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Bayesian variable selection for the seemingly
unrelated regression model with a large
number of predictors

Tomohiro Ando

Graduate School of Business Administration. Keio University 4-1-1 Hiyoshi.
Kohoku-ku. Yokohama-shi. Kanagawa. 223-8526. Japan

Abstract

Computationally efficient methods for Bayesian analysis of Seemingly unrelated re-
gression (SUR) models are developed. Under a Bayesian hierarchical framework
where each regression function is represented as a linear combination of a large
number of basis functions, the regression coefficients, the variance matrix of the er-
rors, and a set of variables to be included in the model are estimated simultaneously.
Usually the Bayesian estimation problem is solved using Markov Chain Monte Carlo
(MCMC) techniques. Herein we show how a direct Monte Carlo (DMC) technique
can be emploved to solve this estimation problem more efficiently.”

Key words: Bayesian estimation, Seemingly Unrelated Regression, Direct Monte
Carlo, Markov Chain Monte Carlo

1  Introduction

In many areas of research and application, the seemingly unrelated regres-
sion (SUR) model, introduced by Zellner (1962), is used as a tool to study a
wide range of phenomena. Many studies have contributed to the development
of estimation, testing, prediction and other inference techniques for analysis
of SUR models including Zellner (1962, 1963), Gallant (1975), Rocke (1989),
Neudecker and Windmeijer (1991), Mandy and Martins (1993), Kurata (1999),
Liu (2002), Ng (2002), Carroll, ct al. (2006). Also, the SUR model and in-
ference techniques for analyzing it are described in almost all Bayesian and
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non-Bayesian textbooks that provide many references to the literature; see,
e.g. Greene (2002), Geweke (2005), Lancaster (2004), Rossi et al. (2005) and
other texts. The first analvsis of the SUR model appeared in Zellner (1962,
1963) who emploved a generalized least squares approach. Later. likelihood
and traditional Bayvesian approaches were developed followed by various other
inference approaches: see .e.g., the likelihood distributional approach (Fragera
et al.. 2005), Bavesian analvses, the Bavesian method of moments, van der
Merwve and Viljoen (1988) and so on.

In the Bayesian analvsis of the SUR model, one can apply the Gibbs algorithm
of Percy (1992). However, we often want to estimate the regression coefficients,
the variance matrix of the errors, and a set of variables to be included in the
model simultaneously. It is obvious that the traditional method of best subset.
selection is computationally in feasible for high dimensional data. To solve this
problem, Smith and Kohn (2000} recently introduced a Bayesian hierarchical
SUR model and developed a Markov Chain Monte Carlo (NCMC) procedure
to estimate it.

Although their algorithm can be applied to various types of problems, it is
still not computationally efficient in some cases. This is because the use of
the MCMC algorithm for drawing the regression coefficients and the variance
matrix of the crrors leads to very highly auto-correlated output draws in some
situations (Zellner and Ando (2010c), See also Section 4). It has been shown
that a direct Monte Carlo (DMC) is verv efficient for drawing the posterior
samples of the regression coefficients and the variance matrix of the errors
{Ando and Zellner (2010), Zellner and Ando (2010a, 2010b)).

The aim of this paper is to extend their DMC approach to implement the
variable selection simultaneously. We show that the developed method is more
computationally efficient than Smith and Kohn (2000)’s MCMC method. The
difference between our paper and Ando and Zellner (2010) and Zellner and
Ando (2010a, 2010b) is that the selection of a set of variables to be included
in the model was not considered in their DMC algorithm. Instead, they con-
sidered the use of some model selection criteria.

The structure of the remainder of this paper is as follows. In section 2, we
briefly review the standard SUR model. Section 3 establishes an efficient
Bayesian estimation procedure for the SUR model. We also provide several
remarks regarding the proposed method. Numerical studies are conducted in
Section 4. Section 5 concludes.



