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Abstract

Realization of quantum information processing devices including quantum com-

puters is one of the most highlighted projects physicists are pursuing today. When

realized, quantum computers will be composed of multiple elements such as pro-

cessors, memories, communication lines, etc. just like today’s computers. While

superconducting qubits are excellent candidates as quantum processors, hydrogenic

donors in silicon are considered very promising as quantum memory qubits. Among

them, bismuth (Bi) donors in silicon are important since they demonstrate long co-

herence (quantum memory) time and, in the low enough magnetic field needed by the

superconducting qubits to operate, the energy separation between |0〉 and |1〉 states

is compatible with that of superconducting qubits making them connectible to each

other.

The present thesis shows the successful manipulation and the electrical detection

of Bi donor spins in silicon at arbitrarily chosen magnetic fields, establishing a novel

way to readout electron and nuclear spins of Bi in the zero-field limit. Moreover, the

hyperfine clock transitions of Bi that are extremely robust against external electric

field noise are identified experimentally for future applications to quantum memories.

The present thesis is composed of six chapters. Chapter 1 introduces the mo-

tivation of the research. Chapter 2 describes the basics of spin systems utilized

in this work. Chapter 3 summarizes the experimental techniques including sample

preparations and measurements. Chapter 4 describes the low-field (6 − 110 mT)

magnetic resonance spectroscopy of Bi in silicon. It is performed by monitoring the

change in photoconductivity of the sample induced by the spin dependent recombi-

nation. Spectra at various resonance frequencies show signal intensity distributions

drastically different from those observed by the conventional electron paramagnetic

resonance spectroscopy. A theoretical model considering the recombination rates for
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the forty possible combinations of spin states of a pair of a Bi donor and a param-

agnetic recombination center is shown to describe the experimental observation well.

Moreover, excellent tunability of the Bi excitation energy for the future coupling with

superconducting qubits at low fields is demonstrated. Chapter 5 presents comparison

of Bi spectra in 28Si and natSi crystals. The hyperfine clock transition, at which the

linewidth is significantly narrowed, is observed. The experimental results are modeled

quantitatively by the effect of hyperfine and Zeeman interactions in the context of

molecular orbital theory for the pair of a Bi donor and a spin dependent recombination

center. Chapter 6 provides summary and outlook.
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Chapter 1

Introduction

Ever since Richard Feynman proposed the idea of a quantum computer in 1982, the

progress made in the field of quantum information is astonishing. The work presented

in this thesis is a building block for understanding of the quantum phenomena for

the realization of quantum information devices.
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1.1 Background

Since the work of Shor on the quantum factorization of large prime numbers [1] and the

work of Grover on the search algorithm for large unstructured data sets [2], research

in quantum information processing has witnessed a fabulous rise. This formidable

enthusiasm was triggered by the development of fault-tolerant algorithm [3] that has

relaxed the very demanding constrains on the physical quantum information devices.

The original idea of Feynman was to realize a quantum computer that could solve

mathematical problems unsolvable by any of its classical counterpart by making use of

non-classical bits referred to as quantum bits (qubits). The subsequent exponential

speed-up provided by quantum algorithms [4] is made possible by the use of two

typically non-classical phenomena: the quantum parallelism and the entanglement

[5].

1.1.1 Hybrid quantum computers

The long path towards the realization of a fault-tolerant quantum computer can be

divided into several steps, each one of them requiring the mastery of the previous

ones. The first two steps together are the so-called DiVicenzo criteria [6]. First, a

quantum system defined as the qubit needs to hold one piece of quantum information

long enough for it to be written, manipulated and read out without alteration [7, 8, 9].

Naturally, the second step consists in scaling up this system in order to implement

quantum algorithms on multiple physical qubits. The third step is about reinforcing

the robustness of the qubits against the loss of the quantum information. This is

done by encoding the logical qubit into n physical qubits. Then, quantum error

correction codes [3, 10, 11] can actively protect the information of the logical qubits.
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The proof-of-concept of the quantum error correction code has been recently achieved

in diamond with 3+1 qubits. Here, the three physical qubits are 13C and 14N nuclear

spins and they are coupled with the electron spin of a negatively charged nitrogen-

vancacy center in diamond [NV−] [12]. Among these correction techniques lies the

quantum feedback correction of a qubit, that forces a qubit to stay in an arbitrarily

defined, even dynamical, state. It has been demonstrated in the past three years for

several systems such as Rydberg atoms [13], trapped ions [14], and superconducting

qubits [15, 16, 17].

The concept of a hybrid quantum computer is born from the need to combine

quantum systems of different natures to make use of their respective qualities (pro-

cessing speed, scalability, coherence time, etc . . . ). In the following, I will describe the

architecture of a hybrid quantum computer that combines the relatively long coher-

ence time and scalability of the transmon superconducting qubits (section 1.1.1) and

the exceptionally long coherence time of the electron and nuclear spins of bismuth

donors in silicon (section 1.1.2).

The transmon superconducting qubits make use of dissipationless classical electric

components such as capacitors and inductors, and of a non-classical non-linear induc-

tors known as the Josephson junctions [18]. While electrical circuits are restricted

to harmonic oscillators in the “classical” world, the non-linearity of the Josephson

junction shifts some of the degenerate transition energies of the harmonic oscillator.

This property leads to a finite number of anharmonic states that can be isolated and

used as qubits. The transmon qubit is characterized by a large ratio of the charging

energy to the Josephson energy E
C
/E

J
, designed to reduced the sensitivity of the

qubit to the charge noise.

Using such performant qubits, a primitive version of the von-Neumann architec-
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ture [19], the implementation of the three-qubit Toffoli gate [15, 20] and the deter-

ministic teleportation [21] have been demonstrated. Even small quantum algorithms

such as the Deutsch-Jozsa algorithm [22, 23], Shor’s prime number factorization [24]

and quantum error corrections [15] were implemented.

For quantum information processing, one of the most challenging tasks is to hold

the very volatile quantum coherence onto the physical qubits. Therefore, maintain-

ing the quantum coherence lies at the heart of current research. The state-of-the-art

superconducting qubits, in terms of coherence time and number of realizable oper-

ations per qubit coherence time and lifetime, is the transmon type, coupled to a

three-dimensional cavity [25]. They exhibit coherence times as long as T ∗2 = 92 µs

and lifetimes of T1 = 70 µs. This transmon qubit + 3D cavity outclasses the original

designs of coplanar transmon [26], fluxonium [27], circuit quantum electro-dynamics

[28], and quantronium [29] qubits by at least one order of magnitude when comparing

the coherence times.

Even with these great improvements made on the Cooper pair box system [7],

the figure-of-merit of the desired number of operation per qubit lifetime of 104 [30]

is not yet achieved. A very promising alternative to this coherence time challenge

is currently under investigation by several research groups around the world. It

consists of coupling a superconducting circuit to either a single spin or to an ensemble

of spins hosted by a solid state system. The physical qubits can be of different

nature, such as the electrons of erbium ions in YSO [31, 32, 33], the electrons spins

of a NV− [34, 35, 36, 37] or donor spins in silicon [38, 5, 39, 40]. Moreover, the

realization of a holographic quantum register using a mesoscopic ensemble of spins

has been proposed by Tordrup et al [41] and has been achieved in a N@C60 sample

by Wu et al [42]. This opens up the way for storage of multiple pieces of quantum
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information in a single ensemble of electron and nuclear spins. An example of the

holographic quantum register coupled to four transmon superconducting qubits via a

superconducting resonator is shown in Fig. 1-1.

1.1.2 Donor spins in silicon as quantum memories

During the past half century, silicon based electronic devices have dominated the

classical microelectronic technology. In parallel to this remarkably fast development,

it has become more and more evident that silicon can also be a host material for

quantum information devices. The two main reasons for this are its weak spin-orbit

coupling and the existence of nuclear spin free silicon isotopes, leading to extremely

long coherence time of electron and nuclear spins [43, 40].

There are four elements among group V donors in silicon: 31P, 75As, 121,123Sb and

209Bi. Phosphorus (P) was the first element of the group V donors to be studied

for applications in quantum information devices. At low enough temperature (. 5

K), the electron-phonon coupling becomes negligible and the electron spin coherence

time of an ensemble of phosphorus donors, written T2e(P), becomes independent of

the host crystal temperature [43]. In this regime, T2e(P) depends on the relative

orientation of the static magnetic field and the crystal axes. It ranges from 200 µs for

~B//[111] to 330 µs for ~B//[100] [44]. As it is possible to coherently transfer quantum

information between the donor electron spin and its nuclear spin, one can make use of

the much longer coherence time of the nuclear spin I = 1/2 of phosphorus T2n(P) =

1.2 s. These coherence times are limited by the presence of 29Si nuclear spins naturally

present in Si [45, 46]. As Si has nuclear spin free isotopes (see Table 1.1), researchers

have used isotopically purified silicon samples to reach even longer coherence times.

In 28Si, electron spin coherence time as long as T2e(P) = 20 ms [43], and nuclear spin
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a)

b) c)

Bi donorsSilicon substrate

Superconducting

resonator

Bi donors

Induced magnetic field

Superconducting

resonator Transmon qubit control line

Resonator tuning line

Bi donors

Transmon qubit

Quantum processors

Quantum 
memory

Quantum 
bus

SQUID

inductor capacitor Josephson junction
CPW resonator transmon qubit

inductive coupling

Figure 1-1: (a) Schematic representation of a single coplanar waveguide (CPW) res-
onator (inner orange line) coupled to four transmon qubits. The center frequency of
the resonator can be tuned by adjusting the magnetic field going through the super-
conducting quantum interference device (SQUID, in green in the central line), used as
an adjustable inductor. The large capacitor of the transmon qubits (interdigitated) is
represented in green, and the Josephson junctions are represented in blue. The purple
lines are the control lines capacitively coupled to each superconducting qubit. The Bi
donors are represented by blue points and the Bi doped silicon region is represented in
white. The inset is an enlarged view of the central part of a transmon qubit, in which
the two Josephson junctions are represented in blue. The schematic representation
of magnetic coupling between the Bi donors and the superconducting resonator is
shown in (b): the magnetic field flux (red lines) generated by the microwave photon
in the CPW resonator can induce the magnetic dipole transition of the Bi donors
spins. The static magnetic field Bz < 50 Oe (see section 1.1.3) is not represented. (c)
Schematic of the equivalent circuit shown in (a).
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Table 1.1: Natural abundance of the three different silicon isotopes, with their re-
spective nuclear spin I and gyromagnetic ratio.

28Si 29Si 30Si
nat isotopic composition 92.2 % 4.7 % 3.1 %
Nuclear spin I = 0 I = 1/2 I = 0
Gyromagnetic ratio -8.4655 MHz/T

coherence time of ionized P T2n(P+) = 27 s at 1.9 K and T2n(P+) = 8 s at room

temperature [40] have been measured using the conventional two-pulse Hahn echo.

1.1.3 Advantages of bismuth donors in silicon as quantum

memories

The bismuth donor in silicon is the deepest of the group V shallow donors in silicon.

It has a remarkably large hyperfine interaction between its electron and nuclear (I =

9/2) spins. This makes the electron spin resonance (ESR) frequency of bismuth donors

≈ 7.5 GHz similar to the operating frequency of superconducting qubits in their

operatable magnetic field regime (below 50 Oe for aluminum superconducting qubits

[47, 48]). This unique coincidence has attracted much attention on the possibility to

couple superconducting circuits to bismuth donors in silicon [49, 50].

In addition to the potential coupling with a superconducting circuit, the electron

spin resonance of bismuth donors in the microwave regime (5 ∼ 10 GHz) presents a

low field behavior, in which the hyperfine coupling of the donor is equivalent or larger

than the Zeeman energy of both the electron and nuclear spins. In this low field

regime, the existence of clock transitions (CTs), where the electron spin resonance

frequency is insensitive to the static magnetic field and to magnetic field fluctuations

caused by other donor spins, has been demonstrated. At these CTs, the already long
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electron spin coherence time becomes even longer: Wolfowicz et al [51] have measured

using the conventional two-pulse Hahn echo bismuth donor electron coherence times

as long as T2e(Bi) = 93 ms in natSi and T2e(Bi) = 2.7 s in 28Si .

1.1.4 Possible quantum computer architecture

When considering a quantum computer with a vast number of qubits, the sheer

space needed to accommodate the quantum computer becomes an issue. Recently,

a qubit-resonator system has been designed in a space of 400 × 800 µm [52]. This

miniaturization makes the electrical control lines very close the the spin ensemble

(see Fig. 1-1). The long range electric field generated by such lines [53, 54, 55, 56,

57, 58, 59], together with inevitable strain at the substrate surface [60], may cause

fluctuations in the bismuth donor hyperfine coupling, causing decoherence in the spin

memory. Therefore, in this work, we have undertaken the objective of characterizing

the bismuth donor spins sensitivity to such fluctuations in effective electric field.
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1.2 Organization of this thesis

Chapter 1 provides the background and the motivation for the research presented in

this thesis. This is followed by a general description of the spin properties of group

V donors in silicon.

Chapter 2 introduces the basics of solid state physics required for the description

of energy levels of bismuth in silicon. I also discuss the fundamentals of the donor

spin Hamiltonians.

Chapter 3 presents the experimental techniques and sample preparation used in

this work.

Chapter 4 and 5 focus on the main results of this thesis.

Chapter 4 discusses the magnetic resonance detection based on the spin dependent

recombination (SDR) of a bismuth donor electron in silicon. I show that with the

creation of crystal defects during the ion implantation of bismuth ions into silicon, it is

possible to probe the spin state of bismuth atoms using SDR spectroscopy. The unique

spin properties of bismuth make it possible to study its low field SDR detection at

X-band in a conventional ESR spectrometer. Furthermore, we reveal that the dipolar

interaction between the readout centers and the bismuth electron spins leads to the

demonstration of the SDR detection of cross relaxation signals in silicon.

