/ E.
It remains to show that fz N C' is equal to \/(£ N C) for each C' € C(X). This is the

case because
f=(zx) ifzedC
20 otherwise

(fEﬂC)Z{

) f(x) ifzeCand f(z) # yo for some f € =
B %0 otherwise

J(fNO)(x) if there is f € = such that (f NC)(x) # yo
B %0 otherwise.

3.1.4 Zero Element and Its Uniqueness

Definition 3.1.39. Let 1I be a pattern space over a topological space X. An element
P € II such that supp P = 0 is called a zero element of II. If there is only one zero element
in II, it is denoted by 0.

Remark 3.1.40. Zero elements always exist. In fact, take an arbitrary element P € II.
Then by Lemma 3.1.4, supp(P N @) =0 and so PN is a zero element.

Lemma 3.1.41. IfII is a glueable pattern space over a topological space X, there is only
one zero element in II.

Proof. The subset () of IT is locally finite and pairwise compatible. Set P = \/ (). By Lemma
3.1.23, P is a zero element. If Q is a zero element, then since Q is a majorant for (), we see

Q=P. Wehave Q =09N0="P. -

Lemma 3.1.42. LetII be a glueable pattern space over a topological space X . Take a locally
finite and pairwise compatible subset = of II. Then \/ EU {0} exists and \/ ZU{0} =/ E.

Proof. For any P € II, the abstract pattern P N is a zero element and by the uniqueness
of zero element (Lemma 3.1.41), PNQ =0 and P = 0. Thus \/ = is a majorant for ZU{0}.
If Q is a majorant for = U {0}, then it is a majorant for = and so @ = \/=. This shows
that \/ Z is the supremum for = U {0}. O

3.2 TI'-pattern spaces over X, or pattern spaces over (X, I

Here we incorporate group actions to the theory of pattern spaces. First we define pattern
spaces over (X, I"), or I-pattern spaces over X, where X is a topological space and a group
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I' acts on X by homeomorphisms. We require there is an action of the group I' on such
a pattern space and the scissors operation is equivariant. In Subsection 3.2.2 we define
local derivation by using the structure of I'-pattern spaces. There we show several maps
in aperiodic order send an abstract pattern P to a one which is mutually locally derivable
(MLD) with P; we solve the first question in Introduction affirmatively. The final two
subsections (Subsection 3.2.3 and Subsection 3.2.4) prepare tools to prove Theorem 3.3.1.
In Subsection 3.2.3 we “decompose” abstract patterns via Delone sets. In Subsection 3.2.4
we construct abstract patterns from “building blocks”.

3.2.1 Definition and Examples

Setting 1. In this subsection, unless otherwise stated, X is a topological space, I' is a
group that acts on X as homeomorphisms, and II is a pattern space over X.

Definition 3.2.1. Suppose there is a group action I' ~ II such that for each P € II,C €
C(X) and v € T', we have (vP) N (vC) = ~(P N C), that is, the scissors operation is
equivariant. Then we say II is a I-pattern space or a pattern space over (X,I'). For a
pattern space II over (X,T'), its nonempty subset ¥ such that P € ¥ and v € " imply
P € ¥ is called a subshift of II.

Examples are given after lemmas.

Lemma 3.2.2. Let II be a pattern space over (X,I'). For P,Q € Il and v € T, the
following statements hold:

1. ysupp P = supp(yP).
2. If P2 Q, then yP = ~Q.

Lemma 3.2.3. Let IT be a pattern space over (X,T"). Suppose 11" is a pattern subspace of
IT. IfIU is closed under the T-action, then 11" is a pattern space over (X,T).

Lemma 3.2.4. Let A be a set and (II))xepn be a family of pattern spaces over (X,T).
Then T' acts on the product space [, Iy by v(Px)r = (YPxr)a and by this action [], IIy is
a pattern space over (X,T).

Proof. That []1I, is a pattern space is proved in Lemma 3.1.14. For v € I, (Py) € [] I,
and C € C(X), v((Px)aNC) = (7(Pr)a) NC by a straightforward computation. O

Definition 3.2.5. The pattern space [[II, is called the product I'-pattern space.

Lemma 3.2.6. Let II be a pattern space over (X,I'). Then the power pattern space 2'!
(Definition 3.1.17) is a pattern space over (X,TI') by an action =2 = {yP | P € E}.

Example 3.2.7. For P € Patch(X) and v € T, set YP = {yT' | T € P}. This defines an
action of I' on Patch(X) and makes Patch(X) a pattern space over (X,I).
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Example 3.2.8. Let X be a metric space and a group I' act on X as isometries. 2% (Ex-
ample 3.1.8) is a pattern space over (X,I'). By Lemma 3.2.3, the spaces LF(X)(Example
3.1.6), C(X) (Example 3.1.8), UD(X) and UD,(X) (Example 3.1.7, r > 0) are all pattern
spaces over (X,I").

Example 3.2.9. Take a non-empty set Y, an element yyp € ¥ and and an action ¢: ' ~ Y
that fixes yo. As was mentioned before (Example 3.1.9), Map(X,Y, o) is a pattern space
over X. Define an action of I' on Map(X,Y,y) by

(vf) (@) = (N (f(v "))
For each f € Map(X,Y,yo), v € I' and C € C(X),

(vN)(z) ifzeqC

Y0 otherwise

(%ﬂfwvcﬂw)z{

_ {¢(’Y)(f(7‘1a:)) it~y e C
¢(’Y Yo otherwise

=p(N(fNC)(y ')
=(f N C)(x),

for each x € X and so Map(X,Y,yo) is a pattern space over (X,I"). This I'-pattern space
is denoted by Map¢(X , Y yo). If ¢ sends every group element to the identity, we denote
the corresponding space by Map(X,Y, yo).

Example 3.2.10. Let X be a locally compact o-compact space and a group I' act on X
as homeomorphisms. The dual space C.(X)* is a pattern space over X (Example 3.1.10).
For ¢ € Co(X) and v € T, set (yp)(z) = ¢(y 'x). For ® € C.(X)* and v € T, set
7®(p) = (7 ). Then C.(X)* is a pattern space over (X,T).

We mention two examples of subshifts.

Example 3.2.11. For a metric space X, its uniformly discrete and relatively dense subsets
are called Delone sets. Definition of “uniformly discrete” was given in Example 3.1.7; a
subset D C X is relatively dense if there is R > 0 such that D N B(z.R)° # 0 for each
x € X. If D is relatively dense with respect to R > 0 and uniformly discrete with respect
tor > 0 we say D is an (R,r)-Delone set. The set Del(X) of all Delone sets in X is a
subshift of UD(X).

Example 3.2.12. For a topological space X, a patch 7 € Patch(X) is called a tiling if
supp7 = X. The space of all tilings is a subshift of Patch(X).

Definition 3.2.13. Let X be a metric space and I' a group which acts on X as isometries.
Let II be a pattern space over (X,I"). We say II is a glueable pattern space over (X,T") if
it is a glueable pattern space over X. For a glueable pattern space 11, its subshift ¥ is said
to be glueable if for any pairwise compatible and locally finite = C X, we have \/ E € 3.
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Lemma 3.2.14. Let II be a glueable pattern space over (X,I'), where X is a metric space
on which a group I' acts as isometries. If v € I' and = C Il is a subset which is both locally
finite and pairwise compatible, then Y= (Lemma 3.2.6) is both locally finite and pairwise
compatible. In this case we have

TVE=V0E).

Proof. If P € Z and Q € =, then there is R € II such that R = P and R = Q. By Lemma
3.2.2, we see YR = 7P and YR = vQ and so 4P and vQ are compatible. If x € X and
r > 0 then since v is an isometry, v~ !B(z,r) = B(y'z,r). By

{YPNB(z,r) | Pe=Z}=~+{PnN B(’y_lzv,r) | P €=},

we see this set is finite. We have proved v= is both pairwise compatible and locally finite.

Next we show the latter statement. We use Lemma 3.2.2 several times. For any P € =,
vV E = «vP. This means that v\/ Z is a majorant for y=. To show this is the supremum,
take a majorant R for ¥=. Then v 1R is a majorant for Z and so vy "'R = \/ Z. We have
R =~V E, and so v/ E is the supremum for v=. O

3.2.2 Local derivability

Setting 2. In this subsection, X,Y and Z are non-empty metric spaces and I' is a group
which acts on X,Y and Z as isometries.

Local derivability was defined in [4] for tilings or more generally patterns in RY. Here
we generalize it and define local derivability for two abstract patterns P; and P,. Note
that these P; and Py may be in different pattern spaces II; and Ily, and these II; and Il
may be over different metric spaces X and Y. However we assume II; and Iy are ['-pattern
spaces for the same group I'.

Lemma 3.2.15. Let 11y be a pattern space over (X,I") and Iy a pattern space over (Y,T).
For two abstract patterns P1 € 111 and Py € 1ls, the following two conditions are equivalent:

1. There exist xg € X, yo € Y and Ry = 0 such that if v,n € T, R 20 and
(vP1) N B(zo, R+ Ry) = (nP1) N B(zo, R+ Ry),
then
(vP2) N B(yo, R) = (11P2) 0 B(yo, 1)
2. For any x1 € X and y1 € Y there exists Ry = 0 such that if v,n €T, R =0 and
(vP1) N B(z1, R+ R1) = (nP1) N B(z1, R+ Ry),
then
(YP2) 0 B(y1, R) = (11P2) N B(y1, R).
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Proof. 1t suffices to show only the implication 1.=2. By 1., there are zg,yg and Ry that
satisfy the condition in 1. Take x; € X and y; € Y arbitrarily. Set Ry = Ro+ px (2o, 1)+
py (Yo, Y1), where px, py are the metrics for X and Y, respectively. Take v,n € I' and
R > 0 arbitrarily and suppose

(YP1) N B(z1, R + R) = (nP1) N B(z1, R1 + R). (3.6)

Since B(zg, R + py (yo,vy1) + Ro) C B(z1, R1 + R), by taking scissors operation for both
sides of (3.6), we obtain

(vP1) N B(xo, R+ py (yo, y1) + Ro) = (nP1) N B(xo, R + py (yo, y1) + Ro),

and so

(YP2) N B(yo, B+ py (Yo, y1)) = (nP2) N B(yo, R+ py (Y0, y1))-
By B(y1,R) C B(yo, R+ py (v0,91)),
(YP2) N B(y1, R) = (nP2) N B(y1, R).
O

Definition 3.2.16. Let II; be a pattern space over (X,I') and I, be a pattern space over
(Y,T'). If P; € II; and P, € II, satisfy the two equivalent conditions in Lemma 3.2.15, then
we say Ps is locally derivable from P; and write Py £> Ps. If both P, E> P and Py £> P1
hold, we say P; and P are mutually locally derivable (MLD) and write P; &Py,

The following two lemmas are easy to prove.

Lemma 3.2.17. 1. Let P be an abstract pattern in a pattern space over (X,I). Then
r
P& P.

2. Let P,Q,R be abstract patterns in pattern spaces over (X,I'),(Y,T'), and (Z,T),
respectively. If P EN Q and Q LN R, then P LR Consequently, if P & Q and
QL R, then P & R.

Lemma 3.2.18. Let II; be a pattern space over (X,I') and Ila be a pattern space over
(Y,T'). Take two abstract patterns Py € Il and Py € Iy and suppose Py EN Ps. Then for
any v € I', we have vPy EN YPsa.

We use the following notion in Section 5.

Definition 3.2.19. Let II be a pattern space over (X,I'). P € II is said to be Delone-
deriving if there is a Delone set D in X such that P L D.
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Remark 3.2.20. Delone sets are Delone-deriving. If a tiling consists of finitely many
types of tiles up to I' and each tile T admits a fixed point of its symmetry group Symp 7T,
then the tiling is Delone-deriving.

We next show that local derivability propagates symmetries.

Lemma 3.2.21. Let X1, Xo be metric spaces on which a group I' acts as isometries. Let
I1; be a glueable pattern space over (X;,I") and P; an element of I1;, for each j. Suppose

P1 EN P2 and Po consists of bounded components. Then Symp Py C Symp Po.
This is an easy consequence of the following lemma.

Lemma 3.2.22. Suppose 11 is a glueable pattern space over (X,T"). Take P € II which
consists of bounded components. For xg € X and positive real numbers Ry < Rp < ... such
that lim R,, = oo, the set

E={PnB(zxg,Ry) | n=1,2,...}
is locally finite and pairwise compatible, and P =\/ E.

Proof. 1t follows directly from the definition that = is pairwise compatible. For any closed
ball B, the set {n | B(xo,R,) 7 B} is finite. All but finitely many elements in {P N
B(xo, Ry,) N B} is equal to P N B, and so E is locally finite.

Set @ = \/ P. Since P is a majorant for =, we have P = Q. Since P consists of bounded
components, there is Rp > 0 such that if z € supp P,

x € supp(P N B(z, Rp)).
If n is large enough,
supp(P N B(z, Rp)) C supp(P N B(xo, Rn)) C supp Q,
and so we have z € supp Q. Thus supp P = supp Q@ and so P = Q. O

We finish this subsection by showing several canonical maps in aperiodic order send an
abstract pattern P to a one which is MLD with P.

