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Amino acid acetylation by the E.coli orphan enzyme YhhY.
Graduate School o f  M e dia  and Governance 

K e io  U n ive rs ity

井内仁志

Summary

A  large num ber o f  enzym es rem ain uncharacterized even in Escherichia coli {E.coli) K -1 2  whose genome 

has been k n o w n for over 15 years. M etabolom ics can be useful to study such enzym es and particularly to 

identify their endogenous substrates. Here, w e  com bined classical enzym e assay and m etabolite profiling 

using C a p illa ry  electrophoresis-mass spectrom etry ( C E -M S )  to characterize the activity o f  Y h h Y , a putative 

m etal-inducible acetyltransferase. Screening using C o A  assays revealed that the enzym e could transfer 

acetyl groups to the N -te rm ina l o f  am ino acids, preferably m ethionine, phenylalanine and histidine. Th e  

enzym e was found to be inhibited b y  thiol-reactive agents and kinetics date shows Y h h Y  follow s a ternary 

com plex m echanism , and reaction rates differ am ong each am ino acid.

T o  confirm  the w  W/ra results and rule out the possibility o f  activity resulting from  a contam inating enzym e, 

w e m onitored metabolite changes b y  C E -M S  in  E.coli cells that overexpress Y h h Y . W e  observed elevated 

levels o f  acetylated m ethionine, phenylalanine and histidine in the overexpressing cells, confirm ing that the 

am ino acid acetylating activity is connected w ith  Y h h Y . F ina lly , in  order to better understand the 

physiological activity o f  Y h h Y , w e profiled metabolites in E.coli cells in w h ic h  the yhhY  gene has been 

disrupted. F o llo w in g  treatment w ith  cobalt, w e observed broad metabolite changes between w ild  type and 

knock out strain. T h e  m ost significant changes were in nucleotide, pentose phosphate, and glutathione 

pathway intermediates. O ve ra ll, our results demonstrate that Y h h Y  is an acetyltransferase displaying activity 

on several am ino acids.

K e y  W o rd s

五 た c o " , Y h h Y , M etabolom ics, C a p illa ry  electrophoresis-mass spectrometiy,

62



l.Introduction

E n zym e s are important protein responsible for biological m etabolism, and enzym e characterization has long 

been a principal field in bio logy (Y am a da  et al.9 2012). H ow ever, even in the m odel organism , Escherichia 
coli (E.coli), the function o f  on ly  3 0 -4 0 %  o f  enzym es has not been experim entally verified (C h e n  and 

V itk u p, 2007). These orphan activities are today ?s bottleneck in m olecular b io logy to understand livin g  

behavior. T h is  is due to the difficulty o f  enzym e characterization. F o r exam ple, some enzym es are expressed 

only lim ited condition like low  p H  or h igh  temperature (M a  et al., 2011).

Therefore, a new  m ethod using mass spectrometry, w h ich  allows faster assay o f  substances in the samples is 

extrem ely important for enzym e characterization. First report to the a u th o r^  know ledge, Saghatelian et al., 
characterized lip id  synthesis activity using gene knockout mouse b y  mass spectrometry (Saghatelian et al., 
2005). T h e ir  m ethod revealed enzym e activity b y  m easuring liv in g  cell m etabolom e o f  gene knockout 

mouse. H o w e ve r i f  the targeted reaction has 1 ) reverse reaction, 2 ) Isozym e, 3 ) bypass pathway, gene 

deletion cannot always characterize the orphan enzym e. So, their m ethod is not versatile approach. A n d  then, 

Saito e , 〇/•， established M etabolic E n zy m e  and Reaction discovery b y  M etabolite profile Analysis and 

reactant IDentification ( M E R M A I D )  m ethod as a solution (Saito が a/., 2006; 2009; 2010). A n d  they 

revealed Y ih U  o f  E.coli reduces succinate semialdehyde to gam m a h yd ro x y  butyrate depending on N A D H  

b y  M E R M A I D  m ethod. T h e y  incubated some orphan enzym e in yeast extract as “ M etabolite m ixture” and 

measured decreased substrates and increased products by C E -M S .  A n d  C arva lh o  incubated R X 1 2 4 8 c  protein 

o f  M ycobacterium  tuberculosis w ith  M ycobacterium  bovis extract and measure products w ith  liquid 

chrom atography-m ass spectrometry. A n d  they characterized as h yd ro xy-3 -o xo a d ip ix  synthease (C arvalho 以 

al., 2010).

