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Abstract of Doctoral Dissertation of Academic Year 2022

From Physiology to Group Dynamics: A Practical

Framework for Physiological Data Analysis

Category: Science / Engineering

Summary

The advent of wearable sensing technologies and neuroscience basis proving the

uses of physiological data as social signals bring possibilities for understanding

group dynamics through physiological data analysis. However, for researchers

without physiological data processing knowledge, it is usually complex to use

physiological data as measurements to investigate in-the-wild group dynamics. It

is more challenging for practitioners in the HCI field to apply physiological data

analysis to sensor-based interactions during large-scale group events. To bridge

this gap, this thesis describes a practical framework for physiological data anal-

ysis based on standard physiological data processing procedures and centers on

the concept of entrainment to understand and augment group dynamics. Entrain-

ment at the physiological level can be used as an objective measure of internal

processes accompanying empathic interactions related to group cohesion, con-

nectedness, and engagement. On the other hand, biofeedback that reveals the

hidden dynamics can also influence live experience of individuals and the collec-

tive reaction of a group. Therefore, we adopt this concept to help researchers and

practitioners in the HCI field transform physiological data into research insights

to augment group interactions.

There are three main contributions of this thesis. Firstly, this thesis elaborates

on the proposed analysis framework by describing the key steps when conducting

o✏ine analysis and real-time analysis. In this thesis, o✏ine analysis is defined as

the analysis conducted on the recorded datasets to understand collective experi-

ence in group events. While real-time analysis is defined as analysis algorithms

implemented in biofeedback systems that require a relatively short response time
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Abstract

to trigger feedback. This thesis explores how to adopt the concept of entrain-

ment in the five essential steps of physiological data analysis: data collection,

preprocessing, feature extraction, analysis, and interpretation.

Secondly, we applied this analysis framework and explored blood volume pulse

(BVP) data and electrodermal activity (EDA) data collected from participants in

group events such as social games, online lectures, and performances. We found

several explainable features that could be used to quantify group dynamics. For

example, pNN50 is an HRV feature that is closely related to the activation of

the parasympathetic nervous system (PSNS). Therefore, we could adopt pNN50

as an indicator for relaxation. Moreover, this thesis summarizes approaches to

analyzing and interpreting physiological data in a collective manner. One method

is computing the trends of physiological features and mapping them to the devel-

opment of group events. With annotations, such as the unfolding of the storyline

and notable moments, this method could provide a holistic view of the in-the-

wild experience. Another method is calculating the similarity between each pair

in the group as pair-wise entrainment and comparing between groups by applying

statistical analysis. This method may need additional information to distinguish

di↵erent groups before comparison. We also publicized the physiological dataset

collected with o✏ine analysis sample codes that are freely available for the HCI

community.

Thirdly, this thesis presents the methodology of developing real-time analysis to

detect and share physiological experience in the group. The process of collecting

labeled data in a lab study, training a machine learning detection model and

implementing the detection model in a real-life biofeedback system is described.

This opens up a potential direction to augment group interaction by recognizing

and influencing physiological experience.

Keywords:

physiology, group dynamics, wearable sensing, biofeedback, in-the-wild experi-

ence, practice-led research
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Jiawen Han
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Chapter 1

Introduction and Background

1.1. Motivation

Emotion has an essential role in human behavior also relating to cognition and

perception [1]. However, it is not always easy for people to catch and exchange

a↵ective feedback considering the ambiguity of emotion. One of the most estab-

lished perspectives to quantify emotion starts from the physiology of emotion and

investigates emotion-specific autonomic nervous system (ANS) activation [2, 3].

Recently the development of physiological sensing has enabled understanding from

psychophysiological and neurophysiological perspectives related to ANS. ANS has

been proven to influence human experience not only at the intrapersonal level but

also “across-subject” in terms of its externally responsive feature. This suggests

that ANS responding could be used to understand group dynamics beyond indi-

vidual emotional experiences [4].

Previous work also explored sensing live group physiology using a variety of

di↵erent sensor technologies, including electrodermal activity (EDA) [5–7], heart

rate variability (HRV) [8–10], electroencephalogram (EEG) [11], and body move-

ment [12–14] (see Table 2.1in page 12). However, there is no scientific consensus

on how to link individual physiological responses to an a↵ective experience in

group dynamics. My research work is to explore the methodologies of analyzing

physiological data beyond individual experiences centering around the concept of

entrainment, which will be explained below.

During group interactions, social signals tend to be communicated through

unconscious behaviors [15, 16] and group dynamics are usually reflected by the

unintentional coordination [16]. The process of coordination is referred to as

“entrainment”. Borrowed from physics [17], entrainment describes the process

1



1. Introduction and Background 1.1. Motivation

by which independent rhythmical systems interact with each other so that they

adjust themselves and eventually become rhythmically coupled [8, 18]. Further,

this notion was enlarged to dynamic coordinated behaviors and even internal

physiological activities related to the “bond” between human beings [19].

Unlike behavioral signs, physiological entrainment is unable to be naturally

observed by the naked eye. However, the advent of wearable sensing devices

has enabled capturing physiological signals at a relatively unobtrusive level [20].

The application of time series analysis also provided more insights into evalu-

ating physiological entrainment and proved its positive e↵ect on understanding

group cohesion and team trust [21]. As an unconscious and “invisible” coordi-

nation, physiological entrainment can reflect the underlying bodily and neuronal

dynamics during group interactions. On the other hand, biofeedback that reveals

the hidden dynamics can also influence each individual’s live experience and the

collective reaction of a group [22–26]. Therefore, measurements centering the con-

cept of physiological entrainment could bring more possibilities to augment group

dynamics.

To investigate the potential of this concept, we extended physiological data

analysis from lab studies to in-the-wild group experience. According to Benford

et al., “in-the-wild” research in the HCI field could be defined as the fusion of

computing technology and public artistic projects (including performance) in the

sense of engaging “real” users with emerging technologies in real settings under

demanding conditions of actual use, as opposed to the more constrained “lab”

environment [27]. Understanding and augmenting group dynamics during in-the-

wild experience could benefit both practitioners and researchers. For practitioners

and artists, sensing and analyzing live group experience during in-the-wild events

could create novel interactions and gain insights into how audience experience

their works under a reflexive process. For researchers, the opportunity to gather

and analyze in-the-wild dataset could reveal natural responses hidden in the lab

environments [27, 28]. Accordingly, it is quite challenging to understand this

mobile, ubiquitous, and complex in-the-wild experience [27]. This thesis aims

to explore methodologies to quantify, interpret, and augment in-the-wild group

dynamics.

2



1. Introduction and Background 1.2. Research Background

1.2. Research Background

A conventional way to investigate the subjective experience in group dynamics is

measuring engagement and participation by using a combination of observations

during the group interactions and the collection of responses via surveys after-

wards. However, this type of approaches is highly subjective and surveys might

be di�cult to deploy in some scenarios, such as artistic performances because audi-

ence members tend to think it is market-related [29]. Lying in the Human-Centred

Computing [30] and Human-Computer Integration paradigms [31–35], measuring

people’s unconsciously generated physiological data with wearable sensing tech-

nologies have become complementary methods (see Table 2.1). Yet, it is quite

challenging to specify the relationship between sensor inputs and practical in-

sights. One reason for this is that it is not visually apparent to match raw and

continuous data to high-level concepts, such as engagement in group interactions.

Another reason is that existing tools for analyzing sensor data are usually designed

for professional engineers and scientists [36]. Therefore, we propose a practical

analysis framework centering around the notion of entrainment to help researchers

in the HCI field and practitioners working on sensor-based interactions. Physio-

logical entrainment is an essential part of shared experiences and could be used

as an objective measure of internal processes accompanying empathic interac-

tions [4,37]. This framework focuses on the coordination and similarity among the

patterns in the physiological data of multiple people, namely the “bond” within

the group [19]. Considering the availability of real-time monitoring physiological

data, the proposed framework consists of two components (see Figure 1.1):

• An o✏ine analysis component where we propose a universal analysis flow

with interpretation perspectives to investigate subjective experience in cer-

tain groups. And how the methodology could be applied to di↵erent sce-

narios.

• A real-time analysis component where we propose algorithms to detect and

characterize the collective physiological flow and critical physiological events

for augmenting subjective experience in certain groups. The algorithms

could be applied to multiple people in real-time and support biofeedback

practices.

3



1. Introduction and Background 1.3. Research Questions

Figure 1.1 Proposed physiological data analysis framework to understand and

augment group dynamics.

For each component, we either contribute new algorithms or suggest new ways

to make use of existing analytical methodologies to understand group dynamics.

To explain and complete the proposed framework, we describe the process and

research insights by analyzing physiological data (focusing on BVP and EDA data

in my research) collected from groups in di↵erent scenarios.

1.3. Research Questions

The specific research questions we would like to answer to support and complete

the proposed framework are as follows:

1. How can we use the concept of entrainment to improve understanding of

group dynamics by physiological data?

(a) How can the proposed o✏ine analysis be used to quantify group dy-

namics beyond individual subjective experience?
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(b) Which aspects can research insights acquired in o✏ine analysis imply

real-time analysis in biofeedback systems?

2. How can we use the concept of entrainment to improve augmenting group

dynamics by physiological data?

(a) How can the proposed framework for physiological data analysis be

applied to real-life biofeedback systems?

(b) What e↵ects do the biofeedback systems embedded with the proposed

real-time analysis bring to group interactions?

3. How to integrate the proposed framework with practical goals during inter-

disciplinary collaborations?

1.4. Research Contributions

The final contributions of my research are as follows:

• A physiological data analysis framework to understand and augment group

dynamics centering around the concept of entrainment that could be applied

in both o✏ine analysis afterward and real-time analysis during biofeedback

practices. The framework extends physiological data analysis from dyadic

level to group level and from lab studies to in-the-wild group activities.

• Reproducible analysis processes and research insights from the o✏ine anal-

ysis on our dataset collected from di↵erent scenarios. Based on the research

insights, we discovered explainable physiological features and analysis meth-

ods that could be applied in both o✏ine analysis and real-time analysis to

generate biofeedback. The physiological dataset collected from in-the-wild

group events (98 recordings from three dance performances and 48 record-

ings from three concert sessions) with o✏ine analysis sample codes are freely

available for the HCI community.

• Multiple real-time analysis algorithms embedded in wearable sensing and

feedback systems and practical implications for biofeedback design deriving

from the interdisciplinary collaborations. An exploration on detecting and

5



1. Introduction and Background 1.5. Thesis Structure

sharing physiological experience, which opens up a potential direction to

augment group dynamics by a↵ecting and manipulating physiological expe-

rience.

1.5. Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 presents a liter-

ature review regarding physiological data as social signals, sensing live audience,

entrainment, and live feedback in group events. Chapter 3 presents the framework

for physiological data analysis. The framework is first explained by introducing

the o✏ine analysis component and the real-time analysis component. It further

details three stages and main steps to analyze physiological data for understanding

and augmenting group dynamics.

Chapter 4, 5, Chapter 6 describe the application and evaluation of the analysis

framework on several studies (see the overview of three chapters in Figure 1.2 and

related publications in Table 1.1). Chapter 4 describes studies where we explored

analysis methods and features that could be used for quantifying and sharing

inner feelings at group level. Chapter 5 presents further investigation on how

to link collective physiological data to in-the-wild group experience. Chapter 6

describes the development of real-time physiological event detection algorithm

that has been embedded in real-life biofeedback to influence the experience in

group activities. Besides, it presents o✏ine analysis on the collected physiological

dataset from audience group to investigate the e↵ect on group dynamics brought

by biofeedback.

Chapter 7 presents discussions from the aspect of data and implications for

applying the analysis framework in practice-led research. Finally, Chapter 8 con-

cludes the thesis by reviewing research questions, reflecting on the limitations,

and providing future prospects.
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Figure 1.2 The overview of three chapters describing applications and evaluations

of the framework. Each chapter has a specific emphasis and features regarding

dataset, group interaction, and analysis. Only the analysis methodologies de-

scribed in this thesis were listed and checked in the analysis segment.
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Table 1.1 Publications included in this thesis with the respective chapter.

Chapter Publication

Chapter 4

Jiawen Han, Chi-Lan Yang, George Chernyshov, Zhuoqi Fu, Reiya Horii, et al.

“Exploring Collective Physiology Sharing as Social Cues to Support Engagement in

Online Learning.” In 20th International Conference on Mobile and Ubiquitous

Multimedia (2021) [38]

Chapter 5

1. Jiawen Han, George Chernyshov, Moe Sugawa, Dingding Zheng, Danny Hynds, et al.

“Linking Audience Physiology to Choreography.” ACM Transactions on Computer-Human

Interaction (2021) [39]

2. Sugawa, Moe, Taichi Furukawa, George Chernyshov, Danny Hynds, Jiawen Han, et al.

“Boiling Mind: Amplifying the Audience-Performer Connection through Sonification and

Visualization of Heart and Electrodermal Activities.” In Proceedings of the Fifteenth

International Conference on Tangible, Embedded, and Embodied Interaction (2021) [40]

3. Zhuoqi Fu, Jiawen Han, Dingding Zheng, Moe Sugawa, Taichi Furukawa, et al.

“Boiling Mind-A Dataset of Physiological Signals during an Exploratory Dance

Performance.” In Augmented Humans Conference (2021) [41]

Chapter 6

1.Yan He, George Chernyshov, Jiawen Han, Dingding Zheng, Ragnar Thomsen, et al.

“Frisson Waves: Exploring Automatic Detection, Triggering and Sharing of Aesthetic

Chills in Music Performances.” Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies 6, no. 3 (2022) [42]

2.Yan He, George Chernyshov, Dingding Zheng, Jiawen Han, Ragnar Thomsen, et al.

“Frisson Waves: Sharing Frisson to Create Collective Empathetic Experiences for Music

Performances.” In SIGGRAPH Asia 2021 Emerging Technologies (2021) [43]
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Chapter 2

Literature Review

This Chapter will introduce the premises that this thesis is based on and the

context that the framework is developed. Section 2.1 presents the background

knowledge from the social neuroscience field and explains how physiological data

relates to social processes. Section 2.2 summarizes the recent works that applied

sensing technologies to scenarios where a group of people attended. Section 2.3 dis-

cusses the concept of entrainment informing why this concept could be borrowed

to develop the framework. Section 2.4 presents recent works where live feedback

has been implemented in group events such as lectures and performances.

2.1. Physiological Data as Social Signals

The emotions that humans experience while interacting with their environment

are associated with varying degrees of physiological arousal where ANS plays a

crucial role [44, 45]. Emotional states associated with ANS responses can be in-

ferred using physiological data like Electrocardiography (ECG), EEG, EDA, and

Blood Volume Pulse (BVP) [46, 47]. ANS is mediated by two branches, which

are the sympathetic nervous system (SNS) diverting energy outwards towards

rapid mobilisation and environmental engagement during the fight-flight and the

parasympathetic nervous system (PSNS) directing energy inwards towards pro-

cesses of recuperation and self-care during the complimentary rest-digest [22,48].

In my work, I mostly focused on BVP and EDA considering its unobtrusiveness

and ubiquity enabling the potential to investigate group dynamics beyond indi-

vidual sensing.

BVP is a pulse-based method of calculating the cardiac cycle from which the

interbeat interval (IBI) can be inferred [47]. HR and heart rate HRV can be
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2. Literature Review 2.2. Sensing Live Audience

calculated based on IBI and are considered to result from the ANS activities.

The neurovisceral integration model describes HRV as the result of prefrontal

cortex activities that a↵ect modulation of the PSNS and SNS nervous systems

balance [49]. Hence, HR and HRV has been shown to be an indicator for reflecting

emotions and a powerful tool for observing interactions between subjectivity and

physiology either activated by PSNS (e.g. pNN50 1 ) or SNS (LF/HF ratio 2) or

both (SDNN3 ) [50–52].

EDA measures variations in skin conductance related to sweating and is a mea-

sure of the sympathetic nervous system. It is being used for over a century [53]

and remains one of the most widespread tools for the measurement of autonomic

nervous system responses in psychology and psychotherapy [54,55]. As a sensitive

marker, EDA is often used to assess emotional arousal [56–59]. Two components of

EDA could reveal di↵erent processes of EDA’s time course. EDA tonic component

indicates the slow change of skin conductance levels while the EDA phasic compo-

nent reflects the quick and prompt change of skin conductance response [57,60,61].

Considering the correlation between a↵ective states and physiological data,

physiological data could be externalized as social cues. Recent works in HCI field

have extended the idea of sensing physiological data to interacting with physio-

logical data via biofeedback [22]. Hook et al. proposed somaesthetic appreciation

to design feedback interactions focusing on bodily experience such as breath [26].

Besides enhancing the behavior of introspection, biofeedback has been explored

as a medium to increase connection and empathy in social interactions [23–25].

In this thesis, we would like to focus more on the potential application of biofeed-

back from the perspective of social interactions in collective experience rather

than individual response.
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2. Literature Review 2.2. Sensing Live Audience

Table 2.1 Recent work about sensing live groups. Collection methods are clas-

sified by referring to the “In-the-wild HCI research” definition by Benford et

al. [27] (m = minutes). Boiling Mind project (Chapter 5) and Frisson Waves

project (Chapter 6) are two projects we evaluated the proposed analysis frame-

work. HR/HRV/EDA data of large-scale audience groups were collected in-the-

wild.

Measurement Scenario
Audience

Numbers

Recording

Duration

Sensing

Technology

Collection

Methods

GSR/EDA

Dance performance video [5] 49 11 m
Thought Technology

GSR fingerwraps
Lab

Films in theater/festival [6] 34 130 m A↵ective Q Sensor In-the-wild

Live performance [7] 15 28 m Customized sensor In-the-wild

HR/HRV

Dance performance [8] 24 63 m Bioharness 3 Sensor Lab

Piano performance

(live/recorded) [9]
37 70/50 m Win Human Recorder Lab

Dance performance [10] 101 35 m Empatica E4 Lab

BCI Academic presentation [11] 11 35 m Neurosky Mindwave In-the-wild

Body

Movement

Dance performance [12] 38 100 m Night vision cameras In-the-wild

Music concert [13] 49 8 songs
Passive optical motion

capture system
In-the-wild

Dance/ talks/ music [14] 75 79/42/22 m
Customized neck-worn

sensors
In-the-wild

EDA/HR/HRV Boiling Mind Project [40] 98 3x70 m Customized wrist band In-the-wild

EDA/HR/HRV Frisson Waves Project [43] 48 60 m Customized wrist band In-the-wild
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2. Literature Review 2.2. Sensing Live Audience

2.2. Sensing Live Audience

Table 2.1 summarizes recent works that applied sensing technologies to explore

group dynamics. Benford et al. [27] refer to the fusion of computing technology

and public artistic projects (including performance) as “in-the-wild” research, in

the sense of engaging “real” users with emerging technologies in real settings un-

der demanding conditions of actual use, as opposed to the more constrained “lab”

environment. We adopted this terminology and classify related work on audience

sensing into either “lab” or “in-the-wild”, with the latter referring to recordings

during actual live events. Compared to physiological methods, physical signals,

like body movements, facial expressions, etc. are easier to record in-the-wild and

thus feature prominently in the literature [12–14]. Theodorou et al. extracted

face, hand and body movement data collected from four contemporary dance per-

formances together with two follow-up surveys on selected audience members for

ranking the performance and reporting engagement [12]. By comparing motion

data with surveys’ results, they suggested lowest overall audience movement are

perceived to be highest engagement but no systematic e↵ect of dancers movements

on audience movements. Gedik et al. developed an approach to predict audience

self-reported binary experience (positive and negative) using accelerometer and

proximity sensor data [14]. They also linked audience body movements to memo-

rable moments that were reported. In live music contexts, head movements were

faster during live concerts than album-playback concerts. While Swarbrick et al.

explained this as higher engagement [13]. These di↵erences in audience movement

can be explained by the di↵erent performance types, and as the current study fo-

cuses on contemporary dance, we opt here to use physiological recordings instead

of physical.

Previous work using EDA to track audiences includes Silveira et al.’s exploration

of using viewer’s EDA to classify movie ratings [6]. Latulipe et al. used wearable

EDA to record 49 participants watching a video of a dance performance. Their

1 Percentage of adjacent NN intervals that di↵er from each other by more than 50 ms

2 Ratio of low frequency (LF) to high frequency (HF) power

3 The standard deviation of the IBI of normal sinus beats
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results show strong correlations between the EDA and self report data, which

supports the validation of temporal EDA data as reflection of audience group’s

engagement [5]. However, since the audience only watched the recorded version of

the performance, we could not ignore the di↵erence of audience reactions between

their study and those in real performance. Wang et al. recorded EDA from a

live audience (15 participants for a 28-minute comedy) using wired electrodes

on the palms [7]. From questionnaires’ and EDA data, they clustered audience

members and identified a strongly correlated main group. They uncovered events

(e.g., “balloon pops”) as changes in EDA and posited this as evidence of psycho-

physiological engagement.

HR/HRV in the group has been mostly studied in lab settings. Shoda et al.

conducted a series of experiments to explore how audience members’ HR and the

spectral features of HRV di↵er between music that is live versus recorded, and

fast tempo versus slow tempo. They show that audiences tend to have higher

HR and lower sympathovagal balance when listening to faster live pieces. The

sharing interaction between pianists and the audience could reduce audience’s

physiological stress [9]. In Vicary et al.’s study, they tracked dancers’ accelera-

tion as movement data and the audience’ HR as a↵ective feedback over five live

performances. Their results indicate that movement synchrony among performers

could predict audience aesthetic appreciation [10]. Instead of looking into the syn-

chrony among performers, Bachrach et al. used Myriam Gourfink’s choreography

design to modulate respiratory rate and internal temporal clock and investigated

the entrainment of audiences and dancers during dance performances. They care-

fully designed four experimental sessions from which they collected respiratory

rate, and questionnaires related to subjective engagement and time perception [8].

Their work suggests that attention to breathing is closely related to entertainment.

Those previous studies inspire us to find connections between physiological data

and certain aspects of group dynamics such as engagement and entrainment.

2.3. Entrainment

Behavioral entrainment has been firstly explored since 1960s based on video anal-

ysis of movement [62]. Condon et al. examined the movement regularities of peo-
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ple in communicative contexts by coding the trajectory of visible movements of

participants’ body parts. Their follow-up research discovered the “bond” between

human beings as an expression of participation within shared organizational forms

rather than as isolated entities [19]. Further advanced in motion tracking methods

such as attaching accelerometers to the interacting individuals revealed the possi-

bilities of investigating group entrainment multidimensional and continuous sens-

ing data [63,64]. Lang et al. measured the acceleration of hand movements of par-

ticipants while hearing three di↵erent auditory stimuli and discovered the exposure

to musical rhythm enhanced behavior coupling [64]. Previous works have proved

entrainment in social interactions could be indicative for group cohesion, psycho-

logical connectedness, and inter-subjective engagement investigated through not

only behavioral [65,66] but also physiological measurements [8,37,67,68]. Indexed

by continuous measures of the ANS, interpersonal autonomic physiology (IAP) de-

scribes the relationship between people’s physiological dynamics and one of the

common observations is the interdependence or association in partners’ physiolog-

ical activities [4]. Multiple terminologies (e.g.physiological linkage, physiological

synchrony, physiological coherence) have been used to describe the phenomenon

and we adopted the “physiological entrainment” in this thesis.

The term “entrainment” refers to the process by which independent rhythmical

systems interact with each other so that they adjust themselves and eventually

become rhythmically coupled [8,18]. The notion was borrowed from physics with

the classic mechanical example of pendulum clocks [17]. In social contexts, en-

trainment is mostly related to behavioral evidence that enables co-acting individ-

uals to perceive and produce rhythmic movement via perception-action link [69].

Di↵erent from behavioral measurements such as gestural expressions, physiolog-

ical entrainment is less controllable and noticeable. However, as a component

of shared experiences, physiological entrainment could be used as an objective

measure of internal processes accompanying empathic interactions [37] and could

further indicate group cohesion, connectedness, and engagement in group dynam-

ics [8,37,67,68]. Therefore, the physiological data analysis framework I proposed

centers around the concept of entrainment: What metrics calculated from physi-

ological data could be used to reflect entrainment? Can we know when does the

entrainment happen through the physiological data patterns? How can we apply

14



2. Literature Review 2.4. Live Feedback in Group Events

the findings to real-time biofeedback practices?

