慶應義塾大学学術情報リポジトリ

Keio Associated Repository of Academic resouces

Title	On the spectrum of a graph
Sub Title	
Author	半田, 秀夫(Handa, Hideo) 竹中, 淑子(Takenaka, Yoshiko)
Publisher	慶応義塾大学工学部
Publication year	1978
Jtitle	Keio engineering reports Vol.31, No.9 (1978. 5) ,p.99- 105
JaLC DOI	
Abstract	In this paper we discuss about the spectrum of a graph. We obtain the relations between a regular graph and its spectrum, and a complete graph and its spectrum, respectively. We obtain a bound for eigenvalues of an oriented graph with loops as a generalization of a non-oriented graph without loops. We prove that the maximum eigenvalue of a graph equals to its uppar bound and its lower bound if and only if the graph is a complete graph and a regular graph, respectively.
Notes	
Genre	Departmental Bulletin Paper
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00310009-0099

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

ON THE SPECTRUM OF A GRAPH

HIDEO HANDA and Yoshiko Takenaka

Dept. of Administration Engineering, Faculty of Engineering, Keio University, Yokohama, Japan

(Received Oct. 4, 1977)

ABSTRACT

In this paper we discuss about the spectrum of a graph. We obtain the relations between a regular graph and its spectrum, and a complete graph and its spectrum, respectively. We obtain a bound for eigenvalues of an oriented graph with loops as a generalization of a non-oriented graph without loops. We prove that the maximum eigenvalue of a graph equals to its uppar bound and its lower bound if and only if the graph is a complete graph and a regular graph, respectively.

1. The spectrum of regular graphs

Let G be a graph whose vertex-set VG is the set $\{v_1, v_2, \dots, v_n\}$ and whose edge-set EG is the subset of the set of unordered pairs of elements of VG. We call a graph with n vertices and m edges is an (n, m) non-oriented graph. A vertex-subgraph of G is a graph constructed by taking a subset U of VG together with all edges of G which are incident in G only with vertices belonging to U.

The adjacency matrix A(G) of an (n, m) non-oriented graph G is an $n \times n$ symmetric matrix whose entries a_{ij} are given by

$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \in EG \\ 0 & \text{if } \{v_i, v_j\} \notin EG \end{cases}$$

$$(1.1)$$

The spectrum of an (n, m) graph G, Spec G, is the set of eigenvalues of A(G) together with their multiplicities. Namely, if the distinct eigenvalues of A(G) are $\lambda_1 > \lambda_2 > \cdots > \lambda_s$, and their multiplicities are $m(\lambda_1), m(\lambda_2), \cdots, m(\lambda_s)$, then we write the spectrum of a graph G by

Hideo Handa and Yoshiko Takenaka

Spec
$$G = \begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_s \\ m(\lambda_1) & m(\lambda_2) & \cdots & m(\lambda_s) \end{pmatrix}$$
. (1.2)

We also write the maximum and minimum eigenvalues of A(G) by $\lambda_{\max}A(G)$ and $\lambda_{\min}A(G)$, respectively. We use the notation $\lambda_{\max}(G)$ and $\lambda_{\min}(G)$ in place of $\lambda_{\max}A(G)$ and $\lambda_{\min}A(G)$, respectively.

Now let us consider the spectrum of a regular graph. A graph is said to be regular of degree k if each of its vertices has degree k. It is known that a regular graph G of degree k has $\lambda_{\max}(G) = k$, and $m(\lambda_{\max}(G)) = 1$ if G is connected.

LEMMA 1. An (n, m) graph G which has p connected components is regular of degree (2m/n) if and only if $\lambda_{\max}(G) = (2m/n)$ and $m(\lambda_{\max}(G)) = p$.

Proof. (\Rightarrow) By a suitable labelling of the vertices of G, the adjacency matrix A(G) can be written in the partitioned form

$$A = \begin{bmatrix} A_1 & 0 \\ & A_2 \\ & & \\ 0 & & A_3 \end{bmatrix} \tag{1.3}$$

where submatrices $A_i(i=1,\dots,p)$ are corresponding to the adjacency matrices of a connected component G_i of G.