H o w e ve r one b ig  dilem m a is these methods take a lot o f  tim e to measure substrates and products. E ve n  if  

untargeted approach can characterize w ithout know ledge about targefs enzym e, it takes a lot o f  time and 

throughput is low. Here, I introduce a new  m ethod using both traditional enzym e assay and mass 

spectrometry for orphan enzym e characterization (F ig u re  1 , F igure 2 ). Y h h Y  is selected as a m odel for 

establishing method. Y h h Y  is predicted as acetyltransferase, but there are no experimental evidence and 

target am ino acids are unclear. T h e  goal o f  this study is to characterize Y h h Y .
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Purification of 
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Figure 1 Scheme of in vitro assay
Four steps of in vitro assay.1 :Purification of recombinant protein from overexpressing cells. 2: In vitro enzyme assay
using Acetyl CoA as acetyl group donor. 3: CoA staining using Ellman’s reagent. 4: Measuring OD4i2nm to quantify 
CoA.

E.co// cultures 
(n=5)

M e O H  extraction and  
concentration

(Ohashi et a l., 2007)

M etabolom e  
analysis by C E -M S  

(Soga et a l” 2006)

Figure 2 Scheme of metabolome analysis
Three steps of metabolome analysis.1 :E.coli culture using LB for YhhY overexpressing cells, M9 for yhhY deletion 
mutant.
2. Materials and Methods
2.1. Strains and conditions

JW 3 5 0 4  strain (AyhhY) and B W 2 5 1 13 strains were used as control strain (B a b a  et al., 2006). A ls o  I selected 

yhhy gene overexpression to obtain purified enzym e and m etabolom e analysis strain from  A S K A  clone 

(K ita ga w a  et al., 2005). C o n tro l strain is prepared introducing plasm id p C A 2 4 N  to A G 1  strain. Culture for 

m etabolome analysis is perform ed w ith  500m l flask. G lyc e ro l stocks o f  each strains were streaked on 1 .5 %  

L B  agar plate ( lO g  tryptone, 5g east e x t r a c t , lO g  N a C l in 1 L  M il l i -Q ) .  C olonies were inoculated to 2 m l

fresh m edium . A fte r reaching stationary phase an aliqupt o f  m edium  inoculated to 501111 fresh m edium , 

controlling the am ount so that O D  o f  the total volum e equals 0.05 (1 1 0 m in -l, 37°C ).
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2.2. Purification of recombinant protein

Purification o f  recom binant protein was performed O vern igh t Express Autoinduction system (M e rk ). Protein 

purification was follow ed m anufactured instructions. B rie fly , 2\i\ o f  saturated m edium  was inoculated to 

fresh 200^1 L B  m edium  after log phase and several solutions w ere appended according to the instruction 

m anual. A fte r 12 hours, m edium  was centrifuged (10,000rpm , 5m in, 24 m in .) and the supernatant discard. 

Th e  cells were broken b y  lysis buffer (5 0 m M  H E P E S , 3 0 0 m M  N a C l , I m M  Tw e e n 2 0 ,1  tablet /10ml 

complete M in i E D T A ) .  A fte r cells were lyzed, 30fil M a g n e h is ™  N i-P articles (P rom ega) ware a p p e n d e d .10 

minutes later beads w ere washed w ith  w ashing buffer 1 (5 0 m M  H E P E S , 3 0 0 m M  N a C l, lO m M  Tw ee20, 

8 0 m M  Im ida zole ) and 2 (5 0 m M  H E P E S , 3 0 0 m M  N a C l, lO m M  Tw ee20 8 0 m M  Im idazole 8 0 m M  D T T )  

tw ice each. T h e  beads w ere stored at -2 0 ° C  in storage buffer (5 0 m M  H E P E S , 3 0 0 m M  N a C l, lO m M  

Tw een20, 5 0 %  G ly c e ro l) until usage. Th e  confirm ation o f  purified enzym e was performed b y  sodium 

dodecyl sulfate polyacrylam ide gel electrophoresis (S D S -P A G E ).