The exploration of entrainment in this thesis mainly focuses on the similarity

between timeseries data of physiological features as entrainment has been proved

to be related to the presence of similar reactions among group members [37].

Various analysis methods have been explored to quantify entrainment in previous

works such as dynamic time warping (DTW) [67, 70–72], pearson correlation

[73, 74], cross recurrence quantification analysis (CRQA) [37], wavelet coherence

analysis [68, 75], and machine learning algorithms [76, 77]. We selected DTW

as our measurement in this thesis. One reason is that DTW could be applied

to two time series data with di↵erent lengths and thus would be flexible to use.

Another reason is that DTW is relatively easy to interpret the results, which could

be a suitable start for HCI researchers and practitioners to explore physiological

entrainment.

Moreover, there are some analysis methods that could help researchers un-

derstand the entrainment experience besides directly calculating the similarity

between physiological data. Statistical analysis (e.g. regression analysis and de-

scriptive statistics) [78] could show the overall trend and fluctuations in the group

dynamics. With an adequate amount of data, classification and regression through

machine learning methods could be applied. Clustering has also been proved as a

potential analysis method to understand subgroups’ experiences [7].

2.4. Live Feedback in Group Events

With wearable sensing devices, live feedback could be implemented in real-time

to create novel interactions in group events. Hassib et al. presented a system

to infer and visualize the audience’s implicit engagement from brain waves [11].

The real-time view shows the current audience’s average normalized engagement

score at that time and tracks the dynamic changes over time. There are more

works exploring live feedback in the field of performance as a valuable test bed

for integrating technologies with real-life situations [27]. One direction is to cre-

ate connections between performers and stage design. Rodrigues et al. adopted

Kinect tools to develop a system where projections on the stage could respond

to dancers’ movement [79]. Brown et al. introduced motion capturing to allow
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the body movements of dancers to drive real-time music generation and arrange-

ment [80]. Another direction is to create live feedback based on the audiences’

senses and feelings and integrate it into the performance environment. Lindinger

et al. invited the audience to co-create the visual performance environment by

sending text messages to create the character clouds. Performers interacted with

the character clouds through a Kinect body-tracking system [81]. Rostami et

al. [82] explored how to use physiological sensing and bodily tracking technologies

for artists to engage the audience through two design workshops. Moreover, Khut

et al. [22], Hook et al. [83], and Benford et al [27] explored design possibilities to

create various types of biofeedback including visual, sonic, ambient, and haptic

interactions. Their explorations manifest several core concepts (e.g. biofeedback

design and a↵ective loop) and frameworks guiding in-the-wild research.
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2.5. Summary

Figure 2.1 Research aims of this thesis in the scope of related works. Significant

works in the related fields: physiological sensing in live groups, real-time biofeed-

back practice, and entrainment in group dynamics.

A number of previous works have investigated entrainment in group activities from

behaviors and movements [10, 13, 66]. Swarbrick et al. recorded the head move-

ment data from participants attending live and album-playback concerts. They

defined the frequency of participants’ head movement to the beat of the song as

the degree of entrainment and found that self-reported fans exhibited higher en-

trainment [13]. Vicary et al. proved movement entrainment among performers

could predict aesthetic appreciation [10]. Cross et al. presented a comprehensive
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discussion about the prosocial e↵ects of entrainment in group processes such as

the increasing sense of belonging [66]. Integrating this concept with physiological

sensing, researchers have explored physiological entrainment as a measurement to

quantify collective experience such as enjoyment and engagement [7, 8, 67]. The

entrainment of breathing rates was calculated and suggested a close relationship

with attention to breathing in Bachrach et al.’s work. Wang et al. found similar

EDA patterns occurred among participants with similar self-reported enjoyment

and “cheerful” experience [7]. Gashi et al. applied DTW analysis to EDA data col-

lected from an audience group and suggested physiological entrainment measured

using DTW could be adopted as a proxy to quantify engagement [67]. Referring

to the previous works, the research described in this thesis further explores prac-

tical ways of analyzing physiological entrainment to understand group dynamics

during in-the-wild activities.

Moreover, physiological sensing has been widely adopted to generate novel in-

teractions via biofeedback [22, 26]. The idea of sharing internal experience to

create the feeling of being connected presents biofeedback’s potential to elicit em-

pathy and entrainment [23, 25]. MoodLight developed by Snyder et al. is an

ambient lighting system that could adjust the colors of the light to users’ arousal

level suggested by EDA data [25]. The ambient feedback was tested also during

paired interaction as an additional social cue to represent entrainment. Slovak

et al.explored biofeedback via heart rate data and found the potential of sharing

heart rate to support connectedness in social interactions [23]. However, the sce-

narios are usually based on dyadic interactions and interpersonal relationships.

This thesis extends this practice to biofeedback implementation in group events

and explores how to use entrainment to augment group interactions. To approach

the aims, this thesis will follow the framework for physiological data analysis de-

scribed in Chapter 3.
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Chapter 3

Framework for Physiological Data
Analysis

This work introduces a practical framework for analyzing physiological data col-

lected from group events. Ubiquitous computing and wearable sensing have pro-

vided opportunities for researchers and practitioners to make use of sensor data to

understand human behavior and design sensor-based interactions [36, 84]. Com-

pared with physiological data, physical data (e.g. OpenPose [85]) has been more

explored and embedded in systems for gesture estimation. Most sensor data analy-

sis software packages either target professional engineers with a high threshold for

use (e.g. LabView 1) or lack of the availability to transform sensor data into fea-

tures and high-level concepts(e.g. Exemplar [36]). The proposed framework aims

to support HCI researchers and practitioners to process, analyze, and interpret

physiological data. The concept of entrainment will be adopted to understand and

augment group dynamics in terms of analysis methodologies and interpretation

perspectives in the two components: o✏ine analysis and real-time analysis.

3.1. Components of the Proposed Framework

Figure 3.1 summarizes the framework for physiological data analysis by explaining

the analysis flow of two components separately: o✏ine analysis and real-time

analysis.

O✏ine analysis is conducted on the recorded datasets to support reflecting

group dynamics during past group interactions. With less concern about compu-

tational complexity, o✏ine analysis allows statistical calculations and even more

1 http://www.ni.com/labview
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advanced time-series data analysis methods. The aspects to interpret the data

results and findings could be more flexible and comprehensive.

On the contrary, real-time analysis is to support not only researchers but also

practitioners and participants to make meaningful inferences on the flow and

events during the group interactions equipped with biofeedback systems. Real-

time in computing processes should guarantee a relatively short response time

to trigger feedback. Therefore, the computation time and memory storage re-

quired to execute the analysis should be carefully considered in each stage of data

analysis.

3.2. Stages of Data Analysis

Based on established data analysis and signal processing procedures, five main

steps are summarized [86, 87]: data collection, preprocessing, feature extraction,

analysis, and interpretation. Figure 3.1 illustrates the analysis flow by grouping

five main steps into three stages. The remaining contents of this section describe

the procedures over three stages. By applying the proposed framework to four

projects (Chapter 4, Chapter 5, and Chapter 6), we further explore and summarize

how to link the physiological data results to group dynamics in the discussion

chapter (Chapter 7) especially focusing on 1) selecting and extracting appropriate

and explainable features, 2) analyzing and aggregating individual data to reflect

collective experience at group level, 3) interpreting and discussing the findings

centering around the concept of entrainment in group dynamics.
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Figure 3.1 Proposed physiological data analysis framework to understand and

augment group dynamics.

3.2.1 First Stage: Receive, Prepare, and Process

Data collection

Large scale physiological data could be collected by either commercial sensing de-

vices or customized ones (see Table 2.1 for the summary of sensing devices used in

recent research works). Section 3.3 describes the devices used for collecting BVP

and EDA data used in the projects mentioned in this thesis. There are also vari-

ous types of physiological responses that could be investigated from physiological

data such as brain activity from EEG data, cardiac activity from BVP data, and

electrodermal activity from EDA data. We mainly explored BVP data and EDA

data in this thesis because of the following reasons. Firstly, BVP and EDA data

could be collected through devices worn on the fingers and wrists, which is less

complicated to set up a group of participants. Another reason is that physiological

responses revealed by BVP and EDA data (e.g. heart rate acceleration and more

sweating) are relatively familiar to most people. However, other types of physio-

logical data could also be analyzed following the steps in the proposed framework
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by adjusting preprocessing parameters and extracting appropriate features.

For o✏ine analysis, data could be saved locally. The analysis could be conducted

via python or other coding languages at existing programming platforms such as

Jupyter Notebook2. For real-time analysis, data could be streamed to servers

via User Datagram Protocol (UDP) and processed in code scripts (python script

in the proposed framework) via command line tools or integrated development

environment (IDE) such as Pycharm3.

Preprocessing

The first step in preprocessing is to clean noisy data, missing data, and outliers

by replacing the data points with zero, interpolation based on existing data points

and removing the period of data where intense movement is detected. Secondly, as

an essential step in signal processing, filters (e.g.lowpass, highpass, and bandpass

filters) need to be applied to smooth and resample the signals. The parameters

of the filters (e.g.order and cuto↵ frequency) could be adjusted referring to the

normal range of signal frequency proved by related works in the psychophysiology

field. Table 7.1 summarizes the information about the sampling rate and filter

parameter adopted in the analysis described in this thesis.

3.2.2 Second Stage: Extract, Transform, and Load

Feature extraction

From BVP data, interbeat interval (IBI) could be inferred and used to calculate

HRV features reflecting the variance of heart beat activity. HRV features are usu-

ally extracted within a subset of data points in the time series, which is known as

sliding window (or rolling window). The window consecutively rolls back, holding

the same number of data points within the window as it moves along the time

series data stream. For o✏ine analysis, cutting sliding window could be conducted

after timestamp adjustment. For real-time analysis, considering the running time

cost, instead of cutting sliding window, the chunk size of data streamed could be

2 https://jupyter.org/

3 https://www.jetbrains.com/pycharm/
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adjusted in advance. HRV features could reflect physiological responses activated

by either PSNS or SNS or both [52]. The onset of strong emotions is typically

characterized by noticeably increased sweating on the skin. Thus, we mainly in-

vestigated the drastic changes in EDA data or in specific components of EDA

(tonic and phasic) [57, 60, 61]. Section 3.3 summarizes and explains the features

extracted in the analysis described in this thesis.

Analysis

Statistical analysis (e.g. regression analysis and descriptive statistics) could be

adopted to observe the changes in group dynamics. Common descriptive analysis

(e.g. calculating mean and median values) could also be used as real-time analysis

to visualize data in the form of charts and graphs [11]. Predictive analysis could

be applied with an adequate amount of data through machine learning methods to

recognize and detect a↵ective experience [47, 88]. Exploratory data analysis (e.g.

clustering) could be used to explore the unknown correlations between individu-

als’ experiences [7]. To further explore the concept of entrainment in the group,

quantifying similarities between group members’ physiological data and triggering

similar physiological experiences are considered as the main focus of the analy-

sis in this thesis. As summarized in Section 2.3, various analysis methods, such

as DTW [67, 70–72], pearson correlation [73, 74],CRQA [37], wavelet coherence

analysis [68, 75], and machine learning algorithms [76, 77],could be adopted to

investigate entrainment. In this thesis, we explored multiple analysis methods

including comparing trends and variance, calculating similarity by DTW, and

detecting physiological events by machine learning algorithms. We selected the

above analysis methods considering the di�culty of implementing and interpreting

the algorithms in both o✏ine and real-time analysis. However, other mentioned

analysis methods are also worth further exploration.

3.2.3 Third Stage: Link the Outputs to Group Dynamics

Interpretation

To interpret the results revealed in the physiological data, we could start by un-

derstanding which ANS branch is related to the physiological feature (e.g. pNN50
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is closely related to PSNS and higher pNN50 may suggest increasing relaxation).

Subjective feedback collected by questionnaire or interview could provide proof

to interpret the results when comparing sub-groups’ reactions or labels to de-

velop supervised machine learning models. Moreover, the development of group

events (e.g. storyline and key moments) could be annotated to understand group

dynamics or trigger biofeedback.
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3.3. Devices and Features in this Thesis

Figure 3.2 Practice-based methodology centers around practitioner-led practices.

Sullivan et al. developed a framework explaining how to use art practice as re-

search, which covers four primary aspects: interpretive discourse, empiricist in-

quiry, critical process, and practices [28]. Referring to Khut et al.’s theory for

Biofeedback Artworks [22] and Benford et al.’s theory for Performance-led Re-

search in-the-wild [27], we selected and added details based on our interdisciplinary

collaborations to understand and augment live group experience with physiologi-

cal data.

Chapter 4, 5, and 6 describe how we applied the proposed analysis framework to

understand and augment group dynamics in various group interactions. Figure 3.2

presents a framework initially developed by Sullivan et al. which provides a guide

for our interdisciplinary collaborations. Centering the aim of “practices”, sensing

devices, biofeedback design, and analysis methodologies were explored during it-
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erations. This section describes the customized devices used for data collection

and features generated for real-time and o✏ine analysis.

3.3.1 Devices

In this dissertation, we selected EDA and BVP data for analysis. Figure 3.3

presents three major devices we used for data collection and recording.

Figure 3.3 Sensing devices used for data collection and recording in this disserta-

tion. (a) and (b) were wrist-worn sensing devices while (c) was ear-based device.

Wrist-worn devices (Figure 3.3(a) and (b)) were principally developed by Gheo-

rghe Cernisov (hardware and software development to save and stream physiolog-

ical data) [89] and Dingding Zheng (sensor modality selection and platform design

based on psycho-physiological knowledge) [90]. Yulan Ju designed the appearance

of the wristband case shown in Figure 3.3(b). The device in Figure 3.3(a) was used

in the project described in Chapter 5 to collect and stream EDA, BVP, and ac-

celerometer data. The device in Figure 3.3(b) was used to collect and stream EDA

and BVP in the projects described in Chapter 4 (Section 4.2 and Section 4.3),

and Chapter 6.

Ear-based device (Figure 3.3(c)) was principally developed by Kanyu Chen [91]

(hardware development and ear-phone prototype design) and Ziyue Wang (data

streaming system). The device in Figure 3.3(c) was used to collect and stream

BVP data in the project described in Chapter 4 (Section 4.4).
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3.3.2 Features

This section summarizes HRV and EDA features we investigated in this the-

sis. Except features with generally accepted terminologies (e.g., pNN50 and SCR

peaks), some features (e.g., EDA di↵erence and EDA extrema) were given inter-

pretive names to avoid ambiguity. Appendix C presents examples of extracting

HRV and EDA features in python.

From BVP data, interbeat interval (IBI) is calculated. After removing abnormal

beats from IBI, we got the IBI of normal sinus beats, which is usually referred

as NN intervals. HRV features are generally calculated from NN intervals. For

example, the average of NN intervals within a certain period is Mean NN. From

the Mean NN, we calculated Beats per Minute (BPM) that usually refers to

average HR.

HRV features are either related to SNS or PSNS activation or both [52]. In this

thesis, we extracted pNN50, RMSSD and LF/HF ratio for our analysis. pNN50

refers to the percentage of adjacent NN intervals that di↵er from each other by

more than 50 ms. RMSSD refers to the root mean square of successive di↵erences

between normal heartbeats. Both of pNN50 and RMSSD are time-domain features

that could quantify the amount of HRV observed during monitoring periods [52].

As closely related to the PSNS activation, pNN50 and RMSSD are usually nega-

tively related to increasing arousal and corresponding a↵ective states. Specifically,

increasing pNN50 could reflect relaxation, engagement in the controlled process,

and sustained attention [47, 92, 93]. RMSSD has been proved to be negatively

correlated to stress and cognitive load [94, 95]. LF/HF ratio refers to the ratio

of low frequency (LF) to high frequency (HF) power and could be an indicator

of the balance between SNS and PSNS activity [52]. Even though the interpre-

tation of the LF/HF ratio is controversial [96], it is still possible to explain the

changes with cautious consideration of the recording contexts [97]. In most of

cases, increasing LF/HF ratio could be related to rising arousal implying anxiety

and excitement [88,98, 99].

EDA is used to define autonomic changes in the electrical properties of the skin

and includes tonic and phasic components [87]. Some previous works have used

skin conductance level (SCL) and skin conductance response (SCR) to name tonic

and phasic components. EDA tonic component indicates the slow change of skin
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conductance levels while the EDA Phasic reflects the quick and prompt change

of skin conductance response [57, 60, 61]. In this thesis, we adopted EDA Tonic

as the tonic component value and EDA Phasic as the phasic component value

to directly distinguish the two features from their characteristics. However, we

adopted SCR peaks to describe the peaks in EDA Phasic because this term has

been generally accepted in python packages for signal processing (e.g. Neurokit2 4

[100]). Besides established EDA features, we also explored EDA di↵erence by

calculating the changes in EDA response (the first derivative of the EDA data)

and EDA extrema by looking specifically into the timings when EDA data

drastically increased. For features derived from peak detection, we aggregate

individual features into collective ones by counting the number of people who

have experience peak events within a certain time period such as EDA extrema

count.

Above are the principal features generated in this research. Features used in

the specific studies were listed in each chapter’s overview and marked if they have

been used in real-time analysis implemented in biofeedback systems.

4 https://neuropsychology.github.io/NeuroKit/
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Chapter 4

Explorations of Physiological
Data in Groups

4.1. Overview

This Chapter describes the explorations of physiological data as social signals to

help us understand group dynamics and communicate within group interactions.

With the outbreak of the pandemic, online communication has become an essen-

tial part of group interactions yet usually keeps group members feeling distant.

Two projects (social game project described in Section 4.2 and online learning

project described in Section 4.3 and Section 4.4) reported in this Chapter aim to

investigate and enhance the social bond in online group interactions. The social

game project is to compare players’ physiological responses when they are playing

in-person and online. The online learning project is to explore feasible methods

to share physiological data as novel interactions during online lectures and online

workshops. Both projects provided valuable datasets to initially explore explain-

able physiological features and analysis methods to reflect group dynamics.
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Figure 4.1 Overview of the project information in Chapter 4

Section 4.2 describes the project investigating group interactions during in-

person and online werewolf games. In werewolf game, players are given specific

roles and then belong to either good people side (villagers and gods) or bad peo-

ple side (werewolves). As a distinguishing feature in werewolf game, concealing

information and deception could be reflected in temporal changes of physiological

data [101]. Werewolf game has been considered as a suitable activity to investi-

gate group interactions because the game follows a relatively fixed structure and

players need interact actively to understand the situation and collaborate within

groups [102]. Moreover, we recorded physiological data when participants played

in-person and online via Zoom, which enables a comparison and discussion. There-

fore, this dataset could be a start point to initially explore physiological data from

the perspectives of di↵erent groups (good people side and bad people side) and

di↵erent interaction medium (in-person and online).

Section 4.3 and Section 4.4 describe the projects where we explore the real-

time analysis implementation to share physiological data within groups and its
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potential e↵ect. We selected online learning conditions for the setup. In many

online learning cases, people have reported to feel less connected and engaged

due to insu�cient social cues [103–105]. Besides testifying the real-time analysis

setup, we would also like to investigate whether sharing physiological data could

enhance the feeling of being connected.

Major parts in this chapter (Section 4.3) are based on the following research

paper we published:

• Jiawen Han, Chi-Lan Yang, George Chernyshov, Zhuoqi Fu, Reiya Horii,

Takuji Narumi, and Kai Kunze. ”Exploring Collective Physiology Sharing

as Social Cues to Support Engagement in Online Learning.” In 20th Inter-

national Conference on Mobile and Ubiquitous Multimedia, pp. 192-194.

2021.

4.2. Quantify Group Dynamics

4.2.1 Data Collection and Datatset Description

We recorded nine players’ EDA and BVP data when they were playing in-person

(see Figure 4.2) and playing online (see Figure 4.3). Nine players were all native

Chinese speakers (self-identified as female=5; male=4) aging between 22 and 31

years (mean = 26.3, SD = 2.57) and were familiar with the werewolf game rules.

However, one player’s data were excluded due to internet failure. BVP and EDA

data recorded were with di↵erent length due to the di↵erent time duration of each

round of game. We explained the study and the game rule in case and received

players’ consent before the game started. We firstly let players play in-person and

then invite them to be physically apart and joined the game via Zoom. Players’

identities were not controlled and assigned randomly. The identities we selected

in the game were as follows:

• Villagers: Three villagers. Close eyes during the night stage and do not

know the members in the same group.

• Gods: One seer who could know one player’s identity during the night stage

( either good or bad identity). One witch who could either heal or poison
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one player during the night stage. Hunter who can “kill” one player after

he/she is “killed” or voted out.

• Werewolves: Three werewolves. Know the other group members and “kill”

one player during the night stage after slightly communication with each

other.

Figure 4.2 Photo taken when participants played the werewolf game in-person.

32



4. Explorations of Physiological Data in Groups 4.2. Quantify Group Dynamics

Figure 4.3 Screen shot when participants played the werewolf game online via

Zoom (Mosaic was applied to the picture for privacy concerns).

4.2.2 Analysis Process

BVP

A 2nd order Butterworth low pass filter (from python package, scipy.signal) 1

was then used to cut high frequency noise above 3 Hz [106, 107]. HRV features

were calculated every four minutes with a two-minute sliding window. For feature

selection, we would like to choose a relatively stable feature that could reflect the

beat-to-beat variance in heart rate. Therefore, we chooseRMSSD2 that has been

proved to be negatively correlated to stress and cognitive load [94,95]. Following

the concept of entrainment, we firstly investigated the trends of group dynamics

during each round of the game. Since there are good people side and werewolf side,

1 https://scipy.org/

2 The root mean square of successive di↵erences between normal heartbeats
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HRV features were averaged within each side and over all the players. Figure 4.4

shows the overall trend and the trends for each side. We further looked into the

similarity and correlation between each pair of players’ RMSSD during two rounds.

Dynamic Time Warping (DTW) implemented with dtw-python module3 was used

to compare quantitatively [108]. The higher the value of distance calculated by

DTW the lower the entrainment them between two timeseries data and vice-

versa. We applied paired t-test to investigate whether significant di↵erence existed

between in-person game round and online game round in terms of physiological

entrainment.

EDA

A 2nd order Butterworth low pass filter (from python package, scipy.signal) was

then used to cut high frequency noise above 0.5 Hz [106, 107]. We extracted

EDA features by focusing on the changes in EDA responses especially the peaks

in the phasic changes as proved to be related to sudden aroused feelings [57] –

known as SCR peaks4. We counted the number of players who had experienced

SCR peaks every two minutes to represent the collective trend of arousal dynam-

ics as aggregated SCR peaks (Figure 4.5). We further looked into the similarity

and correlation between each pair of players’ SCR peaks per minute during two

rounds. DTW implemented with dtw-python module was used to compare quan-

titatively [108]. The higher the value of distance calculated by DTW the lower the

entrainment them between two timeseries data and vice-versa. We applied paired

t-test to investigate whether significant di↵erence existed between in-person game

round and online game round in terms of physiological entrainment.

4.2.3 Results

The trends of group dynamics are reflected in both HRV (RMSSD) and EDA

features (aggregated SCR peaks). Compared with In-person round, all the players

experienced more fluctuated RMSSD while playing the game online. The key

3 https://dynamictimewarping.github.io/python/

4 Peaks of skin conductance response or phasic components of EDA (EDA Phasic in this thesis)
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events for the werewolf side to execute “kill” actions are highlighted in yellow.

Figure 4.4 shows the trends of RMSSD both over all the players and two sides.

During In-person round, the average RMSSD value among werewolf side is higher

than the other side. While during Online round, the average RMSSD value among

werewolf side is lower than the other side.

Figure 4.4 The average RMSSD values during the in-person (top) round and

online round (bottom). The green line shows the average RMSSD value among

werewolf players. The red line shows the average RMSSD value among the good

people side. The Blue dashed line shows the average RMSSD value among all the

players. Key events where werewolf players execute “kill” actions are highlighted

in yellow.

The overall aggregated SCR peaks during in-person round (mean = 12.75, sd
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= 1.95) are obviously higher than those during online round (mean = 2.74, sd

= 1.51). The maximum aggregated SCR peaks exist either during or before the

”Night” comes in both in-person and online rounds (see Figure 4.5).