As G is a regular connected graph of degree 2m/n and $\lambda_{\max}(G_i) = 2m/n$ and its multiplicity is 1, i.e. $m(\lambda_{\max}(G_i)) = 1$. As the eigenvalues of G consist of all eigenvalues of $G_1, G_2, \dots, G_p, \lambda_{\max}(G) = 2m/n$ and its multiplicity is p.

(\Leftarrow) For any real $n \times n$ symmetric matrix X and for any real non-zero column n-vector z, we call $\{(z, Xz)/(z, z)\}$ be Rayleigh quotient and denote it by R(X: z). Here (x, y) is the inner product of vector x and y. It is known that

$$\lambda_{\max}(X) \ge R(X; z) \ge \lambda_{\min}(X) \quad \text{for } \forall z \ne 0$$
 (1.4)

and the equality $R(X; z) = \lambda_{\max}(X)$ holds if and only if z is an eigenvector corresponding to the eigenvalue $\lambda_{\max}(X)$.

Now let us put $z = [11 \cdots 1]'$, then we have

$$\lambda_{\max}(G) \ge R(A(G): \mathbf{z}) = \frac{2m}{n} \tag{1.5}$$

On the other hand we have $\lambda_{\max}(G) = 2m/n$ by the hypothesis. Hence z is an eigenvector corresponding to the eigenvalue 2m/n, that is to say, $Az = \{(2m/n)\}z$. This implies each row sum of A is 2m/n and so G is a regular graph of degree 2m/n.

Let a graph G has k components, than all k components of G are regular connected graphs of degree (2m/n). Each component of G has $\lambda_{\max}(G) = 2m/n$ whose multiplicity is one. Hence we have k = p.

2. The spectrum of the complete graph

The complete graph K_n has n vertices and each distinct pair is adjacent. It is known the spectrum of the complete graph K_n is

Spec
$$K_n = \begin{pmatrix} n-1 & -1 \\ 1 & n-1 \end{pmatrix}$$
. (2.1)

Lemma 2. If the spectrum of G is

Spec
$$G = \begin{pmatrix} n-1 & -1 \\ 1 & n-1 \end{pmatrix}$$
, (2.2)

then G must be the complete graph K_n .

Proof. Let G be an (n, m) graph and the eigenvalues of A(G) be $\lambda_1, \lambda_2, \dots, \lambda_n(\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n)$. Then

$$\sum_{k=1}^{n} \lambda_k^2 = tr(A^2) = 2m \tag{2.3}$$

and

$$\sum_{i=1}^{n} \lambda_i^2 = (n-1)^2 + (-1)^2 (n-1)$$
 (2.4)

$$\therefore m = \frac{n(n-1)}{2} \tag{2.5}$$

Hence it follows that G must be the complete graph K_n .

3. The lower and upper bounds for the maximum and minimum eigenvalues for a graph

LEMMA 3. For any (n, m) graph G with $n \ge 2$ and $m \ge 1$, we have

$$\lambda_{\max}(G) \ge 1, \quad -1 > \lambda_{\min}(G) \tag{3.1}$$

Proof. Any (n, m) graph G with $n \ge 2$ and $m \ge 1$ has at least one (2, 1) vertex-subgraph G_1 . Let A_1 be the adjacency matrix of the vertex-subgraph G_1 , then the adjacency matrix A of G can be written in the partitioned form

$$A = \begin{bmatrix} A_1 & * \\ * & * \end{bmatrix} \quad \text{where } A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 (3.2)

HIDEO HANDA and YOSHIKO TAKENAKA

Let \mathbf{x}_1 be a 2-vector which satisfies the condition $A_1\mathbf{x}_1 = \lambda_{\max}(G_1)\mathbf{x}_1$ and \mathbf{z}_1 be a 2-vector which satisfies the condition $A_1\mathbf{z}_1 = \lambda_{\min}(G_1)\mathbf{z}_1$. Let us put $\mathbf{x} = [\mathbf{x}_1 \ 0 \cdots 0]$

and $z = [z_1 \overrightarrow{0 \cdots 0}]$. Then

$$\lambda_{\max}(G_1) = R(\Lambda_1; \boldsymbol{x}_1) = R(\Lambda; \boldsymbol{x}) \le \lambda_{\max}(G)$$
(3.3)

$$\lambda_{\min}(G_1) = R(\Lambda_1; z_1) = R(\Lambda; z) \ge \lambda_{\min}(G) \tag{3.4}$$

