
Doctoral Dissertation

Academic Year 2018

A State-Transfer-based Open Framework for

Internet of Things Service Composition

Keio University

Graduate School of Media Design

Ruowei Xiao

A Doctoral Dissertation

submitted to Keio University Graduate School of Media Design

in partial fulfillment of the requirements for the degree of

Ph.D of Media Design

Ruowei Xiao

Thesis Advisor:

Associate Professor Kazunori Sugiura (Principal Advisor)

Professor Akira Kato (Co-advisor)

Professor Keiko Okawa (Co-advisor)

Thesis Committee:

Professor Akira Kato (Principal Advisor)

Professor Keiko Okawa (Member)

Professor Kai Kunze (Member)

Senior Assistant Professor Takeshi Sakurada (Member)

Abstract of Doctoral Dissertation of Academic Year 2018

A State-Transfer-based Open Framework for

Internet of Things Service Composition

Category: Science / Engineering

Summary

Current Internet-of-Things (IoT) applications are built upon multiple architec-

tures, standards and platforms, whose heterogeneity leads to domain specific tech-

nology solutions that cannot interoperate with each other. It generates a growing

need to develop and experiment with technology solutions that break and bridge

the barriers.

This research introduces an open IoT development framework that offers gen-

eral, platform-agnostic development interfaces, and process. It allows IoT re-

searchers and developers to (re-)use and integrate a wider range of IoT and Web

services. A Finite State Machine (FSM) model was adopted to provide a uniform

service representation as well as an entry point for swift and flexible service com-

position under Distributed Service Architecture (DSA). Leveraging this open IoT

service composition framework, value-added, cross-domain IoT applications and

business logic can be developed, deployed, and managed in an on-the-fly manner.

As a typical implementation, a set of web development toolkit named Hyper

Sensor Markup Language (HSML) has been developed. Several target domain

applications, e.g. multi-source environmental monitoring, open automation sys-

tems and etc., have been built. Based on the HSML, the proposed framework has

been evaluated by means of user experiment, expert interview and architectural

comparison. Results have indicated a better overall performance on expertise

requirement, customization cost, reusability and cross-domain interoperability,

when compared with other mainstream open IoT service composition frameworks.

The proposed framework has demonstrated its capability to greatly lower

down the technical threshold of IoT application development and facilitate fast-

prototyping and test over a variety of application domains, including but not

limited to smart cities, public environment automation, and precision agriculture.

i

ABSTRACT

And going hand in hand with other complementary technologies like semantic

web, machine learning and block chain etc., it will hopefully become the primary

step towards the equity of future IoT services.

Keywords:

Service Composition, Service Oriented Architecture, IoT Application

Keio University Graduate School of Media Design

Ruowei Xiao

ii

Acknowledgements

The past three and half years have been the most grinding period of my whole

life, when I was struggling through endless self-doubt and challenges from both

physical and mental aspects. Here, I want to express my gratitude to those people

who have generously offered their help during my Ph.D study.

Firstly, I appreciate all the supports from my supervisor Professor Kazurori

Sugiura, without him there would be no my research at all. Also I want to thank

Professor Akira Kato. As my dissertation committee chair, he always spent the

most time and patience to provide concrete academic instructions. Sincere grat-

itude also for my committee members, Professor Keiko Okawa, Professor Kai

Kunze as well as Senior Assistant Professor Takeshi Sakurada from Tokyo Uni-

versity of Agriculture and Technology. Even when extremely occupied, they were

always willing to offer inspiring advice and second opinions. Thanks to these kind

people, I became more informed about the nature of scientific research: It is all

about how to establish a self-consistent theory, how to position and verify it, and

most importantly, figure out where your limitation is at.

Secondly, I feel more than grateful to my friends, Wang Dongyu and Yu

Xiejing. The three of us first met at the graduate school opening ceremony in

September 2012, then became the only three Chinese students in our batch. They

were the witnesses to all my trial-and-error within the past six years. Specifically

Mr. Wang, he has always been a supportive colleague. And we cooperated in the

Omron project, in which I collected a lot of important basic data for this very

research. Both of us pursued similar academic goal and also being devotional

believers. The only difference may be that he is a Christian, while I am not.

At last, there is another person I have to express specific thanks to. I want

to thank Dr. Zhanwei Wu, for being not only my tutor, my colleague, my family,

my comrade who fights side by side with me, but also my guide who has led me

through those dimmest moments in my life.

iii

Table of Contents

Acknowledgements iii

1 Introduction 1

1.1 Background . 1

1.2 Research Issues . 4

1.3 Research Goal . 5

1.4 Research Constraint . 7

1.5 Content Overview . 7

2 Research Background 11

2.1 Internet of Things Technology Stack 11

2.1.1 General Overview . 11

2.1.2 Network Interface Layer 13

2.1.3 Internet Layer . 13

2.1.4 Transport and Resource Layer 15

2.1.5 Resource Representation Layer 16

2.2 Open IoT Development Framework 18

2.2.1 Process Virtual Machine Frameworks 19

2.2.2 Domestic Service Hub Frameworks 20

2.3 Mainstream Web Service Architecture 21

2.3.1 WS-* Architecture . 22

2.3.2 REpresentational State Transfer 25

2.3.3 Operation-based Paradigm and State-based Paradigm . . . 27

2.4 Web Service Composition . 29

2.4.1 Service Composition . 30

2.4.2 Web Service Composition Category 31

2.4.3 Web Service Composition Approach 32

2.5 IoT Service Composition: Parallel Research 34

2.5.1 Programming/Process-based Composition 35

2.5.2 Rule-based Composition 36

iv

TABLE OF CONTENTS

2.5.3 Flow-based Composition 37

2.6 Summary . 39

3 Approach 41

3.1 Research History . 41

3.2 State-based Composable Service Interface 43

3.3 Physical and Virtual State Synchronization 46

3.4 State-Transfer-based IoT Service Composition 50

3.5 StateML: A Unified Resource Representation 53

3.5.1 Hybrid State-based Service Interface Description 53

3.5.2 State-Transfer-based Messaging 58

3.6 Summary . 60

4 IoT Service Composition Framework: HSML 61

4.1 Servitization . 61

4.2 General System Architecture . 64

4.3 Web Development Toolkit . 68

4.3.1 HSML Syntax Paradigm 68

4.3.2 HSML Usage Sample . 74

4.4 Central Service Orchestration . 78

4.5 Typical Deployment Cases . 82

4.5.1 Two Deployment Patterns 82

4.5.2 Deployment Case I: Environment Monitoring 85

4.5.3 Deployment Case II: Open Automation 89

4.6 Summary . 91

5 Evaluation 93

5.1 User Test . 94

5.1.1 Learnability . 94

5.1.2 Sociability . 95

5.1.3 Retrievability . 96

5.1.4 Task Load Comparison . 99

5.2 Expert Interview . 105

5.3 Architectural Assessment . 107

5.3.1 Customization Cost . 108

5.3.2 Reusability . 110

5.3.3 Cross-Domain Interoperability 113

v

TABLE OF CONTENTS

5.3.4 Scalability . 115

5.4 Discussions and Limitations . 120

5.5 Summary . 122

6 Conclusion 124

6.1 Contribution . 124

6.2 Limitation . 126

6.3 Future Issues . 128

6.4 Summary . 129

References 130

Appendix 143

A Sensor StateML Description Sample 143

B Actuator StateML Description Sample 147

C Servitization Example in Node.JS 151

D User Experiment Guidance . 153

D.1 Experiment Tasks . 153

D.2 Experiment Environment 153

D.3 Comparison Systems . 154

D.4 Experiment Procedure . 154

vi

List of Figures

1.1 From Closed, Monolithic to Open, Modular IoT Application Ar-

chitecture . 2

1.2 Research Contents Overview . 8

2.1 Mainstream Web Technology Stack 12

2.2 WS-* Workflow and Protocol Stack 23

2.3 Stateful v.s. Stateless . 28

2.4 Service Orchestration v.s. Service Choreography 31

2.5 an example of editing PubNub process 35

2.6 an example of setting Home Assitant rule 37

2.7 an example of defining Node-Red flow 38

3.1 A State Machine Model for a Temperature Sensor 45

3.2 A State Machine Model for a smart blind and its State Transfer

SensorML Sample . 46

3.3 Traditional Physical-Virtual Synchronization 48

3.4 State-based Physical-Virtual Synchronization 49

3.5 Pattern Equivalence between a Switch and a Door 50

3.6 A State Transfer Chain Example under Central Orchestration . . 52

3.7 Namespace in SensorSample . 53

3.8 Input List in SensorSample . 54

3.9 Output List in SensorSample . 54

3.10 Sensor Finite State Machine . 56

3.11 State Chart in SensorSample . 56

4.1 Three Different Types of Mainstream Servitization 62

4.2 System Components . 65

4.3 A Three-Layer System Architecture Layout 67

4.4 HSML Syntax Paradigm . 69

4.5 File Uploader of HSML web API 71

vii

LIST OF FIGURES

4.6 Web HSML Editor . 71

4.7 Geo-Visualizer based on Web Map 72

4.8 London Metro Map by HSML 77

4.9 The Interpretation Mechanism of HSML 79

4.10 Function Flow Diagram . 80

4.11 A Typical Deployment in Fully-Hosted Pattern 82

4.12 A Typical Deployment in Self-Hosted Pattern 83

4.13 Fat Client Model v.s. Thin Client Model 84

4.14 Virtual Device Pattern v.s. Realtime Device Pattern 85

4.15 Deployment Layout of Case I . 86

4.16 Composition Result of Case I on Mobile (left) and Digital Sig-

nage(right) . 88

4.17 Deployment Layout of Case II 89

4.18 Composition Result of Case II 90

5.1 Evaluation Strategy . 93

5.2 Learnability Test Results . 95

5.3 Sociability Test Results . 96

5.4 Three Types of Relation Information Provided by HSML 97

5.5 Comparison on Retrievability Results 98

5.6 Testbed on Cloud Server Environment 117

5.7 Test Result: Mean Latency . 118

5.8 Test Result: Rejection Rate . 119

D.1 Graphic FSM Service Description for Temperature Sensor 160

D.2 Graphic FSM Service Description for LED 161

viii

List of Tables

4.1 Resource Descriptor < loc > Usage 72

4.2 Transfer Descriptor < lnk > Usage 74

5.1 Test Sequence for Each Participant in Latin Square 100

5.2 Mean Time Consumption for the First Task 100

5.3 Mean Time Consumption for the Second Task 101

5.4 Mean Question Times . 101

5.5 Mean Overall Ratings of NASA-TLX 102

5.6 Mean Mental Demand . 102

5.7 Mean Physical Demand . 103

5.8 Mean Temporal Demand . 103

5.9 Mean Performance . 103

5.10 Mean Effort . 104

5.11 Mean Frustration . 104

5.12 Expert Interview Results . 106

5.13 Comparison on Customization Cost 110

5.14 Comparison on Reusability . 113

5.15 Comparison on Cross-Domain Interoperablity 116

5.16 Roundtrip Duration (ms) in Cloud and Edge Computing Environ-

ment . 120

ix

Chapter 1

Introduction

1.1 Background

The emerging field of compact sensors, actuators and IoT devices offers an un-

precedented opportunity for a wide spectrum of applications. Sensors, actuators,

IoT devices are greatly featured by their physical entities, and their modes of oper-

ation introduce requirements and trade-offs that are very different from traditional

systems [1]. The heterogeneity in hardware modalities, sample rates, communi-

cation protocols all the way to data schema, further makes the development of

applications an excessively complex issue [2].

Currently, most applications are still integrating sensors, actuators and IoT

devices through proprietary mechanisms, instead of building upon a well-defined

coherent infrastructure [3]. They rely exclusively on vendor-specific platforms and

closed technology stack that owned, maintained and used by a single party. This

kind of monolithic, ad hoc architecture, often optimized for particular purposes, is

able to achieve relatively good real-time performance and high fidelity in specific

domains [4], e.g. an industrial automation system or a medical monitoring system.

However, it fails to cope with a more general-purpose, cross-organizational

scenarios and dynamic, situational needs. A monolithic code of tightly coupled

modules consequently leads to reprogramming efforts to make the network ex-

tensible to serve new applications. And once the top application is launched, it

is never easy to get any component altered or replaced, which implies limited

reusability and inherently low cost-effectiveness, especially in large-scale deploy-

ment scenarios.

In recent few decades, emerging protocols for resource-constrained devices like

6LoWPAN, CoAP, EXI and etc., have paved the road for Internet of Things and

traditional Web technology stack to converge. Meanwhile, the rapid development

of microprocessor technology gives rise to the IoT hardware with richer computing

ability and smaller volume, which is playing a more and more important role in

1

INTRODUCTION 1.1 Background

future computational systems. And as high-speed wireless Internet accessibility

becomes pervasive, the boundary used to be drew by limited computing resource

and communication delay between the modern IoT and the Web has gradually

vanished. As a result, we have witnessed an architectural transition took place

within IoT application development area within recent decade, shifting from the

previously closed, monolithic technology stack to a more open, modular one, as

shown in Figure 1.1. Recently, this virtualization and servitization featured tech-

Figure 1.1: From Closed, Monolithic to Open, Modular IoT Application Architecture

nology stack is gaining momentum in both IT, sales and manufacturing industry.

Companies like Google, Amazon, GE and Bosch [5] believe that it will help to pro-

mote new business model and open innovation by turning heterogeneous, private

devices and systems into standard, interoperable services. virtualization refers to

the concept that allows the abstraction of physical computing resources into logical

units, enabling their efficient usage by multiple independent users [6]. In IoT do-

main, vitualization can be achieved by different kinds of methods, from container

(such as Linux Docker) [7] based to virtual machine based (such as JVM) [8], from

deploying lightweight VM (such as node.js) in local or edge device [7] to emulat-

ing a whole physical computing environment and related hardware resources on

the cloud (such as AWS IoT) [9]. While virtualization simplifies the access and

2

INTRODUCTION 1.1 Background

operation of physical devices by turning them into virtual objects, servitization

further provides different virtual objects with uniform, loose-coupling interface

so that they can better interact with each other [10]. Servitization is not some-

thing new either. It has been successfully practised in enterprise software domain

for years, example like ERP [11]. Many service oriented architecture (SOA) and

related frameworks have been proposed in the past years, including: language

specific ones, e.g. OSGi [12], and web protocol based ones, e.g. SOAP and REST.

However, what is the best way to introduce the service oriented architecture into

IoT domain is still controversial [13].

In this research, we rely on virtualization and servitization researches to pro-

vide necessary lower-layer technical support, since the SOA is believed to be “the

only technology stack capable of dealing composite application developments” [14].

Particularly in IoT application area, SOA allows to expose heterogeneous devices

and their functionality as independent services with generic service interfaces,

while concealing their internal mechanisms and operations. Once sensors, actua-

tors and IoT devices are wrapped up into standard services, i.e. servitized, the

true capacity can be achieved for the first time through automating customizable

tasks by simply aggregating these alike service “blocks” together [15]. However,

as many IoT solution providers have already attempted to provide from-device-

to-service solutions, such as IBM bluemix, Amazon device shadow, Google Cloud

IoT etc, virtualization and servitization research itself is generally considered out

of our scope. Though in the following chapters, we will introduce some practi-

cal examples to show typical implementation of IoT host services, the framework

actually does not depend on any specific virtualization or servitization technology.

Among traditional SOA, Web service is considered to provide more consistent

properties with our research aims to lower down the high customization cost and

kick-start barriers, and increase the component reusability of current IoT appli-

cations, specifically when deployed in large-scale, cross-organizational scenarios.

When compared with other services, e.g. Java service, Web service is both lan-

guage and platform independent, and web technology stack can well support de-

centralized and distributed computing and is the most widely-adopted technology

by various institutions and organizations.

3

INTRODUCTION 1.2 Research Issues

1.2 Research Issues

The open, modular architectural style based on virtualization and servitization

have already solved some existing issues in IoT application development do-

main. Compared with its ancestor, it has concealed vendor-specific APIs/develop-

ment tools and well absorbed hardware dependency. Off-bottom details, such as

protocol-specific communication, are also shielded from the developers to a great

extent. However, a few challenges still remain to be addressed:

1. High expertise requirement and kick-start barriers. There are sev-

eral contributors to this issue, among which we put specific emphasis on

the complexity of development tools. For novice developers, current IoT ap-

plication development still rely heavily on specific programming languages,

SDKs, and IDEs that require well-trained programming skills and technical

expertise. Moreover, how many internal details and operations that devel-

opers need to understand in order to use and integrate single IoT service

node is another factor that affects the overall learning cost.

2. High customization cost. As for customization cost, one of the causes lies

in the complicated, usually inconsistent IoT service interfaces. And a lack

of efficient service assembly mechanism further leads to large amount of pro-

gramming and reprogramming work load, and makes constructing business

logic or task flow from the bottom up difficult and time consuming. Conse-

quently, it is still prevalent to manually tailor and integrate IoT services to

fulfill specific user needs nowadays.

3. Limited reusability. Compared with its monolithic ancestor, the open,

modular architecture has greatly increased the encapsulation and hence the

service reusability. However, the lower level of service encapsulation, which

implies a tighter coupling inbetween services, the harder for the service to

be reused. And there also remain lots of problems like how to reuse exist-

ing functionality and legacy systems in new applications, or how to obtain

necessary information of third-party services under distributed service ar-

chitecture.

4. Difficult deployment in geographically dispersed, cross-organiza-

tional scenarios. It is very common in application cases like smart city,

automation in communal spaces etc., that a multitude of IoT services that

4

INTRODUCTION 1.3 Research Goal

owned and managed by a diversity of organizations and individuals are de-

ployed in a large geographical scale. They are supposed to be networked

to provide situational, value-added services collaboratively, which entails an

open service architecture that supports resource sharing and discovery.

Targeting the aforementioned issues, this research provides a partial solution

based on IoT service composition under distributed service architecture, with

specifically focuses on: 1) the interface composability between servitized IoT

nodes, 2) the composition mechanism to coordinate services to form an customized

task logic, and 3) the user interaction that allows IoT developers to manipulate

service composition. As the boundary of our research scope, though the servitiza-

tion of sensors, actuators and IoT devices is expected to be taken over by service

developers, device owners, research communities and part of the manufacturers,

typical servitization examples based on mainstream platforms and technologies

will also be presented in this research. Also, service discovery and query mecha-

nisms are within our research interests.

To pay specific attentions, issues related to routing, topology managing, and

local communication protocols etc., are commonly considered out of scope due

to the service homogenization after encapsulating internal technical specifications

into web services. Besides, privacy and security are always a concerning issue in

regard to networked devices. And unlike traditional computer network, the insta-

bility and high mobility of IoT nodes also brings unique challenges in regard to

provide reliable quality of services. Security and privacy, fault detection and fault

tolerance belong to those issues that varied from case to case, which are not only

dictated by underlying web architecture but also by the specific components and

composition strategy that IoT developers selected, therefore will not be discussed

in details either.

1.3 Research Goal

In a long-term perspective, this research is dedicated to achieve the “equity of

service” in future IoT field, which envisions that each and every citizen shall

have equitable, inclusive accessibility and quality of public IoT infrastructure and

resources. Going hand-in-hand with complementary technologies like semantic

web, machine learning, and blockchain etc., it is supposed to bring great innova-

tions to the process of IoT application development, deployment and management,

5

INTRODUCTION 1.3 Research Goal

thereby push one step further towards an open, trustable, and autonomous smart

society.

Traditional IoT application development is based on multiple architectures,

platforms and standards, which usually entails technical expertise and specific

knowledge of lower-layer details. One of the consequences are silo systems that

cannot interoperate with each other, which has made IoT more like “Internet-

connected Things”, rather than real “Internet of Things”. And the access to IoT

welfare was hence monopolized by tech-savvy people.

In this specific research, we attempted to lower down the technical barriers of

IoT application development, and provide cross-domain, platform-agnostic

interoperability among heterogeneous IoT and Web services. To achieve this goal,

we proposed an open IoT development framework for research communities, de-

velopers and beginners to fast-prototype their IoT applications and test their

task logic. It allows developers to (re)use and integrate a wide range of IoT and

Web services, which are wrapped into services with unified interfaces regardless of

the underlying technical differences. Thus, complicated development procedure is

supposed to be simplified and reduced to the assembly and orchestration among

selected IoT components, which refers to “IoT Service Composition” in this

research.

User tests showed that the DSL-based composition tools we provided was

beginner-friendly, which generated affordable task load even for novice developers

who don’t have any previous programming experiences. And architectural evalu-

ation showed that the proposed framework had a better overall performance over

customization cost, reusability and cross-domain interoperability, when compared

with other mainstream IoT service composition frameworks.

For open access and promotion purpose, we have launched an online open

project1 that could be dated back to the year 2014 and source codes are now

available in Github repository2. Later, we have collaborated with an automation

components and devices manufacturer, Omron Corporation, from 2015 to 2017,

during which we have actually implemented the whole framework and deployed

in distributed, cross-organizational scenarios.

1 http://www2.kmd.keio.ac.jp/~ruowei.xiao/hsml

2 https://github.com/veraxiao/Hyper-Sensor-Markup-Language

6

INTRODUCTION 1.4 Research Constraint

1.4 Research Constraint

To specifically note that, the following issues are generally considered out of the

research scope of this dissertation:

1. Security. As previously stated, security is always a concerning issue in

regard to networked devices. It will greatly relieve developers from being

distracted by security issues, if the IoT development framework can provide

certain security features. While in our proposed framework, it is feasible

to include and integrate external security services, e.g. encryption service,

to live up with specific security requirement. But we do not specify any

concrete security mechanism within this dissertation.

2. Privacy. Similarly, privacy is also a sensitive issue. Introducing external

access control mechanism may be a rational solution to ensure that device

owners disclose their sensitive private data, e.g. GPS, biophysical data etc.,

only to their trusted friends and communities, with part of or full access

(e.g., readable, referable, editable and full control) according to the trust

levels. Though it is considered out of our current research scope, we will

further discuss it in future issues.

3. Real-time Latency. Due to the IoT service composition approach adopted

in proposed framework, the real-time performance of composed applications

rely heavily upon the response time of each service node and overall underly-

ing communication infrastructure. It also depends on the actual deployment

which varies from case to case. Due to these reasons, we basically do not

stress specific attentions on this issue.

1.5 Content Overview

As a whole, this research has proposed an open IoT development framework

for composing heterogeneous sensors, actuators and IoT devices into customiz-

able, value-added web applications and business logic. The major contents of

this research can be concluded into four unique research results: 1) A platform-

independent web development toolkit with HTML-like syntax: Hyper Sensor

Markup Language(HSML), 2) Underlying composition mechanism that adopts

state-transfer-based service orchestration, 3) A finite-state-machine-based unified

resource representation for describing IoT service programming interfaces, namely

7

INTRODUCTION 1.5 Content Overview

StateML, and 4) A full implementation of proposed framework under distributed

service architecture, as shown in Figure 1.2.

Figure 1.2: Research Contents Overview

To reduce the complexity of development tools, we first provide IoT develop-

ers with a set of Web development toolkit, namely HSML. HSML is intentionally

devised as a domain-specific language with HTML-like syntax. It allows IoT devel-

opers to describe composable IoT service nodes, as well as specify how different

services should interrelate in a concise and platform-agnostic manner. Under-

neath HSML is the proposed composition mechanism, which relies on a central

orchestration service to coordinate IoT services. The central orchestration service

leverages one or multiple message brokers to receive state messages from previous

service node and deliver to the next node according to predefined linking rules.

Thus, complicated control logic can be simplified and mapped into state transition

chains among the IoT host services that share similar state-based interfaces.

As host services work as an abstract, intermediate layer to interpret vendor-

8

INTRODUCTION 1.5 Content Overview

specific API functions into platform-independent, state-based service interfaces,

developers are agnostic about the internal mechanisms inside an host service and

of-bottom details below. Instead of ordinary operation-based programming in-

terfaces and remote functions invoking, proposed framework allows developers to

specify desired “states” of heterogeneous IoT devices and linking them up using

standard Web messaging. Since application logic atop is separated from underly-

ing mechanisms by host services, it can further reduce the reprogramming efforts

once hardware get replaces or APIs/drivers altered, and well enhance the reusabil-

ity of legacy functionality and existing systems.

Developers may concern what states a host service exposes and how the state

can be changed, especially when using a remote, third-party IoT resource. This

kind of information can be easily expressed by a Finite State Machine (FSM)

model. FSM model can represent most of the IoT device behaviors and pro-

gramming interfaces. To describe the FSM model in a machine-readable format,

we also propose StateML, which is a unified resource representation that com-

bines syntax from both Open Geospatial Consortium (OGC)’s Sensor Model Lan-

guage(SensorML) 2.0 as well as World Web Consortium (W3C)’s State Chart

XML (SCXML) standard. It conveys all the necessary information that develop-

ers need to access and operate with the resource, including both device-related

properties, e.g. data schema, measurement, service address/URI, and the state-

based programming interfaces. The FSM model is considered as a key factor to

the overall consistency that not only covers the lack of interrelationships among

solitary device properties, but also provides general development interfaces to the

service orchestration.

The rest of this dissertation is organized as follows: The second chapter sys-

tematically concluded existing IoT technology stack layer-by-layer. We then gave

the definition of “Open IoT development framework”, and introductions of two

mainstream genres. Followed with a detailed introduction about Web service ar-

chitecture, service composition and parallel IoT service composition researches,

as it is the target genre that this research anchored on.

Chapter 3 discussed the general approach of IoT service composition that we

adopted in this research. The engineering definitions of “state” and “state trans-

fer” were provided. Based on the concepts, the main idea was to encapsulate

IoT devices into homogeneous host services that expose unified state-based in-

terfaces, and further compose them into customized task logic by establishing

corresponding state-transfer chains. Finite State Machine was adopted to model

9

INTRODUCTION 1.5 Content Overview

IoT host services, and we proposed StateML to explicitly describe FSM-modelled

IoT services in a machine-readable format.

Chapter 4 discussed the proposed IoT service composition framework based

on the approach. As the prerequisite of our framework, we discussed and pro-

vided feasible examples of servitization. As the core of IoT service composition,

a state-transfer-based orchestration paradigm was devised. Atop we developed

a corresponding development toolkit, Hyper Sensor Markup Language, for IoT

developers to establish and manage their service compositions. Detailed syntax,

user interface as well as usage samples of HSML were introduced.

In Chapter 5, a comprehensive assessment of proposed framework was carried

out to evaluate to what extent our research targets had been achieved. Since

expertise requirement and kick-start barriers are compare items closely related to

user experience, we hence conducted a user test centering user at beginner level,

as well as an expert interview to gain feed backs from veteran users inside the

industry. While customization cost, reusability and cross-domain interoperability,

were more structural aspects, an architectural comparison together with expert

interview were made to systematically review the proposed framework.

Last but not least, Chapter 6 concluded the contributions of this research,

briefly analyzed the prospect of proposed IoT service composition technology, as

well as discussed the limitations and the remaining issues to be settled in the

future.

10

Chapter 2

Research Background

In this chapter, research background and related researches were presented as

a reference to identify the accurate position of our theory within IoT technol-

ogy spectrum. We first gave a general overview of current IoT technology stack

that featured by varying standards and protocols. This complexity impels the

wide usage of open IoT development frameworks, which are supposed to provide

feasible technical solutions and public-known guidelines for IoT application de-

velopment. Based on careful literature review, we then roughly divided existing

open IoT development frameworks into three genres: 1) Process Virtual Machine

based frameworks 2) Domestic Service Hub based frameworks and 3) IoT Service

Composition based frameworks. The first two genres were briefly introduced and

explained why they were excluded from our solution. Anchored on the last genre,

IoT service composition, which originates from traditional Service Oriented Ar-

chitecture (SOA) and service composition, we hence gave a detailed introduction

about mainstream Web service architecture and service composition, along with

on-going representative projects and researches within IoT service composition

area. And some of these parallel projects were selected as the comparatives of

proposed framework in Chapter 5 Evaluation.

2.1 Internet of Things Technology Stack

2.1.1 General Overview

Currently, IoT application development confronts a highly-disperse, complex tech-

nology stack, varying intensively from hardware standards to all the way to com-

puting interfaces, as shown in Figure 2.1. In this subsection, we will first provide

a general prospect for mainstream IoT technology stacks, which is separated into

4 major blocks from the bottom up, i.e.:

11

RESEARCH BACKGROUND 2.1 Internet of Things Technology Stack

Figure 2.1: Mainstream Web Technology Stack

1. Sensor/Actuator/IoT Physical Device, including but not limited to

physical devices like sensors, actuators, and IoT systems consisted of sensors

and actuators.

2. Communication Protocol, roughly divided into network interface pro-

tocols, Internet protocols, transport protocols and resource protocols. To-

gether the communication protocol bundle enables the domestic IoT data

accessible and exchangeable over the Internet.

3. Distributed Computing Architecture, is basically a software middle-

ware for managing data exchange and process synchronization among multi-

ple distributed computing systems. Generally it is considered can be further

categorized into three sublayers: resource representation layer, service layer

and composition layer.

4. Web Application, referring to the actual cross-platform web applications

built atop the overall architecture.

A systematic understanding of current IoT technology stack helps us to define

our research scope and boundary clearly, hence we will give a layer-by-layer review

in the following subsections.

12

RESEARCH BACKGROUND 2.1 Internet of Things Technology Stack

2.1.2 Network Interface Layer

To enable the usage of sensors, actuators and IoT systems (e.g. wireless sensor

networks, sensor built-in devices and smart things etc.) in web applications, IoT

systems are expected to be addressable and accessible over Internet. At bottom

layer of communication protocal stack, mainstream network interface technologies

are classified into unconstrained and constrained technologies. The first group in-

cludes all the traditional LAN, MAN, and WAN communication technologies, such

as Ethernet, WiFi, fiber optic, broadband Power Line Communication (PLC), and

cellular technologies such as UMTS and LTE. They are generally characterized by

high reliability, low latency, and high transfer rates (order of Mbit/s or higher),

and are generally not suitable for peripheral IoT nodes due to their inherent

complexity and energy consumption. The constrained physical and link layer

technologies are, instead, generally characterized by low energy consumption and

relatively low transfer rates, typically smaller than 1 Mbit/s. The more prominent

solutions in this category are IEEE 802.15.4, Bluetooth and Bluetooth Low En-

ergy, IEEE 802.11 LowPower, PLC, NFC and RFID. These links usually exhibit

long latencies, mainly due to two factors: 1) the intrinsically low transmission rate

at the physical layer and 2) the power saving policies implemented by the nodes

to save energy, which usually involve duty cycling with short active periods.