Figure 4.5 Aggregated SCR peaks occurred during in-person round (blue color)

and online round (red color). The timelines of each game round were illustrated

below the bar chart in corresponding colors.

For intersubject analysis, normalized distance calculated by DTW was adopted

to quantify the similarity between every two players’ timeseries data (RMSSD and

SCR peaks per minute).

According to the paired t-test, normalized distance of RMSSD in In-person

round (mean= 0.14, sd= 0.036) is significantly lower than that in Online round

(mean = 0.18, sd=0.071) (t(27)= -2.23,p<.05). Figure 4.6 shows the overall dis-

tribution of normalized distance for each pair’s RMSSD timeseries data.
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Figure 4.6 Comparison of paired distance of RMSSD (Left) and SCR peaks

per minute (Right) between every two players during in-person round and online

round. The inner box plot shows the show the minimum, first quartile, median,

third quartile, and maximum values of timeseries normalized distances of pairwise

physiological data’s distance. The smaller the distance, the more similar the

pair of timeseries data. The outer smoothed violin shape illustrates probability

density. The width of the shape indicates how frequently certain values occur.

(*p<.05,***p<.001)

According to the paired t-test, normalized distance of SCR peaks per minute

in In-person round (mean = 2.66, sd= 1.708) is significantly higher than that in

Online round (mean = 0.72, sd= 0.887) (t(27)= 4.77,p<.001). Figure 4.6 shows

the overall distribution of normalized distance for each pair’s timeseries data of

SCR peaks per minute.

4.2.4 Subjective Feedback

Methodology

To understand the group dynamics during in-person and online game, we asked

nine players to fill out surveys measuring sense of community, emotional engage-

ment, psychological engagement, and sense of co-presence in 7-Likert scale [105,

109,110] after each round.
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Questions to measure sense of community were as follows (Likert scale:“1-

Strongly Disagree” to “7-Strongly Agree”) :

• I felt like a member of this game.

• I did not belong in this game.

• I felt connected in this game.

• I felt that I matter to other players in this game.

• I had good bond with other players or teammates in this game.

• I felt distant from other players.

Questions to measure emotional engagement were as follows (Likert scale:“1-

Strongly Disagree” to “7-Strongly Agree”) :

• I have done my job well in the game.

• It is easy for me to understand other players in the game.

• I do not have friends in this game.

• We have a nice team spirit in the game.

Questions to measure psychological engagement were as follows (Likert scale:“1-

Strongly Disagree” to “7-Strongly Agree”) :

• I paid close attention to other players.

• I was easily distracted from other players when other things were going on.

• Other players paid close attention to me.

• I tended to ignore other players.

Questions to measure sense of co-presence were as follows (Likert scale:“1-

Strongly Disagree” to “7-Strongly Agree”) :

• I often felt as if other players and I were in the same environment together.

• I think other players often felt as if we were in the same environment.
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Results

The analysis of the survey results was mainly to investigate whether players ex-

perienced di↵erent group dynamics when they were playing in-person and online,

and whether the implementation of biofeedback could augment the group inter-

action.

We applied paired T-test between the survey answers from In-person no biofeed-

back round and Online no biofeedback round. Sense of co-presence during In-

person round (mean = 5.89, sd= 0.89) is proved to be significantly higher than

that during online round (mean = 4.64, sd= 0.91), t(8) = 3.75, p<.005. We

did not find statistically significant di↵erence in terms of sense of community (p

=.19), emotional engagement (p =.42), and psychological engagement (p =.20)

(see more detailed information in Figure 4.7).

Figure 4.7 Summary of the survey results including sense of community ((in-

person: mean = 4.63, sd = 0.57; online: mean = 4.85, sd = 0.37)), emotional

engagement (in-person: mean = 4.56, sd = 0.79; online: mean = 4.5, sd = 0.75),

psychological engagement (in-person: mean = 4.50, sd = 0.81; online: mean =

4.70, sd = 0.62), and sense of co-presence (in-person: mean = 5.89, sd = 0.89;

online: mean = 4.63, sd = 0.91).
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4.2.5 Discussion and Interpretation

Trends of Group Dynamics

Figure 4.4 shows the trends of RMSSD during both in-person round and online

round. Based on visual inspection, we could notice more fluctuated lines occurred

during online round, which may suggested a more unstable state in terms of

cognitive load [94, 95]. Figure 4.5 shows the trends of aggregated SCR peaks in

the form of bar chart. As related to sudden arousal increase indicating excitement

and anxiety, SCR peaks occurred more during the in-person game [57]. One

reason could be playing in-person could enable more observation on unconscious

non-verbal behaviors thus increase the anxious feelings. However, due to the

ordering e↵ect, players started the in-person game first and might feel anxious in

the beginning and get ease to the game when time passed.

Werewolf game follows a determined structure consisted of Day (players dis-

cuss and vote for one werewolf player) and Night (werewolves decide to “kill” one

player while the others close their eyes). Therefore, Night could be considered as

key events because werewolves need to discuss and decide in very short times while

the others are usually anxious to wait for the coming results. Obvious fluctuations

in RMSSD values could be observed in both in-person and online game rounds

(see the highlighted regions in Figure 4.4). However, RMSSD reached peaks when

Night came during in-person round while showed opposite tendency during online

round. This result may suggest the di↵erent mental states for werewolves exist

when they were playing in-person and online. However, players who were were-

wolves were not same, it is hard to draw a clear conclusion. Aggregated SCR

peaks in Figure 4.5 reached high values around the key moments, either before

the Night came (the time when players voted for a werewolf) or during the Night.

Physiological Entrainment among Group Members

The results calculated from DTW shows the physiological entrainment during the

game. Players during the in-person round present significantly more entrained

in terms of RMSSD while significantly less entrained in terms of SCR peaks per

minute. Therefore, it is possible to assume that when players were playing in-

person, they might experienced similar changes at cognitive level but di↵erent
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anxious or excited timings. Moreover, according to the finding from survey re-

sults, players experienced significantly higher sense of co-presence when they were

playing in-person. Therefore, we suggest sitting in the same environment could

enable players to focus more on the game itself without being distracted by other

factors, thus help players maintained similar cognitive experience. On the other

hand, feeling more co-present could enlarge the emotional fluctuations such as ex-

citement and anxiety for players with di↵erent identities. Therefore, SCR peaks

per minute present more divergent trends over the players.

4.3. Share Physiological Data as Interaction

We conducted a field study to investigate how distributed learners react to the

streaming system that presents collective HR and HRV measurements in real

time. The streaming session was embedded in a lecture series lasting about 40

minutes. 48 learners in total attended the online lecture over Zoom. Eight learners

volunteered to stream and share their physiological data. The system tracked

BVP data from self-built wrist-worn devices with an optical sensor placed on the

fingertip referring to the set-up in previous work [40,41, 111] (Figure 3.3 (b)).

4.3.1 Real-time Analysis and Implementation

Figure 4.8 The framework of implementing real-time analysis to generate line

chart online lecture. The stages are receiving BVP data, real-time analysis, and

generate visualization and share.
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The device sampled the BVP at 50Hz and streamed to our system server via

User Datagram Protocol (UDP), which supported distributed learners to stream

their data without location restrictions. Each participant’s raw BVP data was

passed through a 4th order Butterworth low-pass filter (4 Hz). BPM5, namely

average heart rate, was selected as an intuitive HR indicator of excitement and

anxiety. While pNN506 was adopted as an established HRV feature to reflect

relaxation and sustained attention [52,93]. For each minute, the two features were

averaged for each participant and were used to generate glance-able line charts

right below the presenter’s slide content (Figure 4.9 (right)) to avoid distracting

learners from the class content. To ensure the stability of the visualization, rolling

means were calculated from three data points and streamed to the visualization

system. Figure 4.8 summarizes the framework of implementing real-time analysis.

5 Beats per minute

6 The percentage of adjacent NN intervals that di↵er from each other by more than 50 ms
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Figure 4.9 Streaming system used in the field study. Right is the interface con-

sisted of class content area, streaming area, and camera area (Mosaic was applied

to the picture for privacy concerns). The red and blue lines represented collective

BPM and pNN50 respectively and both were calculated from rolling means of all

data contributors every one minute.

4.3.2 Subjective Feedback

Methodology

After the streaming session, we organized interviews on 11 learners and 6 of

them were data contributors while the others were viewers. During the inter-

view, we asked participants about their perception and experience while viewing

the streaming visual in the class, and to compare their experiences in class with-

out the streaming event. We also asked participants to share their interpretations

about the visuals including the meanings behind and sources of the data. We also

questioned the learners who contributed streaming data about their personal feel-

ings when wearing the device and sharing their physiological data to others. We

delivered surveys after the classes with and without the streaming visualization
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to quantify its impact on learners. Besides demographic questions, the survey

asked questions about sense of community [105] and perceived psychological en-

gagement [109] in 7-point Likert scales.

Questions to measure sense of community were as follows (Likert scale:“1-

Strongly Disagree” to “7-Strongly Agree”) :

• This class helps me fulfill my needs.

• I feel like a member of this class.

• I can not get what I need in this class.

• I do not belong in this class.

• I feel connected to this class.

• I feel that I can rely on other classmates or instructors in this class.

• I feel that I matter to other classmates or instructors in this class.

• I have no friends in this class that I can rely on.

• I feel distant from other classmates or instructors.

• I have a good bond with other classmates or instructors in this class.

Questions to measure perceived psychological engagement were as follows (Lik-

ert scale:“1-Strongly Disagree” to “7-Strongly Agree”) :

• I paid close attention to my classmates or instructors.

• I was easily distracted from my classmates or instructors when other things

were going on.

• My classmates or instructors did not pay close attention to me.

• My classmates or instructors were easily distracted from me when other

things were going on.

• I tended to ignore my classmates or instructors.
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17 learners answered the survey after the class without seeing physiological data

streaming, and 19 learners answered the survey after the class implemented with

physiological data streaming. We notified students that joining the study was not

compulsory and all of the answers would be kept confidential and not related to

any type of grading.

Results and Discussions

We summarized the themes emerged from the qualitative analysis and identified

feedback from data contributors and viewers. We also report survey results to

triangulate the interview findings. (C:Contributor, V:Viewer)

All the participants reported they had the motivation to look at the streaming

visual. Main reasons were the curiosity in others’ reactions:

“I find it very interesting to see how people develop together.”(C1))

“Whether I intentionally looked the streaming was related to the in-

structor and the content of the course itself.”(C3)

Participants reported increasing engagement and sense of community with the

streaming system. As data contributors, they could involve in the class more

actively:

“The change of the data visualization was like the more spontaneous

reaction, what’s happening in class [...] when the instructor was ask-

ing us something, then I was curious if it goes up because people feel

involved and then they’re like, oh, I need to act now.”(C1)

and feel more connected to other distributed learners by seeing the data visu-

alization:

”Putting aside how accurate the visualization were or what it meant,

I felt it really cool to see that we are somehow a↵ecting this class and

visuals. [...] I felt like I was part of a class and felt like there were

people like in this class that there was a presence rather than me sitting

alone in the room and whatever.” (C2)
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Moreover, data contributors did not report privacy concerns with the sharing

mostly because of the visual was shown in an aggregated manner and perceived

anonymity:

(“Because it feels like so many people’s data and not my data alone.

It’s something more objective and doesn’t feel violating.” (C3)).

Regarding viewers’ experience, they mentioned it was a little hard to understand

the system setup, such as how was the data recorded, integrated, and transformed.

However, they were still interested in the trend and fluctuations of the streaming

visualization:

“I can get a rough idea of what it is, but I don’t understand what it is.

But looking at the trend, I can feel the change.” (V2)

Viewers also mentioned the streaming visual enhanced their engagement and

connection especially when most of the people turned o↵ the cameras in the online

class, which was a common practice of the class we studied:

“I could see the visuals like moving. So I can see that people are

listening or people are actually there attending the class and will sort

of indirectly causing me to feel like feel connected to the students.”

(V1)

Survey results also showed perceived psychological engagement was slightly

higher in the streaming session (mean = 3.99, sd = 0.38) than that without

streaming (mean = 3.73, sd = 0.4), with a marginal significant di↵erence (t[32]=

1.95 , (.05¡p<.10)). Although there was no significant di↵erence of sense of com-

munity between two conditions. We will further explore in controlled lab settings

to clarify the e↵ect of streaming visualization on learners’ perception of social

bonds.

In accordance with our concept design, participants reported more linkage ex-

isted with the system and people who were attending the online class. Both data

contributors (who were sharing their physiological data during the class) and data

viewers mention the externalized heart rate data enhanced their engagement and
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connection especially when most of the people turned o↵ the cameras in the on-

line class. They also focused more on changes and fluctuations instead of absolute

values and most of them prepared abstract visualizations in terms of privacy and

intuitive interpretation.

4.4. Investigate E↵ects of Sharing Physiology

As an extension of the online lecture study, we continued to explore whether

sharing physiological data could enhance entrained feelings in group activities.

The practical goal of this study follows the concept of sharing physiological data

as social cues. One of the aims is to explore a novel way of building connection

when people chose to turn o↵ the camera where facial expressions are no longer

available.

Feedback from participants also supported the potential application of this con-

cept. We received subjective feedback from workshop participants (those who did

not attend as experiment participants could answer the questionnaire voluntar-

ily) regarding their habits of turning on/o↵ camera during online meetings. In

total, 21 participants female:13, male:7, others:1) filled out the questionnaire and

shared their reasons about why or why not turn on the camera during online

meetings. Six participants never (n = 1) or rarely (n = 5) turned on the camera

during online meetings. Six participants reported they sometimes turned on the

camera while six participants reported they often turned on the camera during

the online meetings. Only one participant always kept the camera on. Most of

the participants reported their choices would change depending on the following

conditions:

• Sense group dynamics: whether other group members turn on the camera;

whether group members want to be engaged or connected.

• Priority of the meeting: whether the meeting is with important people;

whether there is other thing to do at the same time.

• Privacy concerns: whether non-related people are in the same room; whether

my private life could be exposed (e.g. joined the meeting from home).
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In the study, we asked participants to turn o↵ the camera for both sessions. We

organized two online workshop sessions following one same agenda where di↵erent

participants attended (see detailed information in Table 4.1). The agenda of the

workshop is as follows:

• Facilitators explained the study and received the consents.

• Facilitators delivered recording devices and helped participants wear the

devices before asking them sitting physically apart.

• Workshop started. One of the facilitator explained the agenda (approxi-

mately 5 minutes).

• The invited instructor delivered a short talk about how to use mixed-methods

in research (approximately 8 minutes).

• Group discussion started after the instructor’s talk (approximately 15 min-

utes).

• Workshop ended. Participants filled out the survey regarding experience

(e.g.engagement and perceived entrainment [105,109])

Table 4.1 Information about two workshop sessions.

Session With biofeedback
Number of participants

in total

Number of participants

with data recorded

(gender distribution)

Morning session No 8 7 (female = 3; male = 3; others = 1)

Afternoon session Yes 13 8 (female = 5; male = 3)

4.4.1 Real-time Analysis and Implementation

The device sampled the BVP at 100Hz and streamed to the Processing software

via User Datagram Protocol (UDP). Each participant’s raw BVP data was passed

through a 4th order Butterworth low-pass filter (4 Hz). The visualization is to

mimicry heart pumps for intuitive interpretation. Therefore, filtered BVP data
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were directly streamed to the Processing software to control the size and color of

the circle shape elements (see Figure 4.11). Figure 4.10 summarizes the framework

of implementing real-time analysis.

Figure 4.10 The framework of implementing real-time analysis to generate and

share individual’s heart beat visual during online workshop. The stages are re-

ceiving BVP data, real-time analysis, and generate visualization and share.

Figure 4.11 Streaming system used in the computer-mediated workshop. Left

is the Zoom screen shot of morning session. Right is the Zoom screen shot of

afternoon session. All the people names’ have been later changed into instructor,

facilitator, and subject numbers to be shown in this paper.

4.4.2 O✏ine Analysis

Data Collection and Dataset Description

We organized two workshop sessions and 15 participants’ BVP data were recorded

at 100Hz sample rate in total. Participants are students from Keio University
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and age between 21 40. Because we shared the zoom link to attend the online

workshop publicly, we did not record the data from those who had not signed up

as participants. Table 4.1 summarizes the information of participants whose data

were recorded.

O✏ine Analysis Process

To investigate how will biofeedback influence group dynamics, we compared the

trends of HRV features and quantified coordination of HRV features between

morning session and afternoon session (with biofeedback provided).

We firstly adjusted timestamps and cut the dataset into the same length of

the workshop. A 2nd order Butterworth low pass filter (from python package,

scipy.signal) was then used to cut high frequency noise above 3 Hz [106, 107].

HRV features were calculated every two minutes with a ten-second sliding win-

dow to capture subtle variance. For feature selection, we choose pNN50 7 and

RMSSD 8 referring to the results and comparison in prior works. Both of the two

features are under more influence of PSNS and could reflect high frequency varia-

tions in heart rates. Previous works have proved pNN50 could indicate relaxation

level and sustained attention [47,92,93] while RMSSD could reflect cognitive load

and stress levels [94, 95]. Following the concept of entrainment, we firstly inves-

tigated the trends of group dynamics reflected in pNN50 and RMSSD features

(see Figure 4.12). We further looked into the similarity and correlation between

every pair of learners during each session via the method of DTW implemented

with dtw-python module9 was used to compare quantitatively [108]. We applied

an independent t-test to investigate whether a significant di↵erence existed be-

tween the distances of every learn pairs in morning session and afternoon session.

Moreover, we calculated distance between each pair’s feature data by DTW every

four minutes with a ten-second sliding window to observe the subtle changes in

the entrainment development. The mean of the distance between the pairwise

combinations was adopted to represent the entrainment of the group as a whole

7 The percentage of adjacent NN intervals that di↵er from each other by more than 50 ms.

8 The root mean square of successive di↵erences between normal heartbeats.

9 https://dynamictimewarping.github.io/python/
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(see Figure 4.14).

Results

We firstly plotted the trends of HRV features and compared between morning

session and afternoon session (see Figure 4.12). Overall, average pNN50 presents

an increasing trend and reached peaks around the instructor finished the short talk

in both sessions. During the group discussion, average pNN50 among students in

afternoon session is higher than that in morning session. Average RMSSD climbs

quickly in the beginning of the workshop and fluctuates during both sessions.

Overall, average RMSSD among students in afternoon session is lower than that

in morning session.

Figure 4.12 Trends of average pNN50 (top) and RMSSD (bottom) among par-

ticipants during two workshop sessions: blue lines represent morning session and

yellow lines represent afternoon session. The timeline of the workshop is marked

in red line between two graphs.

Normalized distance calculated by DTW was adopted to quantify the similarity

between every two learners’ HRV features’ timeseries data (pNN50 and RMSSD).

pNN50 tends to be more divergent between learners in the afternoon session with

biofeedback although no statistical di↵erence is discovered (p = .079) according
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to t-test. However, distance between learners’ pNN50 in the afternoon session

declined and became smaller than that in the morning session after the group

discussion started (see Figure 4.14 (top)).

Learners in the afternoon session with biofeedback (mean = 0.07,sd = 0.035)

present significantly smaller distance between each other in terms of RMSSD

patterns than that in the morning session (mean = 0.16, sd = 0.062), t(29.6)

= 5.72, p<.001. In Figure 4.14 (bottom), a smaller distance of RMSSD in the

afternoon session could also be observed.

Figure 4.13 Comparison of paired distance of pNN50 (a) and RMSSD (b) between

every two players during two workshop sessions. The inner box plot shows the

show the minimum, first quartile, median, third quartile, and maximum values

of timeseries normalized distances of pairwise physiological data’s distance. The

smaller the distance, the more similar the pair of timeseries data. The outer

smoothed violin shape illustrates probability density. The width of the shape

indicates how frequently certain values occur. (***p<.001).

52



4. Explorations of Physiological Data in Groups 4.4. Investigate E↵ects of Sharing Physiology

Figure 4.14 Timeseries plots of average distance among every two pairs’ pNN50

(top) and RMSSD (bottom) data. The vertical black dashed line highlights the

timing of when the group discussion started.

4.4.3 Subjective Feedback

Methodology

After each session, we asked only experiment participants about their psycho-

logical engagement, sense of community, and entrainment after each session by

7-Likert scale [105,109,110].

Questions to measure psychological engagement were as follows (Likert scale:“1-

Strongly Disagree” to “7-Strongly Agree”) :

• I paid close attention to my group members.

• I was easily distracted from my group discussion when other things were

going on.

• My group members paid close attention to my reactions.

• My group members tended to ignore me during the discussion session.
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• I feel my group members were communicating with me.

Questions to measure the sense of community were as follows (Likert scale:“1-

Strongly Disagree” to “7-Strongly Agree”) :

• I feel like a member of this group.

• I do not belong in this group.

• I feel connected to this group.

• I feel distant from other group members.

Questions to measure perceived entrainment were as follows (Likert scale:“1-

Strongly Disagree” to “7-Strongly Agree”) :

• We had similar reactions during the discussion.

• I felt excited while the other members seemed to feel calm.

• I felt sad while the other members seemed to be happy.

• The connection between me and the other members was becoming stronger.

• I felt the other group members and I were completing the task together.

Results

Average psychological engagement, sense of community, and perceived entrain-

ment in the afternoon session are all slightly higher than those in the morning

session (see Figure 4.15). However, due to the small sample size, we did not

find statistical significance. Therefore, we would only use the survey results as

supplementary materials.
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Figure 4.15 Summary of the survey results after two workshop sessions including

psychological engagement (morning: mean = 3.9, sd = 0.79; afternoon: mean =

4.0, sd = 0.98), sense of community (morning: mean = 3.33, sd = 1.79; afternoon:

mean = 3.65, sd = 1.10), and perceived entrainment (morning: mean = 3.79, sd

= 0.73; afternoon: mean = 4.20, sd = 0.91).

Moreover, we also collected participants’ feedback about the visualization im-

plemented. Overall, the visualization could be interpreted as their own heartbeats

and one participant compared the visualization with the heart rate data moni-

tored in her other device (Fitbit). However, the ambiguity and the internet lag

sometimes would make it harder to catch social hints than see face expressions

directly.

4.4.4 Discussion and Interpretations

The results we presented focus on the comparison of HRV features and coordi-

nated patterns between workshop sessions with (afternoon) and without (morn-

ing) biofeedback. As a measurement to investigate interpersonal entrainment,

DTW was applied to every two participants within the group to calculate the dis-

tance between each pair’s HRV feature timeseries data. Each pair’s physiological

data distance will be considered as a data point to reflect entrainment in group

dynamics, which extends this concept from dyadic level to group level.

Physiological entrainment based on RMSSD feature shows significantly higher

when we provided biofeedback that visualizes participants’ heartbeats in real-time.
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Participants in the afternoon session also reported higher perceived entrainment

though it was di�cult to find statistical di↵erence due to the sample size. We

could assume participants in the afternoon session tend to have more similar

cognitive feelings since RMSSD has been proved to be an indicator for cognitive

load [94, 95]. Together with the trends presented in Figure 4.12, we could notice

students in the afternoon session tend to experience relatively higher cognitive load

than in the morning session. One of the reasons could be learners’ in the afternoon

session were not familiar with the mechanism of the visualization biofeedback and

need take more cognitive resources to interpret the meanings behind. However,

compared with the trends of pNN50, learners in the afternoon session also tend to

show more engagement in the controlled process and sustained attention [92,93],

especially during the group discussion activity. Similarly, the development of

pNN50 (see Figure 4.14) in DTW indicates more correlation occurs when the

group discussion started in the afternoon session with biofeedback. This finding

suggests the interference of biofeedback might be more e↵ective to keep group

members more engaged when participants actively talked and interacted with

each other compared with listening to the speech only.

Although, it might be hard to conclude the physiological entrainment di↵erence

was due to the introduction of biofeedback entirely. Because people’s physiological

states or mental states may vary during the day and the variables may not be as

well controlled in the real-life workshop study. However, our findings proved

the feasibility of the analysis methodology to quantify physiological entrainment

to understand group dynamics and the potential to implement biofeedback as

additional social cues when face-to-face communication is not available. Moreover,

we found the method of plotting the time course of DTW results could directly

illustrate the physiological entrainment development of group dynamics. This

could enlighten another perspective of feature choices in real-time analysis to be

applied in the real-time biofeedback.

