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ABSTRACT

In this paper we discuss about the spectrum of a graph. We obtain the relations be-
tween a regular graph and its spectrum, and a complete graph and its spectrum, respec-
tively. We obtain a bound for eigenvalues of an oriented graph with loops as a generaliza-
tion of a non-oriented graph without loops. We prove that the maximum eigenvalue of a
graph equals to its uppar bound and its lower bound if and only if the graph is a complete
graph and a regular graph, respectively.

1. The spectrum of regular graphs

Let G be a graph whose vertex-set VG is the set {v, s, -+, v,,} and whose edge-
set EG is the subset of the set of unordered pairs of elements of VG. We call a
graph with #» vertices and m edges is an (»,m) non-oriented graph. A vertex-
subgraph of G is a graph constructed by taking a subset U of VG together with
all edges of G which are incident in G only with vertices belonging to U.

The adjacency matrix A(G) of an (#,m) non-oriented graph G is an #XxX# sym-
metric matrix whose entries @;; are given by

1 if {Z)i,l)j}GEG
adij= (11)

0 if {0, 0,)¢EG

The spectrum of an (n,m) graph G, Spec G, is the cet of ecigenvalues of A(G)
together with their multiplicities. Namely, if the distinct eigenvalues of A(G) are
> 2>+ >12, and their multiplicities are m(4,), m(4s), -+, m(4s), then we write the
spectrum of a graph G by
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Spec G= ( (1.2)

/1 Joo o Ay )
m(Zy)  m(As) < m(As)/ .

We also write the maximum and minimum eigenvalues of A(G) by AmuxAG)
and iminA(G), respectively. We use the notation Am.x(G) and imin(G) in place of
ZmaxA(G) and JninA(G), respectively.

Now let us consider the spectrum of a regular graph. A graph is said to be
regular of degree k& if each of its vertices has degree k. It is known that a regular
graph G of degree & has Amux(G)=F, and #(in.x(G))=1 if G is connected.

Lemma 1. An (s, m) graph G which has p connected components is regular of
degree (Z2m/n) if and only if 2max(G)=(2m/n) and M(2max(G))=p.

Proof. (=) By a suitable labelling of the vertices of &, the adjacency matrix
A(G) can be written in the partitioned form

A= . (1.3)
0 A,

where submatrices Ai(i=1, -, p) are corresponding to the adjacency matrices of a
connected component G; of G.

As G is a regular connected graph of degree 2m/n and in.x(G:)=2m/n and its
multiplicity is 1, i.e. 7(imax(Gi))=1. As the eigenvalues of G consist of all eigen-
values of Gy, G, -+, G, Amax(G)=2m/n and its multiplicity is p.

(&) For any real nxn symmetric matrix X and for any real non-zero column
n-vector z, we call {(z, X2)/(z, z)} be Rayleigh quotient and denote it by R(X: z).
Here (x,y) is the inner product of vector x and y. It is known that

T X2 R(X: 2)> min(X)  for Vz0 (14)

and the equality R(X: z)=aAmx(X) holds if and only if z is an eigenvector cor-
responding to the eigenvalue A (X).
Now let us put z:[ﬁl:—fl]’, then we have
N . . 2m
Amax(G) > R(A(G): 2)27 (1.5)
On the other hand we have Amax(G)=2m/n by the hypothesis. Hence z is an
eigenvector corresponding to the eigenvalue 2m/n, that is to say, Az={(2m/n)}z. This
implies each row sum of A is 2m/n and so G is a regular graph of degree 2m/n.
Let a graph G has & components, than all £ components of G are regular con-
nected graphs of degree (2m/n). Each component of G has Zm..(G)=2m/n whose
multiplicity is one. Hence we have k=p.
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2. The spectrum of the complete graph

The complete graph K, has n vertices and each distinct pair is adjacent. It is
known the spectrum of the complete graph K, is

. /n—=1 =1 .
Spec[xu—< 1 n—l). (2.1)

Lemma 2. If the spectrum of G is

(2.2)

Spec G:<n—1 -1 >

1 n-1

then G must be the complete graph K,.

Proof. Let G be an (n,m) graph and the eigenvalues of A(G) be 4, 4o, +++, 2,(4 >
222>+ >2). Then

n

2 At =tr(AY)=2m (2.3)

and
Z 2= =17+ (=12 —1) (2.4)
= n(nz—l) (2.5)

Hence it follows that G must be the complete graph K.

3. The lower and upper bounds for the maximum and
minimum eigenvalues for a graph

LemmA 3. For any (n,m) graph G with »>2 and m>1, we have
Zmz\x(G)Zly —lzzmin(G) (3' 1)
Proof. Any (n,m) graph G with #>2 and m>1 has at least one (2, 1) vertex-

subgraph G,. Let A, be the adjacency matrix of the vertex-subgraph G,, then the
adjacency matrix A of G can be written in the partitioned form

A 0 1
A=| e - where A= (3.2)
* % 1 0

’
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Let x, be a 2-vector which satisfies the condition A,x,=ZAm.(Gi)x; and z, be

n-2

a 2-vector which ecatisfies the condition A,z;=/imi(G1)z:. Let us put x=[x,0--- 0]

n—2
—_—

and z=[z,0---0]. Then

Jmax(G1) =R(A;: x)=R(A: X) < Znax(G) (3.3)
Imin(G1) = R(Ay: z1) =R(A: 2) = 2nin(G) (3.4)
As
Zmax(Gr) =1 Jmin(Gr)=—1, (3.5)
we have
Amax(G) 21 =12 2uin(G) . (3.6)

