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Preface

How to find a new value from data becomes very crucial in science and
technology. One of the driving forces is, of course, the continued development
of information technology. To understand the phenomena behind data, statistical
modeling plays an important role and a model of probability distributions is
one of the basic statistical models. This thesis is to make a contribution to the
development of such a modeling with a probability distribution model through
practice and theory. A focus is on the goodness-of-fit of distributions. We first
present two case studies and build distributional models by considering theoretical
aspects of the data as well as their statistical characteristics. Then, several
theoretical properties of the goodness-of-fit test statistic for contaminated data
are shown, which are inspired by the two case studies.

The first case study is the modeling of the weight of animals on seabed, which
is discussed in Naka et al. (2012). It is shown that the gamma distribution, which
is derived as the equilibrium distribution of the stochastic growth model, can be
used for modeling the weight by using an extended version of the &raam
Mises statistic for independent but not identically distributed observations. Then
the effects of trawling are investigated by comparing the weight distribution after
trawling and the gamma distribution with the parameters estimated from the
observations before trawling. This case study is a joint research in 2009-2011 with
Ross Darnell, Charis Burridge, and Mick Haywood in CSIRO (Commonwealth
Scientific and Industrial Research Organisation) .

The second case study is the modeling of the carapace length of banana
prawns, which is observed in the survey for the assessment of the effect of
freshwater flows in an estuary. A probability distribution model obtained for the
carapace length of banana prawns is an asymmetric mixture distribution, which is
derived by combining a growth model with temperature and salinity of water and



a survival rate model. This case study is a joint research in 2012-2013 with lan
Halliday in Department of Employment, Economic Development and Innovation,
Australia and Ross Darnell in CSIRO.

Theoretical results on the asymptotic behavior of the @mawon Mises
goodness-of-fit test statistic for contaminated data are given to investigate the
robustness of the statistic, which is studied in Naka and Shibata (2016). The
asymptotic distributions of the Cramvon Mises statistic for contaminated data
are derived when parameters are known and when parameters are estimated by
the minimum Crarér-von Mises distance method. The theoretical results together
with the result of numerical experiments show that the Grawon Mises statistic
is robust when the minimum distance estimator is used for the estimation of
parameters.
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Chapter 1

Introduction

A model of probability distributions is one of the basic statistical models to
understand the phenomena behind data. Although it is not always the case,
the probability distribution model plays an important role in analyzing data.
The probability distribution model can describe stochastic mechanisms in the
phenomena and the model is simple so that it is easy to understand from the model
how the model describes the mechanisms. However, the probability distribution
model has to be used with caution because it may lead us a wrong direction
without examining the goodness-of-fit. In this chapter, we give a brief introduction
of the methods to examine the goodness-of-fit of a distribution.

We assume in this chapter thét, Xo, . .., X, are independent and identically
distributed random variables with a distribution functiBfx) which is usually
unknown. We denoté&(x,0) to be a distribution function of a model for the
observations with a parameter vecéor (61, 0o, .. ., Gm)T €O CRM

We use hereby the goodness-of-fit of a distribution in view point of examining
whether a modeF (x, 0) fitted to the data gives us a reasonable approximation
to the underlying distributiofir (X) and can be used for any further investigation
of the phenomena. This usage is a little different from a general way of thinking
for goodness-of-fit tests. The goodness-of-fit test is a statistical decision whether
F(x) = F(x,0) or not. However, there are many cases where such a decision
is not real concern. Rather the main concern is often whether the fitted model
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can be used for further investigation. Therefore, the role of examining the
goodness-of-fit would be to exclude cases where the use of the model will lead
us an incorrect result. Otherwise we can continue the analysis based on the
probability distribution model since the value of the analysis is determined not
by such a statistical decision but by how persuasive the final result is. The two
case studies presented in Chapter 2 and Chapter 3 are such cases. The aim of
analysis in the case studies is to find out the effect of the environmental changes
on animals on seabed or banana prawn. The probability distribution model is a
main tool for such findings. Validation of the goodness-of-fit of the model plays
an important role but not a goal.

In the following, we first introduce two basic plots as graphical methods for
checking goodness-of-fit and then we give a brief summary of goodness-of-fit
tests for both continuous and discrete distributions.

1.1 Graphical methods for checking goodness-of-fit

Graphical methods for checking goodness-of-fit is useful at an early stage
of building a probability distribution model. It assists us in finding out the
discrepancy between the observations and the model. xLeb,..., X, be
observations from distributioR (x). One of the graphical methods for checking
goodness-of-fit is a quantile-quantile or Q-Q plot (Chambers et al., 1983). A Q-Q

plot is a plot of then points

(Fl(¥,0>,X(j)), j:1,2,...,n,

whereF ~1(-,0) is the inverse function df (-,8) andxyy < Xp) < - <X are

order statistics of the observations. Two examples of Q-Q plots are shown in
Figure 1.1. Figure 1.1 (a) is a Q-Q plot for the standard normal distribution of
a simulated random sample with size 100 from the standard normal distribution,
and Figure 1.1 (b) is that for the Poisson distribution with mean 10 of a simulated

random sample with size 100 from the Poisson distribution with mean 10.
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(a) The standard normal distribution. (b) The Poisson distribution with mean 10.

Figure 1.1: Examples of Q-Q plots.

If the observations follow the distributioRi(x, @), the points would tend to
follow the liney = x. If F(x,0) is a distribution function with scale and location
parameters, it is enough to obta#T!((j — 0.5)/n,0), j = 1,2,...,n, with any
values of the parameters and see whether the points follow thg #nax+ b or
not. This is an advantage of Q-Q plots. As seen from Figure 1.1 (b), the points are
overlapped because the distribution function is not continuous so that a Q-Q plot
is not suitable for discrete distributions.

A similar graphical method is a probability-probability or P-P plot (Gan and
Koehler, 1990, Holmgren, 1995), which is also called the “Universal Q-Q plot”
by Luceio (2007). A P-P plot is a plot of thepoints

j—05 .
( n ,F(X(j),g)), j=12....n

P-P plots for the same data as in Figure 1.1 are given in Figure 1.2. It can be
compared from two figures how Q-Q plots and P-P plots look different for the
same observations. As same as a Q-Q plot, the points on a P-P plot would tend
to follow the liney = x if the observations follow the distributida(x, @). Also a

P-P plot is not suitable for discrete distributions because it is not clear whether the
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(a) The standard normal distribution. (b) The Poisson distribution with mean 10.

Figure 1.2: Examples of P-P plots.

points follow the liney = x or not since the distribution function is discontinuous.
An advantage of P-P plots is that it is applicable to independent but not identically

distributed observations, which we will deal with in Chapter 2.

1.2 Goodness-of-fit test statistics for continuous
distributions

Goodness-of-fit test is a statistical test to examine whether a model fits well to
the observations. If we focus on the goodness-of-fit of a distribution, the aim of
the test is to test the null hypothesig HF (x) = F(x,0), where the observations
are from a distribution functiofr (x) andF(x,0) is a distribution function of a
parametric continuous distribution.

Although there are many tests for specific distributions, such as the
Shapiro-Wilk test for the normal distribution (Shapiro and Wilk, 1965), here we
consider goodness-of-fit tests based on the empirical distribution function. Let
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Fn(X) be the empirical distribution

Fn (X) 1 Xj<x

M-

j
where
1X-<x={ L X =x -
1= 0 Xj>x

Goodness-of-fit test statistics based on the empirical distribution function are
defined as a distance betweBgp(x) and F(x,0). In the following, we will
introduce some basic test statistics.

The Kolmogorov-Smirnov type statistic is a statistic based on the
supremum distance betweéf(x) and F(x,6). The well-known form of the
Kolmogorov-Smirnov statistic is

Dn(0) = sup vn|Fn(x) —F(x,0)|

—oo0<X< 00

and one-sided versions are

Da(0)= sup vn{R(x)—F(x.8)}, Dy(8)= sup Vn{F(x,0)—Fn(x)}.

—oo<X< 0o —00<X< 00

These statistics would be the most often used for testing goodness-of-fit and have
been investigated their properties by many researchers. It can be seen from the
definitions that these statistics are basically computed from one observation.

On the other hand, the Cr&mvon Mises type statistic is a statistic based on
theL? norm betweer,(x) andF (x,0) such as

n [ (R0 — F(x.0)}gx)dx

with a weight functiorg(x). In contrast to the Kolmogorov-Smirnov type statistic,
this test statistic is computed from all observations. One of the well-known this
type of statistics is the Craen-von Mises statistic, which is defined as

W2(6) — n/_m (Fa(X) —F (x,0))2dF (x,6). (1.1)
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Another special statistic is the Anderson-Darling statistic, which is defined as

e (R0 —F(x,0)}
A2(0) =n » F<X,9){1_F(X,B)}dF(x,0).

SincenE {Fn(x) — F(x,0)}? = F(x,0) {1— F(x,0)} if the observations are from
distributionF (x, ), the weightg(x) used in this statistic is the reciprocal of the
variance. For these test statistics, details are in Durbin (1973).

One of the problems in using these test statistics is that the asymptotic
distributions of the statistics depend on the mo#é¢k,0) in case that the
parameters are unknown and estimated from a sample, while the distributions of
the test statistics do not depende(x, 8), that is, the tests are distribution-free,
in case that the parameters are known. To overcome this problem, various
methods have been proposed. For example, Khmaladze (1981) showed that
the process/n{Fn(x) — K(x,Fy(x),0)} converges to the standard wiener process
so that distribution-free test is possible by using the following transformation
K(x,Fn(x),8), known as “Khmaladze transform”:

—00

<ehi0.0) = [ " qzoyc iz oz o) Loy,

where
qx,0) = (1,==logf(x,0)
Y Y ?9 g Y Y

C(2,60) = / "4 0)q(x,0) T f (x,0)dx

and f(x,0) is the probability density function df (x,0). Applications of the
transformation for testing exponentiality are given in Khmaladze et al. (2007) and
Haywood and Khmaladze (2008).

Although many variations of the goodness-of-fit test statistics have been
introduced, we focus on the Cr&mvon Mises statistic in this thesis. This is
because the Craenvon Mises statistic is simple and asymptotically equal to the
sum of the squared distances between points and & #neon a P-P plot so that
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it is easy to understand. The relation between the statistic and the P-P plot can be
seen from the fact that the Cr&mvon Mises statistic can be expressed as

n

B j-05)% 1
wio)= 3 {F05.0 - 20| e g 12)

whereX ) < Xz < -+ < X are order statistics of the random variables. The
equivalence of the two representations (1.1) and (1.2) can be shown as follows.
From (1.1) and the definition of the empirical distribution function, we have

2 n
WZ(O / { (Z 1XJ<X) -2 (lel Xj<X) F(X,O)} dF(X,O)

+n/_°° F2(x,0)dF(x, ).

Since the first term on the right hand side is equal to

n

Zl/):{%—ZF(x,O)}dF (x,0)+ %ij—l)/)(Z)ldF(x,O)

2 n

- J;(J' ~D{1-F(X;.0)}

n ; 2
B ]—0.5 n 1
PR
and the second termis equalrt¢01t2dt =n/3, the representation (1.2) is derived.

Asymptotic distribution of the Cram ér-von Mises statistic

For the goodness-of-fit test, the distribution of the test statistic is essential to
calculate thep-value. If F(x,60) is a distribution function of a continuous
distribution, it is known that the asymptotic distribution of the Céairvon Mises
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statistic is given by a distribution of a weighted sum of chi-squared random
variables with 1 degree of freedom, such that

S A2,
N

whereZj, j = 1,2,..., follows the standard normal distribution, regardless of
parameters being known or estimated (Darling, 1955, Shorack and Wellner, 1986).
When the parameters are known, the weights for the chi-squared random

variables are given as the eigenvalues of the integral equation

1
Af(u) :/ po(u,v) f (v)dv
0
with the kernel function
Po(u,Vv) = min(u,v) — uv.

Here A is an eigenvalue of the integral equation ahdl) is an eigenfunction
corresponding ta. It can be seen from the kernel function that the asymptotic
distribution of the statistic does not depend on the médz| ).

However, the asymptotic distribution depends on the mé&d&l#) and the
estimator if the parameters are necessary to be estimated from observations. Let
6 be an estimator of the parametrin the modelF(x,0). Then under some
regularity conditions, the asymptotic distribution is given as a distribution of a
weighted sum of chi-squared random variables with 1 degree of freedom, where
the weights are eigenvalues of the integral equation with the kernel function

p(u,v) = po(u,v) — g(u,0) " h(v) — h(u) 'g(v,0) +g(u,0) ' Zg(v,6). (1.3)

Here
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and

z=limnE{(6-06)(@-0)"}.

n—o0

For a general estimator, no simpler form of the function (1.3) is obtained
for other than the maximum likelihood estimator. If the maximum likelihood
estimator is employed, (1.3) becomes

p(U,V) = pO(U7V) —g(U, O)TI (0)_1Q(V, 9)7

where [ (0) is the Fisher information matrix. Since the maximum likelihood
estimator is widely used and has a simple fornp@di, v), much works have been
done for the Cram@r-von Mises statistic when the parameters are estimated by the
maximum likelihood method. It is shown in Sukhatme (1972) that the asymptotic
distribution does not depend on the unknown parameters for location-scale family,
that is, for parametric distribution family with location and scale parameters.
Moreover, Martynov (2010) showed that the asymptotic distribution does not
depend on the unknown parameters for parametric distribution family with power
and scale parameters, for example the Weibull and the Pareto distributions. The
critical points obtained for various significance levels are tabulated, for example
the normal, the gamma, and the logistic distributions in D’Agostino and Stephens
(1986), the exponential distribution with scale and location parameters in Spinelli
and Stephens (1987), the Weibull distribution in Lockhart and Stephens (1994),
the Laplace distribution in Puig and Stephens (2000), the generalized Pareto
distribution in Choulakian and Stephens (2001), and the hyperbolic distribution
in Puig and Stephens (2001). An R package “fgof” for calculating goodness-of-fit
test statistics ang-values for some distributions by a fast weighted bootstrap is
developed by Kojadinovic and Yan (2012).

For the minimum distance estimator, which is an estimator of the parameters
chosen to minimize the Craamvon Mises statistic, there are some results for
location-scale family of distributions. This is because the asymptotic distribution
is independent of the unknown parameters. In fact, when the minimum distance
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estimator is used, Boos (1981) showed a representation of the asymptotic
distribution for location-scale family. Koul and DeWet (1983) gave a similar
method of the evaluation in the case of regression. However, their results are
still not simple enough for calculation, and the generalization over location-scale
family does not seem to be easy. In Chapter 4, we focus on the minimum
distance estimator and describe a practical procedure for obtaining the asymptotic
distribution of the statistic by a new approach.

1.3 Goodness-of-fit test statistics for discrete
distributions

Letxy,Xo, ..., X, be independent and identically distributed observations following
a discrete distribution witl cells labeled 12,... K and with probabilityp; of
falling into cell j, j =1,2,...,K. We wish to checlp; = p; (@) with a parameter
vectorf = (91,6)2,...,6m)T € © C R™ Letoj be the observed number of the
observation aneé; = np;(@) be the expected numberincgllj =1,2,... K.

One of the most used goodness-of-fit tests for discrete distributions would be
Pearson’s chi-squared test and the test statistic is given as

xe(6)— 3 L8O}
=TI

If the parameters are estimated properly, then the asymptotic distribution of the
test statistic is distribution-free, that is, the test statistic does not depend on the
probabilitiespj (@), j = 1,2,.... Pearson’s chi-squared test is also widely used
for data other than ordered or not ordered categorical data. For example, if the
observations follow a discrete distribution taking nonnegative integer, such as the
Poisson distribution and the geometric distribution, it is enough to sum up the tail
part to do the test. Also the test can be used for rounded or grouped data, which
occurs often in practice.

One of the major disadvantages of Pearson’s chi-squared test is its sensitivity

to cell selection. If the number of the cells is countable and infinite, for example in
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case of the Poisson distribution, there are some choices of values that are included
into the last cell. In addition, it is required to be enough observations in each cell
because the validation of the test is shown as a limiting result. For example, it is
noted in Cochran (1954) that the number of observations in each cell should not
be less than 5. The cell selection is required to satisfy these needs, however, the
result of the test tends to be changed by the selection. A lot of goodness-of-fit
tests are introduced to overcome this disadvantage.

The tests based on the empirical distribution function can be applied for cases
other than non-ordered categorical data. dsety, . .., ck be the increasing values
corresponded for each cellZ ... K. Then the distribution functiok (cy,8) and
the empirical distribution functiof,(ck) can be defined as

k
0
&

fork=12,... K, respectively, so that the test statistics based on the empirical

F(ck.0) =

Sl
Sl

k
> €i(6),  Fn(o) =
J:

distribution function, such as the Kolmogorov-Smirnov and the @ravon Mises
type statistics, are derived directly for discrete distributions. It is often said
that the tests based on the empirical distribution functions are more powerful
than Pearson’s chi-squared test because they concern the order of the cells while
Pearson’s chi-squared test does not.

The Kolmogorov-Smirnov statistic for discrete distributions has been studied
for long time as same as for continuous distributions. The discrete distribution
version of the Kolmogorov-Smirnov statistii, (0) is

k k

> 0i— > &(8)|.

1
ng)(e) = sup v/n|F(ck) —F(ck,0) = sup =
=1 j=1

1<k<K 1<k<K

Conover (1972) gave a method of finding the critical value for the
Kolmogorov-Smirnov test for discrete distributions. Horn (1977) compared 5
goodness-of-fit tests for discrete distributions, including Pearson’s chi-squared
test and the Kolmogorov-Smirnov test, and suggested the Kolmogorov-Smirnov
test for small sample size and ordered categorical data. The asymptotic
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distribution of the statistic is derived by Wood and Altavela (1978) when the
parameters are known.

The Crangér-von Mises statistic for discrete distributions is also investigated.
The discrete distribution version of the Crarvon Mises statistigy2 () is

K
WiV%(0) =n 3 {Fa(c) — F (0 0)}{F (ck,0) — F (0 1,0)}
k=1

k

1 K k 2
- Y e(d 0). 1.4
nk;{j;OJ ,;el( )} Px(0) (1.4)

Choulakian et al. (1994) introduceNrgd)z(H) as well as the Anderson-Darling

type

(5510~ 5510)) o)
Hi(1—Hy) ’

where Hy = z'j‘zlej (8)/n, and gave tables for tests for the discrete uniform
distribution. Spinelli and Stephens (1997) developed their result to the Poisson
distribution when mean parameter is unknown. Spinelli (2001) gave slightly
different definitions for these statistics and showed that the statistics give powerful
tests for exponentiality with grouped data. The asymptotic distributions of the
new version of the statistics when the parameters are estimated by the maximum
likelihood method are given by Lockhart et al. (2007). They also showed from
Monte Carlo simulations that the percentage points converge to the asymptotic
points quickly and these tests are more powerful than Pearson’s chi-squared test
when the probabilities in the cells are in a steadily increasing pattern.