4.5. Conclusion

This Chapter presented exploratory analysis (o✏ine and real-time) on physiolog-

ical data collected during in-person and online group activities.
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Section 4.2 describes the exploration of HRV and EDA features to quantify

group dynamics by inspecting the regressive trends from group members and cal-

culating the pair-wise distance between each two group members through DTW.

Research insights derived from the comparison between in-person and online so-

cial game experience. Results from o✏ine analysis and subjective feedback showed

more intense and diverse exciting and anxious timings existed when participants

played in-person. While relatively similar RMSSD reactions could indicate more

entrained cognitive activities during the in-person game.

Section 4.3 explores the idea of sharing physiological data to support online

learning where social cues are usually insu�cient. Subjective feedback from par-

ticipants suggested sharing physiological data could increase perceived connect-

edness and engagement in the group activity. Section 4.4 further investigates the

potential e↵ects of this novel interaction by quantifying physiological reactions in

the group with and without sharing physiological data. The results proved the

concept of sharing physiological data could trigger similar physiological reactions

and increase engagement yet might bring more cognitive load due to the unfamil-

iar information. Although the practical goal of this project is to support online

group interactions, we consider research findings regarding the analysis framework

could be generalized to other types of group interactions.

Firstly, we found several explainable HRV and EDA features to help researchers

understand group dynamics. RMSSD, as a feature to quantify the amount of

HRV, is more related to PSNS activation. Specifically, some related works in the

field of neuroscience have suggested the negative correlation between RMSSD and

cognitive load [94, 95]. EDA data is often used as a sensitive marker to assess

emotional arousal related to SNS activation [56–59]. To extract explainable EDA

features, the timings where drastic changes happened are the main focus. In this

Chapter, we especially detected the SCR peaks reflecting sudden changes in skin

conductance response that could be caused by increasing arousal.

We further explored the analysis methods to understand group dynamics from

individuals’ extracted features. Investigating trends along the development of

the group event is one of the analysis methods. For RMSSD, we calculated the

mean value and the variance to represent the collective experience that might be

activated by PSNS. For SCR peaks, we counted the number of group members
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who had experienced the SCR peaks every two minutes to represent the collective

arousal experience that might be activated by SNS. This exploration reminds the

importance of adopting di↵erent analysis methods considering the characteristics

of physiological data and features. From BVP data, continuous HRV features

could be extracted by sliding windows. The dynamic changes in HRV features

could reveal the physiological experience’s development. Therefore, calculating

the mean value among group members could help understand the collective expe-

rience. Di↵erent from BVP data, it is the timings when drastic changes happened

in EDA data that reveal the event-related arousal experience. Therefore, instead

of calculating the mean value among group members’ EDA data, counting how

many members have experienced similar drastic changes at certain timings could

help quantify the collective experience. Moreover, we also explored the feasibility

of DTW to compare the physiological entrainment within groups. The similar-

ity between every two individuals in the group could be calculated by DTW as

features representing pair-wise entrainment. The average value among all the

pair-wise entrainment could be adopted to reflect the collective entrainment in

the group.

Besides the explorations in o✏ine analysis, we also found the potential workflow

to implement real-time analysis in biofeedback systems. The workflow consists of

receiving data, analyzing data in python script, and generating feedback (see

Figure 4.8 as an example of the workflow). The real-time analysis could trigger

feedback based on either individual data or collective data (e.g. average value

among all the group members). Biofeedback through individual data could be

more explicit for participants to understand the agency and connection between

their data and feedback. However, it is also worth considering the privacy concerns

and the possible negative feeling such as being monitored. Overall, based on the

subjective feedback collected from participants, we found the real-time analysis we

implemented could make the physiological data more interpretable than the raw

data. Most of the participants reported the feedback could enhance the feeling

of being connected. Although there are limitations due to the small sample size,

the current findings suggest the potential of using physiological data to generate

meaningful and reactive biofeedback to augment group interactions.

Investigations described in this Chapter are mainly based on studies with more
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constrained settings and relatively small group sizes. The biofeedback embedded

with real-time analysis is also exploratory. The following Chapters present further

explorations on large-scale groups during in-the-wild practices and advanced real-

time analysis embedded in complicated biofeedback systems.
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Chapter 5

Linking Group Physiology to
In-the-wild Experience

5.1. Overview

The previous chapter presented explorations of analyzing physiological data to

understand group dynamics in relatively constrained real-life group settings. This

chapter further evaluate the analysis framework to in-the-wild live group events

where researchers’ facilitation was minimized. We aimed to probe feasible meth-

ods to quantify physiological reactions from large-scale groups when dataset were

collected from complex and uncontrolled conditions. The dataset described in this

chapter was recorded from an interdisciplinary project in collaboration with Moe

Sugawa and Session House1 – Boiling Mind Project2.

1 https://session-house.net/

2 http://boiling-mind.org/
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Figure 5.1 Overview of the project information in Chapter 5.

Boiling Mind is an embodied performance project combining modern dance

practices, wearable sensing, and audio visual design. Both performers and re-

searchers adopted physiological sensing as a way to explore the relationship be-

tween mind and body, invisible inner states and visible external cues [22]. For

this, we followed a methodology grounded in in-situ and in the wild studies [9,13]

to quantify and analyze live events. We focus on the audience in this work, intro-

ducing minimally intrusive sensing technology. We are particularly interested in

the physiological changes of all audience members: are they entrained or follow-

ing any rhythm? When does it happen? As an initial use-case for the work, we

created a trial 15-minute dance performance [112]. Building on this, we developed

a full 70-minute dance performance that was performed three times [40]. Audi-

ence physiological data (HR and EDA) were integrated into staging elements such

projected visualizations and audio e↵ects (Table 5.1 describes the key feedback

implemented in the performance). This part of concept design and real-time im-

plementation were not included in this thesis yet could be found in our previous
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published paper [40].

We further analyzed audience physiological data collected in the three perfor-

mances to investigate and understand live audience experience. Choreography

encompasses compositional design and syntactical abstractions of movement to

convey an underlying meaning or idea [113]. Several works use choreographic

events to predict emotional arousal measured by continuous self-report [78]. Three

performances where di↵erent audience groups attended followed the same chore-

ography, which inspires the analysis to testify whether similar reactions would

exist. By comparing physiological data to the choreographic structure, our analy-

sis revealed the link between audience collective physiology and the choreography,

which contributed to a methodology to analyze and interpret in-the-wild group

dynamics.

Major parts of this chapter are based on the following research papers we pub-

lished:

• Jiawen Han, George Chernyshov, Moe Sugawa, Dingding Zheng, Danny

Hynds, Taichi Furukawa, Marcelo Padovani, Karola Marky, Kouta Minamizawa,

Jamie A Ward, Kai Kunze. ”Linking Audience Physiology to Choreogra-

phy.” ACM Transactions on Computer-Human Interaction (2021).

• Sugawa, Moe, Taichi Furukawa, George Chernyshov, Danny Hynds, Jiawen

Han, Marcelo Padovani, Dingding Zheng, Karola Marky, Kai Kunze, and

Kouta Minamizawa. ”Boiling Mind: Amplifying the Audience-Performer

Connection through Sonification and Visualization of Heart and Electroder-

mal Activities.” In Proceedings of the Fifteenth International Conference on

Tangible, Embedded, and Embodied Interaction, pp. 1-10. 2021.

• Zhuoqi Fu, Jiawen Han, Dingding Zheng, Moe Sugawa, Taichi Furukawa,

Chernyshov George, Hynds Danny et al. ”Boiling Mind-A Dataset of Phys-

iological Signals during an Exploratory Dance Performance.” In Augmented

Humans Conference 2021, pp. 301-303. 2021.
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Table 5.1 Key feedback designs between the audience physiological signal and the

staging elements. More details of the implementation are included in our previous

paper [40]

Section Visual Element Sound Element LF/HF ratio EDA

Suits
one graph per

audience member
– value shows in the graph value shows in the graph

Cards
one orb visual per

audience member
– control the orb’s color

EDA di↵erence controls

speed of orb movement

Puppet
smoky fluid

simulation
soundscape

average value controls

the frequency and amount

of smoke cloud’s

appearance

average value controls

the amount of current

smoke cloud and

sub-frequencies into the

soundscape

Romeo
one graph for

Romeo
–

value shows in

the graph and

controls graph’s color

The value shows in the

graph

Growth
one wave for

all members
drum sounds

average value controls

the wave’s color and

dictates the pitch variance

in the drum sounds

average EDA di↵erence

controls the height of

the wave and triggers

the stuttering
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5.2. Choreography

Figure 5.2 Six choreographic sections in Boiling Mind performances: (1) Section

1: Suits, (2) Section 2: Cards (Solo), (3) Section 3: Puppet, (4) Section 4: Romeo,

(5) Section 5: Growth, and (6) Section 6: Curtain.

Each performance involved seven female dancers and lasted for about one hour.

For analysis, we divided the recordings into six sections, each containing one or

more choreographic events. These sections are shown in Fig. 5.2 and are described

as follows:

Section 1: Suits. The performance starts with dancers playing the role of work-

ing women in suits and high heels trying to break out of societal pressures. At the

end of this section, all dancers take o↵ their suits and their heels. This intense

movement was designed to raise the excitement level of the audience, mirroring

the rhythmic and dynamic crescendo of Ravel’s Boléro.

Section 2: Cards. At approximately 11 minutes into the show, the dancers en-

gage audience members in short conversations while handing out business cards.

After the dancers return to the stage, they start hitting the floor in rhythm using

their heels in hand. At 17 minutes, the dynamics and gestures of Boléro reach a

final peak and one of the dancers rushes to the front of the stage to perform an
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aggressive solo (see Figure 5.2 (2)).

Section 3: Puppet. At 18 minutes, the music turns to a more gentle and

dark feel. At the same time, the previous solo dancer lays down in the center of

the stage. One of the dancers brings a chair to the stage and the others gather

around. All dancers start moving slowly and quietly along with the music. The

chair represents everyone’s position in the world. As the performance develops,

each performer dances with a puppet that represents their alter ego. At the 24th

minute, one dancer hands the puppet to an audience member. The choreography

and music work together to create a mysterious and sombre tone.

Section 4: Romeo. At 37 minutes, one of the dancers invites a man from the

audience to play the role of Romeo. He is led to the stage and sat on the chair

which was placed in the center of the stage. He is then asked to hug a dancer

and dance together with the ensemble. The dancers start to improvise and reach

out to Romeo to show they are happy to see him there. If he smiles, the dancers

interact with him in an entertaining and playful way. If Romeo does not respond

to the dancers accordingly, the dancers ask the rest of the audience to encourage

him with applause. Some of the interactions between the Romeo and the dancers

led to laughter among the audience.

Section 5: Growth. At 40 minutes, the second half of the performance develops

into a deeper story. The dancers indicate the conflicting and complex feelings of

instability, confusion, and joy that we all experience as we grow from childhood

to adulthood. One of the dancers follows another one like a playful animal com-

panion (e.g., a dog) willingly walking after its owner, clinging to her legs. This

scene was designed to evoke the audience’s sense of security and trust in being

loved by others. The music for this part is quite sedated and relaxed, consisting

of sparse synthesized textures and abstract rhythmic layers. As the final coda

approaches, the dancers dress up as working women again but with di↵erent col-

orful designs embroidered into the back of their suits. This was intended to show

a more positive meaning while referencing the beginning working women scene.

The composed music reworked themes from Boléro into a more upbeat electronic
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treatment.

Section 6: Curtain. After 70 minutes there is the curtain call, when all of the

dancers and crew members line up in front of the stage and bow to the audience.

5.3. O✏ine Analysis

5.3.1 Data Collection and Dataset Description

Self-built wrist-worn devices measuring EDA from two electrodes on the fingers,

and the HR using an optical BVP sensor placed on the fingertip. The device uses

an ESP32 module with Bluetooth and WiFi connectivity. It samples the BVP

at 50 Hz and EDA at 4.545 Hz. In addition to the EDA and BVP, we recorded

movement data using a 9-axis Bosch bmx160 absolute orientation sensor. The

accelerometer and gyroscope were sampled at 50Hz, magnetometer data was not

recorded. For the feedback design, only EDA and BVP data were used as input

to influence visual and sound elements on the stage (see Table. 5.1

The dataset consists of audience multi-modal signals (EDA,BVP, wrist accel-

eration and angular velocity) over three performances. We have 98 recordings in

total(male = 49; female = 49). In 1st performance, we have 34 recordings (male

=17; female =17). In 2nd performance, we have 31 recordings (male =13; female

=18). In 3rd performance, we have 33 recordings (male =19; female =14). By

ruling out incomplete or noisy data records, we had 80 (male= 38; female=42)

sets of data from the recruited participants for the HRV analysis of this project.

The breakdown for each performance was: 1st, 27 (male= 12; female=15), 2nd,

27 (male=11; female=16), and the 3rd, 26 (male= 15; female=11).

5.3.2 Analysis Process

BVP

In a pre-processing step, we used acceleration data to help us identify and remove

movement artifacts. To do this, we ran a peak detection algorithm on the eu-

clidean norm of the accelerometer axes. If any peaks greater than 1.5 standard
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deviation were found, then we excluded the BVP data for 1s around each peak.

A 2nd order Butterworth low pass filter (from python package, scipy.signal) was

then used to cut high frequency noise above 3.5 Hz [106,107].

HRV features were calculated every four minutes with a two-minute sliding win-

dow. For feature selection, we choose one time-domain feature and one frequency-

domain feature. The HRV features were divided by mean RR intervals of each

participant for normalization to remove baseline di↵erences between individu-

als [114–116]. For each minute, HRV features were averaged for each participant.

For each minute, pNN50 and LF/HF ratio were averaged for each participant.

The data was labelled in accordance with six choreographed sections for analy-

sis. We further mapped the timecourse of the features along the choreography to

compare between the audience physiology and choreography.

EDA

Each participant’s raw EDA data was passed through a 2nd order Butterworth

low-pass filter from the scipy.signal package (0.01 Hz) [107]. We extracted EDA

features by calculating the changes in EDA response which is the first derivative

of the EDA data. We refer to this as EDA di↵erence. Because the onset of

strong emotions is typically characterised by noticeably increased sweating on the

skin, we looked specifically into the timings when skin conductance drastically

increased. We refer to these points as EDA extrema. We detected peaks and

valleys of skin conductance with prominence of 1.25% of the measurement range

(0 to 4095 due to 12-bit ADC) and inter-peak distance of at least 30 seconds. The

EDA di↵erence feature was normalized by MinMax scaler. Both of the HRV and

EDA features was labelled in accordance with the six choreographed sections for

analysis.

We counted the number of audience members who had experienced EDA ex-

trema every minute to represent audience collective arousal feedback, which was

addressed as EDA extrema count for describing our results and findings.
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5.3.3 Results

HRV

We initially extracted the four di↵erent HRV features as detailed above: LF/HF,

pNN50, SDNN, and RMSSD. The first of these, LF/HF was used in our real-

time feedback system. However, we ultimately use PNN50 as a more robust

measure for our main analysis. Figure 5.3 shows an example of the four features

(from performance 3). Whereas pNN50, SDNN, and RMSSD all reveal a similar

timecourse, LF/HF ratio presents a very di↵erent pattern (see also Figure 5.3).

Therefore, we choose only one of the three similar HRV features, pNN50, for

further analysis for two reasons: Firstly pNN50 is easier to interpret because

it represents PSNS only, which is associated with rest, and is consequently less

influenced by SNS (associated with excitement) [117–119]. Secondly, pNN50 is

simple to calculate, which makes it useful as an indicator in designing a future

real-time system. Figure 5.3 presents one example of the exploration process to

select HRV features in the o✏ine analysis.

Figure 5.3 Timecourse of the four HRV features from the third performance.

Significant Pearson’s correlations exist between PNN50 and SDNN (r(35) = 0.99,

*p <.001), and between PNN50 and RMSSD (r(35) = 0.99, *p <.001) - with the

later correlation also reported in other works [52, 120].
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Figure 5.4 Trends of pNN50 and LF/HF ratio with noticeable turning points.

The timeseries shows noticeably similar patterns of HRV feature values across the

three performances. i highlights the decline at the end of the section “Suits”.

ii marks peaks in the section “Cards”. iii highlights the peak in the section

“Puppet”. Finally, iv marks the start of “Romeo”.
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Figure 5.5 EDA di↵erence with EDA extrema counts (bar chart). EDA extrema

peaks (highlighted in yellow) are selected as being over 1.5 standard deviation

from the total EDA extrema counts, compared to EDA extrema within two or

more minutes. The timeseries shows noticeably similar patterns of EDA feature

values (EDA di↵erence declined with outstanding EDA extrema peaks) at certain

scenes across the three performances. The scenes are marked as a (the start of

the section “Cards”), Around b (the end of “Cards”), c (the start of “Romeo”),

and d (the end of ”Romeo”).

We inspected the timeseries of the average LF/HF ratio and PNN50 over all

audience members for each performance (see Figure 5.4). The timeseries shows

noticeably similar patterns of HRV feature values across the three performances.

For example, LF/HF ratios decline at the end of the section ”Suits” and start

rising at the start of the section ”Cards”Then it first drops, and peaks again at

around 30 minutes. The PNN50 is low at the start, but rises steadily throughout

the performance. However, there is a sharper and drastic increase between the

end of the section ”Puppet” and the start of ”Romeo”.

By mapping the trend and variance of three audience group’s physiological data
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along the choreography, we found the collective physiological data could reflect the

overall unfolding of the choreography and highlight the notable moments during

the performance (see Figure 5.4). We inspected the timeseries of the average

LF/HF ratio and pNN50 over all audience members for each performance (see

Figure 5.4). The timeseries shows noticeably similar patterns of HRV feature

values across the three performances. For example, LF/HF ratios decline at the

end of the section “Suits” and start rising at the start of the section ”Cards”.

Then it first drops and peaks again at around 30 minutes. The pNN50 is low

at the start but rises steadily throughout the performance. However, there is a

sharper and drastic increase between the end of the section “Puppet” and the

start of “Romeo”. An increase of the pNN50, being closely linked to PSNS, is

associated with relaxation [47, 121]. This trend could indicate that the audience

was easing into the performance as it progressed.

71



5. Linking Group Physiology to In-the-wild Experience 5.3. O✏ine Analysis

HRV Scene Aggregate

Table 5.2 Descriptive statistics of HRV and EDA features over six sections in

Boiling Mind performance.

LF/HF

Mean(SD)

PNN50

Mean(SD)

EDA di↵erence

Mean(SD)

EDA extrema counts

Mean(SD)

Performance 1

Suits .0017 (.0009) .025 (.018) .023 (.096) 4.18 (4.71)

Cards .0019 (.0014) .026 (.021) -.049 (.109) 5.75 (5.23)

Puppet .0018 (.0013) .027 (.017) .026 (.051) 4.29 (2.31)

Romeo .0015 (.0009) .035 (.020) -.231 (.203) 8.20 (5.59)

Growth .0017 (.0011) .037 (.017) .007 (.071) 4.54 (2.06)

Curtain .0019 (.0024) .061 (.023) -.344 (.462) 6.75 (6.24)

Performance 2

Suits .0016 (.0007) .022 (.014) -.020 (.106) 4.00 (3.82)

Cards .0016 (.0008)) .020 (.011) -.058 (.098) 4.13 (3.87)

Puppet .0018 (.0012) .021 (.011) .016 (.065) 3.82 (2.01)

Romeo .0015 (.0007) .031 (.017) -.200 (.234) 5.20 (4.09)

Growth .0014 (.0007) .038 (.015) .037 (.084) 4.85 (2.24)

Curtain .0014 (.0011) .049 (.020) -.193 (.300) 4.25 (3.30)

Performance 3

Suits .0021 (.0012) .015 (.013) .060 (.100) 1.64 (1.75)

Cards .0019 (.0012) .019 (.015) -.012 (.090) 2.88 (1.36)

Puppet .00183 (.0011) .022 (.017) .016 (.039) 2.47 (1.46)

Romeo .0015 (.0007) .035 (.026) -.130 (.207) 3.20 (3.35)

Growth .0015 (.0007) .038 (.019) -.002 (.047) 2.96 (2.58)

Curtain .0012 (.0005) .044 (.025) -.246 (.306) 2.75 (3.10)

As a further analysis, we aggregated the timeseries to produce statistics for each

of the six main sections. A repeated measures ANOVA with a Greenhouse-Gessier

correction was used to investigate the correlation and variance. For the post-hoc
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Figure 5.6 Distribution of LF/HF ratio in six sections of three performances.

The violin plots illustrate probability density, while individual observations are

the dots within the violin graphs. The horizontal blue line represents the average

LF/HF for each performance. The only significant pairwise di↵erence is between

Suits and Curtain in performance 3 (*p<.05).

.

Figure 5.7 Distribution of PNN50 in six sections of three performances. The vi-

olin plots illustrate probability density, while individual observations are the dots

within the violin graphs. The horizontal blue line represents the average PNN50

for each performance.The vertical lines drawn between two graphs indicate the sig-

nificant levels of pairwise comparison results (*p<.05,**p<.005,***p<.001).The

pairwise comparison shows distinguishable separation between the first half (be-

fore Romeo) and the second half (from the end of Romeo).

.
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Figure 5.8 Distribution of EDA di↵erence in six sections of three perfor-

mances. The violin plots illustrate probability density, while individual obser-

vations are the dots within the violin graphs. The horizontal blue line represents

the average EDA di↵erence for each performance.The vertical lines drawn be-

tween two graphs indicate the significant levels of pairwise comparison results

(*p<.05,**p<.005,***p<.001). Romeo and Curtain show significant di↵erences

to the other sections.

tests, we applied Bonferroni correction to prevent the inflation of type-I errors.

There were no statistically significant di↵erences for LF/HF across the six sec-

tions over performance 1 (F(1.73, 44.93) = 0.351, p = .675) and performance 2

(F(3.15, 81.85) = 1.16, p =.33). Significant di↵erences were present in perfor-

mance 3 (F(3.37, 84.34) = 4.84, p = .003). In the post-hoc analysis we found that

significant di↵erences only existed between ”Suits” (M = .0021, SD = .0012) and

”Curtain” (M = .0012, SD = .0005) with p = .027 each. Since these two sections

marked the beginning and end of only one performance, this e↵ect is likely an

anomaly. These results also depicted by Fig. 5.6.

When analysing the mean PNN50 value, we found statistically significant di↵er-

ences between the six sections in performance 1 (F(2.81, 73.04) = 30.39, p ¡ .001),

performance 2 (F(3.10,80.70) = 34.26, p ¡ .001), and performance 3 (F(2.56,64.08)

= 18.40, p ¡ .001). (Full descriptive statistics are provided in Appendix ??, Fig.

5.7 depicts the distributions and pairwise comparisons.)
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EDA

We inspect the EDA response using our two features: average EDA di↵erence

and EDA extrema counts (Fig. 5.5). The timeseries reveals large changes at the

beginning of each performance when the lights go o↵ and the music starts, as well

as at the end when the performers take a bow. Throughout the performances

there are also common changes at around 13 minutes, marked in Fig. 5.5 as a ,

19 minutes b , 37 minutes c , and 41 minutes d . (Note that EDA extrema is

shown in bar chart form to highlight that, unlike the other features, it represents

a discrete count rather than an average.)

EDA Scene Aggregate

We calculated an aggregate pairwise comparison of EDA di↵erence distributions

between the 6 sections for each of the 3 performances (shown in Fig. 5.8). After

Bonferroni correction, we found that both Romeo and Curtain are statistically

di↵erent to the other sections. According to a repeated measures of ANOVA with

a Greenhouse-Gessier correction, mean EDA di↵erence values di↵ered in a statis-

tically significant way between the sections in performance 1 (F(1.61, 41.93) =

13.41, p < .001), performance 2 (F(2.17,49.97) = 8.15, p = .001), and performance

3 (F(2.16,49.56) = 11.34, p < .001). (Full descriptive statistics are provided in

Table5.2.)

