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unrelated regression model with a large 

number of predictors 

Tmnohiro Ando 

Graduate School of Business Adrm:nistration. Keio Uni-versity 4-1-1 Hiyoshi. 
K ohoku-ku, Yokoharna-shi, Kanagawa. 223-8526, Japan 

Abstract 

Computationally efficient methods for Ba~'esian analysis of Seemingly unrelated re­
gression (SCR) models are deYeloped. Cnder a Bayesian hierarchical fi·amework 
where ea.ch regression function is represented as a linear combination of a large 
number of basis functions, the regression coefficients, the variance matrix of r.he E-r­

rors, and a set of variables to be included in the model are estimated simultaneously. 
Csua.lly the Bayesian estimation problem is solved using J\larkov Chain l\lonte Carlo 
(MCMC) techniques. Herein we shO\v hov,' a direct Monte Carlo (DMC) technique 
can be employed to solve this estimation problen1 more effi(jently. '' 

Key word.s: Bayesian estimation, Seerningly Cnrela.ted Regression, Direct J\lonte 
Carlo, Markov Chain Monte Carlo 

1 Introduction 

In many areas of research and application, the seemingly unrelated regres­
sion (SCR) model, introduced by Zellner (1962), is used as a tool to study a. 
vi'ide range of phenomena .. Many studies have eontributed to the development 
of estimation, testing, prediction and other inference techniques for analysis 
of SUR models including Zellner (1962, 1963), Gallant (1975), Rocke (1989), 
l\eudeeker and \Vindmeijer (1991), l'vlandy and J\1artins (1993), Kurata (1999), 
Liu (2002), Kg (2002), Carroll, ct al. (2006). Also, the SUR model and in­
ference tec.hniques for analyzing it are described in almost all Bayesi.=tn and 
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non-Bayesian textbooks that provide many referenc-es to the literature: see, 
e.g. Greene (2002), Gevi·eke (2005), Lancaster (2004), Rossi et aL (2005) and 
other texts. The first analysis of the s·cR model appeare:d in Ze:llne:r (1962, 
196:3) vdw emplo~·ed a generalized least squares approach. Later, likelihood 
and traditional Bayesian approaches 'Xere developed follmved by various other 
infere:nce approaches~ see ,e.g., the likelihood distributional approach (Frasera 
et aL 2005). Bayesian analyses, the Bayesian method of moments, van der 
J\IenvYe and Yiljoen (1988) and so OlL 

In the Ba0·esian analysis of the SCR model, one can apply the Gibbs algorithm 
of Percy (1992). Hmcre,•er, v\·e often want to estimate the regression eoeffidents, 
the variance matrix of the errors. and a set of variables to be inducled in the 
model simultaneous!~·. It is obvious that the traditional method of best subset 
selection is computationally in feasible for high dimensional data. To solve this 
problem, Smith and Kohn (2000) recently· introduced a Bayesian hierarchical 
Sl.R model and developed a 1\fa.rkov Chain J\1onte Carlo (J\ICJ\IC) procedure 
to estimate it. 

Although their algorithm can be applied to various t~rpes of problems, it is 
still not computationally efficient in some c-ases. This is because the use of 
the MCl\1C alg6rithm for dra\ving the regression coefficients and the variance 
matrix of tlw errors kads to very highly Cl.uto-corrcla.ted output draws in some 
situations (Zellner and Ando (2010c), See also Section 4). It has been shown 
that a direct J\fonte Carlo (DMC) is very efficient for drawing the posterior 
samples of the regression coefficients and the variance matrix of the errors 
(Ando and Zellner (2010), Zellner and Ando (2010a, 2010b)). 

The aim of this paper is to extend their DMC approach to implement the 
variable selection simultaneously. \Ve show that the developed method is more 
computationally efficient than Smith and Kohn (_2000)'s MCMC method. The 
difference between our paper and Ando and Zellner (2010) and Zellner and 
Ando (2010a, 2010b) is that the selection of a set of variables to be induded 
in the model was not considered in their Dl\IC algorithm. Instead, they con­
sidered the use of some model selection criteria. 