Chapter 5 is devoted to the study of the hyperfine clock transitions (HCT) of

bismuth donors in silicon. First, the SDR spectroscopies of bismuth donors in 28Si

and in natSi demonstrate the existence of such HCT where the sensitivity to the

effective electric field perturbations is minimized. Then, the experimental results are

modeled quantitatively by molecular orbital theory for a coupled pair consisting of a

bismuth donor electron and the electron of the readout center.

Chapter 6 is the summary of the present thesis.
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Chapter 2

Magnetic resonance of shallow

donors in silicon

This chapter provides the necessary background for understanding of the energy levels

of shallow donors in silicon. The theoretical content of section 2.1 will be utilized for

modeling the bismuth-readout center molecular orbital in Chapter 5. Section 2.2

presents the spin properties of shallow donors in silicon.
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2.1 Energy levels of shallow donors in silicon

Silicon band structure Silicon (Si) is the most widely used semiconductor in

the industry. It is also the platform for several proposal of quantum information

processing devices [1, 2, 3, 4]. The crystal structure is the diamond structure, that

is to say each Si atom is surrounded by four others (four-fold coordinated) forming

a tetrahedron. From a quantum mechanical point of view, the energy of a perfect Si

crystal can be described with the following Hamiltonian [5, 6]:

H =
∑
i

P 2
i

2Mi

+
∑
j

p2j
2mj

+
1

2

∑
i 6=i′

Zi Zi′ e
2

4πε0
∣∣ ~Ri − ~Ri′

∣∣ +
1

2

∑
j 6=j′

e2

4πε0
∣∣~rj − ~rj′

∣∣ −∑
i,j

Zi e
2

4πε0
∣∣~rj − ~Ri

∣∣ , (2.1)

where ~Ri is the position of the ith Si nucleus with the electric charge Zi, ~rj is the

position of the jth electron, and Pi and pj are the momentum operators of the nuclei

and electrons respectively. The mass of the nuclei and of the electrons are denoted

by Mi and mj, respectively. Solving this Hamiltonian for a crystal containing nearly

1023 atoms/cm−3 is impossible. Thus, it is necessary to make simplifying assumptions

in order to solve Eq. (2.1). The first one consists of differentiating the valence

electrons and the core electrons of the silicon atoms. The valence electrons are so

strongly bound to the nucleus that they can be assumed to have the same motion.

So, together with the nucleus, they form the ion core. This simplification results in a

drastic reduction of the number of particles that need to be taken into account. The

second approximation is the so called Born-Oppenheimer approximation in which it

is assumed that the ion cores are much heavier than the electrons. It results from this

approximation that the ionic motion is assumed to be much slower than the electronic
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motion and electrons ”follow” instantaneously the ion cores. As a consequence, the

total wave function of the system {nuclei + electrons} can be separated into: φtot =

φi.c.× φe. The Hamiltonian of Eq. (2.1) is written as H = Hi.c. +He +He−i.c., where

Hi.c. is the ionic motion Hamiltonian, He is the electronic Hamiltonian and He−i.c. is

known as the electron-phonon interaction. The electronic Hamiltonian is then written

as

He =
∑
j

p2j
2mj

+
1

2

∑
j 6=j′

e2

4πε0
∣∣~rj − ~rj′

∣∣ −∑
i,j

Zi e
2

4πε0
∣∣~rj − ~Ri

∣∣ . (2.2)

This Hamiltonian is not yet computable for a macroscopic crystal. Due to the peri-

odicity of the crystal lattice, one can assume that all the electrons effectively feel the

same periodic potential V (~r). Therefore, the many-particle problem is simplified to

the one-electron Schrödinger equation

(
p2

2m
+ V (~r)

)
φn(~r) = Enφn(~r), (2.3)

where En and Φn are the energy and a wave function associated with the n eigenstate

of the one-electron Hamiltonian He = p2

2m
+ V (~r) = − ~2

2m
∇2 + V (~r). The series

expansion of the potential V (~r) around ~r is written as the sum of a symmetric and

an antisymmetric parts [7, 8]

V (~r) =
∑∣∣~k∣∣≤k0

(
S(~k)V s.

k + iA(~k)V a.s.
k

)
exp

(
−i~k · ~r

)
, (2.4)

where S and A stand for the symmetric and antisymmetric forms of the crystal

potential for the wavenumber k. Silicon is a homopolar cubic semiconductor that

crystallizes into a diamond lattice with two atoms per unit cell. Therefore, taking the

origin of the referential between the two atoms 1 and 2 of a unit cell, their positions
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Table 2.1: Pseudopotential form factors of Si in eV [8]. These values were obtained
by fitting the band diagram of Si measured by reflectivity and photoemission mea-
surements with the pseudopotential model. The X-ray diffraction measurement of
the Si lattice constant aSi was measured by Shah and Straumanis [9].

aSi V s
3 V s

8 V s
11

5.43 Å −2.87 eV 0.54 eV 1.09 eV

are r1 = aSi

8
(1, 1, 1) = τ and r2 = −τ , where aSi is the lattice constant of Si (see Table

2.1). The potential V (~r) is then given by

V (~r) =
∑∣∣~k∣∣≤k0

(
cos(~k · τ)V s.

k

)
exp

(
−i~k · ~r

)
. (2.5)

The crystal structure of Si has a face centered cubic (fcc) reciprocal lattice. The first

five vectors of the reciprocal lattice are: ~k0 = (0, 0, 0), ~k3 = (1, 1, 1), ~k4 = (2, 0, 0),

~k8 = (2, 2, 0) and ~k11 = (3, 1, 1). As the form factor decreases as k−2 for large k,

only the first five pseudopotential form factors with k2 < 11 (2π/aSi) are considered.

As a consequence, only the five parameters V s
0,3,4,8,11 are sufficient [8] to describe the

crystal potential of the Si lattice. V s
0 is a constant value baseline to all energy levels

and is set at zero. Also, the symmetric form factor V s
4 vanishes. The three remaining

form factors are listed in Table 2.1.

Using this pseudo-potential Hamiltonian, it is possible to simulate the Si band

structure for any wavevector ~k. The simulation of the light hole (light blue), heavy

hole (dark blue) of the valence band and the conduction band (dark red) are shown

in Fig. 2-1 (a). At the Γ point (k
Γ

= 0), the valence band reaches a maximum in

energy. As a convention, this point is taken as the zero of the energy. Silicon is an

indirect band gap semiconductor and the minimum of the conduction band is not at
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Figure 2-1: (a) Calculated first conduction band (dark red) and last three valence

bands of Si. The x-axis is the wavevector ~k. Only the main symmetry axis are labeled:
L = 2π

aSi
[1/2, 1/2, 1/2], Γ = 2π

aSi
[0, 0, 0], X = 2π

aSi
[1, 0, 0], W = 2π

aSi
[1, 1/2, 0] and K =

2π
aSi

[3/4, 3/4, 0]. The separation in energy from the top of the heavy hole band (h.h.)
at the Γ point to the bottom of the first conduction band defines the band gap energy
Eg = 1.1 eV. As this minimum corresponds to a wavenumber k

CBM
≈ 0.85(2π/aSi),

Si is said to be an indirect band gap semiconductor. Due to the cubic symmetry of
the system there are six minima, plotted in (b), which are degenerate occurring at
~k
CBM
≈ 2π

aSi
[±0.85,±0.85,±0.85]. (c) Representation of the diamond structure of a Si

(gray) crystal with one substitutional Bi donor (green).
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the Γ point, but it is at ~k0 = (0.85, 0, 0), near the X point ~k
X

= (1, 0, 0). Actually,

the conduction band of Si has six minima at ~k
CBM

= (±0.85, 0, 0), (0,±0.85, 0) and

(0, 0,±0.85). We have plotted in Fig. 2-1(b) the six conduction band minima assum-

ing that the lowest conduction band is isotropic, non degenerate, and parabolic. The

band gap energy is Eg = 1.1 eV at room temperature (k
B
T = k

B
300 K ≈ 25 meV).

Shallow donors in silicon The four (plus one) group V shallow donors in silicon

are 31P, 75As, 121,123Sb and 209Bi. At a substitutional site (see Fig. 2-1(c)), they form

four bonds with the nearest Si atoms and the remaining unpaired (paramagnetic)

electron is bond to its nucleus by the Coulomb potential. To calculate the wave

function and the energy of the 1s ground state of such shallow donors, the Coulomb

potential of the substitutional donor ion core has to be added to the Hamiltonian of

Eq. 2.3, (
p2

2m
+ V (~r) + U(~r)

)
φ(~r) = Enφ(~r), (2.6)

where U(~r) = − e2

4πεε0r
, ε = 11.7 being the relative dielectric constant of Si measured

by Salzberg and Villa using refractive index measurements [10]. Due to this large

reduction of the Coulomb field at the donor nucleus, the bound states of donor electron

are expected to have a large spatial expansion compared to the lattice spacing. In

this limit, the solutions of the Schrödingier equation (Eq. 2.6) can be written as the

product

φ( ~k
CBM

)(~r) = χ( ~k
CBM

)(~r) u( ~k
CBM

, ~r), (2.7)



Chapter 2. Magnetic resonance of shallow donors in silicon 21

Table 2.2: Linear coefficients of the Bloch wave functions φ ~kj for the three irreducible
representations of the Td group. The completely symmetric A1 singlet is the only state
having a finite electron density at the impurity site. Therefore, it is the most sensitive
state to the attractive central cell perturbations. This is an intuitive explanation to
the fact that it is usually the lowest energy state.

~kj k
CBM

~x −k0 ~x k
CBM

~y −k0 ~y k
CBM

~z −k0 ~z
A1: 1/

√
6 1/

√
6 1/

√
6 1/

√
6 1/

√
6 1/

√
6

E:
1/2 1/2 −1/2 −1/2 0 0

−1/
√

12 −1/
√

12 −1/
√

12 −1/
√

12 2/
√

12 2/
√

12

T2:
1/
√

2 −1/
√

2 0 0 0 0

0 0 1/
√

2 −1/
√

2 0 0

0 0 0 0 1/
√

2 −1/
√

2

where Φ( ~k
CBM

, ~r) is the free electron at the conduction band minimum k
CBM

(solution

of Eq. 2.3), and F (k
CBM

)(~r) satisfies the effective mass equation

(
p2l

2ml

+
p2t1,t2
2mt

− U(~r)

)
χ(k

CBM
)(~r) = E χ(k

CBM
)(~r). (2.8)

In this equation, pl and pt are the electron momentum operators associated with

the longitudinal and transversal directions (relative to ~k
CBM

), and ml = 0.98me and

mt = 0.19me are the effective electron mass in these directions. In the hydrogenic

limit, ml = mt and the envelop function is

χ(k
CBM

)(~r) =
1

√
πa

3/2
0

exp (−r/a0) (2.9)

where a0 is the Bohr radius of the donor electron wave function. It is defined as

a0 = 4πε0~2

Zme e2
for an hydrogenous atom with a charge Z in vacuum.
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Table 2.3: Principal parameters for the description of the group V donors in silicon
[11]: ionization energy (E

I
) and Bohr radius (a0).

31P 75As 121Sb 123Sb 209Bi
E

I
(meV) 45.59 53.76 42.74 42.74 70.98

a0 (Å) 16.8 15.5 17.3 17.3 11.5

The donor electron wave function in the ground state can be written

Φi(~r) =
6∑
j=1

ci,jφ
~kj(~r), (2.10)

where the coefficients ci,j are listed in Table 2.2. Only the wave function corresponding

to the A1 symmetry has a non vanishing density probability at the nucleus site (~r = ~0).

The energy associated with the symmetry states A1, E and T2 are shown in Fig. 2-

1(d) for the effective mass approximation. The experimental values of the energy for

the shallow donor states are sensibly different from the results of the effective mass

approximation [12, 13] [see Fig. 2-1(d)]. This is mainly due to central cell corrections

that have to be taken into account for ”small” electron orbits (e.g., 1s orbital). This

energy discrepancy is larger for more confined donor electrons such as the Bi donor

electron.
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2.2 Magnetic resonance

2.2.1 Spin Hamiltonians

Electron Zeeman interaction An electron is an elementary particle with a spin

S = 1/2 and can be associated with three different magnetic moments: the spin

angular momentum µ
S
, the orbital momentum µ

L
and the total angular momentum

µ
J
. The spin angular momentum is defined as

µ
S

= ge
−e
2me

~S = geµB
S, (2.11)

where e is the electron charge, me is the electron mass, ~ = h/2π is the reduced

Planck constant, and µ
B

= −e
2me

~ = 9.274 × 10−24 J/T is the Bohr magneton. The

dimensionless factor ge = 2.0023193043622(15) is the electron spin g factor. It differs

from 2 due to the anomalous magnetic dipole moment that can be calculated using

quantum electrodynamics theory [14]. One can also define the orbital momentum as

µ
L

= −g
L
µ
B

~ L, where g
L

= 1 is the electron orbital g factor and L is the electron

orbital angular momentum, and the total angular momentum as µ = −g
J
µ
B

~ J , where

J = S + L is the total angular momentum. Using the last definition, the energy of

the magnetic moment µ in a magnetic field B is

E
Z

= −µ ·B. (2.12)

Actually, under a strong enough magnetic field (> 1 T) [15, 16], this expression

becomes quadratic in magnetic field. This quadratic term appears in the expansion

of (p + e/cA)2. In electron paramagnetic resonance (EPR), the spins of interest are

the unpaired (paramagnetic) electron spins. Therefore, the spin quantum number
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is aligned with the homogeneous magnetic field B
Z
. From this point, we assume

that the for a single spin, the operators S and S
Z

form a complete set of commuting

observables. Therefore, the spin quantum numbers S and m
S

are sufficient to describe

the complete state of an electron. Especially, it means that the electron spin state

|S,m
S
〉 is decoupled from its orbital. This assumption will be justified in the next

paragraph. As a consequence, we can restrict ourselves to the spin angular momentum

µ
S

to describe the electron Zeeman energy,

H
Z

= g µ
B
B

Z
S

Z
, (2.13)

where the spin Hamiltonian is denoted by H. The two trivial eigenstates are:

E1/2 =
1

2
g µ

B
B

Z
(2.14a)

E−1/2 = −1

2
g µ

B
B

Z
. (2.14b)

These energies are plotted in Fig. 2-2(a) as a function of the magnetic field. The

electron spin transition, defined as |m
S

= −1/2〉 ↔ |m
S

= 1/2〉 [(red arrow in Fig.