5.4. Subjective Feedback – Audience

5.4.1 Methodology

We used online questionnaires after each performance to gather audience feedback.

These were accessible using a QR code on flyers handed out to each attendee.

Responses were encouraged but not mandatory.

The questionnaire assessed demographics, cultural background (how often do

you visit theater/dance performances), and performance specifics (enjoyment of

performance). Free-text answers were given to the specific question of “how much

did you feel like participating in the performance”, as well as general opinion on

the piece.
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The full list of questions in the questionnaire delivered to the audience were as

follows:

• How much did you enjoy this performance overall? (Likert scale: “1-Not at

all” to “9-Very much”)

• How much did you enjoy the visualization/ music/lighting/dance? (Likert

scale: “1-Not at all” to “9-Very much”)

• Compared to other performances, how much did you feel participating in

the performance? (Likert scale: “1-Nothing” to “9-Strongly”) and Why did

you have this feeling? (free-text answer)

• Which staging elements excited you most? Why did you have this feeling?

(single choice: visualization, music, lighting, and dance)

• Please leave your opinions freely on this performance. (free-text answer)

We received questionnaires from 35 participants in total (self-identified as male=

16; female=18; prefer not to say=1). Since the questionnaires were not completed

by all participants, we consider these answers as supplementary information.

5.4.2 Results: Audience Qualitative Feedback

Among the 35 respondents, 30 reported to experience of watching dance (every

week: N=3; every month: N=8; every year: N=19). For the open-ended questions,

we categorized the feedback and reported as follows:

Participation in the Performance

A lot of feedback described strong feelings of participation compared to previous

experiences. The simple knowledge that the audience was sensed might have

played a part in this:

“I was not sure if my heart rate really a↵ected the visuals, but I was

excited when thinking my heart rate was being measured. I felt like I

was on stage at that time.”
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“The display of physiological data and the link between color and ex-

citement were impressive and I felt I participated in it.”

Some participants reported a feeling of connection between audience and dancers:

“Lighting and visuals changed in response to the audience’s sensors,

and I enjoyed the two-way interactions in this performance”.

However, others found the system confusing:

“The music and visuals changed as our excitement changed. However,

the lighting was a little di�cult to notice.”

And some even felt a disconnect between how they felt and what they saw:

“Sometimes the visuals from the sensor data matched my excitement

while sometimes they did not match.”

Memorable Moments

Generally, participants considered the visualization, music, and dance as intrigu-

ing and meditative:

“Whenever I watch their dance, something refreshing my memory hap-

pens. This time I had this feeling as well.”

Several audience members shared memorable moments:

“I felt that music, sound, rhythm, and breaks tended to be the switches

of excitement. During Bolero’s gradation and explosion, rhythm and

dance were connected closely.”

“Dancers eye contacts when they using high heels to hit the floor were

cool.”

“I may be more excited in quiet and dark moments than when I’m

feeling something intense will happen. I thought dancing the chair and

the scene of the Japanese song were wonderful.”
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Sense of Unity

When asked about their free opinions, most of participants mentioned they expe-

rienced a strong sense of unity between audience and dancer during the perfor-

mance:

“The abstract visual expression was very beautiful in connection with

the dance. I felt that my senses were integrated with the dance through

this indirect media.”

And among audience members:

“I can feel not only my own sense of participation, but also other

audience’s reaction reflected. I was able to realize the sense of unity

between the audience, which is usually hard to feel.”

However, one audience member doubted the need to enhance the sense of unity

between dancers and audience suggesting that audience reactions may vary a lot

due to di↵erent compositions of audience and this could make quality control

harder:

“In dance performances, ”today’s audience’s feeling” and ”sense of

unity” seem to be less important to me. If the music and lighting

change depending on the audience of the day, the impression of the

work will change accordingly.”

5.5. Subjective Feedback – Dance Team

To understand dancers’ personal experience during the performance and attitudes

towards the collaboration process, we conducted a focus group with five dancers

which draws on the approach used by Huskey et al. [122].

5.5.1 Methodology

The semi-structured focus group was conducted via video conferencing three

months after the performance when we had identified initial research insights.
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One of the dancers was the facilitator. We encouraged the dancers to talk freely

using the following pre-prepared questions as a guide:

1. Share your experience and feeling when you saw the visualization, lighting,

and the change of music triggered by the audience reactions. (Did you notice

anything interesting, shocking, or disappointing?)

2. Was this experience di↵erent from previous performances?

3. What do you think about this collaboration? Share some experience of your

memory about the collaboration.

All participants discussed in Japanese and videos were recorded for later tran-

scription. We translated the transcripts and categorized the qualitative feedback.

5.5.2 Results: Dance Team Feedback

In general, dancers followed the choreography as they rehearsed without influence

from the audience-derived visualizations. Two reasons were given for this. First,

they had to focus on the performance itself with little time to care about changes

in visualizations:

“In the scene of Bolero, I need imagine the train’s passing by during

my dance and was not able to pay attention to visualizations until the

scene changed”, (D1).

“When I was waiting for my turn, audience heart rate displayed was

very exciting. After I started dancing, though it was fun to see that,

I could not spare my attention to the changes. I think we need more

times to get used to it”, (D3).

The second is that they were sometimes confused by the meaning of the visu-

alizations:

“I felt it was tough to balance between something researchers want to

show and something dancers want to show. It was di�cult for me to

fully understand the visuals’ meanings and the formal performance day

came”, (D1).
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”I did not understand the meaning when the lighting started to flicker.

I did not see it as audience heart rates and it did not change that

obviously”,. (The audience BPM data was mapped to the intensity of

the lighting changes.) (D2)

Three dancers said that there were moments when they could sense audience

reactions and one dancer were even influenced to adjust their movements:

“I was aware of the visualizations when it came to the Romeo scene

while the data used in generating the feedback loop was from the chosen

audience”,. (D1)

“It was very easy to see when audience felt more excited, but it was

less noticeable for the calmer scene and I felt that audience’s feelings

did not change from the visualizations”, (D2).

“When I danced with a puppet, I noticed the coloring of the visualiza-

tions were blue and I tried to dance intenser and faster, even hit the

floor more painfully to get audience more sympathized and aroused”,

(D4).

The dancers also thought there could be more space for improvisation where

they could dance according to audience reactions but it would be more di�cult in

terms of the choreography (D1, D2, D4). To solve this, D2 mentioned they could

”predetermine some triggers and reactions” accordingly during certain moments

instead of improvising throughout the whole performance.
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5.6. Interpretation and Discussion

Figure 5.9 The change of HRV features (Left Y scale) and EDA features (Right

Y scale). EDA extrema peaks (highlighted in dark grey) are selected as being

over 1.5 standard deviation from the total EDA extrema counts,compared to EDA

extrema within two or more minutes.Five key moments are marked as 1 (hand out

business cards), 2 (reach bolero peak), 3 (move towards audience with a puppet),

4 (invite audience member as Romeo),and 5 (the Romeo is back to the audience).

5.6.1 Connection Physiological Data to the Choreography

The Performance Timeline

According to the choreographer, the first half of each performance (before the

section “Romeo”) was designed to directly engage the audience and to elicit emo-

tional reactions that might be more easily captured by the system. This included

direct interactive elements (e.g., “Cards”) as well as tense musical rhythms (e.g.,

“Puppet”). In the section ”Romeo”, a direct and close interaction between one

selected audience member was designed to elicit extreme involvement and empa-
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Table 5.3 Physiological changes at five notable moments marked in the Figure 5.9.

Moment Choreography elements

Changes in HRV Changes in EDA

LF/HF ratio PNN50 EDA Di↵erence EDA extrema

1

Direct interaction,

dancers to the audience,

short time (5 s)

– – Abrupt drop
Outstanding

peak

2

Music builds up,

aggressive solo,

strong rhythm by high heels

Noticeable spike – Abrupt drop
Outstanding

peak

3

Dancers moving towards

the audience,

long time (20 s)

Noticeable spike – – –

4

Direct interaction,

one audience member

to the stage

– High Level Abrupt drop
Outstanding

peak

5 The audience member back – High Level –
Outstanding

peak

thy. The second half (from the start the section “Growth”) was designed to be

less interactive and more reflective. In contrast to the previous half, “Growth”

did not involve any interaction between dancers and the audience to help the au-

dience digest the piece and to reflect on their own experiences. Hence, it provided

space to focus on the inherent message of the performance. Several members of

the audience reported that they experienced this as a process of ”meditation”.

Accordingly, the pNN50 shows a general rising trend across all performances

(see also Figure 5.9) and a significant increase comparing with first half sections

(see Figure 5.7). An increasing of the pNN50, being closely linked to PSNS, is

associated with relaxation [47, 121]. This trend could indicate that the audience

were easing into the performance as it progressed. The aggregated pNN50 value

also presents statistically significant di↵erences between the six sections in per-

formance 1 (F(2.81, 73.04) = 30.39, p < .001), performance 2 (F(3.10,80.70) =

34.26, p < .001), and performance 3 (F(2.56,64.08) = 18.40, p < .001). (Full de-

scriptive statistics are provided in Table 5.2, Figure 5.7 depicts the distributions

and pairwise comparisons.)
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Notable Moments from the Data

From Figure 5.9 it is hard to identify a clear long-duration trend of LF/HF over

the three performances. The lack of any significant inter-scene di↵erence supports

this. However spikes of LF/HF ratios appear when audiences were subjected to

relatively long scenes with an intensive crescendo (e.g. as the Bolero dance peaks

2 , or when the Puppet is moved towards the audience 3 ). As an indicator of

the balance between SNS and PSNS activity [97], LF/HF ratio could implicitly

imply stress [46], anxiety [88], or excitement [98, 99, 123]. Even though the in-

terpretation of the LF/HF ratio is controversial [96], it is still possible to explain

the changes with cautious consideration of the recording contexts [97]. Since the

trend of LF/HF ratio does not synchronize with that of pNN50 (an established

measurement of PSNS), we are inclined to believe that these changes of LF/HF

ratio were mostly due to increased arousal under the influence of SNS activity.

This is supported by previous works, on the physiological responses to music, that

showed significant LF/HF increases during exciting, fast-tempo music [98, 99].

Across all performances there is a clear steepening in pNN50 starting from the

end of Puppet and Romeo. This is also reflected, in part, in the pairwise scene

aggregate results of Figure 5.7, where this change is significant for performances

2 and 3. Since an increasing pNN50 can also reflect engagement in the controlled

process, and sustained attention [92, 93], we connect this rising of pNN50 to the

choreography design to trigger a sense of security and reflection.

When interactions between audience and dancers were direct and intense, both

abrupt drops of EDA di↵erence and outstanding peaks of EDA extrema counts

can be observed in Figure 5.9 ( 1 , 2 , 4 ). As an index of emotional activation,

EDA could reflect arousal regardless of valence types [56, 57, 124, 125]. Previous

audience studies have connected EDA to engagement [5] and shock-e↵ects during

the performance [7]. In our study, we would assume observed EDA changes re-

flect audience surprise 1 , and excitement 2 , and tension 4 modulated by the

choreography. Among those scenes, EDA di↵erence presents most drastic declines

around the Romeo scene 4 . As a collective measurement for the audience group,

EDA extrema counts are also highest around the Romeo scene. This suggests that

inviting someone on stage (to play Romeo) may trigger sudden tension among the

remaining audience (i.e. in sympathy, or in anticipation that they might be invited
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next).

5.6.2 Interaction with the Audience’s Physiological Feed-

back

In the BoilingMind performance, the interaction design between the audience and

the spatial places is inspired by somaesthetics [26, 126]. The way audience mem-

bers interact with the dancers and staging elements was limited and implicit in-

stead of actively controlling or replying to the system. On one hand, both dancers

and the audience mentioned the feelings of being sensed and connected subtly led

them to a sense of unity and connection. On the other hand, the ambiguous and

introspective atmosphere may be the reason for the unclear interpretation of the

feedback. The dancers reported focusing more on their movements than on the

changing audience feedback. One reason could be the lack of the perceived agency

within the interaction because the e↵ects were triggered by the audience’s phys-

iology instead of the dancers’ own responses as in previous works [29, 126, 127].

Another reason could be due to their lack of experience with the novel technology.

Despite this, there were some scenes where the dancers responded strongly to the

audience feedback, such as when they moved faster in order to elicit a change in

the coloring.

Drawing on this, it would be useful to explore a tighter integration between this

technology and dance by incorporating the practice of audience feedback earlier

in the rehearsal process. This would familiarise the dancers with the system

and allow them to explore more nuanced and interesting responses to unexpected

feedback. The choreographer and the artistic director suggested some focal points

for future improvement. One focus is to investigate di↵erent forms of aesthetic

interaction that might generate a clearer feedback loop between the audience’s

physiological reaction and the improvisations. Another focus is to improve the

audiences’ feeling of comfort during the performance - enhancing confidence and

trust in the performance environment, both artistically and with the technology.

Creating a suitable environment benefits the audience experience, their enjoyment

of the performance, as well as enhances the potential to obtain better quality data

for research.
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5.6.3 Lessons Learned

The work presented here is primarily practice-led, where research methods, con-

texts and outputs involve a significant focus on creative practice [27, 128, 129].

Based on our investigation of the audience’s physiological data and the co-design

process, we summarize the lessons learned for both HCI researchers and perfor-

mance artists.

For HCI practitioners interested in performance and audience interaction, our

approach explores an e↵ective way to collect, analyze, and interpret audience ex-

perience during live performance. Live dance performance is a useful in-the-wild

scenario to explore interaction paradigms that move away from the individual and

towards interactions in larger-scale groups. Although academic research is usu-

ally conducted as goal-oriented while artistic practice is more process-driven [129],

both teams converged around the common goal to enhance the invisible link be-

tween dancers and audience through performance.This co-design process led to a

series of novel performances and large-scale physiological data collections from the

audience. Our exploration of the dataset reveals a link between the choreography

and the audience’s physiology. PNN50, being closely related to PSNS activation,

shows a general rising trend and a significant increase from the second half sec-

tions. We found PNN50 could be a reliable and robust indicator of the audience’s

tension and relaxation during the performance. Moreover, LF/HF ratio, EDA dif-

ference, and EDA extrema could reflect the audience physiological reaction (e.g.

excitement, surprise, anxiety) elicited by choreographic elements such as strong

rhythms and direct audience interaction. Our findings suggest the potential for

a more holistic view on understanding and quantifying audience experience by

cross-mapping choreography and physiology.

For performance artists, our research opens a viable method to incorporate au-

dience physiological data within a live performance. Based on our post-analysis

of the audience physiological data and the feedback from the dancers, we provide

suggestions about choosing HRV and EDA features for live feedback. EDA dif-

ference is well-suited to gauge audience reactions in real time since it is sensitive

to short and sudden changes in arousal like shock e↵ects. HRV features may be

used to reflect the audience’s moment-to-moment experience or long term growth

of emotional arousal. PNN50 in particular is a robust measure for visualizing a
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sustained change in engagement, or a shift from tension to relaxation.

The choreographer and the artistic director suggested some focal points for

future improvement. One focus is to investigate di↵erent forms of aesthetic inter-

action that might generate a clearer feedback loop between the audience’s physio-

logical reaction and the improvisations. Another focus is to improve the audiences’

feeling of comfort during the performance - enhancing confidence and trust in the

performance environment, both artistically and with the technology. Creating

a suitable environment benefits the audience experience, their enjoyment of the

performance, as well as enhances the potential to obtain better quality data for

research.

5.7. Conclusion

This chapter investigates how to link physiological data collected from large-scale

group (98 audience members) during in-the-wild conditions to group experience.

The exploration of the dataset and collected qualitative feedback enabled us to

discover how does the audience physiology became entrained under the e↵ect of

choreographic design (The dataset together with the sample code for analysis

is available for researchers under this link: https://osf.io/sypz4/). Therefore,

mapping collective physiology to the group event time course (e.g. the overall

story theme and interactive elements) could help researchers and practitioners

with di↵erent background to gain a multi-modal and holistic view of live group

experience.

Based on our o✏ine analysis results, we found out characteristics of certain HRV

(pNN50 and LF/HF ratio) and EDA features (EDA di↵erence and EDA extrema)

which could imply for feature choices in real-time analysis. We further discussed

the uses of selected features for understanding group dynamics and designing real-

time biofeedback in lessons learned. Through the reproducible approach described

in this chapter, we are progressing towards understanding and reflecting group

dynamics. The following chapter presents our further explorations of investigating

and influencing the invisible connection between group members.
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Chapter 6

Influence Physiological
Experience in Group Dynamics

6.1. Overview

The previous chapter presented our approaches of analyzing large-scale physio-

logical data to understand group dynamics during in-the-wild experience. This

chapter extends the exploration by investigating the methodologies to detect and

share specific physiological experience during real-life group events. The dataset

used for developing real-time detection algorithm was collected in lab environ-

ment. Dataset for o✏ine analysis to investigate group dynamics was collected

from in-the-wild concert where real-time detection algorithm was embedded in

the biofeedback system. Both of the analysis were parts of an interdisciplinary

project in collaboration with Yan He – Frisson Waves Project1.

1 https://cybernetic-being.org/works/frisson-waves/
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Figure 6.1 Overview of the project information in Chapter 6

Frisson Waves is a project to detect, trigger, and share particular sensational

feelings (frisson) in a wave-like pattern over audience during music performances.

Frisson is a psycho-physiological phenomenon commonly described as having goose-

bumps, or feeling shivers down one’s spine, that can be triggered from external

stimuli such as music or intense emotions [130,131]. Frisson usually happens when

music deeply resonates with people and those who experience frisson tend to feel

higher degrees of pleasure than those who do not experience frisson [132]. How-

ever, there is an obvious individual di↵erence regarding the frisson experience.

Some people may frequently experience frisson while some people may never have

this feeling. Therefore, we assume sharing and triggering frisson sensations with

biofeedback may increase the aesthetic experience, especially for those who never

experience frisson naturally. Figure 6.2 shows the biofeedback system we devel-

oped and implemented in real-life concerts.
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Figure 6.2 Thermo-haptic neckband and wristband used in the biofeedback system

implemented in the piano concerts.

The system was developed iteratively over the course of four studies: an in

the wild study piloting the design requirements for frisson feedback during a live

performance, a lab study validating a method for automatic frisson detection, a

lab study evaluating the frisson inducing device, and a final in-the-wild study

evaluating the complete system during a live performance. This Chapter firstly

describes the process and results of developing real-time frisson detection algo-

rithm for biofeedback actuation. Most related works explain frisson as a type

of physiologically contagious emotional arousal which could be indicated through

EDA and HR/HRV related features under the influence of ANS [133–137], which

provided neuroscience basis for building a model detecting frisson events through

physiological data especially EDA related features. Section 6.2 describes the lab

study where we collected BVP and EDA data with frisson events labelled and the

process of building and evaluating the frisson detection model.
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Figure 6.3 Illustration about the seats’ plan for Sharing and Non-sharing group.

At the final concerts, the audience were divided into frisson Sharing group and

Non-Sharing group (see Figure 6.3). By analyzing the collected physiological data,

we could further investigate whether di↵erent or common physiological reactions

exist between audience groups with and without frisson triggering. According

to previous work, higher physiological entrainment among audience members in

classical music concerts could be positively related to their aesthetic experience

and social connectedness [138, 139]. We also further quantified the physiological

entrainment and compared between two groups. The o✏ine analysis and results

were described in Section 6.4.

Major parts of this chapter are based on the following research papers we pub-

lished:

• Yan He, George Chernyshov, Jiawen Han, Dingding Zheng, Ragnar Thom-

sen, Danny Hynds, Muyu Liu, Yuehui Yang, Yulan Ju, Yun Suen Pai, Kouta

Minamizawa, Kai Kunze, Jamie A. Ward, “Frisson Waves: Exploring Auto-

matic Detection, Triggering and Sharing of Aesthetic Chills in Music Per-

formances.” Proceedings of the ACM on Interactive, Mobile, Wearable and
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Ubiquitous Technologies 6, no. 3 (2022): 1-23.

• Yan He, George Chernyshov, Dingding Zheng, Jiawen Han, Ragnar Thom-

sen, Danny Hynds, Yuehui Yang, Yun Suen Pai, Kai Kunze, and Kouta Mi-

namizawa, “Frisson Waves: Sharing Frisson to Create Collective Empathetic

Experiences for Music Performances.” In SIGGRAPH Asia 2021 Emerging

Technologies, pp. 1-2. 2021.

6.2. Real-time Frisson Detection

6.2.1 Data Collection and Dataset Description

To collect and label the dataset for model training, we conducted a 30-minute lab

study and recruited 33 (self-identified as female = 17; male = 16) participants to

collect labeled EDA and BVP data. There were three sessions and the order was

counterbalanced.

• Session A is a five-minute excerpt from Gustav Holst’s ”The Planets: Jupiter,

the Bringer of Jollity”, approximately 4:00-9:00. According to previous stud-

ies, this particular 5 minutes is the part most successful in provoking chills

[140].

• Session B is a three-minute cold thermal feedback stimulus session through

the neckband with no music stimulation. The cold feedback onset period is

8 seconds: 3 seconds cold feedback ”on” and 5 seconds cold feedback ”o↵”.

• Session C is a five-minute piano recording from Frédéric Chopin’s ”Prelude,

Op. 28, No. 15”. It was recorded from the first live concert we held and

rated most likely to have frisson from the audience.

During the study, participants were first explained the definition of frisson and

were asked to press the button for reporting frisson experience either elicited by

music or thermal stimuli. Figure 6.5 shows one subject’s example EDA data

patterns in frisson events (natural and triggered) that are similar enough to be

used equally in the later model training. Once the study began, participants filled

out the demographic questionnaire followed by the explanation of frisson while
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Figure 6.4 Device used in the lab study to collect participants’ EDA and BVP

data. The device is customized with a self-report button to label frisson events

for later frisson detection model training.

the investigators helped them put on the wristband with a frisson-report button

(see Figure 6.4) and the neckband with two thermal modules placed on the back

of their neck. The investigators then explained the definition of frisson and when

to press the button.
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Figure 6.5 Comparison between natural and triggered frisson events.Similar

trends of filtered EDA data for natural and triggered frisson events lasting for

around eight seconds could be visually inspected.

6.2.2 Model Training and Evaluation

We removed the participant’s data if the data was either too noisy to process or

few frisson events were reported, which left us 19 participants’ data in total. Each

participant’s raw EDA data was passed through a 2nd order Butterworth low-

pass filter (0.5 Hz). And each participant’s raw BVP data was passed through

a 4th order Butterworth low-pass filter (4 Hz). We extracted four EDA features

and three HRV features using Neurokit2 [100] from the filtered signals. We later

used scikit- learn library to compute feature importance and train frisson detection

model2 [141]. According to the feature importance by a Random Forest Classifier,

we selected the following features and normalized the values to remove individ-

2 https://scikit-learn.org/stable/
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ual di↵erences: EDA-Tonic3, EDA-Phasic4, Tonic-di↵-605, Tonic-di↵-306,

MeanNN7, pNN508, pNN209.

We used a support vector machine classification (SVM) algorithm in our frisson

detection referring to some previous works using physiological data to detect phys-

ical or mental phenomenon [88, 142]. Our model was trained using the features

extracted from a sliding window of 1 minute moving every 1 second. (Note that

during the real-time detection stage, to ensure su�cient data in the event of data

loss, 2 minutes of data is sent, from which only 1 minute is ultimately classified

at a rate of every 10 seconds.) The window was labeled as a frisson event if the

button was pressed within the window.

Physiological data of both the natural frisson and triggered frisson events were

analyzed and plotted. Firstly, we visually inspected the trend and change of

filtered EDA data and found the two types of events were similar enough to be

both considered as frisson experiences. Figure. 6.5 shows one subject’s example

of frisson events (natural and triggered) and the trend of filtered EDA signal

recorded. Moreover, we trained a trial model using the data from three subjects

combined who reported frisson in both natural sessions and triggering sessions.

The model was trained on the data in the natural session and tested on the

triggering session with an accuracy of 80.42% as an initial result. Both of the

results supported our concept. We further developed our model using all the

data from 19 participants and applied leave one participant out cross-validation

(LOPO-CV) to divide data into training and testing sets. The classifier with the

best performance presented an average accuracy score of 85.78% (sd = 11.23%)

with an average precision score of 81.75% (sd = 12.48%). Figure. 6.6 illustrates

the overall performance of the model.