2  Overview of SUR Model

The linear SUR model involves a set of regression equations with cross-equation
parameter restrictions and correlated error terms having differing variances.
Algebraically, the SUR model is given by:

y; =B, +uy j=1,...m, with Eluu}]= ’ L7 ) . (D)

AL (=)

Here y; and u; are n x 1 vectors, X; is a n x p; matrix of observations of
rank p; on p; predetermined variables, and 3; is a pj-dimensional coefficient
vector. The domains of parameter values are given as follows: —oc < 35, < x,
(r=1..p,)=1..m), = < wy < o0 (i.j = 1,....m.7 # j) and
O<w; <20, (J=1,....,m).

Ag shown in (1), the equations have different independent variables and vari-
ances. lso, the model permits error terms in different equations to be cor-
related. We can easily replace the linear combination of a set of covariates
by a linear combination of basis functions. Thus, we are. implicitly treating a
semi-parametric model given a choice of a particular basis function.

In matrix form, the model can be expressed as y = XB+u, u ~ N(0,Q®1),
where N(p,Y) denotes the normal distribution with mean g and covariance
matrix ¥, ® is the tensor product, €2 is the m x m matrix with the diag-
onal elements {w?,...,w2}, and the oﬁ"—dia.gonal ijth elements are w;;, y' =
(YY), X =diag{Xy, ... X0}, 8 = (B} m) and v’ = (ul,..,ul,).

The likelihood function is

L(y|B3,Q) = (27r)ﬁmi219|n/2 exp [— %—tr {RQ—I}} )

where 7tr” denotes the trace of a matrix, |2] = det(Q?) is the value of the
determinant of €, the ¢jth element of the m x m matrix R = (ri) 1s 145 =

(y; — XiBy) (y; — X;8;).

Zellner (1971), Press (1972), Box and Tiao (1973), Percy (1992), and Srivas-
tava and Giles (1987) studied the posterior distributions of the parameters of
the normal SUR model. In the absence of prior knowledge, Bayesian analysis
with noninformative priors is very common in practice. One of the most widely
used noninformative priors, introduced by Jeffreys (1946, 1961), is Jeffrevs’s
invariant prior:



i

(8. = 7(B)r(Q) x |7, * (2)

which is proportional to the square root of the determinant of Fisher infor-
mation matrix. One of the advantages of the use of Jeffrevs’s prior is that it
is invariant under any one-to-one reparameterization of the model.

Because only conditional posterior probability dengity functions of 3 and Q are
available in analytical forms, simulation methods have to be used to produce
marginal posterior densities for the parameters and future values of observa-
tions. Currently, one of the most widely used Bayesian estimation methods
for the SUR model is the MCMC approach that is described and applied in
many recent Bayesian cconometrics and statistics texts. Because the condi-
tional posterior densities 7(8|2. y) and 7(£2)B,y) are available. the standard
SUR model is also amenable to a 2-block Gibbs sampler; see, e.g. Percy (1992).
It is known that the conditional posterior densities are

(B y) =N (B.Q) and 7(QUB.y) =TT (R.n), (3)

with

where I117(-, ) denotes the inverse Wishart distribution,

Recently, Smith and Kohn (2000) introduced a Bayesian hierarchical model to
explicitly parameterize the possibility that some coefficients are exactly zero.
They developed a MCMC sampling scheme to estimate the SUR model. In
the next section, we show how a DMC sampling procedure can be employed
to obtain results more cfficiently.

3 Methodology

Following the notation of Smith and Kohn (2000), we introduce a vector of
binary indicator variables v; = (¥,....7]) for the design matrix Xj, j =
1,...,m. Here, v/ corresponds to the k-th element of the coefficient vector 3.,
with 7,1 =0if 5/5’;-‘"' = 0 and ﬂ,;{ = 1if 5';‘ # 0 and by dropping the redundant
terms with zero coefficients, the j-th equation can be rewritten as

Y, = ijﬁ«,fj +u;, g=1,...,m. (1)



Let g; = 4L, 7. Then the design matrix X is of size n x g; and B, is a
g;-dimensional coefficient vector.