2.1.3 Internet Layer

While at the Internet layer of the communication protocol stack, IPv4 is the

leading addressing technology supported by Internet hosts. However, IANA, the

international organization that assigns IP addresses at a global level, has recently

announced the exhaustion of IPv4 address blocks. IoT networks, in turn, are ex-

pected to include billions of nodes, each of which shall be (in principle) uniquely

addressable. A solution to this problem is offered by the IPv6 standard, which

provides a 128-bit address field, thus making it possible to assign a unique IPv6

address to any possible node in the IoT network. While, on the one hand, the

huge address space of IPv6 makes it possible to solve the addressing issues in

IoT; on the other hand, it introduces overheads that are not compatible with the

scarce capabilities of constrained nodes. This problem can be overcome by adopt-

ing 6LoWPAN [16], [17], which is an established compression format for IPv6 and

UDP headers over low-power constrained networks. A border router, which is a

device directly attached to the 6LoWPAN network, transparently performs the

13

RESEARCH BACKGROUND 2.1 Internet of Things Technology Stack

conversion between IPv6 and 6LoWPAN, translating any IPv6 packet intended for

a node in the 6LoWPAN network into a packet with 6LoWPAN header compres-

sion format, and operating the inverse translation in the opposite direction. While

the deployment of a 6LoWPAN border router enables transparent interaction be-

tween IoT nodes and any IPv6 host in the Internet, the interaction with IPv4-only

hosts remains an issue. More specifically, the problem consists in finding a way to

address a specific IPv6 host using an IPv4 address and other meta-data available

in the packet. Here are different approaches to achieve this goal.

v4/v6 Port Address Translation (v4/v6 PAT). This method maps ar-

bitrary pairs of IPv4 addresses and TCP/UDP ports into IPv6 addresses and

TCP/UDP ports. It resembles the classical Network Address and Port Transla-

tion (NAPT) service currently supported in many LANs to provide Internet access

to a number of hosts in a private network by sharing a common public IPv4 ad-

dress, which is used to address the packets over the public Internet. When a

packet is returned to the IPv4 common address, the edge router that supports the

NATP service will intercept the packet and replace the common IPv4 destination

address with the (private) address of the intended receiver, which is determined

by looking up in the NATP table the address of the host associated to the spe-

cific destination port carried by the packet. The same technique can be used to

map multiple IPv6 addresses into a single IPv4 public address, which allows the

forwarding of the datagrams in the IPv4 network and its correct management at

IPv4-only hosts. The application of this technique requires low complexity and,

indeed, port mapping is an established technique for v4/v6 transition. On the

other hand, this approach raises a scalability problem, since the number of IPv6

hosts that can be multiplexed into a single IPv4 address is limited by the number

of available TCP/UDP ports (65535). Furthermore, this approach requires that

the connection be initiated by the IPv6 nodes in order to create the correct entries

in the NATP look-up table. Connections starting from the IPv4 cloud can also

be realized, but this requires a more complex architecture, with the local DNS

placed within the IPv6 network and statically associated to a public IPv4 address

in the NATP translation table.

v4/v6 Domain Name Conversion [18]. This method is similar to the

technique used to provide virtual hosting service in HTTP 1.1, which makes it

possible to support multiple websites on the same web server, sharing the same

IPv4 address, by exploiting the information contained in the HTTP Host header

to identify the specific web site requested by the user. Similarly, it is possible to

14

RESEARCH BACKGROUND 2.1 Internet of Things Technology Stack

program the DNS servers in such a way that, upon a DNS request for the domain

name of an IoT web service, the DNS returns the IPv4 address of an HTTP-CoAP

cross proxy to be contacted to access the IoT node. Once addressed by an HTTP

request, the proxy requires the resolution of the domain name contained in the

HTTP Host header to the IPv6 DNS server, which replies with the IPv6 address

that identifies the final IoT node involved in the request. The proxy can then

forward the HTTP message to the intended IoT via CoAP.

URI mapping. The Universal Resource Identifier (URI) mapping technique

is also described in [18]. This technique involves a particular type of HTTP-CoAP

cross proxy, the reverse cross proxy. This proxy behaves as being the final web

server to the HTTP/IPv4 client and as the original client to the CoAP/IPv6 web

server. Since this machine needs to be placed in a part of the network where IPv6

connectivity is present to allow direct access to the final IoT nodes, IPv4/IPv6

conversion is internally resolved by the applied URI mapping function.

2.1.4 Transport and Resource Layer

Most of the traffic that crosses the Internet layer nowadays is carried at the ap-

plication layer by HTTP over TCP. However, the verbosity and complexity of

native HTTP make it unsuitable for a straight deployment on constrained IoT

devices. For such an environment, in fact, the human-readable format of HTTP,

which has been one of the reasons of its success in traditional networks, turns

out to be a limiting factor due to the large amount of heavily correlated (and,

hence, redundant) data. Moreover, HTTP typically relies upon the TCP trans-

port protocol that, however, does not scale well on constrained devices, yielding

poor performance for small data flows in lossy environments.

The CoAP protocol [19] overcomes these difficulties by proposing a binary

format transported over UDP, handling only the retransmissions strictly required

to provide a reliable service. Moreover, CoAP can easily interoperate with HTTP

because: 1) it supports the ReST methods of HTTP (GET, PUT, POST, and

DELETE), 2) there is a one-to-one correspondence between the response codes of

the two protocols, and 3) the CoAP options can support a wide range of HTTP

usage scenarios. Even though regular Internet hosts can natively support CoAP

to directly talk to IoT devices, the most general and easily interoperable solution

requires the deployment of an HTTP-CoAP intermediary, also known as cross

proxy that can straightforwardly translate requests/responses between the two

protocols, thus enabling transparent interoperation with native HTTP devices

15

RESEARCH BACKGROUND 2.1 Internet of Things Technology Stack

and applications.

Message Queue Telemetry Transport (MQTT) [20] is a client server publish/-

subscribe messaging transport protocol atop of TCP/IP protocol stack, which

is specifically initiated for constraint environment such as for communication in

Machine to Machine (M2M) and Internet of Things (IoT). It is designed to be

light-weight, open and able to support reliable message delivery of three different

qualities of services. Currently, MQTT and its variation MQTT-SN, which aimed

at embedded devices on non TCP/IP networks, developed clients over a variety

of platforms and devices, and have established its ecosystem in a nascent stage.

Business implementations include Facebook Messenger, Amazon Web Services,

EVRYTHNG IoT platform etc. But MQTT requires both servers and clients to

store session information to provide reliable, bidirectional connections, which may

exceed the storage and computing resources of some constraint devices, and break

the stateless principle.

2.1.5 Resource Representation Layer

Atop communication protocol stack, data exchange is typically accompanied by

a description of the transferred content by means of semantic representation lan-

guages, of which the eXtensible Markup Language (XML) is probably the most

common. Nevertheless, the size of XML messages is often too large for the lim-

ited capacity of typical IoT devices. Furthermore, the text nature of XML rep-

resentation makes the parsing of messages by CPU-limited devices more complex

compared to the binary formats. For these reasons, the working group of the

World Wide Web Consortium (W3C) has proposed the EXI format [21], which

makes it possible even for very constrained devices to natively support and gener-

ate messages using an open data format compatible with XML. EXI defines two

types of encoding, namely schema-less and schema-informed. While the schema-

less encoding is generated directly from the XML data and can be decoded by

any EXI entity without any prior knowledge about the data, the schema informed

encoding assumes that the two EXI processors share an XML Schema before ac-

tual encoding and decoding can take place. This shared schema makes it possible

to assign numeric identifiers to the XML tags in the schema and build the EXI

grammars upon such coding. A general purpose schema-informed EXI processor

can be easily integrated even in very constrained devices, enabling them to inter-

pret EXI formats and, hence, making it possible to build multipurpose IoT nodes

even out of very constrained devices [22]. Using the schema informed approach,

16

RESEARCH BACKGROUND 2.1 Internet of Things Technology Stack

however, requires additional care in the development of higher layer application,

since developers need to define an XML Schema for the messages involved in the

application and use EXI processors that support this operating mode. Integra-

tion of multiple XML/EXI data sources into an IoT system can be obtained by

using the databases typically created and maintained by high-level applications.

In fact, IoT applications generally build a database of the nodes controlled by the

application and, often, of the data generated by such nodes. The database makes

it possible to integrate the data received by any IoT device to provide the specific

service the application is built for.

Due to the large variety of sensor protocols and sensor interfaces, most ap-

plications are still integrating sensor resources through proprietary mechanisms,

instead of building upon a well-defined and established integration layer. This

manual bridging between sensor resources and applications leads to extensive

adaption effort, and is a key cost factor in large-scale deployment scenarios. This

issue has been the driving force for the Open Geospatial Consortium (OGC) to

start the Sensor Web Enablement (SWE) initiative [23] back in 2003, which was

established to address standardization within sensor web by developing a suite of

specifications related to sensors, sensor data models, and sensor Web services that

will enable sensors to be accessible and controllable via the Web. The core suite

of language and service interface specifications includes the following:

1. Observations and Measurements (O&M). These are standard mod-

els and XML schema for encoding archived and real-time observations and

measurements from a sensor.

2. Sensor Model Language (SML). These are standard models and XML

schema for describing sensors systems and processes. They provide informa-

tion needed for discovering sensors, locating sensor observations, processing

low-level sensor observations, and listing taskable properties.

3. Transducer Model Language (TML). These are standard models and

XML schema for describing transducers and supporting real-time streaming

of data to and from sensor systems.

4. Sensor Observation Service (SOS). This is the standard Web service

interface for requesting, filtering, and retrieving observations and sensor

system information. It is also the intermediary between a client and an

observation repository or near real-time sensor channel.

17

RESEARCH BACKGROUND 2.2 Open IoT Development Framework

5. Sensor Planning Service (SPS). This is the standard Web service in-

terface for requesting user-driven acquisitions and observations. It is also

intermediary between a client and a sensor collection management environ-

ment.

6. Sensor Alert Service (SAS). This is the standard Web service interface

for publishing and subscribing to alerts from sensors.

7. Web Notification Services (WNS). This is the standard Web service

interface for asynchronous delivery of messages or alerts from SAS and SPS

Web services and other elements of service work flows.

2.2 Open IoT Development Framework

The complexity and diversity of current IoT technology provides plentiful technical

options, meanwhile increases technical hurdles and difficulties of development,

and consequently introduces the necessity of IoT development frameworks. In a

broader sense of computing science, a software or application framework generally

refers to “a set of common software routines that provides a foundation structure

for developing an application” [24]; Or “an abstraction in which software providing

generic functionality can be selectively changed by additional user-written code,

thus providing application-specific software” [25].

As discussed under the prerequisite of open IoT application architecture, we

broadly define an “open IoT development framework” as a non-proprietary,

structured paradigm that can be used by any IoT application developers

to implement the standard architecture of IoT applications. It works as

a publicly-known guideline that indicates what kind of components within an

IoT application can be built and how they would interrelate; specify development

interfaces, and sometimes offer development tools for using the framework. We

argued that a comprehensive framework is supposed to abstract and isolate the

developer from the complexity of the hardware and the networking sub-systems,

re-define the development and re-usability of integrated hardware and software

solutions. Thus developers are allowed to concentrate on the task logic itself.

We will briefly go through existing open IoT development frameworks that

adopted different methods from this research, and explained why they were ruled

out from our solution. And after introducing web services and their composition

technologies, we will give a more detailed review on current solutions that similarly

18

RESEARCH BACKGROUND 2.2 Open IoT Development Framework

anchored on IoT service composition, from which we picked a few representative

ones as our competitors in following evaluations.

2.2.1 Process Virtual Machine Frameworks

Eclipse Kura is a Java/OSGi-based framework for IoT gateways. Its APIs offer ac-

cess to the underlying hardware (serial ports, GPS, watchdog, GPIOs, I2C, etc.),

management of network configurations, communication with M2M/IoT Integra-

tion Platforms, and gateway management. Java is a “write once, run anywhere”

programming language and open source development platform that was originally

aimed at set-top boxes, one of the first domains for non-desktop computing. Since

1995, JAVA has established its leading position in network application develop-

ment because of cross-platform features. Today, Java Virtual Machine (JVM) can

be running on most mainstream devices, from cloud server to smartphone, or even

embedded microcontroller (by using JAVA SE Embedded). Hence, its feasible to

provide a full stack distributed system based on JVM enabled devices.

By using JAVA implemented TCP/IP socket API, remote procedures running

on heterogeneous devices, e.g. sensor/actuator integrated devices, edge routers

and cloud servers, can work collaboratively as a distributed device network. JAVA

also provides service interfaces for application development, such as RMI or Cobra,

to make remote procedures more interoperable and reusable. Currently, several

JAVA based IoT stacks have already been proposed. JVM provides more low level

functions like direct hardware manipulation, and quicker remote access.

Process virtual machine is a mature technology in traditional computing net-

work to achieve platform-independent interoperability by interpreting specific in-

termediate languages to hardware-dependent machine codes. Despite JVM, there

are also a few notable counterparts in IoT area like virtual machine based on

Python, i.e. MicroPython1, .Net [8] and Java etc. However, PVM-based frame-

works are usually language dependent and requires more computing resources to

support VM, and also harder to integrate with other counterpart technologies.

Another issue is that their development interfaces are mostly based on sheer pro-

gramming, which entails technical expertise and may lead to a steep learning curve

especially for beginners.

1 https://micropython.org/

19

RESEARCH BACKGROUND 2.2 Open IoT Development Framework

2.2.2 Domestic Service Hub Frameworks

In home appliances areas, The home audio/video interoperability (HAVi) architec-

ture is among the early home automation development frameworks. It consisted

of a set of application programming interfaces (APIs), services, and an on-the-

wire protocol specified by an industry initiative, which facilitates multi-vendor

interoperability between consumer electronics devices and computing devices and

simplifies the development of distributed applications on home networks [26]. It is

based on the physical and link layers of the IEEE 1394 standard [27] and adopted

the function control protocol and isochronous connection management protocol

specified by IEC 61883.1. A HAVi implementation is a typical bus-structured

home area network. A key feature of HAVi is that each physical device has an

associated software proxy called device control module (DCM), which aggregates

smaller units called functional component modules (FCMs) that allow application

control of related device-function groups. HAVi APIs support both Java and In-

terface Definition Language (IDL), while the latter is a C-like representation and

can map to different programming languages. Thus HAVi claims to be platform

and language neutral. However, IEEE 1394 has gradually withdrew from smart

device market in favor of new standards with high data speed such as 802.11ac.

Another example is OpenHAB [28]. OpenHAB played as the device hub for

home automation, which was based on OSGi, a Java service-oriented development

architecture that featured by modularity and runtime dynamics. It distributed do-

mestic “add-on”s that mostly predefined bindings with physical hardware, exter-

nal systems and web services. Supported home automation protocols and products

included Z-Wave, Zigbee, MQTT, Chromecast etc. It provides users with a rule

scripting method to define automatic behaviors of domestic devices, e.g. lighting,

HVAC, security systems, water valves, IP video cameras etc. Users can customize

and download necessary add-ons to local hubs. Due to that configuration and ap-

plication logic are stored locally, it well protects users’ privacy. Meanwhile it gets

difficult to allow devices that belongs to different device networks to interoperate

with each other.

Most of these frameworks leverage domestic service(e.g. Java service), which

hinders cross-platform interoperability and service reusability by other systems.

And though it is allowed to remotely control home appliances over Internet by

connecting domestic appliance networks to some gateway devices. However, due

to the particularity of home automation, they usually adopted a conservative,

security-emphasized technical architecture that are not really devised for large-

20

RESEARCH BACKGROUND 2.3 Mainstream Web Service Architecture

scale, cross-domain deployment.

2.3 Mainstream Web Service Architecture

The entire web technology stack derives from a very simple vision to decouple net-

work based systems into reusable, interoperable, composable data (web of data)

and service (web of service) that any people (web for all) and any device (web

on everything) can use it to share information [29]. This attempt, which makes

web technology stack different from the traditional platform-dependent one, be-

gins with decoupling and encapsulating data on the internet into generic resource.

Though the definition of resource is gradually evolving from initially a document

to almost any data source that can be uniquely identified by a URI nowadays [30].

To make resources addressable, accessible by any device and any people on the

internet, a set of criteria to wrap up heterogeneous resources and provide a generic

exchangeable form is necessary, such as: data schema, format, encoding etc, which

is concluded as resource representation. Ideally, web resource representation is

supposed to be both human and machine readable, and stay independently from

lower layer of platforms and hardware, as well as the upper services and appli-

cations who use the resource. It is a well-exploited research area with topics

like metadata description (xml, json, exif etc.), data schema (DTD, XSD, MODS

etc.), resource description framework (RDF, json-LD, microdata etc.), web ontol-

ogy (OWL, SSN etc). IoT resources need alike representations, but with far more

complicated properties and behavior patterns to be modeled and described than

traditional ones.

The next effort of web research community is to decouple computing system

functionality into uniformly accessible components who consumes the resources to

provide services for both machine and human users. This effort resulted in a few

full-fledged distributed computing methods, namely web service, examples like

SOAP, REST, XML-RPC. Compared with their platform-dependent or language-

dependent ancestors, including: RPC (Remote Procedure Call), RMI (Remote

Method Invocation, examples like CORBA, EJB), web services are believed to be

self-contained, platform-independent, and reusable modules that provide standard

functionality. They can be published, discovered, located, invoked, and loosely

coupled throughout the web, and facilitate the integration of newly-built as well as

legacy applications both within and across organizational boundaries [31]. These

advantages make web service more scalable and a better choice for internet scale

21

RESEARCH BACKGROUND 2.3 Mainstream Web Service Architecture

applications.

The W3C consortium defines a Web service as “a software system designed to

support interoperable machine-to-machine interaction over a network. It has an

interface described in a machine processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its description

using SOAP messages, typically conveyed using HTTP with an XML serialization

in conjunction with other Web-related standards”. IBM defines Web services

as “self-describing, self-contained, modular applications that can be mixed and

matched with other Web services to create innovative products, processes, and

value chains. Web services are Internet applications that fulfill a specific task or a

set of tasks that work with many other web services in a manner to carry out their

part of a complex work flow or a business transaction” . According to Microsoft,

“A Web Service is a unit of application logic providing data and services to other

applications. Applications access Web Services via ubiquitous Web protocols and

data formats, such as HTTP, XML, and SOAP, with no need to worry about how

each Web Service is implemented” . HP defines Web services as “modular and

reusable software components that are created by wrapping a business application

inside a Web service interface. Web services communicate directly with other web

services via standards-based technologies” . SUN perceives a Web service as an

“application functionality made available on the World Wide Web. A Web service

consists of a network-accessible service, plus a formal description of how to connect

to and use the service” .

As we are able to integrate different smart things with various capabilities

into the Web, the next logical step we shall consider is how to abstract those

devices into reusable web services other than simple static or dynamic web pages.

Conventional wisdom has it that there are two major paradigms of web services:

REST-compliant Web services and arbitrary Web services. The primary purpose

of the service is to manipulate web resources using a uniform set of “stateless”

operations in the former one while using an arbitrary set of operations in the

latter one. Both paradigms can be adopted by smart things or smart gateways.

2.3.1 WS-* Architecture

It is usually referred as WS-* for Web Services that use Simple Object Access

Protocol (SOAP) messages with an Extensible Markup Language (XML) payload

and a HTTP-based transport protocol to provide remote procedure-calls (RPCs)

between clients and servers. It has been popular in traditional enterprises and

22

RESEARCH BACKGROUND 2.3 Mainstream Web Service Architecture

widely used in enterprise machine-to-machine (M2M) systems. The key technolo-

gies of WS-* are SOAP, Web Service Description Language (WSDL), Universal

Description Discovery and Integration (UDDI) and Business Process Execution

Language (BPEL) as shown in Figure 2.2.

Source: Deze Zeng et al [32]

Figure 2.2: WS-* Workflow and Protocol Stack

LTP [33] is a light-weight Web service transport candidate protocol that al-

lows transparent end-to-end exchange of Web service messages between resource-

constraint devices and server or PC class systems. LPT’s structure resembles

that of WS-messaging and utilizes transport binding and compressed SOAP that

is fully compliant to SOAP standard. The main features of LTP are platform

independence, low resource consumption and implementation-agnostic definition

of the protocol.

SOAP [34] is an XML-based protocol to let applications exchange information

over HTTP. A SOAP interface is typically designed with a single URL that im-

plements several RPC methods, which define a message architecture and format,

hence providing a rudimentary processing protocol. The top-level XML element

of SOAP message is called envelop, which includes two XML elements: header

and body. The header specifies routing and Quality of Service (QoS) configuration

while the body contains the payload of the message indicating the interoperations.

WSDL [35] is an XML-based language describing Web services as a collection

of communication end points that can exchange messages. In other words, a

WSDL document describes a Web services interface and provides users with a

23

RESEARCH BACKGROUND 2.3 Mainstream Web Service Architecture

point of contact. The SOAP messages and sequences are abstractly described by

WSDL. A WSDL port type contains an abstract set of operations supported by

endpoints. The WSDL binding links the set of abstract operations with concrete

protocol and data format specification for a particular port type. WSDL describes

service interface, which are independent of the service implementation endpoint

and how the services are implemented.

UDDI [36] is a platform-independent, XML-based registry framework for de-

scribing and discovering worldwide Web services. It can be viewed as a directory of

WSDL-described web services. Web services can be registered and located in the

directory. It can be requested using SOAP messages to provide access to WSDL

documents, which describe the protocol bindings and message formats required

to interact with the web services listed in its directory.

BPEL [37] defines a notation for specifying process behavior based on inter-

actions of Web services. Web service interactions can be described in two ways:

executable processes and abstract processes. Both can be modeled by BPEL.

Executable processes model actual behavior of a participant as interactions while

abstract processes describe observable behavior and/or process template. BPEL

extends the WS-* interaction model to enable business transactions. BPEL de-

fines an interoperable composition model that enable the extension of automated

process integration both within and between businesses.

One may first notice that HTTP performs as transport protocol at the lowest

level. Above that, SOAP handles the interaction between services. WSDL and

UDDI concern the description and discovery of services at the next higher level.

BPEL actually deals with the composition of services at the highest level. Now we

look at how these technologies work in a WS-* workflow. Suppose all the available

services have registered in the Service Registry. Service Requestor sends a service

lookup request described by WSDL to Service Registry. If a suitable candidate

service is found, its description is returned to the Service Requestor. Then Service

Requester and Service Provider establish connectivity and communicate with each

other using SOAP according to the description.

The use of WS-* for smart things dates back many years ago. A Service-

Oriented Device Architecture (SODA) [38] is proposed to integrate a wide range

of physical devices into distributed IT enterprise systems. In SODA, all the sen-

sors and actuators are exposed as abstract business Web services to the pro-

grammers. A bus adapter locates in the boundary between the cyber world and

physical world realms, and talks to proprietary and standard device interfaces

24

RESEARCH BACKGROUND 2.3 Mainstream Web Service Architecture

but presents an uniform Service-Oriented Architecture (SOA) services. Pintus et

al. [39] also proposed a SOA framework where smart things were described us-

ing WSDL standard and logical connections between smart things are modeled

as web services orchestrations using the BPEL language. The SOA approach for

networks with embedded systems can be also found from many other projects,

such as SIRENA [40] and SOCRADES [41].

2.3.2 REpresentational State Transfer

The term REST was first coined by Roy Fileding in his PhD thesis [42], which

is considered as the “true architecture of the Web”. The basic concept of REST

is that everything is modeled “resource”, or particularly HTTP resources, with

a Universal Resource Identifier (URI). The REST architectural style is based on

the following four principles [43]:

1. Resource identification through URI. All the resources exposed by RESTful

web services are identified by URIs. Through URI, the clients can identify

their interaction targets. A global addressing space is provided for service

and resource discovery.

2. Uniform interface. RESTful services treat the HTTP as an application

protocol instead of a transport protocol in WS-*. Therefore, the term REST

is often used in conjunction with HTTP and the RESTful resources can be

manipulated using HTTP verbs such as PUT, GET, POST and DELETE.

PUT creates a new resource while DELETE deletes it. GET retrieves the

current state of a resource in some representation while POST updates a

resource with new state.

3. Self-descriptive messages. Resources are decoupled from their representa-

tions such that it is free to use a variety of data formats to describe them-

selves provided that the appropriate representation formats are agreed and

understandable by endpoints. For example, the data can be in any common-

used formats such as HTML, XML, plain text, PDF, and JPEG. Metadata

about the resource can be used to control caching, detect transmission er-

rors, negotiate the representation format, and perform authentication or

access control between endpoints.

Notice that although ReST is initially described in the context of HTTP, it is

not limited to that protocol. RESTful architectures can be based on any other

25

RESEARCH BACKGROUND 2.3 Mainstream Web Service Architecture

application layer protocols if they can provide a rich and uniform vocabulary

for applications to transfer meaningful representational states. By this way, the

potential of existing well-defined network protocols can be reexploited without

additional efforts.

IoT services designed in accordance with the ReST paradigm exhibit very

strong similarity with traditional web services, thus greatly facilitating the adop-

tion and use of IoT by both end users and service developers, which will be able

to easily reuse much of the knowledge gained from traditional web technologies in

the development of services for networks containing smart objects [44]. In ReST,

a service is defined by a set of states (similar to variable in OOP but not identical

since a state may contain several variables) and state transfers (similar to function

or method in OOP but not identical). A service in client can remotely invoke the

state transfer of a service in server by sending a desired state transfer message over

HTTP. Furthermore, this HTTP message should contain all the necessary infor-

mation to accomplish the state transfer, which means each ReST service in server

will not store any state (for example: user name, access token, or resource lock)

from any other service for future use, i.e. stateless server. This feature further

simplified the composability: if a service is composable from the beginning, it will

not become non-composable caused by sequential problems, such as: deadlock,

because each state transfer is independent.

To our best knowledge, the RESTful architecture is preferred for IoT mainly

for its two features. One is its low complexity and the other is its loose-coupling

stateless interactions. The two features enable web servers in the RESTful archi-

tecture to be embedded into resource constrained devices (e.g. Resource-oriented

architecture) and also enable easy composition of web services. For example,

REST can be the architecture of choice for tactical, ad hoc integration over the

Web (i.e., mashup) [43]. The previous work on integrating sensor networks to the

Internet showed that the lightweight aspect of REST made it an ideal candidate

for resource-constrained embedded devices to offer services to the world [45, 46].

To support this opinion, the feasibility of using RESTful web services was demon-

strated with an evaluation of performance and power consumption in an IP-based

multi-hop low-power sensor network [47].

26

RESEARCH BACKGROUND 2.3 Mainstream Web Service Architecture

2.3.3 Operation-based Paradigm v.s. State-based

Paradigm

The decoupling efforts on web has been carried out for many years, various meth-

ods have been put forward. As we summarized previously, current researches on

decoupling web system into web resource and web service has already established a

solid foundation for composability. And among the aforementioned service archi-

tectures, XML-RPC and SOAP can be concluded as the representative technology

for operation based paradigm, while REST belongs to the state-based paradigm.

The naming of the two paradigms comes mainly from their difference in provid-

ing access interface (though there also exists many differences in their implemen-

tation details accordingly): the operation based services can be remotely invoked

by sending a desired operation message (for example: < operation > openlight <

/operation >) to service specific URI (www.domain.com/lightservice) over

HTTP POST request, while resource based services can be invoked as the same

manner as a resource, i.e. using one of the HTTP request (POST to CREATE

resource, GET to READ resource, PUT to UPDATE resource and DELETE to

DELETE resource) together with desired state transfer (< state > on < /state >)

to the target resource URI (www.domain.com/light/onoff). Currently, the state

based methods are better choices for composable system due to some critical

composability features: loose-coupling, generic interface and statelessness.

First, loose-coupling is the major target for decoupling efforts on web. Re-

source based service is widely accepted for its outstanding loose-coupling and

light-weighted features to provide services across organizational boundary.

Second, the generic interface to access both resource and service will help

to simplify requirements of the uniform messaging mechanism between all web

components. Currently, ReST is the only architectural style that expose its access

interface as standard HTTP operator (GET/PUSH/PUT/DELETE) and message

(XML, JSON or other web standard). In RESTful architecture, the service can be

taken as a special form of resource since they share the same access interface, i.e.

the HTTP operation. The establishment of this uniform access interface simplified

the complex web resource and service composability into a relatively easier goal:

the composability of web resources via HTTP operation.

Third, statelessness will help to maintain composability for web system. It re-

quires Web service clients to send complete, independent requests; that is, to send

requests that include all data needed to be fulfilled so that the components in the

intermediary servers may forward, route, and load-balance without any state being

27

RESEARCH BACKGROUND 2.3 Mainstream Web Service Architecture

held locally in between requests. It does not require the server, while processing

the request, to retrieve any kind of application context or state. Statelessness

improves Web service performance and simplifies the design and implementation

of server-side components because the absence of state on the server removes the

need to synchronize session data with an external application.

Figure 2.3 explains the differences between a stateful service and a stateless

service, where a stateful service from which an application may request the next

page in a multipage result set, assuming that the service keeps track of where the

application leaves off while navigating the set. A stateless service, on the other

hand, in the request for a multipage result set, the client should include the actual

page number to retrieve instead of simply asking for next.

Source: V Dambal [48]

Figure 2.3: Stateful v.s. Stateless

Hence, by applying state based service architecture, such as ReST, a com-

posable web system is defined by a set composable resources, and the composable

resource is defined as: first, it wraps data (with state) and computing service (with

state transfer) as web accessible component which can be interacted with stan-

dard HTTP operator and message; Second, it can exchange state information and

trigger desired state transfer accordingly by sending and receiving generic state

descriptions (usually called resource representation which contains data, meta-

data and sometimes metadata of metadata to describe states) carried by HTTP

message.

Contrary to state based paradigm, operation based paradigm is conceptually

like functional programming: a service exposes its functionality (for example:

28

RESEARCH BACKGROUND 2.4 Web Service Composition

make a sound) as a operation (like a function in functional programming) that

can be invoked by other services. The invoking mechanism can be implemented

by direct invoking (using operation name, parameters and returned values), event

based invoking (using event to trigger operation and setting specific inner states,

this may break the service encapsulation to achieve more control possibility, for

example: one event for start the sound, another one to cease it). While the

state based paradigm is a little like OOP without public methods: a service is

defined by a set of states (similar to a set of member variables in OOP) and state

transfers (used to change states, similar to methods in OOP). However, no state

transfer can be directly invoked. it can only be triggered by messaging a desired

state (for example: if a light service is at its state of “off”, messaging a desired

state “on” may trigger a state transfer to turn on the light. However, it cant be

guaranteed since there may exist no available state transfer to actually achieve

desired state from the current state). Two messaging mechanism is usually used

to deliver desired states: plain HTTP message, or specifically formatted message

(for example XML) over HTTP.

The two paradigms have their own advantages and disadvantages, which should

be considered thoroughly according to requirements and constraints. Generally,

operation based implementation is easier to be programmed and performed be-

cause of its functional nature, while state based implementation is more loosely

coupled and thus can better support reusability and composability.

2.4 Web Service Composition

Composability is defined as “the ability to agilely create, configure and test a

unique system by selecting and assembling models/modules from a pool of reusable

components in various combinations to satisfy specific user requirements” [49].

Similarly, Davis et al. defined composability as “capability to select and as-

semble components in various combinations to satisfy specific user requirements

meaningfully” [50]. The prerequisites of composability comprise of modularity

and interoperability [51]. Particularly within web context, modularity requires

to equally encapsulate each and every component into web-accessible service that

will be used as the basic block for building entire systems. While interoperability

emphasizes that all blocks must be exposed in standardized interfaces to enable

unified butt-to-butt joint among different blocks. If we compare a block to a

puzzle piece, its interface is as important as the concave and convex part of each

29

RESEARCH BACKGROUND 2.4 Web Service Composition

puzzle piece, and is basically described in a state-based way in this research.

In web application domain, web service composition can be achieved by three

kinds of engineering methods: direct invoking, event based invoking and

messaging. Direct invoking method remotely calls a procedure using its name

and arguments, as if it’s a local function. It is usually language dependent, e.g.

SWORD [52], Ericsson’s JAVA based IMS composition system [53]. Event based

invoking method uses events to invoke remote services asynchronously, e.g. HP’s

eFlow [54]. Messaging method usually relies on Web messages to trigger remote

services, which can be further divided into plain HTTP message and formatted

message (for example XML) over HTTP, e.g. JOpera [55], SABRE [56], Yahoo

Pipes [57].

As we have discussed in previous subsectionn, in comparison with operation-

based interfaces, state-based interfaces are supposed to let users achieve desired

system state by specifying related endpoints instead of invoking internal opera-

tions and mechanism. Thus, it presses on towards a black-box model and con-

tributes to simplifying composition procedure as well as maintaining a stateless

design style in real practise.

2.4.1 Service Composition

In a composable web service system, service composition is defined as the process

of combining different Web services to provide a value-added service [58]. Web

service composition is different from traditional application integration, where

applications are tightly coupled and physically combined. Web services adopt

a document-based messaging model, which supports the integration of loosely

coupled applications that are across multiple organizations. Service composition

is becoming the most promising way to integrate cross-organizational applications

on the Web, especially in enterprise and consumer domain [58–60]. There are

two ways to describe the sequence of activities that make up a business process:

orchestration and choreography [61], as shown in Figure 2.4.