3 EDA Tonic component value

4 EDA Phasic component value

5 Change of EDA Tonic component value in 60 seconds

6 Change of EDA Tonic component value in 30 seconds

7 Average of normal sinus beats’ interbeat intervals (NN)

8 Percentage of adjacent NN intervals that di↵er from each other by more than 50 ms

9 Percentage of adjacent NN intervals that di↵er from each other by more than 20 ms
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Figure 6.6 Confusion matrix for the frisson detection model with LOPO-CV. A

row represents an instance of the actual classes whereas a column represents an

instance of the predicted classes. Each number represents the sample numbers

falling into each quadrant. The overall sensitivity (true positive rate) is 92.81%

and the overall specificity (true negative rate) is 76.06%.

6.2.3 Real-time Model Implementation

Figure 6.7 summarizes the framework of the real-time frisson detection model’s

implementation. The server software controls each device via a TCP/IP network

connection. The server records all the data from the wristbands and manages the

data processing and recording. The server starts a python script for each device

that extracts the EDA and HRV features necessary for the frisson classification

model and runs the classifier every 10 seconds for each device. If an occurrence of

frisson is detected, the python script reports it back to the server. Then the server

commands all the neckbands adjacent to the participant who had just experienced
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frisson to activate and apply cold feedback to their wearers. The implementation

of real-time frisson detection model proved the feasibility of integrating real-time

analysis to biofeedback systems for augmenting entrained experience.

Figure 6.7 The framework of implementing real-time frisson detection model

in the biofeedback system. The stages are receiving BVP/EDA data, real-time

frisson detection, and a↵ect physiological experience.

6.3. Concert Information

Five professional musicians, each with roughly 20 years of experience, curated and

composed a musical program based on their artistic interpretations to evoke the

audience members’ aesthetic responses. In the following, we describe the concert

program.

The concert consisted of three sessions summarized as follows:

• Session 1 was a 20-minute interactive ambient music performance titled “Re-

flections on Chopin Prelude Op.28 No.15” which was based around two elec-

tronic artists generating sounds with laptops and synthesizers from the au-

dience’s real-time heartbeats and frisson physiological signals using custom-

built patchers in Max/MSP. These patchers function by receiving data from

the server via OSC (open sound control) protocol, which is then distributed

by the artists to several filters, triggers, and sound modifiers. One violinist

and one pianist performed with the electronic artists together with the audi-

ences’ physiological feedback loop, which transformed the performance from

a more structured classical work into a semi-improvisational performance
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Figure 6.8 Example of frisson transmission e↵ect matched with seat number in

the Frisson Wave Concert. The real-time frisson detection model is running on

the computer server.
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piece. We composed this piece to express the lost feeling in the gloomy

periods and bring the audience implicitly together with us to complete this

piece. We programmed this piece as a process from a weak repetitive beat

to a clear and brighter sentence with a growing and arising end.

• Session 2 was a 21-minute classical piano program of “Beethoven: Sonata

No.30 Op.109” 10. In the opinion of the pianist, this sonata, composed by

Beethoven in 1820, is very compact both spiritually and technically. It has a

wide variety of emotions, including melancholy, joy, and a feeling of grace. It

sometimes portrays resentment and conflict as well. In particular, the third

movement, which begins with a naive and romantic theme and consists of

six variations and a coda, expresses various human emotions skillfully such

as deep love and conflict hidden in Beethoven’s innermost feelings.

• Session 3 was an 18 minutes classical piano program of two pieces by Frederic

Chopin. The first was “Nocturne Op.27 No.1” 11. This nocturne, composed

in 1835, was written in a deeply sorrowful tonality in C sharp minor. A

theme consisting of a wide-range chord in the left hand and a simple melody

that echoes above it in the right hand. Chopin’s delicacy has changed from

the mysterious grace to the dramatic appearance of Mazurka in the middle

part and the sudden appearance of Mazurka comes as if to express the na-

tional feelings towards Chopin’s home country Poland, with the piece then

returning to the main theme quietly. It revealed his love of his homeland

and the resentment and anxiety that dwelled somewhere in his heart. The

second piece was “Preludes Op.28 No.18 24” 12 13. These preludes, which

were completed on Mallorca in 1838, were influenced by Bach’s equal tem-

perament and were composed with one song each, covering all 24 tonalities.

The length and di�culty of each piece are di↵erent. Although there is no

unity between the songs, the characters of each tonality are expressed in

10 https://www.youtube.com/watch?v=8JZGiY--2LM

11 https://www.youtube.com/watch?v=wuL7UC2glJM&t=1813s

12 No.22:https://www.youtube.com/watch?v=ejUG_nAEQKM

13 No.24: https://www.youtube.com/watch?v=QHcEH2Rliko
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a delicate, graceful, and bold way. That is typical of Chopin’s works, and

the harmony of the songs before and after is well maintained. Each piece

is a straightforward projection of Chopin’s music and feelings for life. It is

a collection of preludes that skillfully expresses human emotions. Chopin

composed these pieces to cover the travel expenses for his escape to Mallorca

with George Sand.

6.4. O✏ine Analysis

6.4.1 Data Collection and Dataset Description

48 audience members in total attended the concert (female=28; male=19, 1 other

or preferred not to say) between 19 and 83 years (mean =38.53, sd=15.09). The

audience registered voluntarily through a concert poster posted on social media.

We included the concert’s time, location, and music programs in the delivered

poster. When they came to the concert, we prepared flyers for each participant

to illustrate the concert and together with the consent forms about data usage

and photography before they entered the hall. COVID-19 infection prevention

measures were implemented in this concert such as regulating the distance between

all participants as well as sanitizing all the wearable devices before and after usage.

The participants could stop wearing the device or leave the hall anytime they want.

48 audience members were able to choose to sit in one of two groups after

understanding the di↵erent experiences during the concert: Sharing and Non-

sharing groups. The Sharing group consisted of 24 audience members wearing

our neckbands and wristbands (see Figure. 6.8). The Non-sharing group of 24

audience members wore only the wristbands.

6.4.2 Analysis Process

To investigate the impact of sharing frisson experience on connectedness, I con-

ducted o✏ine analysis by quantifying physiological entrainment within each group.

Physiological entrainment occurs when the “physiological activity between two or

more people” becomes associated or interdependent” [4], which could be a feasible

metric to quantify the experience of physiological connectedness. After removing
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noisy and incomplete datasets, we have the EDA data from 9 audience (Non-

sharing: 4, Sharing: 5) in the first session, 16 audience (Non-sharing: 7, sharing:

9) in the second session, and 16 audience (Non-sharing: 7, Sharing: 9) in the

third session. Each participant’s raw EDA data was passed through a 2nd order

Butterworth low-pass filter (0.5 Hz).

We conducted the decomposition on filtered EDA data into EDA Tonic and

EDA Phasic and extracted SCR peaks via one python package – Neurokit2 14

[100]. We normalized the two components to remove individual di↵erences via

the MinMax scaler. EDA Phasic, as one event-related EDA feature [57, 60, 61],

were averaged for each participant and mapped along the music development in

each session. Additionally, we counted the number of audience members who

had experienced SCR peaks every minute to represent audience collective arousal

feedback.

Moreover, following the prior work of Gashi et al. [67] we processed DTW to cal-

culate the distance between pairwise timeseries data (normalized EDA Tonic and

EDA Phasic) in each group [67]. Smaller distance could indicate more physiologi-

cal entrainment that usually occurs when the “physiological activity between two

or more people” becomes associated or interdependent” [4]. Therefore, we con-

sider this measurement could be used as a feasible metric to quantify the “bond”

in group dynamics. Since DTW is a pairwise analysis method to quantify entrain-

ment, measures were calculated for every pair within each group and compared

between groups.

6.4.3 Results

We inspected the timeseries of the EDA Phasic for three concert sessions with

di↵erent themes (see detailed concert information in Section 6.3). Through com-

parison among the three sessions, we found SCR peaks counts in Session 1 were

less than those in Session 2 and Session 3 generally and were also more evenly

distributed than those in Session 2 and Session 3. In Session 3, we could notice

an obvious increase of SCR peaks counts around a , b , and c .

14 https://neuropsychology.github.io/NeuroKit/
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Figure 6.9 Trends of EDA Phasic and SCR peaks counts over three concert ses-

sions. 1 , 2 , and 3 mark the rise around the transitions between two variations

or the end of variation in the first session. i and ii highlight the frequent fluc-

tuations when the music has unexpected change and building up dynamics in the

second session. a and b mark the peaks and rapid changes from the middle of

Nocturne Op.27 No.1. c highlights the sudden surge of EDA Phasic and SCR

peaks counts in the No.24 of Chopin Preludes Op.28.
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The average EDA Phasic in Session 1 tends to show a more stable trend than

those in Session 2 and Session 3. In Session 2, average EDA Phasic fluctuated

frequently in the third movement of Beethoven Sonata No.30 Op.109 in E major,

especially around i and ii . In Session 3, the average EDA Phasic, especially the

average EDA Phasic of Sharing Group, fluctuated intensely around a and b .

Moreover, by comparing the average EDA Phasic trends of Sharing and Non-

sharing groups, we found they had similar reactions in general. For example,

EDA Phasic kept stable at certain periods (e.g. Variation II in Session 1, Second

Movement in Session 2, No.18 No.23 in Session3.) while fluctuated frequently

sometimes (e.g. i in Session 2 and b in Session 3). However, we noticed

Sharing Group has more vigorous dynamics.

Figure 6.10. presents the distribution of accumulated distances normalized

with the signal length between each pair within the group. According to the t-

test results, we found the normalized accumulated distances of EDA tonic in the

Sharing group (mean = .19, sd = .11) was significantly larger than that in the

Non-sharing group (mean = .10, sd = .06),t(56) = 3.51, p<.001. However, the

normalized accumulated distances of EDA phasic in the Sharing group (the first

session: mean = .003, sd = .002; the second session: mean = .003, sd = .002) was

significantly smaller than that in the Non-sharing group (the first session: mean

= .008, sd = .002; the second session: mean = .005, sd = .002) for both the first

session, t(15) = -4.50, p <.001, and the second session, t(56) = -2.81, p <.05.
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Figure 6.10 Comparison of paired similarity of EDA tonic (a) and EDA phasic (b)

between every two audience members in two groups. The inner box plot shows the

show the minimum, first quartile, median, third quartile, and maximum values

of timeseries normalized distances of pairwise physiological data’s distance. The

smaller the distance, the more similar the pair of timeseries data. The outer

smoothed violin shape illustrates probability density. The width of the shape

indicates how frequently certain values occur. In the third session, the distances

of EDA tonic in the Sharing group was significantly larger than that in the Non-

sharing group. While, in the first two sessions, the distances of EDA phasic in

the Sharing group was significantly smaller than that in the Non-sharing group.

(*p<.05,**p<.005,***p<.001)
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6.5. Subjective Feedback – Audience

6.5.1 Methodology

We invited audience to answer the questionnaires handed out at the reception

after each performance to gather audience’ subjective feedback. Responses were

encouraged but not mandatory. The questionnaire assessed demographics, frisson

occurrence, and concert experience through likert scale.

Questions related to frisson occurrence in the questionnaire delivered to the

audience were as follows:

• Before the concert, were you familiar with frisson/aesthetic chills. (Yes, No,

Maybe)

• In general, how often do you experience frisson? (Likert scale:“1-Never” to

“5-Very Often”)

• How often do you experience frisson in relation to music? (Likert scale:“1-

Never” to “5-Very Often”)

• How often did you feel frisson during the concert? (Likert scale:“1-Never”

to “5-Very Often”)

• I feel frisson (aesthetic chills) often when listening to music. (Likert scale:

“1-Disagree Strongly” to “7-Agree Strongly”)

• I have felt very intense frissons during this concert. (Likert scale: “1-

Disagree Strongly” to “7-Agree Strongly”)

Questions related to concert experience and connectedness in the questionnaire

delivered to the audience were as follows (Likert scale:“1-Never” to “5-Very Of-

ten”) [138]:

• I enjoyed the music performances.

• I found the concert more engaging than other similar performances I at-

tended.

• I felt connected with people sitting around me.
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For audience members who were wearing the neckband (Sharing group), we

asked questions related to the experience wearing the neckband as follows (Likert

scale:“1-Never” to “5-Very Often”):

• I experienced more frisson than in a normal concert performance from the

neckband.

• I found the neckband decreased my enjoyment of the performance.

Moreover, to eliminate the e↵ect of interpersonal relationship, we also asked

audience members to report the acquaintances sitting around by checking on

Figure

Figure 6.11 The figure in the questionnaire where audience reported acquaintances

sitting around. The question is “The right image represents your seating position.

The empty squares represent the people sitting around you. Please check the

empty square if you know the person who is sitting in this position”.

48 audience members in total attended the concert (female=28; male=19, 1

other or preferred not to say) between 19 and 83 years (mean =38.53, sd=15.09).
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6.5.2 Results

Enhanced Frisson Occurrences

For all the 48 audience members, according to the questionnaire answers, 60%

of them were familiar with the concept of frisson, 20% were familiar to a certain

extent, and the remaining 20% audience members were not familiar with frisson.

On a daily basis, about half of the audience reported feeling frisson between

“sometimes” to “often”, while the other half reported feeling frisson ”rarely” to

“never”. However, the numbers of feeling frisson in relation to music are slightly

di↵erent. 60% of the audience reported to feel frisson in relation to music, while

40% felt frisson in relation to music “rarely” to “never”. In terms of frisson

experiences in this concert, 40% of audience members reported that they felt

more frisson during this concert than usual, while 8.3% felt less frisson. 6.25%

reported feeling no frisson at all and the rest found it hard to answer. We found

a strong correlation exists between the reported frequency of experiencing frisson

normally and frisson during this concert (R= .62, p< .001).

For the Sharing and Non-sharing groups, there is a noticeable di↵erence in the

reported number of frisson occurrences during the concert. Although the Non-

sharing group had reported feeling frisson in relation to music more often than

the other group, the Non-sharing group did not experience more frisson during

the concert than usual. 41.67% of the Non-sharing group reported that they had

more frisson than usual, 54% of frisson-sharing group reported that they had more

frisson than usual, the Sharing group had an 8.8% increase of frisson than usual,

which suggests that the frisson-sharing mechanism does increase the number of

frisson occurrences. This leads us to think that increasing frisson in a group which

is originally less familiar with frisson is proof of the adequacy of the system. This

result suggests our system worked as we expected for detecting and actuating

neckbands to trigger frisson in a live concert scenario.

Enhanced Perceived Connectedness

In order to evaluate our hypothesis that the sense of connectedness in the Sharing

group would be higher than in the Non-sharing group, we compared the subjective

connectedness score between the two groups. However, these scores were found to
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correlate with the number of acquaintances sat adjacent to one another(R= .31,

p= .03). Among the Sharing group, the number of adjacent acquaintances (mean=

1.08, sd= 1.06) is 40% less (p = .017) than the Non-sharing group (mean=1.8

,sd=1.32). The connectedness score in the Sharing group (mean= 3.54, sd=1.53)

is 16% less (p = .11) than in the Non-sharing group(mean=4.17, sd=1.85). We

cannot state a significant di↵erence (p = .11) of the sense of connectedness within

the two comparison groups, though we assume that the score should have a much

stronger decrease in the Sharing group based on the significantly fewer (p = .017)

acquaintances. Since it was an experiment in-the-wild study, the audience were

allowed to pick their preferred seats, the groups were not balanced by personal re-

lationships, and the Non-sharing group happened to know each other much better

than the Sharing group. This highlights the importance of taking personal rela-

tionships between participants into consideration when evaluating connectedness.

6.6. Interpretation and Discussion

6.6.1 Trends of Group Dynamics

Because musical pieces in the three sessions are di↵erent, we interpreted what we

found in the timeseries trends of EDA features referring to the characteristics of

the musical pieces. Generally, we found the music parts with a strong dynamic,

fast tempo, and contrasting changes could be reflected in increasing EDA Phasic

values and SCR peaks counts.

In Session 1, the musical piece entered the theme in Variation I with weak and

repetitive beats. It further developed into a more clear and brighter sentence

from Variation II where EDA Phasic rised up (crescendo around 1 ). Similar

changes could also be observed in the middle (fortissimo around 2 ) and the end

of Variation III (forte around 2 ) when acoustic sounds and electric sound were

integrated to create stronger dynamics and more abundant layers. In Session 2,

the fourth variation in the Third Movement (around 18 minutes) became striking

contrast to the preceding variation. This unexpected change and building up

dynamics reflects in the peaks of average EDA Phasic ( i ). Similar patterns also

occur in the sixth variation when it came to the treble and brilliant episode ( ii ).
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In Session 3, when the dynamic gets stronger and the tempo gets faster in the

middle part of Nocturne Op.27 No.1 ( a and b ), an abrupt change of EDA

Phasic can be observed. The sudden surge also occurs in the last piece (No.24) of

Chopin Preludes Op.28 15 ( c ) when it arrived at the crescendo, fortissimo and

brilliant sentence16.

6.6.2 Physiological Entrainment Comparison between Shar-

ing and Non-sharing Groups

The results from DTW indicated the entrainment of EDA tonic component in the

Sharing group was lower than that in the Non-sharing group in the last musical

session. While the entrainment of EDA Phasic in the Sharing group was higher

than that in the Non-sharing group in the first two musical sessions. EDA tonic

component indicates the slow change of skin conductance levels while the EDA

Phasic reflects the quick and prompt change of skin conductance response [57,

60, 61]. Although wearing the device did not lead to more entrained feelings

in the long-term trend. The thermal feedback did trigger much more entrained

physiological reactions in the short-term and sudden arousal– which could be

similarly interpreted as frisson occurrence. This result supported the feasibility

of adopting a real-time frisson detection model and thermal feedback system to

share this ambiguous and aesthetic feelings as a novel method to augment group

dynamics by creating entrained experience. As proved by Tschacher et al. [138]

and Gashi et al. [67], skin conductance entrainment could be associated with

perceived engagement and appreciation during live events. Our results suggest this

method of sharing frisson could be a potential way to enhance music appreciation.

Moreover, it is also worth discussing why no significant di↵erence in physio-

logical entrainment exists in Session 3. According to the project director, the

musical piece in Session 3 is supposed to be less familiar but with more dramatic

changes in musical elements than the first two sessions. Therefore, we assume that

the musical piece in Session 3 could be so powerful in terms of creating frisson

15 https://www.youtube.com/watch?v=QHcEH2Rliko

16 https://en.wikipedia.org/wiki/Dynamics_(music)
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events at certain timings that audience members could have similar physiological

experience even without external triggering. If so, this might suggest the idea

of detecting and sharing frisson could enhance the music appreciation experience

especially when the music is more niche. However, there are still concerns about

whether artificially generating entrained feelings could enhance perceived connect-

edness according to the subjective feedback from the audience group. Although we

proved a correlation between reported connectedness and the number of adjacent

acquaintances, we assume there is also a need to consider the risk of interrupting

the natural music appreciation process.

6.7. Conclusion

This Chapter investigates the methodology of detecting and influencing individ-

uals’ physiological experience during in-the-wild group events. We developed a

real-time frisson detection model with an average accuracy of 85.78% and de-

scribed the detailed procedure of collecting labeled data, training, and evaluating

the detection model. We implemented the frisson detection model in a real-life

biofeedback system which could trigger frisson through a smart neckband via

thermal feedback. By conducting the o✏ine analysis on the collected dataset

(the dataset is available for researchers under this link: https://osf.io/rzpn3/),

we mapped EDA features’ trends along the music development to understand the

group dynamics. Our findings suggested the collective physiology could reflect

certain characteristics of the music (e.g. dynamic and tempo), which matches

the research insights we acquired in the previous chapters. We further applied

DTW to quantify the physiological entrainment within groups. Compared with

Non-sharing group, Sharing group experienced more physiological entrainment.

Moreover, we also collected subjective feedback from two audience groups. The

audience in the Sharing group overall presented a positive attitude towards this

novel interaction and reported more frequent frisson experiences.

Our findings suggested the approach of recognizing and sharing frisson could be

a potential way to augment music appreciation in groups. This approach could be

applied to other ubiquitous sensing contexts to share physiological experience not

only in co-located conditions but also in remote or even virtual conditions. How-
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ever, it might bring possible risks, such as interfering one’s natural physiological

process (e.g. naturally occurring frisson) with triggered sensations (e.g. synthetic

frisson). Iterations over design elements and analysis parameters in several con-

trolled environments might help researchers and practitioners better prepare for

the possible risks and challenges during in-the-wild implementations.
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Chapter 7

Discussion and Implications

This dissertation explains a data analysis framework that could be integrated into

biofeedback systems and applied to understand group dynamics. This Chapter

firstly summarizes the ethical considerations in the projects mentioned in pre-

vious chapters and further discusses the implications for future applications to

understand and augment group dynamics.

7.1. Ethical Considerations

Each study has received approval from the ethics committee at Keio University

and was conducted according to the ethics rules and regulations of Keio University.

We explained how to collect and use their physiological data with the cus-

tomized device before delivering the consent form. For the projects that real

audience members attended, we only collected data from those who volunteered

to join as study participants. Participants who volunteered to join the study can

terminate their participation in the study at any time. Each participant signed

a consent form before each study started. The consent form described the aim

of the study, experiment steps, potential risks, and data protection policy. We

helped participants wear the devices and confirmed they were wearing the device

correctly and comfortably.

The data processing of each study is carried out in accordance with the data

protection provisions of the General Data Protection Regulation (GDPR) and

Keio University. The data collected can only be used exclusively for the purposes

described in the consent form. Each participant was assigned identifiers in the

dataset and data collected were only used anonymously. Personal information

collected from demographic questionnaires and consent forms cannot be linked to
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the participant’s identity.

7.2. Data Insights

Analysis could be considered as the process of transforming data into insights.

This section discusses findings about extracting features from raw physiological

data and extending individual physiological responses to group level reactions.

7.2.1 From Raw Data to Explainable Features

The projects we described in this thesis adopted BVP and EDA which are recorded

continuously under a fixed sampling rate (see Table 7.1).

Preprocessing

Preprocessing is one essential step before feature extraction. There are several

main methods to clean the physiological data in my analysis process:

• Inspect data types and units and keep consistency. Transform timestamps

to certain time units if necessary.

• Remove the data before the event/activity started and after the event/ac-

tivity ended. Because there could be random movement and noisy data

especially when researchers were helping participants wear the devices.

• Remove or interpolate noisy data with the help of other recorded data such

as accelerometer data and observational data (the analysis in Chapter 5

adopted this method).

• Add low pass/High pass/Band pass filters to resample the raw data. Low

pass filters were applied to the analysis of the dataset described in this

thesis to smooth the raw data. Table 7.1 summarizes the cuto↵ sampling

rate adopted in the analysis.

• Inspect the waveform in BVP data to check whether regular and obvious

peaks exist. Enhance peaks if necessary (the analysis in Chapter 4 adopted

this method).
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• Normalize or standardize feature data to reduce the individual di↵erence

before aggregating and comparing individual data. HRV features could be

normalized by being divided by mean RR intervals besides common methods

(e.g. MinMax scaler) [114–116].

Table 7.1 Raw physiological data and features used in the four projects for eval-

uations. In the column of filter parameters, the cuto↵ frequencies in the low-pass

filters were summarized (more detailed information could be found in each chap-

ter’s analysis process).