2.3. In vitro assay

Th e  beads w ith  the enzym es were washed by w ashing buffer (5 0 m M  Tric in e  2 0 m M , K C1 5 m M , M g C k , 

0 .2 M  M n C l , 0•I m M  C a 2+, 0 .Im M  F e S〇4, 0•Im M  Z n S〇4)  three times. T h e  4 0 p l reaction solution (4 p l 

washed enzym e beads, lO m M  20 am ino acids, lO m M  am ino acids, lO m M  A c e ty l C o A , 5 0 m M  Tricine, 

2 0 m M  K C 1 ,5 m M  M gC 1 2 , 0 .2 M  M n C l,  O .lm M  C a2 + , O .lm M  F e S 0 4 , O .lm M  Z n S 0 4 , Im M  M E S , Im M  

3 A P ) was incubated in the P C R  tube at 37°C O vernight.

2.4. Transformation

Transform ation was perform ed b y  chem ical competent m ethod. E.coli was inoculated to S O B  m edium  

(tryptone 2g, yeast extract 0 .5g ， N a C l 50m g, 0 .4 M  K C 1  625^1), and cultured at 30°C. A fte r overnight

culture, 50|il culture was inoculated to 51111 S O B  m edium  at 30°C. A fte r O D 6 0 0  reached 0.440, cells were 

harvested (3000rpm , 15m in, 4 ° C ) and m edium  was reduced. 1.75 m l o f  T B  buffer was added to the tube. 

A fte r centrifuging (3000rpm , 15m in, 4 ° C ), the tube was added 30 |iil D M S O . Plasm id was added 100|li1 

competent cell and induce heat-shock (4 2 °C , 45 seconds). 0 .9m l S O C  m edium  was added, and cultured 1 

hour at 37°C w ithout shaging.

2.5. Metabolome sampling, metabolite extraction and analysis
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Sam ple preparation was performed using the m ino r m odified m ethod described b y  Ohashi et a/.,(2008). 

C ulture broth containing m ore than 20 O D  (Absorbance ( O D )  x volum e (m l ) )  was passed through a 0.45 ^im 

pore size filter (M illip o re ). Cells were washed w ith  10 m l o f  M il l i -Q  water pre-incubated at 37°C (tw ice ). 

Th e n , m etabolism  w as stopped b y  im m ersing the m em brane in 4 m l o f  methanol (4 0C )  containing 2 

M E S , 2 f iM  Trim esate, 2 jxM  M S  and 2 |iM  3 A P  as internal standard. C hloroform  (4 m l) and M i l l i -Q  water 

(1 .6 m l) were added to the solution and fu lly  m ixed. Th e  solution was centrifuged at 2 ,3OOg for 5 m in  at 4°C, 

and the separated methanol layer was filtered b y  centrifugation through a M illip o re  5 -k D a  cutoff filter to 

rem ove high  m olecular w eight com pounds. Last o f  all, methanol was volatile b y  evaporator (La b co n co ). A n d  

These samples w ere stored at -80°C  until m etabolom e analysis. Th e  filtrate was dissolved in 50 p.1 M il l i -Q  

water just before C E -T O F M S  analysis.

2.6. Metabolome analysis

M etabolom e analysis was performed using capillary electrophoresis tim e -o f-fligh t mass spectrometry ( C E -  

T O F M S ) .  M etabolite values were norm alized to unit O D 6〇〇. C ationic metabolites were separated using 

fused-silica capillary. Sheath liquid  containing 0.1 p,M Hexakis (2 ,2 -d iflu o ro th o xy) phosphazene for 

reference electrolyte in M eO H /w ate r (5 0 %  v /v ) was delivered at 10 |iil/min. Sam ple solution was injected at 

50m bar for 3 sec (less than 3 nl). A n io n ic  metabolites were separated using cationic p o lym e r coated S M IL E  

(+ )  capillary (N a ca la i Tesque). A m m o n iu m  acetate (5 m M ) in metanol/water (5 0 %  v/v ) containing 0.1 

Hexakis (2 ,2 -d iflu o ro th o x y) phosphazene for reference electrolyte. Sam ple solution was injected at 50 m bar 

for 30 sec (less than 30 nl). In  T O F M S ,  an automatic recalibration function was perform ed b y  using reference 

masses o f  reference standards. Exact mass data w ere acquired at the rate o f  1.5 cycles/s over a 50 to 1,000 m/ 

z  range. Th e  C E -T O F M S  conditions have been described (S oga  et al., 2003; 2 006). T h e  ra w  data were 

processed house software for identification and quantification (Su gim oto  etal., 2010).