Orchestration represents a single executable process that coordinates the inter-

action among the different components, by describing a flow from the perspective

and under the control of a single endpoint. It can therefore be considered as

a construct between an automated process and the individual components that

enact the steps in the process. Service Orchestration has been widely deployed

in business platforms, e.g. IBM Business Process Manager, Oracle BPEL Pro-

cess Manager [62]. The orchestration is usually defined by BPEL or BPML to

30

RESEARCH BACKGROUND 2.4 Web Service Composition

Source: C Peltz [61]

Figure 2.4: Service Orchestration v.s. Service Choreography

compose various services implemented by COBRA, SOAP or REST [63]. Besides

business solutions, there also exist open source execution engines, e.g. Apache

ODE, ActiveBPEL [64].

Different from Orchestration that always represents control from one party’s

perspective, Choreography is more collaborative and allows each involved party to

describe its part in the interaction. Choreography represents a global description

of the observable behavior of each of the services participating in the interac-

tion, which is defined by public exchange of messages, rules of interaction and

agreements between two or more endpoints. It is typically associated with the

interactions that occur between multiple web components rather than a specific

process that a single party executes, and are particularly useful in those situa-

tions in which multiple parties have to collaborate, however are not executable,

and must be implemented inside of each component individually. Most of its ap-

plications were research prototypes, e.g. Let’s Dance [65], or proposed to improve

WS-CDL standard, examples like [66–68].

2.4.2 Web Service Composition Category

Current web service composition under orchestration can be divided into three

categories: process/programming based composition, interaction-based

composition, and planning-based composition [69]. Most existing Web ser-

vice composition techniques require programming to some extent for constructing

the orchestration model [54,70,71]. Composers first need to study the component

services that are described using WSDL or some ontology languages, and under-

stand the functionalities of the services and the supported operations. A further

step analysis requires to identify the way operations are interconnected, services

are invoked, and messages are mapped to one another. The process-based compo-

31

RESEARCH BACKGROUND 2.4 Web Service Composition

sition scheme makes the process of composing service demanding for composers.

Composers need to be domain experts who are familiar with the service description

language, the service orchestration algebra, and the corresponding programming

skills. Since common users cannot act as a service composer, the programming

based scheme hinders common users from composing Web services at large.

The interactive composition scheme blurs the distinction between composers

and common users. Composers are required to have a clear goal and know the

tasks that need to be performed to accomplish the composition. Common users

can be guided through a set of steps to finish a composer’s task. The composition

scheme will work interactively with the common users to help them achieve the

orchestration model. The orchestration process can start from users’ goals and

work backward by chaining all related services. It can also start from some initial

states and achieve the users’ goals by adding services in the forward direction.

At each step, the scheme will choose a new service based on the task specified

by the users. The interactive scheme can also capture the constraints and pref-

erences during the interaction process. The constraints and preferences can serve

as additional criteria to select services for the composition.

The planning-based composition scheme aims to relieve users from the com-

position processes as much as possible. It relies on AI planning techniques for

automatic service composition. In this context, users are allowed to submit a

declarative query specifying the goal he/she wants the composite service to achieve

together with some of the constraints and preferences that need to be satisfied.

Based on the user’s query, the composition scheme can derive a corresponding

orchestration model with all constraints and preferences satisfied. The planning

scheme regards services as actions that are applicable in states. State transitions

are specified using the preconditions of some actions. A transition will lead to

some new states, in which the effects of some actions are valid. Based on this,

the composition scheme recursively adds new services until users’ goals have been

achieved. The states of existing service in the orchestration will determine the

selection of the new services. For example, the preconditions of the new services

should be satisfied via the effect of some existing services.

2.4.3 Web Service Composition Approach

When it comes to real practise, there are a few approaches to substantiate a web

service composition system [72].

32

RESEARCH BACKGROUND 2.4 Web Service Composition

BPEL. BPEL is an XML language that supports process oriented service

composition. Developed by BEA, IBM, Microsoft, SAP, and Siebel, BPEL is cur-

rently being standardized by the Organization for the Advancement of Structured

Information Standards (OASIS) 2. (Sun Microsystems recently joined the OASIS

technical committee as well.) BPEL composition interacts with a Web services’

subset to achieve a given task. In BPEL, the composition result is called a process,

participating services are partners, and message exchange or intermediate result

transformation is called an activity. A process thus consists of a set of activities.

A process interacts with external partner services through a WSDL interface.

Semantic Web (OWL-S). The Semantic Web vision is to make Web re-

sources accessible by content as well as by keywords. Web services play an impor-

tant role in this: Users and software agents should be able to discover, compose,

and invoke content using complex services. The DARPA Agent Markup Lan-

guage (DAML) extends XML and the Resource Description Framework (RDF) to

provide a set of constructs for creating machine-readable ontologies and markup

information. The DAML program’s Semantic Web contribution is the Web Ontol-

ogy Language for Services. OWL-S (previously known as DAML-S) is a services

ontology that enables automatic service discovery, invocation, composition, inter-

operation, and execution monitoring.

Web Components. The Web component approach treats services as com-

ponents in order to support basic software development principles such as reuse,

specialization, and extension. The main idea is to encapsulate composite-logic

information inside a class definition, which represents a Web component. A Web

component’s public interface can then be published and used for discovery and

reuse.

Algebraic Process Composition. Algebraic service composition aims to in-

troduce much simpler descriptions than other approaches, and to model services

as mobile processes to ensure verification of properties such as safety, liveness

(correct termination, for example), and resource management. Mobile-processes

theory is based on π-calculus, in which the basic entity is a process-it can be an

empty process; a choice between several I/O operations and their continuations; a

parallel composition; a recursive definition; or a recursive invocation. I/O opera-

tions can be input (receive) or output (send). For example, x(y) denotes receiving

tuple y on channel x; x̄[y] denotes sending tuple y on channel x. Dotted nota-

2 www.oasis-open.org

33

RESEARCH BACKGROUND 2.5 IoT Service Composition: Parallel Research

tion specifies an action sequence, such as c̄[1, d].d(x, y, z).c̄[x + y + z], in which a

process sends tuple [1, d] on channel c, then receives a tuple at channel d whose

components are bound to the variables x, y, and z, and finally sends the sum of

x+ y+ z to channel c. Parallel process composition is denoted with A|B. Several
processes can execute in parallel and communicate using compatible channels.

Petri Nets. Petri nets are a well-established process-modeling approach. A

Petri net is a directed, connected, and bipartite graph in which nodes represent

places and transitions, and tokens occupy places. When there is at least one token

in every place connected to a transition, that transition is enabled. An enabled

transition might fire by removing one token from every input place, and depositing

one token in each output place. We can model services as Petri nets by assign-

ing transitions to methods and places to states. Each service has an associated

Petri net that describes service behavior and has two ports: one input place and

one output place. At any given time, a service can be in one of the following

states: not instantiated, ready, running, suspended, or completed. After we de-

fine a net for each service, composition operators perform composition: sequence,

alternative (choice), unordered sequence, iteration, parallel with communication,

discriminator, selection, and refinement. These operators guarantee the closure

property. Thus, by composing two or more Web services, we produce another

service.

Model Checking and Finite-State Machines. Other approaches for Web

service composition include model checking, which aims at modeling service com-

position as Mealy machines, and automatic composition of finite-state machines

(FSMs). Model checking is used to formally verify finite-state concurrent systems.

We describe system specification using temporal logic, then traverse and check the

model to see whether the specification holds. We can apply model checking to

Web service composition by verifying correctness inside a workflow specification.

Among the properties we can check are data consistency, unsafe state avoidance

(deadlock), and business-constraint satisfaction.

2.5 IoT Service Composition: Parallel Research

Service composition is an emerging research genre that widely thought as a key

method to quickly deliver new functionalities to IoT applications [73], improve

re-usability, lower down development cost [74], and further attract open partici-

pation [75]. As service composition for IoT applications is an emerging research

34

RESEARCH BACKGROUND 2.5 IoT Service Composition: Parallel Research

genre within recent decade and still in its nascent stage, there is no matured en-

terprise solutions or business products up until now to the best of our knowledge.

However, it has drawn the interests of open source communities. In this section,

a few fresh open source projects and research prototypes were selected as the

representative parallel researches to examine the similarities as well as differences

regarding research methodology and approaches.

2.5.1 Programming/Process-based Composition

Programming/process based composition is the most widely used method which

constructs business logic of service composition by manual programming mostly.

This kind of methods can be further divided into two sub-groups: traditional

program language based, and domain specific language based. Traditional lan-

guage based methods can offer users the most powerful toolset to define complex

logic and support a wide range of tasks. Examples are: PubNub, OpenIoT. How-

ever, it is technically demanding and not optimized for composition tasks. Hence,

many composition methods prefer to defining their own language based on domain

knowledge, e.g. domain specific language, to lower down the learning curve and

better suit composition requirements. Examples are Sensorpedia, SM4RCD.

Figure 2.5: an example of editing PubNub process

Though not exclusively centering on IoT application development, PubNub is a

realtime publish/subscribe messaging API built on a global data stream network.

35

RESEARCH BACKGROUND 2.5 IoT Service Composition: Parallel Research

It provides realtime infrastructure-as-a-service for data streaming and device sig-

naling which allows user to establish and maintain persistent connections based

on WebSockets, Socket.IO, SignalR, WebRTC data channel and other streaming

protocols. Based on PubNub, Eon is an web IoT visualization development kit

that widely used to provide live sensor data dashboard composition with platform-

agnostic messaging and realtime data steaming. While the development requires

for sheer manual JavaScript programming and hence results in a steep learning

curve and high kick-start barrier.

Sensorpedia [76] aimed to organize and provide access to online sensor network

data following social media principles, the development of which was divided into

a web-based applications and the supporting web services interface. The former

provided a map-based mashup interface for browsing and discovering available sen-

sor data by location and keywords, while the latter offered an Atom-model-based

application programming interface and supported multiple data representation

including GeoRSS, SensorML etc.

Nils G et al in [77] proposed a model driven development paradigm based

on a domain specific language for describing states and state transitions of state

machines, named State Machine for Resource Constrained Devices (SM4RCD).

The major difference between SM4RCD and this research lied in that SM4RCD

specified a SOAP message compression other than RESTful architecture. It also

utilized Lean Transport Protocol (LTP), and further generated C++ code towards

target systems.

OpenIoT project [78] was first known to public in 2012 and co-funded by the

European Commission. It aimed to provide “a middleware platform enabling

the semantic unification of diverse IoT application in the cloud”. OpenIoT plat-

form adopted Extended Global Sensor Networks (X-GSN) [79] to collect, filter and

combine data streams from virtual and/or physical sensors. Specifically for mobile

sensors, A Cloud-based Publish/Subscribe middleware (CUPUS) was leveraged.

A Linked Stream Middleware(LSM) acted as a cloud storage for storing both/

data streams and metadata, which supported extended W3C SSN ontology and

SPARQL queries. Recently, OpenIoT is also researching on flow-based composi-

tion method. However, there’s litter information about the new method.

2.5.2 Rule-based Composition

Rule based composition may be the oldest method that used in many circum-

stances. rules are usually pre-defined and represented as events, conditions, for-

36

RESEARCH BACKGROUND 2.5 IoT Service Composition: Parallel Research

Figure 2.6: an example of setting Home Assitant rule

mulas, or symbolic logic. Whenever a rule is met in run-time, the corresponding

operation will be triggered automatically.

Home Assistant is a typical rule-based home automation hub that running on

Python, which enables event-triggered device observation, control and automa-

tion. It predefined a set of standard entities, related properties as well as functions.

Developers must wrap up IoT devices and expose their interfaces according to the

stipulation. The advantages lie in the bidirectional synchronization between the

states of physical and virtual entities and easy to obtain automatability. However,

it entails re-adpation to introduce existing services and language-dependency also

increases system couplingness and the difficulty for components to be reused.

2.5.3 Flow-based Composition

Flow based composition is very popular in recent years, because it can easily

be represented in graphic UI, for example as a directed graph of interconnected

nodes. Hence, the graphic UI is usually more intuitive and easy to use. However,

when it comes to complex task logic that hard or even impossible to be defined in

37

RESEARCH BACKGROUND 2.5 IoT Service Composition: Parallel Research

flow UI, it may still introduce programming language into the composition. One

typical example is NodeRed3.

Figure 2.7: an example of defining Node-Red flow

Node-Red is an open flow-based IoT development tool initiated by IBM’s

Emerging Technology Services in 2003. It provides a mash-up style editor that

allows users to drag-and-drop different widgets, including IoT devices, APIs, web

services etc., and wire them together. Node-Red is based on node.js and uses an

event-driven, non-blocking I/O model to create applications that run across dis-

tributed devices. This intuitive interface with rich visual elements has attracted

a large group of users within IoT communities. However, as each type of node is

described as an opaque widget and behave very differently from one another, it

costs user extra learning effort each time when a new type of node comes in the

flow. And when it comes cross-domain calls, there will also be a difficult issue

that how to obtain necessary information in order to correctly configure a node.

3 https://nodered.org

38

RESEARCH BACKGROUND 2.6 Summary

SensorMasher [80] adopted a semantic approach of linked data to manage

sensor mashups. Users were able to visually drag and drop sensors as data sources

and connect them to data processing blocks to create composite data sources.

Multiple data formats including RDF, JSON, XML, RSS etc. and SPARQL based

query were supported.

WoTKit [81] served as a data aggregator, visualization, remote control and

processing tool for Web of Things, which was based on Java web application and

Spring Framework. It also had a RESTful API that supported CSV, KML, HTML

and JSON formatted data and graphic-element-based user interface.

Vital-OS is a IoT-smart city research project funded by European Union’s

Seventh Framework Programme, which is dedicated to enable the integration and

semantic interoperability of multiple IoT systems, while adding complex data pro-

cessing and tools to easily build applications exploiting all the underlying data

and services [82]. To achieve this goal, Vital-OS designed a service-oriented ar-

chitecture comprised of 3 layers: (IoT and data) Resource Access Interface, Ser-

vice, and Service Access Interface. A set of tools and components were included:

Governance and Monitoring Toolkit, Data Management Service, IoT Adapter,

IoT Service Discovery, Development and Deployment Toolkit, Orchestrator, Data

Management Service, ICOs and Services Discovery, Complex Event Processing,

Filtering Service etc [83,84]. Each toolkit or component in Vital-OS was replace-

able, and communicated with each other using events, which made it a loose-

coupled architecture.

A more detailed subjective comparison will be provided in Chapter 5.

2.6 Summary

In the beginning of this chapter, we provided a layer-structured overview of main-

stream Internet of Things technology stack and defined “open IoT development

framework” as “a non-proprietary, structured paradigm that can be used by any

IoT application developers to implement the standard architecture of IoT applica-

tions.”. We argued that a comprehensive framework is supposed to abstract and

isolate the developer from the complexity of the hardware and the networking

subsystems, redefine the development and reusability of integrated hardware and

software solutions.

Followed by a systematical review on existing open IoT development frame-

works. Grouped by respective core technology used, current mainstream open IoT

39

RESEARCH BACKGROUND 2.6 Summary

frameworks can be roughly separated into three major genres:1) Process Virtual

Machine based frameworks; 2) Domestic Service Hub based frameworks; And 3)

IoT Service Composition based frameworks. In section 2.2, we analyzed the un-

derlying mechanism of the first two genres, which reflected some drawbacks at:

1) High customization cost; 2) High expertise requirement and kick-start barri-

ers; 3) Low component resuability and 4) Difficulties in deploying geographically

dispersed, cross-domain scenarios. And that’s why we turned to the last genre,

IoT service composition in this research.

To understand IoT service composition, detailed explanations were made to

introduce Web Service technology stack in section 2.3 and service composition in

section 2.4. The main branches of Web service architecture included operation-

based WS-* paradigm and state-based RESTful architecture, while the latter was

preferred by this research due to its features, e.g. loose-coupling, generic interface

and statelessness, better service composability.

Followed by the introduction of web service composition and its categories.

Firstly, we defined “composability” as “the ability to agilely create, configure and

test a unique system by selecting and assembling models/modules from a pool

of reusable components in various combinations to satisfy specific user require-

ments”. Service composition also had two variations: service composition and

service choreography. As most service choreography application were still at re-

search prototype stage, the terminology “service composition” in this research, if

not specifically noted, all refer to “service compostion”.

In section 2.5, we focused on IoT service composition explicitly. Existing IoT

service composition based frameworks could be divided into: 1) Programming/

Process-based composition, 2) Rule-based composition, and 3) Flow-based compo-

sition. We selected one representative example from each category as our parallel

researches to be compared in the evaluation.

40

Chapter 3

Approach

3.1 Research History

Before coming to the topic, firstly, we want to survey previous literature and

listed a few that possessed some kind of theoretical continuum with this research.

Though not all of them are necessarily related to the IoT field, these ancestor

technologies and researches have shared a very similar idea to provide a stan-

dard device description for heterogeneous devices and hardware modelling, which

hopefully can help readers to understand the base of our solution model in this

research.

Controller Area Network(CAN bus). Controller Area Network (CAN

bus) was first developed at Robert Bosch in 1980s, and its extended version became

an ISO standard in 1993 [85]. Originally, it was devised for enabling message-based

communication among different subsystems built in an automobile, e.g. ABS,

electric power steering, engine control unit etc., hence able to establish a feedback

control among multiple sensors, actuators and micro-controllers. This kind of

interconnections, which allowed value-added features to be implemented using

software, avoided extra cost and complexity that may be caused by traditional

hard wiring way [86].

In a CAN network, data was conveyed and transmitted via a uniquely identified

message and no individual nodes were addressed. When a node wanted to transmit

information, it needed to pass the data and the identifier to its CAN controller

and set the relevant transmit request. It was the CAN controller that formatted

the message contents and transmitted the data in the unified CAN frame. Once

the node gained access to the bus, all other nodes became receivers and performed

an acceptance test according to the message identifier, to determine whether the

received data was relevant to particular device or not. This was known as the

“producer/consumer” mechanism, whereby one node produced data on the bus for

41

APPROACH 3.1 Research History

other nodes to consume, and thus CAN bus was able to perform communications

on peer-to-peer, multicast or broadcast basis. And it required no interaction from

a bus master or arbiter.

CAN bus provided high-speed serial interface, low-cost physical medium as

well as economical and prompt data communication. However, similar to other

bus-structured device network, the amount of nodes that single bus can support

was inherently restricted and communication performance significantly dropped as

nodes increased, which made CAN bus an inappropriate solutions for large-scale,

disperse IoT deployment.

MIB and SNMP. A management information base (MIB) was a virtual in-

formation store used for managing the entities in a communication network

[87]. It was often associated with the Simple Network Management Protocol

(SNMP) [88] to provide network manageability over TCP/IP implementations.

Objects in the MIB were defined using a subset of Abstract Syntax Notation One

(ASN.1) [89]. Each type of object had a name uniquely identified by an adminis-

tratively assigned object identifier (OID), a syntax, and an encoding. The SNMP

modeled all management agent functions as alterations or inspections of variables.

Through the uniform interface provided by MIBs deployed on both the network

management stations and the agents in the network elements, SNMP was able to

recognize and communicate management information. Thus, a protocol entity on

a logically remote host (possibly the network element itself) interacted with the

management agent resident on the network element in order to retrieve (get) or

alter (set) variables. The strategy implicit in the SNMP was that the monitor-

ing of network state at any significant level of detail was accomplished primarily

by polling for appropriate information on the part of the monitoring center(s).

Though SNMP explicitly minimized the number and complexity of management

functions, still resource constraint devices might not be able to equipped with

management agents responsible for performing the network management func-

tions requested by the network management stations. Also, network elements

tended to be stable devices such as hosts, gateways, terminal servers etc., and it

remained to be difficult to maintain and update the information stored in MIBs

in realtime manner when it came to devices with high mobility and fluctuant

network topology.

Line Printer Daemon. Line Printer Daemon managed the printer spool

area and the print queues, which started at boot time of Linux and BSD systems

by default. When LPD started, it read the /etc/printcap file to find out about

42

APPROACH 3.2 State-based Composable Service Interface

the printers available for its use. The printcap file defined the printers and their

characteristics. If the printer itself support Socket API, remote access could be

defined in printcap file for Socket connection directly to the printer. LPD relied on

TCP/IP as the communication protocol and adopted a domain specific language

to define service functionality. Since the printer itself had no resources for data

storage, computation and network management, a UNIX/LINUX computer was

usually required to provide necessary functionalities. There were several limita-

tions about LPD: First, it was dependent on specific operating sources and Socket

communication. Second, the LPD file was specifically devised for describing print-

ers and their functionality, and lacked a uniform model to be extended to other

sensors, actuators and IoT devices. Hence, there was no easy way to apply this

domestic service technology to IoTs. The advantage, compared with web services,

was the optimization which may lead to a better service quality in specific domain

and local use, such as: lower latency, more service functionality etc.

3.2 State-based Composable Service Interface

Instead of obtaining data directly from physical sensors/actuators, wireless sensor

network or an IoT device, the focus of this research lie on acquiring sensor/actu-

ator data via standard web service interfaces, such as popular online sensor data

platforms, embedded web servers within smart IoT devices etc., since exploit-

ing web service as data input service node is also an important interest for our

proposed paradigm.

However, not all web-accessible IoT resources can naturally be regarded as

composable IoT services. The composability requirement of IoT resource entails

a composition-oriented service interface model that not only provides consistency

with ordinary web services, but also able to express particular physical properties

and functionality innately derived from hardware devices. To legibly specify the

prerequisites for composable IoT service interface within our proposed framework,

we are expecting it to be:

1. An IoT resource and its host service must be addressable and accessable via

a unique resource identifier, i.e. URI-deferencable, within a composition.

2. The exposed interface of host service must be based on states rather than

operations. A state-based service “only stores states of a service, and thus

43

APPROACH 3.2 State-based Composable Service Interface

need to derive transitions by comparing previous state and its successor”

[90].

Though the inner mechanism of each host service may differ from one another, we

insist that the outer interface it exposes must be uniformly modelled into a set of

“states”, where any operation can be described by the transition of one or more

states. Intuitively, the state of a system is its condition at a particular point in

time [91]. In software engineering, a state is defined by a set of variables and

specific values [92].

According to engineering definition, a set of states S is usually specified by

a collection of variables V and their ranges R, which are sets of values. A state

s ∈ S assigns to every variable v ∈ V a value r ∈ R at certain time point. It

is understandable if we associate sensors and actuators with a series of variables

such as “battery power”, “location” etc. However, simply enumerating the possi-

ble combinations of variables does not necessarily constitute meaningful “states”,

but rather a state that is semantically meaningful is per se a cluster of arbitrar-

ily defined restrictions over variables and relations among variables. While the

transition between different states is often associated with a subset of variables

V ′ ⊆ V , whose range R′ ⊆ R. Particularly, the state transition from

sa
e−−→ sb

where e stands for events that either activate variables outside V ′ or make values
outranging R′. For instances, an integrated sensor transfers from the state “idle”

to the state “settingSamplePeriod”, which may caused by an input signal trigger

the variable “sample period” to be rewritten. Similarly, from the state “idle”

to “sleep” was basically due to that the value of variable “battery power” has

dropped under the threshold.

State-based interface is said to derive from the theory of Finite State Machine

(FSM), which has been widely used to model sequential control logic in digital

electronics, where it is defined as a digital device that traverses through a pre-

determined sequence of states in an orderly fashion, and state is a set of values

measured at different parts of the circuit. Most sensor or actuator controlled by

digital logic satisfy Finite State Machine (FSM) model [93]. For example, a tem-

perature sensor with its control circuits that measure environment thermal data is

an instance of physical FSM. Its states can be graphed as Figure 3.1. The sensor

input is analog thermal signal while output is digital temperature data. Its states,

e.g. “setting temperature measurement”, “setting sampling precision”, etc, and

44

APPROACH 3.2 State-based Composable Service Interface

Figure 3.1: A State Machine Model for a Temperature Sensor

state transitions constitude the mapping rules, or say mapping matrix, from in-

put to output. The changes of output reading may result from the changing of

input (32℃to 36℃), and/or the changing of states (measurement “Fahrenheit” to

“celsius”). The alteration of states is not as intensive as the input/output data,

while the frequency of latter may reach as high as hundreds per second. In real

practice, it is plausible to cohere low-frequency I/O data with state message to-

gether in single XML file, and transmit via standard HTTP operations to obtain

maximum interoperability over random heterogeneous systems. However, it en-

tails extra high-speed data channels to transmit realtime, unformatted (usually

raw) data stream. In this case, coexisting state messages must convey necessary

communication information (e.g. websocket IP address and port number etc.)

for establishing transport connections, as well as data schema (e.g. data format,

measurement etc.). To assemble proper and meaningful information, state mes-

sage can be synchronized with I/O data stream, by appointing a flag message

contained by I/O data to indicate once the states has been changed.

A more complicated actuator example is provided in Figure 3.2. A smart blind

actuator has four states: Full Open, Closed/Half Closed, Pulling Up/Down, and

Rotating Slats. Say we want to set the rotation angle of the slats to 5 degrees,

first of all we must make sure that the window slats are not totally rolled up like

in full open state so that we can adjust the slat angles, as it can be implied from

45

APPROACH 3.3 Physical and Virtual State Synchronization

Figure 3.2: A State Machine Model for a smart blind and its State Transfer SensorML Sample

the state machine beside. From “Closed/Half Closed” state to “Rotating Slats”

state, we may convey related variables and values in any standard formats like

JSON or XML etc., to indicate what final status we want to achieve, and hence

avoid directly calling the device-dependent methods to set rotation angles. Here

we gave a piece of state message with XML-like encoding (Precisely it should be

called “stateML”, but we’ll leave it to section 3.5), in which the desired rotation

angles can be described by the variable “Angle” and the value “5”.

3.3 Physical and Virtual State Synchronization

Our motivation to adopt the FSM model is mainly due to the fact that traditional

web resource, though maybe is also a projection of some physical object, doesn’t

need to maintain the same state with its physical source, while the sensor/ac-

tuator/IoT resources need to achieve this state synchronization within certain

(usually tolerable) error range and delay, because they are supposed to bridge the

physical and virtual world. Theoretically, this synchronization can be expressed

as a state machine replication process.

46

APPROACH 3.3 Physical and Virtual State Synchronization

Suppose a FSM can be defined as a quintupleM = (S,Σ,Γ, s0, δ, ω), where S is

a finite non-empty set of states, Σ is a finite non-empty set of symbols representing

the input alphabet, Γ is a finite non-empty set of symbols representing the output

alphabet, s0 ∈ S is the initial state, δ is the state transition function δ : S×Σ → S

in a FSM, and ω is the ouput function ω : S × Σ → Γ.

The corresponding virtual resource can be defined as a copy of the same FSM

of the physical resource: M ′ = (S,Σ′,Γ′, s′0, δ
′, ω′), which means for each element

of Inputs, States and Outputs in M , there is a corresponding element in M ′, and
given the corresponding Inputs and Sequence of State Transfers, the corresponding

Outputs will be obtained. However, the state implementation in M and M ′ are
not necessarily the same. For instance, an “on” state may refer to a logical high

level in physical resource, while be implemented as a digital 1 in virtual resource.

Thus, the physical-virtual synchronization can be regarded as an asynchronous

state machine replication process. During this process, multiple copies of the

identical State Machine begin in the same Start state, perform the same state

Transfers in the same order will arrive at the same Target State, and generate

the same Outputs from the same Inputs (though may be implemented in different

forms). In service architecture, an event (called an “input”, “output” or “action”)

is a standard method to drive a state transfer. In these situations, state machine

can be represented by augmenting the state to include the last event. In other

words, a transition s
α−−→ t from state s to state t with event α can be represented

as a transition from event-augmented state < s, β > to state < t, α >, where β

is the event that “leads to” s. Based on this definition, we define synchronization

between state machine M ′ and M as follow:

s′0 = s0

For each state transfer < s, β >→< t, α >,

< s′, β′ >=< s, β >

< t′, α′ >=< t, α >

We argue that it facilitates system composability to automate synchronization

between physical and virtual resources. Traditionally, physical-virtual synchro-

nization is handled in 4-step sequential operations, if host service or API that

encapsulating sensor functionality is still based on operation: 1) Call (physical)

sensor control function. 2) Wait until function return true. 3) Call (virtual) sensor

web service. 4) Wait until the service return OK. All the 4 steps must be carried

47

APPROACH 3.3 Physical and Virtual State Synchronization

out in a transaction to certify integrity of synchronization. If any step failed, the

whole transaction is incomplete and should be rolled back.

Figure 3.3: Traditional Physical-Virtual Synchronization

While in a complete state transfer oriented mechanism will help to simplify

the synchronization process. By delivering state description messages, a bidirec-

tional synchronization service can be achieved to maintain bidirectional messaging

coordination automatically and adaptively, as shown in 3.4. In this mechanism,

the caller only need to 1) get/set the desired (physical or virtual resource) state

transfer other than perform the real synchronization operation, the real synchro-

nization operation will maintained 2) automatically by services running in back-

ground. It is comprised of a physical resource service that is used to retrieve

data from physical resource and represent data in a state machine based model

by wrapping low-level API, a virtual resource service that is used to manage vir-

tual resource (such as database) and respond to web request (better implemented

as a state-transfer based service as we will discussed below), and a bidirectional

synchronization service that is used to maintain synchronization for both sides

48

APPROACH 3.3 Physical and Virtual State Synchronization

automatically.

Other options also exist, for example: the traditional method that invoking

device API directly. However, this kind of methods is tight-coupling, directional

solution with non-universal interface, as shown in figure 6, hence does not satisfy

our domain requirements.

Figure 3.4: State-based Physical-Virtual Synchronization

In addition, multiple physical copies and virtual copies of the state machine

can be synchronized to increase fault tolerance. For example: multiple sensors

are used to sensing the same physical object, and its value are stored in multiple

data storage. In this case, any single point failure will not affect the synchronized

resources as a whole if a proper voter mechanism is provided.

Essentially, this sort of structured, interlinked state-based interface reflects the

behavior patterns of sensor/actuator resources along with the underlying routes

or constraints that one must follow in order to achieve desired states. It provides

more sufficient information for resource composition. In addition, it helps to

recognize pattern equality or similarity by comparing state machines, thus to

49

APPROACH 3.4 State-Transfer-based IoT Service Composition

automatically recommend proper service for further processing. For example, a

door may be representationally equivalent to a switch button according to their

state machines, and thus can be controlled by the same operation logic as shown

in Figure 3.5. Last but not least, the state machine model is a natural composable

component. Composing or decomposing of resource representation can be easily

described as linking or breaking the link of states between state machines.

Figure 3.5: Pattern Equivalence between a Switch and a Door

In our composition framework, the minimum requirements for composability

is state-based service interface. Optional FSM-based service description file is

strongly recommended for extending cross-domain (re-)usage. Notify that the

lack of route constraints may entail invalid state transfer attempts. For those IoT

host services based on incompatible technology stack, e.g. SOAP, web socket,

server-sent event and etc., extensive wrappers are prepared.

3.4 State-Transfer-based IoT Service Composi-

tion

Similar as sensor/actuator/IoT resources, researchers have proved that resource

based web service can be modeled as FSM as well [94], and simulate physical FSMs

like a sensor or an IoT device [95]. Thus, the composition and decomposition

among common resources are hence simplified to connect or disconnect FSM-

modeled nodes. Specifically, when both web services and IoT resources are equally

50

APPROACH 3.4 State-Transfer-based IoT Service Composition

exposed as unified state-based services, previous node’s state transfer can act as

a trigger for the next node’s status to change. By establishing this sort of state

transfer chain, it becomes feasible to automate the process sequences and complete

certain tasks. To establish a state transfer chains under our proposed framework,

we are expecting that:

1. A state transfer chain starts from a subset of a composable service state

that acts as inputs, e.g. a web camera has a state named “shooting”, which

may contain a valid variable “focus”.