There are many studies comparing various tests and introducing new
goodness-of-fit tests. For testing the Poisson distribution, extensive comparisons
among a variety of tests as well as simulation results for power studies are given by
Gurtler and Henze (2000) and Karlis and Xekalaki (2000). Power studies for the
uniform null in 10 cells are given by Steele and Chaseling (2006). As an example
of the new goodness-of-fit tests, &ely and Rizzo (2004) proposdd-test for
the Poisson distribution, which is based on a characterization by mean distances.
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Asymptotic distribution of the Cram ér-von Mises statistic for discrete
distributions

We first note that the other version of the C&mvon Mises statistic for discrete
distributions introduced by Spinelli (2001) is

Sl

%{ K 0'-%8'(0)}2 pk(9)+pk+l(0) (15)
k=1 {j=1 J =1 J 2 7

wherepk1(0) = p1(0). It is explained that the reason for this modification is
that the distribution of the test statistic is identical for a new random varable
—X for a negative exponential distribution, so that the test becomes symmetric.
However, in this thesis we focus on the statimzéd)z(e) because we apply the
statistic to truncated data, which is assumed to follow a continuous distribution
before the truncation, in the second case study presented in Chapter 3 and it is not
necessary to be the test symmetric in that situation.

The asymptotic distribution of the statist)z(O) is given as a distribution
of a weighted sum of chi-squared random variables with 1 degree of freedom, as
same as the statistW?(8) for continuous distributions (Choulakian et al., 1994).
Let

1 k k
=|— oi— Y €(0)]:;1<k<K
(ﬁ (J; J iZl 3 >> >
andZy = E(yy'). Then we have
@20 T — (53 ) sioast (s
W (0)=y PO)y=|Zy’y | ZyP(O)Zy (Zy°y |,

where P(6) = diagp(6)) and p(6) = (pu(6). pa(6).....px(9))".  The
distribution of%y 2y converges to the multivariate normal distribution with mean
0 and variancé, so that the asymptotic distribution \Aﬁd)z(e) is given by

K-1 )
AV2,
2"
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whereV; follows the standard normal distribution aig is an eigenvalue of
ZéP(O)Zé, ji=12...,K-1.

When the parameters are estimated by the maximum likelihood method,
Lockhart et al. (2007) showed that the asymptotic distribution is also given as
a distribution of a weighted sum of chi-squared random variables with 1 degree of
freedom. Although their result is for the statistic (1.5), it can be easily modified

forWrgd)z(e). This is because the statistic (1.5) can be written a8’ (8)y, where

P(9) = diag( P1(6) ! P2(6) pz<9>; Ps(6)  Px(6) +2pK+1<9>) |

Applying their result toWrgd)z(H), the weights for the chi-squared random

variables are given by the eigenvaluesglP(8), where

5y = 5,P(0) — AZ(6) {Z(B)TP(H)Z(G)} 2(9)TATP(6)

with aK x m matrix

and aK x K matrix

100
110
A=

As a reference, we note another approach to deriving the asymptotic
distribution of the Crarar-von Mises statistic for discrete distributions. The
asymptotic distribution can be derived by using the fact that the empirical
process,/n{F,(x) — F(x,0)} converges to a Gaussian process even for discrete
distributions. In case of known parameters, the convergence is shown in
Theorem 16.4 in Billingsley (1968) and Wood and Altavela (1978) gave the
asymptotic distribution of the Kolmogorov-Smirnov test statistic for discrete
distributions by using this approach. The convergence of the empirical process
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when the parameters are estimated is shown by Burke et al. (1979). Henze (1996)
extended the results to the case under triangular arrays to establish the validity
of parametric bootstrap and also gave simulation results for the Poisson and the
geometric distribution.






Chapter 2

Trawling effect on the weight of
animals on seabed

In this chapter, we discuss on the modeling the weight of animals on seabed as the
first case study. The trawling effect on the weight of animals on seabed is verified
by using the derived probability distribution model.

2.1 Introduction

Effects of various methods of harvesting the sea have been investigated in many
articles on marine ecology. Collie et al. (2000) carried out a meta-analysis of
39 published fishing impact studies to draw general conclusions. Bishop et al.
(2000) investigated the impact of technology on vessel performance in a trawl
fishery during 1988-96 by using a generalized estimating equation. Burridge et al.
(2003) investigated the trawl-depletion rate for benthic fauna in an area closed to
commercial trawling.

In this chapter we investigate the effect of trawling through changes of
weight distribution of animals on seabed, which is modeled by the equilibrium
distribution of a stochastic growth model. The stochastic growth model is
frequently used for modeling population size (Russo et al., 2009) or size of
plants (RuBys, 2007) or animals (Tova'!rvila et al., 2009). We show that the
gamma distribution, which is the equilibrium distribution of the stochastic growth

17
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model, is useful for modeling the weight distribution when no effective ecological
disturbance exists. This result allows us to detect any effective disturbance by
departure from the gamma distribution with the parameters estimated from the
sample before the disturbance. The reason why we focus on individual weights
of animals as an index of disturbance in this analysis is that it is sensitive to any
ecological disturbances and easy to measure compared to their size. An advantage
of our approach is that it makes possible to draw a whole picture of the current
status of each species on seabed before and after trawling without introducing any
particular estimating equation or indexes, such as Shannon’s index and Simpson’s
index for biodiversity (Kaiser and Spencer, 1996).

The data used in this analysis were obtained in the project “Quantifying
the effects of trawling on seabed fauna in the Northern Prawn Fishery” by
the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in
Australia, which will be explained in detail in Section 2.2. Analyses of the data
were already reported in Haywood et al. (2005). Together with calculating various
fundamental statistics and drawing many graphs and maps, they tried finding out
the effect of trawling by an application of a simple depletion and recovery model,
however, it does not seem successful enough. There are several reasons why their
analysis was not successful enough. One is that it is a class by class analysis,
using popular descriptive statistics and plots, however, class by class analysis
seems to be too coarse to verify any effect of ecological disturbances from our
preliminary analysis. Instead we verify such disturbances by species by species
analysis. Another reason is that their analysis is based on the whole weight of each
species caught, normalized by the dredge area. The biomass density is a useful
abundance measure for each survey area from the view point of fishery but not so
for the detection of ecological disturbances. Changes of individual weights would
be more useful for detecting ecological disturbance. For these reasons we examine
the change of the weight in this analysis by fitting the model for individual weights
of animals on seabed.

The model for individual weights is derived as we described above, however,
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the observations are only the total weight and the number of catches for each
species. Therefore, we have to deal with not identically distributed variables.
It does not cause any serious problem in parameter estimation but requires a
modification of the goodness-of-fit test statistic because most of the tests are
proposed for independent and identically distributed observations. We evaluate
p-values of the extended version of the Ca&mon Mises statistic by executing
computer simulations around the maximum likelihood estimate since even the
asymptotic distribution is unknown.

This chapter is organized as follows. In Section 2.2, we give descriptions of
the data. The stochastic growth model is introduced in Section 2.3 and the gamma
distribution is derived as the equilibrium distribution for the weight. The models
for the distributions of individual animal weights for each cases are determined
by the gamma distributions with parameters estimated from the samples observed
before trawling in Section 2.4. The effect of trawling is investigated through
changes of the weight distribution in Section 2.5. Comparisons of the methods
to investigate the effect of trawling between our approach and using simple mean
tests, Welch’s-test and Studentistest, are given in Section 2.6.

2.2 Seabed fauna data in Northern Prawn Fishery

The data are from the Fisheries Research and Development Corporation (FRDC)
funded Project 2002/102, “Quantifying the effects of trawling on seabed fauna
in the Northern Prawn Fishery” (NPF) in Australia. The project was originally
identified as a high priority research area by the Northern Prawn Fishery
Management Advisory Committee (NORMAC) because under the Environmental
Protection and Biodiversity Conservation Act (EPBC Act), Australian fisheries
are required to demonstrate their environmental sustainability. Industry offered
special funding to support the research and the FRDC was asked to manage the
project. CSIRO agreed to carry out the work, develop the scope of the work and
the experimental design, and contribute to the funding.
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Trawlers in the NPF tend to concentrate their fishing on areas of higher prawn
density. Also intensive trawling of small areas is a feature of the tiger and
endeavor prawn fishery. Around 20% of the catch is prawns but the rest are other
animals collected from the seabed. The names of such by-catch animals are shown
in Table A.1 in the Appendix A, although those are caught not by trawling but by
experimental dredges.

Table 2.1: Part of the data.

Region Plot Treatment Time  Scientific name Count Weight (g)
East 12 4 Before Retiflustra cornea 1 0.25
East 12 4 Before Melaxinaea vitrea 1 9.16
East 12 4 Before Tubeworm OPNO 006 14 2.28
East 12 4 Before Neritidae OPNO 142 0 0

East 12 4 Before Leucosia whitei 1 1.49

The data consist of 207,726 records obtained by the experimental dredge
survey and Table 2.1 shows a part of the data, which is for an explanation
of the data structure. The first column labeled “Region” indicates the region
where the experiment was performed. The survey area shown in Figure 2.1 is
roughly divided into two regions, East (East of Mornington Island) and West
(West of Mornington Island); three experimental plots, which are small areas for
experiment, are set in each region, “Plot” 3, 5 and 6 in the West and “Plot” 9,
10, and 12 in the East. Geographical features of the seabed of the East and West
are different; the East is deeper but the West is rougher and harder acoustically
(Haywood et al., 2005). Such a difference suggests the need of separate analyses
for the East and West regions. At each plot, three levels of experimental trawlings
(“Treatment”) were repeated three times. The three levels are the intensities of
trawling, 0, 4, and 20, and the number of repeated trawlings on each plot. The
trawled seabed was dredged immediately after, 6, 12, and 18 months after trawling
as well as before trawling, indicated by the variable “Time.” “Scientific name”
is the name of the species caught by each dredge and “Count” is the number of
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individuals of each species caught in each dredge. “Weight” is the total dry weight
of each case in grams.
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Figure 2.1: Two regions near Mornington Island used for the experimental survey
(Haywood et al., 2005).

Although the primary aim of the survey was to investigate the effect of
different levels of the trawl intensity and the recovery time, we will concentrate
on whether the effect of trawling is significant, since the number of effective
observations is not large enough for a detailed analysis because of the large
number of empty catches. Therefore, in this analysis the treatment levels 4
and 20 are combined, and the weights recorded immediately after trawling
are used for the analysis in contrast with the weights before trawling. We
may satisfy ourselves if the effect of trawling were verified in a systematic
manner. For this analysis only 16 classes of species were considered as there
were too many zero catches for the other classes. Furthermore, 5 classes
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out of 16 are not appropriate for this analysis with the following reasons.
Demospongiae is difficult to count since they are colonial, Pisces can easily escape
from dredging and trawling, and Phaeophyta, Liliopsida, and Chlorophyta are
fragile plants difficult to collect intact. Consequently, 11 classes remained for
our investigation: Hydorozoa, Anthozoa, Gymnolaemata, Polychaeta, Bivalvia,
Gastropoda, Asteroidea, Ophiuroidea, Echinoidea, Crustacea, and Ascidiacea.
We also removed those species with observations of less than 5, while the
maximum number of observations for each case is 27 before trawling and 18
after trawling. As a result 76 species remained in those classes for the analysis,
although 778 species were observed in this survey.

2.3 Probability distribution model of the weight of
animals on seabed

2.3.1 Stochastic growth model and its equilibrium distribution

Richards (1969) showed that many of the deterministic growth models are given
by modifying the relative growth ratel/x)dx/dt as

dx _

f(x)dt,
" (%)

wheref (x) is a function ofx at timet. An example of the deterministic models
is the logistic growth model

dx = px (K — X )dt, (2.1)

wherek is a growth limit ando is a rate of growth. This model is one of the well
known models for population growth (Davidson, 1938, Smith, 1963), probably
first proposed by Verhulst (1838). This model has since been used for describing
many other aspects of growth other than the growth related to the population, for
example, Marubini et al. (1972) analyzed the growth of boys’ and girls’ heights.

We introduce a stochastic growth model for individual weights of animals on
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seabed for each species at tithe

k

wherer is the growth ratek is the growth limit, andB; is a standard Brownian

dX = rX; (1— ﬁ) dt+ oXdB, (2.2)

motion. Model (2.2) is a stochastic version of (2.1), but unlike (2.1) it reflects
the animal growth with some random fluctuations. In this respect the stochastic
growth model (2.2) is a better model for the weight. To understand the relation
between these two models, the derivation given by May (1973) might be helpful.
May (1973) assumed that the growth lirrirandomly fluctuates as = k+ y(t)
reflecting environmental changes for plants and animals, wh@e= k — k
represents the fluctuation of the growth limit arolnak timet. If y(t)dt is given

as

y(t)dt = (k — k) dt = 0pd B,

then (2.1) becomes

4% = (pk) (1— é) dt + (poy) X dB.

which is equal to the model (2.2) when= pk and o0 = pop. The source
of random fluctuation in this derivation is the growth linait In other words,
individual difference comes from different valuesioin this model.

In this analysis, we are interested in investigating the distributional change
of weightX; rather than tracing the growth of individual weights. Ipgt, x) be
the probability density function oX;. Then, as shown in the followingy(t, x)
converges to the equilibrium distributign(x) as timet goes on, provided that
2r > 02 (May, 1973).

To use the equilibrium distributiop(x) as a model for the weight of animals
on seabed, we consider the equilibrium distribution as follows. hetx)
is the distribution of the weight in the population at timhenot the age of
the animals. If we assume that all individuals in the population grow as the
stochastic differential equation (2.2), then the distributadn x) gets close to the
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equilibrium distributionp(x) as time goes on. Here we note that the convergence
of p(t,x) to p(x) does not depend on the distributiongt, x), which is shown in

the following. Assuming that the lifetime of the animals is long compared to the
time thatp(t,x) can be approximated by(x), then it would be reasonable to use
the equilibrium distributiorp(x) as a model for the weight of animals on seabed
where no disturbance from outside was made for an adequate period.

Convergence to the equilibrium distribution

As has been shown by May (1973), the equilibrium distributioX;a$ the gamma
distribution Gy (v, a) with the probability density function

f(x,0) = arl(v) (g)v_lexp(—g) ,

where the shape parameter= 2r/g? — 1 > 0 and the scale parameter=

o’k/2r > 0. As a reference, we give a simple proof for the convergence to the
equilibrium distribution as time tends to infinity with necessary conditions and an
application for other growth models.

The equilibrium distribution is derived in a general frame work wh&n
satisfies

dX = a(X)dt+b(X)dB (2.3)

for some real functiona(x) # 0 andb(x) # 0. We hereafter assume that this is
the Ito type stochastic differential equation. It is well known that the probability
density functionp(t, x) for X; satisfies the Kolmogorov forward equation,

2
dpgt’ X) _ —;—X {a(x)p(t,x)} + %% {(0p(t.x)}, (2.4)

see for example Goel and Richter-Dyn (1974). If the equilibrium distribution

p(X) = limi_« p(t,X) exists, then it satisfies the equation

2
0=~ {a)p(0)} + 5 o5 (P0R09}. @5)

Theorem 1 gives us an explicit expressiorp@t) under some assumptions.
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Theorem 1. Assume that the equilibrium distributiorp>p exists and satisfies

lim p(x)a(x) =0

X—

and

)li_r&%({bz(x) p(x)} =0.

Then the solution of (2.5) can be written as

_C x 2a(u)
P = By exp( b7 () d”) ’
where C is a constant.

Proof. By integrating the both sides of (2.5), we have

1d

aX)P(X) — 5 5 {B?(0)p(x)} +C =0,

for a constan€. It is shown thaC is 0 because other terms tend to Oxaends
to infinity from the assumptions. The result then easily follows from the fact that
q(x) = b?(x)p(x) is the solution of

]

In the analysis of the trawling data, we only use the equilibrium distribution of
the model (2.2), however, we note that the following theorem shows that various
types of distributions appear as equilibrium distribution¥gofrom other growth
models. Table 2.2 is a list of such distributions given in Bg(2007) for the
case of the growth model

Xt b
dX = rXta{l— (?) }dH—aXtdBt. (2.6)

We hereafter assume thatb > 0 for model (2.6). The following theorem gives
us an organized view of these distributions concentrated-eQ.
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Table 2.2: Some examples of equilibrium distributions for the growth model (2.6).

Law Parameters(b) p(x)

Verhulst 1,1) Cx(ro?-1) exp(—2rxk~1o2)
Gompertz ~ (1p—0) Crzexp<—r (Iog';(‘)za‘z)
Mitscherlich (0,1) Cx2(rkto2+1) exp(—2rxto7?)
Bertalanffy (3, 3) Cx_2<rk7%072+1) exp<—6rx_% a*2>
Richards (1b> —1) C (’—li)z(mfz_l) exp(—Zr (E)Bﬁ—lo—z)

Theorem 2. The equilibrium distribution fx) for (2.6) is a power transformed
gamma distribution if and only if one of the following conditions is satisfied.

1. Ifa=1and2r > 02, then X follows the gamma distribution with shape
and scale parameters

v—} g—1 a—bazkb
~ b\o? ’ o2r

2. Ifa+b= 1, then X P follows the gamma distribution with shape and scale

V—} i+1 a—b;‘z
b\ g2k ’ 2r

Proof. Using Theorem 1 to the stochastic differential equation (2.6), we have
c _ r (X . 1 _
p(x) = X 2exp(ﬁ/ T Z—EUE‘“’ 2du).

If a=1, p(x) becomes

parameters

o C _2+% 2r b
P09 = 52X > % exp( 2 ).

which can be a probability density function of a power transformed gamma
distribution if 2 > g2 because the shape parameter is necessary t0-bé.
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Therefore, a probability density function 6f= X° becomes

( )_ i 2ra;2—1_lex B 2r
Y= pe2Y P\ "boae? )

which is the density function of the gamma distribution with shape and scale

v—l 2r_1 a_bazkb
b \o? ’ oo2r

whena =1 and 2 > o2 are satisfied.
On the other hand, i+ b =1, then

parameters

. C _2_%5 2r b
p(x) = 52% k exp( o2 )

A probability density function of = X~? becomes

C 2r
py(y) = Wy b eXp(—WY) )

which is the density function of the gamma distribution with

O a_bﬁ
b\ o2k ’ o

If a1 anda+b+# 1, p(x) becomes

cC 2r _ 2r _
= = el at+b—1
P(X) o2” eXp<(a—1)02 (a+ b—1)02kbx ’
which cannot be the probability density function of any power transformed gamma
distribution. O

It follows from Theorem 2 that the equilibrium distribution of the growth
model (2.2), which is adopted in our analysis and corresponds-t@ andb =1
in the general model (2.6), is the gamma distribution with the probability density
function
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forv=2r/0%—1anda = a%k/2r, if 2r > 0.