To complete this Bayesian hierarchical model, we use the following priors on
the parameters. We use the Jeffreys’s invariant prior for 8 = (3. ... B' )
and Q (See also Section 3.3, the use of informative prior is discussed). For
the indicator variables, ~j are taken a priori independently distributed. with
probability that it takes 1 is 7(v] = 1]a;) = ;. Also. the hyperparameters
a;. are taken as independent and given a non-informative nniform prior on
(0.1). After we integrate the hyperparameters c = (. ..., )’ out, we have
m(v) = [m(vle)m(e)da = [TL; Be(g; + 1, pj — ¢; + 1), where Be is the beta
function. This prior is presented and used in Smith and Kohn (2000).

We generate the posterior draws by using the following MCMC sampling
scheme:

(1) Using DMC algorithm, generate from 3, |y, y.

(2) Generate from 7i|<2 v/ 7«{;, y using the MCMC sampling step described in
Smith and Kohn (2000).

Given value of v,....,7,,, our DNC approach produces independent draws and
we don’t have any problem with determining the "acceptance rate”. On the
other hand, the acceptance rates of MCMC by Smith and Kohn (2000) range
between 60% and 90% (Smith and Kohn (2000)). Thus, our algorithm is much
more efficient from this perspective. Also, we have checked the autocrrelation
of the draws of the elements of €2, and we found that it was much larger for
the method of Smith and Kohn than for our approach.

3.1 Posterior sampling of B,Q|v,y

Recently, Zellner and Ando (2008) derived a direct Monte Carlo procedure
for the Bayesian analysis of the SUR model. In their framework, the standard
SUR model (4) is reformulated as follows:

Y, = 4\7715,’,1 +e; = Z1by + eq, (5)
Y; = ‘Y:/'/BWJ- + E{;ll /)jl(_yz - *X'W'zﬁw) +e = Zjb;i +ei J=2.,m,

where the n x (¢; +j — 1) matrices Z; are functions of Byt By, and
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Elee)] = o . and T =diag{of,...0%}.

Zellner et al (1988} and Zellner and Chen (2002) considered this transforma-
tion in the context of simultaneous equation modeling.

Zellner and Ando (2008) pointed to the capability of translorming [rom the
parameters of the transformed model in (5} back to the parameters of the
original formulation in equation (4). There is a one to one relation between
the parameters of SUR model (4) and those of the transformed model (5).

The likelihood function of the paranieters 8 = (b).... b, .07, ...02,) is

. 1 [ (y; — Zib;)(y; — Z;b))]
L - ) - J J TS . J JT
R Y T

m

In contrast to the standard model (1), we can decomposge the likelihood func-
tion thanks to Ele;e)] = O, (i # j). The prior density function specified in (2)
expressed in terms of {b.Z} is '

m m—1 m 3
7(b,5) o 6. D)2 T = [[(02)2F » [[ (o2 = [[ (o2
j=1 J=1 7=1

where |J] is a Jacobian factor. The joint posterior density of parameters is
then

‘ m o s - Z.b. re . — b
7(b1, s by, 01 s 00l w) ¢ [L o) T exp {— W, = 20— 2 J)} ,
j=1

207

which is equivalent to the conditional normal inverse-gamma. posterior

7(0lbs—1, b1, 05, v, 9) = N (b, 03(2)2)) 7).
W(U?ij-—h e by y) = 1G (45/2,04/2),

where for j = 1,...,m, IG(-,-) denotes the inverse Gamma distribution, and

b= (2.2)" Zy;,

5= (= Zby) (0, - Zy).
vj=n—m-—p;j+j+1



Then we can use the following direct Monte Carlo sampling procedure for the
posterior sampling of 8. Qly. y.

A direct Monte Carlo sampling procedure:

Step 1 (initialization). Fix the order of a set of m equations.
Set j = 1. Generate o7 and insert the drawn value in
7(bi|o?.v.y). Then make a draw by from 7(bi|o?,v.y).

Step 2 Increase the iteration index j by one j — (j +

1). Draw o; from the conditional inverse gamma den-
sity 7((0’?‘&;_1‘ b, v, y). and then generate b; from
7(b;|bi—1..... b1, 05,7, ).

Step 3 Repeat Step 2 sequentially until j =,

Step 4 Transform the generated draws b and T into Q.