LemMA 4. If a connected (#,m) graph G with =3 is not the complete graph
K,, then

Zmax(G)erg, _21 Zzlimin(G) (37)

Proof. If a connected (#,m) graph G with #=3 is not the complete graph
K.,,G has at least one (3,2) vertex-subgraph G,. A can be partioned as follows:

A, N 011
A=| e . where A;={ 1 0 0 (3.8)
R 100
As
Zmax(G) =2 max(G1) 3.9)
/zmm(G)S/tmm(Gl) (3 10)
and
Amax(Gy) =212 Amin(G)= =212, (3.11)
Then we have
Anax(G) 22" Ipin(G) < =22, (3.12)

4. A bound for the eigenvalues of an oriented graph

In this section, we consider an (%, m) oriented graph G with loops whose eigen-
values of the adjacency matrix A are all real numbers. The difference hetween
non-oriented graph and an oriented graph is only its adjacency matrix A is sym-
metric or not.
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TuroreM 1. Let an (n,m) oriented graph G has ¢ loops and ¢ cycles whose
length are 2, then

] z‘—«/(n—l)(Z()‘n+1zt—lz);<2‘< t+v(mn—1)2cn+ni—12) 4.1)
n == n )

(i=1,2, -, n)

Proof. By the hypotheses we have

ﬁ; tr(A)=t 4.2)

i} AP =tr(A%)=2c+t (4.3)

n-1

Let us put x=[2, s, -+, 4, and y=[1,1,---,17. Then

(x, )= 2 /L t— 4 (4.4)
y 1=2
Hxll—\/z 2=~ (2c+)— A2 (4.5)
lyll =4 3 12= V=T (4.6)
1=2
For these x and y, applying the Cauchy-Schwarz inequality we have
lt— 4| <A QCc+t)—1*vVn—1 (4.7)
L t=~(n— 1><3nc+nt ) i< t+,,«£<,@-,1)%ngﬂé—ﬁ>,, 4.8)

In a similar fashion, we can show that the inequality (4.8) holds for any ;(i=
2,3,:,m).

This theorem can be reduced to a non-oriented graph with loops. The number
of cycles whose length are 2 in an oriented graph equals to the number of edges
in a non-oriented graph, i.e. c=m. By putting c=m and ¢#=0 in (4.8), we have

_ N/?@Eg—flig < \/ZMOL-U (i=1,2, ) 4.9)

Especially

Il o2 (4.10)

and this result coincides with the result which has already established.
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5. The upper and lower bounds for the maximum eigenvalue of a graph.

Now let us consider a non-oriented graph again.
THrorREM 2. In an (n,m) graph G with z>1 and without loops, we have
2m /2m(n—1)7

<2,m (G)<

5 . , (6.1

where the equality (1) holds if and only if G is a regular graph of degree (2m/n)
and the equality (2) holds if and only if G is the complete graph K,.

Proof. The equality of (1) is clear from Lemma 1.
We will prove that the equality of the Cauchy-Schwarz inequality

(e, )] <llxl|- iyl (5.2)

holds if and only if Amax(G)=~2m(n—1)/n is satisfied.
- l
Let us put x=[4, 43, -+, 4,) and y= [1 1,- 1}’ then the equality of (5,2) holds
if and only if y=ax is satlsﬁed, that is when l,=2;=---=/i,(=1) is satisfied. As
the graph G has no loops,

OztrA:L+(7l-1)2:Zmax(G)+(n—1)/i (53)
Cdmax(G)=—(m—1)2, (5.4)
we have
| » H
()l = 54 = (=D =] = i G- (5.5)

=2

As the graph G has m edges,

2m=tr(A?) = ﬁ =224 — 12 = Raax(G)+ (—1)72 (5.6)
S (=122 =2m— Pnax(G), (6.7

we have
- Iyl =~ =12 vV1n—1=2m— Pan(G)V 1 —1. (5.8)

From (5.5) and (5.8),

| — Amax(G)| = 2m — 2ina(GY)V 1 —1 (5.9)
> _ [2n—T)m
..Amax(G)—-x/' . (5.10)
R
A= \/(n Dn (5.11)

104



On the Spectrum of a Graph

Hence the spectrum of G must be

jmn=1) | om
Spec G=|{ N n Nan—1) (5.12)
1 n—1
As m<n(n—1)/2, it must
[ 2m
N nn—1) >—1. (5.13)
On the other hand, by Lemma 3,
12 2n(G)= =] 2 (5.14)
It must
2m
N ) = 1 (5.15)
m:&;ll , (5.16)

and the graph G must be the complete graph K,. Hence we can conclude that the
equality of (2) holds if and only if G is the complete graph K,.

REFERENCES

1. Biges, N. (1974): Algebraic Graph Theory, Cambridge University Press, London.
2. Harary, F. (1969): Graph theory, Addison Wesley, Massachusetts.
3. LaNcasTER, P. (1969): Theory of matrices, Academic Press, New York.

105