It is worth noting that the solution does not remain the same if the definition
of the stochastic integral is not the Ito type integral for the stochastic differential
equation (2.3). The equilibrium distribution is not necessarily the gamma
distribution if other integral type such as the Stratonovich integral is employed
(Feldman and Roughgarden, 1975).

Existence of the equilibrium distribution

For the existence of the equilibrium distributiquix) = limi_, p(t,Xx) in (2.4),
one of the answers is given by Gihman and Skorohod (1979) in the framework of
ergodic theory.

Theorem 3 (Gihman and Skorohod (1979), Theorem 3 in 8§18, Chaptef g
equilibrium distribution of Xexists for

dX = o(X)dB

and is written as

X 1
o) = L 27T
[ 1 ?

1
a?(y)

provided thato (x) satisfies a first order Lipschitz condition arf, dy < oo.

Theorem 3 can be applied for the case of (2.3). In fact, the function

f(x):/OXexp(— OV i?éagdu) dv

satisfies the equation

amvm+%ﬁuﬁwmzq
so thaty; = f(X;) satisfies the stochastic differential equation

d¥ = '(X)b(X)dB



2.3. Probability distribution model of the weight of animals on seabed 29

from the Ito formula. This is nothing more than the equation in Theorem 3
with o(x) = f/(x)b(x). Therefore, a sufficient condition for the existence of the
equilibrium distribution forX; of (2.3) is that botha(x) andb(x) satisfy a first
order Lipschitz condition and

(<) X
/_wbz—%x)exp<2 A E?T(uu))du) dXx < oo,
However, these conditions are very strong in practice. The Lipschitz condition for
a(x) is not satisfied for the case of (2.6) unlessb < 1.

Another approach to showing the existence of the equilibrium distribution is to
show the existence of the limit of the solutip(t,x) of the Kolmogorov forward
equation. We first state the following lemma for a general funafi¢n, which is
used in the proof of Theorem 4.

Lemma 1 (Levitan and Sargsjan (1991), Lemma 3.1.1 and its remdt) the
spectrum of the problem

2
T2 v =0

(0)cosa + /' (0)sina =0
to be discrete, it suffices that(d) tends to infinity as z tends to infinity.

We have the following theorem for

where

andz(x) = [*b~1(u)du. A sketch of the proof is given in Goel and Richter-Dyn
(1974), however, necessary conditions are clarified in the following theorem.
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Theorem 4. Assume that (x) > 0 and U(z) is continuous and tends to infinity as
z tends to infinity. Then,

Im pit.x) = o
where
q(x) _ C1+CE{X)P(U)dU
and

X2
P(x) = exp<— %du) :

Proof. From the definition ofz(x), it follows that z(x) is a strictly increasing
function ofx sinceb(x) > 0. Letg(t,z) = b(x)p(t,x) . Then (2.4) can be rewritten
as

o (gt ] t, 192
at {gtE(x? } = ox {a(x) Y } g0 912000}
and we have

2
2902 _ 9 {a9gt.0) + 5 it 2) @)

Suppose that the solution is of the tygi¢, z) = Q(z)R(t). Then (2.7) becomes

dRt) 1 —25{82Q@}+ %Q®

dt  R(t) 2Q(2)

Therefore, we have

and

28 {8202} + £Q(2)

2Q(2) =/
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for a constantA. The solutions of this simultaneous differential equation
are written asR(t) = é*C and Q(z) = m:(2)Y(z) by using n(z) =
exp(—2 [?&(u)du) and(z), which is the solution of

2 ~
e, {A L é(z)z} W(z) =0,

Here note that there exists an orthogonal bgsigz An),n = 0,1,2,...} of
L2([0,»),dz) from Lemma 1. Then{Qn(z) = L[J(Z,)\n)T[(Z)_%,n =0,1,2,...}
forms an orthogonal basis &f([0,), mdz). This implies that the solution of

(2.7) is written as

o]

gt,2) = Zoan(t)Qn(Z)-

However, from the former discussion it is clear thgtt) can be writteron(t) =
a,eMt. We now have the solution of (2.7) is given by

o(t,2) = ianeﬂnth)

For the existence of the limit a(t,z) in terms oft, all coefficientsa, have to be
zero excepégy for the A, = 0. This implies that

lim g(t,2) = &Q«(2)-
It is enough to note thag(t,z) = b(x)p(t,x) and Qk(z) is a base function for
)\k:O. [

We can now verify the existence of the equilibrium distribution for our
growth model,a(x) = rx(1—x/k) andb(x) = ox, by checking the conditions
in Theorem 4. It is clear thdd(x) > 0 for anyx > 0. The function

U(z) = %(ZZ)+5(2>2= —%+{% (1_)&) _%}2

is clearly continuous and (z) tends to infinity ag(x) tends to infinity since
logx
/ b uydu= -

tends to infinity ax tends to infinity and
<, ax) 1dbx) r X\ O
a(z)_%—i dx _a< k) 2
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The von Bertalanffy model

At the end of this subsection, we note the result when we tried to use the von
Bertalanffy model for describing the weight distribution of animals on seabed
instead of the growth model (2.2). A frequently used growth model for a scale,
such as a length; of animals, is so called the von Bertalanffy model (von
Bertalanffy, 1960),

Yo =Yoo — (Yoo — Yo) €xp(— 1), (2.8)
which is the solution of the differential equation

d¥;

— = B(Yo — Y,

dt B( t)7
whereY,, is the asymptotic lengthy is the mean length at time 0, aifidis the

growth rate. Since this model is for a scale, the differential equation for the weight

or volume becomes
dX = pkX 3dt — pk3Xdt (2.9)

from (2.8) by puttingX = Y;3. Herep = 3B/Y»? and k = Y.°. There are
many articles which support the deterministic model (2.9) to use for describing
the growth. For example, von Bertalanffy (1960) used the model for describing
the difference between surface-proportional anabolism and weight-proportional
catabolism. It then seems worthy of trying to fit a stochastic modification of (2.9)
to our data,

dX = pkX 3dt — pk3Xdt + oXdB:. (2.10)

However, as a result, it did not work well for our data. One of the reasons
that the goodness-of-fit test of the model is rejected for many cases would be
that the von Bertalanffy model is mainly for tracing the individual growth in
size, for example, tracing the growth of plant or any other increasing size, which
approaches to the growth limit. Therefore, this model is not good enough for
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describing an equilibrium in a population. In fact, the equilibrium distribution
of the stochastic model (2.10) is a power transformed gamma distribution with
power—1/3 as seen from Theorem 2. Such a negative power transformed gamma
distribution does not seem reasonable.

Also, the use of such a distribution for which no reproducibility property
holds true causes a lot of problems in the estimation of parameters and the
goodness-of-fit test. The distribution of the total weight of each case, which is the
only available observation, becomes much more complicated. For these reasons
we concentrate ourselves on the model (2.2) in this analysis.

2.3.2 Maximum likelihood estimator

As has been mentioned before, only total weights for each case in each dredge
were recorded in this survey since measuring individual weights takes time
and money. Therefore, thgh observationy; is considered to be the sum of
unobserved individual weighsXjx, k= 1,2,...,m;}, such as

Y :Xj1+Xj2+"’+ijj7 j=L12,...,n,

wherem; is the number of individuals caught in théh dredge. The variables
Y1,Y2,..., Yy for the observations are now independent but not identically
distributed random variables. Fortunately, the reproducibility of the gamma
distribution provides us a simple treatment of such non-identically distributed
random variables. That is, thg is still distributed as the gamma distribution
Ga(mjv,a), provided thaijy, j = 1,...,n,k=1,2,...,mj, are independent and
identically distributed as & v, a), i.e. all individuals share the same scalend
shapev parameters. The maximum likelihood estimatooaf a function ofv,

oY
mv

wherey = ZT:l)’j is the sum of observed total weighys,y»,...,y, andm =
1 mj is the sum of the number of individuals observed. Although no closed
form is known for the maximum likelihood estimatorefanda, we could obtain
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the numerical value of the estimate wfby a numerical algorithm to maximize
the profile likelihood,
n
L(v,a) = le{ —log (M (mjv)) + (m;jv — 1) logy; } —mvlog (%) —mv.
The function “nlminb”, which is an implementation of the nonlinear minimization
program on R, is used for the estimation.

The standard errors of the estimates are calculated from the inverse of the
Fisher information matrix. The consistency and the asymptotic normality of
the maximum likelihood estimator when the observations are independent but
not identically distributed are already proved in Hoadley (1971) under suitable
regularity conditions. Since such regularity conditions are satisfied in our case, the
asymptotic variance covariance matrix of the estimators is given by the inverse of
the Fisher information matrix. If we assume that the number of individuals caught
mj,j =1,2,...,n, are reproduced even after théh observation or the numbers
are distributed with the same probability, the Fisher information matéy is

([ M1 M
O fe )

given by

where

with trigamma functiony/(v) = —Zlogr(v). Then the standard errors of the

estimates are obtained by

1 /v -lv
— (=Mi1M2—M —M
n (a 1Mz 2) o V2
for the shape parameter and
1 v 2 -1
o (aMle— M2> My

for the scale parameter, respectively.
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2.3.3 Goodness-of-fit

Checking goodness-of-fit is important when a probability distribution model
is fitted to data. We adopt a P-P plot for a graphical method for checking
goodness-of-fit since the observations are not identically distributed in this case.
The P-P plot fom independent observatiogs, y», ...,y is a plot of then points,

j—05
( n ,z<,->),

wherezj = Fj (yj,0) andzy) < zy < --- <z are order statistics dfj, j =

1,2,...,n. Here the distribution functioR; (y, 8) is that of the gamma distribution
with the parametefm;v, a) for the common parametér= (v, a).

A goodness-of-fit test statistic for independent but not identically distributed
random variable¥y, Yo, ..., Y, parallel to the P-P plot would be

n : 2

WE () = J_Zl{z(j) - J_no's} +%, (2.11)

where Z; = Fj(Y;,0), j = 1,2,...,n. This statistic is an extension of the

Crarrér-von Mises statisti®V2(8) in (1.2) becaus&?(8) can be reduced from

WZ2(9) when the observations are independent and identically distributed as

F(x,0). In addition, the distribution 0of2(8) is equal to that ofN2(#) when

the parameters are known singgis the transformation ofj, j = 1,2,...,n, by

its distribution function so that; follows the standard uniform distribution, which

is the same when the observations are independent and identically distributed.
When the parameters are unknown and are necessary to be estimated from

a sample, the asymptotic distribution of the stati!a%%(é), where the estimator

0 is plugged in (2.11) instead @&, cannot be obtained by a simple extension

of the case when the observations are independent and identically distributed.

There are some articles on the behavior of the empirical progeg,(z) — z),

wherelfn(z) is the empirical distribution function &d,,2o,...,Z,, by Pierce and

Kopecky (1979) and Loynes (1980). However, it is not directly useful to obtain

the p-values of the test statistit/2(8).
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In the following, we first evaluate the-value of W2(#) because the
parameters are necessary to be estimated from the observationg-vahees
are obtained from 500 sets of generated random numbers frem@®, a),
j=1,2,....n. Since it is not clear how the distribution @2(8) depends on
the value of the estimaté, we evaluate the goodness-of-fit at several lattice
points in the neighborhoodm;v, a) for v = 0.5V,0.750,1.25V, and 15V and
a =0.5a,0.75a,1.250, and 154, not only at the point estimaten;V, ). As an
example, Table 2.3 shows tlevalues in the neighborhood for Case 2 in Table
A.lin the Appendix A withb = 1.140 andd = 0.967. As seen from the Table 2.3,
the p-value does not fluctuate so much, ranging from 0.091 to 0.133, so that we
use the minimum in the neighborhood ap avalue through this analysis, which
is favorable to the rejection of the fit. For all cases before trawling, we evaluate
the p-value for the goodness-of-fit of the gamma distribution to the observations
by the method described here.

Table 2.3: Thep-values of the goodness-of-fit test for Case 2.

0.5 0.75a a 1256 15a

050 0.119 0.106 0.108 0.121 0.096
0.75v 0.125 0.127 0.126 0.114 0.114
v 0.129 0.128 0.125 0.108 0.133
1250 0.115 0.106 0.114 0.118 0.122
150 0.115 0.091 0.099 0.103 0.092

2.4 Distributions before trawling

The results for all species are shown in Table A.1 in the Appendix A, where the
gamma distribution ®(v, a) is fitted to individual weights before trawling for

the cases numbered from 1 to 80. Each case can be identified by a combination of
its scientific name and the region name of the experiment. The class and family
names are also listed as a reference. Species identified by scientific name are
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grouped into a family and several families are further grouped into a class. We can
see what kind of animal was caught as a by-catch of the prawns from the seabed.
The column labelech indicates the number of nonzero observations out of 27
observations in each case. The maximum likelihood estimates of the paratneters
anda are also listed. The last two columns give the values of goodness-of-fit test
statistic, W (8), and the corresponding-values obtained from the distribution

of W2 (8) with the maximum likelihood estimatd. In the tablep-values less

than 01 are marked by as a reference. It seems reasonable to exclude these 23
cases for which the goodness-of-fit test is rejected at significancedeve).1.

For later analysis, we concentrate our attention on 57 cases out of 80 to investigate
the effect of trawling because we are going to verify the effect through changes of
the equilibrium distribution of the stochastic growth model (2.2). For the visual
understanding of the goodness-of-fit of the 57 unmarked cases, P-P plots are given
in Figure 2.2 for Cases 1, 2, and 3 as examples.

Probability-integral transformed data

To understand the meaning of the estimated parameters for the 57 cases,
a reasonable transform of the parameters wouldkbe a(v + 1) and & =
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Figure 2.2: P-P plots for Cases 1, 2, and 3.

V2/(v+ 1) because it is equivalent to rewrite the model (2.2) as

dX = Xs (1_ —> ds+ EXdBs,

Xs
k
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where time is changed frointo s=rt. The parametek is now the growth limit

and ¢ is the degree of randomness around the growth limitrigure 2.3 is a
scatter plot of = \/2/(V+1) andk = & (¥ + 1) where Case 12 is excluded
becausé = 735870 is very large as the growth limit witfq: 1.219. The points

on the scatter plot are identified by initial letters of class names. For example, H
is for the class Hydrozoa as described in the legend. We observe that the value
of k is very large for 4 species, but it only implies that these species have heavy
dry weights. However, it is interesting to note that species in the same class share
similaré values for several classes. The vaﬁlés less than 0.8 for Bivalvia,
greater than 1.0 for Hydrozoa and between 0.7 and 1.1 for Gymnolaemata.

G
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P Polychaeta
e B Bivalvia
- 9 Gastropoda
= A Asteroidea A G
- o _| O Ophiuroidea
s @ E Echinoidea
% C Crustacea
¥ o _| | @ Ascidiacea
Al
E
B B
= Q’ EG © H
g C
g “8 g o5 Fa ¥ a
o] 96 Bg Cp Fic®p © EA
| |

I I I I
0.2 0.4 0.6 0.8 1.0 1.2

&: degree of randomness

Figure 2.3: Scatter plot of the degree of randomngss v/2/(V+1) and the
growth limitk = &(V + 1).
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There are some possible reasons that the gamma distribution does not fit well
for the remaining 23 cases. For some species, the stochastic growth model (2.2) or
its equilibrium distribution may not be a good model for describing their weights.
On the other hand, there are some species for which the goodness-of-fit test of
the gamma distribution is rejected for the observations on one region while it is
not for the observations on the other region. In fact, only one sp&aesganus
imbricatusshows the gamma distribution can be used for the data observed both
in the West and East out of four species in the list for which enough observations
are available both in the West and East (Cases 6, 7, 41, 42, 50, 51, 57, and
58). Possibly, in these cases, environmental factors may have delayed species
maturity. Besides, it is worth noting that there is no consistent rejection of the
goodness-of-fit test over different species. This result also suggests that it is
necessary to consider the species by species or case by case analysis.

2.5 The effect of trawling

In this section we verify the effect of trawling through discrepancies between the
gamma distribution with the parameters estimated from the observations before
trawling and the distribution of the weight observed after trawling. The data are
obtained under a careful design of experiments (Haywood et al., 2005) so that it
is natural to assume that there are no effects other than trawling. For this reason
we verify the effect of trawling if the discrepancy is significant. Here we note that
the number of target cases is now 47 since not enough observations are available
after trawling for the remaining cases.

Although the existence of the discrepancy is examined by the goodness-of-fit
test, the statistical framework for the calculation of fhevalue is different from
the method we have used for the case of before trawling. The goodness-of-fit test
we apply here is to test the goodness-of-fit of the gamma distribution with the
parameters estimated from the observations before trawling to the observations
after trawling, which corresponds to the goodness-of-fit test when parameters
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are known. We hereafter denote the parameters estimated from the observations
before trawling a®y to make sure that the goodness-of-fit of the distribution when
the parameters are known is examined. The distributiod/ffd,) is equal to

that ofW?(6g) as we explained in Section 2.3.3, and the asymptotic distribution

of W?(8o) is given as a distribution of a weighted sum of chi-squared random
variables with 1 degree of freedom, as described in Section 1.2. However, we
obtain thep-value by generating 500 sets of random numbers distributed as the
gamma distribution with the parameters estimated from the observations before
trawling to obtain the distribution of the test statistic because the sample sizes
may not be enough large to use the asymptotic distribution of the statistic.

A summary of the results for the 47 cases is given in Table 2.4. The unaffected
cases, for which the goodness-of-fit test is not rejected, are denoted by U in the
column labeled “Effect.” For other cases, for which the goodness-of-fit test is
rejected, the directions of the change of the weight distribution from the gamma
distribution with the parameters estimated from the observations before trawling
are denoted in the column of “Effect,” where L is for lighter cases and C or C(L)
is for the cases that the weight distribution is changed but not consistently lighter
or heavier. There are no heavier cases in our study. The direction of the change,
which represents the type of the effect, is determined as follows. Itis L if all points
are below the ling/ = x on the P-P plot, which indicates thgf) < (j —0.5)/nfor
all j=1,2,...,n. Type C(L) is for the case when the type of the effect is almost
same as the case for L, with a few exceptional points on the P-P plot.