2. The transition of input states will hence trigger the states of the sequential

nodes to change according to a set of predefined rules, e.g. a logic gate

function or a translation service.

3. A state transfer chain ends with a subset of a composable service state that

acts as outputs, e.g. the state “flyingTo” of a irrigation drone contains 2

valid variables, respectively Lat and Lng.

Theoretically, given two composable service node a and b, respectively featured

by a set of states Sa and Sb with corresponding collections of variables Va and Vb.

A state s ∈ S assigns to every variable v ∈ V a value s(v) in its Range R. Hence

we define a link of state transfer eab between the va ∈ Va and vb ∈ Vb as a relation

function of two state transfers:

I(eab) = (s(va) → s′(va), s(vb) → s′(vb))

If links exist between multiple variable pairs from s to s′, then eab ∈ Eab, where Eab

is the set of all links between any two related variables in Va and Vb respectively.

Given a set of service nodes (at least two), a state transfer chain is defined as

a graph of links:

G = (T,E, I)

Among which, T , E, I represent the set of state transfers from different service

nodes, link of state transfers and relation function of the link respectively. I maps

each element of E into a T × T relation space. If I(e) = (p, q)(e ∈ E, p, q ∈ T),

then we say the state transfer of service node p and q is linked by the relation

function I(e), e.g. the state transfer p will trigger the state transfer q according

to the relation defined by function I(e).

In designing the IoT service composition mechanism, we have adopted a central

orchestration module to dispatch state transfer messages in between physically

51

APPROACH 3.4 State-Transfer-based IoT Service Composition

Figure 3.6: A State Transfer Chain Example under Central Orchestration

separated modules as well as arrange executive sequence and logic. As shown in

Figure 3.6, a light sensor was used for detecting current illuminance, ultraviolet

ray index and indoor air temperature, hence remotely controlling a smart window

blind according to user-customized logic, e.g. “roll the blind down when UV index

over 6 OR indoor temperature higher than 30 degree Celsius”. This seemingly

simple composition involves four main modules: (1) a light sensor, whose state

transferred from “idle” to “Sensing” is translated to corresponding light data by

(2) A user-defined logic service, further triggered the state transfer of (3) window

blind from “Open” to “Rotating Slats”, and (4) the central orchestration service

is in charge of all the messaging and control flow.

Specifically, in our proposed solution, state transfers are expressed in a set

of variables that stored and transmitted in standard-formatted files, which are

supposed to contain full information that a single request needs to be completed,

so that each connection initiated between any two nodes within a state transfer

chain stays independently from the previous and latter connections. We consider

the statelessness as an indispensable property in order to maintain the stability

and scalability of our proposed system, particularly in a distributed computing

environment.

52

APPROACH 3.5 StateML: A Unified Resource Representation

3.5 StateML: A Unified Resource Representa-

tion

3.5.1 Hybrid State-based Service Interface Description

In this section, we propose StateML for expressing the aforementioned FSM-

modelled service interface in a machine-readable format. It is a XML specification

combining both SensorML [96] and SCXML [97]. In Figure.3.7, we presented the

beginning part of a sample sensor description file, which contains a united name

space of SensorML and StateML. It should be noted that, xmlns : xlink allows

the usage of XInclude [98] for merging multiple XML files. This is specifically

useful when multiple resources share similar metadata and finite state machine

models. The common part can be referred as a external html link, e.g. < sml :

outputs xlink : href = “http : //resource.example.com/sensor/commonDescription” >

and then merged into a complete XML file.

Figure 3.7: Namespace in SensorSample

In stateML, we adopt SensorML for specifying basic data schema with a

full set of variables and their domains. SensorML is the standard initiated by

Open Geospatial Consortium (OGC) with the aim to provide standard models

and an XML encoding for describing sensors and measurement processes. The

most updated version now is SensorML 2.0, which came out in 2012. Accord-

ing to SensorML 2.0 specification, a typical physical component description may

concern general system description (device identifier, keyword list), identifiers

(manufacturer, model information), classifiers (sensor type and intended applica-

tion), characteristics (device physical properties like weight, length and electrical

requirement), capabilities (sample period, output interval etc), input lists (ex-

pected inputs), output lists (expected outputs, measurement) and parameter lists

(response parameters like relative response curve).

An integrated environmental sensor can be defined as a physical component

53

APPROACH 3.5 StateML: A Unified Resource Representation

Figure 3.8: Input List in SensorSample

and its input/output variables are respectively described in Figure 3.8 and 3.9.

A full description is supposed to also include information like device, id, location

information and etc., but the sample files provided in this dissertation have omit-

ted some of the sections for brevity. A more complete version can be found in

Appendix A.

Figure 3.9: Output List in SensorSample

The input/output datafields of a physical component are generally equivalent

to the entry/exit of state machine of the same device. The input list speci-

fies observable properties or phenomena, while the output list mainly describes

data that the device observed, its measurement and values. In the example,

54

APPROACH 3.5 StateML: A Unified Resource Representation

output lists included relative humidity, temperature, pressure, acoustic intensity

etc. Usually, last measurement values are expressed in the xlink : href attribute

of swe : value by an html link, e.g. < swe : values xlink : href = “http :

//myServer.com/sensor/node1” >.

But it is also possible to specify realtime streaming protocols, like Real-Time

Protocol (RTP) in the example. SensorML 2.0 claims that there are various other

protocols that could be supported by a SensorML description, and supposed to be

described in the sml : interfaceProperties element of the sml : DataInterface

object.

While the SCXML part of descriptions, on the other hand, describes the cor-

responding state chart that embodies the cluster of arbitrarily defined restric-

tions among variables. State Chart XML (SCXML) is a general-purpose, event-

based state machine language standard proposed by World Wide Web Consortium

(W3C) in 2015. In SCXML, a state machine is commonly decided by a triad of

“state”, “transition” and “event”. Each state contains a set of transitions that

define how it reacts to events, which can be generated by the state machine itself

or by external entities.

Particularly, a state may contain multiple nested children states, as known

as either “compound” state or “parallel” state. The former refers to the kind of

state that when it’s active, exactly one of its children states is active. While the

latter refers to that when the parent state is active, all of its children are active.

Thus, by adopting this nested structure, it is able to depict complex control logic

of especially multi-components IoT items.

In Figure 3.10, we provided a FSM model of the sensor sample. For brevity,

we listed only the SCXML part of the corresponding stateML description in 3.11.

It starts with an initial state “idle”. To specifically point out that, internal events

that trigger states to naturally transfer are not explicitly specified, e.g. when

state “SettingSampleInterval” is over, it will continue skip to state “idle” without

external intervention. And events that trigger state transition are always bound

to the changes of significant variables and their value, which are supposed to be

declared in the previous SensorML part in order to state their value range.

There are two different types of events: The “Internal” events that are only

observable, e.g. the transition from “Idle” to “Sleep” caused by natural power

attenuation within the system; And “External” events that triggered by external

operations, e.g. the transition from “idle” to “settingOutputInterval” by the

operation of changing the variable “OutputInterval”. Input and Output are two

55

APPROACH 3.5 StateML: A Unified Resource Representation

Figure 3.10: Sensor Finite State Machine

special standalone states, which means they cannot transit to other states but

themselves. Compound state and parallel state can be used to decribe more

complicated behavior patterns of IoT services.

Figure 3.11: State Chart in SensorSample

There are a few unique design principles in our practise regarding the usauge

of SCXML, which differs from the original standard and are worthy of attentions.

56

APPROACH 3.5 StateML: A Unified Resource Representation

Firstly, the SCXML is for service interface descriptions that greatly depend on

what functionality and in what granularity the service developers want to expose,

and its style even for the same device sometimes will vary from case to case, rather

than strict device’s internal mechanism. State and its transitions triggered by

internal events, which is neither “operable” nor “observable” to external entities,

are supposed to stay transparent.

Secondly, it is recommended that to specify “events” by the variables prede-

fined by SensorML in a key-value pair manner. In most occasions, this method

conveys imperative messages by designating key variables related to the desired

target state. But if complicated computing, e.g. conditional judgment, timer in-

vocation etc., is inevitable, it should follow specific instruction provided by the

service developer.

Last but no least, all SCXML statements within our framework will be ex-

empted from being parsed as executable code line by line as suggested by its

original proposal. Instead, it is supposed to stay independently from the actual

execution. Synergizing with SensorML, the overall service description file will be

uploaded to and stored in some resource management server when a IoT host ser-

vice is registered. And once the service is requested, related description file will

hence be obtained and parsed so that the request initiator, who may be a human

user or a service agent, will be informed about 1) what state of the resource can be

obtained and 2) what information is required and how to actively switch current

state to another.

As concluded in Chapter 2, IoT services obeying these design principles are

in accordance with REST paradigm and exhibit very strong similarity with tradi-

tional web services, which greatly facilitates the interoperability and compatibility

of web components as well as resuability of existing web services. Moreover, cus-

tomizable host service implies that service developers have their own control over

concealing or exposing internal mechanism and functionality of IoT resources at

their desired granularity. This kind of unified resource representation conveys

adequate information by for both human and machine users to remotely operate

and interact with IoT services, but also potentially lays the foundation for future

process automation.

Sequential tasks involving multiple state transfers, establishment of complex

state transfer chain and some other issues will be discussed in details in the fol-

lowing section.

57

APPROACH 3.5 StateML: A Unified Resource Representation

3.5.2 State-Transfer-based Messaging

In section 3.5.1, we have recommended service developers to adopt stateXML for

uniform service interface description. To simplify the management of state infor-

mation, it is also recommended to transmit event message between nodes using

the same format. One of the major tasks of service composition is to fetch and

coordinate designated Web and IoT services, and assemble them into value-added

composite services according to predefined linking rules. Therefore, we adopted a

central service orchestration to analyze user-defined task logic and manage all the

state transfer messages between different IoT service node. Detailed implementa-

tion of central service orchestration will be discussed in next chapter.

To better illustrate state transfer based service orchestration, we will still use

the same sensor example and start from the simplest state transitions within same

node, say, to adjust the outputting interval from 2.58 to 3 seconds. For brevity,

the namespace prefixes are omitted:

This piece of stateML message describes the external event that triggers the

state transition from idle to settingOutputInterval with a parameter named

outputInterval : 3. If using typical RESTful interface, the parameter can be

passed to resource server by using standard HTTP GET method, e.g. http:

//www.resource.com/sensor/node1?outputInterval=3. Event messages sent

by central orchestration service will be parsed by host service and trigger corre-

sponding API/drivers function that set data output interval to be executed.

Tasks that consist of sequential control commands require more than single

hop state transitions, e.g. to make a drone to take off until it reaches 2 meters

above ground, then fly forward at the speed of 1 meter per second as well as down

at 0.2 meters per second. One critical issue here, is to maintain the stateless

status of the server side, i.e. the drone in this case. Therefore, the client, i.e.

the service orchestration service, instead will establish a state transfer pipe to

guarantee sequential execution, and provide all necessary data to complete every

step of state transition in single request. Accordingly, the IoT resource should

ignore the requests initiated by other clients until current task is completed, and

keep its state visible to client during the whole procedure so that central service

58

APPROACH 3.5 StateML: A Unified Resource Representation

orchestration is able to be notified if each step of the state transition is successfully

completed.

Now that we have the two previous examples as our basis, finally the state

transfers from different resources will be assembled to form a complete state trans-

fer chain. Suppose a common smart agriculture scenario, sensors are deployed to

detect the soil humidity and once the relative humidity is lower than 20 percents,

an irrigation drone will be notified and sent to the spot. The purpose of resource

composition here, is to use the sensor’s humidity data and geographic location to

trigger the drone’s actions by establishing a control logic based on specified state

transfer chain.

When central service orchestration received the state update notification from

source node each time, it will call and run through threshold checking component,

may it be an internal function or external web service. If the condition is true,

sensor’s geographical information will be delivered to the irrigation drone and

set the drone’s status to complete the following transition from “taking off” to

“flying” to the predefined destination.

The composition output is supposed to be an value-added service comprises

several existing resources, for example: a temperature alarm service built upon a

thermal sensor, a threshold checking service and an actuator host service. This

kind of composition result is supposed to be composable, and can be further inte-

grated into more complicated services, which can be proved by related researches

that the cascade composition of two finite state machines is still a finite state

machine [99, 100].

59

APPROACH 3.6 Summary

3.6 Summary

In this chapter, we discussed the general approach for establishing an IoT service

composition framework based on the concepts of “state” and “state transfer”,

which were able to improve service composability compared with its operation-

based counterparts.

Specifically, a state of a system was its condition at a particular point in time

that could be defined by a set of variables and specic values. It was understand-

able if we associated sensors and actuators with variables such as “battery power”,

“location” etc. However, simply enumerating the possible combinations of vari-

ables did not necessarily constitute meaningful “states”, but rather a state that

was semantically meaningful was per se a cluster of arbitrarily defined restrictions

over variables and relations among variables. While the transition from one state

to another could be defined by a triad of initial state, target state, and trigger-

ing event that could be expressed by the variance of significant variables and/or

values.

In proposed composition framework, we stipulated that a composable IoT re-

source must be addressable and accessible via a unique resource identifier (URI),

i.e. URI-dereferencable, and the service interface it exposed must be based on

states. This kind of state-based interface could be expressed by a Finite-State-

Machine model. Then a composition task might consist of one or more state

transfer chains that started and ended with a subset of a composable service

states, while the state transition of previous node triggered its subsequent node’s

state to transfer successively according to predefined linking rules. Accordingly,

we recommended service developers to adopt StateML, a unified resource represen-

tation in machine-readable format, specifically for state-based service description

and event messaging.

By adopting proposed approach, it facilitated system composability and helped

maintain black-box models and loose component coupling, as well as enabled

automatic control logic among components.

60

Chapter 4

IoT Service Composition
Framework: HSML

4.1 Servitization

In IoT domain, IoT host services have been proposed with the aim at enabling

seamless interoperability and open accessibility of sensor/actuator/IoT nodes from

different vendors via uniform management, with the interposition of an abstrac-

tion layer between the application logic and device drivers/APis [9, 101, 102]. It

intends to virtualize physical devices and their functionality into URI dereferen-

cable services with general interfaces, which are also supposed to be compatible

with existing Web services. The proposed framework in this research has premises

about the particular way how servitized IoT nodes are introduced into proposed

framework, however, it does not have any concrete specification on either the

servitization technology or methods, as the procedure is usually highly device

dependent and vendor specific.

Nowadays, we have witnessed many business IoT solution providers including

Amazon (Device Shadow), IBM (Bluemix), Google Cloud IoT etc., competitively

offer from-device-to-service solutions that equipped with REpresentational State

Transfer(REST) style service interfaces. And though not compulsory, currently

most COAP-based IoT services also appear with state-based interfaces. Still, we

will discuss three mainstream servitization approaches, and implement several

host services as examples. But please note that, it should not be limited to the

discussed methods in real practise, as long as the service interface fulfills the

aforementioned requirements.

According to different locations that IoT host services are launched, main-

stream servitization can be divided into three categories: local servitization,

edge-based servitization and cloud-based servitization, as shown in in Fig-

ure 4.1. Local servitization allows IoT resources with build-in host service to

61

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.1 Servitization

directly connect to the Web. In this case, upper-layer applications request ser-

vices by accessing the device directly. It usually requires the device manufacturer

to provide a full-tier solution to traverse TCP/IP stack, or its resource-constraint

counterpart, e.g. 6LoWPAN, COAP etc, which also suggests the device node must

possess certain amount of computing resources in order to accomplish this kind of

local servitization. On the other hand, edge-based servitization and cloud-based

Figure 4.1: Three Different Types of Mainstream Servitization

servitization are considered propitious to large-scale, low-cost IoT nodes with less

computing capability. In the former case, host services are located in some sink

nodes which collect data from peripheral devices and perform necessary computing

operations. Thus, service interfaces are separated from actual resources and usu-

ally rely on edge devices, such as a Raspberry Pi, to provide indirect accessibility

of IoT resource nodes.

Similarly, the sink node can either be replaced by, or further export data to

a central cloud platform, such as the business IoT cloud solutions we mentioned.

Cloud-based servitization provides one or more types of service interfaces and

pay-as-you-go computing power, which makes it a better solution specifically for

cross-organizational, elastic application scenarios.

62

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.1 Servitization

Though out of our research scope, we would like to give a concrete example
of what a typical IoT host service may look like. The following is a fragment of
NodeJS code that runs on an actual server to host a drone. Full script is available
at Appendix C. Suppose the drone has a URL: http://resource.example.com/
drone, all of its functions is accessible via corresponding path names, e.g. http://
resource.example.com/drone/land, and can be requested by using sheer stan-
dard HTTP operations: GET, POST, UPDATE and DELETE. Once server-side
application detects a POST request with path name “land”, it will then call the
device API functions stop() and land() to accomplish desired operation. If drone’s
successfully landed, server will response with a status code “200”, which means
“OK”, as well as a JSON object “currentState” to inform the client of drone’s
current state.

app.post(’/land’, function(request, response){

client.stop();

client.land();

currentState = ’land’;

response.status(200).json({state:currentState});

});

It can be inferred from this example that a host service works as an abstract

layer that conceal native device functions, and map them into the state-based

interface. And by separating the underlying mechanisms from the task logic and

application atop, even if hardware got replaced by another vendors device, or

the version of device APIs updated, as long as the host service interface stay the

same, the upper-layer application logic can work as usual without readjustment.

Another advantage lies in the re-usage of existing services and legacy functionality.

Even if the existing service does not have state-based service interface, we are able

to effectively control the customization cost by adding just one more layer of host

service as an adapter, while maintain existing structures.

Though some device manufacturers already provide their products with REST-

ful interfaces, in that case their device APIs are regarded equal to a host service.

But most of the time, you may need a host service that to translate vendor-specific

API functions to language-independent, state-based web service interface. We ac-

tually expect that the servitization of IoT resources is beforehand taken over by

service developers, research communities, device owners, or even some hardware

manufacturers. And before resources enter our proposed framework, state-based

interfaces as shown above must be prepared to allow further composability. Be-

yond, it is strongly recommended service developers to provide a standard service

63

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.2 General System Architecture

description along with the host service using, e.g. StateML discussed in last chap-

ter, for the purpose of host service registry, query and acquisition that better

support the sharing of resource information among different stakeholders.

Sometimes, service developers may want to provide multi-prong service acces-

sibility in response to diverse actual demands. For example, IoT developers can

choose to request realtime, high-precision data by directly accessing a physical sen-

sor via LTE or 4G network, which may hence generate relatively expensive charge.

Or he/she can instead request stored data from the corresponding virtualized sen-

sor at a lower service cost. Thus, a well-servitizated IoT resource allows service

providers to flexibility adjust its service quality according to different stakeholder

interests, cost and authorities.

No matter whichever approach is selected, IoT resources are supposed to be

equally viewed as homogenized services from external perspective after servitiza-

tion, and can be uniquely addressed and accessed through standard Web mes-

saging. Networked sensor systems, e.g. wireless sensor network, can share single

host service at the sink node, and data from each sensor node can be streamed

via URI path. For IoT resources that need to have dedicated address, one of the

possible solutions is offered by IPv6 standard, which provides a 128-bit address

field, thus making it capable to assign a unique IPv6 address to any possible

node in the IoT network. The aforementioned standard 6LoWPAN, which is an

established compression format for IPv6 and UDP headers, can be transparently

translated from/to IPv6 by deploying a board router at the edge between IoT

network and IPv6 network. While the conflict may exist between IoT nodes and

IPv4-only hosts, it can be addressed by a few proposed methods including v4/v6

Port Address Translation (v4/v6 PAT), v4/v6 Domain Name Conversion, and

URI Mapping etc [44].

Furthermore, service monitoring and tracking facility may need to be presented

after servitization in order to deal with the inherently unreliable nature of IoT

services, that cannot be assumed “always on”, as mobile-powered ones may go

offline in one location and turn up again somewhere else, and the availability of

some services may swing steadily in an unpredictable way [103].

4.2 General System Architecture

To provide a general system overview, proposed IoT service composition frame-

work comprises a few core modules, as shown in Figure 4.2. Firstly, A web

64

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.2 General System Architecture

application development toolkit, which can be either based on sheer graphic

elements (GE) or domain specific languages (DSL), to acquire customized require-

ments and return the composition output. Here we provides a domain specific

language named Hyper Sensor Markup language (HSML) to enable IoT devel-

opers specifically describe single IoT node’s access, process logic all the way to

visualization effects, as well as linking rules among multiple service nodes. The

usage of HSML will be introduced in details in coming sections. The toolkit hence

consists of three modules: 1) A file uploader, for IoT developers to upload images

and local data file like CSV and XML file; 2) An HSML text editor for IoT devel-

opers to input and edit HSML texts and 3) A geo-visualizer to help IoT developers

debug and tweak data visualization effects. This component is mainly developed

by JavaScript and run on web browsers of Client side (support Chrome, FireFox

and Safari. Incompatible with IE).

Figure 4.2: System Components

Secondly, a central service orchestration is in charge of analyzing received

user-defined task logics and coordinating service nodes. It is comprised of 1)

a HSML parser along with 2) one or multiple message brokers, while the former

65

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.2 General System Architecture

parsed submitted HSML texts into corresponding attributes and values, according

to which the later will be constructed and configured. The central orchestration

service, which usually locates at composition server clusters, receives and analyzed

composition requests initiated by one or multiple clients. It will further establish

service and linking route tables, configure message brokers and pass necessary

information that needed to accomplish a specific composition task.

Message brokers will then take over delivering and receiving state messages

between different nodes, which can be duplicated and deployed on distributed

environments according to different application scenarios. It is the actual agent

to handle the request/response between service nodes and transmit state transfer

messages from previous node to the next according to predefined linking routes

and rules. Message broker helps maintain the communication in between sequen-

tial nodes based on the transitions of state. The overall central service orchestra-

tion module is developed by NodeJS and can be run on most mainstream server

systems. While in some deployment case that message broker is allowed to be

replicated and run on client ends, NodeJS can actually be replaced by JavaScript

or Python etc. The reason why we chose NodeJS was because it shared a similar

syntax and grammar with our front-end language: JavaScript. Also, it ensures

compatibility with other mainstream IoT middleware including IBM’s Node-Red.

The resource management module contains functional components such

as service query and register etc, which developed by a combination of NodeJS,

JavaScript and MongoDB in our actual implementation. As already mentioned in

Section 3.5, we strongly recommend service developers who wish to open their IoT

service access to other IoT developers, to provide uniform resource descriptions to

for resource registry and query so that it can better support the sharing of resource

information among different stakeholders. The resource management server can

be deployed either together with orchestration service, or independently on specific

resource servers to enable flexible resource import from external organizations and

institutions.

Finally, for IoT services whose programming interface and/or driver does not

in compliance with the requests of FSM model, as we stated in previous sections, a

couple of wrappers are ready for encapsulation and interface translation. At cur-

rent stage, besides REST (CKAN/ DKAN), COAP (Eclipse Californium), we have

also prepared compatible wrappers for Web Socket (Socrata), AJAX (OpenSen-

sor.io), server-sent event (OGC), MQTT, as well as data formats like XML, JSON

and CSV. Service developers can also develop their own wrappers.

66

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.2 General System Architecture

Figure 4.3: A Three-Layer System Architecture Layout

Generally, the typical deployment of our proposed system within a distributed

computing context is a three-layer system architecture. The top-most level is

67

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

the Composition Layer. It fetches and coordinates designated services and

resources, and assembles them into new value-added composite services according

to user-customized rules and logic control. Therefore, a concise user interface

must be provided in this layer.

Service Layer manages a pool of atomic building blocks that spread through

cross-organization server clusters, to further process data from lower layer, carries

out calculation and provides outcome to upper layer. Each service is supposed to

maintain its self-description files and maintain available state transfers informa-

tion.

Device Layer is supposed to collect data from edge devices or gateways,

aggregate and wrap them up into host services with uniform interfaces, which

retrieve data from local devices (local servitization), edge sink nodes (edge servi-

tization, usually instant data) or cloud servers (cloud servitization, usually his-

torical data). Developers who provide host services are also supposed to offer

necessary information for other IoT developers to interact with the service node,

either by organizing and exposing related functionality in the way of hypermedia,

also known as HATEOAS (Hypermedia as the engine), or by registering certain

interface description files for external services to query over and access.

Multiple device networks which may be set up and managed by different or-

ganizations and institutions can be equally introduced into the same deployment.

An overall system layout inside distributed computing environment is presented

in Figure 4.3.

4.3 Web Development Toolkit

4.3.1 HSML Syntax Paradigm

To evaluate the feasibility, usability and other desired properties and provide a

typical implementation of our proposed framework, a web development toolkit

for IoT web application: Hyper Sensor Markup Language (HSML) was hence

invented. To pay specific attentions, we intentionally to use the term “HSML” to

indicate both the underlying IoT service composition architecture, as well as the

domain specific language that used for constructing composition task logic.

Three possible implementation approaches had been discussed: 1) Graphic

Elements (GE) based, 2) Domain Specific Languages (DSL) based, or 3) a combi-

nation of both. The former utilizes graphical icons to represent application domain

68

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

functions and information specific functions, and give a visual face to underlying

web resources. It allows novice developers without adequate programming skills

to create customized resource compositions via simple and intuitive user interac-

tions. On the other hand, DSL based approach provides IoT developers with a

terse programming language with common syntax and semantics regarding a par-

ticular domain [104]. The trade off between kick-start barriers and expressiveness

has hence facilitated the hybrid paradigm of GE and DSL.

In our implementation, we have adopted the DSL approach with a HTML-like

syntax due to: 1) HTML is widely accepted not only by technical community,

but also within design and business domains, which results in relatively lower

learning barriers and a potentially larger user group. 2) HTML, as a fundamental

component of current web technology stack, provides higher compatibility when

integrated with most state-of-art web technologies. 3) HTML shares a consistent

syntax with XML, while the later one is usually used as the description language

of many current semantic sensor web standards, including SensorML, SSN and

etc.

More precisely, we have designed three kinds of descriptors to convey main

subjects involved in resource composition, respectively:

Figure 4.4: HSML Syntax Paradigm

1. Resource Descriptor, for loading and importing composable sensor/ actu-

ator resources. Typical usage like: < loc src = “www.example.com/sensor

69

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

” > < /loc >, among which compulsory attribute src is required to specify

the URL of sensor/actuator resources. Other optional attribute like type,

name etc can be used to described extensive information about a resource.

2. Service Descriptor, for associating specific service components with im-

ported resources. Fox example, to create a bar chart from sensor data, we

use: < loc src = “www.example.com/sensor” viz = “bar” >< /loc >,

among which an external data visualization service component is inputted

and mapped to an attribute called viz further associated to the sensor re-

sources. In consideration of system security and other related issues, we dont

provide IoT developers with open interface for importing external services

for now. Service components can be introduced as library or inlined direc-

tives by administrator who deploy and manage the overall HSML system

only.

3. State-Transfer Descriptor, for linking state transfers of two or more re-

sources together according to designated rules. A typical usage like us-

ing a temperature sensor to control an alarm. When temperature crosses

the predefined threshold, for instance 100 centigrade, the alarm will be

turned on. Corresponding HSML expression will be like < lnk function =

“THRESHOLD(alarm.on, sensor.temp, 100)”;>< lnk >, among which

alarm and sensor are declared web resources, and threshold will be a

boolean function stipulating relationships between the state transfers of two

resources.

Two different composition types can actually be implied from above: implicit

composition and explicit composition. Generally, in the situation of implicit

composition, we compose a resource with one or multiple services without explic-

itly appointing a state-transfer descriptor. The service nodes are syntactically

“attached to” a resource descriptor as attributes, the executive sequence of which

are either designated by the default composition logic or priority levels of each

service components. On the contrary, in explicit composition we use the state-

transfer descriptor like < lnk >, to explicitly specify one or multiple state transfer

chains that consisted of at least two resource states and related linking rules.

Figure 4.5 shown the file uploader of HSML web API, where IoT developers can

upload files, e.g. csv files, xml files, images etc, to the composition server. Static

data repositories, batch processing script or advanced programming code can be

similarly inserted via URL into HSML. Next interface is web based HSML editor

70

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

Figure 4.5: File Uploader of HSML web API

as shown in Figure 4.6. Developers can edit, execute and view the composition

result as well as debug their HSML in an on-the-fly manner.

Figure 4.6: Web HSML Editor

In addition, a geo-visualization interface based on web map (Google map in

current stage) is also part of the API. Developer can type location keywords

to query and insert specific locations into their HSML texts. Compiled state

transfer results and visualized data will be mashed up and integrated into the

map interface. Each resource descriptor < loc > will be marked in point on the

map according to their location, and each transfer descriptor < lnk > marked in

line between state-linked resources.

Actually, general HTML elements and contents can be seamlessly integated

in between < loc > and < lnk > tag pairs, which may be plain text, images,

realtime video streaming etc. When mouse hovering on any < loc > or < lnk >

71

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

visual element, the inserted HTML will be presented in the pop-up information

window, as shown in Figure 4.7.

Figure 4.7: Geo-Visualizer based on Web Map

Detailed information about each descriptor, subordinate attributes and their
usages is listed as below (Attributes marked with * are mandatory):

Table 4.1: Resource Descriptor < loc > Usage

Name Type Value Usage

Attribute

id* ID Any valid id defined in

XML schema

Uniquely identify a resource in a

composition. If left blank, an id

generated by system will be as-

signed

src* URI Resource address, usually will be

a URL. When extra data channel

is needed, it can be expressed as

“protocol://ip:portnumber”

name string Any valid string not

started with the string

data.

For information purpose

type enum “sensor” , “realtime” ,

“actuator” . Default value

is “sensor”

To specify resource type to be

sensor, realtime sensor or actu-

ator

72

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

Name Type Value Usage

lat decimal or

expression

Valid value from -90 to 90 Resource’s latitude. Using user

specified expression like lat =

data.latitude, to assign the value

of where the key equals to “lati-

tude” from current resource data

in realtime manner

lng decimal or

expression

Valid value from -180 to

180

Resource’s longitude. Using user

specified expression like lng =

data.longitude, to assign the

value of where the key equals to

“latitude” from current resource

data in realtime manner

x decimal or

expression

Valid value from 0 to 100 Resource’s relative horizontal

position referring to user-defined

map. Can be assigned in real-

time by expression

y decimal or

expression

Valid value from 0 to 100 Resource’s relative vertical po-

sition referring to user-defined

map. Can be assigned in real-

time by expression

Process

input key-value

pair or

URI

Any assignable input parameters

provided by device

filter expression Specified by data.key. Other

data field will be filtered out

viz enum or

URI

Default data visualizer

has three options: area,

bar and line

For tweaking data visualization

effects within information win-

dows. Also external visualization

service can be specified by URL

stateml URI User-defined StateML file can be

specified via URL for execute se-

quential state transitions regard-

ing single resource

Style

style key-value

pair

Options include: r, fill,

stroke, width

For tweaking resource mark ap-

pearance on maps similar to

css style. Controllable parame-

ters include radius, filling color,

stroke color and stroke width.

73

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

Table 4.2: Transfer Descriptor < lnk > Usage

Name Type Value Usage

Attribute

id* ID Any valid id defined in

XML schema

Uniquely identify a state transi-

tion chain in a composition. If

left blank, an id generated by

system will be assigned

src URI The address of uploaded csv file

can be assigned for bach process-

ing state transition chains.

name string Currently only for information

purpose

type string Reserved filed

points expression Should be multiple loc ids

that separated by token

“;”

To visually line up different loc

marks on maps

Process

stateml URI User-defined StateML file can

be specified via URL for estab-

lish state tranfer chains involving

multiple resources

function expression

or URI

Inlined methods includ-

ing: THRESHOLD,

CEILING, IF ,

LINEAR

Provide simple intermediary

functions for mapping the states

of input and ouput nodes. Com-

plicated processing can be done

by specified external service by

URL

Style

style key-value

pair

Options include: type,

fill, stroke, width

For tweaking link appearance be-

tween resources similar to css

style. Controllable parameters

include line type (default value

is solid. Optional is dotted), fill-

ing color, stroke color and stroke

width.