Step 5 Generate draws 3|Q, 7y, y from the conditional posterior (3).

There is the [ollowing recursive relations between {b,Z} and Q:

j—1
f’ﬂM+ Z pirpit<u + 3. (j #1), (7)
k=1, k<l
J—l R
wii =Y pwki + prwr. (J # 1),
=1k

Thus, we can transform the generated samples {b, X} into Q.
3.2 Posterior sumpling of VLI ~/ iy

To speed up the generation, we use Smith and Kohn’s (2000) sampling step
which is an application of the Metr opohs—Hastmg p1 ocedure. Let 7 (~7 1%/, y)
be the conditional posterior density of 4] and s(+]) = 7(v]|y/+1) be its con-
ditional prior density. Note that o is integrated out in both cases.

The density 7(71|Q, /7L, y) requires calculation to enable generation of 7] in
the posterior samphng> process. We have
r(lI2 v/ y) o [ Ly|B, 2, vp(Bly, Q)dBr(+)
: 1 ; ;
x ()72 exp { 5503, D | 7/,

where A = Q7' ®@7 and S(v,Q) = y' Ay —y'AX, (X'AX, ) 71X Ay (See Smith
and Kohn (2000)). Also, the conditional prior 7(vi|v/v.) can be calculated as

-~



1
7 Ah’/ ]) X/ Qﬁ(l“fkg}p’ quu = Be((lh +1, pJ—qﬁ + 1),
0
and thus

1
L+ {p;—a;)/(q; +1)

r(od = Uy /d) =

with aj = 3p; 44 is the number of elements of «; /4 that are one.

Let 79 be the previous value of Y. & new value 7™ can then be generated.
i
If~ old — = 0, then generate "% from the proposal densm

0))
0)
If 47w = 1, then accept 4% with probability a = min{1, s = (_))/7((‘“;.-',{; =
O_)}, otherwise set 7% = = 0.

J
QU =1 ™% =0) = s(+] = 0) min (1 ~—((~;‘———
Tk

If 79'% =1, then generate 4% from the proposal density

. v =
QM =0—=""=1)=s(y = 1) mm.<1, =1 1»))
, ’ ' s(v.=1)

If 4% = (), then accept 4““ with probability o = min{1, s(v] = 1)/m(+] =
1)}, otherwise set v = 0.

Smith and Kohn (2000) pointed out that the sampling method for - 1 is a
direct application of the Metropolis-Hastings method.

8.8 Remark

An important advantage of our approach compared with the MCMC approach
of Smith and Kohn (2000) is that becanse it decomposes the joint conditional
density of the coefficient vector into a set of low-dimensional conditional den-
sities, we can avoid large scale matrix calculations. It is well known that the
computation of the inverse of a large scale matrix is a very computational
intensive task. For example, with a 1G memory PC, R version 1.7 does not
allow us to sample @ from the Smith and Kohn (2000)’s algorithm to analyze
the SUR model with the number of equations m = 100, y; and wu; arc 500 x 1
vectors (1 = 500}, X; are 500 x 40 matrix (p; = 40) and 3, is a 40-dimensional



vector. This is because the PC system does not accept a 10000 x 4000 dimen-
sional design matrix X, although the Gibbs sampling approach of Smith and
Kohn requires it. Although there are ways of simplifving the matrix inversion
problem by using partitioning of the matrix and using formulas for the in-
verse that just involve sub-matrices of the original large matrix, such painful
treatments would be time-consuming tasks.

Our approach is also applicable when one uses an informative prior for the coef-
ficient vector 8. Zellner and Ando (2010b) have developed the DNC algorithm
for the analysis of SUR model under an informative prior for the coefficient
vector B, Thus, replacing the DMC sampling procedure used in Section 3.1
bv the DMC with the informative prior (Zellner and Ando (2010b)), one can
easily apply our approach.