2-2(a)], occurs for a microwave photon of energy ~ω = E1/2 − E−1/2 = gµ
B
B

Z
. Due

to the finite coherence time of each state, the magnetic field sweep (resp. frequency)

spectrum recorded at constant frequency (magnetic field), shown in Fig. 2-2(b),

does not follow the Dirac distribution, but rather the Lorentzian distribution with a

finite linewidth. The conventional magnetic dipole transition operator1 is S
X

and the

transition probability between the |−1/2〉 and |1/2〉 states is
〈
1/2
∣∣S

X

∣∣− 1/2
〉
.

In a solid-state system, the spin description of the paramagnetic species differs

1In conventional EPR spectrometers, the magnetic field B1 generated by the microwave is per-
pendicular to the static magnetic field B0 = B

Z
. Thus, any linear combination of S

X
and S

Y
can

describe the magnetic dipole transition used in such spectrometers.
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in several ways from the free electron spin description. This is due to interactions,

not taken into account until now, of the central spin with its environment. The first

correction to consider is the spin orbit coupling of the electron. Then, the electron

Zeeman Hamiltonian of Eq. (2.13) becomes

H(1) = −ge µB
S ·B + λL · S − µ

B
L ·B, (2.15)

Figure 2-2: (a) Representation of the energy level of the electron spin up and down
states as a function of magnetic field. The resonance condition is fulfilled when the
microwave photon has a frequency corresponding to gµ

B
BZ . (b) Typical magnetic

field sweep spectrum of a two-level system, assuming a finite coherence time of each
state.
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Table 2.4: Values of the spin-orbit interaction for selected group IV and III-V semi-
conductors [18]. One can notice the strong dependence of the parameter λ on the
atomic mass.

Group IV C Si Ge SiC
λ (meV) 9 29 197 9

Group III-V GaN GaP GaAs GaSb
λ (meV) 11 53 227 500

where λ is the spin-orbit interaction of the central electron in a given host material.

We will restrict our discussion to the case of donors in silicon. To include this cor-

rection into an ”effective” electron g factor gi,j = geδi,j + δgi,j, we are only interested

in the terms of H(1) that are bilinear in spin operator and magnetic field so that:

δgi,j = 2λ
∑
n

〈
ψ0

∣∣Li∣∣ψn〉〈ψm∣∣Lj∣∣ψ0

〉
E0 − En

. (2.16)

One can notice that the correction δgi,j may be anisotropic. However, for a donor

electron in unstrained silicon [17], it appears not to be the case and δgi,j = δg. The

effective g factor for the group V donors in silicon are listed in Table 2.5.

Nuclear Zeeman interaction All the group V donors in silicon have a half integer

nuclear spin (see Table 2.5). Associated g factors, denoted gn, are also listed in Table

2.5. As a nucleus is the ”extreme” case of wave function localization, its spin g factor

is independent of the host material and spin-orbit corrections.

Spin-spin couplings There are two kinds of spin-spin couplings: the direct and

indirect couplings. The direct couplings are the interactions between the electric or

magnetic moments of the two spins, e.g., the magnetic dipole-dipole interaction
↔
D

and it is a special case of the Fermi contact interaction
↔
A. The indirect coupling
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includes the spin exchange coupling
↔
J .

Hyperfine interaction We start the spin-spin coupling section from the hy-

perfine interaction as it the usually the strongest spin-spin interaction for group V

donors in silicon. The hyperfine interaction Hamiltonian is given by

HHF = ST
↔
A I, (2.17)

where
↔
A is the hyperfine interaction tensor. It can be written as the sum of an

isotropic component and a traceless tensor,

↔
A= hADD + hAiso1. (2.18)

In this equation, hADD is the interaction assuming that one of the spins is a point

magnetic dipole and has no spatial expansion. To take into account the finite extent

of the nucleus, one has to consider the interaction corresponding to the overlap of the

wave function Aiso. It is called the Fermi contact hyperfine interaction.

Aiso =
µ0

4π

∫
dv
∣∣〈ψS∣∣ψI〉∣∣2 (2.19)

=
µ0

4π
ge µe gn µn

∣∣ψS(~rI)
∣∣2 (2.20)

In Eq. (2.18), ADD is the magnetic dipole-dipole interaction of the donor electron spin

and nuclear spin, assuming the nuclear spin as a point magnetic dipole. Therefore,

this interaction vanishes in the case of a donor in silicon with a Td symmetry. Thus,
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the hyperfine spin Hamiltonian is simply

HHF = hAS · I. (2.21)

The numerical values of the hyperfine interaction for group V donor in silicon are

listed in Table 2.5.

Dipole-dipole interaction The magnetic dipole-dipole interaction of the donor

electron spin and nuclear spin vanishes due to the electron wave function symmetry.

On the other hand, “distant” paramagnetic species or nuclear spin may have a finite

magnetic dipole-dipole interaction with the donor electron spin,

HDD = ST
↔
D S2, (2.22)

with
↔
D the dipole-dipole interaction tensor

↔
D=

µ0

4π
ge µe g2 µn

(
3 (S~r) (~rS2)

r5
− S · S2

r3

)
, (2.23)

where ~r = ~r1 − ~r2 is the relative position vector of the two spins.

Two electron spins exchange interaction

Ji,j =

∫
R3

dv Φ∗b,j
e2

4πεε0ra,b
Φa,i, (2.24)

where Φa,i (Φb,j, resp.) is the one electron spin-orbital wave function of the electron

a (b) in the spin state i (j).

HExch = ST
↔
J S. (2.25)
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Table 2.5: Principal spin properties of the group V donors in silicon [25]: electron g
factor (ge), nuclear spin (I), nuclear g factor (gn) and hyperfine interaction (A).

31P 75As 121Sb 123Sb 209Bi
ge 1.9985(1) 1.9984(1) 1.9986(1) 1.9986(1) 2.0032(1)
I 1/2 3/2 5/2 7/2 9/2
gn 2.26320 0.95965(5) 1.3454(2) 0.7285(1) 0.91347(4)
A (MHz) 117.53(2) 198.35(2) 186.802(5) 101.516(4) 1475.4(1)

This interaction is particularly large for two strongly overlapping electrons, such

as two nearby shallow donor electrons. Interaction strength as large as 38 meV for a

donor separation d = a0 and 1 meV for a separation of d = 4 a0 have been estimated

by Wu and Fischer [19, 20]. This coupling strongly depends on the relative position

of the donors in a silicon crystal [21]. On the other hand, for weakly overlapping

electrons, this coupling rapidly vanishes and can be neglected in the case of a shallow

donor interacting with a point defect (31P−Pb0) [22].

2.2.2 Special case of bismuth donors in silicon

Bismuth is the deepest group V donor in silicon. It has a remarkably strong electron

nuclear hyperfine coupling when compared to other group V donors and, together

with its large nuclear spin, these properties make it suitable for quantum information

application, as explained in section 1.1. The spin system of an isolated Bi donor in

a static magnetic field B0 (electron spin S = 1/2 and 209Bi nuclear spin I = 9/2) can

be represented by the spin Hamiltonian:

H = gµBB0Sz − gnµnB0Iz + hAS · I, (2.26)
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Figure 2-3: (a) Bi donor eigenvalues as a function of the magnetic field. The red
arrows indicates the electron spin resonance transitions at X-band (9 GHz). (b) The
resulting field sweep EPR absorption spectrum of Bi donor. (c) Schematic represen-
tation of four unit cell of a silicon crystal. The central Bi donor is shown in green
and 4.7 % of the silicon atoms are 29Si in yellow. The hyperfine interaction of the
donor electron spin with close 29Si nuclear spin [23, 24] is the origin of the inhomoge-
neous broadening of the EPR lines. Different configurations of the nearby 29Si lead
to variations of the resonant frequency of an EPR line, shown as black lines in (d).
The resulting absorption peak shape takes Gaussian shape as in (e).
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Figure 2-4: Transition frequency of the ten EPR (a) and eighteen NMR (b) allowed
transitions of Bi donors in Si. The apparent eight thick lines in (b) correspond to eight
groups of two lines, as for a given couple (m

F
,m

F+1
), the NMR transition frequency

depends only weakly on the quantum number F . The two remaining single lines are
the transition involving the pure spin states |F = 5,m

F
= 5〉 = |m

S
= 1/2,m

I
= 9/2〉

and |F = 5,m
F

= −5〉 = |m
S

= −1/2,m
I

= −9/2〉. The spin Hamiltonian parame-
ters used for the simulations are listed in Table 2.5.

where µB and µn are the Bohr and nuclear magnetons, and g = 2.0003 (Ref. [25])

and gn = 0.914 (Ref. [26]) are Bi electron and nuclear g-factors, respectively. Under

magnetic resonance, the magnetic dipole operator cosωt S
X

(cosωt I
X

) has to be

included in the spin Hamiltonian of Eq. (2.26) in order to compute the frequency of

the EPR (NMR) transitions. The EPR and NMR transition frequencies of Bi donors

are plotted in Fig. 2-4 as functions of the magnetic field. The large nuclear spin of
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Table 2.6: Summary of the clock transition (CT) and hyperfine clock transition
(HCT) resonance conditions for Bi donors in silicon [27]. F = S+ I denotes the total
spin and m

F
its projection.

CT
∆F = +1, m

F
= −1↔ 0 −2↔ −1 −3↔ −2 −4↔ −3

Resonant field (G) 266 798 1333 1878
Resonance frequency (MHz) 7338 7032 6372 5214

HCT
∆m

S
= +1, m

I
= -1/2 -3/2 -5/2 -7/2

Resonant field (G) 26070 8680 5190 3690
Resonance frequency (MHz) 72640 23180 12570 7305

Bi generates ESR resonance conditions that can be either robust against magnetic

field fluctuations at the clock transition (flat points in Fig. 2-4) and against electric

field perturbation at the hyperfine clock transition [27]. These resonance conditions

are summarized in Table 2.6.
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Chapter 3

Methodology and experiments

This chapter describes the spin dependent recombination spectroscopy technique and

the experimental setup. A description of the sample preparation is also provided.
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3.1 Spin dependent recombination technique

The continuous illumination provided by an above band-gap light generats photoex-

cited electrons in the sample [see Fig. 3-1]. The capture of photocarriers by the

ionized donors of the donor-readout center (D-R) pairs takes place on a time scale τec

of the order of 10 to 100 µs for an illumination of 635 nm of 20 mW/cm2 at 5 K [1].

For the phosphorus donor coupled to a dangling bond readout center, the expected

recombination time for the antiparallel electron spin pair is typically τap ≈ 10 µs

whereas for the parallel spin pair, the recombination time τp ≈ 1 ms is much longer

[1]. Preliminary time-resolved electrically detected magnetic resonance (EDMR) mea-

surements of Bi-R pairs in natSi:Bi shows dynamics similar to the donor coupled to

a dangling bond defect situating at the Si/SiO2 interface even though the readout

centers R created by the implantation are situated around 90 nm deep. As a con-

sequence, only the parallel spin pairs remain in the steady state under illumination

without external induction of the magnetic resonance. Therefore, flipping the donor

electron spins by the external magnetic resonance irradiation breaks this steady-state

Figure 3-1: Schematic representation of the donor and readout center energy levels
within the Si band gap. The valence (conduction) band is represented in blue (red).
The energy levels of the ionized donor D+ and negatively charged readout center (R−)
are represented relatively to the expected Fermi level in (a). The above band gap
illumination photo neutralizes the donor and the readout centers (b).
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constant current situation and decreases the photocurrent by the enhancement of the

spin-dependent recombinations [2]. Such a change of the sample photoconductivity

leads to a decrease in the absorption of the microwave electric field by the sample

and the photocarriers generated. The decrease in the microwave absorption by the

sample then leads to an enhancement in the Q factor of the EPR cavity. The defect

utilized as a readout center in this study has a g factor of g ≈ 2.005 measured by

the cross-relaxation R(|1〉 ↔ |2〉)-Bi(|8〉 ↔ |13〉) (Ref. [3]) but its microstructure is

unknown. A small coil placed near the sample within the EPR cavity is used to excite

the magnetic resonance. On the other hand, the X-band (≈ 9.08 GHz) irradiation

and reflection are used for probing the change in the sample conductivity. Since the

additional coil near the sample can apply an arbitrary microwave frequency, it is

possible to reduce the frequency along with the static magnetic field [3]. The second

derivative of the reflected X-band intensity with respect to the field modulation is

recorded as an SDR signal to reduce the broad cyclotron resonance lines and the

background change of the sample conductivity during the magnetic field scan. All

the SDR measurements are performed at 16 K.