Proposition 3.2.23. Let (X, p) be a metric space and (T, pr) be a group with a left in-
vartant metric. Assume I' acts on X as isometries and there is xg € X and Cy > 0 such
that

p(vzo,nzo) = pr(v,m) = p(yxo,nxo) + Co

foranyy,n €. LetT be a tiling of X which has finite tile type and is of discrete symmetry
with respect to T'; in other words, there is a finite set A of tiles in X such that
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o for each T € A, the group Symp T is discrete,
o there is 7 > 0 such that B(xzo,r) C T for each T € A, and

e for any S € T there is a unique T € A and v € T such that S =~T.
Set Dr ={y €' |yT € T}. Then the following hold:

1. there is s > 0 such that, for any S,T € A, v € Dy and n € Dg, if pr(v,n) < s, then
S=T andvy=n.

2. Uy Dr is relatively dense.

3. if we regard (Dr)rcA as an abstract pattern in the product [[p. 4 UDy(I'), then T &
(D).

Proof. 1. Take s > 0 small enough so that s < r and if & € SympT \ {e} for some
T € A, then pr(§,e) > s. Assume S, T € A, v € Dy, n € Dg and pr(v,n) < s. Then
p(vxo,nxo) < rand YT'NnS D B(yxg,r)NB(nzg,r) # 0, and so vT' = nS. By definition of
finite tile type, we have S = T and n~'v € SymT. By definition of s, we have n~ !y = e
and n = 7.

2. Take R > maxpec g diamT. Take n € I'. There is T € T N B(nzo, R) and there are
S € Aand v € I" such that T' = ~S. This v is in Dg. Moreover, since yrg € B(nzo, R),
pr(n,7v) £ p(yzo,nze) £ R+ Cy. This means |J Dr is relatively dense in I' with respect
to a constant R + Cj.

3. We first show T RN (Dr)r. Take Ry > maxpeqdiamT. Take y,n € I'and R > 0
and assume

(YT) N B(zo, R+ Ro) = (nT) N B(wo, R+ Ry). (3.7)

To prove (yDr)N B(e, R) = (nDr) N B(e, R) for each T € A, take T' € A and ¢ € Dy such
that v¢ € B(e, R). We have v(T € vT. Moreover, since p(v(xo, o) < pr(v¢,e) < R, we
see (T C B(wg, R+ Ro) and so (T is in the set (3.7), and consequently n~ (T € T.
By the definition of Dy this implies that n~'y¢ € Dy and v¢ € nD7. We have shown
(vDr) N B(e,R) C (nDr) N B(e, R) and by symmetry the reverse inclusion is obvious.
Hence 7 - (D7)7.

Next we show (Dr)rea LN T. Take v,n € I and R > 0 and suppose
(vDr)N B(e, R+ Cy) = (nDr) N B(e, R+ Cp) (3.8)

holds for each T" € A. To probe (y7T) N B(xg, R) = (nT) N B(xg, R), we take S € T
and assume 7S C B(zg.R). There are T € A and £ € Dy such that S = {T. Then
~véxg € ¥ET = ~S C B(xp, R) and so p(e,v§) < R+ Cy. Thus ~€ is in the set (3.8). We
have 7 1v¢ € Dy and so 14T € T, in other words, vS = v¢T € (nT) N B(xg, R). We
have shown (y7) N B(xg, R) C (n7T) N B(xo, R) and the reverse inclusion is clear. O
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Proposition 3.2.24. Let X be a proper metric space on which a group I' acts as isometries.
Let D be a uniformly discrete subset of X and set = p 0z, the sum of Dirac measures
with respect to the vague topology. If we regard D as an abstract pattern of UD(X) (Example
3.2.8) and p an abstract pattern of Co(X)* (Example 3.2.10), we have the following:

1. pNC =3 cpncda for each C € C(X),
2. yu = ZIG'yD 0z, and
3. u& D.

Proof. The first two is clear by definition and the third condition follows from the first two
conditions. O

Proposition 3.2.25. Let T' be a locally compact abelian group with a proper invariant
metric and p its Haar measure. Let f be a complex valued continuous bounded function on
T. If we regard f as an abstract pattern in Map(T',C,0) (Ezample 3.2.9) and fdu as an

element of Co(T')* (Ezample 3.2.10) that sends ¢ € C¢(T) to [ pfdu, we have f & fdu.

Proof. Take R > 0 and s,t € I' and assume
(f =s)NBle,R) = (f —t) N Be, R). (3.9)

Here, f —t and f — s denote the image of f by the group action. For each ¢ € C.(T'), the
image by (fdu—s)NB(e, R) is fB(e R) o(x) f(x+s)dp and the image by (fdp—t)NB(e, R)
is fB(e R) o(z)f(z + t)du. By (3.9), for each z € B(e, R),

fle+t)=fNB(tR)(x+1t)=(f—t)N B0, R)(t) = (f —s) N Ble, R)(z) = f(x +s),
and so the images of ¢ by (fdu — s) N B(e, R) and (fdu —t) N B(e, R) are the same, and
so these two maps are the same.
Conversely, suppose R > 0, s,t € I' and
(fdu—s)NB(e,R+1) = (fdp—t)NB(e,R+1).

For any ¢ € C.(I") with supp ¢ C B(e, R+ 1), we have

[e@ i+ 9)du) = [ o) f@ + duto)
and so for any = € B(e, R), we have f(x + s) = f(x +t) and

(f—s)NB(e,R) = (f —t)N Ble, R).
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For the rest of this subsection (R%, p) is the Euclidean space with the Euclidean metric
and D is a Delone subset (Example 3.2.11) of R? which is relatively dense with respect to
R > 0 and uniformly discrete with respect to r > 0.

Definition 3.2.26. For each z € D, set
Ve = {y € R? | p(z,y) < p(',y) for any 2’ € D\ {}.}
Lemma 3.2.27. For each x € D, V, is nonempty and V,, C B(z, R)°. Moreover,
Ve ={y € B(z,R)°| p(z,y) < p(a,y) for each 2’ € D'} (3.10)

for each D" with D\ {z} N B(z,2R) C D' C D\ {x}. In particular V, is open for each
reD.

Proof. If y € R% and p(x,y) < r/2, then y € V. Thus V, # (. If y € R?\ B(z, R)°, then
since there is ' € D N B(y, R)°, we have p(z’,y) < R < p(x,y) and so y ¢ V..

Assume y € B(z,R)° and p(z,y) < p(2/,y) for each 2’ € (D \ {z}) N B(z,2R). If
2 € D\ {z} and p(x,2’) > 2R, then p(z',y) = p(x,2’) — p(z,y) > R > p(z,y) and so
y € V. This observation shows the equality (3.10). O

Definition 3.2.28. For each x € D, set U, =V, \ {z}. Set T = {U, | x € D}.
Lemma 3.2.29. T is a tiling of RY.

Proof. By Lemma 3.2.27, U, is open, bounded and nonempty. By definition of V., if x # 2’
we have U, NU, = (. Next we take y € R? and show that there is # € D such that y € U,.
To this purpose we may assume that y # x for any x € D. Since {z € D | p(z,y) < R}
is finite and nonempty, F = {x € D | p(z,y) < p(2’,y) for any 2’ € D} is nonempty and
finite. Take z € F'. For eacht € (0,1), set y; = tx+(1—t)y. Then p(x,y;) = ||[(1—t)(y—2x)].
If 2/ € D and {y — x,y — 2’} is linearly independent, we have

pla’ y) = |1 =y + tw — 2’| > lly — 2/l = tlly — 2l = L = t)lly — 2l = plz, ye)-

If 2/ € D\ {z} and {y — x,y — 2’} is linearly dependent, then there is A € R such that
2’ —y = Az —y). Since A > L or A = —1, we see p(yt, ) < p(yt, ). By these observations
we see Yy € V, and soy € V, = U,. ]

Remark 3.2.30. There is 7 > 0 such that B(x,r) C U, U {z}. Conversely, if y € R%\ U,
and there is » > 0 such that B(y,r) C U, U {y}, then z = y. Thus if x,y € D, y,n € T
and YU, = nUy, then vz = ny.

Proposition 3.2.31. Let I' be a closed subgroup of E(d). If we regard D as an element of
UD(RY), which is a pattern space over (R%,T), and T as an element of Patch(R?), which

is also a pattern space over (R%,T'), we have D &
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Proof. Take L > 0 and v,n € I' and assume
(vD)N B(0,L +2R) = (nD) N B(0, L + 2R). (3.11)

Suppose z € D and vU, C B(0,L). Since vz € B(0,L), by (3.11), we see yz € nD and
y =n"tyx € D. By setting D' = (D \ {z}) N B(y~!0, L +2R) in Lemma 3.2.27, we have

YU, =v{z € B(z,R)° | p(z,2) < p(2, 2) for any 2’ € (D \ {z}) N B(y~'0,L + 2R)}
={z € B(yx,R)° | p(yx,2) < p(a', 2) for any 2’ € (yD)N B(0, L + 2R) \ {yx} }
={z € B(ny, R)° | p(ny, 2) < p(a’, 2) for any 2’ € (nD) N B(0, L + 2R) \ {ny})}
= 77Uy,

and so YU, € nT. We have shown (y7)NB(0,L) C nT and by symmetry this implies that
(vT) N B(0, L) = (nT) N B(0, L).
Conversely, assume L > 0, n,y € I' and

(vT)NB(0,L+ R) = (nT)NB(0,L + R). (3.12)

If x € D and yx € B(0, L), then vU, C B(0, L+ R) and so by (3.12) we have vU, € (n7)N
B(0,L + R). There is y € D such that yU, = nU,, and so yx = ny € nD. We have shown
(vD)N B(0,L) C nD and by symmetry we obtain (yD)N B(0,L) = (nD)NB(0,L). O
3.2.3 Decomposition of Abstract Patterns by Delone Sets

Setting 3. Here is the setting of this subsection. (X, p) is a metric space and I is a group
which acts on X transitively as isometries. We take zg € X and fix it. Assume there are
a left invariant metric pr for I' and Cy > 0 such that

p(vxo,nx0) = pr(v,m) = p(yx0,n20) + Co

holds for any v,n € I'. (We use this inequality only for Proposition 3.2.39.) II is a glueable
pattern space over (X,I").

Definition 3.2.32. Take an abstract pattern P € II. We say a pair (D, R) of a Delone
set in X and a positive number R > 0 decomposes P if the following three conditions are
satisfied:

. PL5 D,
2. P=\V{PnNB(z,R)|x € D}, and
3. maxgep card Symp_ P N B(z, R) is finite.

Lemma 3.2.33. If (D, Ry) decomposes P and ~y € ', then (7D, Ry) decomposes vP.
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For the rest of this subsection P is an element of II, D a Delone set in X and Ry a
positive real number and assume that (D, Ry) decomposes P.

Lemma 3.2.34. There are a set A and Py € Il for each X € A such that
1. for each A € A, we have supp Py C B(xo, Ry), and

2. for each x € D there are a unique Ay € A and v € I" such that P N B(x, Ry) = vPx,
and x = yxg.

Proof. Define an equivalence relation ~ on D as follows: we have z ~ y if there is y € T’
such that (1) yz =y, and (2) v(P N B(z, Ry)) = P N B(y, Ry). Then by taking one point
from each equivalence class for ~, we obtain a set A.

For each x € A, take an element ~,, € I such that 7,29 = 2. Set P, = 7, L (PNB(x, Ry));
then A and P,z € A, satisfy the conditions. O

Remark 3.2.35. By the second condition of Lemma 3.2.34, we see SymrwO Py, is conjugate
to Symp_ PNB(x, Ry). In particular, card SympmO P, where A € A, is bounded from above.

Definition 3.2.36. The tuple of abstract patterns (Py)aea which satisfies the conditions
in Lemma 3.2.34 is called the tuple of ingredients for P with respect to (D, Ry). For each
A E A, set

Ly =T\(P,D, Ry, (Px)x) = {y €T | yzo € D and P N B(yxo, Ry) = 7P}
and call the tuple (I'y), the recipe for P with respect to (D, Ry, (Py)).

The tuple of ingredients are “components” for P, and the recipe describes how we
construct P from the ingredients.