The structure of the remainder of this paper is as follmvs. In section 2, \Ye 
briefly revie\i\7 the standard SCR modeL Section 3 establishes an efficient 
Bayesian estimation procedure for the SCR modeL \Ve also provide several 
remarks regarding the proposed method. l'\umerical studies are conducted in 
Section -±. Section 5 concludes. 
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2 Overview of SUR J\fodel 

The linear SlT{ model inYolws a set of regression equations \Yith cross-equation 
parameter restrictions and correlated error terms haYing differing yariances. 
Algebraically, the SCR model is given by: 

(i f. j) 

(i = j) 
(1) 

Here Yj and UJ are n x 1 wctors, Xj is a n x. PJ matrix of observations of 
rank Pi on PJ predetermined yaria.bles, and (3j is a Prdimensiona.l coefficient 
\'ector. The domains of parameter Yalucs arc giv('n a.s follmvs: -:X) < dfr < :x., 
(r = 1, .... pj.) = 1. ... , m). -:)() < Wij < ':)(), (i.j = 1, ... , m. i #- j) and 
0 < u._,'ii < :)(), (j = 1, ... , m). 

As shovm in (1), the equations have different independent variables and \'ari­
anees. Also, the model permits error terms in different equations to be cor­
related. \Ve can easily replace the linear combination of a. set of covariates 
by a linear combination of basis functions. Thus, we are. implicitly treating a 
semi-parametric model given a choice of a particular basis function. 

In matrix form, the model can be expressed as y = .Y(3 +u, u rv N(O, rl·::s>I), 
where N(p,, ~) denotes the normal distribution v1·ith mean p and covariance 
matrix ~, 0 is the tensor product, n is the 111. X 711 matrix with the diag­
onal elements { Wt, ... , w;n}, and the off-dia.gona.l ijth elements a.re Wij, y' = 
(y~, ... , Y~n), X= diag{X1, ... , Xm}, (3' = ((3~, ... , (3~n) and u' = (ui, ... , u:n)· 

The likelihood function is 

where )\tr" denotes the trace of a matrix, jnj = det(n) is the value of the 
determinant of n, the ijth element of the m x rn matrix R = ( rii) is rii = 

(yi- Xi!3d(Yi- Xi(3j). 

Zellner (1971), Press (1972), Box and Tiao (1973), Percy (1992), and Srivas-
. . 

tava and Giles (1987) studied the posterior distributions of the parameters of 
the normal SCR model. In the absence of prior knowledge, Bayesian analysis 
with noninformat.ive priors is very common in practice. One of the most widely 
used noninfonnative priors, introduced by .Jeffreys (1946, 1961), is Jeffreys's 
invariant prior: 
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(2) 

>vhich is proportional to the square root of the determinant of Fisher infor­
mation matrix. One of the ad'i·anta.ges of the use of .Jeffreys's prior is that it 
is im·ariant under any one-to-one reparameteriza.t.ion of the modeL 

Because only conditional posterior probability density fimct.ions of f3 and r2 are 
available in analytical forms, simulation methods hm·e to be used to produce 
marginal posterior densities for the parameters and future values of obserTa.­
tions. Currently, one of the most \videly used Ba::,·esian estimation methods 
for the SCR model is the l\ICI\IC approach that is described and applied in 
many recent Bayesian C'Conomctrics and statistics texts. Because the condi­
tional posterior densities 7r(,Birl, y) and 1r(rli,B, y) are available, the standard 
st:n model is also amenable to a. 2-block Gibbs sampler; see, e.g. Percy (1992). 
It. is known that the conditional posterior densities are 

vvith 

7r(f31n,y)=N(/3,0,) and 7r(nlf3,y)=J\F(R,n), 

/3 ={X' (E-1 ®I) x} -1 _'\' (B-1 ®I) y, 

Sc~= (x'(E-1 ®/)X)-1 , 

where JH"( ·, ·) denotes the inverse \\.isha.rt distribution, 

(3) 

Recently, Smith and Kohn (2000) introduced a Bayesian hierarchical model to 
explicitly parameterize the possibility that some coefficients are exactly zero. 
They developed a l\ICMC sampling scheme to estimate the S"CR model. In 
the next section, v1·e shmv hmv a Dl\IC sampling procedure can be employed 
to obtain results more efficiently. 