4.3.2 HSML Usage Sample

In the following part, we will introduce some typical usages of HSML.
First sample introduces a soil humidity sensor using resource descriptor with

id “sesnsorSample”. In single composition task, each pair of < loc > tags must

74

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

be assigned with a unique id to distinguish each other, otherwise only the first
pair < loc > with same id will be regarded valid resource. If left blank, system-
generated id will be assigned by default. Though < lnk > tags are processed
independently from < loc >, still we don’t recommend to share same id between
< loc > and < lnk >.

<loc id=" sensorSample" name="Soil humidity sensor at Mita"

input =" samplingPeroid: 3" lat ="35.6499948" lng ="139.7433191"

x="10" y="20" src="http ://www.resource.com/sensor" type="

realtime" viz="bar" filter ="humidity , timestamp" style ="r:1;

fill: red; stroke:black; width :0.2;"> </loc >

Attributes lat and lng, as well as x and y must be used in pairs. The former can

be mapped to any map interfaces based on global geographic coordinate system,

while the latter works for user-defined maps (e.g. indoor maps). Taking the top-

left corner as origin of coordinates, X = “10”, y = “20” denotes relative location

at 10% width and 20% height of the map. At current version, HSML parser will

prompt invalid error information unless one pair of location specification attribute

presented.

src is a required attribute to specify resource address, which will be directed

to the actual resource, which might be a static data repository, an uploaded data

file, a virtual sensor, or a dynamic IoT service etc. Together with the attribute

type, they decided the way how data will be accessed and processed. In the

sample, when type = “realtime” and viz = “bar”, it will render realtime data

visualization in the information window attached to the resource marker pinned at

map geo-visualization interface. If viz attribute is not specified, the information

window will only show the realtime data in plain text. If type is not specified

as realtime or actuator, it will be treated as a static sensor and the previous 20

records will be displayed by default. If the IoT developer leaves filter blank, all

the data field within one record will be present or visualized by default.

style attribute has a group of parameters which can manipulate the appearance

of each < loc > marker. If left unassigned, default appearance will be a point

with 10 pixel radius, with light blue color and 1 pixel red stroke.
Next, we use a drone as our actuator sample. stateml specifies a stateML file

to control drone to finish a series of predefined commands. While the expressions
lat = “data.latitude”, lng = “data.longititude”, different from the previous sam-
ple, dynamically obtain realtime coordinates data from the associated resource,
i.e. the drone, and trigger HSML geo-visualizer to redraw the position of the
resource marker on map interface. Thus we can monitor realtime motion and

75

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

trajectory of those IoT devices with dynamic position information. It is note-
worthy that the suffix following the common prefix data. must be mapped to the
actual variable names contained in the device data record, e.g. some devices use
data fields x and y instead of lat and lng. In this case, corresponding HSML
must be lat = “data.x”, lng = “data.y”. Expressions in HSML also allows nested
variables, e.g. data.coordinates.lat and data.coordinates.lng.

<loc id=" actuatorSample" name=" Drone" type=" actuator" src="

http :// www.resource.com/drone" stateml =" uploads/TestUser1/

1494770866000/ predefinedMovement.xml" lat="data.latitude"

lng="data.longtitude"><img src="http ://www.resource.com/

drone/cameraView/nphMotionJpeg?Resolution =300 x240&Quality

=Standard" style=" transform: rotate (180 deg);width :305px;">

</loc >

Readers may also notice that here we inserted an < img > tags inside HSML,

which is the realtime video streaming provided by drone camera. Original HTML

tags can be seamlessly blended with HSML thus rich hypermedia contents can be

inserted inside into resource composition, including but not limited to plain texts,

images, audio, video and etc.
After resources being declared by resource descriptor < loc >, they can be

further used together with service descriptor in state transfer descriptor < lnk >.
For example in the following HSML, the previous two resources sensorSample
and actuatorSample are further mapped by a LINEAR function nested in a
THRESHOLD function. The LINEAR function is one of the inlined processing
functions, which expects three parameters: LINEAR(y, x, gradient). y will be as-
signed the value of x times gradient. If the third parameter is left blank, the gradi-
ent of the function will be set to 1 by default. Similarly, function THRESHOLD
expects 4 parameters: THRESHOLD = “y, x, lowerBound, upperBound”, which
specifies that the expression y will be executed, when the value of variable x is
either exceed the upperBound or drop blow the lowerBound.

<lnk id=" linkSample" name=" irrigationTask" function =" THRESHOLD

(LINEAR ({ actuatorSample.lat , actuatorSample.lng}, {sensor

Sample.lat , sensorSample.lng}), sensorSample.humidity ,

20, 100)"></lnk >

Here the range of relative humidity is from 0% to 100%, which implies only

when the sensor data is observed to be less than 20%, its location data will be

assigned to the actuator - the drone. This operation will drive the drone to fly to

the same position as the sensor.

Last but no least, the final sample showns that how to batch processing large-

76

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.3 Web Development Toolkit

scale date using user-uploaded csv files. HSML supports different local data file

formats including XML, CSV and JSON etc. In order to better separate resource

descriptor groups and transfer descriptor groups, we stipulate to use file name

extensions of .locs and lnks respectively.

Figure 4.8: London Metro Map by HSML

<loc id=" metroStation" src=" uploads/testUser1 /1494806691000/ metro

.locs"></loc >

<lnk id=" metroLine" src=" uploads/testUser1 /1494806691000/ metro.

lnks"></lnk >

We used the open data provided by London metrolines. Each record in
metro.locs stands for a station on a metro line:

"id","lat","lng","name"," display_name ","zone"," total_lines"

1 ,51.5028 , -0.2801 ," Acton Town","Acton Town",3,2

2 ,51.5143 , -0.0755 ," Aldgate",NULL ,1,2

3 ,51.5154 , -0.0726 ," Aldgate East","Aldgate East",1,2

4 ,51.5107 , -0.013 ," All Saints","All Saints",2,1

5 ,51.5407 , -0.2997 ," Alperton",NULL ,4,1

7 ,51.5322 , -0.1058 ," Angel",NULL ,1,1

8 ,51.5653 , -0.1353 ," Archway",NULL ,2.5,1

9 ,51.6164 , -0.1331 ," Arnos Grove","Arnos Grove",4,1

10 ,51.5586 , -0.1059 ," Arsenal",NULL ,2,1

......

77

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.4 Central Service Orchestration

The content of metro.lnks looks like below, when the points attribute in lnks
specifies the line to be drew in between any two adjacent stations.

id ,points ,line ,stroke

1,"11,163",1,# AE6017

2,"11,212",1,# AE6017

3,"49,87",1,# AE6017

4,"49,197",1,# AE6017

5,"82,163",1,# AE6017

6,"82,193",1,# AE6017

7,"84,148",1,# AE6017

8,"87,279",1,# AE6017

9 ,"113,246" ,1 ,# AE6017

10 ,"113 ,298" ,1 ,# AE6017

......

The result is shown in 4.8.

4.4 Central Service Orchestration

After IoT developers input and submit their HSML via HSML editor (usually in

a web browser) to the composition server, it will be processed by central service

orchestration module and eventually interpreted into executable device operations

on target devices by host service, as shown in Figure 4.9. Firstly, developers can

start with acquiring standard resource descriptions by querying StateML Files

registered on the resource server, which are generally supposed to be provided by

the service developer. IoT Developers are supposed to explicitly specify resource

address, authority information, as well as connection protocol and port number if

extra data channel is presented other than HTTP by default.

Submitted HSML texts are parsed by a regular expression interpreter, which is

a basic component of central service orchestration. For example: a line of HSML

such as < loc id = “mySensor1” src = “www.mydomain.com” >< /loc > will

be parsed into standard data format and then stored in a child node of a global

object locs, like {loc : {id : “mySensor1”, src : “www.mydomain.com”}}. In one
composition, locs may have one or multiple child nodes, depending on how many

loc tags there are within the task. The same goes for lnk tags.

Parsed data is used to configure corresponding message brokers, according

to which each message broker will establish and maintain a linking route table.

A linking route table is similar to a routing table that records the senders and

receivers of certain state messages. By default, message brokers will then construct

78

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.4 Central Service Orchestration

Figure 4.9: The Interpretation Mechanism of HSML

HTTP messages out from a sender’s data, and then deliver to receiver’s host

service according to certain linking rules. As soon as the host service receives

the message, it will switch the HTTP operators and parameters, and then call

functions accordingly. Following is a simple example written in Node.js. If the

web service running at http://www.mydomain.com received a HTTP message

with the verb of POST or GET, it will call corresponding functions. There are

four HTTP operations used by our system in total: POST, GET, UPDATE and

DELETE, which are usually used to trigger specific state transfers of target IoT

devices.
Besides the default request/response messaging using HTTP, our framework

also supported alternative subscribe/publish messaging models, such as MQTT,
server-side event etc. It allows sensor side to spontaneously send data to the
message broker. Specifically, extra wrappers need to be explicitly declared, and
IoT developers need to specify its protocol, IP address, port number or sometimes
data channel etc using HSML, and message broker then will create compatible
wrapper instances to establish sub/pub data communications.

router.route(’/’)

.post(function(req , res){...})

79

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.4 Central Service Orchestration

.get(function(req , res){...});

Finally, host service will call functions that can be translated to executable

codes in local API or drivers, which are usually dependent on some kind of in-

terpreted language, e.g. Java, Python, NodeJS etc. The advantage of interpreted

languages is that they provide certain kind of virtual machines that can generate

target machine code at runtime to guarantee “write once, run anywhere” with-

out compiling stage (which is required by the compiled language like C). In case

of some target devices that are too resource-constraint to host any VM (for ex-

ample Arduino), a VM hosted device (for example: raspberry pi) can be used

as a gateway to communicate with target devices. In these cases, the specific

communication methods between gateway devices (e.g the raspberry pi) and tar-

get devices (e.g. the Arduino) are still needed to be developed, to support the

platform-agnostic feature of the whole framework.

Figure 4.10: Function Flow Diagram

The whole procedure above of service orchestration was actually implemented

as the following function flows, as shown in Figure 4.10. When the submission of

HSML string triggered the function ParseHSML(), it first will pass user-input

80

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.4 Central Service Orchestration

string object to Sanitize() to detect if there exists any invalid HSML syntax.

Elements and attributes that are not listed in white list will be screened out and

hence ignored. Sanitized HSML then will be parsed into JSON object locs and

lnks, which respectively contains all loc/lnk tag information, e.g. their attributes

and values.

After parser module, message broker module will initiate at least one single

message broker instance according to received locs and lnks objects. For each loc

in locs, the default message broker will check user-specified loc.type and switch to

the resource interface accordingly. To specifically mention that, when a resource’s

type is designated as realtime sensors, the message broker instance will request

data from the address that specfied by loc.src via standard HTTP operations

and 80 port by default. While it is possible to establish extra realtime streaming

channels by adopting protocol-specific wrappers.

Currently, HSML allows IoT developers to specify the usage of wrappers in

the way like “PROTOCOL://URL:PORT” in loc.src, e.g. mqtt://www.example.

com/sensor:1883. In this case, HTTP messages that convey related resource

state information, which possibly includes complete data schema that helps anno-

tate raw data, are separated from the I/O data channel that may return streams

like “7248,26.3 7248,26.4 7250,26.6 7251,28.3...” Together they constitute a mean-

ingful data resource. Sometimes when stream workloads become too heavy, mes-

sage broker deployed on cloud servers are able to “replicate” itself and take over

communication-intensive task, by leveraging the elastic computing power of the

clouds.

Another important function of message broker is to construct linking route

table for state messaging by analyzing each lnk in object lnks. Each record in the

delivery table consists of three variables, msgSource, msgTarget andmsgOption,

e.g. {192.0.2.163, 192.0.2.144, {option}}. msgOption can be used for describing

connection information like extra data streaming channel etc. If one source node

is supposed to send state messages to multiple target nodes, it will be merged into

single record for management purpose.

The delivery table object will then be passed to the function onStateMessage(),

which catches state transfer messages from both external nodes and internal com-

ponents. When certain piece of state message arrived, e.g. “DATA UPDATED”

packed with newly updated data, onStateMessage() will then refer to the delivery

table and transfer to whoever expects this message. Sometimes IoT developers or-

der some data processing and/or visualization beforehand, onStateMessage() will

81

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.5 Typical Deployment Cases

check the attributes loc.filter, loc.viz and etc., then send to the proper process

modules. Similarly, attribute lnk.function carries user-defined logic that decides

the way how one node’s state transfer linked to another. A simple example is

using IF logic element to indicate when some condition becomes true, an internal

state message “CONDITION TRUE” will be sent to the next node in delivery ta-

ble to trigger next action. By combining multiple logic elements, IoT developers

can realize complicated control task.

Special usages like batch uploading loc and lnk texts by CSV files, or prede-

fined sequential task by specifying loc.stateml attribute, we have not included in

this diagram to avoid complexity. Please refer to the following usage samples and

appendix for more technical details about HSML and its mechanism.

4.5 Typical Deployment Cases

4.5.1 Two Deployment Patterns

Figure 4.11: A Typical Deployment in Fully-Hosted Pattern

In real practise, the proposed framework can be deployed in fully-hosted

pattern and self-hosted pattern. The full-hosted pattern allows all IoT de-

velopers to compose their IoT services the same way as using any other web

services. As shown in Figure 4.11, most components including orchestration ser-

vice, resource management service and extensive wrappers etc., are wrapped up

82

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.5 Typical Deployment Cases

into an integrated software which is allocated at our HSML web servers. Due

to the particularity of message brokers, we have stripped it apart from central

service orchestration module. At client end, IoT developers are able to create

and edit their HSML texts using the development toolkit running on their web

browsers. User-generated HSML texts will later be analyzed and used for config-

uring message broker instances by central service orchestration. Message brokers

and related modules then will take over the actual execution and fetch necessary

resource and service data. While third-party service developers or device owners

are supposed to register their host service by uploading corresponding service de-

scription files to our resource management module. So that IoT developers will

be able to query over available IoT services and obtain necessary information for

using them.

Figure 4.12: A Typical Deployment in Self-Hosted Pattern

In few occasions, service developers, HSML system administrators and IoT

developers come from same group of users; But more frequently, IoT and Web

services are provided by scattered entities and managed on distributed server

clusters. Therefore, self-hosted pattern of deployment allows to download source

code package, and deploy each independent framework module in geographically

dispersed, cross-organizational environment, as shown in Figure 4.12. It is also

possible to tailor system functionality to cover the interests of different stake-

83

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.5 Typical Deployment Cases

holders. While the central composition server, resource server and service servers

stay independently from one another, they are mutually accessible if only they

support standard communication protocol and standard Web messaging. If nec-

essary, multi-tier resource server structure can be adopted to further increase the

extendibility when sensor nodes scale up or multiple device networks need to be

merged together. Self-hosted pattern allows more flexibility and openness in mod-

ule deployment and customization, and is believed to be particularly applicable

to the scenarios such as smart cities, where there is a need to integrate differ-

ent IoT device networks that deployed and managed by multiple institutions and

organizations.

Figure 4.13: Fat Client Model v.s. Thin Client Model

According to different locations that message brokers are deployed, typical

implementations can be divided into fat client model and thin client model,

as shown in 4.13. In fat client model, message brokers are replicated on each

client end. Therefore there is no need to store client information, meanwhile the

computing power of client end can be well exploited. Thin client model is typically

devised for relatively small-scale IoT composition tasks developed for multiple end

users.

While in thin client model, message broker is deployed together with the cen-

tral orchestration service that located on the composition server (usually a cloud

server). In this case, the central service orchestration, possibly cooperated with

external load balancing service, is supposed to elastically allocate sufficient com-

puting resources, and extend the amounts of message broker instances to manage

computing-intensive tasks, or assign extra dedicated message broker to take over

the real-time communication with nodes of large data flow. Thin client model is

devised for those composition tasks with large amount of service nodes involved.

84

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.5 Typical Deployment Cases

Figure 4.14: Virtual Device Pattern v.s. Realtime Device Pattern

According to different servitization strategies that service developers adopt,

it will sometimes affect the availability of composed services. In Figure 4.14, we

have simulated two typical patterns. In the situation of local servitization or edge

servitization, the message broker retrieves data from device node that locates at

192.0.2.2, it sends a request to the nearest host service to obtain real-time data.

In this case, device data usually will not be stored, because of the limited data

storage of edge devices. If this is the case, physical device offline may cause

composed service unavailable.

While in cloud servitization, device data can be gathered and stored in a central

cloud server temporarily or permanently. Instead of sending request to the node

itself, the message broker instead retrieved data from service server at 192.0.2.100,

and path names (/node5) are used to identify different device nodes. It is worthy

of specific attentions that host service will respond with the last updated data,

even the actual node may be down. Device offline will not influence the availability

of composed service, though the retrieved data may be obsolete.

4.5.2 Deployment Case I: Environment Monitoring

Environment monitoring is among the most widely deployed IoT application, for

instances in smart city and smart home areas. In those deployment scenarios,

providers have to survey IoT products from different vendors, select proper hard-

ware devices, and integrate heterogeneous subsystems according to target envi-

ronment and requirements. IoT cloud platforms provide run-time elasticity, un-

limited storage and computing capability for this kind large-scale, cross-domain

applications. Still, these IoT services require to be accessed, monitored, and ma-

85

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.5 Typical Deployment Cases

nipulated in a unified manner with central orchestration, and can be composed or

decomposed in response to different stakeholders’ interests.

Figure 4.15: Deployment Layout of Case I

In the first deployment case, there were three different types of wireless sensor

networks being deployed in and around university campus to monitor the environ-

mental information. Integrated smart sensors were adopted to detect humidity,

acoustic noise, temperature, illuminance and pressure. And collected data were

visualized in real-time manner. The results can either be viewed on any smart

devices by accessing specic website address or from the digital signage at the spot.
In consideration of security issue, part of the real network IP addressed used

in case I and II have been concealed. Actual HSML texts used for establishing
Case I composition are listed as below:

<loc x="48.5" y="26.5" id=" mesh1" src="http ://202.12*.***.**4/

node1" type=" realtime" viz="line" filter ="humi , light ,

temp , sound"></loc >

<loc x="44" y="20" id=" mesh2" src="http ://202.12*.***.**4/ node2"

type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

86

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.5 Typical Deployment Cases

<loc x="37" y="11" id=" mesh3" src="http ://202.12*.***.**4/ node3"

type=" realtime" filter ="humi , light , temp , sound ,

pres"></loc >

<loc x="32.5" y="21.5" id=" mesh4" src="http ://202.12*.***.**4/

node4" type=" realtime" filter ="humi , light , temp ,

sound , press"></loc >

<loc x="48.5" y="70.5" id=" mesh5" src="http ://202.12*.***.**4/

node5" type=" realtime" filter ="humi , light , temp ,

sound , press"></loc >

<loc x="44" y="77.5" id=" mesh6" src="http ://202.12*.***.**4/ node6

" type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

<loc x="37" y="86" id=" mesh7" src="http ://202.12*.***.**4/ node7"

type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

<loc x="32.5" y="75" id=" mesh8" src="http ://202.12*.***.**4/ node8

" type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

<loc x="78.8" y="23" id="ble1" src="http ://202.12*.***.**4/ node9"

type=" realtime" viz="line" filter ="humi , light ,

temp , sound"></loc >

<loc x="78.8" y="39" id="ble2" src="http ://202.12*.***.**4/ node10

" type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

<loc x="93.5" y="23" id="ble3" src="http ://202.12*.***.**4/ node11

" type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

<loc x="93.5" y="39" id="ble4" src="http ://202.12*.***.**4/ node12

" type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

<loc x="78.8" y="55" id="ble7" src="http ://202.12*.***.**4/ node13

" type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

<loc x="93.5" y="55" id="ble8" src="http ://202.12*.***.**4/ node14

" type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

<loc x="78.8" y="71" id="ble9" src="http ://202.12*.***.**4/ node15

" type=" realtime" filter ="humi , light , temp , sound ,

press"></loc >

<loc x="93.5" y="71" id=" ble10" src="http ://202.12*.***.**4/

node16" type=" realtime" viz="line" filter ="humi , light ,

temp , sound , press"></loc >

<loc lat ="35.6499948" lng ="139.7433191" id=" LoRa1" name="Keio

Mita Campus North Building" src="http ://202.12*.***.**4/ node17"

87

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.5 Typical Deployment Cases

type=" realtime" viz="area" filter ="humi , light , temp ,

sound"></loc >

<loc lat ="35.6483988" lng ="139.7431656" id=" LoRa2" name="Keio

Mita Campus South Building" src="http ://202.12*.***.**4/ node18"

type=" realtime" viz="line" filter ="humi , light , temp ,

sound"></loc >

<loc lat ="35.649226" lng ="139.742004" id=" LoRa3" name="Keio

Mita Campus West Building" src="http ://202.12*.***.**4/ node19"

type=" realtime" filter ="seqNum , humi , light , temp ,

sound , press"></loc >

Each < loc > described a related sensor resource, including 10 BLE type

sensors, 8 mesh network sensors as well as 3 long range sensors. Corresponding

host services were launched in three sink nodes respectively, i.e. the Raspberry Pis.

Service description files in StateML were registered at the Cloud server based on

OpenStack with IP address 202.12*.***.**4, which physically located at Shanghai

Jiao Tong University, Minhang Campus. On composition server, HSML accessed

sensor host services via URLs, and extra data streaming channels were established

using WebSocket wrappers.

Figure 4.16: Composition Result of Case I on Mobile (left) and Digital Signage(right)

Meanwhile, we also used HSML to integrate necessary web service components

of Angular Google Maps, which can be regarded as a web service version of Google

Maps API, and Epoch for real-time data visualization. Sensor resource was first

implicitly composed to the visualization component by specifying the attribute viz

in each < loc > tag, then all the visual information will be further assembled to

88

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.5 Typical Deployment Cases

a Google map canvas according to designated location information of each sensor

node, as shown in Figure 4.16:

4.5.3 Deployment Case II: Open Automation

Case II presented another typical application scenario of open automation sys-

tems. We adopted a different deployment approach from Case I, by shifting part

of computing tasks from central cloud servers to edge devices nearer to the leaf

device node. As the scale and number of end devices escalate, this kind of de-

centralized computing architecture prevent servers from being consulted for every

little minor detail. Smaller time-sensitive computational decisions can be made

by an intermediary device, like a mobile phone or a smart gateway, which then

aggregates all the data it learns and upload to the servers [105].

Figure 4.17: Deployment Layout of Case II

We managed to control a drone’s lifting speed by blowing air into a mobile
phone’s mic, which, in its nature, established a state transfer chain between mobile
mics white noise intensity (sensor’s state) and drones lift speed (actuator’s state)
and applying a linear linking rule to it. The mobile phone’s white noise signal
was processed by a local host service (JavaScript mainly) running on the web
browser, and calculated results were directly obtained by the message broker,

89

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.5 Typical Deployment Cases

which was duplicated from central service orchestration to be running on the
same web browser. Similarly, the drone’s host service (NodeJS) located in a
server. It translated related state transition messages sent by message broker to
actual control commands, and sent to the drone via Wi-Fi signal. For brevity,
resource server was omitted here. HSML texts for Case II are listed as below:

<loc id=" mobileMic" src="http :// localhost/mic" x="15"

y="30"></loc >

<loc id=" drone" type=" actuator" src="http ://13*.***.***.**7:

1337" x="15" y="40" stateML =" uploads/testUser1 /1494770866000/

initial.xml"></loc >

<lnk id=" flappyBirds" function =" LINEAR(drone.upspeed ,

mobileMic.data.pow , 1/70000) ;"></lnk >

Figure 4.18: Composition Result of Case II

In Case II, HSML was much simpler than Case I, since there are only two
resources declared. As the stateml attribute in the second < loc > specified an
uploaded XML file. This file initialized drone’s default behavior of taking off,
hovering at 2 meters high, and then flying forward and down at the speed of 1
m/s and 0.2 m/s respectively. We have already introduced how to use stateML
description to assign a sequential state transfer task in section 3.5.2, and the
content actually looked like this:

<state id=" takingOff">

<transition event=" height: 2" target =" hovering">

90

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.6 Summary

</transition >

</state >

<state id=" hovering">

<transition event=" forwardSpeed: 1; downSpeed: 0.2"

target =" flying"></transition >

</state >

The composition server parsed related HSML and acquired the sensor and

actuator that declared by each resource descriptors by standard HTTP method

GET. The state-transfer descriptor < lnk > assigned the value of mobile mic’s

white noise intensity to the drone’s lifting speed at the gradient of 1: 70000.

4.6 Summary

Based on the concepts of state and state transfer introduced in the previous chap-

ter, this chapter presented an open IoT service composition framework, specified

each core components within the framework and provided a typical implementa-

tion of the overall framework.

As the prerequisite of proposed framework, each and every IoT device must

be encapsulated into URI-deferencable web resource with general state-based in-

terfaces. The host services of IoT devices were required to provide seamless in-

teroperability and open accessibility of sensor/actuator/IoT node from different

vendors via uniform management, as an intermediate abstraction layer separating

atop application logic from of-bottom device APIs/drivers. According to differ-

ent locations that host services were launched, mainstream servitization could

be divided into three categories: local servitization, edge-based servitization and

cloud-based servitization.

A complete proposed framework consisted of a few core modules, including:

1) A domain-specific-language based web development toolkit with HTML-like

syntax, namely Hyper Sensor Markup Language (HSML); 2) A state-transfer-

based central service orchestration as the service composition mechanism; and

though not strictly a module, 3) A machine-readable unified resource representa-

tion (stateML) specifically for describing FSM-modelled IoT service interfaces, as

already introduced in the previous chapter. There were also other modules like

resource manager in charge of IoT service registry and query, as well as extensible

wrappers to support optional data streaming channels like WebSocket, Server-side

event, MQTT etc.

91

IOT SERVICE COMPOSITION FRAMEWORK: HSML 4.6 Summary

In Section 4.3, we introduced in details the web application development

toolkit, HSML, which provided three kinds of descriptor: resource descriptor,

service descriptor and state-transfer descriptor. It allowed IoT developers at all

levels to describe various IoT service nodes and the interrelations between them in

a concise and flexible way. HSML syntax, graphic user interface as well as typical

usage sample were also explained.

Followed by the underlying central service orchestration mechanism based on

state transfer. It was in charge of the interpretation of user-generated HSML texts,

coordinating and composing IoT service nodes into customizable and value-added

applications. The central service orchestration comprised two key components:

HSML parser and message brokers. While the parser analyzed HSML texts and

generated linking route tables, the message broker instances were supposed to ac-

tually access service node, establish optional data streaming channel using wrap-

pers if necessary, manage state transfer flow between sequential service nodes

according to predefined linking route table.

To live up with different deployment needs, proposed framework provided 1)

Fully-hosted deployment pattern and 2) Self-hosted deployment pattern. The for-

mer allowed IoT developers to use our all-in-one IoT service composition platform

the same way as using any other websites. While the latter allowed source code

package download to fully customize their own composition platforms. We also

discussed a few more alternatives when there is a need to deploy some system

modules in distributed computing environment.

Finally, two actual deployment cases were presented to show the feasibility of

deploying proposed framework under distributed service architecture. The first

case of environment monitoring was a typical example for wide-range, large-scale

and cross-organization IoT applications. While second case of open automation

showed that proposed framework was also able to handle highly customizable

applications with transitional task logic.

92

Chapter 5

Evaluation

In the evaluation, we carried out a systematic assessment of proposed framework

to evaluate whether the aforementioned four research issues were improved and

to what extent. As shown in Fig. 5.1, our evaluation strategy was comprised of

1) user test, 2) expert interview and 3) architectural comparison.

Figure 5.1: Evaluation Strategy

Since expertise requirement and kick-start barriers were compare items closely

related to user experience, we hence conducted a series of beginner-centered user

experiments to test the learnability, sociability, retrievability and task load of our

web development toolkit explicitly. A complementary expert interview was also

adopted to gain feed backs from veteran IoT developers inside the industry. On

the other hand, customization cost, reusability and cross-domain interoperability,

were more structural aspects, an architectural comparison together with expert

interview were made to systematically review the proposed framework.

93

EVALUATION 5.1 User Test

5.1 User Test

In this section, the evaluation is focused on the usability of web development

toolkit which is codetermined by directly the learning cost of the toolkit itself

as well as indirectly to what extent the underlying composition architecture can

relieve the kick-start hurdle. Tests on learnability, sociability, retrievability, task

load comparisons with selected parallel technologies were carried out, hopefully

presenting a relatively comprehensive perspective on how this intermediary frame-

work retrench the (re-)adaptive efforts and entire development cost of IoT appli-

cations.

5.1.1 Learnability

In learnability evaluation parts, 20 students were recruited as participants for

the evaluation experiment. In consideration of test validity, participants were di-

vided into 3 groups according to different HTML programming experience: no

experience, less than 1 year experience, and more than 1 year experience. All par-

ticipants were the first time to touch on HSML and proposed framework before.

Participants were required to learn the functionality of proposed web development

toolkit by watching a tutorial video. A brochure was handed out to explain the us-

age of HSML. The development toolkit was running on web browser on a PC client

with Internet connection. Students may watch the video as long as they want and

test HSML on the PC. After the initial learning stage, students were required to

execute a relatively easy task to test first time performance. The task included

3 steps: 1) Retrieving data: Use HSML to load resources from given URLs; 2)

Editing sensor information: Add extra description to resource descriptors, such

as: location, name and label; 3) Visualizing: Tweak the visualization effect by at-

taching related service component attributes. Time consumption (measurement:

minute) of each step was recorded. Mean time are shown in the Figure 5.2.

The mean time of learning process has statistical relation with experience

(p=-0.8, a〈0.01), which means the previous HTML experience do help to learning
process. However, from the actual value, we can tell that participants with no

HTML experience only spend 50% more time than experienced participants. This

relatively small difference suggests that there exist no barriers for non-experienced

participants for learning.

With the help of reference brochure, all participants successfully completed all

3 steps of the task. Results showed previous HTML experience could significantly

94

EVALUATION 5.1 User Test

Figure 5.2: Learnability Test Results

improve the first-time performance. And we found that experienced participants

felt more encouraged and willing to try out with different attributes and visual-

ization effects using HSML. Besides, even for non-experienced participants, the

performances were acceptable. In the interview after the test, most participants,

regardless of previous HTML experience, agreed that the proposed development

toolkit was easy to use and very effective.

5.1.2 Sociability

In sociability test, 10 students with best performance in learnability test were

invited to design sensor data visualization based on environmental sensors on

campus. 100 sets of environmental sensor data, including PM2.5, temperature,

humidity and noise level, were provided. Information including sensor name,

position, source URL and service descriptions provided by their owners. Before

the test, students were asked about the willingness of sharing raw sensor data

to their friends if they were the owner. After the test, a URL linked to user-

generated contents (mainly data visualization and inserted multimedia contents)

was created. The previous willingness survey were carried out again. Students

willingness of sharing were rated as 5-point LIKERT scale: absolutely not (-2),

possibly not (-1), not decided (0), possibly yes (1), absolutely (2).

Figure 5.3 shown that students were more willing to share self-defined visual-

95

EVALUATION 5.1 User Test

Figure 5.3: Sociability Test Results

ization outcomes than raw data. The difference was statistically significant (sig

= 0.021). In the interview after experiment, we asked participants for the reasons

why they decided to share or not. Answers showed that the motivational factors

that involved in sharing decision mainly included usefulness for others, sense of

accomplishment, and sense of pleasure. These outcomes indicated that, the com-

posed outcomes were more likely to be shared because they are more useful to

others, or able to bring more accomplishment and pleasure to its developers.