3. Results and Discussion

3.1. In vitro assay reveals YhhY acetylates 3 amino acids.

N ext, I purified Y h h Y  from  E.coli cells overexpressing Y h h Y . O bjective m olecular size band was appeared 

by S D S -P A G E  (F ig u re  3 ). A n d  no contaminated protein appeared.

Purified Y h h Y  was incubated w ith  20 am ino acids and A c e ty l C o A . A n d  C o A  produced b y  acetylation 

reaction was quantified using E llm a n ’s reagent. Th e n , it was revealed that the enzym e could transfer acetyl
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groups to the N -te rm ina l o f  am ino acids, preferably m ethionine, phenylalanine and histidine and reaction 

rates differ am ong each am ino acid (F ig u re  5).

Figure 8 indicates relative am ount o f  acetyl am ino acids relative to internal standards. T h is  results shows that 

Y h h Y  can acetylate methionine, histidine and phenylalanine.

Figure 3 SDS-PAGE gel of recombinant protein
Left is maker, right is purified YhhY protein.15% SDS-PAGE gel, 30mA, 30min.
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Figure 5 Amino acids acetylation by YhhY
Purified Y hhY, 20 amino acids and Acetyl C o A  were incubated at 37°C over night. C o A  was stained by E lm an^ 

reagent. Value of blank (no amino acid) was subtracted from each value.

3.2. Kinetics of YhhY

T o  characterize Y h h Y  in m ore details, its kinetic properties were exam ined. T h e  data suggested that enzym e 

kinetics o f  Y h h Y  follow s ternary com plex m echanism  (F igu re  6, F igure  /, Table 1 , F igure 8). F o r example, 

Y h h Y  m a y bind to m ethionine to form  enzyme-substrate com plex. T h e  form ation o f  this com plex facilitates 

the binding o f  second substrate (A c e ty l C o A )  to form  a ternary com plex. K ine tic  parameters were calculated 

as bellows;

KiMet = -1  / ( X  o f  p rim a ry  plot 4s intersection) =  9.41 

V m a x  = 1  / Y  intercept o f  OrMet= 0.021

KmMet = ( 1 - Y  o f  p rim a ry  p lo t ‘ s intersection x V m a x ) / K i  Met =  0.0047 

Knucetyi c 〇a  =  slope o f  OrMet x V m a x  =  0.29

Primary plot

I/ lM e th lo n in e ]
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Figure 6 Lineweaver-Burk plot for YhhY
Y h h Y  was incubated with Acetyl C o A  (Im M ) and Methionine (0.75, 1.00. 1.50 m M ). And Lineweaver-Burk plot was 

draw. Color indicates Methionine concentration, Blue; 0.75mM, Red; l.Om M , Purple; 1.50mM.

Secondary plot

Figure 7 Ordinate plot of Figure 6 for Knucetyi c〇a
To obtain KmAcetyi c 〇a  secondary plot was draw. X-axis is 1/[Acetyl C o A ], Y-axis is O r methi〇nine ( Y  intercept of Figure 6). 

Table 1 Kinetic parameters
KlTImet KmAcetyi CoA Vmax
0.0047 0.29 0.021

YhhY

Acetyl CoA Methionine CoA Acetyl Methionine

Figure 8 Ternary complex mechanism of YhhY
Free enzyme Y h h Y  binds to first Methionine (or phenylalanine, histidine), the enzyme-substrate complex improves the 

binding of second substrate.

3.3. Inhibition by thiol reactive reagent
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— ♦~*N~EtMmaleimitle H ^lockiacetam ide

Figure 9 Inhibition by thiol reactive reagent
YhhY, Acetyl C o A  and Methionine were incubated with N-Ethylmaleimide or Iodoacetamide (0 〜 3000 (xM).

N e x t to characterize enzym e activity, tw o  inhibitors o f  k n o w n  acetyltransferase activity w ere tested. Both  N -

Ethylm aleim ide and Iodoacetamide are know n to react w ith  thiol group and m o d ify  cystein residues. A lso ,

they inhibit acetyltransferase activity (P e re z -G il et al., 1990). Th e n , Y h h Y  activity was inhibited b y  both N -

Ethylm aleim ide and Iodoacetamide (F ig u re  9 ). M ethionine was used as substrate for inhibition test. Th is  

results suggest N -E th y lm a le im id e  and Iodoacetamide inhibit Y h h Y  activity and that Y h h Y  has an active 

cysteine catalytic residue.