Lemma 3.2.37. Let (Px)xen be a tuple of ingredients for P with respect to (D, Ry). Let
(Tx)aea be the recipe for P with respect to (D, Ro, (Px))x. For any vy € T, (Px)x is a tuple
of ingredients for vP with respect to (D, Ry) and (yI'\)x is the recipe for vP with respect
to (D, Ro, (Px))x-

Proof. Clear from the definition. O

Remark 3.2.38. Let (Py)aen be a tuple of ingredients for P with respect to (D, Rp). Let
(T')) be the recipe for P with respect to (D, Rg, (Py)). Then

{PNB(x,Ro) |z € D} ={7Px | A€ A,y € 'z}

This implies that P = \/{yPr | A € A,y € T'»}.
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Proposition 3.2.39. Let (Pa)aca be a tuple of ingredients for P with respect to (D, Ry)
and (T'y) be the recipe for P with respect to (D, Rg, (Py)). If we regard (T'y) as an abstract
pattern of [[yca 2V, which is a pattern space over (I',T'), (Lemma 3.2.4, Definition 3.2.5,
Ezample 3.2.8) we have

P& Ty

Proof. A proof of P EN (T'x)a- Let Ry > 0 be a constant for the local derivation P L5 D for
points zy and e € I" which appears in the definition of local derivability (Definition 3.2.16).
Let Lg be an arbitrary positive real number. Set Ly = Lo + Ry + R1. We assume v,n € I’
and

(vP) N B(zo, L1) = (nP) N B(xg, L1) (3.13)
and show
(vI'x) N B(e, Lo) = (nI'x) N B(e, Lo) (3.14)

for each A € A.
Take A € A and fix it. By (3.13), we see

(")/D) N B(xo, Lo+ Ro) = (7]D) N B(xo, Lo+ Ro)

Let ¢ be an element of I'y such that v¢( € B(e,Lg). We claim that v¢ € nI'y. By
the definition of the recipe, (xg € D and (P, = P N B((xo, Ry). Since p(v(xo,x9) =
pr(v¢,e) < Lo, vCxo € (D) N B(z, Lo) = (nD) N B(xo, Lg), and so there is y € D such
that ny = v(xg. Now

YCPx = (vP) N B(v(zo, Ro)
= (vP) N B(xg, L1) N B(v{wo, Ro)
= (nP) N B(zo, L1) N B(ny, Ro)

=n(P N B(y, Ro))-

B
B

We have proved n~'v(zo € D and n~ 'y (Py = PN B(n~ vz, Ry), and so =1y € Ty, by
which we proved the claim. Thus (7I'y) N B(e, Lo) C (n'x) N B(e, Lp) and by symmetry
we have shown (3.14).

A proof of (I'y)x L P Let Ly > 0 be an arbitrary positive number and set L; =
Lo + Ro + Cp. Assume v, € ' and

(vI'x) N B(e, L1) = (nl'x) N B(e, L1) (3.15)
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holds for each A € A. For each A € A and § € Ty, if we have (v{Py) N B(zo, Lo) # 0,
then B(y{xo, Ro) N B(wo, Lo) # 0. This implies p(y{xo,0) < Lo + Ro and pr(v€,e) =
Lo+ Ry + Cy = L1. We have the same observation if we replace v with 7. Thus

{(v€Px) N B(zo, Lo) | A € A, § € T'\} U {0}

{(v&Px) N B(zo, Lo)) | A € A, £ € 'y and € € B(e, L1)} U {0}
{(nCPx) N B(xo, Lo) | A € A, ( € Ty and n¢ € Ble, L1)} U {0}
{(nCPr)B(zo, Ro) | A € A, € I'x} U {0}

We obtain the desired result by Lemma 3.1.42 and Lemma 3.2.14:

(vP) N B(xo, Lo) = \/{(7¢Px) N B(xo, Lo) | A € A, & € Ty} U {0}

= \/{(n¢Px) N B(wo, L) | A € A, ¢ € Tx} U {0}
= (n'P) N B(a,’o, Lo).

O]

Remark 3.2.40. For tilings and Delone sets we have a concept of finite local complexity
(FLC). We can generalize this concept to arbitrary pattern spaces. If P has FLC, then the
index set A is finite.

3.2.4 Families of building blocks and admissible digits

In the last subsection we studied decomposition of abstract patterns. Here we study con-
struction of abstract patterns from “building blocks”.

Setting 4. In this subsection X is a proper metric space and I' is a group which acts on X
as isometries. Let ¥ be a glueable subshift inside a glueable pattern space II over (X,T").

Here we define and study “building blocks” and “admissible digits”. A family of building
blocks is a family of abstract patterns located around a fixed point zg € X such that we
can easily construct abstract patterns by “juxtaposing them”. For example, take two
numbers 7, s such that 3 > r > s > 0. Set P = {0} and Q = {0,7}. These are abstract
patterns in UDg(R) (Example 3.1.7), which is regarded as a pattern space over (R,R) by
a natural action. We can easily construct s-uniformly discrete set by juxtaposing these
two abstract patterns P and Q. For example, set I'p = 4Z and I'g = 4Z + 2, then the
set (P+Tp)U(Q+Typ) is an s-uniformly discrete set obtained by juxtaposing the two
abstract patterns according to I'p and I'g. Such a tuple (I'p,I'g) is called an admissible
digit. The family {P, Q} becomes a family of building block for (0,7) in the following
Definition 3.2.41.
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Definition 3.2.41. Take a point o € X and a positive number r > 0 arbitrarily. A subset
§ C X is called a family of building block of ¥ for (zg,r) if the following three conditions
are satisfied:

1. §# 0 and 0 # supp P C B(zg,r) for each P € §.
2. Ify,nel, P,Q e F and p(yxg,nrg) > 4r, then P and nQ are compatible.
3. IfP,Qef, vyel and vyP = Q, then P = Q and yxg = xg.

The elements of § are called building blocks for (zg,r). If a building block P for (xq,r)
additionally satisfies a condition

Symr 7) = Fwo7

then P is called a symmetric building block for (xg, ).
Let § be a family of building block of ¥ for (xp, 7). Then a tuple (I'p)pez of subsets
I'p C I' is called an admissible digit if it satisfies the condition

IfP,QeF, velp, neTlg and p(yxro,nre) < 4r, then P = Q and vP = nQ.

Remark 3.2.42. A non-empty subset of a family of building block is again a family of
building block.

Lemma 3.2.43. Let § be a family of building block for (zq,r) and (I'p)peg be an admissible
digit. Then {yP | P € §,v € I'p} is locally finite an pairwise compatible.

Proof. Clear by definition. O

Since a family of building block is inside a glueable subshift, we can freely take a
supremum \/{yP | P € §,~v € I'p} under the same condition as in Lemma 3.2.43.
We finish this subsection by proving two lemmas which will be useful in Section 5.

Lemma 3.2.44. Let § be a family of building block for (zo,r). Take a real number r' > 2r
arbitrarily. Let (F%)peg be an admissible digit for each A, where A belongs to an index set
A, such that

1. for each A € A, we have pcg Iy # 0, and
2. for each A and P, any element v € I’% satisfies a condition

p(zo,vz0) <7’ —2r. (3.16)

Set Qx = \/{yP | P € §,v € Tp} for each A € A. Then the family {Q, | X € A} satisfies
the first two conditions of the definition of family of building block (Definition 3.2.41).
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Proof. The first condition. Take X\ € A and fix it. Since supp Q) = UPG&,vGF;‘, suppyP, it

is nonempty. We have moreover suppyP C B(vyxg,r) C B(xg,7’) by (3.16), for each P € §
and v € I‘%‘,, and so supp Q) C B(xg, 7).

The second condition. Take A\, u € A and 7, n € T such that p(yxg, nxo) > 41’". We show
that vQy and nQ,, are compatible. For each P,Q € §, £ € F%‘, and ¢ € T, by (3.16), we
have p(y€xo,nCzo) > 4r. Thus 7¢P and n{Q are compatible and so together with Lemma
3.2.43, the set =1 U =5 is locally finite and pairwise compatible. Here,

By ={¥P | P g £y},
and
B ={n(Q1QeF (ecly}

By Lemma 3.1.30 and the fact that yQ) = \/ =1 and nQ,, = \/ Z2, we see vQ) and nQ,
are compatible. O

Remark 3.2.45. In Lemma 3.2.44, the third condition is not always satisfied. When we
use this lemma in Section 3.3, we prove the third condition in an ad hoc way.

Lemma 3.2.46. Take xg € X and r > 0 arbitrarily. Let § be a family of building block
for (zo,r). Take two admissible digits (I'p)peg and (I's)pez. Suppose both |Jp T3 and
U»r F% are finite. Suppose also that

V7P IPegreTh=\/{1P|PeF eIkl
Then for any P € § and v € I’%) there is n € I’% such that vP = nP.

Proof. Consider two finite sets

Fi = {yzo | v € JTp}
P

and

Fy={yxo|v€ UF%}
P

For each x € Fi, there are P € § and v € F}; such that x = yxg. Set PL = ~P. This is
independent of the choice of P and 7. Define P2 for each z € F» in a similar way. We can
apply Lemma 3.1.25. O
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3.3 Translation theorem for certain abstract patterns

Here we prove Theorem 3.3.1, which answers the second question given in Introduction. In
Subsection 3.3.1 we prepare necessary lemmas to prove this theorem. In Subsection 3.3.2
we give a proof of Theorem 3.3.1.

Setting 5. In this section X = R? and I is a closed subgroup of E(d) that contains R
II; and IIy are glueable pattern spaces over (R? T'). Let ¥ be a glueable subshift inside
IT,. We assume ¥ contains sufficiently many symmetric building blocks, which means that
for each 7 > 0, there is a symmetric building block P, for (0,7) (Definition 3.2.41).

In this setting we prove

Theorem 3.3.1. Let P be an abstract pattern in 11y which consists of bounded components
(Definition 3.1.18) and is Delone-deriving (Definition 3.2.19). Then there is an abstract

pattern S in X such that P Ls. Moreover, supp S is relatively dense in RY.

Remark 3.3.2. This theorem holds if replace (R?, T') with a pair (X,T") of a proper metric
space X and a group I' that acts on X transitively as isometries and admits left-invariant
proper metric such that inequality (1.1), Lemma 3.3.4, Lemma 3.3.8 and Lemma 3.3.9 hold
if we replace 2 on the right-hand side of (1.1) with some positive number and 0 € R? in
these assertions with some point in X.

Remark 3.3.3. If ¥ = UD,(R?), the one-point set P = {0} is a symmetric building block
and so this ¥ satisfies the condition in Theorem 3.3.1. Thus for any II; and P € II; which
satisfy the condition in Theorem 3.3.1, we obtain a uniformly discrete set S with relatively
dense support, that is, a Delone set, which is MLD with P.

In Section 3.4 we give several sufficient conditions for a subshift of functions to have
sufficiently many symmetric building blocks. We will be able to apply Theorem 3.3.1 when
Y is a space of certain functions under a mild condition.

3.3.1 Preliminary Lemmas

Lemma 3.3.4. Let & be a subset of I'g which is at most countable. Suppose maxgee card G <
0o. Then for each two numbers r,s such that v > s > 0, there are € > 0 and a point

ya € B(0,7)°\ B(0,s) for each G € & such that
1. if G € & and v € G\ {e}, then p(ya,vya) > €, and
2. if G # H, then p(0,yc) # p(0,ym).

To prove Lemma 3.3.4, we prepare the following notation.

Definition 3.3.5. For any A € O(d), r > 0 and € = 0, set
Saer={r € B(0,7) | p(Az,z) < e}.
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Lemma 3.3.6. If the order of an element A € O(d) is less than an integer m, then
SA,s,r - SA,&,O + B(O, %5)

Proof. Take an element z € Sa.,. Let k be the order of A. Set y = %E;:é Alx. By
convexity of B(0,r), y is in B(0,r), and so y € Sa0,. Moreover,

o(e,) = |17 S (W )]
k—17-1
Z ||Alx _ Ai+1xH
j=0 i=0
k—1
je
0

1

I7AN [IN
x| = e
I

J

IA
vo| 3

E.

O]

Lemma 3.3.7. Let m be a positive integer and r be a positive real number. We have
im0 11(Sae,r) = 0 uniformly for all A € O(d) \ {e} such that the order of A is less than
m.

Proof. For each such A there is a d — 1 dimensional vector subspace V4 of R? such that
Sa0r CVANB(0,7), and so Sa., C (VaNB(0,r))+ B(0, Fe). For any d — 1 dimensional
vector subspace V' of R, the limit lim._o (V' N B(0,7)) + B(0, %¢)) converges uniformly
to 0. O

Proof of Lemma 3.5.4. If ¢ is small enough, for any A € O(d) \ {e} of which order is
less than m, mu(Sae,) < p(B(0,7)°\ B(0,s)). This implies that B(0,7)° \ B(0,s) is
not included in UAeG,Ayée Saer for any G € 6. To take each yg, we enumerate & as
& = {G1,Gy,...}. First take yg, € B(0,7)°\ (B(0,5) UUaeq, aze Saer). 1If we have

taken ya,,yc,, - -1 Ya, 1, we can take yg, € B(0,7)°\ (B(0,s) UlUxeq, aze Saer) such
that [lya, || # llyg,| for each j =1,2,...,n — 1. In this way we can take yg,,¥cG,,- - with
the desired condition. O

We defined e; in Notation 1.2.1.
Lemma 3.3.8. For any r > 0 there is a subset F' C B(0,r) such that
e 1 <card F < oo, and

e Symp F' = {e}.
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Proof. Take for each j = 1,2,...,d a positive number r; > 0. Set F' = {0,71e1,72€2,...,7qeq}.
If any two r;’s are different but all close to 1, then 0 is the only vector in F' such that the
distances with any other vectors are close to 1. Thus if v € I' and vF' = F', then v0 = 0.
Since r;’s are all different,yrje; = rje; for each j, and since {rieq,...,rqeq} is a basis for
R?, v must be e. O

Lemma 3.3.9. For anyr > 0 and R > 0 there are R’ > 0 and C; > 0 such that, if x € R¢
and D is a Delone set of R® which is relatively dense with respect to R and uniformly
discrete with respect to r, then

card(Symp_ D N B(z, R')) < Cy. (3.17)
Proof. Take R > 0 large enough so that if €, ¢e5,...,¢;, € R? and |e; — esll < = for
each j, theza ({e’l, 6/2),). .., €} is linear independent. Set C > k!, where k is an integer such
w(B(0,R' +r
that k > TuBOD)

Take (R,r)-Delone set D and 2 € RY arbitrarily. For each j = 1,2,...,d, there is
zj € DN B(z+ (R’ — R)ej, R). Then for each j we have || 715 (z; — ) — ¢j < R,—IER and
so the set of vectors {z; —z | j = 1,2,...,d} is a basis for R%,

If vy € T, and g(y) = y for each y € D N B(x, R’), then since v fixes z, 1, %2, ..., x4,
v = e. Thus we have an embedding of Symp_D N B(z, R') into the permutation group of
the set D N B(x, R’). Since for any two distinct y,z € D N B(x, R') we have B(y,r/2) N
B(z,r/2) = 0, we see u(B(0,r/2))card D N B(x,R') < u(B(0,R' + r)). The order of
the permutation group is less than C] which we take above. We thus see the inequality
(3.17). O

3.3.2 Proof of Theorem 3.3.1

Let P € II; be an abstract pattern that consists of bounded components (Definition 3.1.18).
Suppose P is Delone-deriving, that is, there is a Delone set D in R? such that P L p.