We can see more details about the changes of the distribution through P-P
plots. Figure 2.4 shows P-P plots for 6 cases of type L. A possible reason that the
weight distribution is changed to the lighter direction after trawling would be that
those species have difficulty to avoid the trawl net and only individuals smaller
than the net size remain, so that the distribution is skewed in the lighter direction.

Figure 2.5 shows P-P plots for 5 cases of type C and C(L). It is observed that
the distribution is skewed to lighter direction for Case 21, Case 53, and Case 75,

if a single point on the P-P plot is ignored. However, there is no clear direction
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Table 2.4: The effect of trawling ( U:Unaffected, L:Lighter, C:Changed ).

Case n W2(Ay) p-value Effect Case nWZ2(6p) p-value Effect

1 6 0.092 0.636 34 9 0.115 0.550

3 15 0.106 0.584 36 14 0.091 0.650

5 9 0.076 0.734 40 7 0.319 0.106

7 13 0.059 0.838 41 6 0.319 0.112

9 8 0.077 0.748 45 7 0.096 0.650
11 8 0.144 0.424 46 18 0.264 0.184
12 6 0.097 0.604 47 11 0.143 0.404
13 17 1.075 0.000 49 9 0.658 0.022
14 8 0.223 0.212 51 13 0.166 0.348
15 12 0.441 0.058 52 7 0.367 0.088
19 9 0.150 0.422 53 12 1.556 0.000
20 10 0.044 0.918 57 11 0.211 0.248
21 13 0.549 0.030 58 8 0.191 0.276
22 12 0.183 0.334 59 14 0.242 0.210
23 10 0.446 0.054 60 7 0.097 0.640
24 12 0.125 0.530 61 12 0.390 0.094
25 9 0.212 0.272 63 10 0.200 0.250
26 15 0.458 0.036 70 7 0.066 0.808
27 14 0.184 0.322 71 15 0.188 0.300
28 8 0.225 0.208 73 6 0.277 0.136
30 9 0.122 0.516 75 10 0.697 0.008
31 11 0.197 0.276 76 6 0.327 0.100
32 18 0.253 0.210 78 12 0.355 0.118
33 8 1.663 0.000

rcccccoccrcogccrcrccccccc
3
ccoccccoCccccorcrccccccc
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Figure 2.4: P-P plots for 6 cases where the weight distribution became lighter
after trawling. The null distributions are 61.313 24.512), Ga(2.687,0.062),
Ga(4.320,0.660), Ga(35.1120.043), Ga(2.3885.049), and G (5.018 0.259),
respectively.
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of change for the other cases, Case 26 and Case 61. The reason why the weight
distribution is changed in no clear direction might be that such species are more
sensitive to other factors like the local unevenness of the environment rather than

the trawling effect.
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Figure 2.5: P-P plots for 5 cases where the weight distribution
changed without direction after trawling. The null distributions are
Ga(2.3423.467), Ga(26.6640.0463, Ga(1.007,3.693), Ga(27.4620.049),
and G (0.690, 3.327), respectively.

2.6 Comparisons with simple mean tests

We have seen how the trawling effect is verified by using the extended version of
the Crangr-von Mises goodness-of-fit test of the gamma distribution, which is the
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model for the weight distribution of animals on seabed. It would be worthwhile
to compare this result with that obtained by a simple mean difference test statistic
like Welch’st-test statistic as

W, — W,
2, 92
Ve Ty

Here W, is the sample mean of the weights normalized by the number of

T=

individuals observed after trawlings? is the sample variance, amy is the
sample sizeW, s,, andny, are those for the normalized weights before trawling.
Table 2.5 shows thp-values fot2 (8p) given in Table 2.4 and for Welchtstest
statistic for the two sided alternative hypothesis in the case of type U. Also the
p-values for Student’s-test statistic,

W, —
)

Sa?

Na

whereW, is assumed to be known, are shown in the table as a reference. This is

=

T=—

because th@-values folW?2 (6p) are obtained for the case when the parameters
are known. The sign of Welchtstest statistic, which is the same sign of Student’s
t-test statistic, is also given in Table 2.5.

It seems reasonable that tpevalues for Welch's-tests are all large for the
cases of type U. However, the values themselves are not consistent with those
for W2 (6g), particularly for the three cases marked t in Table 2.5. The reason is
that the discrepancy from the weight distribution is symmetric so that the mean
difference fails in describing such a discrepancy as seen in the P-P plots given in
Figure 2.6. We also note that tipevalues for Student’s-tests are not consistent
with those for Welch’'e-tests, particularly for the three cases markeih this
table. It can be seen from the P-P plots for those three cases given in Figure 2.7
that Student's-test is sensitive to a small shift of the distribution.

Table 2.6 shows the result for type L, corresponding to the result for type U
in Table 2.5. Itis clear that Welchtstest fails in detecting changes in the 3 cases
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Table 2.5: Thep-values for type U.

45

Case

1

3

5

7

9

11 12

p-value ¥V (6p))
p-value (Welch's-test)
p-value (Student's-test) 0.315 0.428 0.690 0.507 0.354 0.734 0.679

0.636 0.584 0.734 0.838 0.748 0.424 0.604
0.524 0541 0.735 0.642 0.376 0.756 0.804

sign(T) - — + - + + -

14 19 20 22 24 25 27 28 30 31
0.212 0.422 0.918 0.334 0.530 0.272 0.322 0.208 0.516 0.276
0.318 0.777 0.975 0.757 0.810 0.465 0.423 0.628 0.674 0.154
0.130 0.756 0.960 0.592 0.771 0.135 0.298 0.269 0.526 0.097

- - - + - + - + + +

32 34 36 40 41 45 46 47 51 57
0.210 0.550 0.650 0.106 0.112 0.650 0.184 0.404 0.348 0.248
0.851 0.967 0.721 0.177 0.260 0.981 0.992 0.954 0.393 0.157
0.808 0.955 0.609 0.105 0.186 0.976 0.990 0.947 0.279 0.016

+ + - - + + - — - -

58 59 60 63 70 71 73 76 78"

0.276 0.210 0.640 0.250 0.808 0.300 0.136 0.100 0.118

0.372 0.269 0.963 0.766 0.730 0.425 0.338 0.606 0.833

0.330 0.055 0.945 0.682 0.670 0.354 0.301 0.595 0.797
- - + + - + - + -
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Figure 2.6: P-P plots for Cases 46, 76, and 78 after trawling.
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Figure 2.7: P-P plots for Cases 31, 57, and 59 after trawling.

marked by 1, although the values of Welch'&est statistics are all negative. The
sensitivity of Student’s-test makes a difference for Case 23 as well as for type U.

Table 2.6: Thep-values for type L.

13 18  23f 33 49 57

p-value (V2 (6o)) 0.000 0.058 0.054 0.000 0.022 0.088
p-value (Welch's-test)  0.005 0.291 0.194 0.010 0.020 0.486
p-value (Student's-test) 0.000 0.174 0.014 0.009 0.013 0.384

sign(T) — - - — - -

Case

Table 2.7 is for type C and C(L). In this case, Weldhtest fails in detecting
changes at a level of 0.1 in 3 cases out of the 5 cases. A significant difference is
shown for Case 75, where the sign of Weldhtest is positive although it belongs
to type C(L).

In summary, Welch's-test tends to fail in the detection of distributional
changes when the weight distribution after trawling differs from the weight
distribution before trawling in a symmetric manner. On the other hand, Student’s
t-test seems very sensitive for slight differences from the weight distribution
before trawling. Such mean difference tests are simple and easy to use, but not
strong enough for investigating distributional changes since the distributions are
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only identified by the mean in their tests.

Table 2.7: Thep-values for type C or C(L).

Case 21 26 53 611 75

p-value W2 (6y)) 0.030 0.036 0.000 0.094 0.008
p-value (Welch’'s-test) 0.084 0.168 0.056 0.937 0.720
p-value (Student's-test) 0.020 0.073 0.008 0.928 0.696

sign(T) - + - - +

2.7 Concluding remarks

We have shown that the gamma distribution, the equilibrium distribution of the
stochastic growth model, can describe the distribution of weight of animals on
seabed. Goodness-of-fit of the distribution is examined by using the extended
version of the Crai@r-von Mises statistic with a P-P plot. One of the reasons why
we need such a test is that only the total weights of catches for each species are
recorded in the survey. As a result the integrated use of numerical and graphical
methods for checking goodness-of-fit shows the trawling effect on the weight
distribution of animals on seabed through the change of the distribution.

Another approach to examining the difference of the weight distributions
between before and after trawling would be the likelihood ratio test, which
compares the parameters of the gamma distribution. However, this approach does
not give an answer for the case when the gamma distribution does not fit to the
data observed after trawling, which is happened in some cases. Also our approach,
checking the direction of the change of the weight distribution from the gamma
distribution with the parameters estimated from the observations before trawling,
would give a simpler understanding how the weight distribution changed than
comparing the changes of the parameters. For these reasons we have examined
the distributional change rather than the change of the parameters of the gamma
distribution in this analysis.






Chapter 3

The effect of freshwater flows on the
growth of banana prawns

Another case study, which is the modeling the length-frequency data of banana
prawns, is presented in this chapter. By using the derived probability distribution
model, the effect of freshwater flows on the growth of banana prawns is

investigated.

3.1 Introduction

It is important to understand the role of freshwater flows into estuaries, the
downstream sections of rivers and streams, and the requirement for a sustainable
environment, especially in Australia, because the water resources are limited
but a demand for human use is increasing. A wide review of the need of
freshwater flows for estuarine fisheries in tropical areas can be found in Robins
et al. (2005). For that reason the project “Environmental flows for sub-tropical
estuaries: understanding the freshwater needs for sustainable fisheries production
and assessing the impacts of water regulation.” was initiated in Australia, whose
data are analyzed in this chapter. The project aimed at an investigation of
the effects of freshwater flows on estuarine fisheries production. Although a
preliminary analysis is published in Halliday and Robins (2007), there still remain

problems unsolved.

49
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In this chapter, we focus on banana prawerfaeus merguiengjswhich is
known to be one of the significant target species in the trawl fisheries of northern
Australia and has been investigated by many researchers. Lucas et al. (1979)
assessed the state of the banana prawn stocks in the Gulf of Carpentaria, Australia,
by yield per recruit analysis based on the studies of migration, growth, and
mortality. The effects of temperature and salinity on growth and survival were
examined by Staples and Heales (1991) from laboratory experiments. Haywood
and Staples (1993) investigated growth and mortality of juvenile banana prawns
from data sampled from 1986 to 1989 in the north-eastern Gulf of Carpentaria.
The size-dependent mortality of juvenile banana prawns was suggested by Wang
and Haywood (1999). For the behavior of postlarval penaeid prawns, including
banana prawns, the effect of tide and day/night on the vertical migration was
explored by Vance and Pendrey (2008).

The effects of freshwater flows on the growth rate of banana prawns have
been investigated in Halliday and Robins (2007) for the data we analyze in this
chapter. They decomposed length-frequency distributions of banana prawns into
components of the normal distributions to identify means and found the links of
the means to identify the cohort. For each links, the first and last dates the cohort
was sampled were set to heandt, and the mean carapace lengths on the dates
wereL, andLy,, respectively. Then they investigated the effects of environmental
factors by modeling the growth rakein the von Bertalanffy model

Ltz — Ltl + (Loo _ Ltl) {1_ e—K(tZ—tl)} ,

which is already introduced in (2.8), as a function of freshwater inflow and other
environmental factors. For example, the final model for the growthidte the
Calliope River is in the form of

K = Bo+ BT + B2T? + BaWo + BaWi,

whereT is temperaturé\\p is the total freshwater inflow for the period between
t1 andty, andW; is the total freshwater inflow four weeks befaie
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Although the effects of freshwater flows and other environmental factors are
included in their model, the explanation led by this model is not convincing
enough. For example, the distribution of the length has different shape time by
time so that using only the mean would not be enough to investigate the effect
of environmental factors on the growth. Also salinity of water is observed but it
was not used in their model. To overcome such weakness of their analysis, we
introduce a new probability distribution model for the length of banana prawns.

Descriptions of the data we analyze are given in Section 3.2. We build the
probability distribution model for length-frequency data of banana prawns in
Section 3.3. In Section 3.4, the methods for fitting the model to the data and
testing goodness-of-fit of the distribution are described. Results of the fit to the
data are given in Section 3.5.

3.2 Data

The data we analyze here are obtained in the Fisheries Research and Development
Corporation (FRDC) funded Project 2001/022, “Environmental flows for
sub-tropical estuaries: understanding the freshwater needs for sustainable fisheries
production and assessing the impacts of water regulation.” in Australia. Although
the surveys were done for some species in three rivers, the Fitzroy River, the
Calliope River, and the Boyne River, we focus on the banana prawns catch data
observed in the Calliope River from December 4th, 2002 to April 19th, 2004 in
this analysis. The data are observed fortnightly from the beginning of the survey
to July 12th, 2003 and in 4 weeks after then.

The target data are the carapace length-frequency data of banana prawns in the
estuary. Table 3.1 is a part of the length-frequency data. Banana prawns caught
were measured to a truncated 1 mm Carapace Length (CL) size-class, that is, 1.00
to 1.99 mm are counted for 1 mm CL. The size of the carapace length is ranged
from 1 mm truncated CL size-class to 33 mm truncated CL size-class. The total
catches of banana prawns for each size-class within 8 sites are observed.



52 Chapter 3. Effect of freshwater flows

Table 3.1: Part of the length-frequency data.

Date Length class (mmCL) Number of catches
2003/12/4 7 1
2003/12/4 8 2
2003/12/4 9 3
2003/12/4 10 9

There are also data of environmental factors: temperature, salinity, pH, and
turbidity. Table 3.2 is a part of the data of the environmental factors. Temperature
is of water and salinity is recorded in %.. Turbidity gives the depth in meter
no longer visible the Secchi disc and the large value indicates that water is
transparent. Although the number of catches is recorded by summing up among
8 sites, these environmental factor data are observed in each site. For this reason
we use the environmental factor data by averaging over sites.

Table 3.2: Part of the data of the environmental factors.

Unique site number Temperature Salinity pH Turbidity

5-1 30.11 38.64 7.94 0.50
5-2 30.82 38.87 7.72 0.30
5-3 33.43 38.61 7.96 0.20
5-4 31.17 39.26 7.90 0.20
5-5 33.21 38.54 7.99 0.35
5-5 33.21 38.54 7.99 0.35
5-6 32.97 38.65 7.96 0.40
5-7 31.81 38.72 7.89 0.30

5-8 33.60 38.47 7.98 0.40
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3.3 Probability distribution model of the carapace
length of banana prawns

To construct a probability distribution model of the length of banana prawns, we
assume that the observations are constituted of two kinds of cohorts because of
the life cycle of banana prawns and the interval of the samplings. Banana prawns
are spawned in offshore waters and larvae and post-larvae migrate into estuaries.
After several months in the estuary they migrate to coastal marine waters (Halliday
and Robins, 2007). They have around one year life cycle, and on the other hand,
the samplings were done fortnightly or 4 weeks in the estuary in this survey.
Therefore, it is natural to consider that the observations are a mixture of two
kinds of cohorts, a cohort which has been stayed in the estuary from the previous
sampling and a cohort which migrates from offshore waters to the estuary after
the previous sampling. We also note that it is reasonable to assume that banana
prawns migrate from offshore waters in a cohort because it is known that peaks of

spawning of banana prawns are on new and full moon.

3.3.1 Cohort stayed in the estuary

We first consider constructing a probability distribution model of the carapace
length of banana prawns for a cohort stayed in the estuary by using the data
observed in the previous sampling. One of the natural models would be given
by a transformation of the previous carapace length distribution with reflecting
growth and survival.

Let f;,(x) be a probability density function for the distribution of the carapace
length at timep. Also we defingy(x,tp,t) andq(x,to,t) to be a carapace increment
and a survival rate during the perig,t), wherex is the length at timéy. If we
assume that a proportion of prawns migrating to coastal marine waters is constant
for each length, then the distribution function of the carapace length at tiriig
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becomes

X
G(x.to.t) = ¢1 /0 fio (Y — 0% to,))q(Y, o, 1)y (3.1)

with a normalized constart;. In this analysis,f,(X) is given by a polygon
approximation of the observed length-frequency data. To construct models for
the carapace incremegtx,tp,t) and the survival ratg(x,tp,t), we use models
suggested by Staples and Heales (1991) and Wang and Haywood (1999) as

follows.

Carapace incrementg(x, to,t)

For the carapace incremegtx,tp,t), we use two models, for the intermoult
period and for the moult increment, obtained by Staples and Heales (1991). From
laboratory experiments, they derived the models such that

tm—tm_1 = 13.919— 0.411T +0.027(T — 25)2
—0.014S+ 0.001(S— 30)% + 0.201Xm_1
for the intermoult period and
Xm — Xm_1 = 0.039+0.012T — 0.002T — 25)°
—0.001S— 0.001(S— 30)* +0.023m_1 (3.2)

for the moult increment. Herg, denotes the day of theth moult, x, is the
carapace length in mm after tha#th moult, T is temperature, an8lis salinity (%o),
where temperature and salinity were held constant in their experiments. These
models show that the intermoult period and the moult increment depend on
temperature and salinity.

Before applying these models to the data, we give a modification to the
model (3.2) because there seems to be some rounding errors in the coefficients
of the model (3.2). Figure 3.1 (a) is the figure given in Staples and Heales (1991),
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describing the moult increment against salinity at temperatut€.28he black
dots are for 5 mm CL and the white dots are for 10 mm CL. On the other hand, in
Figure 3.1 (b), the curves based on the model (3.2) at temperatues28 drawn
and the points are plotted as imitating the points in Figure 3.1 (a) to make it easy
to compare. For this inconsistency, we have estimated the coefficierfisafod
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(d) 1S
— 05} =
= 5 = < ° O
E £
- [0
504- E |
5./ / : .
_goa- / \ § S ] Py
o <
goe © I+
5 I I I I [

e 10 20 30 40 50
15 20 as 45 55 .
Salinity (ppt) Salinity (ppt)

(a) Figure from Staples and Heales (1991). (b) Curve based on the model (3.2).

Figure 3.1: Plots of the carapace increment against salinity (%o).