Figure 3-2: Donor-readout center pair recombination process. (a) In the steady
state, the spin pair is in the parallel configuration (spin blockade). Under magnetic
resonance, the donor electron spin flips and the spin pair becomes in the antiparallel
configuration (b). The donor electron can then recombine via the readout center and
a free electron can be capture by the ionized donor (c).
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3.2 Experimental setup

The SDR-MR spectra are recorded at 16 K with a commercial continuous wave EPR

spectrometer (JEOL JES-RE3X) working at X-band (9 GHz microwave) with a home-

made coil for radio frequency (20− 400 MHz) and microwave (7.304 and 8.141 GHz)

irradiation to induce magnetic resonance at low field (6− 110 mT). Figure 3-3 shows

the schematic representation of the experimental setup and Fig. 3-4 shows the pho-

Figure 3-3: Experimental setup for cw SDR or ESR. The sample is attached to a
sample holder made in oxygen-free quartz and placed into a microwave cavity, at an
antinode of the magnetic fieldB1. The mw cavity is designed so that the 4He cryostat
(not represented on the schematics) can fit inside. This system is situated between
the two coils of an electromagnet (Helmholtz configuration). The cw SDR or ESR
signal is measured by the bridge as the reflected mw intensity from the cavity. Using
the phase shifter, one can adjust the phase of the detected complex susceptibility
χ of the sample. The output signal of the mw detection diode is fed into a lock-in
amplifier for more sensitivity.
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tographs of the spectrometer (a) and the sample and mounted on the sample holder

(b).

Continuous above band-gap illumination of 100 mW/cm−2 (measured outside the

EPR cavity) provided by a 100-W halogen lamp generates photocarriers in the sample.

Magnetic resonance can enhance the spin-dependent recombination, which decreases

the density of photocarriers. Then, the absorption of the microwave electric field

by the photocarriers is decreased, leading to an enhancement in the Q-factor of the

cavity. Thus, the effect of magnetic resonance can be detected simply as the change

in the X-band microwave reflection from the cavity. The second derivative of the

reflected intensity with respect to the field modulation was recorded as an SDR signal

to reduce the broad cyclotron resonance lines and the background change of the

Figure 3-4: (a) Experimental setup used in this work. The Oxford Instrument 4He
cryostat is located between the two coils of the electromagnet. (b) Sample and sample
holder used for the multifrequency experiment (see Chapters 4 and 4).
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Figure 3-5: (a) Error in the measurement of the magnetic field experimentally de-
termined over a large magnetic field range (600 − 5500 G). The experimental errors
are shown in red points and the polynomial interpolations in blue, green and black.
(b) Error residuals after magnetic field correction.

sample resistivity during the magnetic field scan. Note that because of our high

power (80 mW) saturating excitation, i. e., making the populations of the ground-

and excited-states the same, the conventional EPR absorption signal is suppressed.

Such saturation is necessary to flip one of the spins in a pair of Bi and defect to induce

SDR as we will discuss later.

Let us now discuss whether the experimental conditions we employed are sufficient

to achieve the intrinsic linewidth and shape of the Bi donor spin transitions. In the

duration of a single measurement, the microwave frequency of the EPR spectrometer

drifts typically by ±5 kHz. The signal generated at 7 GHz by an Agilent 8257D
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microwave source in series with a 3-W MiniCircuits ZVE-8G+ amplifier exhibits a

frequency stability of ±1.5 kHz for the same duration. These fluctuations in the

applied microwaves lead to a maximum line broadening of ±2.5 × 10−3 G at 9 GHz

and ±1 × 10−3 G at 7 GHz, which is negligibly small compared to the estimated

& 10−2 G precision in magnetic field and its inhomogeneity.

A typical calibration curve of the magnetic field meter is shown in Fig. 3-5. The

error in the measurement of the magnetic field [Fig. 3-5(a)] is determined over a large

magnetic field range (600− 5500 G), using a bulk doped 28Si:Bi reference sample at

16 K. It is defined as the difference between the measured Bexp
0 and the expected Bth

0

resonant fields of the ten cw-EPR transitions of Bi donors. The three polynomial

interpolation curves correspond to the three regimes of the magnetic field sensor [A:

500 − 1100 G (blue), B: 1100 − 4000 G (green) and C: 4000 − 6000 (black)]. The

residuals [Fig. 3-5(b)] are defined by the difference between the measured errors

and the interpolation curves. The estimated & 10−2 G precision in magnetic field is

deduced from the maximum value of the residuals.
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3.3 Samples preparation

Two types of samples are employed; a silicon crystal enriched to 99.983% in 28Si

([29Si] = 90 ppm and [30Si] = 80 ppm) with a resistivity ≈ 10 Ω·cm and a highly

resistive (> 3 kΩ·cm) float-zone natSi. These two substrates are ion-implanted with Bi

and are labeled 28Si:Bi and natSi:Bi, respectively. The ion implantations are performed

at room temperature with the total fluence of 2×1013 cm−2. The implantation energies

are 300 and 550 keV with the doses of 0.7 × 1013 and 1.3 × 1013 cm−2, respectively.

These conditions yield a maximum bismuth concentration of 1.8× 1018 cm−3 (above

the solubility limit [4]) in the depth of 90 to 150 nm from the surface. The distribution

Figure 3-6: Simulated Bi atom concentration resulting from the ion implantation
process described in section 3.3 shown as a function of the depth from the silicon
surface. For the simulation, 2 × 104 atoms were used. The blue dots correspond to
the distribution of Bi atoms implanted at 300 keV and the green dots to 550 keV.
The total distribution is represented by red dots. The simulations were performed
using the “the stopping and range of ions in matter” software (SRIM).
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of the Bi atom concentration is plotted in Fig. 3-6 as a function of the depth. The

post-implantation annealing, performed at 650 ◦C for 30 min in an evacuated quartz

tube, leads to an activation efficiency [5, 6, 7, 8] below 60%, resulting in the Bi donor

concentration less than 1.1 × 1018 cm−3 (below the metal-insulator transition [9]).

This process is designed to maximize the number of the D-R pairs, instead of fully

activating the implanted Bi atoms [10].
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Chapter 4

Spin dependent recombination

based magnetic resonance

detection of bismuth donors in

silicon

In this chapter, I show the results of SDR spectroscopy of Bi in natSi. In section 4.2,

I show the spectroscopy of the ESR lines recorded at X-band. The spectroscopy of

Bi-readout center cross-relaxations is shown and analyzed in section 4.3. Following

this, I show the results of the SDR detection of the NMR transitions in section 4.4.

Then, in section 4.5, I explain the subtleties of the SDR processes in the low magnetic

field regime. Further, I demonstrate the simultaneous detection of the donor electron

spin (ESR transitions) and nuclear spins (NMR transitions) in section 4.6.
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4.1 Introduction

Among a variety of qubits investigated for the realization of solid-state quantum

computers, superconducting qubits are the leading candidates for quantum processors

because of their fast operation capabilities (π/2 pulse shorter than 10 ns) [1]. However,

the shortcoming of their relatively fast decoherence time needs to be overcome by

connecting to memory qubits that can store quantum information throughout the

course of computation. This requires memory qubits working under low magnetic

field, typically below 50 Oe for aluminum(Al)-made superconducting qubits [2, 3],

since they cannot operate at higher fields.

In this context, the bismuth (Bi) donor in silicon (Si) has attracted much attention

recently. Its large hyperfine interaction a/h = 1.4754 GHz (Ref. [4]) and the 209Bi

nuclear spin I = 9/2 give a large zero-field splitting of 7.4 GHz. This splitting is com-

parable to the typical energy splitting between |R〉 and |L〉 states of superconducting

flux qubits [1, 5]. Thus, coupling between a Bi spin qubit and a superconducting

flux qubit on Si is in principle possible via a microwave photon through a waveg-

uide. A proposal of such an application [6] has prompted extensive research on the Bi

donor spins in Si very recently [6, 7]. Starting from the spectroscopic analysis of the

electron paramagnetic resonance (EPR) [7, 8], the electron spin relaxation time T1

[6, 9], decoherence time T2 [6, 9, 8], and superhyperfine interaction with nearby 29Si

nuclear spins [9] were investigated. Moreover, the coherent transfer between electron

and 209Bi nuclear spins [7] and dynamic nuclear polarization of 209Bi [6, 10] were

achieved. Yet all of these EPR studies were performed at 9 GHz (around 320 mT)

and at 240 GHz (around 8.6 T) excitation frequency.

In this chapter, I report on low-field (6−110 mT) radio frequency (20−400 MHz)

and microwave (8.141 GHz) magnetic resonance, as well as X-band (9 GHz) magnetic
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resonance, of ion-implanted Bi donors in Si using a highly sensitive, spin dependent

recombination based magnetic resonance (SDR-MR) method [11, 12, 13, 14].
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4.2 Spin dependent recombination spectroscopy of

bismuth donors at X-band

The SDR method requires a coupled pair of electron spins [15, 16, 17]. In the present

study, the partner of the Bi donor electron spin is the electron spin of a deep param-

agnetic readout center (R) which is supposed to be created during the implantation

process and not completely removed by controlling the annealing conditions [18]. I

have attempted to identify the symmetry of the deep PRC by tracing the angular de-

pendence of the EPR peaks. However, the peaks were too broad to draw conclusions.

The X-band (9.076 GHz) SDR-MR spectrum measured without radio frequency

excitation is presented in Fig. 4-1(b). The peaks labeled as Bi-X and R indicate

ten EPR-“allowed” transitions of the Bi donors and one EPR transition of a readout

center, respectively, corresponding to the intersections with the 9.076 GHz excitation

in Fig. 4-1(a). Here the EPR transition frequencies of the Bi donor (blue lines) [19]

were calculated as functions of the static magnetic field B0 using the spin Hamiltonian

in Eq. (2.26) and that of R (green line) was calculated as an isotropic, nuclear spin

free, paramagnetic center S = 1/2 and g ≈ 2.005(3). The same notation as in Ref.

[19] for labeling Bi eigenstates is used; the spin levels are labeled from 1 to 20, in

increasing order of energy.
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Figure 4-1: (a) Calculated EPR transition frequencies of Bi donors (blue lines) and
deep paramagnetic readout center (R) (green line) with 9.076 GHz microwave exci-
tation frequency (red line). The intersections of the readout center transition energy
with bismuth donor transitions (black points) and with the 9.076 GHz microwave
(green point) are also shown. (b) An SDR-MR spectrum of Bi donors in Si recorded
at 16 K under illumination. The 9.076 GHz microwave is used both to induce Bi
EPR transition and to probe the change in the sample photoconductivity. CR1 and
CR2 are the signal detected at the cross relaxation signals between Bi and PRC. The
orange points in (b) indicate simulated intensities using the SDR model described in
the text with the parameter value of Rp/Rap = 0.01.
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4.3 Donor−readout center pair cross relaxations

In addition, two lines labeled as CR1 (186 mT) and CR2 (259 mT) arise due not to

the resonance with the 9.076 GHz microwave but to cross relaxation (CR) between

particular Bi donor transitions and the PRC transitions, in a way very similar to

the cross relaxation between phosphorus donors and SL1 centers in Si observed by

electrically detected magnetic resonance [20]. This assignment of CR1 and CR2 is

further justified in Fig. 4-2. Even with the decrease in the microwave excitation

frequency, the position of these lines remains the same whereas the Bi EPR line

positions shift to lower fields. This proves the presence of coupling between the Bi

donor and PRC electron spins, which is requisite for the SDR detection method.

I should emphasize that even at the same X-band resonance of the Bi donor, the

observed SDR-MR line intensity distribution is clearly different from that observed in

the conventional EPR spectra [6, 7, 19, 9]. The intensity differs for the ten different

transitions in the present SDR-MR whereas it is practically the same in conventional

EPR, reflecting simply the thermal equilibrium population difference between the in-

volved levels. Furthermore, the observed line-dependence of the SDR-MR intensity is

distinctively stronger than the line dependence in the EPR transition [19]. Actually,

the signal intensity observed in EPR spectroscopy is a function only of geometric pa-

rameters (microwave cavity Q factor and filling factor), number of spins, the sample

temperature and the detection frequency. At thermal equilibrium, the last two pa-

rameters define the electron spin polarization. (In the case of continuous wave EPR

spectroscopy, the signal intensity also depends on the electron spin relaxation rate

and the modulation parameters of the spectrometer.)
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Figure 4-2: Cross relaxation lines CR1 (a) and CR2 (b) together with SDR-MR
Bi lines detected at different microwave frequencies. The Bi EPR lines labeled as
|16〉 ↔ |5〉 in (a) and |14〉 ↔ |7〉 in (b) shift with the resonant frequency whereas
the lines CR1 and CR2 do not. Additionally, the CR1 line (full-width half-maximum
FWHM = 1.0(2) mT) is narrower than CR2 (FWHM = 2.6(2) mT) because, as shown
in Fig. 4-1(a), the difference in the field-derivative of the transition frequency between
the readout center and resonant Bi transition is larger.
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4.4 Spectroscopy of NMR transitions

Figure 4-3(a) shows the observed SDR-MR line positions (green and red points) for

radio frequency excitation ranging from 20 to 400 MHz together with the calculated

magnetic resonance transition frequencies for the Bi donor (blue lines). All of these

simulated Bi magnetic resonance transitions are the 209Bi NMR transitions in the high

field limit. While the number of calculated Bi NMR lines in (a) appears ten, all but the

lowest- and highest-field lines are nearly-degenerate doublets, i.e., each is composed

of two lines separated by exactly twice the nuclear Zeeman splitting energy. Figure

4-3(b) shows the SDR-MR spectra probed by the same X-band microwave but with

additional radio frequency excitation of 200 MHz. Therefore, among the eighteen

NMR transitions of the Bi donor excited by these radio frequencies, we observed

clearly the two non-degenerate lines labeled as Bi-RF in Fig. 4-3. The remaining

eight doublets are too weak to be observed with the current experimental conditions.
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Figure 4-3: (a) The Bi-RF line positions observed at various resonant frequencies
(green points for the transition |19〉 ↔ |20〉 and red points for |10〉 ↔ |11〉) together
with calculated resonant fields (blue lines). (b) Low-field SDR-MR spectra with
50 and 200 MHz resonance frequencies together with simulation of the 200 MHz
spectrum. The transitions excited by the radio frequencies and X-band 9.076 GHZ
microwave are labeled as Bi-RF and Bi-X, respectively.
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4.5 Signal intensity model

As mentioned above, considering only the EPR transition probabilities [19] is not

sufficient to correctly describe the intensity of SDR-MR. In the following, I shall

present a model, based on the SDR model developed in Refs. [21, 22, 23], to simulate

the SDR-MR spectra that are shown in Fig. 4-1(a) and Fig. 4-3(a). The SDR signal

intensity, measured by probing the microwave intensity reflected by the cavity, is

linear to the sample photoconductivity σ. Its change by magnetic resonance through

SDR process can be written as:

∆σ ∝ −
∑
i,µ

Ri,µ [Ni,µ(w →∞)−Ni,µ(w = 0)] , (4.1)

where the subscripts i and µ denote the Bi donor and PRC spin states, respectively.