Lemma 3.3.10. There exists Ry > 0 such that (D, Ry) decomposes P (Definition 3.2.32).

Proof. The set D is Delone, so that it is relatively dense for a positive Rp > 0 and
uniformly discrete for rp > 0. For these Rp and rp, there are R’ and C as in Lemma
3.3.9. The abstract pattern P consists of bounded components so that there is Rp as in
Definition 3.1.18. Since D is locally derivable from P, there is a constant R;p > 0 for a
point xg = yg = 0 as in 1. of Lemme 3.2.15. Take Ry > Rp + Rp + Ryp + R'.

The first condition of Definition 3.2.32 is satisfied by the assumption.

The Second Condition of Definition 3.2.32. First we show {P N B(z,Ry) | = € D} is
locally finite and pairwise compatible. For each 2 € R? and r > 0, we have an inclusion

{y € D| B(y, Ry) N B(z,7) 20} C DN B(x, Ry + )
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and the latter is finite. Hence {P N B(y, Ro) N B(z,r) | y € D} is finite, since it is a zero
element except for finitely many 3’s and by Lemma 3.1.41, zero element is unique. On the
other hand, pairwise-compatibility is clear since for each P N B(z, Ry), P is a majorant.

Since II; is glueable, there is the supremum Q = \/{P N B(z,Ry) | z € D}. On one
hand, we see by Lemma 3.1.23 supp Q = |J,p supp(P N B(z, Ry)) C supp P; on the other
hand, if y € supp P, then

y € supp(P N B(y, Rp)) C supp(P N B(z, Ry)) C supp Q

for some x € D, and so supp P C supp Q; we see supp P = supp Q. Since P = PN B(z, Ry)
for each x € D and Q is the supremum of such abstract patterns, we have P = Q. Thus
P =PNsuppP =P Nsupp Q = Q by the definition of order = (Definition 3.1.19).

The Third Condition of Definition 3.2.32. For each x € D, take y € Symp_ PNB(x, Ry).
Then

(773) a B(l‘, RO) = ’Y(P N B(IL’, RO)) =PnN B({L‘, R0)7

and since P L D with respect to the constant Ry p, we have
v(D N B(z,R)) = (yD)N B(z,R") = DN B(z, R').

This means that v € Symp_ D N B(z, R'). By definition of C1, card Symp_ P N B(x, Ry) <
card Symp_ DN B(z,R') < Ch. O

By Lemma 3.3.10, there is Ry > 0 such that (D, Ry) decomposes P.
By Lemma 3.2.34, there is a set A and a tuple of ingredients (Py)aca. Let (Cy)ren be
the recipe for P with respect to (D, Rg, (Px)x). Then we have the following:

A is a set which is at most countable.

Since each Py is a copy of an abstract pattern of the form P N B(x, Ry) (z € D)
by an element v € I' such that vx = 0, by Definition 3.2.32 we have the following:
G = Symp, Py is a finite group, for each A € A, and max) card G < cc.

For each A € A, C), is a subset of I" such that
C\Gy) = C,. (3.18)

D is a Delone set such that

D={y0| e A veCy}. (3.19)

There is rg > 0 such that,

if \,peA,veCy neCyand p(70,7m0) < 4rg, then ~0 = 70,
and so A = p and v 'n € G,. (3.20)
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By Proposition 3.2.39, we have P & (Cx)a. To prove S & P for some S € >, we
construct an abstract pattern S in ¥ such that S & (Cx)x. It consists of three steps.

Step 1: construction of £.

By Lemma 3.3.4, there are y) € B(0, %7‘0) \ B(0, %ro) for each A € A and r; € (0, %ro)
such that

o inf{p(yyr,yr) [ A € A,y € Gy \ {e}} > 4r1 >0, and

o if A\, ;1 are two distinct elements of A, then we have p(0,yx) # p(0, yu).
By Lemma 3.3.8, there are F' C B(0, 3r1) and 75 € (0, 371) such that

o If z,y € F and z # y, then p(z,y) > 4rg,

e Symp F' = {e}, and

e 0o >card F > 1.

Take v, € I', for each z € X, such that 7,0 = z.

Definition 3.3.11. Let P be a symmetric building block of ¥ for (0,72). (Its existence is
assumed in Setting 5.) Set & = \/{1.P |z € F'}.

Remark 3.3.12. Since points of F' are separated by the distance 479, by the definition of
building block the set {7,P | x € F'} is pairwise compatible. Since it is a finite set, it is
locally finite. Its supremum exists.

Lemma 3.3.13. Symp & = {e}.

Proof. Take v € T" such that v& = £. Since v€ = \/{y7.P | ¢ € F}, by Lemma 3.2.46,
for each = € F there is y € F' such that y7,P = 7,P. By the definition of building block
(Definition 3.2.41), we have 77,0 = 7,0 and y& = y. This implies that vF C F and
vF = F, which implies that v = e. O

Lemma 3.3.14. The set {P,E} is a family of building block of ¥ for (0,71).

Proof. We apply Lemma 3.2.44. The sets {e} and {~, | z € F'} play the role of admissible
digits. If x € F', then

1
p(7x070) = ,O(CL',O) g §T1 <r— 2’1"2,

and so by Lemma 3.2.44 the first two axioms for family of building block are satisfied.
Since P is a building block, we have Symp P C I'g. Moreover, Symp & = {e} C T.
Finally we never have P = £ for any ~ € I'. If this holds we have, by Lemma 3.2.46,
Y P = P for any = € F, and this implies = 7,0 = ~0 for each x € F. This contradicts
the fact that card £ > 1. O
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Step2: construction of R .
For each A € A, set

Ry =\{PHU{1,€ 7€ G}
Lemma 3.3.15. The set {R | A € A} is a family of building block for (0,rg).

Proof. Since 70 = 0, we have for each v € G,

1
P(’Y’YyAO,O) = p(an)\) > 57’0 > 47’1,
and by definition of y,’s, for each distinct v,n € Gy,

P(775,0, 1715, 0) = p(n™ ' yya, ya) > 4y

we see the pair of {e} and {yv,, | ¥ € G\} forms an admissible digit, for each A € A.
Moreover,

3
P(V’nyo»o) =p(0,y\) = ZTO < T — 211

we see, by Lemma 3.2.44, the first two axioms for the building block are satisfied.

Suppose A\, ip € A, 79 € I and 7R\ = R,. By Lemma 3.2.46, we have 0P = P and
so 70 = 0. Again by Lemma 3.2.46, there is v € G, such that vy, & = 7y,,&, and so by
Lemma 3.3.13, 707y, = 7y, This implies that (since 7o and v fix 0)

p(0,92) = p(0,7%07,0) = p(0,77y,.0) = (0, yu)
and so A = pu. O
Lemma 3.3.16. Symp Ry = G for each A.

Proof. Take 9 € Symp R). By Lemma 3.2.46, there is v € G such that vy, & = 77y, €
and so by Lemma 3.3.13 we have v = v € G.
On the other hand, if 79 € G, then

0Rx =V {10PYU {1071, € | 7 € Ga}

=\V{PYU € v e G}
=R,

since P is a symmetric building block. O
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Step3: Construction of S and its property.
Define

S=\/{7Rx| X €Ay eCr}.
by (3.20), (C)x is an admissible digit for (Ry)xea and so S is well-defined.
Lemma 3.3.17. S 5 D.
Proof. Let R be an arbitrary positive real number. Set L = R+ 3rg. Assume ~,n € I and
(vS)NB(0,L) = (nS) N B(0, L). (3.21)

Set Z={&R\ | A € A,§ € Cy}, then by (3.21) and Lemma 3.2.14, we see

/(2N B(0,L)) = \/("E N B(0,L)).
Consider the following two finite sets:
Fi = {760 | A € A€ € Cy,7ER, N B(0, L) # 0}
and
Fy = {nC0| A € A,C € Cy,nCRx N B(0, L) # 0}.

For each = v£0 € Fy, we consider an abstract pattern P = v¢Ry N B(0,L). This is
included in B(v£0,7q). For F, we define P2’s in a similar way. We can apply Lemma 3.1.25
and obtain the following: if A € A, £ € Oy and v§R) N B(0,L) # 0, there is p € A and
¢ € C, such that

(Y§RA) N B(0, L) = (n¢Ry) N B(0, L).

Now we prove (YyD)NB(0, R) C (nD)NB(0, R). Take an element v£0 from the left-hand
side set, where £ € C), for some A and v£0 € B(0, R). Then suppyéRy) C B(0, R+1¢). As
in the previous paragraph, there are p € A and ¢ € C}, such that véR\ = (n(R,)NB(0, L).
The support of this abstract pattern is included in B(0, R + 7¢) and the support of n{R,
has diameter less than 2rg; we have supp(n{R,) C B(0,L) and so véR\ = n{R,. Since
(Rx)x is a family of building block, we see A = p and 760 = {0 € nD. We have proved
(vD)N B(0,R) C (nD) N B(0, R) and by symmetry the reverse inclusion is true. O

Lemma 3.3.18. For each A € A and v € Cy, we have

SN B(Y0,79) = YRa.
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Proof. If € A, n € C, and nR, N B(70,rp) # 0, then p(70,70) < 27 and so by (3.20),
A =pand YRy = nR,. Hence

SN B(y0,r0) = \/{nRu N B(30,70) | n € A, € Cpi}

= \/{7Ra N B(10,70)}
= ")/R)\.

Lemma 3.3.19. The pair (D,ry) decomposes S.

Proof. Clear by the definition of S, Lemma 3.3.18 and Lemma 3.3.17 and Lemma 3.3.16.
O

Lemma 3.3.20. (R))x is a tuple of ingredients for S with respect to (D,ry) and (Cy) is
the recipe for S with respect to (D,rg, (Rx)aeA)-

Proof. Take x € D arbitrarily. By (3.19), there are A € A and v € C), such that z = 0 and
by Lemma 3.3.18, SN B(x,rg) = SN B(70,79) = YR . Uniqueness of such \ is clear since
(Ru)uen is a family of building block. We have shown that (R,) is a tuple of ingredients
for P with respect to (D, ).

Next we show that (Cy)y is the recipe. If p € A and v € C,,, then v0 € D by (3.19)
and SN B(v0,r9) = YR, by Lemma 3.3.18, and so v € I',(S, D, 79, (R»)). Conversely, if
v €Tu(S,D,r9,(Ry)), then v0 € D and YR, = SN B(70,19). By (3.19), there is v € A
and n € C, such that v0 = 70, and so by Lemma 3.3.18, R, = S N B(n0,ry). This
implies that YR, = 7R,, and so y = v and n~'y € Symp R, = G,. By (3.18), we see
y=nn"ty € C,G, = C,. We have proved C,, = I',,(S, D, ro, (R))) for any u € A. O

Theorem 3.3.21. S & (Cx)a-
Proof. Clear from Lemma 3.3.20 and Proposition 3.2.39. O
Corollary 3.3.22. P &s.

Proof. By Proposition 3.2.39, P & (Cy) because (C)) is a recipe for P. Combined with
Theorem 3.3.21 we have P & S. O

Lemma 3.3.23. supp S is relatively dense.

Proof. For any x € R? there is y € D near x. By (3.19), there are A € A and v € Cy
such that y = 0. Since suppyRx C B(y, o), any point in suppyR,, which is a point in
supp S, is near . O

This lemma completes the proof of Theorem 3.3.1.
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3.4 An application of Theorem 3.3.1

Here we apply Theorem 3.3.1 to the theory of pattern-equivariant functions.
We start with a definition in an abstract setting:

Definition 3.4.1. Let II be a pattern space over (X,I') and II' be a pattern space over
(Y,T'), where T is a group which acts on metric spaces X and Y respectively as isometries.
Let X be a subshift of II'. For each P € II, we set

Sp={0ex|PL Q)

In order to study the relations between P and Yp, its maximal elements, that is,

elements Q@ € ¥ such that P <£> Q, are useful. It may be that there is no maximal
elements, but Theorem 3.3.1 gives us a sufficient condition for P and ¥ to admit maximal
elements. In the following theorem, using maximal elements, we show Xp has all of the
information on P up to MLD:

Theorem 3.4.2. Let T' be a closed subgroup of E(d) that contains R%. Let II,1I', 11" be
glueable pattern spaces over (RL,T) and ¥ a glueable subshift of II” which has sufficiently
many symmetric building blocks. Take P € Il and P’ € II' and assume that they consist
of bounded components and they are Delone-deriving (Definition 3.2.19). Then we have

P& if and only if ¥p = Xpr.