4 Simulation results

In order to assess the performance of our proposed procedures, we first pregent
numerical results based on simulated data. We simulate data sets from the m =
2 dimensional SUR model. Without loss of generality in the model structure,
we set, the number of predictors for each of the equations to be p; = 100. This
model can thus be written as follows:

: X, O : u
Yy _ 1 - By . 1 o (8)
Yo O X, B us

for i =1,...,n, where y; and wu; are n x 1 vectors, .X; is the n x 100 matrix

and 3; is the 100-dimensional vector. Each element of {2 is set to be

w? wig [ 01 005

w21 w‘% —0.05 0.2

o~
o~/
I
!

The covariate matrices X; j = 1,2 were generated from a uniform density over
the interval (=1, 1) The coefficient vector was set to be 3, = (3,—2,1,0,0,---,0)’
and B, = (2,1,1,0,0,---,0). This enabled the generation of simulated re-
sponse observations. In this simulation we set the number of observations to
be n = 50. Thus, the number of covariates p; j = 1,2 are much larger than
the sample size n.

To compare the accuracy of our method, we also applied the MCNMNC method
of Smith and Kohn (2000). Following their paper, the first 1,000 iterations

9



are discarded as a burn-in period. The remaining 1.000 samples are used for
inference. The method of Smith and Kohn allows us to compute the posterior
probability that each of the predictors is included.

Many Bayesian analyses are done under the assumption that the posterior
samples from the MCNC algorithms are independent samples while, as many
have recognized, the generated samples exhibit autocorrelation. Figure 1 shows
an autocorrelation function of successive draws of the covariance parameter
wip from the MCMC output from the output of our method and from the
Smith-INohn method. As shown in Figure 1, we have to take autocorrelation
into account when we compute the standard deviations and many other quan-
titics from the NMCMC posterior samples. The autocorrelations of the output of
our method are generally much smaller than those of the Smith-Kohn method.
We also calculated the inefficiency factor (1+sum of the squared autocorre-
lations from lag 1 to L. Here we set L = 500). It is useful as a measure of
the efficiency of alternative sampling algorithms. A large value of inefficiency
factor indicates that we need a large number of NNCMC simulations. We found
that the calculated inefficiency factor for wyo from our method is 1.2791 and
that from the NCMC method of Smith and Kohn (2000) is 5.8545. indicating
that our pr: ocedure is more efficient. It also implies that the proposed method
is much more efficient than the MCNC method of Smith and Kohn (2000).

We repeated the above Monte Carlo simulation for 100 trials. Thus, we obtain
100 posterior mean values of ”‘3‘ ,J =12 k=1,..100. As a result, we found
that our approach resulted in the averaged posterior probability that each of
the true predictors (there are 6 true predictors) is included, $°1% 5 .]‘ (1)/100,
ranges from 1.00 to 0.999, exceptionally good performance. Here 7] z) is the
posterior mean values of + j‘ at ¢-th simulation. On the other hand, the method
of Smith and Kohn resulted in the averaged posterior probability that each

of the true predictors is inc. 1uded ranges from 1. 00 to 0.999. It is also a good
performance.

Also, we calculated the other false side by calculating the number of selected
times for the unrelated predictors. With regard to unrelated predictors, the
posterior probability that each of the false predictors (there are 394 such
predictors) is included ranges from 0.040 to 0.085. On the other hand, those
from the method of Smith and Kohn ranges from 0.040 to 0.090. Therefore,
our method is alightly accurate than the Smith-Kohn (2000) method.

We also compared the mean squared errors (MSEs)

1 . - N .
MSE = \/;(4\151 9,)/(X18; - 9,) + ~(X20; ~ 92)' (X282 — 93)
for the true structure X;3; and the estimated structure g;. We used the
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predictive mean y;. Because we generated 100 Monte Carlo trials, we can cal-
culate the mean values of the MSEs and their estimated standard deviations.
The mean values of the NSE are as follows: Our method: 0.081 (0.05) Smith
and Kohn: 0.085 (0.05) Here the numbers in parenthetic are the estimated
standard deviations. In the sense of NSE, there is no significant difference be-
tween thege two methods. However, as regards computational times, we found
that our method is more efficient than the method suggested by Smith and
Kohn.