As

$$\lambda_{\max}(G_1) = 1$$
 $\lambda_{\min}(G_1) = -1$, (3.5)

we have

$$\lambda_{\max}(G) \ge 1$$
 $-1 \ge \lambda_{\min}(G)$. (3.6)

Lemma 4. If a connected (n, m) graph G with $n \ge 3$ is not the complete graph K_n , then

$$\lambda_{\max}(G) \ge 2^{1/2}, \qquad -2^{1/2} \ge \lambda_{\min}(G) \tag{3.7}$$

Proof. If a connected (n, m) graph G with $n \ge 3$ is not the complete graph K_n , G has at least one (3, 2) vertex-subgraph G_1 . A can be partioned as follows:

$$A = \begin{bmatrix} A_1 & * \\ * & * \end{bmatrix}, \text{ where } A_1 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (3.8)

As

$$\lambda_{\max}(G) \ge \lambda_{\max}(G_1) \tag{3.9}$$

$$\lambda_{\min}(G) \le \lambda_{\min}(G_1) \tag{3.10}$$

and

$$\lambda_{\max}(G_1) = 2^{1/2}$$
 $\lambda_{\min}(G_1) = -2^{1/2}$. (3.11)

Then we have

$$\lambda_{\max}(G) \ge 2^{1/2} \qquad \lambda_{\min}(G) \le -2^{1/2}.$$
 (3.12)

4. A bound for the eigenvalues of an oriented graph

In this section, we consider an (n, m) oriented graph G with loops whose eigenvalues of the adjacency matrix A are all real numbers. The difference between non-oriented graph and an oriented graph is only its adjacency matrix A is symmetric or not.

On the Spectrum of a Graph

THEOREM 1. Let an (n, m) oriented graph G has t loops and c cycles whose length are 2, then

$$\frac{t - \sqrt{(n-1)(2cn + nt - t^2)}}{n} \le \lambda_i \le \frac{t + \sqrt{(n-1)(2cn + nt - t^2)}}{n}$$

$$(4.1)$$

Proof. By the hypotheses we have

$$\sum_{i=1}^{n} \lambda_i = tr(A) = t \tag{4.2}$$

$$\sum_{i=1}^{n} \lambda_i^2 = tr(A^2) = 2c + t \tag{4.3}$$

Let us put $x=[\lambda_2, \lambda_3, \cdots, \lambda_n]'$ and $y=[\overbrace{1,1,\cdots,1}^{n-1}]'$. Then

$$|(\boldsymbol{x},\boldsymbol{y})| = \left| \sum_{i=2}^{n} \lambda_i \right| = |t - \lambda_1|$$
 (4.4)

$$||\mathbf{x}|| = \sqrt{\sum_{i=2}^{n} \lambda_i^2} = \sqrt{(2c+t) - \lambda_1^2}$$
 (4.5)

$$||\boldsymbol{y}|| = \sqrt{\sum_{i=2}^{n} 1^2} = \sqrt{n-1}$$
 (4.6)

For these x and y, applying the Cauchy-Schwarz inequality we have

$$|t - \lambda_1| \le \sqrt{(2c + t) - \lambda_1^2} \sqrt{n - 1}$$
 (4.7)

$$\therefore \frac{t - \sqrt{(n-1)(2nc + nt - t^2)}}{n} \le \lambda_1 \le \frac{t + \sqrt{(n-1)(2nc + nt - t^2)}}{n}. \tag{4.8}$$

In a similar fashion, we can show that the inequality (4.8) holds for any $\lambda_i(i=2,3,\cdots,n)$.

This theorem can be reduced to a non-oriented graph with loops. The number of cycles whose length are 2 in an oriented graph equals to the number of edges in a non-oriented graph, i.e. c=m. By putting c=m and t=0 in (4.8), we have

$$-\sqrt{\frac{2m(n-1)}{n}} \le \lambda_i \le \sqrt{\frac{2m(n-1)}{n}} \qquad (i=1, 2, \dots, n)$$
 (4.9)

Especially

$$\lambda_{\max}(G) \le \sqrt{\frac{2m(n-1)}{n}} , \qquad (4.10)$$

and this result coincides with the result which has already established.