Proof. If P & P’, then for any Q € Yp we have P’ LpXL Q, and so Q € Ypr. The
converse also holds and so YXpr = Xpr.

Suppose YXp = Yps. By Theorem 3.3.1 there is @ € Yp such that P & Q (that is,
Q is a maximal element). Since Q € Yp/, we have P’ 5 Q and so P’ 5. Similarly
PLp. 0

Thus under the assumption of Theorem 3.4.2, in order to analyze P up to MLD it
suffices to investigate Yp.

Next we move on to the theory of pattern equivariant functions. We will show for certain
> consisting of functions, >p is the space of pattern equivariant functions. First we recall
the definition of pattern equivariant functions. Kellendonk [10] defined pattern-equivariant
functions for tilings or Delone sets in order to study cohomology of the tiling spaces. Rand
[23] generalized the definition to incorporate rotations and flips in the 2-dimensional cases.
We recall the definitions here.

Definition 3.4.3. Let T be a tiling of R? and C be a subset of R?. Set

TNC={TeT|TnS+# 0}
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Kellendonk gave a definition for subsets of R?, but here we define pattern-equivariant
functions for tilings ([9]).

Definition 3.4.4 ([10],[9]). Let T be a tiling of R? and X be a set. A function f: R — X
is said to be T-equivariant if there is R > 0 such that 2,y € R? and (T — ) 11 B(0, R) =

(T —y) 1 B(0, R) imply f(x) = f(y).

Definition 3.4.5 ([23]). Let T be a tiling of R?, I" a closed subgroup of E(d) that contains
R?, G an abelian group and ¢: Iy — Aut(G) a group homomorphism. Here, Aut(G) is
the group of automorphisms of G. We say a function f: R¢ — G is T-equivariant with
representation ¢, or is ¢-invariant, if there is R > 0 such that z,2’ € R%, v € 'y and

(TNB(' R)) —2' =~v(TNB(x,R) — x)

imply f(z') = ¢(7)(f(x)).

We show these pattern equivariant functions are captured in terms of local derivability
in the following two lemmas (Lemma 3.4.6 and Lemma 3.4.7).

Lemma 3.4.6. Let T be a tiling which consists of bounded components. In other words,
the diameter of tiles in T is bounded from above. Then for any f € Map(R% C), f is

d
T -equivariant if and only if T LN f. Here we regard T as an element of Patch(R?) (Exam-
ple 8.2.7), which is a pattern space over (R4, R?), and f as an element of Map(R%, C,0)
(Ezample 3.2.9), which is a pattern space over (R%,RY).

For what follows let 7: I" 3 (a, A) — A € I’y be the projection.

Lemma 3.4.7. Let T be a tiling which consists of bounded components. Let I' be a closed
subgroup of E(d) that contains RY, G an abelian group and ¢: Ty — Aut(G) a group
homomorphism. Then for any f € Map(R%,G), f is T-equivariant with representation ¢
if and only if T EN f. Here T is regarded as an element of Patch(R?) (Example 3.2.7),
which is a pattern space over (R%,T), and f is regarded as an element of Mapd)W(Rd, G,e)
(Example 3.2.9), which is a pattern space over (R, T).

These two lemmas show that pattern equivariant functions are just functions which are
locally derivable from the tiling. Thus in the case where 7 is a tiling of R? that consists
of bounded components and ¥ is a certain subshift consisting of functions, ¥ (Definition
3.4.1) is just the space of all T-equivariant functions (either in the sense of Definition 3.4.4
or Definition 3.4.5).

We apply Theorem 3.4.2 to this situation where 3 is a space of functions and obtain an
insight on pattern equivariant functions. We will show that the space of smooth pattern
equivariant functions, with their ranges in C", remembers the original abstract pattern up
to MLD (Theorem 3.4.10).
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Here is the setting: let ' be a closed subgroup of E(d) that contains R?. Take a group ho-
momorphism ¢: I'g — GL,,(C). Let C%W(Rd, C™,0) be the subshift of Mapd)ow(Rd, Cc™,0)
consisting of all smooth elements of Mapd)w(Rd,(Cm, 0). (We say a map f: RY — C™ is
smooth if (f(-),v) is smooth for any v € C™, where (-, -) is the standard inner product.) In
order to use Theorem 3.4.2 to X = C’;gﬂ(Rd, G,0), we need to show ¥ admits sufficiently
many symmetric building blocks. We show in two cases there are sufficiently many building
blocks (Lemma 3.4.8 and Lemma 3.4.9.)

Lemma 3.4.8. Suppose there is v € C™ \ {0} such that ¢(~y)v =wv for each v € T'y. Then
Cf;gﬂ(Rd,(Cm,O) has sufficiently many symmetric building blocks: in other words, for any
r > 0 there is a symmetric building block g, for (0,r).

Proof. For each r > 0, set

0 otherwise

£(a) = {exp(—ﬂ_hwllg) if ]| < r

for each z € RY. Then f, is a smooth real-valued function on R%. Set g,(z) = f.(x)v.Then
() # suppg, C B(0,r). Moreover if v, € I' and p(70,70) > 4r, then ~vg, and ng, are
compatible since

vgr(x) if x € B(70,7)
g(z) = { ngr(x) if z € B(no,r)
0 otherwise

is a majorant. Finally Symp g, = I'y. O

Lemma 3.4.9. Suppose I'g is finite. Then C’;gﬂ(]Rd,Cm, 0) has sufficiently many building
blocks.

Proof. For any r > 0, take z € R% and ry € (0,7/4) such that ||z|| < r/2 and if A € Ty and
A # I, then ||[Ax — z|| > 4r;. Take v € C™ and set f(x) = fr,(z)v (we defined f,, in the
proof of Lemma 3.4.8.) Set h = \/{(A4,Az)f | A € Ty}. Then h is a symmetric building
block. 0

By Lemma 3.4.8, Lemma 3.4.9 and Theorem 3.4.2, we have the following:

Theorem 3.4.10. Assume the same assumption as in Lemma 3.4.8 or in Lemma 3.4.9.
Let I1 and 11 be glueable pattern spaces over (RE,T') and take P and P’ from 11 and II' re-
spectively. Assume P and P’ are both Delone-deriving and consist of bounded components.

Set X = C;gﬂ(Rd, C™,0). Then P L Q if and only if Lp = Xo.
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Thus in order to study Delone deriving abstract patterns which consists of bounded
components up to MLD, it suffices to study the space Yp (where ¥ = %W(Rd, C™,0)) of
smooth pattern-equivariant functions.

We may regard the space Xp as the space of functions that reflect the structure of
P. Sometimes in mathematics the set of functions that reflect the structure of an object
remembers the original object. For example, consider a locally compact abelian group and
its dual, or a smooth manifold M and its space C*°(M) of smooth functions. Theorem
3.4.10 is similar to such phenomena.
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Chapter 4

Local matching topology,
repetitivity and stripe structure

4.1 The definition and properties of local matching topology

Setting 6. In this section (X, p) is a non-empty proper metric space and I' is a locally
compact topological group. Assume I' acts on X as isometries and the action is jointly
continuous. Assume also that there is a left-invariant metric pr on I' which is compatible
with the original topology on I'" and the metric pr is proper. Let Cyo(X) be the set of all
compact subsets of X and ¥ the set of all compact neighborhoods of e € I'. Let 1I be a
pattern space over (X,I").

In this section we define and investigate local matching topologies on pattern spaces.
We use the theory of uniform structure to define them. The uniform structure will be
metrizable, but the description of a metric is not simple when I' is non-commutative,
and this is why we prefer uniform structure. With respect to this uniform structure, two
abstract patterns P and Q in II are “close” when they match in a “large region” after
sliding Q by “small” v € I'. This is analogous to the product topology of the space A%,
where A is a finite set; in fact we can show on this space the relative topology of the local
matching topology on a space of maps coincides with the product topology.

Definition 4.1.1. For K € Cy(X) and V € ¥, set
Urkyv ={(P,Q) € Il x II | there is v € V such that PN K = (yQ) N K }.
Lemma 4.1.2. If K1 C Ky and Vo C Vi, then Uk, v, C Uk, v;-
Lemma 4.1.3. The set
{Ukv | K € Cy(X),V € ¥} (4.1)

satisfies the axiom of fundamental system of entourages.
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Proof. (1) For any K € Co(X), V € ¥ and P € 1I, we have (P,P) € Uk y since PN K =
PNK.
(2) For any K and V, take (P, Q) € Uy -1 1. There is v € V such that

PAVIK = (19 nV K.
Multiplying by + both sides we have
(YP)NAVIK = QnAV LK,
and so
(YP)NK =(YP)NyV 'K NK
=90nNyVIKNnK
=0NK.

We have (Q,P) € Uk v and so M;ElK,v—l C UK.
(3) By Lemma 4.1.2, for K1, K2 € Co(X) and V1, Vs € ¥, we have

uKlqu,VlﬂVQ C uK1,V1 muKQ,VQ'

(4)Take K € Cy(X) and V € ¥ arbitrarily. Set K1 = (V1K) U K and take V; € ¥
such that V1V4 C V. Note that Vi C V. If (P1,P2), (P2, P3) € Uk, v, then there are ;
and 7, in V4 such that P N K1 = (11P2) N Ky and P, N Ky = (72P3) N K;. We have

(Mm72P3) N K = ((72P3) N K1) N K
=m(P2NK))NK
= (mP)NK
=((mP2) N K1) NK
=(PiNnK)NK
=P NK.

Thus (P1,Ps) € Uk,v. We have proved u12<1,V1 C UK. O

Definition 4.1.4. Let { be the set of all entourages generated by (4.1). The uniform
structure defined by 4 is called the local matching uniform structure and the topology
defined by it is called the local matching topology.

Next we give a sufficient condition for the local matching topology to be Hausdorff.

Definition 4.1.5. Suppose Il admits a unique zero element 0. An abstract pattern P € 11
is called an atom if supp P is compact and

Qclland QSP=P=Qor Q=0.
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For P € 1II set
A(P) ={Q: atom | Q < P}.

A subset ¥ C II is said to be atomistic if for any P € II we have P = \/ A(P).
A subset ¥ C II is said to have limit inclusion property if the following condition is
satisfied:

for any P € ¥ and an atom Q € I, if for any V € ¥
there is vy € V such that vy Q < P, we have Q < P.

Proposition 4.1.6. Suppose 11 admits a unique zero element 0. Let ¥ be a nonempty
subset of 11 which is atomistic and has limit inclusion property. Then the local matching
topology on % is Hausdorff.

Proof. Take P,Q € ¥ and suppose (P, Q) € Uk,y for any K € Co(X) and V € ¥. We
show P = Q. Take R € A(P). Set K =suppR. For any V' € ¥ there is vy € V such that

PNK=(yw'QNK.
This implies that
wR < Q,
and so by limit inclusion property, we have
R < 0.

Since X is atomistic, we have P < Q. The converse is proved in the same way and we have
Q< PandsoP=0. O

Lemma 4.1.7. Let Y be a non-empty topological space and yg be an element of Y. Take a
group homomorphism ¢: T' — Homeo(Y') which is continuous with respect to the compact-
open topology and such that ¢(v)yo = yo for each v € T'. Then Cyo(X,Y,y0) = {f €
Map,(X, Y, yo) | continuous and bounded} is atomistic and has limit inclusion property as
a subset of the pattern space Mapy(X,Y,yo) (Definition 3.2.9).

Proof. For each z € X and y € Y \ {yo}, the function defined by
y ifz=2a
i (') = . ,
Yo ifx#x

is an atom of Mapy(X,Y,yo). Any atom of Map,(X,Y,yo) is of this form. For f €
Cy(X,Y,40), we have

A(f) = {pf®) |z € X and f(z) # yo}-
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We see f =\ A(f). We have proved that Cy,(X,Y,yo) is atomistic.

Next we show Ci(X,Y,yo) has limit inclusion property. Take any x € X and y €
Y \ {0}, and assume that for any V € ¥ there is vy € V such that vy % < f. Since
supp vz = {yva}, we have

flwz) = (weh)(wez) = d(w)(ph(z) = d(w) ().

Since f is continuous and the action I' ~ X is continuous,
f(a) =lim f(ywa) = lme(w)(y) =y,

and so f = ¢%. We have shown Cy(X,Y,yo) has limit inclusion property. O

Corollary 4.1.8. The relative topology of the local matching topology on Cy(X,Y,yo) is
Hausdorff.

Proof. Clear by Proposition 4.1.6 and Lemma 4.1.7. O

As the following lemma shows, the local matching topology on Map,(X,Y,yo) is not
necessarily Hausdorff:

Lemma 4.1.9. On Map(R, C,0), the local matching topology is not Hausdorff.