3 Methodology 

Following the notation of Smith and Kohn (2000), we introduce a veetor of 
binary indic:ator variables lj = ("y{, ... , ";;)' for the design matrix XJ, j = 
1, ... , nt. Here, ;{ corresponds to the k-th element of the coefficient vector ,Bj, 
with "rk = 0 if BJ = 0 and "/k = 1 if BJ # 0 and by dropping the redundant 

. terms 1vith zero eoefficients, the j-th equation ea.n be revnitten as 

(1) 



Let qJ = 2::f-~ 1 . Then the design matrix X~,_; is of size n x qJ and ;3.,j rs a. 
qJ-dimensiona1 coefficient vector. 

To complete this Bayesian hierarchical model, we use the follov,,ing priors on 
the parameters. \Ye use the Jeffreys's irn·a.riant prior for (3 = ((3:d, .... (3:,, )' 
and 0 (See also Section 3.:3, the use of informative prior is discussed). For 
the indic-ator ,·aria.bles. ~;{ are taken a priori independentlv distributed. 'Nith 
probability that it takes 1 is 11(;{ = 1loj) = O:j· Also. tlw hypcrpara.mctcrs 
OJ· are taken as independent and given a non-informa.ti,·e uniform prior on 
(0.1). Aft.er \Ye integrate the hyperparameters o: = (u1 , ... , Om)' out, we haw 
71(/") = J 71('Yio:)7!(o:)do: = I1j~ 1 BE'(q:i + l,p:i- qj + 1). 1vhere Be is the beta 
function. This prior is presented and used in Smith and Kohn (2000). 

·we generate the posterior dra\YS by using the foll<J\Ying l\ICJ\IC sampling 
sc-heme: 

(1) 'Csing Dl\IC algorithm, generate from ;3, Olr. y. 

(2) Generate from 1~,1n. 'Y j--y{, y using the l\1Cl\1C sampling step described in 
Smith and Kohn (2000). 

Given value of ')'1 .... ,')' 11 p our Dl\IC approach produces independent draws and 
vi'e don't have any problem 1vith determining the '' a.cc·E>ptanc-e rate'~. On the 
other hand, the acceptancera.tes of J\.1Cl\IC by Smith and Kohn (2000) range 
betvv'een 60% and 90% (Smith and Kohn (2000) ). Thus, our algorithm is much 
more efficient from this perspectiw. Also, \ve have checked the a.utocrrelation 
of the draws of the elements of n, and \Ve found that it 1vas much larger for 
the method of Smith and Kohn than for our approach. 

8.1 Po8terior 8ampling of (3, Ol'"'f, y 

Recently, Zellner and Ando (2008) deriYed a direct Monte Carlo procedure 
for the Bayesian analysis of the SCR modeL In their framework the standard 
S'CR model (4) is reformulated as follows: 

{ 
Y1 = X11 f3,,1 + e1 - Z1b1 + e1, 

Y:i = X:if31 j + L.f;:1 P:it(Yr- Xl'r/311 ) + e:i = ZJb:i + e:i, 
(5) 

j = 2, ... , 1n, 

1vhere the n x (% + j - 1) matrices Z:i are functions of (3,/J-l, ... , !3-n, and 
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(' -1-- ') ,I I] 

(i = j) 
and "' - i'. o·{ 2 2 } ~ - c 1a.t:> cr 1 , ... , am . 

Zellner et a.l (1988) and Zellner and Chen ( 2002) considered this transforrna­
tion in the context of sinmltaneous equation modeling. 

Zellner and Ando (2008) pointed to the capability of transforming from the 
pa.ranwt.ers of the transformed model in ( 5) back to the pa.ra.meters of the 
origina.l formulation in equation (-i). There is a one to one relation bet\Yeen 
the parameters of SCR model ( -1) and those of the transformed model ( 5). 
Tl l'k l'l d f . . f l . . ' (}' lb' b' ') •) ')' . . le l ·e 1100 U net IOn 0 t 18 parameters = 1 1• . . . . m, C!i, .... CJ~ 1 lS 