Project
Signal and

Sampling Rate
Filter Parameters Features Used

Social Game

Players Group

(Chapter 4)

BVP (200Hz),

EDA (10Hz)

BVP (4Hz),

EDA (0.5Hz)

LF/HF ratio, RMSSD

EDA Tonic, SCR peaks

Online Learning

Students Group

(Chapter 4)

BVP (100Hz) BVP (4Hz) pNN50, RMSSD

Contemporary Dance

Audience Group

(Chapter 5)

BVP (50Hz),

EDA (4.545Hz)

BVP (3.5Hz),

EDA (0.01Hz)

LF/HF ratio, pNN50,

EDA di↵erence,

EDA extrema

Piano Concert

Audience Group

(Chapter 6)

BVP (50Hz),

EDA (4.545Hz)

BVP (4Hz),

EDA (0.5Hz)

pNN50, pNN20

MeanNN, EDA Tonic

EDA Tonic di↵erence

EDA Phasic

The above methods could be applied at the same time. However, paying atten-

tion to the orders could enable better preprocessing performance (e.g. adjusting

timestamp before removing unusable data). Moreover, some methods need to be

adapted to real-time analysis according to the way of receiving data. For example,

since data type should be consistent during data streaming, the size of the data

chunk should be inspected before feature extraction. Because it is usually required

around one to two minutes of BVP data to calculate stable HRV features.
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Choices of HRV and EDA Features

To extract and select suitable features, we found the following aspects should be

considered:

• Neuroscience proof: Which branch’s activation of ANS (PSNS and SNS) is

the main focus for the observation? Which features are more representative

of that branch’s activation?

• Time requirement: How long is the minimal time required for recording to

calculate valid features? How long will it take to extract certain features

(especially in real-time analysis)?

• Sensitivity: How sensitive/stable are the features? Which features could

be more sensitive to catch rapid and short-term changes? Which features

could. be more stable and robust to reflect long-term changes?

Overall, EDA features are considered as directly linked to SNS activation and

more sensitive to short sudden elicitation compared to HRV-based features [61].

Based on prior works and our findings, EDA Phasic and EDA di↵erence are more

related to short-term arousal compared with EDA Tonic. As a reflection of the

changes in EDA, EDA di↵erence is generally quite discriminable and well-suited

to gauging people’s reactions in real-time, particularly during short temporal mo-

ments like direct interactions or shock-e↵ects [7]. The changes in the tonic compo-

nent of EDA (also known as skin conductance level – SCL) tend to be more stable,

which could be related to more fundamental arousal dynamics. The phasic com-

ponent of EDA (also known as skin conductance response – SCR) especially peaks

in SCR (also known as SCR peaks) reflects short-term and event-related aroused

responses. Therefore, aggregated SCR peaks and EDA extrema, are more suit-

able to identify key events and moments when the majority of the group members

experience increased arousal. In the real-time analysis, those aggregated features

might be used as a threshold to trigger biofeedback or present stable trend based

on the major group dynamics in more formal conditions as similarly adopted in

the prior work by Hassib et al [11]. However, the calculation relies on comparing

to a global average and therefore a large chunk of data is required.
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HRV features could be related to either SNS or PSNS activation or even both [52].

In the features selected in our four projects, pNN50 and RMSSD have been proven

to be more related to PSNS while LF/HF ratio could be an indicator of the bal-

ance between SNS and PSNS activity [52]. As a frequency domain feature, LF/HF

ratio needs more recording time to be calculated as stable values than the other

time domain features. However, when more frequent fluctuations are expected

especially to generate more vivid biofeedback in real-time, LF/HF ratio could be

a good choice to reflect moment-by-moment experience. Specifically, we found

LF/HF ratio could be a feature used in aesthetic or musical applications, which

is also supported by some of the prior works [98, 99]. However, the interpreta-

tion of the LF/HF ratio could be controversial due to the complex nature of LF

power [96]. Therefore, we would not suggest LF/HF ratio feature as an essential

indicator when conducting o✏ine analysis. pNN50 and RMSSD are under the

control of PSNS. Especially, pNN50, calculated as the di↵erence between adja-

cent heart periods, is nominally independent of resting HR [143]. This makes

PNN50 relatively representative of the PSNS associated reactions such as relax-

ation and sustained attention [47, 92, 93, 121]. Our findings from contemporary

dance audience groups over three performances suggested pNN50 could be a ro-

bust indicator of relaxation in group dynamics. We also suggest using pNN50

in real-time analysis to generate biofeedback when there are obvious contextual

a↵ect changes, such as tension and relief, or conflict and reconciliation. RMSSD

reflects the HF power’s variation in HR and could be extracted from short-term

recordings [114,144]. As an indicator for cognitive load [145], RMSSD could per-

form well to quantify entrainment between group members both in o✏ine analysis

and real-time analysis considering the low requirement for recording time.

7.2.2 From Individual Response to Group Dynamics

Following the concept of entrainment and evaluations over four projects, we found

several analysis methods to infer collective reactions from individual responses or

dyadic interactions.
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Trend

The average value, together with the variance, among individuals’ normalized fea-

ture data could be observed as a trend in the group dynamics. By inspecting the

trend and variance, we could find the collective reactions as well as the timings

when group members’ experience diverge. Moreover, the trend could be more

e↵ective to reflect the group dynamics when there is a relatively explicit structure

or plan for the event. Because the external stimuli could elicit similar and coordi-

nated feelings as a trigger for induction entrainment in the group [138]. Therefore,

we could interpret the trend together with specific structures, key moments, and

other particular designs to understand the group dynamics from multiple perspec-

tives. For example, Chapter 4 describes DTW results as a similarity metric that

were plotted into trends. Compared with the workshop agenda, we found more

similar cardiovascular reactions (reflected in pNN50) occurred among the learners

with biofeedback after they started group discussions. Chapter 5 reports the re-

sults by comparing the trends of the audience’s HRV and EDA features with the

choreography where we found the pNN50’s rising matched the choreography from

relaxation to tension. Chapter 6 presents the correlations between the trends of

collective EDA Phasic and music pieces’ development.

Aggregated Value

Individual’s normalized feature data could be aggregated in the following fashions:

• Count the number of group members who have similar experience in certain

time range (e.g. aggregated SCR peaks counts in Chapter 4 and experience

EDA extrema in Chapter 5).

• Categorize individual feature data according to structured periods (e.g.

choreographic sections in Chapter 5).

It is essential to normalize the feature data before aggregation. Otherwise,

extreme values due to the individual di↵erence could bias the aggregated metrics.

Further statistical methods could be applied to compare the aggregated values.

For example, in Chapter 5, we aggregated the timeseries of HRV and EDA features

to produce statistics for each of the six main choreographic sections. A repeated
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measures ANOVA with a Greenhouse-Gessier correction was used to investigate

the correlation and variance. We found significant di↵erence occurred among

sections especially in pNN50, which supports our assumption that pNN50 could

reflect the transition from tension to relaxation between the first half and second

half of the performance.

Similarity

Similar reactions could be firstly inspected through the trends together with the

variations among each individual member. We further applied dynamic time warp-

ing (DTW) [70], as an established measurement to calculate entrainment in previ-

ous works [67,71,72], to help us understand group dynamics. Although we selected

DTW for the analysis described in this thesis, other analysis methods, such as

pearson correlation [73,74], cross recurrence quantification analysis (CRQA) [37],

wavelet coherence analysis [68,75], and machine learning algorithms [76,77] could

also be applied to quantify entrainment.

As a pairwise analysis method to quantify entrainment, DTW measures could

be calculated for every pair within each group and further compared via statistical

methods. For example, in Chapter 6, we compared DTWmeasures between frisson

Sharing and Non-sharing groups and found the entrainment of EDA Phasic in the

Sharing group was higher than that in the Non-sharing group in the first and

second musical sessions. Moreover, the mean of the DTW measures among all the

pairwise combinations within the group could be considered as the entrainment

measurement of the whole group. In Section 4.4, the trends of average DTW

among group pairs were plotted to reflect the development of entrainment during

workshops.

7.3. Apply the Framework in Practice-led Re-

search

Evaluations and projects presented in this thesis are primarily practice-led, where

research methods, contexts, and outputs involve a significant focus on creative

practice [27, 128, 129]. Di↵erent from traditional academic research, practice-led
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research could be more process-driven than goal-oriented [129]. This could lead

to more challenges to collaborate with other team members with di↵erent back-

grounds and interpret the data results with more uncontrollable variables. On

the other hand, practice-led research has provided us with more opportunities

to understand live group dynamics in a more natural environment. The design

of event structure, especially the choreography and dance movements, could be

relatively more controlled settings to collect in-the-wild dataset [146]. Moreover,

practice-led research has allowed us to validate both real-time analysis and of-

fline analysis, enabling us to contribute novel biofeedback systems. On the other

hand, findings from the o✏ine analysis could also help us evaluate the biofeedback

system afterwards. This section summarizes the implications for interdisciplinary

collaborations and biofeedback design when applying the framework.

7.3.1 Implications for Interdisciplinary Collaboration

Balance around Goals

The goals of researchers, practitioners, and artists can be very di↵erent even in

the same project, so it is important for the project’s success to uncover shared

goals [29]. One shared goal in our project described in Chapter 5 was to explore

and enhance the invisible link between the dancers and the audience through

performance. Although in this work we prioritized artistic values such as the con-

sistency of the theme and the immersive experience of the audience, the chore-

ographer worked closely with researchers to include performance sections that

were explicitly designed to trigger clear emotional changes - changes that prior

evidence suggested would trigger physiological responses. Also in the project de-

scribed in Section 4.4, the shared goal is to enhance engagement during online

learning. However, we found the wrist-band type sensing device might interfere

with students’ learning behaviors (e.g. typing and taking notes) while researchers

want to record physiological data for o✏ine analysis. Around this shared goal, we

revised the prototype to the ear-based device to reduce the risk of distractions.
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Negotiate through Practices

Regular meet-ups at each stage of the co-design process are essential, especially

during projects involving a large number of team members with di↵erent back-

grounds (projects described in Chapter 5 and Chapter 6). The project described

in Chapter 5 is a long-term project lasting approximately three years, which re-

quired researchers to attend major rehearsals, observe the stage conditions, and

test prototypes on the spot. In this project, the artistic director connected the

dance team and research team and led the negotiations by conveying expected

choreographic elements and showing sensor feedback samples. Considering the

pivotal role of music in the work, the dancers were also given access to samples

of audio feedback as it was developed. The two teams met regularly and orga-

nized workshops to make and revise design choices. The following summarized

the schedule of three workshops and key meetups when we were designing the

feedback after the test performance:

The following summarized the schedule of three workshops and key meetups

when we were designing the feedback after the test performance

• Meetup (2019. November): Shared feedback from the test performance and

discussed the sensing feedback design schedule.

• Workshop (2019. December): The iteration started from a workshop where

the choreography and the main piece – Bolero were introduced to the re-

searcher team. Meanwhile, the researcher team prepared the hardware try-

outs to help the dancers generate intuitions about physiological sensing.

• Workshop (2021. January): Discussed the performance choreographic sec-

tions’ plan.

• Meetup (2021. January): Recorded sound elements used in the feedback

loop. Rehearsed and adjusted the composed music with sound feedback.

• Workshop (2021. January): Mixed the sound, music, visual, and choreogra-

phy together.

• Meetup (2021. March): Showed full performance together with all techno-

logical set-ups to the Session house sta↵.
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This process not only contributed to a successful performance integrated with

biofeedback but also enabled researchers to gain more perspectives to analyze the

audience experience.

Share Research Insights

It is important that any findings and insights uncovered by the research team are

regularly shared with other team members for both adjusting real-time analysis

and conducting o✏ine analysis. In the projects described in Chapter 6, when we

were developing a real-time frisson detection model, we found the reported fris-

son events might be insu�cient for the training based on the subjective feedback

collected. After sharing this research insight with the director and engineering

team, we first decided to play the music that proved to be e↵ective in provok-

ing chills [140] to the participants when we collected labeled data. We also used

thermal feedback in the customized neckband to trigger more frisson events. All

of these steps supported the development of the real-time frisson detection model

and the final implementation of the frisson sharing system. In the projects de-

scribed in Chapter 5, following the performances, we shared a version of Figure 5.5

with the dance team. Revealing the mapping of physiology and choreography in

this way helped provide a fertile ground for further discussion. During the discus-

sion, dancers matched scenes to changes in the graphs and shared their feelings,

experiences, and audience comments around those specific moments. Some of the

dancers mentioned they had trouble understanding the data visualization during

the performance. However, looking back on the data afterwards provided them

more time and space to consider the e↵ects. They even further reflected on how

to improvise while referring to the feedback loop system and contributed valuable

insights to the interpretation of physiological data. This process was crucial to

our co-creation project and helped us plan the way for future collaboration.

7.3.2 Implications for Biofeedback Design

In this thesis, we applied real-time analysis to generate biofeedback in the form of

monitoring and reflecting physiological data mainly by visualizations. We further

explored detecting and sharing certain physiological experience through thermal
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feedback. Results from o✏ine analysis proved the increasing physiological en-

trainment for groups with biofeedback provided. This section will further discuss

the influence and implications for implementing biofeedback to augment group

interactions based on subjective feedback we received.

Following the concept of augmenting entrainment, we focus on investigating

the feedback about connectedness and the sense of unity. Among all the projects,

we found the implementation of biofeedback could enhance the entrained feelings

for varied reasons. Table 7.2 summarizes the perceived connectedness types and

advice for biofeedback design extracted from participants’ subjective feedback:

Connected Counterparts Reported Feelings Implications

Event
Able to influence

the event directly/indirectly

Clear mapping between

people’s physiological data

and feedback

System

The system could promptly

and correctly reflect their

physiological states

Reduce time lag,

Enhance perceived agency

and control,

Increase sensing accuracy

Other Members

Have similar feedback

and be aware of contributing

to the same activity

Provide collective goal

or feedback

Table 7.2 Implications for biofeedback to enhance the sense of connectedness

according to participants’ feedback over four projects.

As suggested by Khut et al., fluent interactions, cognition, and expressive ex-

periences are essential elements to create interactive experiences in biofeedback

systems [22]:

• Fluent interactions: ability of interacting in an e↵ortless and engaging way.

• Cognition: process of understanding the link between physiological data and

biofeedback.

• Expressive experiences: moments of self-identification during the biofeed-

back.
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Together with our collected subjective feedback, we suggested following impli-

cations for biofeedback design to augment group interactions.

Awareness of Individual’s Experience and Agency

Before experiencing biofeedback in a collective manner, starting from an indi-

vidual’s biofeedback experience could help participants to understand how their

own physiological data could influence the biofeedback. Simple interaction or

biofeedback design techniques (e.g. customizing the appearance of biofeedback

elements [22]) could be implemented for participants to catch this agency. For

example, although we did not describe the biofeedback setup of the project in

Chapter 5, we designed biofeedback starting from reflecting individual’s physio-

logical data before generating collective biofeedback (see Table 5.1 and Figure 5.2).

However, in the project described in Section 4.3, the line charts generated from

the average values of data contributors’ HRV features failed to take care for the

individual’s agency. Although we decided to use the aggregated value directly due

to privacy concerns, we noticed there could be alternative methods to reinforce

the link and agency. For example, introducing error bars or standard deviations

when generating line charts could reflect the ability to influence biofeedback to

some degree.

Timings of Enhancing Entrained Experience

Based on the subjective feedback, we found participants may appreciate sharing

physiological reactions within the group more at certain timings while sometimes

understanding others’ feelings may not help the overall experience. For example,

we found some of the audience members attending the contemporary dance per-

formance whether the sense of unity was necessary when enjoying this aesthetic

performance (see in Chapter 5). Moreover, we also worried whether manipulat-

ing audience’s physiological reactions by providing thermal feedback would a↵ect

the natural frisson feelings as explored in Chapter 6. However, considering the

positive feedback from participants about experiencing this novel interaction, we

still assume it is worthwhile to continue exploring biofeedback as a new way to

appreciate artistic events. This would require HCI researchers and practitioners
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to investigate the various needs of di↵erent people and provide multiple choices

to trigger biofeedback at appropriate timings.

123



Chapter 8

Conclusion and Future Directions

This Chapter presents an overview of the dissertation and reviews research ques-

tions put forward in Chapter 1. The contributions of this research are highlighted,

followed by future directions derived from this work.

8.1. Dissertation Overview

This research work presents a practical framework for physiological data analysis

to understand and augment group dynamics. Following the concept of entrain-

ment, as related to the presence of similar reactions among group members [37],

we introduce a real-time analysis component to trigger and an o✏ine analysis to

investigate similar physiological experience at group level. The frameworks was

explained and evaluated in practice-based research projects from initial explo-

ration in small group interactions to in-the-wild large scale group events.

Chapter 4 presents methods to quantify group dynamics by investigating trends

and similarity between physiological data followed by initial explorations for shar-

ing physiological experience over visualizations. Chapter 5 further extends the

exploration to understand large-scale group dynamics during in-the-wild group

events and provides a feasible mapping between collective physiological trends

and notable moments with choreography. Chapter 6 presents a complete flow

of developing real-time algorithms to generate biofeedback at real-life concerts,

evaluating the e↵ect of the biofeedback system, and mapping group dynamics to

musical piece’s unfolding.

Besides demonstrations of the analysis process and summaries of the findings,

this dissertation discusses how to apply the framework in practice-led research.

In Chapter 7, we firstly discussed about extracting explainable features and cal-
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culating group level metrics for analysis. We further contributed implications for

interdisciplinary collaboration and biofeedback design. We assume this research

works could help researchers and practitioners in the HCI field to novel measure-

ments and experiences in terms of augmenting group dynamics.

8.2. Research Questions Review

This section presents a review of the research questions and corresponding discus-

sions based on the evaluations:

Research Question 1: How can we use the concept of entrainment to

improve understanding of group dynamics by physiological data? We

probed the methodologies of analyzing physiological data focusing on the trends

of group dynamics and similar reactions among group members. The specific

research questions are answered as follows:

(a) How can the proposed o✏ine analysis be used to quantify group dynamics

beyond individual subjective experience? Based on the o✏ine analysis we con-

ducted and the research insights we acquired, we summarized essential steps as

reported in Chapter 7.

Firstly, it is essential to clean physiological data before further feature extrac-

tion and analysis. Preprocessing could be conducted by removing noisy data and

applying filters etc. Explainable features could be extracted and selected by un-

derstanding the characteristics of the sensing modality. Take HRV features and

EDA features we have explored for example. pNN50 has been proved to be closely

related to PSNS activation, thus more relaxed feeling could be reflected in increas-

ing pNN50. EDA features, such as peaks, are more related to SNS activation, thus

more peaks could indicate more emotional arousal. Further, we also found sev-

eral analysis methods to achieve an understanding of group experience beyond

individual physiological reactions. For example, we could calculate average values

and variance among group members or aggregate numbers of people whose phys-

iological data show similar patterns within certain time periods. Finally, using

the concept of entrainment could help us interpret the results. One perspective

to interpret the result could be exploring the possible entrainment triggered by

emotional empathy within the group. Another perspective is investigating the
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potential entrainment that could be triggered by structural factors such as the

choreography of the performance and the rhythms of the musical pieces. Linking

the collective physiology to the development of the group event may provide a

holistic view of the in-the-wild group experience. In summary, the concept of

entrainment could improve understanding of group dynamics. Specifically, this

concept could suggest feasible analysis methods to extract collective physiology

and provide interpretation perspectives to understand group experience.

(b) Which aspects can research insights acquired in o✏ine analysis imply real-

time analysis in biofeedback systems?

Reflecting on the applications and evaluations of the described projects, we

found research insights acquired in the o✏ine analysis could provide meaningful

references for real-time analysis in biofeedback systems. One important valuable

aspect is regarding feature choices as discussed in Chapter 7. From o✏ine analysis,

we investigated the features’ robustness, sensitivity, and computing cost, which

are key aspects of a real-time biofeedback system. Moreover, through careful

calculation and analysis, we found the links between certain features and psycho-

physiological states (e.g. pNN50 is suitable to reflect the group’s relaxation level).

Additionally, most of the analysis methods we explored in the o✏ine analysis could

actually be conducted on a relatively short window of the dataset such as calcu-

lating mean values and conducting predictions. In summary, research insights

acquired from the o✏ine analysis could imply the choices of features and play a

pivotal role when adjusting parameters in real-time analysis algorithms.

Research Question 2: How can we use the concept of entrainment to

improve augmenting group dynamics by physiological data?

We explored the methodologies of developing real-time analysis algorithms for

sensor-based interactions ranging from reflecting, detecting, and sharing physio-

logical experience within groups. The specific research questions are answered as

follows:

(a) How can the proposed framework for physiological data analysis be applied

to real-life biofeedback systems?

Based on our practices where we implemented real-time analysis to biofeedback

systems, we extracted a common workflow. The workflow consists of receiving
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physiological data from group members, calculating and analyzing data via python

scripts running at servers, and transmitting results to influence the outputs as

feedback. In the python script, steps including preprocessing, feature extraction,

analysis, and aggregation are written (see Appendix C for an example of python

script). Parameters, such as window size and feature types, could be adjusted

flexibly according to the requirements. Feedback could be embedded in either

existing platforms (e.g. Plotly dashboard described in Chapter 4) or self-built

biofeedback systems (e.g. frisson sharing systems described in Chapter 6).

(b) What e↵ects do the biofeedback systems embedded with the proposed real-time

analysis bring to group interactions?

From the o✏ine analysis on the collected physiological dataset, we found partic-

ipants who experienced the biofeedback systems tend to have more physiological

entrainment. This might suggest biofeedback systems could augment group inter-

action by enhancing entrained feelings at the physiological level. As for perceived

connectedness and entrainment collected from subjective feedback, some partici-

pants mentioned their increasing sense of unity and feelings of being connected,

while some participants did not. Moreover, we found possible risks of bringing

more cognitive load and privacy concerns are worth considering when sharing the

physiological experience with others.

Research Question 3: How to integrate the proposed framework with

practical goals during interdisciplinary collaborations?

During the process of evaluation, we tested the practical framework for phys-

iological data analysis in interdisciplinary collaborations (researchers and prac-

titioners in the HCI field, professional artists, and experts with various domain

knowledge). The ultimate goal of each project was usually creating a novel expe-

rience or installation with biofeedback implemented. While approaching the goal,

we tested and revised the analysis algorithms for better performance. O✏ine

analysis was conducted on data collected during the event to reflect live group

dynamics and to evaluate the biofeedback system. More detailed implications for

applying the framework to interdisciplinary collaborations were summarized in

Chapter 7.
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8.3. Limitations

First, although we tried to sense the live group in an unobtrusive way with wear-

able devices, it was still hard to totally remove the interference. We explored the

potential of collecting data via ear-based devices in the project described in Chap-

ter 4 (Section 4.4) to reduce the awareness of being sensed. However, ear-based

devices might need more time for calibrations and adjustment because the head

shape di↵erence turned out to be more obvious than that of fingers.

We were not able to obtain valid data from people who were moving too much

since both EDA and BVP are sensitive to movement artifacts. Especially when

people were interacting with each other and the group event lasted for a long time.

There are also alternative methods to analyze the dataset in terms of temporal

component and rhythms [8,147] or sub-group clustering [7] to further understand

how entrainment took place.

The dataset for o✏ine analysis in Chapter 5 was collected from a real perfor-

mance where audience physiological data was used to trigger changes in staging

elements. The existence of the feedback loop complicated the exploration and

interpretation of the results. In Chapter 4 (Section 4.4), we tried dividing par-

ticipants into control and experiment groups. However, some participants in the

control group expressed disappointment, which was also reported by the audience

group attending the test performance in the project described in Chapter 5. We

consider this is also a challenging but valuable topic for further investigations and

related research.

8.4. Future Directions

This dissertation describes how to analyze physiological data to understand group

dynamics. We found several methods and interpretation perspectives to translate

this type of abstract and raw data into explainable results. Yet we must admit

it is not su�cient to rely on the physiological data alone to quantify group re-

actions. Moreover, the valence dimension is relatively hard to detect compared

with the arousal dimension. In the future, mappings between valence levels and

physiological reactions or even more diverse emotion models could be considered
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when investigating a↵ective reactions.

As for biofeedback design based on detecting and analyzing a↵ective reactions,

finding a proper way to utilize physiological data with minimal distraction and

intuitiveness for people to understand the meaning behind biofeedback is essen-

tial. Current feedback from participants expresses confusion when there was no

explicit connection between biofeedback and their physiological data (e.g. the

color became red when they felt stress). One direction could be developing and

testing to find out a more clear linkage and informing those who will experience

the biofeedback in advance. On the contrary, we would also expect more im-

plicit but intuitive interactions where people could have minimal feelings of being

monitored.