Proof. Take f = 1g and g = lg44, where a is any irrational number. Then (f, g) belongs
to any entourage. O

Lemma 4.1.10. The pattern space Patch(X) (Definition 3.2.7) over (X,I') is atomistic
and has limit inclusion property.

Proof. Let T be a tile. Then {T'} is an atom. Any atom in Patch(X) is of this form. For
any patch P € Patch(X), we have

A(P) = {{T} | T e P},

and so P = JA(P) =\ A(P). We have shown that Patch(X) is atomistic.

To prove Patch(X) satisfies limit inclusion property, take P € Patch(X) and a tile T
and assume for any V € ¥ there is vy € V such that y{T} < P, that is, vwT € P.
We show T' € P. There is Vy € ¥ such that if Vi,Vo € ¥ and V; C Vj for each j, then
W T N, T # 0. Since vy, T is in a patch P for each j, we see 1, T = y,T'. It suffices
to show that T' = vy, T since y, T € P. If x € T, then if V] € ¥ is small enough we have
Vi C Vp and 'y;lla: € T. Since yy, T = W, T, we see x € yy,T. Conversely, if z € vy, T,
then if Vi € ¥ is small enough v,z € vy, T = 7,7, and so x € T. We have shown
T= ’)/VOT. ]

Corollary 4.1.11. The local matching topology on Patch(X) is Hausdorff.

83



Proof. Clear by Proposition4.1.6 and Lemma 4.1.10. 0

Lemma 4.1.12. The pattern space C(X) (Example 3.2.8) is atomistic and has limit in-
clusion property.

Proof. For any z € X, the one-point set {z} is an atom. Any atom in C(X) is of this form.
For D € C(X), A(D) = {{z} |z € D} and D =\/ A(D). Thus C(X) is atomistic.

Take any x € X and D € C(X), and assume for each V' € ¥ there is 4, € V such that
yw{z} < D, that is, yvx € D. Since D is closed, we see z = limy yyz € D. d

Corollary 4.1.13. The local matching topology on UD,(X) is Hausdorff.
Proof. Clear by Proposition 4.1.6 and Lemma 4.1.12. O
Next we show the group action is continuous.

Lemma 4.1.14. The group action I' ~ 11 is jointly continuous with respect to the local
matching topology.

Proof. Take Py € Il and vy € I' arbitrarily. We show the map II x I' 5 (P,v) — P € 1l
is continuous at (Pp, o). To prove this take a neighborhood of 4¢Py arbitrarily. We may
assume that this neighborhood is of the form Uk v (v9Po) for some K € Cy(X) and V € 7.
Set K’ =, 'K and take V' € ¥ such that if ¢ € V' and v € V', we have voéy~! € V.
If P € Ugrv/(Po) and v € V', there is £ € V' such that Py N K' = (§P) N K'. We
have
Y0Po N K = 0(Po N K')
= (573 N K,)

= (&7 "YP)N K,
and so YP € Uk v (Y0Po). O

Next we prove that under a mild condition the local matching uniform structure on a
subshift is complete.

Lemma 4.1.15. For each n = 1,2,... take v, € I' such that pr(e,vn) < 2% Then the
following hold:

1. pr(YnY¥n—1-"Ym,€) < 2% for eachn =2 m = 1.

2. For any m 2 1 the sequence (YnYn—1--"Ym)n>m 15 a Cauchy sequence.
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Proof. 1. We have

n—1
pr(m - Yms€) £ > pr(m - YooY+ Yerr) + pr (s €)
k=m

n
= Z PF(ea’YkJrl)
k=m
1
< ZW
1
< Zm-

2. For any £ > 0, there is 6 > 0 such that if v,7,{ € B(e,1) and pp(y,n) < ¢, then
pr(v¢,n¢) < e. This follows from the fact that B(e, 1) is compact and so the multiplication
B(e,1) x B(e,1) 3 (v,n) = vn € I is uniformly continuous. If n > k = m and k is large
enough, by 1.,

pr(Vn - Yet1,€) < 6.

By the definition of d, we have

pr(7n7m77k7m) <e.

Since € was arbitrary, we see the sequence is Cauchy. O

Proposition 4.1.16. Suppose 11 is glueable. Suppose also that there is xg € X such that

p(vwo,nz0) < pr(v,n)

holds for any v,n € I'. Let X2 be a glueable subshift of II which has limit inclusion property
and is atomistic. Then the local matching uniform structure on 3 is complete.

Proof. Since on ¥ the local matching topology is Hausdorff (Proposition 4.1.6), the local
matching uniform structure on ¥ is metrizable (Lemma B.0.16). It suffices to show that
any Cauchy sequences in 3 converge.

Let (Pn)n be a Cauchy sequence in X. Set K, = B(zg,n) and V,, = B(e,5) C T
for each n = 1,2,.... Since it suffices to show a subsequence of (P,) converges, we may
assume that (Pg, P;) € Uk, v, for any n > 0 and k,! 2 n. For each n > 0 there is v, € V;,
such that

(WPr) N Ky = Ppy1 N Ky,

By Lemma 4.1.15, since I' is complete, there is a limit

. 1
&n = n%gnoo’)’m'?’m—l Yn € B(e, 27)
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for each n > 0. Note that &, = £,4117, for each n.
If n < m, then since

£m+1Km = B(§m+1$07m) D B(an m — 1) D B("L‘Oa n) = Kn’
we have
(§m77m) NKy = (fm-‘rl(('Yum) N Km)) N Ky

= (Emr1(Pmr1 N Kp)) N K,
- (€m+1Pm+1) N K,.

By induction we have

(gmpm) N Kn - (gn—i-lpn—i-l) N Kn (4.2)

foe each n, m with m > n. This means that

(£n+17)n+1) n Kn § (€n+273n+1) N Kn+1 (4'3)

for any n > 0.
Set

Qi = V{(§n+lpn+1) NKy|n>k}

for each k = 1,2,.... We need to show that such a supremum exists. To this objective
it suffices to show that Zp = {(&,4+1Pn+1) N Ky | n > k} is locally finite and pairwise
compatible. By (4.2), we have

(£m+17)m+1) N Km N Kn — (£n+173n+1) N Kn

for any n,m with £ < n < m, and so Zj is pairwise compatible. To prove = is locally
finite, take a closed ball B. For any sufficiently large n, we have K,, D B, and so if m is
larger than this n we have by (4.2)

(€m+1pm+1) NKnNB= (§m+17)m+1) NK,NB= (€n+177n+1) NnK,NB,

and so Z N B is finite. Since B was arbitrary, = is locally finite. Thus Qj is well-defined
and is in X since X is glueable.
By 21 D Zk, we have Q; = Qy for each k. On the other hand, by (4.3) Qp =
(€n+1Pn+1) N K, for any n and so Qp = Q1; we have shown Q1 = Qy, for any k > 0.
Finally Q; is the limit of (P,,), since for each k > 0 (4.2) implies that

Q1 N Ki = \/{én1Puy1 N Ky | n > K}
= (&1 Prg1) N K,

and so Pry1 € Uk, v, (Q1). (Note that UKi1 Vi C Uk, V) O
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Remark 4.1.17. As corollaries we have Proposition 2.1.25 in this article and Proposition
2.1 in [26] when & admits an invariant proper metric compatible with the original topology.
Proposition 2.1 in [26] assumes that & is commutative, but Proposition 4.1.16 allow & to
be non-commutative.

4.2 Repetitivity

We begin with an investigation of almost periodicity in an general setting and after that
come back to the context of pattern spaces.

Lemma 4.2.1. Let G be a group with a left-invariant metric pg. For S C G the following
two conditions are equivalent:

1. there is a compact C C G such that SC = G.

2. There is R > 0 such that for any v € G we have SN B(vy, R)° # (.

Proof. First assume 1. There is a compact C' C G as in 1. We can take R > 0 such that
C C B(e,R)°. If v € G, then there are n € S and £ € C such that v = n€. Since pg is left
invariant, we see pr(vy,n) < R, and so n € SN B(y, R)°. We have proved 2.

Next assume 2. Set C' = B(e,R). If v € G is an arbitrary element, there is n €
SN B(vy,R). We have pr(e,n71v) £ R and so v = nn~ 'y € SC. We have proved G = SC,
and so the proof is completed. O

Definition 4.2.2. A subset S C G is said to be relatively dense if the equivalent conditions
in Lemma 4.2.1 are satisfied.

Definition 4.2.3. Let 2 be a nonempty uniform space and suppose a group G with a left
invariant metric acts on 2. Take x € Q.

1. z is Bohr almost periodic if for each entourage U of €2, the set
{9eG|(z,9g7'2) €U}
is relatively dense in G.

2. x is Bochner almost periodic if the closure O, = {gx | g € G} of the orbit is compact.

Remark 4.2.4. If Q is the space of uniformly continuous bounded complex-valued func-
tions on a locally compact abelian group G, on which G acts by translation, and the uniform
structure is given by the sup norm, the two conditions in Definition 4.2.3 are equivalent.
Bohr initiated the investigation of the functions which satisfy these conditions (in the case
where G = R) and such functions are now called Bohr almost periodic functions or strongly
almost periodic functions.

If we replace the topology of sup norm with weak topology, those f which are Bochner
almost periodic are called weak almost periodic functions. Weak almost periodic functions
have been actively investigated and are important in the context of aperiodic order.
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Lemma 4.2.5. Let 2,Q9 be complete and Hausdorff uniform spaces on which a group G
with a left invariant metric acts. Let x1 (resp. x2) be an element of Qy (resp. Q2). Suppose

Oz, 2 vx1 = Y22 € Oy
is well-defined and uniformly continuous. Then the following hold:
1. If ©1 is Bohr almost periodic, then so is xo.
2. If x1 is Bochner almost periodic, then so is 3.

Setting 7. In rest of this section I' is a locally compact group with a left invariant metric
pr- Assume any closed balls in I' are compact. Assume also that " acts on a proper metric
space X as isometries and the action is jointly continuous.

Assume further that there are zg € X and Cy > 0 such that

p(vzo,nzo) = pr(v,m) = p(yxo,nxo) + Co

for each v,n € T
Let II be a glueable pattern space over (X,I') and ¥ a glueable subshift which is
atomistic and satisfies limit inclusion property.

Definition 4.2.6. Take P € II. We say

1. P is weakly repetitive if P is Bohr almost periodic with respect to the local matching
uniform structure, and

2. P has finite local complexity (FLC) if it is Bochner almost periodic with respect to
the local matching uniform structure.

Lemma 4.2.7. If P € ¥ has FLC, then it is weakly repetitive if and only if the corre-
sponding dynamical system (Xp,T') is minimal.

Proof. Clear by Gottschalk theorem ([2], Chapter 1, Theorem 7). O

Lemma 4.2.8. Suppose the action I’ ~ X is transitive. For P € Il the following conditions
are equivalent:

1. P is weakly repetitive.

2. For any R > 0 and x € X there is R' > 0 such that, whenever we take y € X, there
s v € I' with

(a) PN B(yx,R) =~(P N B(z,R)), and
(b) plyz,y) < R
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Proof. 1.=2. Take z € X and R > 0 arbitrarily. We can take Ry > 0 such that B(z, R) C
B(zo, R1). For K = B(xg, R1) and V = B(e, 1), by condition 1., the set
S={yel | (P.y7'P) Uk}

is relatively dense; in other words, there is Ry > 0 such that B(y, R2) NS # 0 for any
v € I'. Take y € X arbitrarily. Since the action of I' on X is transitive, there is y9 € T’
such that yoxg = y. There is v; € B(vy0, R2)N.S. By the definition of S, (P, 71_177) €Uk,
and so there is v € B(e, 1) such that P N B(zg, R1) = (277 'P) N B(xo, R1). Then since
B(m17y 'z, R) C B(y175 ‘o, R1), we have y175 (P N B(z, R)) = P N B(717, ', R) and
P17z ' 2,y) < p(ns e, 11ys 'xo) + pr(1s o)
< p(a,z0) + p(71,%) + p(72 ' €)
SR+ Ry+ 1

The condition 2 holds for constant R’ = R; + Ry + 1.

2.=1. Take a compact K C X and a compact neighborhood V of e € I' arbitrarily.
There is Ry > 0 such that K C B(zg, Rg). For xo and Ry there is Ry > 0 as in the
condition 2. Set S = {y €' | (P,y !P) € Uk v} and we show S is relatively dense. Take
v €I and set y = yxg. There is v9 € I' such that

1. PN B(vyxo, Ro) = v (P N B(zo, Ry)), and
2. p(vxo,y) < Ry.
Then we have
(75 'P) N B(xo, Ro) = P N B(o, Ro),
and by the definition of Ry and S, v € S. Since we have
pr(70,7) = p(roxo, ¥x0) + Co < Ry + Co,
we see SN B(vy, Ry + Cp) # 0 and so S is relatively dense. O

Remark 4.2.9. The second condition in Lemma 4.2.8 means that, whenever we take a
patch of the form P N B(x, R), the copies of such patch appear infinitely often in P with
bounded gap.

Next we investigate relations between almost periodicity and local derivability.