Ri,µ and Ni,µ are the recombination rate and the population of the specified pair. Here

the square bracket represents the change in the population from off-resonance (w = 0)

to saturated magnetic resonance (w →∞) conditions where w is the excitation rate.

Equation (4.1) is valid when the recombination rates can be assumed dominant over

the pair generation and dissociation rates as well as the spin-lattice relaxation and

spin decoherence rates. Furthermore, if only one transition between two Bi states i

and j is selectively excited, the change in photoconductivity becomes:

∆σ(i, j) ≈ −
∑
µ

[Ri,µNi,µ(∞) +Rj,µNj,µ(∞)

−(Ri,µNi,µ(0) +Rj,µNj,µ(0))]. (4.2)
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Using the rate equations described in Ref. [16], Eq. (4.2) simplifies to:

∆σ(i, j) ≈ −
∑
µ

[
4

Ri,µ +Rj,µ

−
(

1

Ri,µ

+
1

Rj,µ

)]
. (4.3)

The first term of Eq. (4.3) corresponds to the number of recombining pairs −4/(Ri,µ+

Rj,µ) when the resonance is saturated whereas the second 1/Ri,µ and third 1/Rj,µ

terms are the off-resonance terms. Thus, a large change in SDR signal should be

obtained when either Ri,µ or Rj,µ is much smaller than the other. Finally, to evaluate

the recombination rates Ri,µ and Rj,µ, the product state of the Bi donor and the PRC

is considered:

|i〉 |µ〉 = (cosφi(B0) |1/2,M − 1/2〉

+ sinφi(B0) |−1/2,M + 1/2〉) |µ〉 . (4.4)

In the right-hand side, the Bi state (i ∈ [1, 20]) is represented by the product of the

electron (mS = ±1/2) and nuclear spin (−9/2 ≤ mI ≤ 9/2) states with the total

spin z-component of −5 ≤ M ≤ 5 is represented on the basis of the electron (mS)

and nuclear (mI) spin z-component eigenstates [24]. Note that there are two different

Bi eigenstates for one particular M , except for M = ±5. The mixing angle φi(B0)

depends on the Bi state and is a function of the parameters in the Hamiltonian, Eq.

(2.26), as explicitly described in Ref. [19]. Depending on the state of PRC (µ = ±1/2,

denoted by µ =↑, ↓), each term in Eq. (4.4) gives contribution to the recombination

rate in terms of spin parallel (Rp) or anti-parallel (Rap) pair:

Ri,↑(B0) = Rp cos2 φi(B0) +Rap sin2 φi(B0), (4.5)
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Ri,↓(B0) = Rp sin2 φi(B0) +Rap cos2 φi(B0). (4.6)

Then, only the recombination associated with the pure states, i = 10 (M = −5)

and i = 20 (M = +5), have single components that are strictly parallel or anti-

parallel, while the other states have a mixture of the two components. This, in

combination with Eq. (4.4), is the reason why the highest- and lowest-field lines,

which involve the Bi state |10〉 or |20〉, are stronger than the other lines at X-band

Figure 4-4: (a) Representation of the two competing recombination processes (par-
allel and antiparallel spin configurations) for an arbitrary donor electron spin state
|i〉. α and β are the so called mixing coefficients described in Eq. (4.4). (b) Color
plot of the expected value of the donor electron spin 〈S

Z
〉 for the twenty eigenvalues

of the Bi donor spins.
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resonance and exclusively strongest at the radio frequency resonance. I used this

model to perform the simulation of the X-band spectrum in Fig. 4-1(b). The ratio

Rp/Rap = 0.01 has led to good agreement with the experiments and is comparable to

the recently reported value 15µs / 2 ms = 0.0075 for the phosphorus donor in Si [25].

Note that, for the X-band spectrum we also take into account that an EPR transition

line that is “forbidden” in the high-field limit overlaps with each EPR-“allowed” one

(|1〉 ↔ |20〉, the lowest-field line that involves one pure state, has no overlapping

forbidden transition [19]).
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Figure 4-5: EPR transition frequencies of group-V donors in silicon, (a) 31P, (b) 75As,
(c) 121Sb, (d) 123Sb and (e) 209Bi. The color represents the expected SDR intensity
for a conventional continuous wave measurement. Our model shows that the SDR
intensity of the hyperfine clock transition HCT9−12 line for Si:Bi (defined in Chapt.
5) is much weaker than the intensities for the X-band |1〉 ↔ |20〉 and |10〉 ↔ |11〉
lines (see Chapter 5). This was observed experimentally in Fig. 5-1. The frequency
scale for 209Bi is ten times larger than the others.
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4.6 Electron and nuclear spin resonance

Finally, I shall demonstrate the tunability of the resonance conditions of such “pure-

state” transitions to the energy comparable to the superconducting qubits. As shown

in Fig. 4-6(a), an additional 8.141 GHz microwave excitation in the same SDR method

allows for successful excitation and detection of the EPR transition between Bi |1〉

and |20〉 levels at low field (B0 = 30 mT). Although it is preferred to achieve B0 < 10

mT for the coupling with the superconducting qubit, Fig. 4-6 shows clearly the

flexibility to tune the energy difference between up and down states of the Bi electron

spin. It is also possible to tune the superconducting flux qubit to match the energy

between |R〉 and |L〉 states with the Bi transition frequency separating |1〉 and |20〉

states. The coupling strength between the flux qubit and Bi is expected in the range

of 1 − 100 kHz [5]. Figure 4-6(b) shows a result of a similar experiment but with

two excitation frequencies generated by two coils perpendicular to each other. The

second coil was used to irradiate 100-MHz excitation frequency. The Bi-RF and Bi-8

GHz resonance lines are observed together. Hence, this experimental setup allows us

to perform SDR-MR with two arbitrary excitation frequencies.
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Figure 4-6: Low-field SDR-MR spectra probed by the 9.076 GHz X-band reflection
(a) with a single 8.141 GHz excitation frequency and (b) with the same 8.141 GHz
excitation plus an additional 100 MHz radio frequency. The lines resonant with the
8.141 GHz microwave and the 100 MHz radio frequency are labeled as EPR and
NMR, respectively.
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4.7 Conclusion

In summary, I have obtained the electron paramagnetic resonance spectra of a small

number (5× 1011) of Bi donors in Si at low magnetic field (6− 110 mT). The detec-

tion was based on the measurement of the sample photoconductivity which changed

significantly at the time of resonance due to specific spin-dependent-recombination

phenomena. The spin-dependent-recombination process takes place via coupling of

the electron spins between Bi donors and nearby readout centers. The relative inten-

sity of each resonance line has been described well by a spin-dependent-recombination

model based on the mixing of Bi donor electron and nuclear spins.



Chapter 4. SDR based MR detection of bismuth donors in silicon 62

Bibliography

[1] I. Chiorescu, Y. Nakamura, C. Harmans, and J. E. Mooij, Science 299, 1869
(2003). (Cited on pages 2, 46, and 65.)

[2] J. F. Cochran and D. E. Mapother, Phys. Rev. 111, 133 (1958). (Cited on
pages 7, 46, and 65.)

[3] C. Reale, Acta Physica Academiae Scientiarum Hungaricae 37, 53 (1974). (Cited
on pages 7, 46, and 65.)

[4] G. Feher, Phys. Rev. 114, 1219 (1959). (Cited on pages 29, 31, 46, 65, and 68.)

[5] X. B. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J.
Munro, Y. Tokura, M. S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, and
K. Semba, Nature 478 (2011). (Cited on pages 4, 46, and 59.)

[6] G. W. Morley, M. Warner, A. M. Stoneham, P. T. Greenland, J. van Tol,
C. W. M. Kay, and G. Aeppli, Nat. Mater. 9, 725 (2010). (Cited on pages 7, 31,
46, 50, 65, 68, and 69.)

[7] R. E. George, W. Witzel, H. Riemann, N. V. Abrosimov, N. Noetzel, M. L. W.
Thewalt, and J. J. L. Morton, Phys. Rev. Lett. 105, 067601 (2010). (Cited on
pages 7, 46, 50, 65, and 69.)

[8] C. D. Weis, C. C. Lo, V. Lang, A. M. Tyryshkin, R. E. George, K. M. Yu,
J. Bokor, S. A. Lyon, J. J. L. Morton, and T. Schenkel, Appl. Phys. Lett. 100,
172104 (2012). (Cited on pages 43, 46, and 65.)

[9] M. Belli, M. Fanciulli, and N. V. Abrosimov, Phys. Rev. B 83, 235204 (2011).
(Cited on pages 46, 50, and 65.)

[10] T. Sekiguchi, M. Steger, K. Saeedi, M. L. W. Thewalt, H. Riemann, N. V.
Abrosimov, and N. Notzel, Phys. Rev. Lett. 104, 137402 (2010). (Cited on
pages 46 and 65.)

[11] R. L. Vranch, B. Henderson, and M. Pepper, Appl. Phys. Lett. 53, 1299 (1988).
(Cited on pages 47.)

[12] L. S. Vlasenko, Y. V. Martynov, T. Gregorkiewicz, and C. A. J. Ammerlaan,
Phys. Rev. B 52, 1144 (1995). (Cited on pages 47.)

[13] R. Laiho, L. S. Vlasenko, and M. P. Vlasenko, Mater Sci Forum 196- (1995).
(Cited on pages 47.)



Chapter 4. SDR based MR detection of bismuth donors in silicon 63

[14] R. Laiho, L. S. Vlasenko, and M. P. Vlasenko, Mater. Sci. Forum 196, 517 (1995).
(Cited on pages 47.)

[15] D. Kaplan, I. Solomon, and N. F. Mott, Journal De Physique Lettres 39 (1978).
(Cited on pages 48.)

[16] R. T. Cox, D. Block, A. Herve, R. Picard, C. Santier, and R. Helbig, Solid State
Commun. 25, 77 (1978). (Cited on pages 48, 55, and 71.)

[17] H. Morishita, L. S. Vlasenko, H. Tanaka, K. Semba, K. Sawano, Y. Shiraki,
M. Eto, and K. M. Itoh, Phys. Rev. B 80, 205206 (2009). (Cited on pages 48.)

[18] V. Miksic, B. Pivac, B. Rakvin, H. Zorc, F. Corni, R. Tonini, and G. Ottaviani,
Nucl Instrum Meth B 186 (2002). (Cited on pages 48.)

[19] M. H. Mohammady, G. W. Morley, and T. S. Monteiro, Phys. Rev. Lett. 105,
067602 (2010). (Cited on pages 48, 50, 54, 55, 57, and 66.)

[20] W. Akhtar, H. Morishita, K. Sawano, Y. Shiraki, L. S. Vlasenko, and K. M. Itoh,
Phys. Rev. B 84, 045204 (2011). (Cited on pages 50.)

[21] C. Boehme and K. Lips, Appl. Phys. Lett. 79 (2001). (Cited on pages 54.)

[22] C. Boehme and K. Lips, Phys. Rev. B 68, 245105 (2003). (Cited on pages 54.)

[23] C. Boehme and K. Lips, Charge transport in disordered solids, Wiley (2006).
(Cited on pages 54.)

[24] A. Abragam and B. Bleaney, Electron paramagnetic resonance of transition ions,
Oxford University Press, Oxford, UK (1970). (Cited on pages 55.)

[25] L. Dreher, F. Hoehne, M. Stutzmann, and M. S. Brandt, Phys. Rev. Lett. 108,
027602 (2012). (Cited on pages 57.)



Chapter 5

Hyperfine clock transition of

bismuth donors in silicon

This chapter is dedicated to the spectroscopic study of the hyperfine clock transition

of Bi donors in 28Si and in natSi. In section 5.2, I experimentally demonstrate the

existence of such hyperfine clock transition for Si:Bi. Then, in section 5.2, the exper-

imental results are modeled quantitatively by molecular orbital theory for a coupled

pair consisting of a bismuth donor and a spin dependent readout center, including

the effect of contact hyperfine and Zeeman interactions. In the section 5.5, I extend

our simulation results of section 5.4 to other group V donors in silicon.
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5.1 Introduction

Among a variety of physical systems investigated for quantum information processing,

superconducting qubits are one of the promising candidates as quantum processors

because of their fast operation capabilities and their potential for scalability [1]. How-

ever, because of their relatively fast decoherence rate which might be insufficient for

maintaining quantum information throughout the course of computation, develop-

ment of quantum memories that could support the operation of the superconducting

processors are desired. Such memory qubits have to be addressable at low magnetic

field (< 50 Oe for aluminum [2, 3]), since superconducting qubits become unoperable

at magnetic fields higher than their critical fields.