3.4. Confirmation of YhhY activity in vivo by metabolome analysis

Histidine acetylation

His N-AcetylH^stidine

Methionine acetylation

Met N-Acetyl methionine

Phenylalanine acetylation

_  Control

yhhY overexpression strain
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Figure 10 Accumulation cells of 3 compounds acetylated by YhhY in vivo
Accumulation of substrates and products catalyzed by YhhY. A: Histidine acetylation, B: Methionine acetylation, C: 

Phenylalanine acetylation. Black bar means control strain, grey bar means YhhY overexpression strain. Error bar 
indicates standard deviation (n=3). N.D. indicates not detected.

Th e  three m a jor acetylated products observed in vitro b y  Y h h Y  were also detected in yhhy overexpression 

cell (F igu re  8). These com pounds w ere not detected in control strain, so the acetylation was likely to be 

caused by Y h h Y . These results support the hypothesis that Y h h Y  acetylates several am ino acids in vivo.

A. Lysine acetylation B. Neuraminate acetylation

C. Ornithine acetylation D. Valine acetylation

Omidiine N-Acetytomithine Val N-Acetyivaline

Figure 11 Accumulation of possible products acetylated by YhhY in vivo
Accumulation in vivo of possible product acetylated by YhhY. y-axis indicates concentration Black bar indicates 
control strain, grey bar indicates YhhY overexpression strain. A: lysine acetylation, B: Neuraminate acetylation, C: 
Ornithine acetylation, D: Valine acetylation. Error bar indicates standard deviation (n=3). Neuraminate was not able to 
be detected because we had no standard. N.D. means not detected.
A ce tyllycine , Acetylneuram inate, A ce tylom ith ine  and Ace tylva line  were detected not in the control strain but

in the overexoression strain (F igu re  9 ). These com pounds also seemed to be acetylated b y  Y h h Y . H ow ever

lysine and valine acetylation were not detected m  vz•かo assay. T h is  re su lt m a y  be du e  differences in

c o n d itio n s  a n d  con ce n tra tio n s  b e tw e e n  the in  v itro  a nd  in vivo  assays.

3.5. Metabolome analysis of yhhY deletion mutant
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Last o f  all, in order to better understand the physiological activity o f  Y h h Y , w e profled metabolites in E. coli 
cells in w h ich  the yhhY  gene has been disrupted. Th e n , Previous report suggested yhhY  gene expression was 

induced b y  metal stress (N ic h o ls  et al., 2011). F o llo w in g  treatment w ith  cobalt, the data shows broad 

metabolite changes between w ild -ty p e  and k nock-out strain (F ig u re  12). T h e  m ost significant changes were 

in nucleotide, pentose phosphate, and glutathione pathway intermediates. T h is  fact suggests strong 

connection between yhhY  gene and cobalt resistance. Th u s , m etabolome analysis o f  w ild  type and yhhY  gene 

deletion mutant revealed m etabolic differences fo llow ing  cobalt treatment.

4. Conclusion
T h e  author tried to characterize E.coli orphan enzym e Y h h Y  using both generic enzym e assays and C E -M S  

based m etabolom ics approach. First, purified Y h h Y  was incubated w ith  20 am ino acids and A c e ty l C o A . A n d  

C o A  produced by acetylation event was stained and quantified by E llm a n ’s reagent. T h e  results revealed that 

Y h h Y  could acetylate preferentially three am ino acids. M ethionine, histidine and phenylalanine were the 

m ajor acetylated products. N e xt, m etabolom e analysis o f  yhhY  gene overexpressed strain revealed only the 

strain overexpressing Y h h Y  contained significant levels o f  Acetylm ethionine, Acetylhistidine and 

Acetylphenylalanine. T h is  results shows Y h h Y  acetylates free am ino acids in vivo. Th e n , metabolome 

analysis o f  yhhY  deletion mutant revealed neither w ild  type nor AyhhY  m utant accumulated these acetyl 

am ino acids. A n d  difference between w ild  type and mutant was not big. H o w e ve r, after cobalt treatment, 

drastic change in m etabolom e was occurred. These result is consistent w ith  precious report that yhhY  is 

m etal-induced enzym e (Vassinova et al., 2000; N ich ols  et al., 2011). Th u s , I characterized E.coli orphan 

enzym e Y h h Y  using traditional enzym e assay and m odem  technology, C E -M S  based m etabolom ics. These 

results presented here contribute to expand our know ledge on E. coli m etabolic function and its response to 

metal stress.
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