Lemma 4.2.10. Let X1, X5 be nonempty proper metric spaces on which the group I' acts
as isometries. Take a glueable pattern space I1; over (X;,T") for each j = 1,2. Take also

an abstract pattern P; € 11; for each j = 1,2. If Py EN Pa and Py consists of bounded
components, then the map

0731 SYP1— P € (9772

is well-defined and is uniformly continuous.
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Proof. That the map is well-defined follows from Lemma 3.2.21. Take z1 € X7 and 22 € X3
arbitrarily. There is Ry > 0 as in Lemma 3.2.15 with respect to x1 and x5. Take a compact
K C Xy and V € 7 arbitrarily. We can take L > 0 such that K C B(xy,L). If v,n e T
and (yP1,nP2) € Up (s, Ry+L),v, then there is & € V such that

(vP1) N B(x1, Ro + L) = (§nP1) N B(xy, Ro + L).
By the definition of Ry, we have
(YP2) N B(xa, L) = (§nP2) N B(xs, L),
and so
(YP2) N K = (§nP2) N K,
which implies that (yPa,nP2) € Uk v O

Proposition 4.2.11. Let (X, p;)(j = 1,2) be proper metric spaces on which I' acts as
isometries. Suppose there are xj € X; for each j such that

pi(vz;,nz;) < pr(v,n)

for each v,n € I' and j = 1,2. Take a glueable pattern space Il; over (X;,TI") for each
J = 1,2. Let ¥; be a glueable subshift of 11; which is atomistic and has limit inclusion
property, for each j =1,2. If P; € ¥; (j = 1,2), Pa consists of bounded components and

P1 EN Pa, then the following hold:
1. if Py is weakly repetitive, then so is Ps.
2. if Py has FLC, then so does Ps.

Proof. Clear by Lemma 4.2.10 and Lemma 4.2.5, since Y1 and Y5 are complete and Haus-
dorff by Proposition 4.1.6 and Proposition 4.1.16. O
4.3 Stripe structures

Recall we endowed a metric pr on T in Definition 2.3.1.

Definition 4.3.1. Take two positive real numbers R;, Rs. Let Il be a pattern space over
(R4, R%). An abstract pattern P € II is said to admit (Rj, Rg)-stripe structure if there is
a € R? with |la|| = 1 and R > 0 such that, for any z € R?, the set

{ye R (P—-2)NB(0,R) = (P—y)NB(0,R)}

is contained in S(a,x, R1, R2) (Definition 2.3.2).
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In what follows we study relations between the stripe structure of an abstract pattern P
in a pattern space over (R% R?) and the properties of the corresponding dynamical system
(Xp,RY).

Lemma 4.3.2. Let G be a (not necessarily closed) subgroup of R, Set

V= ﬂ spany, G N B(0, ). (4.4)

r>0
Then V is a vector subspace of RY.

Proof. First, 0 € V.

Second, if x,y € V, then x +y € V. Indeed, for any r > 0 and € > 0 there are 2/, 1y’ €
spany GN B(0,r) such that |z —2'|| < € and ||y — /|| < &. Since 2’ +vy' € span; GNB(0,7)
and ||z +y — (2 +9)|| < 2, we see x + y € span; G N B(0,r).

Third, we show that if x € V and n € Z~, then %x € V. For any m € Z~q, let B be a
maximal linear independent subset of G N B(0,1/m). We may take A, € R for each b € B
such that x = ), ;5 b, since x € spany G N B(0,1/m) C spang B. We may take [, € Z
for each b € B such that |\, — nly| < n for each b. Set z,,, = Y ;5 lpb. We have

22 = namll = D> Asb— > nlpb||

beBs beBs
< |\ — nly|[b]
it
-m

and so

[ F

n m

For any r > 0 and € > 0, if m is large enough, z,,, € span; GN B(0,r) and ||%x —xml| <e.
This shows %x eV.

Finally, by the second and the third part of this proof, if A is an rational number, then

Az € V. Since V is closed, this holds even if A is irrational. O

Lemma 4.3.3. Let G be a subgroup of R? and define V by (4.4). If0 € R? is a limit point
of G, then the dimension of V is more than 0.

Proof. For each integer n > 0 there is z,, € G such that 0 < ||z,|| < 1/n. We may find
kn € Z such that 1/2 < ||kpzy,|| < 3/2. The sequence (k,x,) admits a limit point . Then
x # 0. Moreover, x € spany G N B(0,r) for each r > 0 since k,x,, € spany G N B(0,r) for
large n, and so x € V. O
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Lemma 4.3.4 ([12], Lemma 4.1). Let D be an FLC Delone set in R? and x a continuous
character of R%. Then x is an eigenvalue for the topological dynamical system (Xp,R?) if
and only if x is a weakly D-equivariant function, that is, for any € > 0 there is R > 0 such
that

pr(x(z), x(y)) <e
for any z,y € R% with
(D—-2)NB(0,R) = (D —y)NB(0,R).

Lemma 4.3.5. Let D be a Delone set of R® which has FLC. Suppose that 0 is a limit
point of the set of all topological eigenvalues for (Xp,R?). Then for any Li,Ly > 0 and
e > 0, there are Ry, Ry > 0 such that

1. |Rj — Lj| < ¢ for each j =1,2, and
2. D has (Ry, Rg)-stripe structure.

Proof. By Lemma 4.3.2 and Lemma 4.3.3, we can take an eigenvalue a such that \ﬁ—Ll\ <
e. Take r > 0 such that -7 = Lo. We set Ry = ”71;“ and Ry = -

llall flall*

Since the character y, is weakly D-equivariant, there is R > 0 such that z,y € R? and
(D—-z)NB(0,R) = (D —-y)NB(0,R) (4.5)
imply
pr(Xa(2), Xa(y)) = 7.

We will show that this R satisfies the condition in Definition 4.3.1. Take z € R? and fix
it. If y € R? and (4.5) holds, then we have

(y —z,a) —n| =
for some n € Z. We obtain

(y—x,a) € Z+ [-r,7],

and so y € S(W%”a,aj, R1, Ry). We have proved
{y e RY| (D —y) N B(0,R) = (D — z) N B(0, R)}
is contained in S(ﬁa, x, R1, R2), and so D has (R, Ry)-stripe structure. ]
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Lemma 4.3.6. Let 11, Ils be pattern spaces over (Rd,Rd), R and Rs positive real num-

d
bers. Take P1 € II1 and Py € Il and assume Po R% P1. If P1 has (Ry1, Ra)-stripe structure,
then Py has (Ra, Rg)-stripe structure.

Proof. There is R > 0 and a as in Definition 4.3.1. In other words, =,y € R? and
(P1—2)NB(0,R) = (P1 —y) N B(0, R) (4.6)

imply y € S(a,z, R1, R2).

d
Since Py B Py, we can take a constant Ry > 0 as in Definition 3.2.16 with respect to
g =10 =0. If z,y € R? and

(P2 —2) N B(0,R+ Ry) = (P2 —y) N B(0,R + Ry),

then (4.6) holds, and so y € S(a,z, R1, R2). We have proved Pz has (R;, Rg)-stripe struc-
ture with respect to R 4+ Ry. O

Theorem 4.3.7. Let IT be a glueable pattern space over (R?,R?). Take an abstract pattern
P € Il and assume that it is Delone-deriving, consists of bounded components and has
FLC. For example, take an FLC tiling of R% of finite tile type. Suppose that 0 € R? is
a limit point of the set of topological eigenvalues of the corresponding dynamical system
(Xp,RY). Then for any Ry, Ra,e > 0, there are L1, Ly > 0 such that

1. |R; — Lj| < ¢ for each j =1,2, and

2. P has (L, Lo)-stripe structure.

Proof. By Theorem 3.3.1, there is a Delone set D such that P ]Réd D. The set of eigenvalues
of the dynamical system (Xp, R?) is the same as the one of (Xp,R%); D has (Ly, Ly)-stripe
structure, where |R; — L;| < € by Lemma 4.3.5; by Lemma 4.3.6, P also has (L1, La)-stripe
structure. 0

Remark 4.3.8. In plain language, Theorem 4.3.7 says that, inside an abstract pattern
P, given information of the appearance of an abstract pattern Q which is large enough,
there is a “forbidden area” of the appearance of translates of Q. In other words, if we
find a translate of O inside P, there is a region relative to that translate of @ where
other translates of @ will never happen. Such “forbidden area” consists of “bands” and is
periodic (see Figure 2.2 in page 41).

In what follows we prove the converse of Theorem 4.3.7 under the assumption of weak
repetitivity.
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Lemma 4.3.9. Let D be a weakly repetitive (R,r)—Delone set in R?. Take xo € R? and
Ry > R arbitrarily. Set

E={xeR?|(D—-29)NB(0,Ry) = (D —x)NB(0,Ry)}.

d
Then E is a Delone set and D %5 E.
Proof. Take  and y from E. Since Ry is greater than R, the set
(D —2) N B(0, Ry) = (D —y) N B(0, Ro)

is not empty. Take z from this set. We see z+z,y+2z € D and ||z —y|| = ||z + 2 — (y+ 2)||
is either 0 or greater than r. This shows FE is uniformly discrete with respect to r.

Next, since D is weakly repetitive, by Lemma 4.2.8, there is R > 0 such that for any
z € R? there is y € R? with

1. |lz — (zo + y)|| < R, and
2. DN B(xzo+y,Ro) = (DN B(xo, Ro)) +y.
Let = € R? be an arbitrary element and y € R? satisfy the above two conditions. Then
(D = (zo +y)) N B(0, Ry) = (D — xo) N B(0, Ry),

and so g + y € E. We have shown that E N B(x, R) # () and FE is relatively dense with
respect to R.

Finally, we show that D R%d E. Take z,y € R? and L > 0 arbitrarily and assume
(D—z)NB(0,Ry+L)=(D—y)NB(0,Ry+ L).
To prove
(FE—2x2)NB(0,L)=(FE—y)NnB(0, L), (4.7)

we take z € F such that z —x € B(0,L). Then

(D—2x)NB(0,Ry+ L)NB(z—x,Rp)) +z— =
(D—y)NB(O0,Ry+L)NB(z—=x,Ry)) +x— 2
=(D+z—-y—2)NB(0,Ry).

This implies that z +y —x € F and so z —x € £ —y. We have shown
(F—2)NnB(0,L)C (F—y)NnB(0,L),

and since the proof for the reverse inclusion is the same, we have (4.7). O
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Lemma 4.3.10. Let D be an (R,r)-Delone set in R? and assume D is weakly repetitive.
Let f: RY — R be a (not necessarily continuous) bounded function such that a,b,c,d € D
and a —b=c—d imply f(a) — f(b) = f(c) — f(d). Then for any ¢ > 0 there is a Delone
D. in R% such that

1. D> D,,

R4
2. D= D, and
3. if a,b € D., then |f(a) — f(b)| <e.
Proof. We may replace f with f + C for some constant C' € R so that we may assume

M = sggf(a) = — Inf f(a).

For any € > 0 there are ag and by in D such that f(ag) > M —¢/2 and f(by) < —M +¢/2.
Take ¢y € D and fix it. If Ry > R is sufficiently large, we have ag, by € B(cg, Rp). Set

D.={x eRY| (D —cy) NB(0,Ry) = (D —x) N B(0, Ry)}.
Then D, C D and by Lemma 4.3.9, D, is Delone and D % D,
Next, take a € D, arbitrarily and we show |f(a) — f(co)| < £/2. Since
(D N B(co, Ro)) — co = (D — a) N B(0, Ry),
by definition of Ry we see ag — cg +a € D and by — cg + a € D. Since
flao —co+a) — f(bo — co+a) = f(ao) — f(bo) > 2M — e,

we have either f(ap—co+a) > M —¢e/2 or f(bop —co+a) < —M +¢/2. In the latter case,
we see

fla) = f(co) =f(a+ag —co) — f(ao) + f(a) — fla+ao — co) — f(co) + f(ao)
=f(a+ao—co) — f(ao)
€(—¢/2,¢/2),

since

f(a) = f(a+ag —co) = f(co) — f(ao)

by the assumption on f. Similarly in the latter case

fla) = flco) € (¢/2,¢/2).
Finally, if a,b € D., then by the previous paragraph

|f(a) = fO) = [f(a) = f(co)| + [ f(B) = flco)| <&,
which completes the proof. O
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Lemma 4.3.11. Let D be a weakly repetitive Delone set in R®. Let ag and by be elements
of RY. Assume if € D we have

|{(x — by, ap) —n| < 1/4
for some n € Z. Then the character Xq,: R% 5 x s e2™®:00) € T s weakly D-equivariant.
Proof. We may take : RY — [—7,7) such that for any 2 € RY
2 (x — by, ap) = 0(x) + 2n7
for some n € Z. For any a,b,c,d € D such that a — b = ¢ — d, we have
ei(@(a)fe(b)) :€2m'(<afbo,a0>727r(b7b0,a0>)

2627ri(a—b,ao>

:eQﬂi(c—d,ao)

—i0(c)—0(d)_
Since 0(a),0(b),6(c) and 0(d) are in (—m/2,7/2) by the assumption, we see 8(a) — 0(b) =

d
0(c) —6(d). By Lemma 4.3.10, for each € > 0 there is a Delone D. C D such that D 5D,
and |0(a) — 0(b)| < € for any a,b € D.. Let R; be a constant for the local derivability

d
D& D, and Ry > 0 be such that D, is relatively dense with respect to Ry. If z,y € RY
and

(D—2z)NB(0,R; + Re) = (D —y)NB(0, R + Re) (4.8)
then
(DS - :C) N B(OvRZ) = (DE - y) N B(O’ RZ)

Take z € D, such that z —2 € B(0, Ry). Then z—z+y € D. and |0(2) —0(z —z+y)| < e.
Using
’627ri<az,ao> - eZﬂ'i(y,ao)’ :‘€2ﬂi<z—b0,ao> o 627ri<z—z+y—bo,a0>‘
:‘eie(z) B ei@(zfory)’

)

we see that for any n > 0, if € > 0 is small enough, the equation (4.8) implies that

PT(Xao (%), Xao (¥)) < -
0

Lemma 4.3.12. Let D be an FLC and weakly repetitive Delone set in R%. Suppose for
any R1, Ro > 0 and € > 0, there are L1, Ly > 0 such that
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1. |Lj — Rj| < e for each j =1,2, and
2. D has (Li, Lg)-stripe structure.
Then 0 is a limit point of the group of all topological eigenvalues for (Xp, R?).