(S—130)? to fit the curves in Figure 3.1 (a) given by Staples and Heales (1991) and
use the modified model

Xm— Xm_1 = 0.0394 0.012T — 0.002(T — 25)2

—0.001265— 0.0004S— 30)2 + 0.023m_1 (3.3)

instead of (3.2). As areference, the curves based on the model (3.3) at temperature
28°C is drawn in Figure 3.2 with the points plotted as imitating the points in
Figure 3.1 (a).

Moreover, we note that these models suggest that a growth rate, which is the
carapace increment per day, is approximately constant in length. If we rewrite the
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Figure 3.2: Plot of the carapace increment against salinity (%o). The curve based
on the model (3.3) are drawn.

models as
tm—tm—1 = f1(T,S) + 0.201xn_1 (3.4)
Xm— Xm-1 = f2(T,S) +0.023m_1 (3.5)

with the functionsfy(T,S) andfy(T,S) of T andS, then the sums of the intermoult
period and the moult increment from thgth moult to themth moult are given as

}{(1+ 0.023™ ™ 1)

- 0201 y +f2(T,S)
M= ™00231"™ " 0.023

0.201

mem) { (TS~ Go TS |

~ (M—mp) { f1(T,S) 4 0.20 1y, }

and

(1+0.023 ™M _ 1
0.023

Xm —Xmp = { (140.023™ ™ — 1} Xy + f2(T,S)

~ (m—mg) { f2(T,S) 4+ 0.023Knm, }
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using an approximatioiil 4+ 0.023)™ "™ ~ 1+ 0.023(m— my). Therefore, we
have

~ = 3.6

and this approximation suggests that the growth rate is approximately constant in
length if temperature and salinity hold constant.

By using these models for the intermoult period and for the moult increment,
we employ the following steps to obtain the carapace incregietty,t) in (3.1).
First we use the locally weighted scatter plot smoothing (loess) to the data of
temperature and salinity because they were only observed on the day of the
sampling and were changing throughout the survey. Figure 3.3 gives plots of
temperature and salinity from January to July in 2003 as an example. As shown
in Figure 3.3, temperature changes along with the season and salinity changes
suddenly, which is because of freshwater flows.

40
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(a) Temperature. (b) Salinity.

Figure 3.3: Plots of temperature and salinity for each sampling date from January
to July in 2003.

Using temperature and salinity obtained by the loess, the humber of moults
during the periodtp,t) is given bym which is the maximum number satisfying
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t > tm, wherety, is given by

(140.023m—1 M1

0023 T2

|
tm—t0:O.201{ Z (140.023" 1 (T;, I,,S,l,)}

m—1

+ Z fl(Tt|7S|)a
1=0

which is obtained from (3.4) and (3.5) by reflecting the changes of temperature
and salinity. Here we assume that thes the time immediately after the moult
and the length a is Xp. Tt andS§ are temperature and salinity at tirnebtained

by the loess. By using the number of mouttsgiven above, the total carapace
increment during the periodp,t) is then given as

m-1

Xm—Xo = {(1+0_023)m_ 1}X0+ %(1+0'023>| fz(Ttm—Hl’Sm—Hl)'

We denotey* (X, to,t) = Xm — Xo as the total carapace increment during the period
(to,t) for a banana prawn whose carapace lengi &t timetp and use

9(x,to,t) 30, Z g (%,to,t) 3.7)

for the carapace incremegtx,to,t) in our analysis. Here we note thgdx, to,t)

does not depend on the carapace lexgifhe averaging over the carapace length
y=12,...,30is to obtain a good approximation of the carapace increment. This
is because the growth rate is approximately constant in length and the averaging
would help to take an account of errors of the moult day. We also note that the
growth rate is approximately constant in time, which is also shown by (3.6).

Survival rate q(y,to,t)

For the survival rate, we use the size-dependent mortality rate model proposed
by Wang and Haywood (1999) from data observed in the Gulf of Carpentaria.
Assume that the instantaneous mortality rate at carapace behgtha form of the
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exponential functiorae®X, then the size-dependent mortality of banana prawns
afterd weeks is given as

* = a 0 — 0
40 8.1) = xp| — 2 {10 P} 38)

where the growth rat¢ mm per week is constant ang} is the length at time
to. For the parameters and3, we use the value§ = 1.594 and[? = —0.2919,
which were obtained in Wang and Haywood (1999).

Using the size-dependent mortality rate model, the survivalgétdop,t) in
the model (3.1), which is for a cohort stayed in the estuary, is given as

qx.to,t) = q° (X,t —to, M) ;
t—to

where the growth ratgin (3.8) is given by averaging the carapace total increment
9(x,to,t) of (3.7) during the periodto,t).

3.3.2 Cohort migrated from offshore waters to the estuary

To construct a model for a cohort migrated from offshore waters to the estuary,
we use the size-dependent mortality rate model (3.8) again. We assume that the
carapace length immediately after hatching follows the normal distribution with
meanp and variancer?. Also we assume that the growth rate in offshore waters

is yo = 1 (Haywood and Staples, 1993, Wang and Haywood, 1999). Then the
distribution of the carapace lengéhweeks after hatching is given as

!

X (y_d
Hx8.0)=ca [ o (L% )ty ey 3.9

wherec; is a constant and’ = d + pp. Here we have used an approximation of
e Bto by 1 because we assume thgtis small enough.

3.4 Fitting the model to the data

We fit the model to the data for 19 cases shown in Table 3.3 in this analysis. This
is because the model for a cohort stayed in the estGéxyto,t) given in (3.1) is
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constructed from the data observed in the previous sampling. For example, Case
1in Table 3.3 refers to modeling the data observed in December 16th, 2002 by the
mixture of cohorts stayed in the estuary from December 4th, 2002 and migrated

from offshore waters to the estuary. We exclude the cases for December 4th, 2002
and October 26th, 2003 because there is no sampling prior to these dates.

Table 3.3: Target cases.

Case Date Number of observations
- 2002/12/04 23
1 2002/12/16 41
2 2003/01/19 43
3 2003/02/02 54
4 2003/02/15 75
5 2003/03/18 1715
6 2003/04/02 382
7 2003/04/17 465
8 2003/05/02 307
9 2003/05/16 341
10 2003/05/31 64
11 2003/07/12 26
- 2003/10/26 23
12 2003/11/25 170
13 2003/12/23 88
14 2004/01/18 633
15 2004/01/22 761
16 2004/02/16 204
17 2004/02/20 251
18 2004/03/21 174
19 2004/04/19 35
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3.4.1 Model for a mixture of different cohorts

In general case, a mixture model of cohorts stayed in the estuary and cohorts
migrated from offshore waters to the estuary is given as

F(Xae) - rOG(X7t07t)+ Z er(X7 6j,0'j)7
i>1

where 0<r; <1,j=0,1,..., andzjzorj =1, however, it turns out that only
the following two models are useful in this analysis because the results show that
these models can be used for 15 cases out of 19.

* Model 1:
F(x,0) =roG(Xto,t) +r1H (X, 1,01),
where@ = (ro,&,01) andry = 1 —ro.
* Model 2:
F(x,0) =roG(X,to,t) +r1H (X, d1,01) +r2H (X, &, 02)
where@ = (ro,r1,01,0,01,02) andro =1—rg—ry.

Although we have examined the mixture model with more than 3 components
for the other 4 cases, the goodness-of-fit tests were rejected for any number of
components.

Since the data for the carapace length are binned data, we consider a grouped
distribution ofF (x, ), which is defined as

pj(0) =F(j+1,0)-F(j,0), j=12...,33

for the probability distribution model of the carapace length of banana prawns.



62 Chapter 3. Effect of freshwater flows

3.4.2 Parameter estimation

The parameteé in the probability distribution modep;(8), j =1,2,...,33, is
estimated by minimizing the @mer-von Mises statistic for discrete distributions

Wi P%(6) =

Sl

K ( k k 2
k;{jloj —njzlpj(H)} P(0),
which is already introduced in (1.4), with two constrains in the estimation of the
parameters. One of the constrains is for the rate paramegersModel 1 and
ro, r1, andro in Model 2, to take on values between 0 and 1. The other constrain
is for & in Model 2. To avoid to become a too flexible model, we assudme
as & = 01 +d and adopt the valud which gives the highesp-value among
d=24,6,.... Since it is known that peaks of spawning of banana prawns are
on new and full moon, we here assume that the interval of the migration to the
estuary is 24,6, ... weeks. For this reason the constrain d1to bed, = &, +d
would be reasonable.

The standard errors of the estimates of the parameters are calculated using a

parametric bootstrap, with 500 bootstrap samples, because of the constrains.

3.4.3 Goodness-of-fit test

To check goodness-of-fit of the derived probability distribution model to the
data, we use the @mer-von Mises statistic for discrete distributions when the
parameters are estimated by the minimum distance method with two constrains
described in Section 3.4.2. We calculate thevalues using the parametric
bootstrap, as same as for the standard errors of the estimates of the parameters.
Although the p-values are calculated using parametric bootstrap in this
analysis, as a reference, we give the following theorem, which shows the
asymptotic distribution of the @mer-von Mises statistic for discrete distributions
when parameters are estimated by the minimum distance method, which is the
estimation method of finding the valu® which makes the Gimer-von Mises
statistic for discrete distributions a minimum. We note that the asymptotic
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distribution of the statistic when parameters are estimated by the maximum
likelihood method is given by Lockhart et al. (2007).

Theorem 5. Let X, Xo, ..., X, be independent and identically distributed random
variables following a discrete distribution with K cells labeléd, ... , K and
probability pj(@) of falling into cell j, j=1,2,...,K. Then the asymptotic
distribution of V\éd)z(é), wheref is the minimum distance estimator, is given as a
distribution of a weighted sum of chi-squared random variables with 1 degree of
freedom, such that

K-1
z )\jV~2,
=1
where V follows the standard normal distribution an is an eigenvalue of a
K x K matrix
-1
5,P(6) {I — AZ(6) {Z(O)TATP(O)AZ(O)} Z(e)TATP(e)] . (3.10)

forj=1,2,...,K—1. HereX,,P(0), A, and Z0) are defined in Section 1.3.

Proof. We first show that the estimation errgn (9 — ) is approximated by

_{z(e)TATP(H)AZ(O)} 2(0)"ATP(8)y,

wherey is defined in Section 1.3. Since the minimum distance estinatsra
solution of

o |1k { k k }2
- | = oj—n> pj(@) » p(6) =0,
00 nkZl jZl : jZl J

where0 = (0,0,...,0)", and

converges to 0 astends to infinity, it is shown that

0=0
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converges to 0 astends to infinity. Applying a Taylor expansion to (3.11) around
6 gives an approximation of/n(6 — ) as

138 [ & K Y -1
+ﬁkgl 1:10J _nglpj( >} {j;aeam Pi( )} pk(a)]
1 X[k K K 5
x /N ﬁk; j;oj —njzlpj (0)} {,zlﬁp' (9)} pk(g)]

Note that
1 { k k
- 0j—nY p;j(0)
n j; j;

converges to 0 astends to infinity for anjk = 1,2, ... K, thus,/n (é — ) can be
approximated as

K k 9 kK 9 -1
1B ) Barnio e

=1

_ {z(e)TATP(e)AZ(e)}lZ(O)TATP(O)y.

On the other hand, applying a Taylor expansionwéd)z(e) around the
minimum distance estimatd® and using the approximation shown above, we
have

WAY%(6)+n(6—6) 2(0)"ATP(0)AZ(0) (6—6).
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From these approximations it follows tnaréd>2(é) can be approximated by

y'P(6) [| —AZ(6) {Z(G)TATP(O)AZ(O)}_1Z(O)TATP(0)} y

1\ " 1
() o).

whereD is aK x K matrix defined by
1 -1 1
D =3:P(6) [| — AZ(6) {Z(e)TATP(e)AZ(e)} Z(H)TATP(O)] 53,

As used by Choulakian et al. (1994) in their proof, the distribution of
Zy %y converges to the multivariate standard normal distribution, therefore, the
asymptotic distribution oWrSd)z(é) is given as a distribution of a weighted sum

of chi-squared random variables with 1 degree of freedom, where the weights are
the eigenvalues of the matr2. The equivalence of the eigenvalues®fand

(3.10) is easily checked. ]

3.5 Results

Figure 3.4 shows the result for Case 14 fitting Model 2 as an example. The data
observed on December 23rd, 2003 are shown in Figure 3.4 (a). By using this
distribution, a model for a cohort stayed in the estuafy,to,t) is determined as
described in Section 3.3.1, wheges December 23rd , 2003 anés January 18th,
2004. The probability density function &f(x,to,t) is drawn in Figure 3.4 (b). On

the other hand, probability density functions of models for two cohorts migrated
from offshore waters to the estuaky(x,&,al) and H(x,&,&z) are drawn in
Figure 3.4 (c) and (d) with the estimated parametﬁr& 6.014, 6, = 1.396,

32 =10.014, andd, = 1.498. Combining the distributior3(x,to,t), H(X, 31, 01),

andH (x, 32, 02), the mixture model is given as

~ ~ A

F (X, 9) = foG(X,to,t) +f1H (X, 01, 61) +foH (X, X, 5’2)
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with the estimated rate parametegs= 0.079, r7 = 0.786, andr;=0.135. The
probability density function of (x,é) is drawn in Figure 3.4 (e). The target
data for Case 14 are the data observed on January 18th, 2004, which is shown
in Figure 3.4 (f). It is observed from Figure 3.4 (e) and (f) that the data can be
modeled by the mixture model for Case 14. For this caseptveue obtained by

the parametric bootstrap is 0.984.

If we assume that the model can be used wherpthalue is higher than 0.1,
which implies that the goodness-of-fit test is not rejected with the significance
level o = 0.1, it is shown that Model 1 can be used for 8 cases, as shown in
Table 3.4, and Model 2 can be used for other 7 cases, as shown in Table B.1
in Appendix B. The values with in both tables denote that the values are not
estimated because the estimates were close to 0 or 1 so that the values are fixed
to 0 or 1 to make the model simple. For these 15 cases, the model can explain the
effects of the changes in temperature and salinity of water caused by freshwater
flows on the growth of banana prawns.

For Cases 2, 5, 6, and 16, on the other hand, the goodness-of-fit test is rejected
for both models. From Figure 3.5, it might be because of the small number
of observations and some outliers for Case 2. For Cases 5 and 6, there might
be a large cohort constructed for some reason because much more prawns were
caught on March 18th, 2003 compared to the data on February 15th and April 2nd,
2003, as shown in Figure 3.6 and Figure 3.7, respectively. For Case 16, there are
some large prawns observed on February 16th compared to January 22nd, 2004 as
shown in Figure 3.8, so there might be some reason to make the growth of banana
prawns faster than the model we have applied to.
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Figure 3.4: Result for Case 14. (a) and (f) are length-frequency data observed on
2003/12/23 and 2004/1/18. Others are probability density functions of distribution
functionsG(x,to,t), H(X, d1,01), H(X, &, 02), andF (x, 8), respectively.
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Table 3.4: Parameters and results of goodness-of-fit test for Model 1.

Case fo (SE) ri=1—To 31 (SE) 61(SE) W% (6) p-value
1 0314(0.112) 0686 11.045(1.607) 3.828(0.995)  0.040  0.186
4 0.165(0.181) 0.835 8.888(1.202) 2.765 (0.603) 0.005 0.944
8 0.000 1.000 6.788 (0.293) 4.169 (0.261) 0.043 0.360
9 0.155(0.198)  0.845 6.023(0.387) 3.779(0.575) 0015 0.774

10 0.836 (0.199) 0.164 5.444(1.005) 1.112 (1.345) 0.066  0.254
11 0.410 (0.135) 0.590 7.092 (0.995) 1.523(0.791) 0.008  0.880
13 0.073 (0.071) 0.927 10.346 (0.849) 3.246 (0.527) 0.025 0522

15 0.000 1.000 4.351 (0.146) 3.454(0.138) 0.022 0.734
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Figure 3.5: Length-frequency data for Case 2.
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Figure 3.6: Length-frequency data for Case 5.
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Figure 3.7: Length-frequency data for Case 6.
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Figure 3.8: Length-frequency data for Case 16.
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3.6 Concluding remarks

We have shown that a mixture of two probability distribution models, for a cohort
stayed in the estuary and for a cohort migrated from offshore waters to the estuary,
can be used for describing the distribution of the carapace length of banana prawns
in the estuary. Since our model is an elaborated model to reflect the changes
of the environmental factors, it makes easy to detect outlying cases where some
unknown cause exists. On the contrary, the model can explain the effects of the
changes in temperature and salinity of water caused by freshwater flows on the
growth of banana prawns for the cases where the model can be used to describe
the distribution of the carapace length. We hope that our results will be useful for
further understanding of the length-frequency data.

From a statistical point of view, how the choice of parameter estimation affects
the goodness-of-fit test would be an interesting problem for the case of discrete
distributions as well as for the case of continuous distributions. In this chapter,
the parameters are estimated by minimizing than@r-von Mises statistic for
discrete distributions with some constrains. The reason we used the minimum
distance estimator is that such an estimator chosen to minimize some distance is
known to be robust to contamination, which we will explain in Section 4.5.1, and
such property would be favorable to the situation where one wishes to give an
approximation model of the data. We will investigate how the combination of the
parameter estimation and the goodness-of-fit test works in the next chapter.






Chapter 4

Asymptotic behavior of the
Cramer-von Mises statistic when
contamination exists

In the two case studies, we have used the goodness-of-fit test to check whether
the derived probability distribution model can be used or not. In this chapter,
we investigate the asymptotic behavior of the Ceatwvon Mises statistic when
contamination exists because it often happens in practice that the data are

contaminated.

4.1 Introduction

In this chapter, we assume th¥t,X,,..., X, are independent and identically
distributed random variables from a distribution functiBnx,6) and X1y <
Xi2) < -+ < Xy are their order statistics. Here the distributiba(x, 0) is
contaminated as

Fe(%,0) — (1— %) F(x,0)+ %G(x),

where F(x,0) is a continuous distribution with a parameter vectbr=
(61,62,...,9m)T € © C R™, G(x) is the distribution of the contamination, and
€ > 0. We hereafter assume that both distributiBiis, 8) andG(x) have bounded
and smooth probability density functiorigx, 8) andg(x), respectively.

73
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In this chapter, we use

n ; 2

W2(6) = jZl{F (X),0) —#1}
as the Crarar-von Mises statistic for simplicity. This definition is slightly
different from the definition in (1.2), however, the asymptotic behaviors of the
statistics for each definition are identical. Although the asymptotic behavior
of W2(6) when no contamination exists has been thoroughly investigated as
introduced in Section 1.2, only a few works have been performed for the case
that contamination exists.