In contrast to the standard model ( 1), \\'e can decompose the likelihood func­
tion thanks to E[eiej] = 0, (i i= j). The prior density function specified in (2) 
expressed in terms of {b. 2.::} is 

vdwre !JI is a Jacobian factor. The joint posterior density of parameters is 
then 

which is equivalent to the conditional normal inverse-gamma posterior 

where for j = 1, ... , rn, IG(·, ·) denotes the inverse Gamma distribution, and 

bJ = ( ZjZJ) -l Zjy:i, 

l:i = (yf- Z:ib:i)' (Y:i- Z:ib:i), 
f)J = n - rn - P:i + j + 1. 
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Then we can use the follmving direct Monte Carlo sampling proc-edure for the 
posterior sampling of (3, flb, y. 

A direct l\!Ionte Carlo sampling procedure: 

Step 1 (initialization). Fix the order of a set of m equations. 
Set j = 1. Generate o-r and insert the drawn value in 
7t(b1 \o-i- f. y). Then make a draw b1 from 7r(b1 \o-i, -y, y). 

Step 2 Increase the iteration index j bJ· one j -+ (j + 
1). Dra:~.Y CJj from the conditional im-erse gamma den­
sity 7t(o-]\b.i_1, ... , b1 , ')', y). and then generate b.i from 
7t(bjlbj-l; "" bl, O"j, ')', y). 

Step :3 Repeat Step 2 sequentially until j = m. 
Step --1 Ttansfonn the generated dra\vs b and 2::: into 0. 
Step 5 Generate draws (3jrl, ')', y from. the conditional posterior (3). 

There is the follmving recursive relations bet,,feen {b, 2:::} and rl: 

j-l j-l 

c.JJ_f = L PJk-wf + L PJkP.itWn, + o-y, (j #- 1), 
k=l kJ=L k<l 

i-1 

Wjl: = L {Jj!;-Win: + (JjiWT, 
k=J,kf=i 

(.j #- 1), 

Thus, \Ye can transform the generated samples {b, 2:::} into n. 

3.2 Posterior sampling of rkirl, /' l"d, Y 

(7) 

To speed up the generation, 1ve use Smith and Kohn's (2000) sampling step, 
which is an application of the J\Ietropolis-Hasting procedure. Let 11( ;{Jrl, ')' lrL y) 
be the conditional posterior density of ":"k and s(·-..rfJ = ?Tbti'Th/r) be its con­
ditional prior density. 1\ote that a is integrated out in both cases. 

The density 11("·d\rl, I' l"rL y) requires eakulation to enable generation of~!'{ in 
the posterior sampling process. \Ve have 

7r("dlr2,, f'y{, y) rx / L(yjf3, n, 'f)p(,BI/', rl)df37r(l') 

r { 1 } . -·x(n.)-q' -exp -2S('f,n) 7t("dbh·k), 

where A= n-1 ®1 and 8(/',D) = y'A.y-y'AX1 (X'AX1 )- 1X~Ay (See Smith 

and Kohn (2000)). Also, the conditional prior ?Tb{hh{) can be calculated as 
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l 

Ti( \"yh·D x / oJ~ (1- O:j)Pj-i,duj = Bc(q~ + l,pj- q; + 1), 
0 

and thus 

' 1 
= 1\r'/~,i.) = . . 

I 1 + (JJ . - a ) / (a + 1 ) J J ' J . 

1vith Uj = Lk;tj Ad is the number of elements of 1/1i that are one. 

Let !old be the preYious \•alue of;{, a. new Yalue !new can then be generated. 
If ~-old = 0, then generate from the proposal densit~-

( 
~r~j·-0)) - ' - -. ~j- . ll \ ik- ' - 0) - .') ( i k - 0) llllll 1, ___;_.:_:;' .'-----'-
.c;(Ad. = 0) 

If ~inew = 1, then accept V\'ith probability o = min{l, s(j·{ = 0)/!i(~d = 
0) }. othenvise set !neu.• = 0. 

If ~1 old = 1, then generate !,new from the proposal density 

O(.'~'old = 0-+ A,.n"w = 1) = s(~Jk: = 1) min.(L rr(A/k = 1)) 
V 1 I , , I ' ( ) 1) 

' 8~= 

If !,new = 0, then ac·cept !'new with probability ct = min{L s(;i = 1)/11(/~- = 
1)}, otherwise set Arew = 0. 