Moreover, in the analysis we presented in this thesis, we tend to interpret higher

entrainment levels as more positive aspects in group dynamics (e.g. increasing con-

nectedness). Biofeedback systems embedded with real-time analysis algorithms

are also expected to increase entrained experience. However, it is worth further

exploring the correlation between entrainment and group dynamics because en-

trainment might not always be related to positive experience [73]. It is especially

important to test and discuss when should we enhance entrainment and when

should we alleviate entrainment when designing for biofeedback.
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Umiltà, and Vittorio Gallese. Audience spontaneous entrainment during

the collective enjoyment of live performances: physiological and behavioral

measurements. Scientific reports, 10(1):1–12, 2020.

[38] Jiawen Han, Chi-Lan Yang, George Chernyshov, Zhuoqi Fu, Reiya Horii,

Takuji Narumi, and Kai Kunze. Exploring collective physiology sharing as

social cues to support engagement in online learning. In 20th International

Conference on Mobile and Ubiquitous Multimedia, pages 192–194, 2021.

[39] Jiawen Han, George Chernyshov, Moe Sugawa, Dingding Zheng, Danny

Hynds, Taichi Furukawa, Marcelo Padovani, Kouta Minamizawa, Karola

Marky, Jamie A Ward, et al. Linking audience physiology to choreography.

ACM Transactions on Computer-Human Interaction, 2021.

[40] Moe Sugawa, Taichi Furukawa, George Chernyshov, Danny Hynds, Jiawen

Han, Marcelo Padovani, Dingding Zheng, Karola Marky, Kai Kunze, and

Kouta Minamizawa. Boiling mind: Amplifying the audience-performer

connection through sonification and visualization of heart and electroder-

mal activities. In Proceedings of the Fifteenth International Conference

on Tangible, Embedded, and Embodied Interaction, TEI ’21, New York,

NY, USA, 2021. Association for Computing Machinery. URL: https:

//doi.org/10.1145/3430524.3440653, doi:10.1145/3430524.3440653.

137



References

[41] Zhuoqi Fu, Jiawen Han, Dingding Zheng, Moe Sugawa, Taichi Furukawa,

Chernyshov George, Hynds Danny, Padovani Marcelo, Marky Karola, Kouta

Minamizawa, et al. Boiling mind-a dataset of physiological signals during an

exploratory dance performance. In Augmented Humans Conference 2021,

pages 301–303, 2021.

[42] Yan He, George Chernyshov, Jiawen Han, Dingding Zheng, Ragnar Thom-

sen, Danny Hynds, Muyu Liu, Yuehui Yang, Yulan Ju, Yun Suen Pai, Kouta

Minamizawa, Kai Kunze, and Jamie A. Ward. Frisson waves: Exploring au-

tomatic detection, triggering and sharing of aesthetic chills in music perfor-

mances. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 6(3), sep

2022. URL: https://doi.org/10.1145/3550324, doi:10.1145/3550324.

[43] Yan He, George Chernyshov, Dingding Zheng, Jiawen Han, Ragnar Thom-

sen, Danny Hynds, Yuehui Yang, Yun Suen Pai, Kai Kunze, and Kouta

Minamizawa. Frisson waves: Sharing frisson to create collective empathetic

experiences for music performances. In SIGGRAPH Asia 2021 Emerging

Technologies, pages 1–2. 2021.

[44] Robert W Levenson. Blood, sweat, and fears: The autonomic architecture

of emotion. Annals of the New York Academy of Sciences, 1000(1):348–366,

2003.

[45] Bradley M Appelhans and Linda J Luecken. Heart rate variability as an

index of regulated emotional responding. Review of general psychology,

10(3):229–240, 2006.

[46] Philip Schmidt, Attila Reiss, Robert Duerichen, and Kristof Van Laer-

hoven. Wearable a↵ect and stress recognition: A review. arXiv preprint

arXiv:1811.08854, 2018.

[47] Patricia J Bota, Chen Wang, Ana LN Fred, and Hugo Plácido Da Silva. A

review, current challenges, and future possibilities on emotion recognition

using machine learning and physiological signals. IEEE Access, 7:140990–

141020, 2019.

138



References

[48] Robert W Levenson. The autonomic nervous system and emotion. Emotion

Review, 6(2):100–112, 2014.

[49] Julian F Thayer and Esther Sternberg. Beyond heart rate variability: va-

gal regulation of allostatic systems. Annals of the New York Academy of

Sciences, 1088(1):361–372, 2006.

[50] Kwang-Ho Choi, Junbeom Kim, O Sang Kwon, Min Ji Kim, Yeon Hee

Ryu, and Ji-Eun Park. Is heart rate variability (hrv) an adequate tool for

evaluating human emotions?–a focus on the use of the international a↵ective

picture system (iaps). Psychiatry Research, 251:192–196, 2017.

[51] Jos F Brosschot, Eduard Van Dijk, and Julian F Thayer. Daily worry

is related to low heart rate variability during waking and the subsequent

nocturnal sleep period. International journal of psychophysiology, 63(1):39–

47, 2007.

[52] Fred Sha↵er and JP Ginsberg. An overview of heart rate variability metrics

and norms. Frontiers in public health, 5:258, 2017.

[53] Carl Gustav Jung. Studies in word-association. Heinemann, 1918.

[54] TW Picton, I Martin, and PH Venables. Techniques in psychophysiology.

1980.

[55] Christian Tronstad, Gaute E Gjein, Sverre Grimnes, Ørjan G Martinsen,

Anne-Lene Krogstad, and Erik Fosse. Electrical measurement of sweat ac-

tivity. Physiological measurement, 29(6):S407, 2008.

[56] John L Andreassi. Psychophysiology: Human behavior and physiological

response. Psychology Press, 2010.

[57] Wolfram Boucsein. Electrodermal activity. Springer Science & Business

Media, 2012.

[58] Marieke van Dooren, Joris H Janssen, et al. Emotional sweating across

the body: Comparing 16 di↵erent skin conductance measurement locations.

Physiology & behavior, 106(2):298–304, 2012.

139



References

[59] Erin T Solovey, Marin Zec, Enrique Abdon Garcia Perez, Bryan Reimer, and

Bruce Mehler. Classifying driver workload using physiological and driving

performance data: two field studies. In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems, pages 4057–4066, 2014.

[60] John T Cacioppo, Louis G Tassinary, and Gary Berntson. Handbook of

psychophysiology. Cambridge university press, 2007.

[61] Michael E Dawson, Anne M Schell, and Diane L Filion. The electrodermal

system. 2017.

[62] William S Condon and William D Ogston. Sound film analysis of normal

and pathological behavior patterns. Journal of nervous and mental disease,

1966.

[63] Melissa Ellamil, Joshua Berson, Jen Wong, Louis Buckley, and Daniel S

Margulies. One in the dance: musical correlates of group synchrony in a

real-world club environment. PloS one, 11(10):e0164783, 2016.

[64] Martin Lang, Daniel J Shaw, Paul Reddish, Sebastian Wallot, Panagiotis

Mitkidis, and Dimitris Xygalatas. Lost in the rhythm: e↵ects of rhythm on

subsequent interpersonal coordination. Cognitive Science, 40(7):1797–1815,

2016.

[65] Richard C Schmidt and Michael J Richardson. Dynamics of interpersonal

coordination. In Coordination: Neural, behavioral and social dynamics,

pages 281–308. Springer, 2008.

[66] Liam Cross, Martine Turgeon, and Gray Atherton. How moving together

binds us together: the social consequences of interpersonal entrainment and

group processes. Open Psychology, 1(1):273–302, 2019.

[67] Shkurta Gashi, Elena Di Lascio, and Silvia Santini. Using unobtrusive wear-

able sensors to measure the physiological synchrony between presenters and

audience members. Proceedings of the ACM on Interactive, Mobile, Wear-

able and Ubiquitous Technologies, 3(1):1–19, 2019.

140



References

[68] Giorgio Quer, Joshal Daftari, and Ramesh R Rao. Heart rate wavelet co-

herence analysis to investigate group entrainment. Pervasive and Mobile

Computing, 28:21–34, 2016.

[69] Peter E Keller, Giacomo Novembre, and Michael J Hove. Rhythm in joint

action: psychological and neurophysiological mechanisms for real-time in-

terpersonal coordination. Philosophical Transactions of the Royal Society

B: Biological Sciences, 369(1658):20130394, 2014.

[70] Donald J Berndt and James Cli↵ord. Using dynamic time warping to find

patterns in time series. In KDD workshop, volume 10, pages 359–370. Seat-

tle, WA, USA:, 1994.

[71] Theodoros Kostoulas, Guillaume Chanel, Michal Muszynski, Patrizia Lom-

bardo, and Thierry Pun. Dynamic time warping of multimodal signals for

detecting highlights in movies. In Proceedings of the 1st Workshop on Mod-

eling INTERPERsonal SynchrONy And infLuence, pages 35–40, 2015.

[72] Eunice Jun, Daniel McDu↵, and Mary Czerwinski. Circadian rhythms

and physiological synchrony: Evidence of the impact of diversity on small

group creativity. Proceedings of the ACM on Human-Computer Interaction,

3(CSCW):1–22, 2019.

[73] Maria Elide Vanutelli, Laura Gatti, Laura Angioletti, and Michela Balconi.

A↵ective synchrony and autonomic coupling during cooperation: a hyper-

scanning study. BioMed Research International, 2017, 2017.

[74] Eetu Haataja, Jonna Malmberg, and Sanna Järvelä. Monitoring in col-
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Appendices

A. Glossary

The definitions are summarized referring to either Wikipedia or related papers [52,

61] and ordered alphabetically.

Autonomic Nervous System (ANS): The autonomic nervous system (ANS)

is a division of the peripheral nervous system that supplies smooth muscle and

glands, and thus influences the function of internal organs. ANS is a control sys-

tem that acts largely unconsciously and regulates bodily functions.

Band-pass filter: A band-pass filter allows through components in a specified

band of frequencies, called its passband but blocks components with frequencies

above or below this band.

Biofeedback: Biofeedback is the process of gaining greater awareness of many

physiological functions of one’s own body. In this dissertation, it is defined as

using physiological data to create interactive experiences.

Choreography: Choreography is the art or practice of designing sequences of

movements of physical bodies (or their depictions) in which motion or form or

both are specified.

Dynamic time warping: In time series analysis, dynamic time warping (DTW)

is an algorithm for measuring similarity between two temporal sequences.

Electrodermal activity (EDA): The umbrella term used for defining auto-

nomic changes in the electrical properties of the skin. The most widely studied

property is the skin conductance, which can be quantified by applying an elec-

trical potential between two points of skin contact and measuring the resulting

current flow between them.

Frisson: Frisson is a psycho-physiological phenomenon commonly described as

having goosebumps, or feeling shivers down one’s spine, that can be triggered

from external stimuli such as music or intense emotions.
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Fortissimo: Fortissimo is borrowed from an Italian word that means very loud.

It represents dynamic or volume level in western music indicating the piece is

played very loud. heart rate variability (HRV): Heart rate variability (HRV)

is the fluctuation in the time intervals between adjacent heartbeats.

HF power: The power of the high-frequency band (0.15–0.4 Hz)

High-pass filter: A high-pass filter is an electronic filter that passes signals with

a frequency higher than a certain cuto↵ frequency and attenuates signals with

frequencies lower than the cuto↵ frequency.

IDE: An integrated development environment (IDE) is a software application

that provides comprehensive facilities to computer programmers for software de-

velopment.

Interbeat Interval (IBI): Time interval between successive heartbeats.

LF power: The power of the low-frequency band (0.04–0.15 Hz).

LF/HF: The ratio of LF to HF power.

Low-pass filter: A low-pass filter is a filter that passes signals with a frequency

lower than a selected cuto↵ frequency and attenuates signals with frequencies

higher than the cuto↵ frequency.

NN intervals: Interbeat intervals from which artifacts have been removed.

OSC: Open Sound Control (OSC) is a protocol for networking sound synthe-

sizers, computers, and other multimedia devices for purposes such as musical

performance or show control.

Parasympathetic Nervous System (PSNS): The parasympathetic nervous

system (PSNS) is one of the ANS divisions and is responsible for stimulation of

“rest-and-digest” activities that occur when the body is at rest.

pNN50: Percentage of successive RR intervals that di↵er by more than 50 ms.

One HRV feature that is strongly correlated with the activation of PSNS.

RMSSD: Root mean square of successive RR interval di↵erences.

RR intervals : Interbeat intervals between all successive heartbeats.

SDNN : Standard deviation of NN intervals.

support-vector machines (SVM): In machine learning, support-vector ma-

chines (SVMs) are supervised learning models with associated learning algorithms

that analyze data for classification and regression analysis.

sympathetic nervous system (SNS):The sympathetic nervous system (SNS)
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is one of the ANS divisions and is to stimulate the body’s fight or flight response.

TCP/IP: Transmission Control Protocol (TCP) is one of the main protocols of

the Internet protocol suite. It originated in the initial network implementation in

which it complemented the Internet Protocol (IP). Therefore, the entire suite is

commonly referred to as TCP/IP

UDP: User Datagram Protocol (UDP) is one of the core members of the Inter-

net protocol suite. With UDP, computer applications can send messages, in this

case referred to as datagrams, to other hosts on an Internet Protocol (IP) network.

B. Large Scale Dataset

There are two large scale dataset collected in-the-wild analyzed in this thesis. We

publicize the two dataset on the open-source website for those who may conduct

similar research.

B.1 Dataset from Boiling Mind Project

The dataset consists of audience multi-modal signals (EDA, BVP, wrist accelera-

tion, and angular velocity) over three performances.

In performance 1, we have 34 recordings (male =17; female =17). In perfor-

mance 2, we have 31 recordings (male =13; female =18). In performance 3, we

have 33 recordings (male =19; female =14).

The dataset is stored at:https://osf.io/sypz4/.

B.2 Dataset from Frisson Waves Project

We have 33 recordings (EDA, BVP, and frisson labels) in total (male = 16; female

= 17) from the lab study to develop frission detection model. In this thesis, we

removed incomplete and noisy data leaving 19 participants‘ data. We have 48

recordings collected (BVP and EDA data) from in-the-wild conert (male = 19;

female = 28, prefer not to say=1).

The dataset together with the questionnaires is stored at: https://osf.io/rzpn3/.
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C. Example Codes for Physiological Data Anal-

ysis

This section provides example codes written in python for feature extraction in

o✏ine analysis and real-time analysis. The codes are developed using multiple

python packages, such as scipy [107], heartpy [148], and Neurokit2 [100]. Using

those established packages could help extract HRV features and EDA features in

a fast and feasible way.

C.1 Example codes for o✏ine analysis

The codes in this section use BVP data as an example to explain the feature
extraction process.

import numpy as np

import pandas as pd

from sc ipy . s i g n a l import butter , f i l t f i l t

import heartpy as hp

import neurok i t2 as nk

# func t i on s

de f s e t t imepa s s ( data , timename , s t a r t ) :

data [ ‘ t imepass ’ ] = round ( data [ timename ] − s t a r t )

data [ ‘ timepassMin ’ ] = round ( data [ ‘ t imepass ’ ] / 6 0 , n d i g i t s= 0)

re turn data

de f lowpass ( data , s i gna l type , f r eq , cu to f f , order ) :

w = cu t o f f /( f r e q /2)

b , a = butte r ( order , w, ‘ low ’ )

f i l t e r e d v a l u e = f i l t f i l t (b , a , data [ s i gna l t yp e ] )

r e turn f i l t e r e d v a l u e

de f bvp adjust ( r aw l i s t , samplerate ) :

f i l t e r e d l i s t = hp . remove base l ine wander ( r aw l i s t , samplerate )

s c a l e d l i s t = hp . s c a l e d a t a ( f i l t e r e d l i s t , lower =0,

upper = 2000)

re turn s c a l e d l i s t
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de f g e t h r v f e a t u r e s ( data , timetype , window , increment , ad jus t ) :

HRV features = [ ‘HRV MeanNN’ , ‘HRV SDNN’ , ‘HRV RMSSD’ ,

‘HRV SDSD’ , ‘HRV pNN50’ , ‘HRV pNN20’ , ‘HRV LFHF’ ]

h r v l i s t = [ ]

t imepassSec= [ ]

i = data [ t imetype ] . min ( )

whi l e True :

s i gna l ok = ( data [ t imetype ] >= i )&

( data [ t imetype ] < i + window)

i f s i gna l ok . sum( ) >= 200 :

r aw l i s t = data [ ‘ b vp f i l t e r e d ’ ] [ s i gna l ok ]

i f ad jus t == True :

b v p l i s t = prep roc e s s . bvp adjust ( r aw l i s t , 1 00 )

e l s e :

b v p l i s t = r aw l i s t

i n f o = nk . ppg f indpeaks (hp . enhance peaks ( b v p l i s t ) ,

s ampl ing ra te =100 , method = ‘ e lgend i ’ )

peaks = i n f o [ ’ PPG Peaks ’ ]

peaks = peaks [ np . l o g i c a l n o t (np . i snan ( peaks ) ) ]

hrv = nk . hrv ( peaks , sampl ing ra te =100 ,

show = False ) [ HRV features ]

i = i + increment

h r v l i s t . append ( hrv )

t imepassSec . append ( i+increment )

e l s e :

i = i + increment

i f i > data [ t imetype ] . max( ) − window :

break

return h r v l i s t , t imepassSec

de f ge t hrv data f rame ( data , timetype , window , increment , ad jus t ) :

hrv = g e t h r v f e a t u r e s ( data , timetype , window ,

increment , ad jus t ) [ 0 ]

t imepassSec = g e t h r v f e a t u r e s ( data , timetype ,
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window , increment , ad jus t ) [ 1 ]

c o n c a t e l i s t = [ ]

f o r i in range ( l en ( hrv ) ) :

c o n c a t e l i s t . append ( hrv [ i ] )

hrv dataframe =pd . concat ( c on c a t e l i s t , ax i s =0). r e s e t i n d e x ( )

hrv dataframe . i n t e r p o l a t e ( i np l a c e=True )

hrv dataframe [ ‘ t imepassSec ’ ] = t imepassSec

hrv dataframe = hrv dataframe . groupby (

’ t imepassSec ’

) . mean ( ) . r e s e t i n d e x ( )

re turn hrv dataframe

# execute the code

# df bvp −−> datase t saved in the format o f d i c t i ona ry

# ea r l i e s tT ime −−> the s t a r t time o f the group event

f o r key in s u b l i s t :

df bvp [ key ] = s e t t imepa s s ( df bvp [ key ] , ‘ localTime ’ ,

e a r l i e s tT ime )

df bvp [ key ] [ ‘ b vp f i l t e r e d ’ ] = preproc e s s . lowpass ( df bvp [ key ] ,

‘ bvp ’ , 2 00 , 3 , 2 )

hrv dataframe= d i c t ( )

f o r key in s u b l i s t :

p r i n t ( key )

hrv dataframe [ key ] = f e a t u r e e x t r a c t . ge t hrv data f rame (

df bvp [ key ] , ‘ t imepassSec ’ ,

240 ,120 , True )

hrv dataframe [ key ] [ ‘ subject number ’ ] = key

s c a l e r = MinMaxScaler ( )

f o r key in s u b l i s t :

f o r f e a t u r e in h r v f e a t u r e s :

data = hrv dataframe [ key ] [ f e a t u r e ] . to numpy ( )

data = data . reshape ( ( data . shape [ 0 ] , 1 ) )

hrv dataframe [ key ] [ ‘ normal ized ’+ f e a tu r e ] =

s c a l e r . f i t t r a n s f o rm ( data )
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#hrv dataframe > f e a t u r e s saved in the format o f d i c t i ona ry

C.2 Example codes for real-time analysis

The codes in this section use EDA data as an example to explain the feature extraction process.

As an example for real-time analysis, codes to stream data and implement the trained model

are also included.

import sys

import time

import pandas as pd

import numpy as np

import neurok i t2 as nk

from sc ipy . s i g n a l import butter , f i l t f i l t

from sk l e a rn . p r ep ro c e s s i ng import MinMaxScaler , StandardSca ler

import p i c k l e

import random

pd . opt i ons .mode . cha ined ass ignment = None

from random import seed

from random import random

#func t i on s

de f lowpass ( data , f r eq , cu to f f , order ) :

w = cu t o f f /( f r e q /2)

b , a = butte r ( order , w, ‘ low ’ )

d a t a f i l t e r e d = f i l t f i l t (b , a , data )

re turn d a t a f i l t e r e d

de f g e t e d a f e a t u r e s ( data ) :

data [ ‘ e d a f i l t e r e d go od ’ ] = lowpass ( d f eda [ ‘ eda ’ ] ,

4 . 545 , 0 . 01 , 2)

data [ ‘ e d a f i l t e r e d go od ’ ] = data [ ‘ e d a f i l t e r e d go od ’ ] . f i l l n a (0 )

s i gna l s , i n f o = nk . eda proce s s ( data [ ‘ eda ’ ] ,

s amp l ing ra te= 4 .545 )

eda dataframe = s i g n a l s [ [ ‘ EDA Tonic ’ , ’ EDA Phasic ’ ] ]

eda dataframe = eda dataframe . f i l l n a (0 )

eda dataframe [ ‘ ok ’ ] = 1

s c a l e r = MinMaxScaler ( f e a tu r e r ang e = (0 , 1 ) )
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f o r f e a t u r e in [ ‘ EDA Tonic ’ , ‘ EDA Phasic ’ ] :

data = eda dataframe [ f e a t u r e ] . to numpy ( )

data = data . reshape ( ( data . shape [ 0 ] , 1 ) )

eda dataframe [ ‘ normal ized ’+ f e a tu r e ] =

s c a l e r . f i t t r a n s f o rm ( data )

re turn ( eda dataframe . t a i l ( 1 ) )

# execute code

d f eda = pd . DataFrame ( )

dataBuf f e r eda = [ ]

seed ( )

with open ( ‘ ensemble Model . pkl ’ , ‘ rb ’ ) as f i l e :

ensemble Model = p i c k l e . load ( f i l e )

f i l e . c l o s e ( )

with open ( ‘ s ca l e r mode l . pkl ’ , ‘ rb ’ ) as f i l e :

s ca l e r Mode l = p i c k l e . load ( f i l e )

f i l e . c l o s e ( )

sys . s tdout . wr i t e ( ‘ ‘ Python Sta r t i ng \n”)
sys . s tdout . f l u s h ( )

f o r l i n e in sys . s td in :

# Remove t r a i l i n g newl ine cha ra c t e r s us ing s t r i p ( )

i f ‘ ex i t ’ == l i n e . s t r i p ( ) :

sys . s tdout . wr i t e ( ‘ Found ex i t . Terminating the program\n ’ )

sys . s tdout . f l u s h ( )

e x i t (0 )

e l s e :

i f ( l i n e [ 0 ] == ‘ e ’ ) :

dataBuf f e r eda . append ( f l o a t ( l i n e [ 1 : ] ) )

e l s e :

dataBuf fer bvp . append ( f l o a t ( l i n e [ 1 : ] ) )

158



Appendices C. Example Codes for Physiological Data Analysis

i f ( l en ( dataBuf f e r eda ) == 250 ) :

startTime = time . p e r f c oun t e r ( )

d f eda = df eda . append (pd . DataFrame ( dataBuf fer eda ,

columns=[ ‘ eda ’ ] ) , i gno r e i ndex=True )

dataBuf f e r eda = [ ]

i f ( l en ( d f eda ) > 300 ) :

d f eda = df eda . i l o c [ l en ( d f eda ) −300: ]

f e a tu r e data f r ame = g e t e d a f e a t u r e s ( d f eda )

f ea tu r e data f r ame = fea tu r e data f r ame . f i l l n a ( 0 ) ;

# making p r e d i c t i o n s

X = fea tu r e data f r ame [ [ ‘ normalized EDA Tonic ’ ,

‘ normalized EDA Phasic ’ ] ]

X sca led = sca l e r Mode l . t rans form (X)

y = ensemble Model . p r ed i c t ( X sca led )

sys . s tdout . wr i t e ( s t r ( y [ 0 ] ) )

sys . s tdout . wr i t e ( ‘ ‘ ,”+ s t r ( time . p e r f c oun t e r ( )

− startTime ) )

sys . s tdout . wr i t e ( ‘ ‘\n”)
sys . s tdout . f l u s h ( )

sys . s tdout . wr i t e ( ‘ ‘ Python Stopping \n”)
sys . s tdout . f l u s h ( )
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