5.1.3 Retrievability

In retrievability test, we evaluated how created HSML might affect the discovery

process of the IoT resources in our system. To retrieve specific resources, a query

command usually consists of one or more keywords. If an IoT resources informa-

tion is labeled adequately and properly, it can be easily discovered by matching

keywords and labels. However, this ideal situation rarely happens. Most IoT

devices in open cloud platforms, usually lack of necessary descriptions to pro-

vide clear clues for searching. HSML may help to address this problem from

two aspects: First, the HTML syntax itself has already contained certain level

of semantic annotation, which will naturally derive necessary labels to describe

96

EVALUATION 5.1 User Test

sensors; Secondly, analyzing state transfer chains generated by users will help to

establish correlations between resources, thus possibly contributing new searching

methods that based on linked resources.

Figure 5.4: Three Types of Relation Information Provided by HSML

To evaluate these effects, we carried out an experiment to compare the per-

formance of an experimental group that used link based searching method and

a control group that used keyword matching method. As shown in Figure 5.4,

three types of correlations provided by HSML are analyzed: 1) direct link, 2) indi-

rect link, and 3) geospatial distance. They were used to compute the overall link

strength between nodes. Direct links were those links defined explicitly in state

transfer descriptors, for example: < lnkpoints = sensor0321, sensor0217 ><

/lnk > defined a direct link between sensor0321 and sensor0217. The strength

of direct link, denoted as SDL, was decided by the frequency and category of

< lnk > shown in user-generated HSML text: SDL =
∑

Freqlnk × Coefcategory.

Indirect links were those links defined implicitly by semantic labels contained in

97

EVALUATION 5.1 User Test

user-generated HSML, such as: name attributes. For example, sensor0019 and

sensor0217 both had the same label CS department, which would generate an

indirect link between them. The strength of indirect link, denoted as SIL, was

decided by the count of labels: SIL =
∑

Freqlabel. Distance meant great-circle

distance between two nodes geographical coordinates defined by the Spherical Law

of Cosines: D = acos(sinϕ1 × sinϕ2 + cosϕ1 × cosϕ2 × cosΔλ)×R, where ϕ was

latitude, λ was longitude, R was earths radius (mean radius is 6,371km).

Figure 5.5: Comparison on Retrievability Results

After calculating link strength between each two nodes, a weighted graph

98

EVALUATION 5.1 User Test

contained all the sensors (as nodes) and their relations (as edges) was constructed

and used for link based searching in experimental group. We simulated a set

of search queries, for example: PM2.5 Minhang campus dorm, executed them in

both experimental group and control group. Results showed that the experimental

group provided less failure rate (3%) vs control group (26%), and returned 87%

more valid records in average. An example of comparing result from control

group (top) and experimental group (down) are shown in the Figure 5.5. Records

marked in green rectangle are valid records that were missed in control group.

The experimental group also generated a slightly more invalid records (marked in

red rectangle). However, since we can use the degrees and edge weights in relation

graph to sort the records, the invalid records could be easily excluded by users

because they usually have less degrees and edge weights.

5.1.4 Task Load Comparison

The purpose of task load comparison was to reveal how heavy the work load that

development tools placed on the IoT developers, specifically beginners without

programming experiences. We picked up three representative open frameworks as

our compare objects in IoT service composition area, which that adopted different

composition approaches respectively. They were: Home Assistant, Node-Red and

PubNub Eon, whose detailed mechanisms have been introduced in Section 2.5

previously. A horizontal comparison was made between HSML and the three

parallel tools using same tasks.

In the task load test, four participants (2 males, 2 females, age ranging from 20

to 26) were invited to accomplish two basic tasks using four different development

tools respectively. The tasks were as follows:

1. Introduce a temperature sensor that connected to an Arduino board into

target system and show the data reading.

2. Use sensor data to trigger an actuator, i.e. a LED in this case, to complete

an automation. (In PubNub Eon’s case, this task was replaced by tweaking

data visualization effect as it didn’t support automation.)

To avoid bias as possible, we focused on participants who were beginners to IoT

development and without programming experiences or technology background.

And we also adopted a Latin Square to decide the sequence of all four frameworks

99

EVALUATION 5.1 User Test

Table 5.1: Test Sequence for Each Participant in Latin Square

Participant System Sequence

A 1 2 3 4

B 4 3 2 1

C 2 1 4 3

D 3 4 1 2

to be tested, among which 1 stands for Home Assistant, 2 for Node-Red, 3 for

PubNub Eon and 4 for HSML.

All four tools were set up based on same experiment environment, the hardware

of which consisted of: 1) An MSI GS60 notebook (with Intel i7-6700HQ CPU @

2.60GHz, RAM 16.0G); 2) An Arduino Uno board (connected to 1 via COM3);

3) An LM35 Temperature Sensor (connected to 2 via Analog pin 0) and 4) An

LED (connected to 2 via Digital pin 11). Operating system was Windows 10

(64bit), and other software that used in the experiment included:1) Web Browser:

Chrome; 2) Code Editor: Brackets and 3) Local Server Environment: XAMPP.

At the beginning of the test, each participant was given a paper materials that

introduced detailed experiment procedure. During each test, each participant was

allowed to raise questions whenever they felt stuck in the task. The question times

were recorded, and the time that a participant spent on task 1 and 2 respectively

were also recorded.

NASA Task Load Index (NASA-TLX) was adopted in the experiment to eval-

uate workload that participant subjectively perceived. After each tool was tested,

the participant was asked to filled out a computerized NASA-TLX rating scales.

We also carried out an unstructured interview for each participant, asking about

their preference about the four tools and reasons.

For the first task, the mean time consumption and standard deviation was

shown in Table 5.2, while a smaller standard deviation indicates a more convergent

rating among all four participants. Paired Sample T-Test(2-tailed) was conducted

Table 5.2: Mean Time Consumption for the First Task

Tool 1 Tool 2 Tool 3 Tool 4

Mean(s) 1103 425 1155 448

N 4 4 4 4

Std. Deviation 346 56 244 136

100

EVALUATION 5.1 User Test

to verify statistical significance of the result. When sig was lower than 0.05, we

basically consider that the possibility for paired two mean values to be equal was

less than 8%, which implies a significantly difference:

Tool 1 vs Tool 4: not significant (p-value = 0.72)

Tool 2 vs Tool 4: not significant (p-value = 0.799)

Tool 3 vs Tool 4: significant (p-value = 0.034)

For the second task, due to PubNub Eon was not able to accomplish automa-

tion task, we had to rule No.3 result out here. Paired Sample T-Test results were

Table 5.3: Mean Time Consumption for the Second Task

Tool 1 Tool 2 Tool 4

Mean(s) 948 389 652

N 4 4 4

Std. Deviation 353 70 338

as follows:

Too 1 vs Tool 4: not significant (p-value = 0.112)

Tool 2 vs Tool 4: not significant (p-value = 0.273)

We could draw a conclusion from above that Tool 2 and 4 consumed signif-

icantly less time in both tasks. Though Tool 2 seems a litter faster than 4, no

significance is found by t-test. Tool 2 and 4 are obviously faster than 1 and 3 in

task 1, proved by t-test in 95% confidence interval.

Next we compared all four tools by the mean times that participants raised

questions during the overall tasks in 5.4:

Table 5.4: Mean Question Times

Tool 1 Tool 2 Tool 3 Tool 4

Mean 6 2 6 3

N 4 4 4 4

Std. Deviation 3 0 1 1

Paired Sample-T Test results were as follows:

Tool 1 vs Tool 4: significant (p-value = 0.061)

Tool 2 vs Tool 4: not significant (p-value = 0.495)

Tool 3 vs Tool 4: significant (p-value = 0.05)

101

EVALUATION 5.1 User Test

The results shown that participants have significantly less questions when using

Tool 4 than using Tool 1 and 3, and no significant difference was found between

Tool 2 and 4.

Lastly, we have evaluated the overall NASA-TLX ratings and each subindex

similarly, including: mental demand, physical demand, temporal demand, perfor-

mance, effort and frustration. Paired Sample T-Test results were as follows:

Table 5.5: Mean Overall Ratings of NASA-TLX

Tool 1 Tool 2 Tool 3 Tool 4

Mean 48.400 22.750 43.000 26.975

N 4 4 4 4

Std. Deviation 18.7220 12.6350 14.3129 14.1170

Tool 1 vs Tool 4: significant (p-value = 0.028)

Tool 2 vs Tool 4: not significant (p-value = 0.641)

Tool 3 vs Tool 4: significant (p-value = 0.021)

We can learn from the result that participants gave significantly higher rating

to Tool 2 than to 1 and 3. And no significant difference is found between 2 and

4, proved by t-test in 95% confidence interval. Paired Sample T-Test results as

Table 5.6: Mean Mental Demand

Tool 1 Tool 2 Tool 3 Tool 4

Mean 42.50 23.75 46.25 21.25

N 4 4 4 4

Std. Deviation 15.546 10.308 13.150 7.500

follows:

Tool 1 vs Tool 4: significant (p-value = 0.077)

Tool 2 vs Tool 4: not significant (p-value = 0.664)

Tool 3 vs Tool 4: significant (p-value = 0.03)

Conclusion can be drawn that participants perceived significantly less mental

demand when using Tool 4 than using 1 and 3. No significant difference is found

between 2 and 4. Paired Sample T-Test results were as follows:

Tool 1 vs Tool 4: significant (p-value = 0.032)

Tool 2 vs Tool 4: not significant (p-value = 0.252)

Tool 3 vs Tool 4: not significant (p-value = 0.861)

102

EVALUATION 5.1 User Test

Table 5.7: Mean Physical Demand

Tool 1 Tool 2 Tool 3 Tool 4

Mean 45.00 18.75 27.50 28.75

N 4 4 4 4

Std. Deviation 23.452 14.361 5.000 16.520

According to the result, participants perceived significantly less physical de-

mand when using tool 2, 3 and 4 than to 1 and no significant difference is found

between 2, 3 and 4. This may be caused by that we provided full JavaScript code

template when testing with Tool 3, which possibly induced bias. Paired Sample

Table 5.8: Mean Temporal Demand

Tool 1 Tool 2 Tool 3 Tool 4

Mean 48.75 23.75 40.00 31.25

N 4 4 4 4

Std. Deviation 26.575 13.769 14.142 14.930

T Test results were as follows:

Tool 1 vs Tool 4: not significant (p-value = 0.432)

Tool 2 vs Tool 4: not significant (p-value = 0.576)

Tool 3 vs Tool 4: not significant (p-value = 0.473)

We observed that participants perceived no significant difference regarding

temporal demand when using Tool 1, 2, 3 and 4. One possible explanation may

be that the basic tasks selected for the test were not complicated enough to reflect

the temporal demand in real IoT development cases. Paired Sample T-Test results

Table 5.9: Mean Performance

Tool 1 Tool 2 Tool 3 Tool 4

Mean 40.00 20.00 33.75 23.75

N 4 4 4 4

Std. Deviation 33.417 19.149 21.360 12.500

were as follows:

Tool 1 vs Tool 4: not significant (p-value = 0.250)

Tool 2 vs Tool 4: not significant (p-value = 0.681)

Tool 3 vs Tool 4: not significant (p-value = 0.382)

103

EVALUATION 5.1 User Test

We observed that participants perceived no significant difference regarding

performance among Tool 1, 2, 3 and 4. Paired Sample T-Test results were as

Table 5.10: Mean Effort

Tool 1 Tool 2 Tool 3 Tool 4

Mean 50.00 21.25 46.25 31.25

N 4 4 4 4

Std. Deviation 14.142 14.361 17.500 21.747

follows:

Tool 1 vs Tool 4: significant (p-value = 0.022)

Tool 2 vs Tool 4: not significant (p-value = 0.343)

Tool 3 vs Tool 4: not significant (p-value = 0.124)

We observed that participants perceived significantly less effort required when

using Tool 4 than using 1. And no significant difference is found among 2, 3 and

4. Paired Sample T-Test results were as follows:

Table 5.11: Mean Frustration

Tool 1 Tool 2 Tool 3 Tool 4

Mean 51.25 25.00 46.25 28.75

N 4 4 4 4

Std. Deviation 27.801 8.165 15.478 21.747

Tool 1 vs Tool 4: significant (p-value = 0.042)

Tool 2 vs Tool 4: not significant (p-value = 0.761)

Tool 3 vs Tool 4: not significant (p-value = 0.133)

Participants perceived higher frustration when using Tool 4 than using 1, but

not significant among 2, 3, and 4, proved by t-test in 95% confidence interval.

As an overall conclusion, Node-Red and HSML were proved to have signifi-

cantly better performance than Home Assistant and PubNub Eon in: time con-

sumption, Problems, NASA-TLX Overall Rating, Mental Demands and Effort.

While Node-Red may have slightly better performance than HSML, but not sig-

nificant in statistical test.

104

EVALUATION 5.2 Expert Interview

5.2 Expert Interview

In order to obtain a comprehensive appraisal from novice to veteran IoT devel-

opers, we have also interviewed three experienced IoT developers and researchers

with varying expertise and backgrounds: The first interviewee was a graduate

student majored in computer science whose research was centered on smart trans-

portation and vehicle network; Second interviewee was An IT practitioner who

had 5-year IoT development experience, and last interviewee was a college faculty

who also had 5-year education experiences of teaching IoT development.

We conducted a structured expert interview that consisted of three sections.

The first section included five questions targeting individual technical skills and

IoT-related education background, e.g. most familiar toolkit and programming

language. The second section included also five questions related to IoT develop-

ment procedure. In this section, we tried to reveal what factors were considered

to be contributing to the overall time and effort consumption in IoT application

development, and what general features were valued most in an IoT development

framework. In the last section of the interview, we asked specific questions after

interviewees trying out the proposed framework, to figure out their appraisal if the

proposed framework can improve certain aspects of IoT application development.

All of the three interviewees had the experiences dealing with IoT interoper-

ability issues, e.g. integrating two heterogeneous IoT systems based on different

standards, protocols, programming languages etc. In general question section,

interviewees expressed different needs for IoT framework features, which were to

some extent consistent with their concerns on time and effort consumption. In

the case of the first interviewee with one-and-a-half years experiences, he put

specific emphasis on reliability and community support of especially open IoT

frameworks, as he listed environment building, code porting and using 3rd-party

software as labor-consuming factors. While according to the other two intervie-

wees with 5-year experiences, their focuses were more on framework’s neutrality

(e.g. platform neutrality, programming language neutrality, standard neutrality),

flexibility (e.g. changing nodes or task logic during run-time) and reusability (e.g.

code reusability).

All of the three interviewees reached a consensus that the proposed framework

was able to improve customization, resuability and cross-domain interoperability

issues compared to their previously used platforms and tool kits. And they were

also willing to use the proposed framework in future IoT development. As the

105

EVALUATION 5.2 Expert Interview

Table 5.12: Expert Interview Results

Interviewee 1 Interviewee 2 Interviewee 3

Experiences 1.5 years 5 years 5 years

Domain Smart Transporta-

tion

Data Analysis IoT Education

Valued Features Framework

Reusability >Com-

munity Support

>Platform Neu-

trality

Hardware Indepen-

dence >Standard

Neutrality >Lan-

guage Neutrality

Flexibility

>Reusability

>Learnability

Willing to Use Yes Yes Yes

Improvement in

CM, RU and CD

Yes Yes Yes

Suitable Users Beginners to ex-

perts, specifically

beginners

Medium users to

expert, beginners

in simple applica-

tions

Beginners to Ex-

perts

Applicable Do-

mains

Personalized

services, data

aggregation and

analysis, but not

high-precision,

low-latency appli-

cations like smart

obstacle avoidance

Wide-range and

public IoT service

Fast prototyping,

IoT Education

Transferable

Knowledge

RESTful IoT Ser-

vice Architecture

IoT Task flow de-

sign

SOA usage and

IoT semantic

description

106

EVALUATION 5.3 Architectural Assessment

third interviewee mentioned that the proposed framework “helps to improve the

reusability, since it requires developers to separate the integrated IoT application

into self-contained services and provide standard programmable interface for each

service. If this requirement is achieved, the functionality of one IoT application

will be definitely easier to be reused in other applications.” Two out of three

interviewees agreed that the proposed framework was suitable for developers from

novice to expert level; While the remaining one thought it better suited medium

IoT developers with basic programming skills. But he also conditionally agreed

that in the case of simple application, proposed framework was friendly to begin-

ners as well.

Possible application domains listed by interviewees included: personalized

IoT service, wide-area data aggregation and analysis (e.g. vehicle data), pub-

lic IoT service, IoT fast prototyping, IoT education etc. And the first interviewee

also pointed out that the proposed framework might not be suitable for applica-

tions that requires “high-precision, low-latency control, such as intelligent obstacle

avoidance”. The interview results also indicated that transferable knowledge, in-

cluding RESTful IoT service, service-oriented architecture usage, semantic IoT

description and IoT development task flow design could be learned from proposed

framework and further be applied in general IoT development domains.

The overall results are shown in 5.12, among which CM is the abbreviation for

“customization”, RU for “reusability”, and CD for “cross-domain interoperabil-

ity”.

5.3 Architectural Assessment

Unlike that expertise requirement and kick-start barriers are compare items closely

related to user experience, customization cost, reusability and cross-domain inter-

operability were more structural aspects. Since theres still few standard compar-

ison metric within this relatively new area, we had to borrow some of the indexes

from related fields, such as software engineering, distributed computing, service

modeling and etc.

In the coming subsections, we continued to invite the experts to give rat-

ings over the three aspects, revealing the structural difference between proposed

framework and the other three competitors. In addition, a scalability test was

also carried out.

107

EVALUATION 5.3 Architectural Assessment

5.3.1 Customization Cost

Software customization can be divided into three levels: derivation, configura-

tion and personalization, which can be measured by the complexity of achieving

core requirements in each level [106]. Microsoft summarized that software ap-

plication customization can usually be achieved by three methods: (1) rewrite

source code, (2) plug custom component into existing system, (3) use scripting

(or other methods) to re-define business logic [107]. Customizability is considered

especially important when facing: (1) Heterogeneity of market demands; (2) Cus-

tomers demands of fast and varied response to their needs (3) Competition from

other related vendors [108]. And service customization issue can be divided into

five layers according to service oriented architecture: operational system/device,

component, service, process, presentation [109].

Since in this research we only discuss the IoT composition system, and consid-

ering the fact that customization in this kind of system actually means compos-

ing/replacing service nodes (IoT devices and Web services) for specific business

logic or task flow, we defined a customization cost metric on the basis of literature

reviews, which contained 6 features. The calculation of thee final customization

cost, CCS, was based on the following equations:

CCS = wNC × Fn(SNC) + wIC × Fn(SIC) + wCRC × Fn(SCRC) + wCMC ×
Fn(SCMC)+wDRC ×Fn(SDRC)+wLRC ×Fn(SLRC) , while normalization function

Fn = (V alue−MinV alue)/(MaxV alue− V alue).

1. Node Composability (NC).

Program Constraint (0): To be able for composition, nodes (device/service)

are required to use specific Language, SDK, OS.

Template Constraint (1): To be able for composition, nodes are required to

provide specific functions, parameters.

Interface Constraint (2): To be able for composition, nodes are required to

provide specific access interface.

2. Interface Complexity (IC).

Language Restriction (0): Service’s access interface can only be used by

specific program Languages.

Model Restriction (1): Service’s access interface can be used by any program

language who is capable of correctly handle the specific data model, for

example: JSON object.

108

EVALUATION 5.3 Architectural Assessment

Type Restriction (2): Service’s access interface can be used by any pro-

gram language who is capable of correctly handle the specific data type, for

example: Integer.

3. Configuration Rule Complexity (CRC).

No Common Rules (0): Any node may have its own configuration rules.

Uniform Rules (1): All nodes can be configured by selecting from a set of

common rules and configuring parameters.

Predefined Rules (2): All rules are predefined, only parameters need to be

configured.

4. Composition Method Complexity (CMC).

Variable-level detail (0): To complete a composition, all the required vari-

ables, relations between variable and conditions must be set correctly. For

example, to “turn on” a device, all variables used to initialize the device

must be set one by one.

Event-level detail (1): To complete a composition, a set of events and their

trigger conditions are required to be set. Each event represents a set of

variables, relations and conditions. For example, to “turn on” a device, an

event named “turn on” should be triggered.

Semantic-level detail (2): To complete a composition, a set of semantic

representations are required to be set. A semantic representation represents

a set of events with different names and/or parameters but has the same

meaning, for example: “turn on” and “start” may be two events used by

different devices, but are identical in semantics if they link to the same

ontology.

5. Device Replacement Complexity (DRC).

SDK level revision required (0): When two devices use different SDKs, extra

workload have to be paid to replace one for another.

Service level revision required (1): When two devices use different services,

extra workload have to be paid to replace one for another. A service may

encapsulate several SDKs for various types of devices.

Interface level revision required (2): When two devices use different Inter-

faces, extra workload have to be paid to replace one for another. The same

Interface may be used by various types of services.

109

EVALUATION 5.3 Architectural Assessment

6. Logic Revision Complexity (LRC).

Re-Program (0): The only way to change the logic of a composition is to

re-program, re-compile and re-deploy the application.

Re-Deploy (1): To change the logic of a composition, the application must

be halted, re-deployed and restarted.

On-The-Fly (2): Composition logic can be changed by user input at run

time and take effects immediately. Usually symbol, graph, or semantic based

methods are used to record inputs.

Based on this scale, we listed the comparison on customization cost of proposed

framework with other parallel researches as below:

Table 5.13: Comparison on Customization Cost

FEATURE

(weight)

HomeAssistant

(2013)

Node-Red

(2013)

PubNub-EON

(2015)

HSML (2016)

NC (0.1) 1 2 2 2

IC (0.1) 0 2 1 1

CRC (0.2) 2 0 1 1

CMC (0.2) 1 1 0 2

DRC (0.2) 1 2 0 1

LRC (0.2) 1 2 0 2

Customization

Cost Scale

0.37 0.47 0.17 0.5

5.3.2 Reusability

Software reuse is using the previously developed software for building of newly

developing system [110], which is a common strategy for organizations to improve

productivity, insure quality, and save cost [111]. Since 1980’s, different kinds of

metrics have been proposed to measure the degree to which a software can be

reused, including: reuse level metric [112], reuse metric for Object-Oriented sys-

tems [113], reuse library metric [114], FCM [115]. However, they either focused

on non-distributed system, required too many detailed information (thus are not

practical for real use), or just related to a certain aspect of reusability. In this

110

EVALUATION 5.3 Architectural Assessment

research, we carried out a literature review and selected major indicators to con-

struct our own metrics for experts to evaluate reusability for distributed system,

especially those based on service oriented architecture.

For reusability evaluation, we established a reusability metric comprised of 7

features and grouped by 3 categories: structure, interface and component. All

features were selected based on a throughout literature review. Each feature used

a 3-point or 5-point scale, with a larger point indicated a better performance. The

calculation of the final reusability scale, RS, was based on the following equations:

RS = wC × Fn(SC) + wD × Fn(SD) + wKR × Fn(SKR) + wIH × Fn(SIH) +

wSS ×Fn(SSS)+wSD ×Fn(SSD)+wSA×Fn(SSA) , while normalization function

Fn = (V alue−MinV alue)/(MaxV alue− V alue).

1. Coupling (C) [116].

Monolithic (0): The system structure is always treated as a single unit and

its individual parts cannot be manipulated.

Dependent (1): Individual parts can be manipulated separately. however,

the running of each part depends on other parts, thus hard to be replaced.

Self-contained (2): Each individual part can be running separately and re-

placed easily [117].

2. Reusability Dependency (D).

OS (0): The reusage can only be achieved on specific operation system.

Language (1): The reusage can be achieved on any operation system, but

only support specific language [118].

Protocol (2): The reusage can be achieved on any operation system, by any

language, if only it satisfies certain protocols.

3. Knowledge required for reuse (KR).

Source Code Reusability (0): Reuse can only be achieved by modifying the

source code of the target system [119].

White Box Reusability (1): Reuse can be achieved by using exposed interface

of target system, without modifying the source code. However, one must be

capable of reading source code to understand how to use the interfaces [120].

Black Box Reusability (2): Reuse can be achieved without any knowledge

of the source code, the only knowledge needed is the interface description of

the target system [121].

111

EVALUATION 5.3 Architectural Assessment

4. Interface Heterogeneity (IH) [122].

Heterogeneous (0): Each component may define its own interface specifica-

tions. The total number of the interfaces required for reuse is unlimited.

Standardized (1): All components can be reused by using limited types of

interfaces.

Uniform (2): All components can be reused by using the same type of

interface.

5. Service Source (SS) [123].

Internal (0): Reusable components only come from the internal system.

Global (1): Reusable components come from both internal and external

systems.

Participatory (2): Reusable components come from both internal and exter-

nal systems, and a composition of reusable components from internal and

external systems is also a reusable component.

6. Service Discoverability (SD) [123].

Standalone (0): Components are provided separately without relationship.

Networked (1): Components are linked with each other, description files

contain linkage information are provided by each component.

Indexed (2): Components are indexed in one or more central portals.

7. Service Adaptability (SA) [121,123].

Non-adaptable (0): Components can only be used for predefined contexts.

Adaptable (1): Components can be adapted to varied use contexts by man-

ual setting.

Adaptive (2): Components can be adapted to varied use contexts by giving

description files.

Semantic (3): Components can be adapted to varied use contexts by giving

semantic description files.

Automatic (4): Components can be adapted to varied use contexts auto-

matically.

Based on this scale, we listed the comparison on reusability of proposed frame-

work with other parallel researches as below:

112

EVALUATION 5.3 Architectural Assessment

Table 5.14: Comparison on Reusability

FEATURE

(weight)

HomeAssistant

(2013)

Node-Red

(2013)

PubNub-EON

(2015)

HSML (2016)

C (0.2) 1 1 1 1

D (0.1) 1 1 2 2

KR (0.1) 1 2 0 2

IH (0.2) 2 1 1 2

SS (0.1) 0 2 1 2

SD (0.1) 2 2 2 1

SA (0.1) 1 1 0 1

Reusability

Scale

0.37 0.41 0.3 0.47

5.3.3 Cross-Domain Interoperability

IEEE defines interoperability as, the ability of two or more systems or compo-

nents to exchange and use the exchanged information in a heterogeneous net-

work [124].The US Department of Defense defines interoperability as, the ability

of systems, units, or forces to provide services to and accept services from other

systems, units, or forces, and to use the services so exchanged to enable them to

operate effectively together [125].

CDIS = wDID × Fn(SDID) + wDI × Fn(SDI) + wOA × Fn(SOA) + wSD ×
Fn(SSD)+wSIP ×Fn(SSIP)+wSS ×Fn(SSS) , while normalization function Fn =

(V alue−MinV alue)/(MaxV alue− V alue).

1. Device Interoperation Dependency (DID) [126–128].

Operating system (0): To operate device across domain, specific operating

system must be used.

Network protocol (1): To operate device across domain, specific network

protocol must be used.

Virtualization Technology (2): To operate device across domain, specific

virtualization technology (for example: java vm) must be used.

Syntactic standard (3): To operate device across domain, specific syntax

and encoding standard (for example: bit table) must be used.

Semantic standard (4): To operate device across domain, agreed-upon se-

mantic standard must be referred to.

113

EVALUATION 5.3 Architectural Assessment

2. Data Interoperability (DI).

Domain-specific (0): To understand data from another domain, (human or

machine) user must know the domain-specific method to process raw data.

Formatted (1): Data from another domain are formatted according to open

formats, for example: xml, json, csv, etc.

Standardized (2): Data from another domain can be interpreted and under-

stood by using open standards, for example: SWIFT in financial industry,

sensorML in sensing industry.

3. Object Abstraction (OA) [129].

Technology (information) level abstraction (0): The physical device can be

mapped to and manipulated by a corresponding abstract entity (i.e. ser-

vice, in this research) in another domain. However, the abstract entity has

to expose detailed technology information of the physical object, such as:

internal data model, hardware ports, sockets, etc.

Functional level abstraction (1): The abstract entity has to expose function

information, such as: function name, parameters, etc. The technology level

details are unnecessary.

(programmatic) Logic level abstraction (2): The abstract entity only need

to expose logic level information, such as: status, events, conditions, etc.

The technology and function level details are unnecessary.

4. Service Description (SD).

None (0): No service description information.

Comment (1): Description information is provided as comments in source

code files or other text files.

Separate (2): Description information is provided in standardized file (for

example: wsdl) as separate elements, such as: address, usage, properties,

functionalities, status, events, etc.

Connected (3): Description information is provided in standardized file as

elements and relations between elements.

Modeled (4): Description information is provided in standardized file as

elements and relations by using a common model, for example: UML, State

Transition Model, Event-driven Process Chain, etc.

114

EVALUATION 5.3 Architectural Assessment

5. Service Interoperation Prerequisite (SIP).

Source code (0): To interoperate services between domains, each others

source code must be retrieved and understood.

Human readable description (1): To interoperate services between domains,

the only prerequisite is to retrieve and understand each others service de-

scription file. The service description file is only human readable.

Human-Machine readable description (2): To interoperate services between

domains, the only prerequisite is to retrieve and understand each others ser-

vice description file. The service description file is both human and machine

readable.

6. Service Statelessness (SS).(means the service treats each request as an

independent transaction that is unrelated to any previous request, whether

by the same service consumer or any other service consumer, so it does not

need to wait others to finish related steps)

Non-statelessness (0): None of the services are stateless.

Entity service statelessness (1): Entity services are stateless. Entity services

are those services interacting with resources, for example: IoT devices.

Task service statelessness (2): Both entity and task services are stateless.

Task services are those services storing task logic, for example: composition

service.

Based on this scale, we listed the comparison on customization cost of proposed

framework with other parallel researches as below:

5.3.4 Scalability

To simulate the real cloud deployment and usage scenario, we established a testbed

based on a cloud platform at jcloud.sjtu.edu.cn as shown in 5.6. The cloud plat-

form itself was developed by OpenStack, an open source cloud computing software.

We created two virtual networks on OpenStack, one to simulate servers network

(the ServerNet), one to simulate clients network (the ClientNet). In cloud comput-

ing environment, the virtual server is also a web service which can be dynamically

created and merged into service pool for elastic service expansion. In this situ-

ation, the service scalability is theoretically unlimited. But in real practice, the

hardware capacity and communication cost, i.e. the real computing hardware

115

EVALUATION 5.3 Architectural Assessment

Table 5.15: Comparison on Cross-Domain Interoperablity

FEATURE

(weight)

HomeAssistant

(2013)

Node-Red

(2013)

PubNub-EON

(2015)

HSML (2016)

DID (0.3) 2 2 3 4

DI (0.3) 1 1 2 2

OA (0.1) 2 2 1 2

SD (0.1) 3 1 1 3

SIP (0.1) 2 1 0 1

SS (0.1) 0 0 1 1

Interoperablity

Scale

0.41 0.34 0.5 0.63

capacity and communication latency will inevitably reach their limitation. We’ll

discuss this under our horizontal and vertical scalability architecture in real cloud

platform deployment.

In our cloud platform, we used service replication as a basis to provide hori-

zontal scalability. When one service became the bottleneck of the whole system,

we could replicate this service and use load balance method to redirect requests

to replicated services accordingly. This method could expand the service capacity

horizontally, as we will evaluate in the following test. The horizontal scalability

architecture has its advantages, such as: software defined, highly flexible and elas-

tic. But it also has its limitations, which mainly caused by extra transaction costs

between replicated services, and the fact that the hardware especially the net-

work bandwidth cannot be expanded without limitation in a single geographical

location. If the horizontal scalability architecture reached its limitation, we rec-

ommend to use vertical scalability architecture for further expansion, which means

to deploy more cloud platforms that are physically and geographically separated.

In this section, we focused on evaluating horizontal scalability in our system

because the vertical scalability was usually addressed by the infrastructure de-

sign and hence was out of our research scope. More specifically, in our virtual

serverNet, we could deploy service servers dynamically by service replication, for

example: orchestration service and message broker. For services of the same type,

a service pool will be created for management. A load balancing service can be

in charge of managing the communication traffic in service pool and redirecting

requests from clientNet to idle services to avoid bottleneck caused by a specific

service.