We first derive the asymptotic distribution 8f2(8) via an elementary matrix
calculation in Section 4.2.1. It follows from the result that the asymptotic
distribution of W2(8) is given as a distribution of a weighted infinite sum of
non-central chi-squared random variables with 1 degree of freedom and the
effect of contamination appears only in the non-centralities. In Section 4.2.2,
the result given in Section 4.2.1 is extended to the case where the parameters
are estimated by the minimum distance method, which is the estimation method
of finding the valued which makes the Cragér-von Mises statistic a minimum.

An approximation of the distribution of the statistic based on the result given in
Section 4.2.2 is described in Section 4.3. Some remarks on the weights in the
asymptotic distribution of the Cra@nvon Mises statistic are given in Section 4.4.
The robustness of the Cr@mvon Mises goodness-of-fit test when the minimum
distance estimator is used is investigated by extending the robustness of the
estimator and demonstrated by numerical experiments in Section 4.5.



4.2. Asymptotic distribution of the Cra@amvon Mises statistic 75

4.2 Asymptotic distribution of the Cramér-von
Mises statistic

4.2.1 When the parameters are known

We rewriteW2(8) asWZ(0) = |(n+1)SUn||? by introducing ann x (n+ 1)
matrix

1 i .
= | —— s — — |11 <1 < < k<
S (n+1<112k n+1),1_]_n,1_k_n—|—1)

and am -+ 1-dimensional vector
Un= (F (X),0) —F (Xj_1.0);1<j<n+1) .

Here we defing= (Xg),0) = 0 andF (X(n.1),0) = 1 for convenience. We also
define a diagonal matri® with diagonal elements; = b, and

bj 1= 1

where f¢(x,0) and F;1(u,0) = x are the probability density function and the
inverse function of(x,8), respectively.

A Taylor expansion of
F (X):0) —F (Xj-1).6)
=F (R (Fe (X),0).0) .0) —F (R (Fe (X(j-1).0) ,6) .0)

aroundF; (x(,-_l),e), ]=1,2,....,n+1, yields an approximation d¥,, as

. 1
B{Un —m(l—Cn)},

where

Us = (Fe (X).0) =Fe (X-1.0) 1< j<n+1)
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cn is ann+ 1-dimensional vector where the first elementris- 1)F (F1(1/(n+
1),0),0)/b; and all others are equal to 1, ahe= (1,1,...,1) . Again we define
Fe (X(O),O) =0 andF¢ (X(n+1),0) =1 for convenience.

We now see that it is enough to know the distribution of

n
(Vatan) ' An(Vatpn) = 3 Anj(Vaj + pinj)? (4.1)
=1
instead ofV2(), where
1
Vo= (Vn1,Vaz, - - 7Vnn)T =(n+ 1)/\n_%PrTSnB (Urf — _1>

n+1

and

_1
ftn = (nt, Hn2, - -, Hnn) | = An™ 2P SiBen.

Here/\, is a diagonal matrix of eigenvalu@dg; > A > -+ > App, andpb, is an
orthogonal matrix of eigenvectoysﬁ”), j=1,2,..., of §B2S!. The following
proposition gives the limits of these eigenvalues and eigenvectors. It follows from
this proposition that the eigenvalues and the eigenvectors become independent of

the contamination in the limit.

Proposition 1. For any fixed j> 0, as n tends to infinity\,; converges to\; =
1/(jm)? and\/ﬁp([z)u“ converges to j{u) = v/2sin(mju) for 0 < u < 1, which are
the eigenvalues and the eigenfunctions of the integral equation

MW = [ poluy) f(vo

where the kernel functiopp(u,v) = min(u,v) —uv, g&'}) is the kth element qun),
and x| is the minimum integer which is greater than or equal to x.

Before giving the proof of Proposition 1, we will make sure of the convergence
of the eigenvalues and the eigenvectors. The following lemma can be derived
from the theorem on page 372 of Riesz and Sz.-Nagy (1990), which states that
the eigenvalues and eigenfunctions of an integral equation are continuous with
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respect to the kernel function of the integral equation as far as the kernel function
belongs to the space

L2(v x V) = {k(x,y);//kz(x,y)dv(x)dv(y) < oo}

with the norm||-||, wherev is a sigma finite measure. We will use the following
lemma in some of the proofs through this chapter.

Lemma 2. Let Ayj and frgj)(u) be the jth eigenvalue and eigenfunction of the

= /kn(u,v)f(v)dv

andAj and f)(u) be the jth eigenvalue and eigenfunction of the integral equation

= /k(u,v)f(v)dv

If kn(X,y) is @ compact operator angk, — k|| converges to 0 as n tends to infinity,

integral equation

thenAnj converges ta; and

AR {0) H converges to 0 as n tends to infinity for

j=12,...when ﬁj) and f) are properly normalized, including their signs.

Proof of Proposition 1.We first rewrite the equatioﬁnjpgn) — SnBZSnTpEn)

the integral equation

/\nJ /knuv

with the kernel function

~n i Mnul [nv]
Kn(u,v) = m l; (1[nu12| N 1) b2 ( [nv]>l — m)

and the elgenfunctlonfn ( ) = \/_p[nu Noting that kn(u,v) can be
approximated as

1
€ () = [ (Luzs =) (s —V)b(s)ds



78 Chapter 4. Asymptotic behavior of the Crarrvon Mises statistic

whereb(s) = f(F(s,0),0)/f:(F:(s,0),0), then the convergence kf(u,v) to

1
po(u,v):min(u,v)—uv:/0 (1y>s—Uu) (1y>s—Vv)ds

is clear from Lebesgue’s dominated convergence theorem becagds<) <
(1—¢/y/n)~ for any 0< s< 1 ande? < n. The desired result follows from
Lemma 2 because the eigenvalues and the eigenfunctions of the integral equation
for the kernelog(u,v) are 1/(jm)? andv/2sin(mju), j = 1,2,.... O

We also give the following proposition for the convergenc&gf

Proposition 2. Any finite-dimensional random vect((r\/njl,vnjz,...,Vr,jp)T
converges in distribution to a normally distributed random vectgr =
Vi1, Vi, - .- ,Vjp)T with mean0 and variance § as n tends to infinity.

Proof. We first note that th&th element ofU,; can be replaced b&k/z”+1 Ej,
where Ej, | = 1,2,...,n+ 1, are independent and identically distributed
exponential random variables with mean 1. This is because of a property of order
statistics of a sample from the standard uniform distribution, for example, LePage
et al. (1981) used this property to prove the convergence of the normalized partial
sums to a stable distribution. Lejf be the(ji,k) element of/\E%PnTSnB. Then,

it is enough to show that for arty= (t,tp,...,tp) € RP,

n+1 n+1 n+1 n+1<p )
'y cjk(E e ticjk | (Bk—1)
n+l 1Ei |21 Z | Z?ﬂ Ej kzl |Z |

converges to a normally distributed random variable: t ' V' with mean 0 and
variancet ' t. It is easily seen that the Lindeberg condition for the central limit

nt1
Z (ZM;.k) Ex—1).
1 n+1

p— Z <Zt|cjk>2 { B~ 1% (50 650 (Bt \>£\/ﬁ} (\/%Cn)

theorem is satisfied for

In fact, the inequality
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implies the desired result, where the function

H (X) = E{(Ek - 1)21\Ek—1|>x}

is a monotone decreasing to Oxasicreases and

1
bk)\n 2 n |/ 2) 2
Ch = max |cjk| < max I Z Loy — .
1<I<p,1<k<n+1 1<I<p,ii<k<n+1 N+1 Yo == n+1

Combining the results in Proposition 1 and Proposition 2, we see that
551 Anj(Vaj + Hnj)? converges tg P, Aj (V| + uj)?, whereVy,Va, ...V, follow
the standard normal distribution and

1l F1(v,0 :
Hj = €A, 2/0 /O fj(u)(luzv—u){l—f%(:l(\(/’ve),)g)}dud\g i=12....

On the other hand,y_;Anjuf; converges toy$ ;Ajuf because of the
boundedness q?zlx\njuﬁj. We therefore have the following theorem. It follows
from this theorem that the contamination affects only the non-centrajities
j=1,2,..., with the proportiore.

Theorem 6. W2(6) converges toy 1 Aj (Vi + gj)? in distribution as n tends
to infinity, where Y,V»,... are independent and identically distributed random
variables with the standard normal distribution.

The asymptotic distribution &2 () for the case that no contamination exists,
which we have introduced in Section 1.2 as a known result, can be reduced from
Theorem 6. We note that our derivation of the asymptotic distribution is different
from others, for example Darling (1955) and Shorack and Wellner (1986), since
many of the results are derived as an application of the theory of the empirical
processes/n{F(x) — F(x,0)}.

A closely related result to Theorem 6 is given by Guttorp and Lockhart (1988).

They developed a general theory for an asymptotic distribution of quadratic forms
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of order statistics from a uniform distribution under contiguous alternatives, where
densities are of the form-£dn (u)/n% under the conditionfo1 n(u?du=1. Ifwe
consider the casg(F(x,0)) = g(x)/f(x,0) — 1, the same result as in Theorem 6
can be derived from their theory. However, a major difference is that Theorem 6 is
free from the constrainfoln(u)zdu < . We have used only the fact thigx, 0)
andg(x) are probability density functions in the proof.

4.2.2 When the parameters are estimated by the minimum
distance method

We hereafter assume the followings in order to derive the asymptotic distribution
of W? (é) the Cranér-von Mises statistic when the parameters are estimated by
the minimum distance method, which is the estimation method of finding the value
6 which makes the Craér-von Mises statistic a minimum.

Assumption 1 (Identifiability).
im [ {F(x60) - F(x )}dF(x.6) =0

implies the convergence 6§ t0 0 in ©.

Assumption 2 (Regularity)

* F(x,0) is differentiable with respect 6.

e ge(u,0) = %F(x,e), k = 1,2,....m, are all continuous and

square-integrable with respect toau(0, 1), where u= F(x, ).
* The matrix A= <folgj (U,0)0k(u,0)du;1 < j k< m) is of full rank.

. ﬁgj (u,0), j,k=1,2,...,m exist and are continuous forau(0,1).

* SUR<u<1

%gk(u,t‘))‘ <o foranykl=1,2,...,m.

* SURy<u<1

%gk(uﬁ)‘ <o foranyk=1,2,...,m.
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Let an(e) > an(e) > e > )Tnn_m(e) and q§”>,q§”>,...,q,ﬂ’l)m be the
eigenvalues and the eigenvectors of the matrix

Dn(6) = An? b _PIZa(6) {Zn(O)TZn(O)}lZn(O)TPn} And,
where

1 ] )
7 _ 4 1< i< <K<m].
n(6) <\/ﬁgk(n+1’0)’l_1_n’l_k_ )

Without loss of generality, we may assume tBa(i9) is of full rank for eacm, in
view of the third assumption in Assumption 2.
Since the minimum distance estimatbis the solution of

n

=

=0
0=0

for g(u,0) = (g1(u,0),92(u,0),....0m(u,0))", a Taylor expansion of the left
hand side around gives an approximation of/n (§ — 6) as

n : 2 00
i RSP/ B G (U o W
rIll_rQoE[Z {F(X(J),O) n+1} _JZlAJuJ < o,

=

thus./n (é — 0) can be approximated as

{F(X(j),ﬂ)—#l}g(lz (x(j),e),o)]. 4.2)
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Moreover, it is further approximated as
T -1 T
~(n+1){Z:(6) Z(6)}  Z4(6) 'S (4.3)

because it can be shown that(F (Xj),6),0) in (4.2) can be replaced
by g(j/(n+1),0) for j = 1,2,....n in the approximation after the tedious
calculation. Alson? (é) is asymptotically equivalent to

WE(0)~n(6-0) " {Z:(6)Z(0)} (6-0),

therefore, we see from (4.1) and (4.3) that it is enough to derive the asymptotic
distribution of

(Va+pn) ' Dn(6) (Va+ pn) = Z)\m (8) {Yaj + Hni(6) }*

instead ofN? (6), whereYy| = qJ(”)TVn andpinj(6) = q}”)Tun, j=1,2,...,n—m.

The following propositions show the limits of the eigenvalues and the eigenvectors
of the matrixDn (@) and the convergence ¥j, j =1,2,...,n—m.

Proposition 3. For any fixed j> 0, )Tnj(e) converges thj and qj(n)

qj, where)Tj andgj = (qu,qzj,...)T are the jth eigenvalue and eigenvector of

converges to

the infinite-dimensional matrix
Do ()\2)\2/ / h(u,v) fi(v )dudv,1§j,k<oo), (4.4)

where Hu,v) = 6(u—v) —g(u,0) "A~1g(v,8) with the Dirac delta functiod(u).

Proof. By taking v as a counting measure in Lemmal2,(0) andD.(8) can
be considered as compact operatord &(v). To evaluatg|D,(0) — Dw(8)||, we
first note that

IDn(0) — D (0)

<y > {dpy d,k} +2z Z { d,k} 25 Y &, @9

j=1k=1 j=1k= j=1k=n+1
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Wheredjglz') anddjy are the(j, k) element oD(0) and ofD«,(8), respectively. The

first term of (4.5) converges to O for any fixgxdl sinced},r(') converges talj, for

fixed j andk. The convergence of the second term of (4.5) to O can be shown as
follows. Since the matrix

|~ P 20(0) {24(0) 24(0)} " 2o(0) Ry

is a projection, we hav%df{(‘)

<2 )\kzj, so that

Z {zdjk +Zd }§<§1Anj) > Ank+a<z/\> % M

k=p+1 1 k=p+1
(4.6)

1
wherea = maxj kA; 2A, |djk\ Herey$ ;Aj=m 235 ,j2=1/6 and

C 2 d i Voo 1 £\ °
Z /\nj - trace<s']B ) Z Z (1]Zk_ m) bk S 6 (1— ﬁ) 5
because & f(x,0)/fs(x,0) < (1—¢&/,/n)~L for anyx ande? < n. Therefore, by
taking a large enough value pf the right hand side of (4.6) will be sufficiently
small. The convergence of the last term of (4.5) is clear from the inequality
(o] (o) 1 [ee]
d? K < = Ak |-
J'Zl k:;—i- K 6 (k_gﬂ )
SinceDy(0) is a compact operator, the proof is complete from Lemma 2.
O

Proposition 4. Any finite-dimensional random vectoYnj,,Ynj,-- -, Ynj,)
converges in distribution to a normally distributed random vector
(Yi1,Yi,,---,Yj,) with mean0 and variance } as n tends to infinity.

Proof. Using a similar argument to that given in the proof of Proposition 2, it is
enough to show that

max
1<m<p,1<k<n

Z qlmchk
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converges to 0 astends to infinity. We have

1
n o n 2 n
S dmcik| <| S amcik +{ g QFQZ} ( ; Cj2|k> (4.7)
=1 =1 l=p+1 I=p+1

and see that the first term on the right hand side of (4.7) converges tm0 as

NI

<

tends to infinity for anyp’ < n from the fact in the proof of Proposition 2 that
Cn = MaX<|<pi<k<n|Cjk| converges to O as tends to infinity. Noting that
5P, i? = 1 for anym, Si1 G < 31Lich < 1 for anyk and Lemma 2, the
proof is complete. O

From the fact thag?;&“xnj(e)ﬁﬁj(e) < 371 AnjH3;, we have the following
theorem by using the similar argument to that for Theorem 6.

Theorem 7. W? (8) converges toz‘J?":lXj (Y; + ;)7 in distribution as n tends
to infinity, where Y,Y>, ... are independent and identically distributed random
variables with the standard normal distribution and

Hi=>ajm, j=12....
=

Herey, | =1,2,..., are defined in Theorem 6.

4.3 An approximation of the distribution of the
Crameér-von Mises statistic

The derivations of Theorem 6 and Theorem 7 suggest a good way of the
approximations of the distributions ¥¥2(6) andW? (é) For the distribution
of W2(@), it follows from Theorem 6 that a distribution of a weighted finite
sum of non-central chi-squared random variables with 1 degree of freedom
z'j’:l/\nj (Vj+unj)2 would give a good approximation of the distribution of
W?2(@) for an appropriate choice qf < n, whereAnj and tnj are obtained from
the eigenvalues and the eigenvector§@2S! .

Similarly, for the distribution ofW?2(8), it follows from Theorem 7 that
a distribution of a weighted finite sum of non-central chi-squared random
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variables with 1 degree of freedom!’_ L Ani(0) {Y; + inj () }* would give a
good approximation of the distribution ¥§2(8) where)\m( ) and i (6 ) are
obtained from the eigenvalues and the elgenvectanc('B) The replacement
of 6 by 6 in the calculation is justified by the consstencyﬂufrespectwe of the
existence of contamination. In fact,

5 @)Y+ (6) =3 (@) {5 (0)
1= i=

converges to 0 in probability astends to infinity. It follows from the strong
consistency ob given by Woodward et al. (1984) and Lemma 2.

Example 1

An example for the approximation of the distribution functiow¢f (8) by that of
z?;fﬂnj (8) {Y; + [nj (8) }2 is shown in Figure 4.1. The distributida(x, 0) is

the exponential distribution with mean 0 and the distribution of the contamination
G(x) is the normal distribution with mean 7 and variance 1 in this experiment. The
sample size ism = 100. In Figure 4.1 the broken lines stand for the distribution of
z';;;“an () {Y; + [anj (8) }2. The R function “imhof ” developed by Duchesne
and De Micheaux (2010) is used for calculating the probability of the distribution
of the weighted sum of non-central chi-squared random variables with 1 degree
of freedom. The solid lines stand for the distributions o‘fr\ﬁ(é) obtained from
30,000 times random number experiments. Three gray scales, black, dark, and
light, are used for indicating different rates of contaminatiens 0,0.25,0.5,
respectively. Figure 4.1 shows that the approximation works fine even when
100. The figure also shows that the distribution slightly shifts toward the right as
g increases. Such an insensitivity\f (é) will lead us the robustness of the test
shown in Section 4.5.

Practical procedure to obtain the weights for the goodness-of-fit test

In the Crangr-von Mises goodness-of-fit test, we only need to obtain the weights
)Tnj (é) j =1,2,..., because the distribution &%, (é) when no contamination
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Figure 4.1: Distribution functions of\? (é) when the observations are
contaminated.

exists can be approximated {%‘;Txnj (é) Yj2. Noting thatB = | when no
contamination exists, a practical procedure for obtair{i}’_agj ()} would be

1. Obtain the eigenvalues and the eigenvector§,6f to makeA, andP, by
a singular value decomposition §f.

2. Find the eigenvalues of{l ~U(6)U (é)T}/\n, where U(6) is an
orthogonal matrix obtained by a singular value decompositioﬁqﬁ,ﬁ(é)
asPZa(0) =U (6)D (6)V () .