Within this context, a bismuth (Bi) donor in silicon (Si) has attracted much at-

tention recently. Its large hyperfine interaction A = 1.4754 GHz (Ref. [4]) and the

209Bi nuclear spin I = 9/2 give rise to a large zero-field splitting of 7.4 GHz that is

comparable to the typical energy splitting between |R〉 and |L〉 states of supercon-

ducting flux qubits [5]. Thus, coherent coupling between a Bi spin qubit in Si and

a superconducting flux qubit on Si is in principle possible via a microwave photon

traveling through a waveguide placed between the two qubits [6, 7]. The proposal to

couple Bi in Si with a superconducting qubit [7] have triggered extensive fundamental

studies of the Bi donor in Si very recently. Starting from the spectroscopic analysis of

the electron paramagnetic resonance (EPR) [7, 8], the electron spin relaxation time

T1 [6, 9], decoherence time T2 [6, 9, 8, 10, 11], and superhyperfine interaction with

nearby 29Si nuclear spins [9, 12] were investigated. Moreover, the coherent coupling

between the Bi electrons and 209Bi nuclear spins [7] and dynamic nuclear polarization

of 209Bi were achieved [6, 13]. Hybrid nuclear-electronic qubits consisting of super-

positions of electronic and nuclear spin states have been used to demonstrate five
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orders of magnitude longer coherence times than the manipulation times [14]. In

order to extend the coherence time of Bi donor electrons, magnetic field-insensitive

clock transitions can be used [11, 15, 12]. Also, at low temperatures, the presence of

4.7% 29Si (I=1/2) in naturally available silicon (natSi) limits the coherence time of

donors [16, 17] so that the use of isotopically purified 28Si is helpful [18, 19, 11]. The

fact that most of aforementioned Si:Bi studies were performed in the past three years

shows how rapidly developing this field is. However, one aspect that has been scarcely

studied is the investigation of Si:Bi at low-fields to enable the coupling to supercon-

ducting qubits. In order to fill in this gap, I have shown recently [20] that magnetic

resonance spectroscopy with detection based on spin dependent recombination [21]

(SDR) allows to manipulate and detect spins at low magnetic fields.

In the present study, using such a capable SDR technique, I perform spectroscopy

of bismuth implanted in both natSi and isotopically enriched 28Si samples and observe

a significant line narrowing at the hyperfine clock transition (HCT), where the tran-

sition frequency ν is insensitive to the change in A induced by variations in charge

distribution (∂ν/∂A = 0). While existence of optimal working points (e. g., gate

voltages) at which superconducting qubits are immune to the electric charge noise

has been demonstrated [22], observation of HCT in solid state systems has never been

reported to our knowledge. The HCT is different from the conventional clock tran-

sition, which is insensitive to magnetic noise (∂ν/∂Bz = 0). The conventional clock

transitions are routinely employed in the operation of atomic clocks [23, 24] utilizing

133Cs and trapped ions [25]. A similar clock transition of bismuth donors in silicon has

been adopted to achieve extremely long donor electron spin coherence time [11]. HCT

investigated in this study is more involved in the sense that the hyperfine interaction

of a donor can be affected by both strain and electric field fluctuations. Away from
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the HCT point, the interaction of a donor (D) electron with a nearby implantation

defect, which is used in SDR spectroscopy as a readout center (R), causes an asym-

metric broadening of the spectral line shapes. This interaction is equivalent to an

effective electric perturbation. Thus I propose a theoretical model that describes the

change of the donor wave function due to the presence of this readout center. This

model makes it possible to simulate the SDR spectra and estimate the associated

change in the hyperfine interaction. Finally, I compare the line position and the line

shape measured by SDR spectroscopy with our calculation and extend the theoretical

model for other donors in silicon.
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5.2 Experimental observation of the change in hy-

perfine interactions

Lets recall from Chapt. 2, Eq. (2.26), the Bi donor spin Hamiltonian

H1 = geµBBzSz − gnµNBzIz + hAS · I, (5.1)

where ge and gn are the donor electron and nuclear g-factors, respectively, and A the

value of the isotropic hyperfine interaction in units of frequency. We label the i-th

eigenstate in order of increasing energy as |i〉. The Breit-Rabi diagram of the bismuth

donor is shown in Fig. 5-1(a). The Hamiltonian parameters used are summarized

in Table 5.1, together with the ones extracted from the SDR data of this study.

The sensitivity of the resonant magnetic field to a parameter p for a given resonant

Table 5.1: Magnetic resonance parameters of 28Si:Bi and natSi:Bi. The fractional
changes in g-factor and in hyperfine interaction, are calculated as (gSDR

e −gEPRe )/gEPRe

and (ASDR − AEPR)/AEPR. The values for SDRb,c i.e., ASDR (b, c) and gSDR
e (c) are

obtained from the fitting of the SDR peak positions by Eq. (5.1), assuming Gaussian
distributed resonance peaks. SDRb is obtained using g-factor and A fitting parameters
and SDRc, utilizing the g factor determined at HCT9−12, and A as fitting parameter.

28Si:Bi ge ∆ge/ge gn A ∆A/A
(ppm) (MHz) (ppm)

EPRa [11] 2.00032 Ref. 0.9135 1475.17 Ref.
SDRb 2.00036(4) +19(22) 1475.31(7) +95(50)
SDRc [4] 2.00038(2) +29(10) 1475.29(7) +84(50)
natSi:Bi
EPRd, e [4, 6] 2.0003 Ref. 0.914 1475.4 Ref.
SDRc 2.00049(5) +93(25) 1475.05(17) −240(120)
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frequency ν is defined as δBz/δp, which satisfies

δν =
∂ν

∂p
δp+

∂ν

∂Bz

δBz = 0 (5.2)

which leads to ∂ν/∂A = −(∂ν/∂Bz)(δBz/δA). For ∂ν/∂A to be zero, δBz/δA must

be zero since when ∂ν/∂Bz = 0, δA = 0 (Ref. [11]) so that ∂ν/∂A takes a finite

value.

Figures 5-1(b−d) and 5-1(e−g) show cw SDR spectra of natSi:Bi and 28Si:Bi. The

spectra recorded at the Bi donor HCT for mI = −7/2 (7.3043 GHz for natSi:Bi

and 7.3054 GHz for 28Si:Bi) between the states |9〉 and |12〉 [Figs. 5-1(c, f)] have a

symmetric line shape whereas the X-band spectra of the |1〉 ↔ |20〉 transition (mI =

9/2) and the |10〉 ↔ |11〉 transition (mI = −9/2), shown in Figs. 5-1(b, e) and in Figs.

5-1(d, g), respectively, are asymmetric. At the HCT, the resonant field sensitivity to

the hyperfine value δBz/δA is zero so that one can probe the Si:Bi linewidth and line

shape not subject to such electric perturbations. The measured FWHM linewidth of

the HCT lines are 6.7 G and 1.3 G for natSi:Bi and for 28Si:Bi, respectively. These

values are significantly larger than the measured linewidth at X-band of 4.1 G for

natSi:Bi [6, 7] and the theoretical prediction of 0.08 G at the HCT9−12 for 28Si:Bi [10].

In contrast, the X-band |1〉 ↔ |20〉 transitions are asymmetrically broadened (FWHM

linewidths of 7.7 G and 1.6 G) toward high field and the |10〉 ↔ |11〉 transitions toward

low field (7.0 G and 1.4 G). mI dependent asymmetry directions can be described by

an (inhomogeneous) distribution of the hyperfine interaction but is inconsistent with

any distribution of the Zeeman interaction.

The asymmetric line broadening of the |1〉 ↔ |20〉 and |10〉 ↔ |11〉 transitions

is consistent with a distribution of the donor hyperfine interaction with a long tail
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Figure 5-1: (a) Breit-Rabi diagram of the bismuth donor spins. The three vertical
red lines correspond to the transitions shown in (b−g). cw SDR spectra of natSi:Bi
(b−d) and 28Si:Bi (e−g). The FWHM linewidths of the HCT9−12 (c) and (f), obtained
from the double integration of the fitting Gaussians (red lines), are 6.7 G for natSi:Bi
and is 1.3 G for 28Si:Bi. Arrows indicate the direction of the asymmetric broadening
directions. The signal-to-noise (S/N) ratios for |9〉 ↔ |12〉 are worse than the others
since the HCT9−12 line intensity for Si:Bi is much weaker than the intensities for the
X-band |1〉 ↔ |20〉 and |10〉 ↔ |11〉 lines as will be shown theoretically in Fig. 5-12.
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toward low hyperfine couplings. From the line shapes of the spectra in Figs. 5-1 (b,

d, e and g), the asymmetric part of the line broadening can be estimated roughly

to 1 G, corresponding to a distribution of the hyperfine constant A toward lower

values by 3 MHz. I can exclude the distribution in the donor g-factor as a cause

of this asymmetric broadening, because the sensitivity δBz/δge is negative for both

transitions so that the broadening for both |1〉 ↔ |20〉 and |10〉 ↔ |11〉 transitions

would be in the same direction. The spin exchange interaction J S
D
· S

R
(Ref. [26])

between the two electrons of the SDR pair can also be ruled out as it would yield a

symmetric line broadening for low enough couplings, estimated by Lu et al. [27] to

Figure 5-2: (a) Experimentally measured FWHM of the ten X-band peaks of natSi:Bi
plotted as a function of the hyperfine interaction sensitivity

∣∣∂B/∂A∣∣ of each transi-
tion (dark red points). The linear fit (blue line) is a guide for the eye. The minimal
linewidth is measured at the HCT where the absolute sensitivity of the resonant field
to the hyperfine interaction is zero. The transitions with the largest sensitivity shows
a linewidth 20 % larger than at the HCT. (b) Experimentally determined skewness
(3rd standard moment) [see Eq. (5.10)] of the natSi:Bi peaks as a function of ∂B/∂A
(dark red points). The blue line is a linear fit of the experimental points. The peak
asymmetry is canceled at the HCT, whereas at other transitions, it agrees with an
asymmetric distribution of the hyperfine interaction.
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be below 5 MHz for phosphorus donor coupled to a surface dangling bond (31P−Pb0)

and below 10 kHz for separations larger than one donor Bohr radius a
B

[28]. The

values of |δBz/δJ |, δBz/δA and δBz/δge corresponding to each spectrum in Fig. 5-

1 are summarized in Table 5.2. Figure 5-3 shows the simulation of the resonant

field (x-axis) as a function of the exchange coupling intensity J ranging from 0 to

1000 MHz. The symmetric splitting at low J-coupling (below 400 mT) is confirmed.

Also, the transition probability in the two branches of each transition is equal for low

couplings.

Other possible causes for the observed asymmetric broadening would be the

strain induced by the implantation damage that was not recovered fully by the post-

implantation annealing process [29]. For shallow donors (P, As, Sb) in silicon, Wilson

and Feher [30] and Dreher et al. [31] have shown that uniaxial macroscopic strain

decreases the hyperfine interaction mainly through the valley repopulation of the

ground-state Bloch function. Recently, the same sample as natSi:Bi, Dreher (Ref.

[32]) has shown that, despite the fact that Bi has a large electron binding energy

of 71 meV, the strain decreases its hyperfine interaction in the manner similar to

other shallow donors, by mixing the ground state A1 with E-symmetry states. I have

Table 5.2: The resonant field (Bz) sensitivity to the g-factor ge and to the hyperfine A
for the Si:Bi transitions shown in Fig. 5-1. mI represents the nuclear spin projection
of the EPR transitions but is not a good quantum number for all these levels, expect
for |10〉 and |20〉. The calculation was performed using the EPR magnetic resonance
parameters shown in Table I.

Transition mI |δBz/δJ | δBz/δge δBz/δA
(spectrum in Fig. 5-1) [G/MHz] [103 G] [G/MHz]
|1〉 ↔ |20〉 (b, e) 9/2 0.08 −0.3 −1.9
|9〉 ↔ |12〉 (c, f) −7/2 0.06 −1.8 0
|10〉 ↔ |11〉 (d, g) −9/2 0.08 −2.7 1.4
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further confirmed this experimental fact using 28Si:Bi [see Fig. (5-4)]. To generate

a uniaxial strain, the implanted side of the sample was glued to the quartz rod of

the sample holder using a varnish resisting to low-temperature (GE 7031). The thin
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Figure 5-3: (a) Simulation of the resonant field of the two-electron and one nuclear
spins system: Bi donor and readout center electrons. The simulation was performed
for a microwave resonant frequency of 9.08 GHz. The ESR transition probability is
plotted as a color scale (a.u.). Magnified views of the region between 250 and 400
mT (b), and of the region between 525 and 570 mT (c).
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layer of varnish was transparent to light and the half cylindrical quartz rod was used

as an optical lens to focus light on the implanted region of the sample. The ratio of

the thermal expansion coefficients of quartz over silicon is αquartz/αSi ≈ 10 for the

temperature range 16 − 300 K [33, 34]. As the glue is dried at room temperature,

when cooling the sample down to 16 K, the resulting maximal uniaxial strain in the

sample due to the thermal expansion coefficients is ε33 ≈ 10−4 along the normal to

Figure 5-4: (a) cw SDR spectra of 28Si:Bi without strain (blue) and with strain
(red, see text). The vertical black line represents the resonant magnetic field of the
|10〉 ↔ |11〉 transition without strain and the horizontal arrow represents the peak
distribution shift under strain uniaxial strain. The largest shift of the peak at 16 K
is 5 G. (b) Schematic representation of the sample glued to the sample hold quartz
rod. (c) Cross-sectional view of the schematic representation of (b). (d) Illustration
of the valley repopulation process under uniaxial [100] strain. The A1 symmetry of
the Bloch wave function is broken. The donor electron wave function is mixed with
E-symmetry wave functions (see section 2.1), decreasing the electron density at the
donor nucleus, which in turns reduces the hyperfine interaction of the donor.
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Figure 5-5: Change in hyperfine interaction estimated from cw SDR spectra of
natSi:Bi for the transitions |1〉 ↔ |20〉, |2〉 ↔ |19〉 and |3〉 ↔ |18〉, for different
temperatures. The lines between the experimental points are only a guide for the
eye. The blue line is the simulated change in hyperfine due to the change in the Si
lattice constant wight the temperature. This simulation includes only the change of
the Bloch wave functions, calculated using the pseudo potential method (see section
2.1).

the sample surface. The measured SDR spectrum of the |10〉 ↔ |11〉 in 28Si:Bi under

strain is shifted by about 5 G toward low magnetic field [Fig. 5-4(a)], corresponding

to a decrease in the Bi donor hyperfine of 3.6 MHz. The peak broadening is due to

the inhomogeneity in the applied stress.