Using the model structure in (8}, we calculated the computational times of the
two methods, our approach and the method of Smith and Kohn. Without loss
of generality, we set. the number of predictors for cach of the cquations to be
p; = 10. For the simulated data set, we generated 10 different samples, each
of size n = 100. As a result, 10 computational times are recorded for each of
these methods. We found that the averaged time (sec.) to produce 100 poste-
rior samples as follows: Smith and Kohn (2000): 13.91 (0.152) Our approach:
13.59 (0.066). Here the numbers in parenthetic are the standard deviations.
Therefore, our method is slightly faster than the Smith-Kohn (2000) method.

In practical use of the posterior samples from MCNC outputs, researchers
should take account the autocorrelations. One of the most popular approaches
is to use everv k-th posterior samples. Thus, the remaining samples are dis-
carded. The number £ is usually determined by considering the autocorrela-
tion. If the autocorrelation is relatively large, the value k& would become large.
On the other hand, the value k would be small if the autocorrelation is small.
Ideal situation is zero autocorrelation, where we can set k = 1 and there is
no posterior samples to be discarded. Noting that the autocorrelation of the
method of Smith and Kohn (2000) is much larger than that of our method, we
checked the computational time to obtain 100 posterior (independent) sam-
ples. For our method, everv 5-th posterior samples are stored. For the method
of Smith and Kohn (2000), every 10-th posterior samples are stored. Then, 10
computational times are recorded for each of these methods. We found that
the averaged time (sec.) to produce 100 posterior (independent) samples as
follows: Smith and Kohn (2000): 138.05 (0.428) Our approach: 68.19 (0.158)
Again, the numbers in parenthetic are the standard deviations. The required
time to run MCMC method of Smith and Kohn (2000) will become larger
than our method, because larger steps are needed to obtain an independent
posterior samples.

5 Real data analysis

There have been a number of studies attempting to establish an excellent tech-
nique for estimating the term structure of interest rates from a cross-section of

11



coupon bond prices. Under the assumption that the price of a bond is equal to
the present value of its future coupon pavments and redemption, McCulloch
(1971) regressed cash flows on a set of bhasis functions to estimate discount
functions. Here, we shall use SUR svstem to capture the term structure of
interest rates using a set of cross-section of coupon bond prices.

5.1 DBond equation

Let p be the price of bond, ¢ he its coupon pavment. which is paid at time
ti,.otr, let R be the redemption payment. and let L be the number of re-
maining payvments. Following the theory of bond pricing (McCulloch, 1971),
we assume that the price of a bond is equal to the present value of its future
coupon payments and the redemption, i.e.,

L, {53

p=Y_ X d(ly)+ R xo(t,)+e=.
k=1

where 9(+) is the discount function. The discount function ¢(¢) gives the present
value of a monetary unit, e.g., $1.00 after ¢ vears. Most researchers follow
McCulloch (1971) in explicitly constraining cash flows from different bonds
due at the same time to be discounted at the same rate, and estimate the
discount function ¢(+) from which the other vield curves can be derived.

We employ the most basic case where splines are placed on the discount func-
tion. In this case, 0(+) is expressed as a linear combination of a set of m
underlying basis functions, as follows,

0(t:B) = 1+ 3 Aubi(t)
k=1
Here we shall use McCulloch (1975)’s cubic spline basis.

It then follows that the bond price model based on a linear combination of
basis functions is expressed as follows.

p=1[a'B]B+=, (9)
where B = (b(t1),...,b(t1)), a = (¢, ...,¢,c + RY, respectively.

Once the discount function is estimated, the zero-coupon yield and the forward
rate can be obtained by transformations of the discount function. It is widely



known that the discount function §(¢) and the instantaneous forward rate f(t)
are related by

[ty ==d"(t)/o(t),

where ¢'(t) is the derivative of the discount function o(+) evaluated at the point
t. Thus, after the discount function is obtained. we these the instantaneous
forward rate f(t) can be derived.

Next section describes the dataset and results.
5.2 Dataset. SUR system specification and results

As an illustration of the practical application of the proposed procedure, the
method is applied to the analysis of Japancse governmental bonds trading data
observed on September 2nd and 3rd, 2002. Here n = 219 . Data is publicly
available on line from the web site of Japan Securities Dealers Association.