3. The squared values of the eigenvalues obtained in 2{/&(@(9) }.

Note that it is enough to obtaif, and R, only once, since those matrices are

solely determined from the constant mat8x

Example 2

Here we demonstrate the validity of the approximation through the critical values
for the Crangr-von Mises goodness-of-fit test when the parameters are estimated
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by the minimum distance method. As a simple example, consider the gamma
distribution with shap& > 0 and scal@ > 0. The probability density function is

001 gy () o( )

with @ = (v,a). The elements of,(6) is calculated by using the formulas

F1(u8)
01(u,0) = —uy(v) — uloga+/ f(x,0)logx dx
0

and

mf(l:‘l(u,e),e)

92(u,0) = —
with the digamma functio(v) = d'iv logl"(v). We have performed 30,000 times
random number simulations for the case- 2 anda = 1. For each sample, the
parameters are estimated by the minimum distance method and the critical value
for the significance levedr is obtained from the distribution q?;T)\_nj (6) YZ.

The R function “gchiapprox” developed by Tong et al. (2010) is used for obtaining
the critical value of the distribution of the weighted sum of chi-squared random
variables with 1 degree of freedom. Table 4.1 shows the proportion of acceptance
of the null hypothesis in the 30,000 times random number simulations forceach
andn = 50,100,150,200. It shows that the proportion is close to thas far as

a > 0.8 even ifn = 50.

Table 4.1: Validation of the approximation in the case of the gamma distribution.

n\a 0.8 0.85 09 095 0.99
50 0.828 0.872 0.918 0.960 0.992
100 0.814 0.862 0.909 0.956 0.991
150 0.810 0.859 0.906 0.955 0.991
200 0.808 0.857 0.905 0.954 0.990
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4.4 Equivalence of thg weights in the asymptotic
distribution of W, (6)

In this section, we show that the weigr{tgj} in the asymptotic distribution of

Wh (é) given in Theorem 7 can be obtained as the eigenvalues of two different
integral equations. This equivalence implies that the weights can be obtained by
solving the infinite-dimensional matrix or the integral equations. In our result, the
infinite-dimensional matrix is derived as the limit of the finite-dimensional matrix.
Therefore, it is a natural way to use the eigenvalues of the finite-dimensional
matrix as an approximation of the weights, which we have demonstrated in the
previous section.

As we have introduced in Section 1.2, the asymptotic distribution of the
Cranér-von Mises statistic when the parameters are estimated by a general
estimation method and no contamination exists is well known. Along with the
known result, the asymptotic distribution of the statistic when the parameters are
estimated by the minimum distance method is given as a distribution of a infinite
weighted sum of chi-squared random variables with 1 degree of freedom, where
the weights are the eigenvalues of the integral equation

1
)\f(u):/o p(u,v)f(v)dv (4.8)

with the kernel function
P(u,v) = po(u,v) —g(u,0) "h(v) —h(u) g(v,0)+g(u,0) ' g(v,6). (4.9)

Herepp(u,V) is given in Proposition 1,

n—oo

h(u) = lim E [\/ﬁ{%.ilF(Xﬁe)<U_u} {\/ﬁ(é_e) }] ’
and

z=limnE{(6-6)(6-0) }.

n—oco
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For example, Beran (1984) gave an explicit representatiqgm(efv) in the case
of the minimum distance estimator.

We first give the following lemma to prove that the eigenvall{lag} of the
matrix D« (@) in Proposition 3 are also those of the integral equation (4.8).

Lemma 3.
1,1
p(st)= [ [ (s uhtt,v)pouv)dudy
0 Jo
where Hu, V) is given in Proposition 3.

Proof. We first note that

h(u) = { u)A~ /W vedv} A /pouv g(v,0)dv,

whereu = F(x,0) andw(u) is a Brownian bridge and the limit of the empirical
process,/n{F,(x) — F(x,0)}. Next we see that

s—Al [/ / E{w(u)w(v)} g(u,0)g (VO)Tdud% AL

—A! {/Ol/olpo(u,v)g(u,0)g(v,0)Tdudv} AL

because,/n (9—0) converges toA—lfolw(u)g(u,B)du. The desired result
follows from (4.9) and the representationshgiu) andX given above. O

Proposition 5. {)_\J-} are also the eigenvalues of the integral equation (4.8).

Proof. It is easily verified that the function

- /1h(u,v) { 3 A fk(v)ql((j)}dv
0 K=1

is the solution of (4.8) foA = )Tj from Lemma 3 and the fact thap(u,v) can be
written by usingf;j(u), j = 1,2,..., in Proposition 1 as

Po(u,v) = Z Ajfi(u)fj(v). (4.10)
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For the proof of the converse, we first note that the kernel fungionv)
is a compact operator because it is bounded and continuous. The integral
equation (4.8) thus has only discrete bounded speﬁg@ ;\2 > .... Denote
the corresponding eigenfunctions €1$u), f}(u),..., then it becomes clear that
the infinite-dimensional vectay; With the elements

gl )\2/ / f(Wh(uv) f;(Vidudy  k=1,2,...,
is also the solution of (4.4) fox = )\j from Lemma 3 together with (4.10). [

It is also interesting to note that a simpler kernel function of the integral
equation instead of (4.9) is available in the case of the minimum distance
estimator. The reason is thgtn (9—0) can be approximated by a simple
function of the empirical process.

Proposition 6. The{)Tj} are also the eigenvalues of the integral equation

1
Af(u) = /O Z(u,v)f(v)dv (4.11)
with the kernel function
Z(U,V) = po(U,V) - h(U)Tg(V,O),
where
1
h(u) = AL /0 po(u,v)g(v, 0)dv.

Proof. Similarly as in the proof of Proposition 5, the function

© 1
= 3 AZfi(u)g)
k=1
is the solution of (4.11) foA = A_j, and

qf( :)\2// h(u,v) f(v)dudv

is the solution of (4.4) foA = /\j, Wherefk(v), k=1,2,..., are the eigenfunctions
for (4.11) with Ay > A2 > ---. Therefore,{A;} are also the eigenvalues of the
integral equation (4.11). m
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4.5 Robusthess

In this section, we investigate the robustness of the @raran Mises statistic
when the parameters are estimated by the minimum distance method. Several
theoretical results are developed from the robustness of the minimum distance
estimator to that of the test statistic. To compare with the case that the parameters
are estimated by the maximum likelihood method, the numerical experiments are
presented.

4.5.1 Minimum distance estimators and their robustness

In general, a minimum distance estimator is referred as “an estimator chosen
to minimize a certain distance of two functions.” General review and the
bibliography of the minimum distance estimator can be found in Parr (1981).
Because of its general name, there are various kinds of estimators called
“minimum distance estimator.” A fundamental difference comes from functions
to be measured for the distance. In this context, we focus on distribution functions,
that is, the distance between an empirical distribution function and a distribution
function is focused. For the distance based on probability density functions, see
Basu et al. (2011) for example.

Various characteristics of a minimum distance estimator which is chosen to
minimize a distance based on the empirical distribution funchgix) and the
distribution functionF(x,0) are investigated. Sahler (1970) gave conditions
under which minimum distance estimators exist and are consistent. Bolthausen
(1977) showed the weak convergence of minimum distance estimators for general
parameters than location parameters and other norm than integral-type ones.

One of the advantages of using minimum distance estimators is their
robustness. Robustness is a word widely used in many senses and there
are many results showing the robustness of minimum distance estimators. In
Parr and Schucany (1980), Monte Carlo results show that minimum distance
estimators are competitive with other estimators in the sense of the variance of
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the location parameter of a symmetric distribution. A mathematical framework
for describing the robustness of minimum distance estimators is constructed by
Millar (1981). Donoho and Liu (1988) showed that minimum distance estimators
are “automatically” robust, in the sense of the stability of the quantity estimated.

In addition to the results for general minimum distance estimators described
above, the robustness of the minimum distance estimator which is chosen to
minimize the Crarar-von Mises statistic is also studied by many researchers.
Woodward et al. (1984) demonstrated by numerical experiments that the minimum
distance estimator is better than the maximum likelihood estimator under
symmetric departures from normality of each component in normal mixture
models. Since then, the minimum distance estimator is often used in practice for
mixture models to avoid instability of the identification of the distribution due to
small number of outlying observations (Beutner and Bordes, 2011j&Barado
and Marin, 1998). The robustness based on the influence function for complete
and grouped data is considered in Duchesne et al. (1997). Moreover, the minimum
distance estimator which is chosen to minimize the Grawon Mises statistic
shares the same loss function with the goodness-of-fit test if we adopt the
Craner-von Mises statistic as a goodness-of-fit test statistic. It seems natural to
employ the same loss function for both parameter estimation and a goodness-of-fit
test.

4.5.2 Millar's robustness and the minimum distance estimator

We first introduce the result on the robustness given by Millar (1981) because it
is suitable for considering the relationship between a minimum distance estimator
and a test statistic. Leéd be a finite measure oR* and defing - |y and (-, )

to be norm and inner product df?(H). Millar (1981) considered a risk of
parameter estimation when observations are from a contaminated distribution
Gnq(X) = F(x,0) + Z=0(x), whereq is in N(c) = {q € L*(H); [q(x)dH(x) < ¢}

and chosen so th&@ig(x) is a distribution function, and proved that under suitable
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regularity conditions,

liminf sup n/|F )—F(.0)|5dCh > E{|m(F(.0)R}  (412)
n 6 geN(cn)

for any increasing sequencg. Here an operatort is an orthogonal projection
in L2(H) to the subspacg = {(6,—0,&);6, € R™}, where| - | and (,) are the
Euclidean norm and inner product addis a function such thatd, — 0,&) €
L?(H) for all 8, and

IF(-,6n) —F(-,0) — (6n—6,&) |y = 0(|0n — 0))
for any 8, which goes t@#. Theé* is the pseudo true value which attains
inf[Gg(-) — F (-.0)]y = |Gna(-) — F (.6

andw(u) is a Brownian bridge. Millar (1981) defined any sequence of estimators
6, for which the limiting minimax risk,

lim sup n/|F 0*) — Gn)deﬂq

in this case, is equal to the lower bound of (4.12) as “H-robust” and showed that
an estimatop’ that attains

Nt [Fa-) = F (- 6) s = [Fa) = F (- 8)]

is “H-robust.” The following lemma shows that the lower bound of (4.12) can be
written in other form.

Lemma 4.
2 : ! T 2
E{Imw(F (- 0)} = im nE | (65-6)"g(F(x.0).0) ¢+,  (413)
wherefy is the estimator which satisfies

and F9(x) is the empirical distribution function for observations fronixe9).
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Proof. SinceF9(x) is the empirical distribution function for observations from
F(x,0), the empirical process/n{FY(x) —F(x,0)} converges to a Brownian
bridgew(F (x, 8)) so that the left hand side of (4.13) is equal to

lim nE {7 (F9() F(,0)) [} }.
()~ F(0)) = (FA() ~F(~00)) + TT(F (-, 06) —F(-,0))  (4.14)

and it is shown as follows that the first term on the right hand side of (4.14)
converges to 0 astends to infinity. Noting thafl; satisfies

(F(-) —F(-60), 9(F(-.6).60)) =0,

it follows that

<Fr?() - F('796)7 F('706) - F('76>>

= (FS()~F(.80). (65-6) a(F(-.8).60) + (|6 b))

converges to 0 as tends to infinity. Then the first term on the right hand side of
(4.14) converges to 0 astends to infinity becaussa is the orthogonal projection
to 2.

The second term on the right hand side of (4.14) is asymptotically equal to

n((e(’)—e)T;—eF(x,O)) — (65—6) ' g(F(x.6),0)

from a Taylor expansion
F(x,8) —F(x.60) = (65—6) ' g(F(x.6),8)+0(|6])

and the proof is complete. m
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In the case of the minimum distance estimator

The result of Lemma 4 is easily interpreted in the case that observations are from
the contaminated distributioRs (x,0) and the parameters are estimated by the
minimum distance method, which is the estimation method of finding the value
6 which makes the Cra@r-von Mises statistic a minimum. Consider the case
H(x) = F(x,0) and Gng(X) = Fe(x,0) with q(x) = £ {G(X) —F(x,6)}, then the
following theorem is derived from Millar’s result and Lemma 4.

Theorem 8. For any increasing sequencg,c

lim inf sup nEFE [/ {F(x,0%)— (x,é)}zdF(x,H)

N2 § o ¢, G

//pouv (u,0)A~ g(vO)dud\( (4.15)

where@* attains
igf/_Z{Fg(x,G) _F(x,0))2dF(x,0) = /_Z{Fg(x,e) CF(x,07)}2dF(x,0).

Proof. It follows from Lemma 4 that we only need to calculate

lim nE U_o;{(é—e)Tg(F(x,e),e)}zdF(x,e)] )

n—00

where 6 is the minimum distance estimator and estimated from observations
following the distributionF(x,0). The proof is complete from the fact that
VN (6 —6) converges taA~* [§w(u)g(u,8)du, which is also used in the proof
of Lemma 3.

O

As shown by Millar (1981), the minimum distance estimaias robust in this
framework of the robustness. The following result also shows that the limiting risk
for 6

lim nEf, {/m {F(x,0%) —F(x,é)}zdF(x,O)

Nn—-00

does not depend dB(x) ande.
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Remark 1. For the minimum distance estimatéy

n—oo

lim nEx, [/w [F(x,6") — F(x,6)}2dF(x,0)

11
:/0 /0 po(u,v)g ' (u,8)A1g(v,0)dudv (4.16)

For the minimum distance estimator, it follows from Remark 1 that the
limiting risk attains the lower bound (4.15), however, it does not always attain for
other estimators. As an example, we consider an M-estinatahich satisfies

PRIREY (Xj,8) =0, wherey(x,6) is am-dimensional function and differentiable
with respect t@. M-estimators are proposed by Huber (1964) as a generalization
of the maximum likelihood estimator.

Remark 2. For the M-estimatoﬂ_,

lim e, U_Z{F(x,@*)—F(x,e_)}zdax,e)]

1
- / gT(u, 0) {A’quTAfl —AflquLPIl
0
~Witrg AT W (Wl Wit g(u)dy (417)
whereq andr are m-dimensional vectors such that

1
q= 8/0 (G(F1(u,0)) — u} g(u,0)du

_— e/i{g(x) —(x,0)} 4 (x,0)dx

andW¥; andW, are mx m matrices such that

© 9
Wy — /_m e 0)dF (x.6)

W, — /Zip(x,e)zp(x,G)TdF(x,O).

It can be seen from Remark 2 that the limiting risk for the M-estimator (4.17)
depends o (X) ande, while the limiting risk for the minimum distance estimator
(4.16) does not. The difference is demonstrated in the following example.
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Example 3

In this example, we consider the case wHe(g, 8) = ®(x— 6p) with 8 = 6y and
G(x) = ®(x— 61), whered(x) is the distribution function of the standard normal
distribution. Then, we have

Fe(x,0) = (1— i) D(x— Bp) + = D(x— By),

va va

which is the normal distribution contaminated with another normal distribution.
We here note that the results on the calculations of the distribution function and
the probability density function of the normal distribution given by Owen (1980)
and Patel and Read (1996) are used in the following calculations. As shown in the
previous, the lower bound (4.15) does not depen(x) ande and becomes

Vize{ [ [" min(@co. 00 @ormdndy- o f. @19

where@(x) is the probability density function of the standard normal distribution.
Here we consider a simple example of M-estimators, such ¢{atf) =

[X— G]Eb, where[y]tib =y for |y| < b and O otherwise. Then the limiting risk

1 1 3 V26, 1
\/1_2n<d>(b)—q>(—b)+£2 _\/;{cD(W)_E}

L 9(b+62) = @(=b+65) — B {P(b+6) — P(—b+ 92)}] z)
®(b) — ®(-b)

is given as

with 6, = 6y — 61. In particular, the limiting risk for the maximum likelihood
estimator, which is the case= « in the estimator given above, is given as

EC(E) )

Figure 4.2 illustrates the limiting risk curves for the minimum distance

1+ €2

1
Vi

estimator (MDE), the maximum likelihood estimator (MLE), and the
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M-estimators (M b= 2), M (b = 3), M (b = 4) ) againste and |6y — 6;
respectively. For both cases the limiting risk curves for the minimum distance

estimator, which is given by (4.18), are obtained by a Monte Carlo simulation with
1,000,000 replications. These results show that the limiting risk of the minimum
distance estimator is a little larger than those of other estimators for very small
¢ and for very small6y — 64|, however, the limiting risk curve stays wheror

|8o — 61| increases, while those of other estimators increase, especially svhen

increases.

4.5.3 The Craner-von Mises statistic when an estimator is
plugged in

Here we investigate the property of the Cé&mvon Mises statistic when
contamination exists using the robustness of the parameters, which we have shown

in the previous section. Noting that for any estimaowe have

n/w (Fa(X) — F(x,07)}2dF (x,6)

- n/z {Fa(x) = F(x,6)}° dF (x,0) + & (6) — & (6),
where
& (6) :n/:{F(x,O*)—F(x,é)}zdF(x,O)
and
& (6) = 2n/_°; [Fa(x) — F(x,0)} {F(x,6") — F (x,6) }dF(x,0),
the Cranér-von Mises statistiey? (9) can be divided into three parts as
W2(0) =n [ (R0 —F(x 0)}2dF(60) ~ £1(0) + £2(0).  (419)

We can see that the first term on the right hand side of (4.19) is independent of the
estimatoré and the limit of the expectation @& (5) is the limiting risk, which

we have evaluated in the previous section.
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Risk

Figure 4.2: Comparisons of the limiting risks for the minimum distance estimator,
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the maximum likelihood estimator, and the M-estimators.
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If the minimum distance estimatdr is used, the limit distribution o, (é)
is independent o6(x) and € and the limit of the expectation @ (é) is given
as a constant, as shown in Remark 1. In addition, we E@(/é) = 0 since the
minimum distance estimateér satisfies

/_0:0 {Fa(x) —F (x.0) } g(F(x,0),0)dF(x,0)| ,_; = 0.

Therefore, the Cradr-von Mises statistic when the parameters are estimated by
the minimum distance method can be divided into two parts; the term independent
of the estimator and the term independenGx) ande.

These characteristics are distinctive of the estimator bec&L(s‘E) usually
depends o1G(x) ande andé; ( ) is not always 0. We can see them in the case of
an M-estimato® as an example. As we have shown, the limit of the expectation
of & (0) is (4.17). Note thaf (0 ) is asymptotically equal to

20| (6°-8) [ 1R - Fe(x.0)a(F (. 0),0)dF (x.6) 1 £:(6)|.