However, the effective hyperfine of the Bi donors in 28Si, obtained from the peak

positions in the SDR spectra, is +84 ppm higher than the reported value for EPR

measurements at the clock transition [11]. Thus the macroscopic strain cannot ac-

count for the observed positive shift in effective hyperfine interaction. This positive

shift could be explained by a temperature difference of 3 K between the ESR mea-

surement of the calibration 28Si:Bi sample and the SDR measurement [see Fig. 5-5].
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We ruled out this hypothesis as our control of the temperature was much more precise

than this difference of 3 K (see section 3.2). In fact, the positive shift suggests that

orbitals of the donor and the readout center electrons are coupled and their densities

are redistributed. In this study, I thus describe the SDR pair in terms of a model

based on the coupling between the electron orbitals of the pair in this study.
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5.3 Calculation of the line shape with the spin de-

pendent recombination model

One Bi donor electron and one readout center electron form a spin pair. In section

5.3.1, I introduce a theoretical model to describe this electron pair. Then, I evaluate

the effect of the readout center on the donor hyperfine properties (section 5.3.2) and

I discuss the influence of the model parameters on the line shape (section 5.3.3).

5.3.1 Wave function of the donor-readout center pair

The one-electron molecular orbitals corresponding to the neutral donor in the presence

of an ionized readout center (D0-R+) and to a neutral readout center close to an

ionized donor (D+-R0) are denoted by φ
D

and φ
R

, respectively. In a simplified picture,

φ
D

and φ
R

can be expressed as a linear combination of the wave functions of the

electron of an isolated donor χ
D

and an isolated center χ
R

so that φ
D

= a1χD
+ a2χR

and φ
R

= b1χD
+ b2χR

. The linear coefficients a1,2 and b1,2 are calculated by applying

Figure 5-6: Energy diagrams of the donor and readout center in the silicon band
gap for the isolated states (a) and for the molecular orbitals (b). The corresponding
electron densities are also plotted, together with the Coulomb potential of the ionized
donor.
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the variational method to the one-electron Hamiltonian H0 = K∗+V ∗
D

+V ∗
R

where K∗

is the effective kinetic energy of the electron, V ∗
D

is the screened Coulomb potential of

the donor, and V ∗
R

is the effective potential of the readout center. The difference in

energy between these molecular states φi and the isolated states χi is small, even for

a small spatial separation. This is due to the significant difference in the two orbitals

Figure 5-7: Estimated hopping probability of the donor electron to the readout center
as a function of the spatial separation r between the donor D and the readout center
R. The readout center is model as a point defect located at a Si lattice site and the
donor electron wave function was experimentally measured by Hale and Mieher [35]
for phosphorus (a), arsenic (c) and antimony (c) in silicon. The dotted blue line is the
calculated hopping probability assuming only the 1s envelope wave function with the
Bohr radii of Table 2.3. For separations larger than the donor Bohr radii, the envelope
functions suffice to predict the experimentally estimated hopping probability.



Chapter 5. Hyperfine clock transition of bismuth donors in silicon 79

χ
D

and χ
R

. The electron densities |χ
D
|2 and |χ

R
|2 are plotted in Fig. 5-6(a), and

those of the one-electron molecular orbitals |φ
D
|2 and |φ

R
|2 in Fig. 5-6(b).

For readout centers close to the donor nucleus, a D-R pair cannot be formed: the

more favorable energy levels of the readout center together with the large hopping

probability of the electron from the donor site to the readout center prevent a free

electron to be captured by the ionized donor. Therefore, in this model, we consider

only the lattice sites far enough from D ( r > a0) as possible readout centers. This

condition allows us to neglect the spatial oscillations of the electron density due to

the Bloch wave functions as, far away from the donor site, its electron wave function

is correctly modeled by the 1s envelop [see Fig. (5-7)], and central cell corrections do

not have to be taken into account [36].

Antisymmetrized wave functions of the two-electron system, including the spin

part, are constructed using the Slater determinant of the one-electron molecular or-

bitals:

ψ1 = φ
R
φ

R
|0, 0〉 ⊗ |mI〉 (5.3a)

ψ+ = 2−1/2
(
φ

D
φ

R
+ φ

R
φ

D

)
|0, 0〉 ⊗ |mI〉 (5.3b)

ψ− = 2−1/2
(
φ

D
φ

R
− φ

R
φ

D

)
|1,mσ〉 ⊗ |mI〉 (5.3c)

ψ4 = φ
D
φ

D
|0, 0〉 ⊗ |mI〉 . (5.3d)

In the above, the spin states are denoted as |σ,mσ〉 with σ = S
D
±S

R
and the orbital

products of the φi correspond, from left to right, to the first and the second electrons

of the system. One notices that the spin singlet state ψ+ (triplet ψ−) behaves like a

bonding (antibonding) orbital. Note that these states correspond to the charge states

D+−R−, D0−R0 (σ=0), D0−R0 (σ=1) and D−−R+, respectively.
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Furthermore, the charge repulsion 1/r12 can be included. The corrected two-

electron molecular orbitals Ψi are then written as linear combinations of ψi. Thus,

the bonding orbital is Ψ+ = N−1+

(
ψ+ + c1ψ1 + c4ψ4

)
, where the coefficients are c1 =

〈ψ1|1/r12 |ψ+〉
E+−E1

and c4 =
〈ψ4|1/r12 |ψ+〉

E+−E4
. Then, assuming a negatively charged donor (D−)

with an energy ≈ E4 � E+, E1, the coefficient c4 tends to zero and the contribution

of ψ4 to Ψ+ can be neglected. It follows that

Ψ+ = N−1+

(
ψ+ + c1ψ1

)
. (5.4)

In the coefficient c1, the term
〈
ψ1|1/r12|ψ+

〉
can be approximated as ≈

√
2 θ Ecorr

where Ecorr is the two-electron correlation energy taken as the Coulomb repulsion

of the electrons in the R− state. In this model, Ecorr is included in the parameter

εcorr = Ecorr/(E+ − E1) ≈ Ecorr/(E+ − E
R−). On the other hand, the antibonding

spin triplet state ψ− does not mix with either of the spin singlet states ψ1,+,4, i. e.,

we have Ψ− = ψ− .

5.3.2 Change in hyperfine interaction

The Fermi hyperfine interaction for the two electrons is

Hhyp = −2

3
µ0 µBi

·
2∑
i=1

µiρi(rBi
), (5.5)

where ρi(rBi
) is the one-electron density at the bismuth nucleus. The electron mag-

netic dipolar moment µi depends on the electron orbital function. As the two-

electron orbitals can be expressed as functions of χ
D

and χ
R

, only two operators

µ
D

= −g
D
µBSD

and µ
R

= −g
R
µBSR

are relevant, where g
D

and g
R

are the g-
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factors of the isolated donor and readout center electrons, respectively. In order to

simulate the SDR line shape, we only consider the change in the electron distribution

while assuming the g-factor of the isolated centers. However, due to the confined

nature of the readout center, only the χ
D

component has a significant electron den-

sity at the bismuth nucleus. Then, in the rest of this section, the subscript of ρ
D

is

dropped.

Now, if one considers the hyperfine interaction Am
R

for a given spin projection

Figure 5-8: Fractional changes in the electron density ρ for three different electron
spins configurations plotted as a function of the separation r between the donor and
the readout center in units of a

B
. ρ0 corresponds to the isolated bismuth donor. A

typical fractional change of −2×103 ppm corresponds to a change of the Bi hyperfine
interaction of −3 MHz.
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m
R

of the readout center, one finds that

〈
m

R
= 1/2

∣∣Hhyp

∣∣m
R

= 1/2
〉

=

Ap,p Ap,ap

Aap,p Aap,ap

 (5.6)

〈
m

R
= −1/2

∣∣Hhyp

∣∣m
R

= −1/2
〉

=

Aap,ap Ap,ap
Aap,p Ap,p

 (5.7)

where eachAj,k on the right-hand side is a block matrix of dimension 2I+1, calculated

using the electron density ρj,k with subscripts indicating the parallel and antiparal-

lel electron spin configurations: Ap,p =
〈
Ψ−
∣∣Hhyp

∣∣Ψ−〉, Ap,ap =
〈
Ψ−
∣∣Hhyp

∣∣(Ψ− −
Ψ+)/

√
2
〉

=
〈
Ψ−
∣∣Hhyp

∣∣(Ψ− + Ψ+)/
√

2
〉

and Aap,ap =
〈
(Ψ− − Ψ+)/

√
2
∣∣Hhyp

∣∣(Ψ− −
Ψ+)/

√
2
〉

=
〈
(Ψ− + Ψ+)/

√
2
∣∣Hhyp

∣∣(Ψ− + Ψ+)/
√

2
〉
. On the other hand, the off-

diagonal blocks
〈
m′

R

∣∣Hhyp

∣∣m
R

〉
for m′

R
6= m

R
give a contribution only at the second

and higher orders, which are neglected in this model. The simulation of the fractional

change in the electron density at the donor nucleus ∆ρ/ρ0 was performed using a sin-

gle exponential envelope function characterized by the Bohr radius a
B

= 8.1 Å for

the Bi donor electron and a Dirac function for the readout center. ∆ρ/ρ0 is plotted

in Fig. 5-8 for a readout center energy of −0.55 eV, and repulsion energy param-

eters εcorr = 0 (a) and εcorr = 0.5 (b). One notices that a large repulsion energy

parameter decreases the hyperfine interaction for the electron spin pair in the triplet

configuration.

5.3.3 Spin dependent recombination model parameters

The present model contains three physical parameters for a given donor in silicon:

the concentration of readout centers N
R

, and two parameters E
R

and εcorr related to
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the energy levels of the readout center. In order to discuss the effect of the model

parameters on the spectral line shapes, it is required to know how much each SDR pair

contributes to the detected SDR signal as a function of the pair separation distance.

Among all the readout centers interacting with a donor, we assume that the closest

one exclusively forms the most efficient recombination pair. Then, in the ensemble

measurement, each donor has a different separation r to the nearest readout center

and, therefore, a different recombination time in the anti-parallel spin configuration,

τap. However τap is much shorter than the pair creation time τec, i. e., τap � τec � τp,

the signal intensity from a single D-R pair is determined by the electron capture time

τec and thus independent of r in cw SDR measurements. Then, the total intensity from

an ensemble of D-R pairs should be determined directly by the distribution function

of the D-R separation r. Here, I identify the concentration of the pair having the pair

separation r as follows.

First, I assume that the SDR intensity is proportional to the probability P(r) dr

of a Bi donor to find the nearest readout center at a distance between r and r + dr.

This distribution can be written as[37]

P =
3

〈r
RR
〉

(
r

〈r
RR
〉

)2

exp

(
− r3

〈r
RR
〉3

)
(5.8)

where 〈r
RR
〉 = (3V/4πN

R
)1/3 is the average distance between the readout center and

its nearest neighbor. Such distributions are plotted in Fig. 5-9(a), as a function of

r in the unit of a
B

, for three different concentrations N
R

of the readout centers. By

combining Eq. (5.8) with the dependence of the hyperfine A on the D-R separation r

obtained in section 5.3.2, the distribution in resonant magnetic field for the transition

|10〉 ↔ |11〉 is calculated and shown by thin curves in Figs. 5-9 (b, c). Since the peak
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Figure 5-9: (a) Distributions of the separation r between the donor and its near-
est readout center for various concentrations N

R
. (b, c) Simulated distributions of

the |10〉 ↔ |11〉 transition taking into account only the SDR pair distribution (thin
filled lines) and its convolution with the second derivative of a Gaussian (thick lines)
for 28Si:Bi (b) and natSi:Bi (c). The donor and readout center pair with the small
enough separation r have strong interaction and thus contribute to the low-field tail
in the distribution of resonant magnetic fields (thin solid lines). The FWHMs of the
HCT9−12 lines are 6.7 G for natSi:Bi (c) and 1.3 G for 28Si:Bi (f), each of which is
obtained from the width parameter of the 2nd derivative of a Gaussian function fitted
to the HCT line (red curves). Due to such linewidth difference, the shift of the peak
position to low field is much larger in natSi:Bi (larger field scale), while the degree of
line shape asymmetry is more apparent in 28Si:Bi, as N

R
is increased.
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for each r should be accompanied by a symmetric broadening due to inhomogeneous

distribution of 29Si nuclear spins in natSi:Bi and of other Bi-donor and readout-center

electron spins in 28Si:Bi [as observed in Figs. 1(c) and 1(f)], the thin curves are

convoluted with the second derivative of a Gaussian function to simulate the SDR

spectra. The simulated spectra are shown as the thick curves in the same figures.

Figure 5-10: Simulated distribution of the |10〉 ↔ |11〉 transition in 28Si:Bi (a) and
natSi:Bi (b) taking into account only the SDR pair distribution (thin lines) and its con-
volution with the second derivative of a Gaussian (thick lines) for various two-electron
correlation parameters εcorr. A larger εcorr decreases the hyperfine interaction more
in the anti-parallel spin pair configuration, which in turns broadens the distribution
of the resonant magnetic field toward low field. The same procedure as for Fig. 5-9
was used for these simulations.

The mixing of atomic orbitals in the present model is assumed to be driven by

the long range Coulomb potential of the ionized donor, and the readout center energy



Chapter 5. Hyperfine clock transition of bismuth donors in silicon 86

E
R

is set at −0.55 eV from the silicon conduction band. The remaining parameter

of this model is the two-electron correlation parameter εcorr defined in section 5.3.1.