5. The upper and lower bounds for the maximum eigenvalue of a graph.

Now let us consider a non-oriented graph again.

THEOREM 2. In an (n, m) graph G with $n \ge 1$ and without loops, we have

$$\frac{2m}{n} \leq \lambda_{\max}(G) \leq \sqrt{\frac{2m(n-1)}{n}}, \tag{5.1}$$

where the equality (1) holds if and only if G is a regular graph of degree (2m/n) and the equality (2) holds if and only if G is the complete graph K_n .

Proof. The equality of (1) is clear from Lemma 1. We will prove that the equality of the Cauchy-Schwarz inequality

$$|(\boldsymbol{x}, \boldsymbol{y})| \le ||\boldsymbol{x}|| \cdot ||\boldsymbol{y}|| \tag{5.2}$$

holds if and only if $\lambda_{\max}(G) = \sqrt{2m(n-1)/n}$ is satisfied.

Let us put $\mathbf{x} = [\lambda_2, \lambda_3, \dots, \lambda_n]'$ and $\mathbf{y} = [1, 1, \dots, 1]'$, then the equality of (5,2) holds if and only if $\mathbf{y} = a\mathbf{x}$ is satisfied, that is when $\lambda_2 = \lambda_3 = \dots = \lambda_n (\equiv \lambda)$ is satisfied. As the graph G has no loops,

$$0 = trA = \lambda_1 + (n-1)\lambda = \lambda_{\max}(G) + (n-1)\lambda \tag{5.3}$$

$$\therefore \lambda_{\max}(G) = -(n-1)\lambda,\tag{5.4}$$

we have

$$|(\boldsymbol{x},\boldsymbol{y})| = \left| \sum_{i=2}^{n} \lambda_{i} \right| = |(n-1)\lambda| = |-\lambda_{\max}(G)|.$$
 (5.5)

As the graph G has m edges,

$$2m = tr(A^2) = \sum_{i=1}^{n} \lambda_i^2 = \lambda_1^2 + (n-1)\lambda^2 = \lambda^2_{\max}(G) + (n-1)\lambda^2$$
 (5.6)

$$\therefore (n-1)\lambda^2 = 2m - \lambda^2_{\max}(G), \tag{5.7}$$

we have

$$||\mathbf{x}|| \cdot ||\mathbf{y}|| = \sqrt{(n-1)\lambda^2} \cdot \sqrt{n-1} = \sqrt{2m-\lambda^2_{\max}(G)}\sqrt{n-1}.$$
 (5.8)

From (5.5) and (5.8),

$$|-\lambda_{\max}(G)| = \sqrt{2m - \lambda_{\max}^2(G)} \sqrt{n-1}$$
(5.9)

$$\therefore \lambda_{\max}(G) = \sqrt{\frac{2(n-1)m}{n}}$$
 (5.10)

$$\therefore \lambda = -\sqrt{\frac{2m}{(n-1)n}} \tag{5.11}$$

On the Spectrum of a Graph

Hence the spectrum of G must be

Spec
$$G = \begin{pmatrix} \sqrt{\frac{2m(n-1)}{n}} & -\sqrt{\frac{2m}{n(n-1)}} \\ 1 & n-1 \end{pmatrix}$$
. (5.12)

As $m \le n(n-1)/2$, it must

$$-\sqrt{\frac{2m}{n(n-1)}} \ge -1. \tag{5.13}$$

On the other hand, by Lemma 3,

$$-1 \ge \lambda_{\min}(G) = -\sqrt{\frac{2m}{n(n-1)}} . \tag{5.14}$$

It must

$$-\sqrt{\frac{2m}{n(n-1)}} = -1\tag{5.15}$$

$$\therefore m = \frac{n(n-1)}{2} , \qquad (5.16)$$

and the graph G must be the complete graph K_n . Hence we can conclude that the equality of (2) holds if and only if G is the complete graph K_n .

REFERENCES

- 1. Biggs, N. (1974): Algebraic Graph Theory, Cambridge University Press, London.
- 2. HARARY, F. (1969): Graph theory, Addison Wesley, Massachusetts.
- 3. Lancaster, P. (1969): Theory of matrices, Academic Press, New York.