If +(x) is chosen ash to follow the normal distribution asymptotically,
\/_(0* —0_) converges to the normal distribution with meantq — Wflfr and
varianceW; 'w,w 1 andé; (6 ) depends oiG(x) ande.

4.5.4 Power and robustness

In this section, via Monte Carlo simulations we compare the @raron Mises
goodness-of-fit tests when the parameters are estimated by the minimum distance
method and by the maximum likelihood method.

In the following comparisons, we set as follows. The sample size here
is fixed at 200, the number of the replications in Monte Carlo simulations is
3,000, and the significance level is 0.1. Testing exponentiality indicates testing
the goodness-of-fit of the exponential distribution when the mean parameter
is estimated and testing normality indicates testing the goodness-of-fit of the
normal distribution when only the mean parameter is estimated and the variance
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parameter is fixed as 1 as the known parameter. The solid line in each panel is for
the case of the minimum distance estimator and the dotted line is for the case of
the maximum likelihood estimator.

The power curves when no contamination exists are drawn in Figure 4.3.
Figure 4.3 (a) shows the power curves for testing exponentiality when
observations are from the gamma distribution with shapand scale 1 and
Figure 4.3 (b) shows the power curves for testing normality when observations
are from Student’s-distribution, which has the probability density function

with the parametev = 1/d, whered is the number of degrees of freedom. The
power curves are drawn against the shape parameteFigure 4.3 (a) and the
parameterv = 1/d in Figure 4.3 (b), respectively. These results suggest that
there is no significant difference between the minimum distance and the maximum

likelihood estimator when no contamination exists.

On the other hand, the rejection probability of the Cemiwon Mises
goodness-of-fit test of a distributioR (x,6) when the observations follow
the distribution F¢(x,0) are shown in Figure 4.4. The distribution of the
contaminationG(x) is the normal distribution with mean 7 and variance 1.
Figure 4.4 (a) is for the case testing exponentiality when the distrib&t{an))
is the exponential distribution with mean 1 and Figure 4.4 (b) is for testing
normality when the distributiofr (x,0) is the standard normal distribution. It
is observed from both figures that the rejection probability quickly increases for
the maximum likelihood estimator, while it does not for the minimum distance
estimator. These results indicate that the use of the minimum distance estimator

makes the goodness-of-fit test robust to contamination.
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Figure 4.4: Rejection probabilities against the rate of contamination
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4.6 Concluding remarks

The asymptotic distributions of the Cré&mvon Mises statistic are derived when

the observations are contaminated for both cases where the parameters are known
and where the parameters are estimated by the minimum distance method. These
results are consistent to the known result when no contamination exists. For both
cases, the asymptotic distribution is given as a distribution of a weighted infinite
sum of non-central chi-squared random variables with 1 degree of freedom and
the effect of contamination on the asymptotic distribution appears only in the
non-centralities. Moreover, the derivations of the asymptotic distributions suggest

a simple procedure to obtain the approximation of distribution of the €raon

Mises statistic.

We also show that the extension of the Millar’s result on robustness of the
minimum distance estimator associates with the robustness of theeCvam
Mises goodness-of-fit test. Numerical experiments indicate that the use of
the minimum distance estimator makes the test less sensitive to contamination,
although the power of the test stays almost the same as that for the maximum
likelihood estimator. Such insensitivity would be harmful when the aim of the test
is to detect the existence of contamination. However, it becomes an advantage
if the aim of the test is to check whether the underlying probability distribution
model can be used or not. It often happens in practice that the hypothesis testing is
not a goal but the beginning of an analysis. In such case the robust goodness-of-fit
test, which is insensitive to small number of contaminations, would be preferred.






Chapter 5

Conclusion

We have investigated the role of the goodness-of-fit test of distributions from two
case studies and the asymptotic behavior of the €raran Mises statistic when
contamination exists.

In the first case study, the trawling effect is verified by using the gamma
distribution, which is derived as the equilibrium distribution of the stochastic
growth model, as a model of the weight of animals on seabed. To examine the
goodness-of-fit of the gamma distribution to the weight distribution, we have used
the extended version of the Crémvon Mises statistic because the observations
are independent but not identically distributed. It is shown that the gamma
distribution can be used for the model of the weight distribution before trawling
for 57 cases out of 80. For 47 cases with large enough sample size of the data
after trawling out of the 57 cases, we have classified the change of the weight
distribution into three types: unaffected, lighter, and changed. The classification
is based on the goodness-of-fit test of the gamma distribution with the parameters
estimated from the observations before trawling and on the direction of the change
of the weight distribution observed from the P-P plots. The results show the effect
of trawling on the weight distribution of animals on seabed through the change of

distribution.

In the second case study, a mixture distribution model is derived for the
carapace length of banana prawns to investigate the effect of freshwater flows.

105
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The model is a mixture of two kinds of probability distributions, for a cohort
stayed in the estuary and for a cohort migrated from offshore waters to the estuary,
derived by combining models for the carapace increment and for the survival
rate. It is shown that the model can be used for 15 cases out of 19 by using
the Crangr-von Mises statistic for discrete distributions. For these 15 cases, the
model can explain the effects of the changes in temperature and salinity of water
caused by freshwater flows on the growth of banana prawns.

For both case studies, the goodness-of-fit of the probability distribution model
is examined by the Craen-von Mises type statistics. As described in both case
studies, the goodness-of-fit test is not a goal but the beginning of the analysis.
For example, in the first case study, the goodness-of-fit test of the gamma
distribution to the weight distribution of animals on seabed before trawling is just
for validating whether the model can be used or not to give an approximation of
the weight distribution. This is because the purpose of the analysis is to investigate
the effect of trawling, not to judge whether the weights of animals on seabed
follow the gamma distribution or not. From this point of view, the robustness
of goodness-of-fit test to contamination would be attractable when one wishes to
give an approximation model to analyze the data.

Theoretical studies of the asymptotic behavior of the Giawon Mises
statistic when contamination exists provide a key to the robust method of the
goodness-of-fit test. The asymptotic distribution of the Grarron Mises statistic
for contaminated data is derived as a distribution of a weighted infinite sum of
non-central chi-squared random variables with 1 degree of freedom for both cases
when the parameters are known and when the parameters are estimated by the
minimum Cran&r-von Mises distance method. The effect of the contamination
appears only in the non-centralities. We extended the mathematical framework of
the robustness of the minimum distance estimator to that of the goodness-of-fit test
statistic. The theoretical results and the numerical experiments show that using
the minimum distance estimator makes the Gzaon Mises goondess-of-fit test
robust.
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Goodness-of-fit test is often investigated from the view point of detecting
the existence of contamination, so that robust property is not much of interest.
However, the robustness would become a good property when the aim of the
test is to check whether the probability distribution model is applicable or not,
for example, in the two case studies we have explored. This is because it often
happens in practice that there is small number of contaminations in the data and
the goodness-of-fit test lies the beginning of the analysis. We hope that our results
will help to connect between theoretical studies and practical demands.
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Appendix A

Table A.1: Goodness-of-fit of the gamma distribution before trawling.

Case Class Family Scientific name Region n
1 Hydrozoa Hydroid OPNO 006 East 12
2 Hydrozoa Hydroid OPNO 156 West 20
3 Hydrozoa Hydroid OPNO 184 East 25
4 Hydrozoa Hydroid OPNO 201 East 6
5 Gymnolaemata Flustridae Retiflustra cornea East 18
6 Gymnolaemata Cheilostomata sp OPNO 142 West 7
7 Gymnolaemata Cheilostomata sp OPNO 142 East 17
8 Gymnolaemata Scrupocellaria sp OPNO 215 East 7
9 Gymnolaemata Bryozoan OPNO 142a West 11
10 Gymnolaemata Bryozoan OPNO 142b West 21
11 Gymnolaemata Bryozoan OPNO 171a East 16
12 Gymnolaemata Bryozoan OPNO 171b East 16
13 Gymnolaemata Bryozoan OPNO 203 East 21
14 Gymnolaemata Bryozoan OPNO 216 East 9
15 Polychaeta Tubeworm OPNO 006 East 21
16 Bivalvia Nuculidae Leionucula superba East 6
17 Bivalvia Glycymerididae  Melaxinaea vitrea East 14
18 Bivalvia Malleidae Malleus (Malleus) malleus East 25
19 Bivalvia Pectinidae Amusium pleuronectes East 9
20 Bivalvia Pectinidae Annachlamys flabellata East 13
21 Bivalvia Spondylidae Spondylidae OPNO 193 East 18
22 Bivalvia Cardiidae Cardiidae OPNO 151 West 9
23 Bivalvia Veneridae Lioconcha sp OPNO 004 East
24 Bivalvia Veneridae Placamen sp OPNO 156 West 10
25 Gastropoda Neritidae Neritidae OPNO 142 West 10
26 Gastropoda Modulidae Modulidae OPNO 151 West 9
27 Gastropoda Strombidae Strombus sp OPNO 142 West 13
28 Gastropoda Strombidae Strombus sp OPNO 150 West 9
29 Gastropoda Muricidae Chicoreus sp OPNO 184 East 24
30 Gastropoda Muricidae Murex sp OPNO 002 East 8
31 Gastropoda Muricidae Murex sp OPNO 172 East 9
32 Gastropoda Cerithiidae Cerithiidae OPNO 142 West 21
33 Gastropoda Cancellariidae Cancellariidae OPNO 151 West 10
34 Gastropoda Architectonicidae Architectonica sp OPNO 151 West 8
35 Gastropoda Smaragdinellidae Smaragdinellidae OPNO 151 West 15
36 Asteroidea Luidiidae Luidiidae OPNO 006 East 22
37 Asteroidea Astropectinidae Astropectinidae OPNO 006 East 18
38 Asteroidea Astropectinidae Astropectinidae OPNO 142  West 26
39 Asteroidea Goniasteridae Stellaster sp OPNO 006a East 9
40 Asteroidea Goniasteridae Stellaster sp OPNO 006b East 9




Case (again) shape(SE) scaled (SE) W2 (é) p-value
1 0.674(0.236) 3.712(1.774) 0.045  0.653
2 1.140(0.321)  0.967(0.339) 0.111  0.091x
3 0.349(0.088) 6.127(1.651) 0.075  0.409
4 1.190(0.614) 1.366(0.871) 0.125  0.042x
5  1.480(0.449) 0.439(0.158) 0.067  0.335
6  1.024(0.483) 1.168(0.702) 0.120  0.059x
7 2.344(0.754) 1.947(0.698) 0.102 0.107
8  0.912(0.425) 2.124(1.300) 0.047  0.610
9  0.852(0.315)  4.030(1.989) 0.035  0.793
10 0.686(0.180) 13.502(5.021) 0.163 0.02%1
11 1.098(0.346) 2.918(1.120) 0.102 0.130
12 0.346(0.098) 546.803(279.095) 0.100 0.174
13 1.313(0.366) 24.512(8.162) 0.068 0.330
14 1.382(0.589) 14.952(7.657) 0.050 0.519
15  2.687(0.814)  0.062(0.019) 0.116  0.144
16  3.102(1.712)  0.721(0.423) 0.060  0.420
17  2.560(0.922)  3.187(1.210) 0.397  0.000%
18 1.233(0.331) 6.478(1.814) 0.163 0.036 *
19 16.855(7.887) 0.783(0.370) 0.079 0.231
20 3.235(1.233) 3.514(1.385) 0.052 0.551
21 2.342(0.755) 3.467(1.154) 0.056 0.540
22 12.990(6.055) 0.353(0.167) 0.026 0.917
23 4.320(2.254) 0.660(0.354) 0.031 0.895
24 13.680(6.066)  0.117(0.053) 0.067  0.355
25 3.780(1.628) 0.496(0.226) 0.067 0.326
26 26.664(12.517)  0.064(0.030) 0.038  0.726
27 5.442(2.102) 0.936(0.367) 0.035 0.815
28  4.147(1.915) 0.752(0.355) 0.051  0.579
29 2.449(0.686) 1.211(0.351) 0.130  0.057x
30 1.613(0.742) 1.775(0.940) 0.070 0.286
31 5.524(2.557) 0.600(0.284) 0.029 0.889
32 10.651(3.266) 0.077(0.024) 0.100 0.182
33 35.112(15.636)  0.043(0.019) 0.050  0.514
34 3.794(1.834) 1.459(0.740) 0.061 0.396
35  1.215(0.424)  0.779(0.278) 0.584  0.000%
36 1.603(0.465) 0.655(0.197) 0.038 0.771
37  2.804(0.898)  0.726(0.243) 0.131  0.055%
38  0.319(0.081) 4.116(1.154) 0.287  0.000+
39  0.492(0.193) 132.040(78.797) 0.124  0.079
40 4.852(2.231) 6.010(2.842) 0.073 0.325
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Table A.1: (continued).

Case Class Family Scientific name Region n
41 Asteroidea  Goniasteridae Stellaster sp OPNO 118 West 6
42 Asteroidea  Goniasteridae Stellaster sp OPNO 118 East 22
43 Ophiuroidea Ophiuridae Ophiuroidea OPNO 171b East 9
44 Ophiuroidea Ophiuridae Ophiuroidea OPNO 171c East 19
45 Ophiuroidea Ophiuridae Ophiuroidea OPNO 177a East 7
46 Ophiuroidea Ophiuridae Ophiuroidea OPNO 006 East 24
47 Echinoidea  Temnopleuridae Temnopleuridae OPNO 142 West 18
48 Echinoidea  Temnopleuridae Temnopleuridae OPNO 203a East 18
49 Echinoidea  Temnopleuridae Temnopleuridae OPNO 203b East 19
50 Echinoidea Laganidae Laganidae OPNO 142a West 18
51 Echinoidea Laganidae Laganidae OPNO 142a East 12
52 Echinoidea Laganidae Laganidae OPNO 142b West 6
53 Echinoidea  Brissidae Brissidae OPNO 006 East 14
54 Crustacea Penaeidae Metapenaeopsis novaeguineae West 11
55 Crustacea Penaeidae Parapenaeopsis cornuta West 14
56 Crustacea Penaeidae Parapenaeopsis tenella West 8
57 Crustacea Diogenidae Dardanus imbricatus West 17
58 Crustacea Diogenidae Dardanus imbricatus East 12
59 Crustacea Paguridae Paguridae OPNO 142 West 11
60 Crustacea Dorippidae Dorippe sp OPNO 142a West 9
61 Crustacea Leucosiidae  Leucosia whitei East 8
62 Crustacea Leucosiidae  Leucosia ocellata East 17
63 Crustacea Leucosiidae Leucosia sp OPNO 142 West 13
64 Crustacea Leucosiidae Arcania sp OPNO 008 East 16
65 Crustacea Matutidae Matuta inermis West 11
66 Crustacea Matutidae Matuta granulosa West 14
67 Crustacea Majidae Hyastenus sp OPNO 214 East 9
68 Crustacea Majidae Hyastenus sp OPNO 054 West 6
69 Crustacea Majidae Majidae OPNO 154b West 8
70 Crustacea Parthenopidae Aulacolambrus hoplonotus East 14
71 Crustacea Parthenopidae Parthenope nodosus West 16
72 Crustacea Parthenopidae Parthenope longispinus East 7
73 Crustacea Parthenopidae Parthenope sp OPNO 060 West 10
74 Crustacea Portunidae Portunus (Portunus) pelagicus West 8
75 Crustacea Portunidae Portunus (Monomia) rubromarginatus\West 7
76 Crustacea Portunidae Portunus (Xiphonectes) hastatoides East 7
77 Crustacea Pilumnidae Pilumnus pugilator East 9
78 Ascidiacea  Clavelinidae Clavelina sp OPNO 142 West 16
79 Ascidiacea  Ascidacea Ascidian OPNO 211 East 11
80 Ascidiacea  Diazonidae Rhopalaea crassa East 9




Case (again)

shape(SE)

scaled (SE) W2(8)

41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

0.641(0.319)
0.468(0.126)
2.149(0.973)
5.041(1.622)
2.683(1.359)
1.415(0.394)
1.742(0.561)
0.684(0.207)
2.388(0.748)
1.773(0.571)
6.750(2.722)
5.018(2.858)
1.007(0.354)
1.728(0.695)
1.213(0.420)
4.142(2.010)
1.382(0.443)
4.953(1.966)
3.405(1.411)
0.528(0.211)

27.462(13.660)
69.968(23.958)

2.144(0.812)
6.768(2.356)
1.851(0.745)
0.743(0.245)
1.760(0.770)
10.607(6.030)
4.163(2.024)
1.136(0.395)
1.414(0.474)
6.572(3.441)
7.953(3.498)
0.229(0.091)
0.690(0.314)

22.983(12.203)

5.297(2.443)
0.443(0.147)
2.655(1.093)
2.825(1.265)

31.123(20.705)

14.756(4.703)
0.849(0.397)
0.354(0.115)
2.718(1.497)
1.029(0.296)
0.320(0.106)

60.401(20.608)

5.049(1.645)
0.613(0.203)
0.048(0.019)
0.259(0.149)
3.693(1.343)
0.194(0.084)
0.582(0.227)
0.066(0.033)
1.510(0.523)
0.479(0.198)
0.126(0.054)
6.585(3.644)
0.049(0.025)
0.038(0.013)
2.001(0.779)
0.050(0.018)
4.211(1.844)

26.130(11.074)

1.748(0.862)
0.031(0.018)
0.044(0.022)
2.426(0.940)
2.895(1.026)
0.816(0.439)
0.226(0.101)

95.524(68.991)

3.327(2.141)
0.027(0.014)
0.204(0.096)
3.419(1.145)
2.501(1.064)
9.045(4.392)

p-value
0.087 0.186
0.142 0.048
0.065 0.450
0.151 0.02%
0.064 0.356
0.058 0.499
0.023 0.970
0.128 0.079
0.075 0.293
0.327 0.008
0.051 0.610
0.035 0.868
0.041 0.826
0.110 0.09%
0.128 0.070
0.030 0.899
0.100 0.162
0.058 0.421
0.053 0.559
0.053 0.544
0.071 0.293
0.130 0.056
0.082 0.285
0.136 0.052
0.171 0.009
0.184 0.012
0.037 0.767
0.027 0.924
0.040 0.721
0.050 0.576
0.064 0.425
0.091 0.159
0.038 0.770
0.266 0.002
0.091 0.172
0.036 0.781
0.045 0.648
0.049 0.699
0.058 0.508
0.117 0.060
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