116

EVALUATION 5.3 Architectural Assessment

Figure 5.6: Testbed on Cloud Server Environment

In the following test, we managed to evaluate the performance of using ser-

vice replication method for horizontal scalability. The service resource pool used

in this test contained two message broker services. The reason why we choose

message broker service to test system performance was because, most communi-

cation traffic in our system was related to message broker who was very likely

to become a bottleneck as requests increased. However, this did not mean only

message broker service can be replicated for system scalability. Any service that

may become the bottleneck could be scaled up by using the same technique we

introduced above. The Round-Robin algorithm was used to control load balance

for the service pool.

In client side, a test tool developed by node.js was used to simulate simulta-

neous requests from 5-100 device nodes, and each device was supposed to send

10 requests per second. The requests were delivered via actual internet to reach

server side to fully simulate the real cloud scenario. The test was carried out twice

for comparison: In test 1, only one message broker was adopted to manage the

service pool; While in test 2, two replicated message brokers were adopted.

117

EVALUATION 5.3 Architectural Assessment

Figure 5.7: Test Result: Mean Latency

In both tests, the mean latency and the rejection rate increased steeply when

the amount of simultaneous device nodes crossed a threshold which indicated the

system capacity was reached. The difference was, by replicating and providing

just one more message broker in the service pool, the threshold could be scaled up

from 65 to 80 (judging from mean latency solely) or from 60 to 85 (judging from

error rate solely). Hence, we could draw a conclusion that, the service replication

method we proposed was applicable for providing horizontal scalability. Each

service replication was supposed to support extra 20 devices more. Considering

the fact that, in real use scenario, most IoT Web services will not send state

messages (not raw data) 10 times per second, the actual gain will be more than

20 devices. Predictably, an increment of 200 devices is affordable if the message

delivered from each service is set at a rate of 1 per second (which is very common

for a IoT service).

Hence, in cloud platform, we can easily deploy horizontal scalability architec-

ture to support thousands of devices in a single composition task. If a composition

task contains more devices that are geographically dispersed, vertical scalability

method can also be introduced to further deal with large scale requests by pro-

118

EVALUATION 5.3 Architectural Assessment

Figure 5.8: Test Result: Rejection Rate

viding physically and geographically distributed cloud servers.

Another solution is to deploy the message broker at run time on client side. In

this case, communication between client and composition server only takes place

when the client submits a composition task to central orchestration service for the

first time. And the central orchestration service will in return reply with generated

composition logic and configure the message broker located at the client side. The

communication cost in this phase approximates to a constant and can be omitted

when compared with the request/response between message broker and resources

to be composed. As it greatly depends on the network environment of client side,

we have simulated message broker deployed on a variety of hardware and systems,

to send requests to a target resource, which may either located on a cloud server

or an edge device.

We estimated the average time consumed from message broker initiates a re-

quest to the response of target resource bounces back. The test were repeated

every 5 seconds for 10 times. The cloud server specification was already described

in the beginning of this section, while the edge device was deployed on a Rasp-

berry Pi and shared the same network segment as the clients who used WLAN

119

EVALUATION 5.4 Discussions and Limitations

and Ethernet connections. Average round-trip duration was shown in Table 5.16.

Table 5.16: Roundtrip Duration (ms) in Cloud and Edge Computing Environment

system Windows (10, 64bit)

hardware I7-5500U(2.40GHz*2), 16G RAM

network 1.0Gbps Ethernet

Cloud Edge

Chrome 131.6 75.1

Fireforx 133 107.1

Edge 134.1 68.9

system MacOS (10.11)

hardware I5 2GHz, 8G RAM

network 144.0 Mbps WLAN

Cloud Edge

Safari 272 161.8

system Android (7.0)

hardware MSM8994(2G*4+1.5G *4), 3G RAM

network LTE

Cloud Edge

Chrome 333.1 333.4

Firefox 275.7 339.4

This case only imitated the simplest scenario of one message broker managing

one service. The overall cost will however rise as the number of involved resource

nodes increases. The communication pattern (synchronous/asynchronous) is also

another relevant factor and will turn the duration estimation in multi-nodes com-

position scenario into a more complicated issue.

5.4 Discussions and Limitations

The user experiments, expert rating and architectural comparison shown the over-

all performance of proposed framework outscored its mainstream counterparts,

especially in Reusability and Cross-Domain Interoperability. In Customization

Cost and Expertise Requirement, it at least equals the best competitor, if not

better. Its also proven to be very easy to learn and enjoyable to use, and can be

scaled easily by simple service replication strategy. Below we will discuss the as-

120

EVALUATION 5.4 Discussions and Limitations

sessments of each research issue in more detail, and also summarize the limitation

identified in the evaluation processes.

As evaluated in user experiment and expert interview, the proposed frame-

work has obvious advantages over two of the three mainstream frameworks in

Expertise Requirement and Kick-start Barrier assessment, statistical significance

was found in most rating items, including: time consumption, Problems Asked,

NASA-TLX Overall Rating, Mental Demands and Effort. As comparing with the

last one, Node-Red, the score is very close. While we believe a major reason (that

the advantages of proposed framework dont shown obviously) is because the user

experiment is highly time consuming and work intensive, to prevent participants

from feeling exhausted, we only selected the simplest tasks. In a more complicated

task, the uniform description and usage method of all resources that supported by

proposed framework will generate more obvious advantages over frameworks using

heterogeneous description and usage methods, such as Node-Red. As a proof, in

free question stage, two participates selected the proposed framework as the most

willing to use framework in the future. The reason given by participates is that

there is no need to learn how to use different components because they all follow

the same usage model. Also in expert interview, two experts agreed that the pro-

posed framework do help to lower down the expertise requirements and kick-start

barrier because of its neutrality (e.g. platform, programming language, standard),

flexibility (e.g. changing nodes or task logic during run-time) and highly trans-

ferable knowledge (e.g. FSM model, SOA). Besides the selection of experiment

tasks (which only contains simple tasks), the number of participates (only 4) is

another limitation in user experiment. Ideally, a test on tens or hundreds of users

will bring more convincing conclusion. However, its beyond our capability right

now.

For Reusability, Interoperability and Customization Cost assessment, both

architectural comparison and expert interview shown the proposed framework

can provide better support due to some unique features, including: loose-coupling,

no technical knowledge required, uniform component interface, etc. As comparing

with mainstream competitors, the proposed framework has a better overall rating.

Some experts mentioned that when they decide to use a framework or not, those

features are very important because the application itself is not the purpose, test

the development process iteratively to prove ones idea is, while the proposed

framework can satisfy them from several key aspects, including: easy-to-replace

components based on FSM model, on-the-fly composition mechanism, etc.

121

EVALUATION 5.5 Summary

It is worthy to mention that, to avoid bringing comparison too many trivial,

we only used 3 or 5 degrees in rating, which make the comparison a little rough.

Thus some detailed features may not be fully represented in the comparison. For

example, for coupling comparison, the actual situation may be more complicated

than our assessment. Even if two frameworks both have individual parts that can

be manipulated separately, the statelessness of each part can further lower down

the coupling. These minor details are not reflected in architectural comparison

due to complexities. However, the proposed framework has advantages on all these

detailed features (so that it will not bring bias into assessments). The detailed

technical analysis can be found in previous chapters.

Another limitation of architectural comparison may come from the represen-

tativeness of the items used in the assessment. Although each item is carefully

selected from literature review on previous research or related fields, there is still

possibilities that some items are lacked or some of them are not so proper for IoT

field. Since theres no commonly accepted rating standard at this moment, we

have to leave the judgment to the readers.

5.5 Summary

In this chapter, a comprehensive evaluation for proposed open IoT service com-

position framework was carried out to measure to what extent improvements had

been achieved on expertise requirement, customization cost, reusability and cross-

domain interoperability. The overall evaluation strategy contained three parts: 1)

User test, 2) Expert interview and 3) Architectural comparison.

In Section 5.1, a series of beginner-centered user tests were conducted specifi-

cally for estimating expertise requirement and kick-start barriers when using pro-

posed web development toolkit, HSML. We tested over learnability, socialbility,

retrievability and task load. Results showed that compared with mainstream

open IoT service composition frameworks, HSML was among the best develop-

ment toolkit in regard to overall task load performance. We also found that

the HTML-like domain-specific language syntax also helped provide beginner-

affordable learnability, increase the willingness of sharing composition results, as

well as improve the retrievability of IoT resources by rich user-generated semantic

tags.

In Section 5.2, we conducted a complementary expert interview to collect feed

backs from veteran developers inside the industry. Three experienced experts

122

EVALUATION 5.5 Summary

from different IoT tracks were invited to answer questions about: 1) Interviewees’

personal technical background, 2) Interviewees’ preferences on general features of

IoT development frameworks, and 3) Feed backs after trying out the proposed

framework. Results showed that all three interviewees gave positive answers,

when asked if they were willing to use proposed framework in the future. The

interviewees also reached a consensus that proposed framework had improved

customization cost, reusability and cross-domain interoperability, compared with

other frameworks and platforms they previously used.

In Section 5.3, in order to reveal the structural difference between proposed

framework and the other competitors, we continued to invite the experts to give

ratings over 19 indexes traversing customization cost, reusability and cross-domain

interoperability aspects. For each index, a 3-point or 5-point rating scale was

adopted and total weighted arithmetic means were calculated. Results showed

that proposed framework had the best performance on cross-domain interoperabil-

ity while shared similarly leading results with another framework on customization

and reusability. In addition, we also accessed the scalability of proposed frame-

work on virtual server/client networks, in which mean latency, rejection rate and

round trip duration were tested. And result shown that proposed framework was

able to support 60 to 80 nodes which send 10 requests per second, by each sin-

gle message broker. And by replicating message broker, the scalability can be

improved at the rate about 20 nodes with each extra broker.

Lastly, in Section 5.4, we had a general discussions about in what range the

overall evaluation results were considered valid. Some limitations found in evalu-

ation approach and experiment design were also listed.

123

Chapter 6

Conclusion

6.1 Contribution

It is said that by 2020, there will be 50 to 100 billion things connected to the

Internet [130]. IoT support penetrates almost every aspect of society, e.g. mu-

nicipal governance, economy, mobility, environment and living, fostering a wide

spectrum of applications ranging from transportation, public welfare, sustainabil-

ity, tourism, business all the way to city safety [131]. These actual needs drive IoT

services to overcome the technical and organizational boundaries, particularly in

areas like smart city, environmental intelligence and etc.

On the other hand, The World Wide Web built upon the Internet is hitherto

the most effective open platform for everyone to share human perceived reality

or virtual reality globally. And the introducing of sensors and actuators is sup-

posed to add real-world data, and optionally awareness to the Internet. However,

this deceptively simple addition is a transformational change, given that current

web infrastructure itself was not prepared with the motility to grasp the physical

environment information spontaneously [132].

The Web has been providing user interface of simplicity and generality. It is

also expected to be consistent with sensors and actuators all along, especially when

the popularity of built-in sensors/actuators and smart devices has made everyone

both the provider and the consumer of physical information at the same time.

Kick-start barriers and learning cost will greatly affect how voluntary the users,

i.e. the readers, authors and application developers, participate in the creation

and structuring of information. And if we refer sensors/actuators to a new kind

of hypermedia contents, we are actually expecting that sensors/actuators and

their functionality can be retrieved, discovered, integrated and reused by various

applications over the Internet, in the same manner as we has been utilizing plain

texts, images, videos, audios and so on nowadays.

As a result, the mutual needs from both IoT service enablement and Web

124

CONCLUSION 6.1 Contribution

infrastructure evolvement have greatly reshaped the domain requirements of sen-

sor/actuator/IoT web applications development:

1. Internet-scale. Nowadays, the Internet works as the information infras-

tructure that provides interconnectivity of distributed ICT devices and infor-

mation networks that are not only dispersed geographically, but also across

multiple organizational boundaries. Examples like sensor cloud platform

(AWS IoT, SAP HANA), open sensor portal (OGC SWE, sensorPedia),

and IoT application.

2. Ubiquitous accessibility. Suppliers of information services are supposed

to provide ubiquitous and constant accessibility of data and resources that

are time and/or space sensitive. Particularly, for environment monitor sen-

sors, it usually does not refer to the accessibility of one specific sensor node,

but rather the availability of sensor data from peer sensor groups within a

certain range of time and space.

3. General purposes. Despite traditional machine-to-machine control, geo-

graphic observation, military and defense purposes etc, sensors and actua-

tors are gaining a booming portion of consuming electronics and end-user-

centered market. Responsively, non-dedicated applications have appeared

with more general purposes that do not exclusively rely on dedicated plat-

forms, operating systems or devices.

4. Context adaptable. Modern sensor-actuator applications are supposed

be deployed in volatile physical environments along with varied computing

and user contexts, which consequently requires the ability of changing busi-

ness logic in-situ to adapt to context transition, either by predefined active

methods or runtime passive methods.

The newly rising domain requirements emphasize onWeb based ubiquitous sys-

tem features more than ever, e.g. interoperability, agility, reusability and partici-

patory, etc. As our target, this specific research is dedicated to provide a scalable,

platform-independent, general-purpose open framework with fine-grained, light-

weighted general development interface for Internet-scale, cross-organizational IoT

services. Oriented to most mainstream sensor/actuator/IoT web resources (specif-

ically RESTful and COAP-based resources), we have further extended state-based

resource interface into a state machine model and provided standard descriptions

125

CONCLUSION 6.2 Limitation

based on the combination of SensorML and SCXML. It leads to a richer but lu-

cid expression of exposed functionality and control mechanisms, which used to be

confined to only well-trained technicians and domain experts. It has increased the

composability of each component resource and the overall degree of automatabil-

ity. Consistent paradigm based on state transfers has also been adopted by the

central service orchestration to integrate diverse IoT web resources together with

large amounts of existing web services, which contributes to the reusability of

legacy system and current technology stack. Careful estimation of scalability, ap-

plicability and general performances in a variety of computing environments has

been conducted. And proposed framework and its corresponding Web API have

been proved to be capable of loosen the tight coupling among service components

and lower down the overall development cost in a wide range of general applica-

tion scenarios. It is supposed to be adaptable to multiple distributed computing

environments and capable to generate certain level of smartness to complete pre-

defined task or business logic in an automatic or semi-auto manner, the develop-

ment of which also will rely on the maturing semantic web and machine learning

technology in future.

As we already suggested in previous research [133], the proposed framework

allows the reusability of existing technology stack and legacy computing systems,

significantly lowers down the technical threshold for sensors/actuators entering

current web computing systems, while not letting any of current deployed web

services to be degraded. This contributes to the future Internet as a ubiquitous

network of interconnected objects that not only harvests information from the

environments (sensing) and interacts with the physical world (actuation/com-

mand/control), but also uses existing Internet standards to provide services for

information transfer, analytic, and applications [130]. And hopefully, it will pave

the road towards “the Equity of IoT service”, that each and every citizen shall

have equitable, inclusive accessibility and quality of public IoT infrastructure. Go-

ing hand in hand with complementary technologies, e.g. semantic web, machine

learning and blockchain, etc., this research will become the primary step towards

an open, trustable, and autonomous smart society.

6.2 Limitation

The major limitations of this research lied in both the architectural and method-

ological aspects. The former was the common restrictions that shared by most

126

CONCLUSION 6.2 Limitation

frameworks that based on IoT service composition approach, while the latter was

the limitations we found in regard to the concrete methodology adopted in this

research.

1. Architectural Limitation. As already mentioned in Chapter 1, virtual-

ization and servitization are among the prerequisites for IoT service com-

position to convert vendor-specific, device-dependent functionality into uni-

fied, composable development interfaces with open accessibility. Introduc-

ing this kind of abstract, intermediate layers will inevitably entails extra

computational cost and real-time latency. Despite limited IoT devices, the

servitization of most resource-constraint sensor systems, e.g. wireless sen-

sor networks, are taken over and accomplished by either some sink node or

IoT cloud platform, instead of the device itself, which consequently gener-

ates a longer response time. Therefore, the proposed framework may not

be applicable to build latency-sensitive applications, such as smart obstacle

avoidance, multi-sensory detection. Fortunately, servitization on resource-

constraint devices become feasible thanks to the maturity of counterpart

web technology stack like EXI, CoAP and 6LoWPAN etc. Together with

the rapid development of micro-controllers and high-speed wireless Internet

accessibility, it is supposed to reduce the overall communication cost to some

extent.

2. Methodological Limitation. In this research, we have adopted a state-

transfer-based IoT service composition approach and proposed Finite-State-

Machine-based IoT service modelling. An IoT service composition is actu-

ally equivalent to a serial combination of two or multiple FSM-modelled IoT

nodes. And theoretically, the composition as a whole is composable and can

further be nested into hierarchical compositions [134]. However, it is very

difficult to estimate and handle the computational complexity and possible

state message blockage of hierarchical composition at current stage. And a

more comprehensive mathematical model must be established, so that the

proposed FSM-based service modelling can be applied to formally verify the

correctness inside a workflow specification, and further support automatic

composition of Finite-State Machines.

127

CONCLUSION 6.3 Future Issues

6.3 Future Issues

In the coming future, we will further coordinate with some partner technologies

in relation to IoT service development, and extend the proposed framework in

following aspects

1. Process Automation. Given that we have already proposed a machine-

readable resource description (StateML) for IoT web services, in next step,

we consider to provide a corresponding mechanism in HSML toolkit that

can read StateML files and automatically extract necessary information. So

that actions like specifying resource accesses, or simple measure conversion,

can be further taken over by HSML, which is supposed to reduce manual

intervention in business logic building and enhance the overall degree of

process automation.

2. Cross-domain Discoverability. In 5.2.3, we have showed that the rich

semantic relations contained in user-generated HSML texts helped improve

the retrievability of IoT resources. The proposed framework is considered

to be innately consistent with technologies like linked services and semantic

web. It is plausible to adopt, for example, a SPARQL-based query mecha-

nism for IoT developers to discover and query over IoT services at a semi-

semantical or semantical manner. Moreover, Graph database is another

adoptable partner technology, which enables graph-structured storage of in-

terconnected information, to push cross-domain discoverability of proposed

framework one step further.

3. Security. The proposed framework intends to encourage developers to reuse

existing IoT services and share their own services. Therefore it becomes an

urgent need to address issues like how to identify if a third-party service is

reliable or not, how to ensure each and every operation within a composition

task is validated and traceable, and how to regulate service accessibility

according to different level of user authority and etc. Some inspirations

may be found in related researches on IoT blockchain and access delegation

etc.

Other future functional improvements may exist in offering a hybrid user interac-

tion by combining graphic element and domain-specific language together. How-

ever, more consideration must be taken in regard to the balance between learning

cost and expressiveness.

128

CONCLUSION 6.4 Summary

6.4 Summary

Going hand in hand with partner technologies like semantic web, maching learning

and blockchain etc., this research will hopefully be the primary step to achieve

the equity of IoT service as our long-term goal. IoT will eventually become part

of future public infrastructure as well as part of our future society. By then we

believe that each and every citizen shall have equitable, inclusive accessibility

and service quality provided by the future IoT. And our research will ultimately

contribute to an open, trustable and autonomous smart society.

As a conclusion, we discussed the contributions, the limitations which in-

cluded both architectural and methodological aspects, as well as the future is-

sues in this chapter. This research was dedicated to: 1) implement the proposed

state-transfer-based open IoT service composition framework, 2) demonstrate the

advancement by developing a few target domain applications, e.g. multi-source

environmental monitoring, open automation systems, and etc., 3) evaluate the

improvement in expertise requirement, customization cost, reusability and cross-

domain interoperability. And the results indicated a better overall performance

than other mainstream IoT service composition frameworks.

129

References

[1] Salem Hadim and Nader Mohamed. Middleware: Middleware challenges and

approaches for wireless sensor networks. IEEE distributed systems online,

7(3):1–1, 2006.

[2] Kay Römer, Oliver Kasten, and Friedemann Mattern. Middleware chal-

lenges for wireless sensor networks. ACM SIGMOBILE Mobile Computing

and Communications Review, 6(4):59–61, 2002.

[3] Abdelmounaam Rezgui and Mohamed Eltoweissy. Service-oriented sensor–

actuator networks: Promises, challenges, and the road ahead. Computer

Communications, 30(13):2627–2648, 2007.

[4] Arne Bröring, Johannes Echterhoff, Simon Jirka, Ingo Simonis, Thomas

Everding, Christoph Stasch, Steve Liang, and Rob Lemmens. New genera-

tion sensor web enablement. Sensors, 11(3):2652–2699, 2011.

[5] Stefan Ferber. How the internet of things changes everything. Harvard

Business Review, 2013.

[6] Scott Loveland, Eli M Dow, Frank LeFevre, Duane Beyer, and Phil F

Chan. Leveraging virtualization to optimize high-availability system config-

urations. IBM Systems Journal, 47(4):591–604, 2008.

[7] Flávio Ramalho and Augusto Neto. Virtualization at the network edge:

A performance comparison. In World of Wireless, Mobile and Multimedia

Networks (WoWMoM), 2016 IEEE 17th International Symposium on A,

pages 1–6. IEEE, 2016.

[8] Takayuki Suyama, Yasue Kishino, and Futoshi Naya. Abstracting iot devices

using virtual machine for wireless sensor nodes. In Internet of Things (WF-

IoT), 2014 IEEE World Forum on, pages 367–368. IEEE, 2014.

130

REFERENCES

[9] Sarfraz Alam, Mohammad MR Chowdhury, and Josef Noll. Senaas: An

event-driven sensor virtualization approach for internet of things cloud. In

Networked Embedded Systems for Enterprise Applications (NESEA), 2010

IEEE International Conference on, pages 1–6. IEEE, 2010.

[10] Jan S Rellermeyer, Michael Duller, Ken Gilmer, Damianos Maragkos, Dim-

itrios Papageorgiou, and Gustavo Alonso. The software fabric for the inter-

net of things. In The Internet of Things, pages 87–104. Springer, 2008.

[11] Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-

mann. Service-oriented computing: a research roadmap. International Jour-

nal of Cooperative Information Systems, 17(02):223–255, 2008.

[12] Richard Hall, Karl Pauls, Stuart McCulloch, and David Savage. OSGi in

action: Creating modular applications in Java. Manning Publications Co.,

2011.

[13] Matthias Thoma, Sonja Meyer, Klaus Sperner, Stefan Meissner, and Torsten

Braun. On iot-services: Survey, classification and enterprise integration. In

Green Computing and Communications (GreenCom), 2012 IEEE Interna-

tional Conference on, pages 257–260. IEEE, 2012.

[14] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web

services. In Web Services, pages 123–149. Springer, 2004.

[15] Quan Z Sheng, Xiaoqiang Qiao, Athanasios V Vasilakos, Claudia Szabo,

Scott Bourne, and Xiaofei Xu. Web services composition: A decades

overview. Information Sciences, 280:218–238, 2014.

[16] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui, and David

Culler. Transmission of ipv6 packets over ieee 802.15. 4 networks. Technical

report, 2007.

[17] Jonathan Hui and Pascal Thubert. Rfc 6282 compression format for ipv6

datagrams over ieee 802.15. 4-based networks. sep-2011, 2011.

[18] A Castellani, Salvatore Loreto, Akbar Rahman, Thomas Fossati, and Esko

Dijk. Best practices for http-coap mapping implementation. IETF work in

progress, 2012.

131

REFERENCES

[19] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained appli-

cation protocol (coap). 2014.

[20] Andrew Banks and Rahul Gupta. Mqtt version 3.1. 1. OASIS standard,

2014.

[21] John Schneider, Takuki Kamiya, Daniel Peintner, and Rumen Kyusakov.

Efficient xml interchange (exi) format 1.0. W3C Proposed Recommendation,

20, 2011.

[22] Angelo P Castellani, Nicola Bui, Paolo Casari, Michele Rossi, Zach Shelby,

and Michele Zorzi. Architecture and protocols for the internet of things:

A case study. In Pervasive Computing and Communications Workshops

(PERCOM Workshops), 2010 8th IEEE International Conference on, pages

678–683. IEEE, 2010.

[23] Mike Botts, George Percivall, Carl Reed, and John Davidson. Ogc® sensor

web enablement: Overview and high level architecture. In International

conference on GeoSensor Networks, pages 175–190. Springer, 2006.

[24] Irma Morrison Alan Freedman. Application framework, 2017.

[25] wikipedia. Software framework, 2017.

[26] Rodger Lea, Simon Gibbs, Alec Dara-Abrams, and Edward Eytchison. Net-

working home entertainment devices with havi. Computer, 33(9):35–43,

2000.

[27] Rudolf HJ Bloks. The ieee-1394 high speed serial bus. Philips Journal of

Research, 50(1):209–216, 1996.

[28] UG OPENHAB. Openhab.

[29] W3C. W3c mission.

[30] Tim Berners-Lee. A short history of ”resource” in web architecture, 2009.

[31] Maurice Ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Web service

composition approaches: From industrial standards to formal methods. In

Internet and Web Applications and Services, 2007. ICIW’07. Second Inter-

national Conference on, pages 15–15. IEEE, 2007.

132

REFERENCES

[32] Deze Zeng, Song Guo, and Zixue Cheng. The web of things: A survey. JCM,

6(6):424–438, 2011.

[33] Nils Glombitza, Dennis Pfisterer, and Stefan Fischer. Ltp: An efficient web

service transport protocol for resource constrained devices. In Sensor Mesh

and Ad Hoc Communications and Networks (SECON), 2010 7th Annual

IEEE Communications Society Conference on, pages 1–9. IEEE, 2010.

[34] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah

Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Sim-

ple object access protocol (soap) 1.1, 2000.

[35] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana,

et al. Web services description language (wsdl) 1.1, 2001.

[36] Tom Bellwood, Luc Clément, David Ehnebuske, Andrew Hately, Maryann

Hondo, Yin Leng Husband, Karsten Januszewski, Sam Lee, Barbara McKee,

Joel Munter, et al. Uddi version 3.0. Published specification, Oasis, 5:16–18,

2002.

[37] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary,

Charlton Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland,

et al. Web services business process execution language version 2.0. OASIS

standard, 11(120):5, 2007.

[38] Scott de Deugd, Randy Carroll, Kevin Kelly, Bill Millett, and Jeffrey Ricker.

Soda: Service oriented device architecture. IEEE Pervasive Computing,

5(3):94–96, 2006.

[39] Antonio Pintus, Davide Carboni, Andrea Piras, and Alessandro Giordano.

Connecting smart things through web services orchestrations. Current

Trends in Web Engineering, pages 431–441, 2010.

[40] François Jammes and Harm Smit. Service-oriented paradigms in industrial

automation. IEEE Transactions on Industrial Informatics, 1(1):62–70, 2005.

[41] Luciana de Souza, Patrik Spiess, Dominique Guinard, Moritz Köhler,

Stamatis Karnouskos, and Domnic Savio. Socrades: A web service based

shop floor integration infrastructure. The internet of things, pages 50–67,

2008.

133

REFERENCES

[42] Roy T Fielding and Richard N Taylor. Architectural styles and the design of

network-based software architectures. University of California, Irvine Doc-

toral dissertation, 2000.

[43] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web

services vs. big’web services: making the right architectural decision. In

Proceedings of the 17th international conference on World Wide Web, pages

805–814. ACM, 2008.

[44] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and

Michele Zorzi. Internet of things for smart cities. IEEE Internet of Things

journal, 1(1):22–32, 2014.

[45] Thomas Luckenbach, Peter Gober, Stefan Arbanowski, Andreas Kotsopou-

los, and Kyle Kim. Tinyrest-a protocol for integrating sensor networks into

the internet. In Proc. of REALWSN, pages 101–105, 2005.

[46] Sami Mäkeläinen and Timo Alakoski. Fixed-mobile hybrid mashups: Ap-

plying the rest principles to mobile-specific resources. In International Con-

ference on Web Information Systems Engineering, pages 172–182. Springer,

2008.

[47] Adam Dunkels et al. Efficient application integration in ip-based sensor

networks. In Proceedings of the First ACM Workshop on Embedded Sensing

Systems for Energy-Efficiency in Buildings, pages 43–48. ACM, 2009.

[48] V Dambal. Rest-ful services, 2010.

[49] Mikel D Petty and Eric WWeisel. A composability lexicon. In Proceedings of

the Spring 2003 Simulation Interoperability Workshop, volume 2003, pages

181–187, 2003.

[50] Paul K Davis and Robert H Anderson. Improving the composability of dod

models and simulations. The Journal of Defense Modeling and Simulation,

1(1):5–17, 2004.

[51] Andreas Tolk. Interoperability and composability. Modeling and simulation

fundamentals: theoretical underpinnings and practical domains, pages 403–

433, 2010.

134

REFERENCES

[52] Shankar R Ponnekanti and Armando Fox. Sword: A developer toolkit for

web service composition. In Proc. of the Eleventh International World Wide

Web Conference, Honolulu, HI, volume 45, 2002.

[53] Torsten Dinsing, G Eriksson, Ioannis Fikouras, Kristoffer Gronowski, Ro-

man Levenshteyn, Per Pettersson, and Patrik Wiss. Service composition in

ims using java ee sip servlet containers. Ericsson Review, 3(9296):89102,

2007.

[54] Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy, and Ming-

Chien Shan. Adaptive and dynamic service composition in eflow. In Inter-

national Conference on Advanced Information Systems Engineering, pages

13–31. Springer, 2000.

[55] Cesare Pautasso. Composing restful services with jopera. In International

conference on software composition, pages 142–159. Springer, 2009.

[56] Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Building mashups

for the enterprise with sabre. Service-Oriented Computing–ICSOC 2008,

pages 70–83, 2008.

[57] Mark Pruett. Yahoo! pipes. O’Reilly, 2007.

[58] Shalom Tsur, Serge Abiteboul, Rakesh Agrawal, Umeshwar Dayal, Johannes

Klein, and Gerhard Weikum. Are web services the next revolution in e-

commerce?(panel). In VLDB, pages 614–617, 2001.

[59] Brahim Medjahed, Boualem Benatallah, Athman Bouguettaya, Anne HH

Ngu, and Ahmed K Elmagarmid. Business-to-business interactions: issues

and enabling technologies. The VLDB JournalThe International Journal on

Very Large Data Bases, 12(1):59–85, 2003.

[60] Martin Garriga, Cristian Mateos, Andres Flores, Alejandra Cechich, and

Alejandro Zunino. Restful service composition at a glance: A survey. Jour-

nal of Network and Computer Applications, 60:32–53, 2016.

[61] Chris Peltz. Web services orchestration and choreography. Computer,

36(10):46–52, 2003.

135

REFERENCES

[62] Alistair Barros, Marlon Dumas, and Phillipa Oaks. Standards for web ser-

vice choreography and orchestration: Status and perspectives. In Interna-

tional Conference on Business Process Management, pages 61–74. Springer,

2005.

[63] Remco Dijkman and Marlon Dumas. Service-oriented design: A multi-

viewpoint approach. International journal of cooperative information sys-

tems, 13(04):337–368, 2004.

[64] Valérie Issarny, Nikolaos Georgantas, Sara Hachem, Apostolos Zarras, Panos

Vassiliadist, Marco Autili, Marco Aurélio Gerosa, and Amira Ben Hamida.

Service-oriented middleware for the future internet: state of the art and

research directions. Journal of Internet Services and Applications, 2(1):23–

45, 2011.

[65] Johannes Zaha, Alistair Barros, Marlon Dumas, and Arthur ter Hofstede.

Lets dance: A language for service behavior modeling. On the Move to

Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE,

pages 145–162, 2006.

[66] Cai Chao and Qiu Zongyan. An approach to check choreography with chan-

nel passing in ws-cdl. In Web Services, 2008. ICWS’08. IEEE International

Conference on, pages 700–707. IEEE, 2008.