Smith and Kohn (2000) pointed out that the sampling method for ~1{ 1s a 
~lirect application of the I\Ietropolis-Hastings method. 

8.8 Rernark 

An important advantage of our approach compared with the I\1Cl\1C approach 
of Smith a.nd Kohn (2000) is that. because it decomposes the joint conditional 
density of the coefficient vector into a set of low-dimensional conditional den­
sities, 1ve can avoid large scale matrix calc-ulations. It is 1vell known that the 
computation of the inverse of a large scale matrix is a very computational 
intensive task. For example, -vvith a 1G memory PC, R version 1. 7 does not 
allow us to saq1ple f3 from the Smith and Kohn (2000) 's algorithm to analyze 
the Sl:R model with the number of equations m = 100, Yj tmd u:i are 500 x 1 
vectors (n = 500), X:i are 500 x 40 matrix (Pj = 40) and f3J is a 40-climensiona.l 
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wctor. This is because the PC system does not accept a -10000 x -lOOO dirnen­
sional design matri.x X, although the Gibbs sampling approa.ch of Smith and 
Kohn requires it. Although there are 1va~'S of simplif~ring the matri..x inYersion 
problem by using partitioning of the matrix and using formulas for the in­
verse that. just inYolYe sub-matrices of the original large matrix .. such painful 
treatments would be time-consuming tasks. 

Our approach is also applicable vdwn one uses an informa.t.iw prior for the coef­
ficient H\ctor (3. Zellner and Anclo (2010b) have dewloped the Dl\IC algorithm 
fen· the analysis of SCR model under an informative prior for the coefficient . . 
vec·tor (3. Thus, replacing the Dl\IC sampling procedure used in Sec·tion 3.1 
by the: Dl\IC 1vith t.hr informa.tiw prior (Zdlnrr and Ando (2010b)), one can 
ea.sil~· apply our approach. 

4 Simulation results 

In order to assess the performance of our proposed procedures, lYe first present 
numerical results based on simulated data. \Vc simulate: da.ta sets from the m = 
2 dimensional Sl~R. modeL V\Tithout loss of generality in the model structure, 
1ve set the number of predietors for each of the equations to be Vi = 100. This 
model can thus be ViTitten as follows: 

(8) 

fori= 1, ... , n, where Yj and Uj are n x 1 vectors, Xj is then x 100 matrix 
and f3j is the 100-dirnensional vector. Each element of n is set to be 

( 
0.1 

-0.05 

-0.05). 

0.2 

The covariate matrices Xj j = 1, 2 '"''ere generated from a uniform density over 
the interval ( -1, 1) The coefficient vector \vas set to be (31 = (3, -2, 1, 0, 0, · · ·, O)' 
and /32 = (2, 1, 1, 0, 0, · · ·, 0). This enabled the generation of simulated re­
sponse observations. In this simulation lYe set the number of observations to 
be n = 50. Thus, the number of covaria.tes Pj j = 1, 2 are much larger than 
the sample size n. 

To compare the acc:ura.ey of our method, we also applied the MC.I\IC method 
of Smith and Kohn (2000). Following their paper, the first 1,000 iterations 
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are discarded as a burn-in period. The remaining LOOO samples are used for 
inference. The method of Smith and Kohn allows us to compute the posterior 
probability that each of the pre:dic:tors is included. 

J\Ian~- Ba~-esian analyses are done under the assumption that the posterior 
sample-s from the l\ICl\1C algorithms arc indepC'ndC'nt samples \Yhik, as many 
hm·e recognized, the generated samples exhibit autocorrelation. Figure 1 sho\YS 
an autocorrelation function of sucocessin· dra1Ys of the coYariance pa.rameter 
-..v'u from the J\lC.t-.IC output from the output of our method and from the 
Smith-Kohn method. As shmvn in Figure 1, \\'e have to take autocorrelation 
into account vdwn \Ye compute the standard deviations and many other quan­
titic:s from the .t-.ICI\IC posterior samples. The autocorrdations of the output of 
our method a.re generally much smaller than those of the Smit.h-Kohn method. 
\\'e also calculated the inefficienc~· fa.ct.or (1 +sum of the squared autocorre­
lations from lag 1 to L. Here \Ye set L = 500). It is useful as a. measure of 
the efficiency of alternative sampling algorithms. A large value of inefficiency 
factor indicates that \Ye need a large number of l\lCl\IC simulations. \Ve found 
that the calculated ineiiiciency factor for c.u•12 from our method is 1.2791 and 
that from the l\ICI\IC method of Smith and Kohn (2000) is 5.8545, indicating 
that our procedure is more efficient .. It also implies that the proposed method 
is much more efficient than the l\ICMC method of Smith and Kohn (2000). 