Using the bond equation (9), we have a set of two regression equations. One is
for the data traded on September 2nd and the other is for traded on September
3rd. In this case, the regression equation for the data traded on a particular
date is ‘

™m ai By
= : Bl e,

. 1
D219 ay93219

“where pg, an and B, are known quantities for the a-traded bond. For each
date, the regression question above applies. Thus, once we allow the correla-
tion structure between the noise terms in the regression question for the data
traded on September 2nd and those in that for traded on September 3rd, this
specification reduces to the SUR system.

Setting the number of basis functions to be m = 20 for each equation, the
method is applied to this data. The first 1,000 iterations are discarded as a-
burn-in period. The remaining 1,000 samples are used for inference. Estimated
discount functions and forward rate curves arc shown in Figure 2. The solid
lines are posterior mean curves. The posterior mean curves for the discount
function 6(t) is given as + Yo, 8(t; 8%)). Here N is the number of poste-
rior samples and BY) is the k-th posterior sample. Similarly, the posterior
mean curves for the forward rate f(¢) can be calculated using the relation

13



f(ty = =d&"(£)/0(t). Two dashed lines are 95% confidence intervals. The 95%
confidence intervals are estimated using the 2.5th and 97.5th percentiles of the
posteriors. The results for the discount function and zero coupon vield curves
are almost identical. From the forward rate curve, we can also see that the
degree of uncertainty increases as the time to maturity becomes longer.

Using the posterior outputs. we can make an inference about the correlation
structure. The posterior mean. the standard deviation. and 95% confidence
intervals are 0.945, 0.048. and [0.807.0.984], respectively. Using the posterior
draws for each of the parameters, we calculated the posterior means. the stan-
dard deviations and 95% confidence intervals. The 95% confidence intervals
are estimated using the 2.5th and 97.5th percentiles of the posterior samples.
Also, Figure 3 shows the estimated posterior density of the correlation. From
these investigations. we can see that there is a significant correlation structure.

6 Summary and Conclusions

Computationally efficient methods for Bavesian analvsis of seemingly unre-
lated regression (SUR) models are developed. Under a Bayesian hicrarchical
framework where each regression function is represented as a linear combina-
tion of a large number of basis functions, the regression coeflicients, the vari-
ance matrix of the errors, and a set of variables to be included in the model are
estimated simultaneously. The method is based on MCMC sampling scheme,
and we employed a DMC approach for sampling efficiency.

There are several advantages of our approach compared with the MCMC ap-
proach of Smith and Kohn (2000). One is that because it decomposes the joint
conditional density of the coefficient vector into a set of low-dimensional con-
ditional densities, we can avoid large scale matrix calculations. We found that
our method is more computationally efficient than the method of Smith and
Kohn (2000). The autocorrelation function from our method is smaller than
those from the MCMC method of Smith and Kohn (2000). We calculated an
inefficiency factor and found that the calculated inefficiency factor from our
method is smaller than that from the MCMC method of Smith and Kohn
(2000). It implies that the proposed method is much more efficient than the
MCMC method of Smith and Kohn (2000). We would recommend implement-
ing Bayesian analysis of SUR model based on our approach.
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Tig. 1. Autocorrelation function of successive draws of the covariance parameter
w12 from the output of our method and from that of Smith and Kohn (2000). The
autocorrelation function from our method is smaller than that from the MCMC
method of Smith and Kohn (2000).
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Fig. 2. Discount function d(¢) and forward rate f(¢) for the trading date September
2nd 2002 (Figures a and b) and September 3rd 2002 (Figures ¢ and d). The solid lines
are posterior mean curves, The posterior mean curves for the discount function d(t)
is given as % ;szl S(t; BN, Similarly, the posterior mean curves for the forward
rate f(t) can be calculated using the relation f(t) = —¢'(t)/d(t). Two dashed lines
are 95% confidence intervals. The 95% confidence intervals are estimated using the
2.5th and 97.5th percentiles of the posteriors.
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Fig. 3. Estimated posterior densities for the correlation parameter.
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