[67] Jing Li, Jifeng He, Huibiao Zhu, and Geguang Pu. Modeling and verifying

web services choreography using process algebra. In Software Engineering

Workshop, 2007. SEW 2007. 31st IEEE, pages 256–268. IEEE, 2007.

[68] Hongli Yang, Xiangpeng Zhao, Chao Cai, and Zongyan Qiu. Model-checking

of web services choreography. In Service-Oriented System Engineering, 2008.

SOSE’08. IEEE International Symposium on, pages 79–84. IEEE, 2008.

[69] Qi Yu, Xumin Liu, Athman Bouguettaya, and Brahim Medjahed. Deploying

and managing web services: issues, solutions, and directions. The VLDB

JournalThe International Journal on Very Large Data Bases, 17(3):537–572,

2008.

[70] Antonio Jorge Silva Cardoso. Quality of service and semantic composition

of workflows. 2002.

136

REFERENCES

[71] Boualem Benatallah, Quan Z Sheng, and Marlon Dumas. The self-serv envi-

ronment for web services composition. IEEE internet computing, 7(1):40–48,

2003.

[72] Nikola Milanovic and Miroslaw Malek. Current solutions for web service

composition. IEEE Internet Computing, 8(6):51–59, 2004.

[73] Pawe�l Stelmach. Service composition scenarios in the internet of things

paradigm. In Doctoral Conference on Computing, Electrical and Industrial

Systems, pages 53–60. Springer, 2013.

[74] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:

A survey. Computer networks, 54(15):2787–2805, 2010.

[75] Dieter Uckelmann, Mark Harrison, and Florian Michahelles. An architec-

tural approach towards the future internet of things. In Architecting the

internet of things, pages 1–24. Springer, 2011.

[76] Bryan L Gorman, DR Resseguie, and Christopher Tomkins-Tinch. Sensor-

pedia: Information sharing across incompatible sensor systems. In Collab-

orative Technologies and Systems, 2009. CTS’09. International Symposium

on, pages 448–454. IEEE, 2009.

[77] Nils Glombitza, Dennis Pfisterer, and Stefan Fischer. Using state machines

for a model driven development of web service-based sensor network applica-

tions. In Proceedings of the 2010 ICSE Workshop on Software Engineering

for Sensor Network Applications, pages 2–7. ACM, 2010.

[78] John Soldatos, Nikos Kefalakis, Manfred Hauswirth, Martin Serrano, Jean-

Paul Calbimonte, Mehdi Riahi, Karl Aberer, Prem Prakash Jayaraman,

Arkady Zaslavsky, Ivana Podnar Žarko, et al. Openiot: Open source

internet-of-things in the cloud. In Interoperability and open-source solutions

for the internet of things, pages 13–25. Springer, 2015.

[79] Jean-Paul Calbimonte, Sofiane Sarni, Julien Eberle, and Karl Aberer. Xgsn:

An open-source semantic sensing middleware for the web of things. In

TC/SSN@ ISWC, pages 51–66, 2014.

[80] Danh Le Phuoc. Sensormasher-publishing and building mashup of sensor

data. In I-SEMANTICS. Citeseer, 2009.

137

REFERENCES

[81] Michael Blackstock and Rodger Lea. Iot mashups with the wotkit. In

Internet of Things (IOT), 2012 3rd International Conference on the, pages

159–166. IEEE, 2012.

[82] Riccardo Petrolo, Aikaterini Roukounaki, Valeria Loscri, Nathalie Mitton,

and John Soldatos. Connecting physical things to a smartcity-os. In Sensing,

Communication and Networking (SECON Workshops), 2016 IEEE Interna-

tional Conference on, pages 1–6. IEEE, 2016.

[83] Aikaterini Roukounaki, John Soldatos, Riccardo Petrolo, Valeria Loscri,

Nathalie Mitton, and Martin Serrano. Visual development environment for

semantically interoperable smart cities applications. In Internet of Things.

IoT Infrastructures: Second International Summit, IoT 360 2015, Rome,

Italy, October 27-29, 2015, Revised Selected Papers, Part II, pages 439–449.

Springer, 2016.

[84] Aqeel Kazmi, Zeeshan Jan, Achille Zappa, and Martin Serrano. Overcom-

ing the heterogeneity in the internet of things for smart cities. In Inter-

national Workshop on Interoperability and Open-Source Solutions, pages

20–35. Springer, 2016.

[85] ISO Standard. Iso 11898, 1993. Road vehicles–interchange of digital

information–Controller Area Network (CAN) for high-speed communication,

1993.

[86] Mohammad Farsi, Karl Ratcliff, and Manuel Barbosa. An overview of con-

troller area network. Computing & Control Engineering Journal, 10(3):113–

120, 1999.

[87] K. McCloghrie. Management information base for network management of

tcp/ip-based internets: Mib-ii, 1991.

[88] J. Case. A simple network management protocol (snmp), 1989.

[89] CCITT Recommendation. Specification of abstract syntax notation one

(asn. 1), 1988.

[90] Maximilian Koegel, Markus Herrmannsdoerfer, Yang Li, Jonas Helming,

and Joern David. Comparing state-and operation-based change tracking on

models. In Enterprise Distributed Object Computing Conference (EDOC),

2010 14th IEEE International, pages 163–172. IEEE, 2010.

138

REFERENCES

[91] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to embed-

ded systems: A cyber-physical systems approach. Lee & Seshia, 2011.

[92] Leslie Lamport. Computer science and state machines. In Concurrency,

Compositionality, and Correctness, pages 60–65. Springer, 2010.

[93] David J Comer. Digital logic and state machine design. 1995.

[94] Ivan Zuzak, Ivan Budiselic, and Goran Delac. A finite-state machine ap-

proach for modeling and analyzing restful systems. Journal of Web Engi-

neering, 10(4):353, 2011.

[95] Jacob Beard. State machines as a service. on Engineering Interactive Com-

puter Systems with SCXML, page 17, 2012.

[96] OGC. Sensor model language, 2012.

[97] W3C. State chart xml (scxml): State machine notation for control abstrac-

tion, 2015.

[98] Jonathan Marsh, David Orchard, and Daniel Veillard. Xml inclusions (xin-

clude) version 1.0. W3C Working Draft, 10, 2006.

[99] Bran Selic. Using uml for modeling complex real-time systems. In Lan-

guages, compilers, and tools for embedded systems, pages 250–260. Springer,

1998.

[100] JC Jensen, EA Lee, and SA Seshia. An introductory lab in embedded and

cyber-physical systems. LeeSeshia. org, Berkeley, CA, 2012.

[101] Mudasser Iqbal, Daiqin Yang, Talha Obaid, Teng Jie Ng, and Hock Beng

Lim. Demo abstract: A service-oriented application programming inter-

face for sensor network virtualization. In Information Processing in Sensor

Networks (IPSN), 2011 10th International Conference on, pages 143–144.

IEEE, 2011.

[102] Hock Beng Lim, Mudasser Iqbal, and Teng Jie Ng. A virtualization frame-

work for heterogeneous sensor network platforms. In Proceedings of the 7th

ACM Conference on Embedded Networked Sensor Systems, pages 319–320.

ACM, 2009.

139

REFERENCES

[103] Nathalie Mitton, Symeon Papavassiliou, Antonio Puliafito, and Kishor S

Trivedi. Combining cloud and sensors in a smart city environ-

ment. EURASIP journal on Wireless Communications and Networking,

2012(1):247, 2012.

[104] E Michael Maximilien, Hernan Wilkinson, Nirmit Desai, and Stefan Tai. A

domain-specific language for web apis and services mashups. In International

Conference on Service-Oriented Computing, pages 13–26. Springer, 2007.

[105] Nanalyze. Fog computing vs. cloud computing vs. edge computing, 2016.

[106] Rick Rabiser, Reinhard Wolfinger, and Paul Grunbacher. Three-level cus-

tomization of software products using a product line approach. In System

Sciences, 2009. HICSS’09. 42nd Hawaii International Conference on, pages

1–10. IEEE, 2009.

[107] Andrew Clinick. Creating customizable web services, 2001.

[108] Linda Peters and Hasannudin Saidin. It and the mass customization of

services: the challenge of implementation. International Journal of Infor-

mation Management, 20(2):103–119, 2000.

[109] Ashraf A Shahin. Variability modeling for customizable saas applications.

arXiv preprint arXiv:1409.2156, 2014.

[110] Arun Sharma, Rajesh Kumar, and PS Grover. A critical survey of reusability

aspects for component-based systems. World academy of science, Engineer-

ing and Technology, 19:411–415, 2007.

[111] William Frakes and Carol Terry. Software reuse: metrics and models. ACM

Computing Surveys (CSUR), 28(2):415–435, 1996.

[112] James M Bieman. Deriving measures of software reuse in object oriented

systems. In Formal Aspects of Measurement, pages 63–83. Springer, 1991.

[113] Santhi Karunanithi and James M Bieman. Candidate reuse metrics for

object oriented and ada software. In Software Metrics Symposium, 1993.

Proceedings., First International, pages 120–128. IEEE, 1993.

[114] William B. Frakes and Sadahiro Isoda. Success factors of systematic reuse.

IEEE software, 11(5):14–19, 1994.

140

REFERENCES

[115] General Electric Company, Jim A McCall, Paul K Richards, and Gene F

Walters. Factors in software quality: Final report. Information Systems

Programs, General Electric Company, 1977.

[116] M Todd Gamble and Rose Gamble. Monoliths to mashups: Increasing

opportunistic assets. IEEE software, 25(6), 2008.

[117] Wilhelm Hasselbring and Guido Steinacker. Microservice architectures for

scalability, agility and reliability in e-commerce. In Software Architecture

Workshops (ICSAW), 2017 IEEE International Conference on, pages 243–

246. IEEE, 2017.

[118] Robert Lewis Biddle and Ewan D Tempero. Understanding the impact

of language features on reusability. In Software Reuse, 1996., Proceedings

Fourth International Conference on, pages 52–61. IEEE, 1996.

[119] Yida Mao, Houari A Sahraoui, and Hakim Lounis. Reusability hypothesis

verification using machine learning techniques: a case study. In Automated

Software Engineering, 1998. Proceedings. 13th IEEE International Confer-

ence on, pages 84–93. IEEE, 1998.

[120] Paul Clements and Linda Northrop. Software product lines. Addison-

Wesley,, 2002.

[121] Thomas J McCabe. A complexity measure. IEEE Transactions on software

Engineering, (4):308–320, 1976.

[122] Harry M Sneed. Measuring web service interfaces. InWeb Systems Evolution

(WSE), 2010 12th IEEE International Symposium on, pages 111–115. IEEE,

2010.

[123] Si Won Choi and Soo Dong Kim. A quality model for evaluating reusability

of services in soa. In E-Commerce Technology and the Fifth IEEE Conference

on Enterprise Computing, E-Commerce and E-Services, 2008 10th IEEE

Conference on, pages 293–298. IEEE, 2008.

[124] K Breitfelder and D Messina. The authoritative dictionary of ieee standards

terms. Institute of Electrical and Electronics Engineers (IEEE), 2000.

[125] US DoD. Dod dictionary of military and associated terms. Online, 14:1–02,

2010.

141

REFERENCES

[126] Hans van der Veer and Anthony Wiles. Achieving technical interoperability.

European Telecommunications Standards Institute, 2008.

[127] Grace A Lewis and Lutz Wrage. Model problems in technologies for in-

teroperability: Model-driven architecture. Technical report, CARNEGIE-

MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST,

2005.

[128] Luis Guijarro. Semantic interoperability in egovernment initiatives. Com-

puter Standards & Interfaces, 31(1):174–180, 2009.

[129] Thomas Erl. Soa: principles of service design, volume 1. Prentice Hall

Upper Saddle River, 2008.

[130] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-

gakopoulos. Sensing as a service model for smart cities supported by inter-

net of things. Transactions on Emerging Telecommunications Technologies,

25(1):81–93, 2014.

[131] Jiong Jin, Jayavardhana Gubbi, Slaven Marusic, and Marimuthu

Palaniswami. An information framework for creating a smart city through

internet of things. IEEE Internet of Things Journal, 1(2):112–121, 2014.

[132] Alexander Gluhak, Martin Bauer, Frederic Montagut, Vlad Stirbu, Mattias

Johansson, Jesus Bernat Vercher, and Mirko Presser. Towards an architec-

ture for a real world internet. In Future internet assembly, pages 313–324,

2009.

[133] Ruowei Xiao, Zhanwei Wu, and Kazunori Sugiura. A semantic html based

approach for geosensor media. GeoInformatica, pages 1–22, 2016.

[134] Mark Lanus, Liang Yin, and Kishor S Trivedi. Hierarchical composition

and aggregation of state-based availability and performability models. IEEE

Transactions on Reliability, 52(1):44–52, 2003.

142

Appendix

A Sensor StateML Description Sample

<?xml version="1.0" encoding="UTF-8"?>

<stateml:StateMachine>

xmlns:stateml="http://www2.kmd.keio.ac.jp/~ruowei.xiao/stateml" <!--

StateML name space -->

xmlns:scxml="http://www.w3.org/2005/07/scxml"

xmlns:sml="http://www.opengis.net/sensorml/2.0"

xmlns:swe="http://www.opengis.net/swe/2.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink"

xsi:schemaLocation="http://www.opengis.net/sensorml/2.0

http://schemas.opengis.net/sensorml/2.0/sensorML.xsd"

<sml:PhysicalComponent gml:id="SENSOR_SAMPLE">

<!-- System Description -->

<gml:description>Integrated sensor sample for environmental monitoring

</gml:description>

<gml:identifier codeSpace="uid">Yokohama:Hiyoshi:Kyoseikan:3FS01:01

</gml:identifier>

<sml:position>

<!-- EPSG 4326 is for latitude-longitude, in that order -->

<gml:Point gml:id="sensorLocation" srsName="http://www.opengis

.net/def/crs/EPSG/0/4326">

<gml:coordinates>35.554498 139.6485728</gml:coordinates>

</gml:Point>

</sml:position>

<!-- Device Capabilities -->

143

APPENDIX A Sensor StateML Description Sample

<sml:capabilities name="specifications">

<sml:CapabilityList>

<sml:capability name="measurementProperties">

<swe:DataRecord definition="http://sensorml.com/ont/swe/

property/MeasurementProperties">

<swe:field name="outputInterval">

<swe:Quantity definition="http://sensorml.com/

ont/swe/property/OuputPeriod">

<swe:uom code="s" />

<swe:value>2.58</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="SampleInterval">

<swe:Quantity definition="http://sensorml.com/

ont/swe/property/SamplePeriod">

<swe:uom code="s" />

<swe:value>300</swe:value>

</swe:Quantity>

</swe:field>

</swe:DataRecord>

</sml:capability>

</sml:CapabilityList>

</sml:capabilities>

<!-- Inputs = Observed Properties -->

<sml:inputs>

<sml:InputList>

<sml:input name="temperature">

<sml:ObservableProperty definition="http://sweet.jpl.nasa

.gov/2.3/propTemperature.owl#Temperature"/>

</sml:input>

<sml:input name="Air">

<sml:ObservableProperty definition="http://ontology

.example.org/phenomenon/air"/>

</sml:input>

<sml:input name="Sound">

<sml:ObservableProperty definition="http://ontology

.example.org/phenomenon/sound"/>

</sml:input>

144

APPENDIX A Sensor StateML Description Sample

</sml:InputList>

</sml:inputs>

<!-- Observed Property = Output -->

<sml:outputs>

<sml:OutputList>

<sml:output name="IntegratedSensorStream">

<sml:DataInterface>

<sml:data>

<swe:DataStream>

<swe:elementType name="environmental_data">

<swe:DataRecord>

<swe:field name="Relative Humidity">

<swe:Quantity definition="http://

mmisw.org/ont/CUAHSI/Atmospheric

HydrologicCore/relativeHumidity">

<swe:uom code="%RH" />

</swe:Quantity>

</swe:field>

<swe:field name="Temperature">

<swe:Quantity definition="http://

mmisw.org/ont/cf/parameter/

air_temperature">

<swe:uom code="Cel"/>

</swe:Quantity>

</swe:field>

<swe:field name="Pressure">

<swe:Quantity definition="http://

mmisw.org/ont/cf/parameter/

barometric_pressure">

<swe:uom code="hPa" />

</swe:Quantity>

</swe:field>

<swe:field name="Sound Intensity">

<swe:Quantity definition="http://

mmisw.org/ont/cf/parameter/

sound_intensity_level_in_air">

<swe:uom code="dB" />

</swe:Quantity>

145

APPENDIX A Sensor StateML Description Sample

</swe:field>

<swe:field name="Battery voltage">

<swe:Quantity definition="http://

sensorml.com/ont/swe/property/

Voltage">

<swe:uom code="mV" />

</swe:Quantity>

</swe:field>

</swe:DataRecord>

</swe:elementType>

<swe:encoding>

<swe: TextEncoding tokenSeperator=","

blockSeparator=" "/>

</swe:encoding>

<!-- a Real-Time-Protocol (RTP) server that continues to stream real

time measurements -->

<swe:values xlink:href="rtp://myServer.com:4563/

sensor/02080"/>

</swe:DataStream>

</sml:data>

</sml:DataInterface>

</sml:output>

</sml:OutputList>

</sml:outputs>

</sml:PhysicalComponent>

<!-- Sensor as a State Machine Description -->

<!-- We dont specify internal events that trigger state to naturally

transfer, e,g, when sensing state is over,

it will continue to outputting state without user intervention. -->

<!-- Events that trigger state transition are always binded to

significant variables and their value changes.

And the variables must be described in the SensorML in order to

state their range and I/O type. -->

<stateml:states>

<scxml:state id="SensorSample" initial="idle">

<scxml:state id="idle">

146

APPENDIX B Actuator StateML Description Sample

<scxml:transition event="Battery voltage: U_INT_8"

type="internal" target="sleep"></scxml:transition>

<scxml:transition event="outputInterval: U_INT_8"

type="external" target="settingOutputInterval">

</scxml:transition>

<scxml:transition event="sampleInterval: U_INT_8"

type="external" target="settngSampleInterval">

</scxml:transition>

</scxml:state>

<scxml:state id="settingSampleInterval">

<scxml:transition target="idle"></scxml:transition>

</scxml:state>

<scxml:state id="settingOutputInterval">

<scxml:transition target="idle"></scxml:transition>

</scxml:state>

<scxml:state id="sleep"></scxml:state>

<scxml:state id="output">

<scxml:transition event="Temperature: S_INT_16; Relative

Humidity: S_INT_16; Pressure: S_INT_16; Sound: S_INT_16"

type="internal" target="output">

</scxml:transition>

</scxml:state>

</scxml:state>

</stateml:states>

</stateml:StateMachine>

B Actuator StateML Description Sample

<?xml version="1.0" encoding="UTF-8"?>

<stateml:StateMachine>

xmlns:stateml="http://www2.kmd.keio.ac.jp/~ruowei.xiao/stateml"

<!-- StateML name space -->

xmlns:scxml="http://www.w3.org/2005/07/scxml"

xmlns:sml="http://www.opengis.net/sensorml/2.0"

xmlns:swe="http://www.opengis.net/swe/2.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

147

APPENDIX B Actuator StateML Description Sample

xmlns:xlink="http://www.w3.org/1999/xlink"

xsi:schemaLocation="http://www.opengis.net/sensorml/2.0

http://schemas.opengis.net/sensorml/2.0/sensorML.xsd"

<sml:PhysicalComponent gml:id="ACTUATOR_SAMPLE">

<!-- System Description -->

<gml:description>Robot Arm: RA1-PRO</gml:description>

<gml:identifier codeSpace="uid">Yokohama:Hiyoshi:Kyoseikan:ProjectRoom

</gml:identifier>

<!-- metadata deleted for brevity sake -->

<!-- Setting Parameters = Input -->

<sml:inputs>

<sml:InputList>

<sml:input name="servos">

<swe:field name="mode">

<swe:Quantity definition="http://kmd.keio.co.jp/robotArm

/property/servoMode">

<swe:value>FKMode</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="angle1">

<swe:Quantity definition="http://kmd.keio.co.jp/robotArm

/property/servoAngle">

<swe:value>0</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="angle2">

<swe:Quantity definition="http://kmd.keio.co.jp/robotArm

/property/servoAngle">

<swe:value>0</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="angle3">

<swe:Quantity definition="http://kmd.keio.co.jp/robotArm

/property/servoAngle">

<swe:value>0</swe:value>

148

APPENDIX B Actuator StateML Description Sample

</swe:Quantity>

</swe:field>

<swe:field name="angle4">

<swe:Quantity definition="http://kmd.keio.co.jp/robotArm

/property/servoAngle">

<swe:value>0</swe:value>

</swe:Quantity>

</swe:field>

</sml:input>

<sml:input name="coordinates">

<swe:field name="x">

<swe:Quantity

definition="http://kmd.keio.co.jp/robotArm/property/x">

<swe:value>0</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="y">

<swe:Quantity

definition="http://kmd.keio.co.jp/robotArm/property/y">

<swe:value>0</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="z">

<swe:Quantity

definition="http://kmd.keio.co.jp/robotArm/property/z">

<swe:value>0</swe:value>

</swe:Quantity>

</swe:field>

</sml:input>

</sml:InputList>

</sml:inputs>

</sml:PhysicalComponent>

<!-- Actuator as a State Machine Description -->

<stateml:states>

<scxml:state id="robotArm-RA1-PRO" initial="on">

<scxml:state id="on">

<scxml:transition type="internal" target="settingFKMode">

149

APPENDIX B Actuator StateML Description Sample

</scxml:transition>

</scxml:state>

<scxml:state id="settingFKMode">

<scxml:transition type="internal" target="FKMode">

</scxml:transition>

<scxml:transition type="external" event="mode: STRING"

target="settingIKMode"></scxml:transition>

</scxml:state>

<scxml:state id="settingIKMode">

<scxml:transition type="internal" target="IKModeIdle">

</scxml:transition>

<scxml:transition type="external" event="mode: STRING"

target="settingFKMode"></scxml:transition>

</scxml:state>

<scxml:state id=" FKMode">

<scxml:state id="FKIdle">

<scxml:transition type="external" event="mode:

STRING" target="settingIKMode"></scxml:transition>

<scxml:transition type="external" event="angle1:

S_INT_16; angle2: S_INT_16;angle3: S_INT_16; angle4:

S_INT_16" target="FKMotion"></scxml:transition>

</scxml:state>

<scxml:state id="FKMotion">

<scxml:transition type="internal" target="FKIdle">

</scxml:transition>

</scxml:state>

</scxml:state>

<scxml:state id=" IKMode">

<scxml:state id="IKIdle">

<scxml:transition type="external" event="mode:

STRING" target="settingFKMode"></scxml:transition>

<scxml:transition type="external" event="coordinateX:

S_INT_16; coordinateY: S_INT_16; coordinateZ:

S_INT_16" target="IKMotion">

</scxml:transition>

</scxml:state>

<scxml:state id="IKMotion">

<scxml:transition type="internal" target="IKIdle">

</scxml:transition>

150

APPENDIX C Servitization Example in Node.JS

</scxml:state>

</scxml:state>

</scxml:state>

</stateml:states>

</hsml:StateMachine>

C Servitization Example in Node.JS

// drone_server.js

// This is a sample server-end script by NodeJS to host a drone.

// It gave an example that how to wrap an actuator’s orginal API

// into standard FSM interface, which can be exported as a module.

var express = require(’express’)

,cors = require(’cors’);

var app = express();

var port = 1337;

var arDrone = require(’ar-drone’);

var client = arDrone.createClient();

var autonomy = require(’ardrone-autonomy’);

var bodyParser = require(’body-parser’);

var currentState = ’off’;

app.use(cors());

app.use(bodyParser.urlencoded({extended: false}));

app.use(bodyParser.json());

var NodeServerArDrone = function() {

app.get(’/’, function(request, response){

response.status(200).json({state machine:{...}});

//return scxml or other state machine description here

});

app.get(’/state’, function(request, response){

response.status(200).json({state:currentState});

151

APPENDIX C Servitization Example in Node.JS

});

app.post(’/takeoff’, function(request, response){

console.log("Taking off...");

currentState = ’takeoff’;

client.ftrim();

client.takeoff();

currentState = ’hovering’;

response.status(200).json({state:currentState});

});

app.post(’/land’, function(request, response){

console.log("Stopping activities and landing...");

client.stop();

client.land();

currentState = ’land’;

response.status(200).json({state:currentState});

});

app.post(’/flying’, function(request, response){

var speed = request.body.speed;

console.info("speed:",speed);

if(currentState == ’land’)

client.takeoff();

if(speed > 0)

{

client.up(speed);

}

else if (speed < 0)

{

client.down(Math.abs(speed));

}

currentState = ’flying’;

response.status(200).json({state:currentState});

});

app.post(’/hovering’, function(request, response){

client.stop();

currentState = ’hovering’;

152

APPENDIX D User Experiment Guidance

response.status(200).json({state:currentState});

});

app.listen(port);

console.log(’Node.js express server started on port %s’, port);

};

module.exports = NodeServerArDrone;

D User Experiment Guidance

D.1 Experiment Tasks

1. Introduce a temperature sensor that connected to an Arduino into target system

and show the data reading.

2. Use sensor data to trigger an actuator, i.e. a LED in this case, to complete an

automation.

D.2 Experiment Environment

Hardware

1. MSI GS60 notebook (Intel i7-6700HQ CPU @ 2.60GHz, RAM 16.0G)

2. Arduino Uno * 1 (connected to 1 via COM3)

3. LM35 Temperature Sensor * 1(connected to 2 via Analog pin 0)

4. LED * 1 (connected to 2 via Digital pin 11)

Software

1. System: Windows 10 64bit

2. Web Browser: Chrome

3. Code Editor: Brackets

4. Local Server Environment: XAMPP

153

APPENDIX D User Experiment Guidance

D.3 Comparison Systems

1. Home Assistant:https://home-assistant.io

2. Node Red:https://nodered.org

3. PubNub+Eon:https://www.pubnub.com

4. HSML:http://www2.kmd.keio.ac.jp/~ruowei.xiao/hsml

D.4 Experiment Procedure

Home Assistant

1. Start Home Assistant using command mode by inputting:

py -m homeassistant --open-ui

2. Open homeassistant configuration file using Bracket or any code editor at

C:\Users\guest\AppData\Roaming\.homeassistant\configuration.
yaml

*Participants need to repeat 1.1 to restart the tool each time after editing

the file.

3. Add Arduino by referring to:

https://home-assistant.io/components/arduino/

*The serial port name given in the reference is in Linux system. Participants

may need to get corresponding serial port name in Windows by themselves.

4. Add temperature sensor and record current data value (on the top of web-

page) by refering to:

https://home-assistant.io/components/sensor.arduino/

5. Add LED light by referring to:

https://home-assistant.io/components/switch.arduino/

6. Switch on the LED light when sensor reading over 60. Use configuration

-〉 automation to set up automation rules. Participants can refer to to the
instructions in the same page.

Node Red

154

APPENDIX D User Experiment Guidance

1. Start node-red in command mode by inputting:

E:

cd node\node modules\node-red
node red.js

And use web browser to access http://127.0.0.1:1880/

2. Drag and drop an Arduino input widget, double click to configure the sensor

pin.

3. Drag and drop a debug output widget, connect it with arduino sensor input

and deploy. See the sensor reading result in debug window.

4. Drag and drop an Arduino output widget, double clikc to configure the LED

pin.

5. Drag and drop a function widget, and connect Arduino sensor input with

Arduino LED ouput via function and deploy. The purpose of function is to

automatically switch the LED on when the sensor reading over 60. Refer-

ence:

var temp = msg.payload;

var led = 0;

if(temp >= 60){led=1;}

var msg = {payload: led};

return msg;

PubNub Eon

1. Open pubnub website at www.pubnub.comregister and obtain pub/sub keys.

2. Refer to the JavaScript program template at E:\node\PubNub\server.js,
and edit it using Brackets to get sensor data from Arduino and send to the

pubnub server:

var five = require("johnny-five");

var board = new five.Board();

var PubNub = require("pubnub");

var reading, message;

155

APPENDIX D User Experiment Guidance

board.on("ready", function() {

var sensor = new five.Sensor({

pin: "SENSOR_PIN_NUMBER_HERE",

freq: 1000

});

var pubnub = new PubNub({

publishKey : ’YOUR_PUBKEY_HERE’,

subscribeKey : ’YOUR_SUBKEY_HERE’

});

sensor.on("data", function() {

reading = this.value*5*1000/1024/10;

reading = reading.toFixed(1);

pubnub.publish({

channel : ’pubnub-eon-iot’,

message : {

eon:{’Temperature’: reading}

}

});

});

});

3. Start running server.js in command mode by inputting:

E:

cd node\hsml
node server.js

4. Edit the JavaScript template at D:\xampp\htdocs\eon\Index.html and

run it on local web server to subscribe pubnub data and visualize:

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title></title>

<script src="lib/pubnub.js"></script>

<script type="text/javascript" src="https://pubnub.github.

156

APPENDIX D User Experiment Guidance

io/eon/v/eon/1.0.0/eon.js">

</script>

<link type="text/css" rel="stylesheet" href="https://

pubnub.github.io/eon/v/eon/1.0.0/eon.css"/>

</head>

<body>

<div id="chart"></div>

</body>

<script>

pubnub = new PubNub({

publishKey : ’ YOUR_PUBKEY_HERE ’,

subscribeKey : ’ YOUR_SUBKEY_HERE ’

});

eon.chart({

channels: ["pubnub-eon-iot"],

history: true,

flow: true,

pubnub: pubnub,

generate: {

bindto: ’#chart’,

data: {

labels: true

}

}

});

</script>

</html>

5. Run xampp server and use web browser to visit localhost/eon to view

visualization result.

6. Change visualization effect to bar diagram referring to:

https://www.pubnub.com/developers/eon/chart/bar/

157

APPENDIX D User Experiment Guidance

HSML

1. Start HSML server in command mode by inputing:

E:

cd node\hsml
node server.js

Access in web browser: http://localhost:6147/

2. Obtain necessary information regarding resource addresses and controllable

states, by accessing FSM descriptions of sensor and LED as shown in Figure

D.1 and D.2:

3. Visit localhost/hsml using web browser and input HSML in text editor.

Use resource descriptor < loc > to introduce sensor, and see data diagram

at visualizer. HSML grammar:

<loc id="SENSOR_ID(combination of 26 characters & number)"

src="SENSOR_URI" x="POSITION_X_COORDINATE(INT 0~100)"

y="POSITION_Y_COORDINATE(INT 0~100)"

viz="VISUALIZATION_EFFECT(bar,area,line)"

type="DEVICE_TYPE(sensor,actuator)"></loc>

According to the information provided in the Figure D.1, participants are

supposed to fill in correct URI like:

<loc id="tempSensor" src="http://131.113.136.95:6147/

tempSensor/state/output" x="10" y="10"

type="sensor" viz="bar"></loc>

4. Using same grammar to create an LED descriptor. And according to Figure

D.2, participants are expected to complete the following HSML text like:

<loc id="ledActuator" src="http://131.113.136.95:6147/

ledActuator/state" x="20" y="10"

type="actuator"></loc>

158

APPENDIX D User Experiment Guidance

5. Using state transfer descriptor< lnk > to mapping sensors temperature(0˜100)

reading to LEDs brightness(0˜255), and make LED growing brighter along

with sensors reading rising.HSML grammar:

<lnk function="LINEAR(SENSOR_ID.temperature, LED_ID.

brightness, RATIO(int));"></lnk>

And participants are expected to fill in the HSML text like:

<lnk function="LINEAR(tempSensor.temperature, ledActuator.

brightness, 2.55);"></lnk>

159

APPENDIX D User Experiment Guidance

Figure D.1: Graphic FSM Service Description for Temperature Sensor

160

APPENDIX D User Experiment Guidance

Figure D.2: Graphic FSM Service Description for LED

161