\Ve repeated the ahm·e l\lonte Carlo simulation for 100 trials. Thus, \Ve obtain 
100 posterior mean Ya.lues of 'Jj·. j = 1, 2, k = 1, ... , 100. As a result, \Ye found 
that our approach resulted in the averaged posterior probability that each of 
the true predictors (there are 6 true predictors) is induded, LI~~ jJ(i)/100, 
ranges from LOO to 0.999, exceptionally good performance. Here 1]'(i) is the 
posterior mean values of ~rj' at i-th simulation. On the other hand, the method 
of Smith and Kohn resulted in the averaged posterior probability that each 
of the true predictors is included ranges from 1.00 to 0.999. It is also a good 
performance. 

Also, \Ve calculated the other false side by calculating the number of selected 
times for the unrelated predictors. \Vith regard to unrelated predictors, the 
posterior probability that each of the false predictors (there are 394 such 
predictors) is indudecl rangesfrom 0.040 to 0.085. On the other hand, those 
from the method of Smith and Kohn ranges from 0.040 to 0.090. Therefore, 
our method is alightly accurate than the Smith-Kohn (2000) method. 

Vi/e also compared the rnean squared errors (1\1SEs) 

]\1SE. /1 ( "\." (-l ~ .)'( \,T (-l ~. ) 1 (. "\.' (-l ~. )'( V (-l ~ ) - ' - =\I- ~'"U-'1- Yl ~'"U-'1- Yl +- ·'"2fJ) ·- Y2 ·'"2tJ·>- y) vn n· ~ · ~ ~ 

for the true structure Xj(3j and the estimated structure Yj· \Ve used the 
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predict.in' mean Yj· Because we generated 100 l\Iont.e Carlo trials., ,,~e ea.n cal­
culate the mean Yalues of the MSEs and their estimated standard de,-ia.tions. 
The mean .-a.lues of the J\ISE are as follmYs: Our method: 0.08-1 (0.05) Smith 
and Kolm: 0.085 (0.05) Here the numbers in parenthetic are the estimated 
standard deYiations. In the sense of l\ISE. there is no significant difference be­
t\Yeen these tYro methods. Hov,-e\-er, as regards computational times, we found 
that our method is more efficient than the method suggested by Smith and 
Kohn. 

l~sing the model structure in (8). \Ye eakulat.ecl the computational times of the 
t.\·m methods, our approach and the method of Smith and Kohn. \\'ithout loss 
of gc-nc-ralit~'. we set the numbe-r of predictors for each of the c'quations to bc­
Pj = 10. For the simulated data set, we generated 10 di±lerent samples, each 
of size n = 100. As a result, 10 computational times are recorded for each of 
these methods. \\'e found that the aye raged time (sec.) to produce 100 poste­
rior samples as follmYs: Smith and Kohn (2000): 1:3.91 (0.152) (>ur approach; 
13.59 (0.066). Here the numbers in parenthetic are the standard deviations. 
Therefore, our method is slightly faster than the Smith-Kohn (2000) method. 