Proof. For any Ry, Ra,e > 0 we take L1 and Lo as in the assumption. By the definition of
stripe structure (Definition 4.3.1), there are ag € R? with [jag|| = 1 and R > 0 such that

E={yeR?| (D-y)NB(0,R)=(D—-2)NB(0,R)} C S(a,z, L1, Ly)

for each x € R%. Since we can take arbitrarily large R, by Lemma 4.3.9 F is Delone and
Rd

D— FE.
If R1 > 4Ry and ¢ is small enough, then Ly > 4Ly. Then if y € E, we have

<y — .T,CLO> € 17 + [*LQ, LQ],
and so

(y — =, Lia0> €Z+(—1/4,1/4).
1

Since FE is weakly repetitive and has FLC by Proposition 4.2.11, using Lemma 4.3.11, we
Se€ X(1/L1)ao 1S Weakly E-equivariant. By Lemma 4.3.4, we see X(1/1,)q, 18 @ topological

d
eigenvalue for (Xg,RY). Since (X, R?) is a factor of (Xp, R?) by the fact that D % Eand
Lemma 4.2.10, we see it is a topological eigenvalue for (Xp,R?). Since L; may be arbitrarily
large, we see 0 is a limit point of the set of topological eigenvalues for (X D,]Rd). ]

We prove the converse of Theorem 4.3.7.

Theorem 4.3.13. Let 11 be a glueable pattern space over (Rd,Rd) and P an element of 11
which is weakly repetitive, has FLC, consists of bounded components and is Delone-deriving.
Suppose for any Ri, Re > 0 and € > 0 there are L1, Lo > 0 such that

1. |R; — Lj| < ¢ for each j =1,2, and
2. P has (L, La)-stripe structure.

Then 0 is a limit point of the set of all topological eigenvalues for (Xp,R%).

Proof. By Theorem 3.3.1 there is a Delone set D of R? such that P g D. By Lemma
4.3.6 and Lemma 4.3.12, we see 0 is a limit point of the set of topological eigenvalues
for (Xp,R%). Since (Xp,R?%) and (Xp,R?) are topologically conjugate, we obtain the
conclusion. O
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Chapter 5

Further research

In this chapter we comment on the possible directions of the further research.

5.1 The relation that corresponds to an isomorphism for the
spaces of pattern-equivariant functions

By Theorem 3.4.10, under an assumption, two Delone-deriving abstract patterns P and
Q that consist of bounded components are MLD if and only if the spaces Ap and Ag of
pattern-equivariant functions are the same. (Here, the ambient space X is the Euclidean
space R? and the group I is a closed subgroup of E(d) that contains R%.) The word “same”
means that they are equal, that is, Ap = Ag. It is natural to ask what is the relation
between P and Q if Ap and Ag are just isomorphic in a certain sense. For example,
the spaces Ap and Ag can be regarded as topological vector spaces with I' actions. We
should ask what is the relation between P and Q if the spaces Ap and Ag are isomorphic as
topological vector spaces with group actions. This problem is reminiscent of the theorem on
crystallographic tilings, which showed that if the symmetry groups of two crystallographic
tilings are isomorphic, then the isomorphism is given by a conjugation of an affine map,
and thus one of the original tilings is MLD with the other after applying the affine map. It
may be that we may generalize this result on crystallographic tilings by replacing symmetry
group with the space of pattern-equivariant functions, because for a crystallographic tiling,
its space of pattern-equivariant functions contains the information on the symmetry group
of that tiling.
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5.2 Topologlcal local derivability

Take two complex-valued functions f,g on R. We say g is topologically locally derivable
from f if, whenever we take € > 0, there are Ry = 0 and 0 > 0 such that,

z,y € R,R>0and |f(z+2) — f(y+2)| <6 for each z € B(0, R+ Ry)
= |g(z +2) — g(y + 2)| < ¢ for each z € B(0, R).

This means that, if near two points of R the behaviors of f are “close”, then the behaviors
of g near those two points are “close”. This “closeness” makes sense because we can gauge
the distance of “local structures” of functions: the local structures of a function is described
by the value of each point; we can gauge the distance of the values of two points by the
standard metric on C.

If the “local structures” and the distances of local structures make sense, we can de-
fine topological local derivability for more general pattern spaces. For example, the local
structure of a Delone set D on R? at a point z € R? is described by the position of points
in D near z, relative to x. If D is 2r-uniformly discrete, the intersection D N B(x,r)°
is either a one-point set or the emptyset; in the former case the position of the point in
D N B(x,r)° relative to x is an element of B(0,r)°; combined with the latter case, the
local structure of D is described by an element of B(0,r)° U {(}}, that is, an element of
d-dimensional sphere S¢. For FLC and FTT tilings, the local structures are described by
an element of Anderson-Putnam complex ([1]). We may axiomatize the properties of these
local structures and obtain the notion of pattern space with local structures. We then
define topological local derivability as above.

The merit of defining topological local derivability is that it will enable us to define
several types of almost periodicity and discuss relations between such almost periodicities
of two different abstract patterns. We can ask if for two abstract patterns P and Q that are
topologically mutually locally derivable (topologically locally derivable in both directions),
an almost periodicity of P is equivalent to the almost periodicity of the same type of Q.

As an application, take a Bohr almost periodic function f on R¢ and a finite subgroup
K of O(d). Then g =} 4. f o Ais also a Bohr almost periodic function. The function g
has a symmetry of K. If we can “translate” this ¢ by constructing an abstract pattern P
which is MLD with g and topologically mutually locally derivable with g, then P has the
symmetry of K and the almost-periodicity inherited from ¢g. Thus it may be possible to
construct abstract patterns such as Delone sets or tilings that are almost periodic and have
arbitrary symmetry. By cut and project construction, we may construct Delone sets with
arbitrary rotational symmetry. The above method may enable us to construct abstract
patterns with arbitrary symmetry (although such abstract patterns are not likely to have
FLC). This may be seen as a next step from crystallographic restriction, which says that
for crystallographic tilings in a dimension 2, if it has n-fold rotational symmetry, then
n=1,2,3,4or 6.
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Likewise it may be possible to construct almost periodic Delone sets and tilings on a
Riemannian manifold M from an almost periodic functions on the group I' of isometries
on M. Except for the case of M = R¢, there are few known almost periodic tilings and
Delone sets on M. However there are many almost periodic functions on I'; and if the
above procedure succeeds we obtain many almost periodic tilings and Delone sets on M.

5.3 Analogy with geometry

Given an FLC Delone set D, we may construct a de Rham complex, by taking the space
of differential forms on R? of which coefficients are smooth D-equivariant functions. It
can be shown that the de Rham cohomoloogy corresponding to this de Rham complex is
isomorphic to the Cech cohomology of the continuous hull Xp ([11]). By this fact we may
see there is an analogy between the space of smooth pattern-equivariant functions and the
space C*°(M) of smooth functions on a smooth manifold M. We may further think that
being MLD is similar to being diffeomorphic because (1) P and Q are MLD if and only
if their spaces of smooth pattern-equivariant functions are the same and (2) two smooth
manifolds are diffeomorphic if and only if their spaces of smooth functions are isomorphic.

If we assume this analogy, there are several problems. Let P be an abstract pattern.
We may ask the following questions:

1. is there a “Morse function” in the space of smooth P-equivariant functions of which
derivatives contain information on properties of Xp?

2. does the spectrum of the Laplacian Z(%)2 contain information of P or Xp?

3. how many MLD classes of abstract patterns Q are there such that Xp and X¢ are
homeomorphic?

The last question is an analogy to the question on discrepancies between being diffeo-
morphic and being homeomorphic.
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Appendix A

Generalities of dynamical systems

Definition A.0.1. If X is a compact space, G a locally compact abelian group and a: G ~
X is a continuous action, then the triple (X, G, «) (or simply the pair (X, G)) is called a
topological dynamical system.

We often suppress « and simply write the image of x € X by g € G by ¢ - z. Recall a
character of G is a homomorphism x: G — T where T = {z € C | |z| = 1}.

Definition A.0.2. Let (X, G) be a topological dynamical system. A non-zero continuous
function f: X — C is called a topological eigenfunction if there is a continuous character
x: G — T such that f(g-z) = x(9)f(x) for any g € G and x € X. The character x is
called the eigenvalue for the eigenfunction f.

Remark A.0.3. A non-zero constant function is always a topological eigenfunction.

Definition A.0.4. A topological dynamical system (X, G) is said to be weakly mixing if
it admits no topological eigenfunctions other than constants.

Definition A.0.5. A measure-preserving system is a quintuplet (X,F,u,G, ) where
(X, F,pn) is a probability space, G a locally compact abelian group and a: G ~ X is
a measure-preserving action, that is, for each g € G the map ay: X — X preserves mea-
surability and measure.

Definition A.0.6. Let (X, F, u, G, ) be a measure-preserving system. An element f €
L£2(u) \ {0} is called a measurable eigenfunction if there is a continuous character y such
that two functions z — f(g-z) and = — x(g)f(x) coincide almost everywhere for any
g € G. The character x is called the eigenvalue for the eigenfunction f.

Definition A.0.7. A measure-preserving system (X, F, u, G, «) is said to be weakly mixing
if there is no measurable eigenfunction other than constants.
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Remark A.0.8. In both topological and measurable cases, if G = R, we identify Rd and
R% and say & € R? is an eigenvalue if the character z — €272} is an eigenvalue for some
eigenfunction.

We say a sequence g1, go, ... of G converges to infinity if for any compact K C G, we
have g, ¢ K eventually.

Definition A.0.9. Let (X, F, u, G, ) be a measure-preserving system. We say the system
is mixing if whenever we take F, F' € F and a sequence g1, ¢, ... in G that converges to
infinity, we have pu(E N (g - F)) = p(E)u(F).
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Appendix B

Uniform structure

Uniform structure is a general framework by which we can discuss uniform continuity,
total boundedness and so on. For example, metric spaces admit uniform structure. A set
endowed with a uniform structure is called a uniform space. For details see [6].

Definition B.0.10. Let X be a set. A set U of subsets of X x X is called a uniform
structure on X if the following conditions are satisfied:

1. fUeland Y CV C X x X, then we have V € U.

2. The intersection of finitely many elements of il is in L.
3. For any U € Y, we have {(z,z) |z € X} CU.

4. For any U € i, we have U™! = {(y,x) | (z,y) € U} € L.

5. For any U € U there is V € 4l such that

V2 = {(z,2) € X x X | there is y € X such that (z,y), (y,2) € V} C U.

The elements of 4l are called entourages of X.

Definition B.0.11. Let (X, ) be a uniform space and iy be a nonempty subset of Ll
Suppose for any U € LU there is V € Ly such that & D V. Then we call Uy a fundamental
system of entourages.

Lemma B.0.12. Let X be a nonempty set and Uy a set of subsets of X x X. Suppose Ly
satisfies the following conditions:

1. Uy s nonempty.

2. {(z,x) |x € X} CU for each U € y.
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3. For any two Uy,Us € Yy there is U € Uy such that U C Uy NUs.
4. For any U € Uy there is V € Uy such that V C UL,
5. For any U € 8y there is V € 8y such that V? C U.

Then there is a unique uniform structure on X for which g is a fundamental system of
entourages.

Lemma B.0.13. Let (X, p) be a metric space and € a positive real number. Set
Us: = {(z,y) € X x X | p(x,y) <e}.

Then there is a unique uniform structure such that {U. | € > 0} is a fundamental system
of entourages.

Definition B.0.14. Let (X,4) be a uniform space and p a metric on X. If the unique
uniform structure in Lemma B.0.13 coincides with 4, then we say the uniform space (X, 4l)
is metrizable.

Definition B.0.15. Let X be a nonempty set and 4l a uniform structure on X. For each
x € X the set of sets of the form

Ux) ={y € X | (z,y) eU}

where U runs through i, satisfies the axiom of neighborhood basis. The topology defined
by this is called the topology induced by Ll

Lemma B.0.16 ([7],§2.4, Theorem 1). A wuniform space is metrizable if and only if it
admits a countable fundamental system of entourages and the induced topology is Hausdorff.
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