It characterizes the mixing of the two-electron molecular orbitals in the spin singlet

configuration Ψ+. The dependence on εcorr of the resonant magnetic field is plotted

in Fig. 5-10 for the |10〉 ↔ |11〉 transition.
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5.4 Comparison of experimental results with sim-

ulations

5.4.1 Line positions

At low magnetic field that we employed, the line positions are determined by the two

parameters, g
D

andA. In section III, I have shown the dependence of the resonant field

on the electron density at the donor nucleus, ρ, through the hyperfine interaction.

The donor electron g-factor further influences the line positions through both the

Zeeman and the hyperfine [Eq. (5.5)] interactions. Because the resonant magnetic

field of the HCT9−12 is robust against fluctuations in hyperfine A, it allows a precise

determination of the g-factor of the donor electron. We measured an effective shift

in the donor electron g-factor of +29 ppm in 28Si:Bi (see Table 5.1), which can be

qualitatively explained by the second order perturbation theory as follows. For a

donor electron non interacting with any readout center, the deviation δg∞
D

from the

free electron g-factor resulting from the spin-orbit coupling is given by:

δg∞
D
µBBzSz =

∑
n6=χ∞

D

〈
χ∞

D
|H2|n

〉 〈
n |H2|χ∞D

〉
Eχ∞

D
− En

(5.9)

where En are eigenvalues of the Hamiltonian H0 and H2 = gfeµB S · B − λS · l +

µB l ·B with gfe the free electron g-factor, and λ the spin-orbit coupling parameter.

Here the electron ground state
∣∣χ∞

D

〉
is an eigenstate of H0, neglecting the readout

center potential V ∗
R

. However, as shown in section 5.3.1, the electron wave function is

modified due to the presence of the readout center. Therefore, the g-factor correction

of the donor electron in an SDR pair is δg
D
≈ a21δg

∞
D

+a22δg
∞
R

where δg∞
D

and δg∞
R

are

the spin-orbit corrections of the isolated donor and readout center, respectively, and
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a1,2 are defined in section 5.3.1. Since the g-factor of the isolated readout center g∞
R

=

2.005(3) (Ref. [20]) is larger than the g-factor of the isolated donor g∞
D

= 2.00032 (see

Table 5.1), the weighted average g
D

must satisfy g∞
D
< g

D
< g∞

R
. This qualitatively

explains the larger effective g-factor of the donor in an SDR pair g
D

= 2.00038(2).

Moreover, since the hyperfine interaction is proportional to the donor g-factor [Eq.

(5.5)], the positive change of +29 ppm in g-factor measured in the SDR spectroscopy

of 28Si:Bi can be partly accounted for by the increase in effective hyperfine interaction

of +84 ppm. On the other hand, the linewidth of a transition in natSi:Bi is much larger

than in 28Si:Bi due to the inhomogeneous hyperfine interaction with the 29Si nuclear

spins. Therefore, the line position where the SDR intensity has a maximum, is shifted

toward the mean of the resonant field distribution, away from its maximum (see Fig.

5-9 and 5-10). Thus, the decrease in effective hyperfine of −240 ppm for natSi:Bi is

attributed to a combination of the line asymmetry from the distribution in resonant

magnetic field and of the broad linewidth from the inhomogeneous broadening.

The excitation frequency of the HCT9−12 (Fig. 5-1) has been determined using the

reference values of the donor electron g-factor gEPRe (Table 5.1). However, the gSDR
e

measured by SDR spectroscopy is different from gEPRe . The resulting deviations in

resonant field HCTEPR
9−12 − HCTSDR

9−12 are +0.11 G for 28Si:Bi and +0.35 G for natSi:Bi.

As a consequence, the spectra of Figs. 5-1(b) and 5-1(e) are not exactly at the

HCTSDR
9−12, and the sensitivity δBz/δA(Bz = BEPR

HCT) is finite: +3 × 10−8 G/MHz for

28Si:Bi and +8× 10−8 G/MHz for natSi:Bi. Nevertheless, the line broadening due to

these finite sensitivities is much smaller than the magnetic field inhomogeneity and

cannot be detected.
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5.4.2 Line shapes

The experimental and simulated line shapes can be quantitatively compared in terms

of moments mn defined as:

mn =

∫
(B − 〈B〉)n I(B) dB (5.10)

where I is the normalized signal intensity and 〈B〉 is the mean field for this spectrum.

The degree of broadening and asymmetry can be represented by the variance m2 and

skewness γ1 = m3/m
3/2
2 . The simulated values of m2 and γ1 for 28Si:Bi are plotted as

functions of N
R

and εcorr in Figs. 5-11(a) and 5-11(b), respectively. The experimental

variance and skewness are, m2 = 0.62(5) G2 and γ1 = −2.0(4) for the spin transition

|10〉 ↔ |11〉 in 28Si:Bi. These are represented by the red surfaces in Figs. 5-11(a) and

5-11(b). The experimental uncertainties come mainly from a large background after

the double-integration of the SDR signal, which is recorded as the second derivative

of the sample photoconductivity, necessary for the intensity in Eq. (5.10) to evaluate

the moments. The intersection in Fig. 5-11(c) represents the corresponding values

for the correlation parameter and the readout center concentration: εcorr = 1 and

N
R

= 2× 1019 cm−3. Such a high readout center concentration is consistent with the

high damage cross-section for energetic bismuth ions and the limited recovery of the

crystallinity by the annealing process. The two-electron correlation parameter εcorr

= 1 obtained in this study is equal to the one estimated for 31P-Pb0 (εcorr ≈ 1.0, Ref.

[38]), which confirms the localized wave function of the readout center.

For these numerical simulations, I used the experimental linewidth of 28Si:Bi (1.3

G) measured at HCT9−12. This rather large linewidth can be explained by the dipole-

dipole interaction of the donor and the readout center electron spins for a concentra-
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Figure 5-11: Second (a) and third (b) standardized moments (m2 and γ1) of the
simulated fractional change in the photoconductivity for the transition |10〉 ↔ |11〉.
The simulation was performed for 28Si:Bi using the same 1.35 G linewidth as for Fig.
5-9(b) and 5-10(a). The red regions in the both plots represent the experimental
values of m2 and γ1 and their uncertainty. These two regions are superposed in (c).
The intersection of the m2 = 0.62 G2 and γ1 = 2.0 is shown by a filled circle. The
simulated line shapes for the pinpointed parameters in (c) of natSi:Bi and 28Si:Bi are
shown in (d) and (e) (red lines), and compared to the experimental data (blue lines).
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tion N
R
≈ 5×1018 cm−3. Moreover, one can expect a spectral line broadening due to

the distribution in the donor electron g-factor. Assuming that this distribution covers

a range of±93 ppm around g
D

= 2.00049 for natSi:Bi (see Table 5.1), the broadening in

the line FWHM, induced by the finite sensitivity |δBz/δge| (see Table II) at the HCT,

should be +0.3 G. As a consequence, the distribution in the donor electron g-factor

is negligible for natSi:Bi and the FWHM linewidth of the Gaussian for the transition

|10〉 ↔ |11〉 is 5.7 G. For 28Si:Bi however, even a smaller distribution of +29 ppm in

g-factor is responsible for 0.1 G linewidth broadening (more than 10% of the linewidth

measured at the HCT9−12). The 0.1 G contribution of the g-factor distribution to the

linewidth is multiplied by the sensitivity ratio (δBz/δge)|10〉↔|11〉 / (δBz/δge)HCT = 1.5.

Thus, the Gaussian linewidth to be used in the simulations for 28Si:Bi is 1.35 G. It

can be noted that for close pairs (r < 1 a
B

), the strong exchange interaction [28] can

be neglected since the corresponding SDR intensity for N
R

= 2× 1019 cm−3 is below

0.1 % of the total SDR intensity. The above mentioned linewidths together with the

N
R

and εcorr parameters calculated for 28Si:Bi lead to the simulated spectra shown

in Fig. 5-11(d) for 28Si:Bi and (e) for natSi:Bi. The experimental spectra are also

shown below the simulations. The line shapes of the transition |10〉 ↔ |11〉 for both

28Si:Bi and natSi:Bi samples are well reproduced. This demonstrates the validity of

the presented molecular model for the SDR detection of donors for a wide range of

host isotope composition.

Before concluding this section, I would like to point out the work of Morishita et

al. [39] in which the spectroscopy of 28Si:P was performed using low-field electrically

detected magnetic resonance (LFEDMR), a technique similar to SDR. In this work,

the authors compared the linewidth of 28Si:P probed by LFEDMR at 160 MHz and

by EPR at 9 GHz. No difference in the linewidth (0.1 G) for the |2〉 ↔ |3〉 transition
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was observed and the authors concluded that the interaction of the phosphorus donor

with the readout center is strong enough to allow the recombination process, but

weak enough not to alter the transition linewidth. Yet, the hyperfine structure of

the phosphorus donor is only 117 MHz so that its maximum change due to the

interaction with the readout center is ∼ 13 times smaller for phosphorus than for

bismuth. Moreover, the small phosphorus nuclear spin I = 1/2 makes the sensitivity

δBz/δA relatively small: −0.10 G/MHz at 160 MHz for the |2〉 ↔ |3〉. Thus, the effect

of the phosphorus donor interaction with its readout center on the magnetic resonance

is below the detection limit and the conclusions of Morishita do not contradict the

present analysis.
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5.5 Hyperfine clock transitions for other group-V

donors in silicon

There is no HCT in the EPR transitions of phosphorus donors in silicon. Other

group-V donors have I − 1/2 HCT. At such points, as discussed in section 5.4.1, the

contribution of the g-factor distribution to the linewidth can be evaluated knowing

the intrinsic EPR linewidth and extrapolated for an arbitrary transition. In fact,

since the broadening due to the distribution in hyperfine (electron density at the

donor nucleus) scales with |∂ν/∂A|, the contribution to the linewidth calculated in

this paper can be extrapolated for any points. The values of |∂ν/∂A| for EPR-allowed

transitions of group-V donors in silicon (31P, 75As, 121Sb, 123Sb and 209Bi) are plotted

as the line thickness in Fig. 5-12. One can notice that for a given EPR transition,

the high-field limit of ∂ν/∂A is exactly mI and, as a consequence, the field sensitivity

to the hyperfine interaction is simply written as

δBz

δA
=

h

ge µe
mI . (5.11)

Also no polarization of the donor spins is required for SDR spectroscopy; only parallel

spin pairs remain in the steady state under illumination. However, at low magnetic

field, the donor eigenstates are not pure spin states. Thus, for one transition, the

fraction of parallel and antiparallel electron spins of an SDR pair modified by magnetic

resonance depends on the magnetic field.[20] With such considerations taken into

account, the simulated SDR signal intensity for cw-SDR spectroscopy is plotted by

the color scale in Fig. 5-12.
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Figure 5-12: EPR transition frequencies of group-V donors in silicon, (a) 31P, (b)
75As, (c) 121Sb, (d) 123Sb and (e) 209Bi. The color represents the absolute |∂ν/∂A|
value.
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5.6 Summary and conclusions

In summary, we have performed the cw SDR spectroscopy of 28Si:Bi and natSi:Bi at 9

and 7 GHz and observed a significant SDR line narrowing at the HCT. The theoretical

model proposed in this study for the SDR pair electron distribution reproduces the

experimentally obtained line shapes very well. By analyzing the line shape at the

HCT, we have shown that the main broadening process in 28Si:Bi is the dipole-dipole

interaction between the bismuth donor and the surrounding readout centers. Our

results illustrate fundamental properties of hyperfine clock transitions and serve as a

stepping stone for further investigations of coupling between microwave circuits and

donors in silicon.
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Chapter 6

Conclusion

The main focus of the present thesis was to present the spectroscopy of bismuth

donor spins in silicon in the low magnetic field regime, using the magnetic resonance

technique namely spin dependent recombination (SDR). The higher sensitivity of

this spectroscopic technique with respect to the conventional electron spin resonance

(ESR) method allowed for detection of a number of electron spins as low as < 1011

in natural silicon.

The damages in crystalline silicon introduced by the bismuth implantation were

utilized in a projective spin-to-charge conversion to detect the donor electron and

nuclear spins. The technique had an advantage of not requiring any initialization

(polarization) step of the donor spins prior to the measurement. It allowed for the

electrical readout of the coherent state. Such details were discussed in Chapter 4;

the electrical detection of bismuth donor ESR and NMR at arbitrary combinations of

magnetic fields and resonance frequencies. Also, the dipolar interaction between elec-

tron spins of the donors and readout partners led to the demonstration of SDR based

detection of the cross relaxation where the electron spins of the two paramagnetic
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centers flip-flopped adiabatically, causing macroscopic changes in photoconductivity

of the sample.

The crucial requirement for applying the electrical readout by SDR to quantum

information processing is the insensitivity of a donor spin transition to various sources

of noise. Chapter 5 investigated the influence of the readout partner defect on the

donor hyperfine interaction. To remove the inhomogeneous broadening of the res-

onance peak caused by the hyperfine interaction of the donor electron spins with

29Si nuclear spins, the isotopically purified 28Si bulk crystal was employed. The

spectroscopy of this sample revealed that the donor hyperfine interaction was very

sensitive to the electric field because the readout center located at a few donor Bohr

radii away could shift the donor hyperfine interaction by 3 MHz (30 times the ESR

linewidth in a defect-free crystal). This was confirmed by the molecular model of the

electron spin pairs. The comprehension of this phenomenon allowed for cancelation

of such perturbation by measuring at the hyperfine clock transition condition.

Unfortunately, the hyperfine clock transition condition did not exist for Bi donors

in the low magnetic field regime. However, the thesis presented new tools to theo-

retically evaluate the effect of an electric field on the Bi donor hyperfine interactions.

Understanding of the effect of the electronic noise on the Bi donor spin coherence

represents a building stone toward the realization of a silicon-superconducting hybrid

quantum computer.