In practical use of the posterior samples from l\1C~1C outputs, researchers 
should take account the autocorrelat.ions. One of the most popular approa.ches 
is to use ever~' k-th posterior samples. Thus, the remaining samples are dis­
carded. The number k is usuall~' determined b~, considering the autocorrela­
tion. If the autocorrelation is rela.t.ivel)' large, the value k vvould becorne large. 
On the other hand, the value k would be small if the autocorrelation is smalL 
Ideal situation is zero autocorrelation, where we can set k = 1 and there is 
no posterior samples to be discarded. I\oting that the autocorrelation of the 
method of Smith and Kohn (2000) is much larger than that of our method, \Ye 
cheeked the computational time to obtain 100 posterior (independent) sam­
ples. For our method, every 5-th posterior samples are stored. For the method 
of Smith and Kohn (2000), every 10-th posterior samples are stored. Then, 10 
computational times are recorded for each of these methods. \Ve found that 
the averaged time (sec.) to produce 100 posterior (independent) samples as 
follo-vvs: Smith and Kohn (2000): 138.05 (0.428) Our approach: 68.19 (0.158) 
Again, the numbers in parenthetic are the standard deviations. The required 
time to run ~ICJ\1C method of Smith and Kohn (2000) vvill become larger 
than our method, beca.use larger steps are needed to obtain an independent 
posterior samples. 

5 Real data analysis 

There have been a number of studies attempting to establish a.n excellent tech­
nique for estimating the term structure of interest rates from a cross-section of 
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coupon bond prices. Cnder the assumption that the price of a bond is equal to 
the present value of its future coupon payments and redemption, l\kCulloch 
( 1971) regressed cash fimvs on a set of basis functions to estimate discount 
functions. Here, ,,~e shall use SCR s:~stem to capture the term structure of 
interest rates using a set of cross-section of coupon bond prices. 

5.1 Bond equation 

Let p be the price of bond, c be its coupon pa~'ment., 1vhich is paid at time 
t 1 ..... ,tL, let R be the redemption paymenL and let L be the number of re­
maining payments. Follmving the t.heor~~ of bond pricing (l\kCulloch, 1971), 
Vi'e a.ssume that the price of a bond is equal to the present value of its future 
coupon payments and the redemption, i.e., 

L" 
]J = L c X 6(tk-) + R X S(t-L) + ::, 

k=.l 

where 6( ·)is the discount function. The discount function S(t) gives the present 
value of a monetar:v· unit, e.g., $1.00 after t ~rears. J\Iost researchers f()llO\\' 
l\lcCulloch (1971) in explicitly constraining cash fio\VS from different bonds 
clue at the same time to be discounted at the same rate, and estimate the 
discount function of) from which the othC'r yield C.UrYCS C<lll be derived. 

\Vc emplo;y the most basic case 'ivhere splines arc placed on the discount func­
tion. In this case, S ( ·) is expressed as a linear combination of a set of m 
underlying ba.sis functions, as fo'ilows. 

rn 

c5(t; f3) = 1 + 2:::: ;3k-b"'(t) 
k=l 

Here 'ive shall use l\kCulloch (1975)'s cubic spline basis. 

It then follows that the bond price model based on a linear combination of 
basis functions is expressed as follows. 

p= [a'B]f3+~. (9) 

where B = (b(t1 ),<o.,b(tL))', a= (c, ... ,c,c+ R)', respect.iYely. 

Once the discount function is estimated, the zero-coupon yield and the forv .. ·ard 
rate can be obtained by transformations of the discount function. It. is 'ividely 
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knoviTl tha.t the discount function 6(t) and the instantaneous for,,·ard rate f(t) 
are related b\' 

f(t) = -5'(t)/5(t). 

where c)' (t) is the deriYati,-e of the discount func-tion c) ( ·) eYa1ua.tecl at the point 
t. Thus, after the discount function is obtained. we these the instantaneous 
fonyard rate f(t) can be deriwd. 

I\ext section describes the dataset and results. 

5.2 Dataset. SUR sy8tem. speczjication a.nd r·e.sult8 

As an illustration of the practical application of the proposed procedure, the 
method is applied to the analysis of Japanese governmental bonds trading data 
observed on September 2nd and 3rcL 2002. Here n = 219 . Data is publid~' 
available on line hom the ·web site of .Japan Securities Dealers Association. 

·csing the bond equation (9), \Ve have a set of two regression equations. One is - . 

for the data. traded on September 2nd and the other is for traded on Septeli1ber 
3rd. In this case, the regression equC~..tion for the data traded on a particular 
date is 

{3 I s, 

where Pen au and Bcx are knmvn quantities for the n-traded bond. For each 
elate, the regression question above applies. Thus, once we allow the correla­
tion structure between tlw noise terms in the regression question for the data 
traded on September 2nd and those in that for traded on September 3rd) this 
specification reduces to the SCR system. 

Setting the number of basis functions to be m = 20 for each equation, the 
method is applied to this data. The first 1,000 iterations are discarded as a 
burn-in period. The remaining 1,000 samples are used for inference. Estimated 
discount functions and forward rate curves arc shov;·n in Figure 2. The solid 
lines are posterior mean curves. The posterior mean curves for the diseount 
function c)(t) is given as k, "Lt~1 6(t; (3(kl). Here N is the number of poste­
rior samples and {3(kl is the k-th posterior sample. Similarly, the posterior 
mean curves for the forward rate f (t) c:a.n be calculated using the relation 
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f(t} = -6'(t)/6(t). Two dashed lines are 95% confidence intervals. The 95% 
confidence intervals are estimated using the 2.5th and 97.5th percentiles of the 
posteriors. The results for the discount function and zero coupon yield curws 
are almost identicaL Ftom the fonYard rate curw. \Ve can also see that the 
degree of uncertainty increases as the time to maturity becomes longer. 

L~sing the posterior outputs. 1ve can make an inference about the correlation 
structure. The postBrior mean .. the standa.rd deYiation. and 95){ confidence 
interYals are 0.9-±5. 0.0-±8. and [0.807.0.98-±], respectiwly. t~sing the postBrior 
dra\'.'S for ea.ch of the parameters. ·we c-alculated the posterior means, the stan­
darcl de,·iations and 95o/c. confidence intervals. The 95% confidence intervals 
are estirnated using the 2.Gth and 97.5th percentiles of the posterior samples. 
Also, Figure :3 shows the estimated posterior density of the correlation. From 
these investigations, Vi'e can see that there is a significant correlation structure. 

6 Summary and Conclusions 

Computa.tionaUy efficient methods for Bayesian analysis of seemingly unre­
lated regression (Sl~H) models arc developed. l~nder a Bayesian hierarchical 
framBvYork where each regression function is represented as a linear combina­
tion of a large number of basis functions, the regression coefficients, the Yari­
anee ma.trLx of the errors, and a set of variables to be included in the model are 
estimated simultaneously. The method is based on "t\1CI\1C sampling scheme, 
and we employed a DMC a.pproa.ch for sampling efficiency. 

There are several advantages of our approach compared with the MCMC ap­
proach of Smith and Kohn (2000). One is that because it decomposes the joint 
conditional density of the coefficient vector into a set of low-dimensional con­
ditional densities, Vi'e can avoid large scale matrix calculations. Vv'e found that 
our method is more computationally efficient than the method of Smith and 
Kohn (2000). The autocorrelation function from our method is smaller than 
those from the MCMC method of Smith and Kohn (2000). \Ve calculated an 
inefficiency factor and found that the calculated inefficiency factor from our 
method is smaller than that from the MCJ\lC method of Smith and Kohn 
(2000). It implies that the proposed method is mueh more efficient than the 
MCMC method of Smith and Kohn (2000). \Ve \vouldrecommend implement­
ing Bayesian analysis of SCR model based on our approach. 
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Pig. 1. Autocorrelation function of sueeessive draws of the cov-ariance parameter 
w12 from the output of our method and from that of Smith and Kohn (2000). The 
autocorrelation function from our method is smaller than that from the l\1CMC 
method of Smith and Kohn (2000). 
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Fig. 2. Discount function o(t) and forward rate f(t) for the trading date September 
2nd 2002 (Figures a and b) and September 3rd 2002 (Figures c and d). The solid lines 
are posterior mean curves. The posterior mean curves for the discount function 6(t) 
is given as * :S~=l 8(t; (3(kl). Sirnilarl~\ the posterior mean curves for the forward 
ra.te f(t) ean be caleulated using the relation f(t) = -6'(t)/6(t). Two dashed lines 
are 95% confidence intervals. The 95% confidence intervals are estimated using the 
2.5th and 97.Sth pereentiles of the posteriors. 
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Fig. :). Estimated posterior densities for the correlation parameter. 
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