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A B S T R A C T

Traditional Network Intrusion Detection Systems (NIDS) practi-
cally cannot deal with encrypted data, hence malicious applica-
tions, which increasingly use TLS, can freely flow undetected.
Therefore, a network intrusion detection system breakthrough
is required to prevent and mitigate the risk of malicious applica-
tions.

This dissertation aims to detect malicious traffic in an en-
crypted network that utilizes SSL/TLS traffic. The challenges
in detecting malicious applications are a lack of publicly open
datasets, NIDS’s incapability to detect attacks, and drawbacks of
compliance. The dissertation focuses on methods for the detec-
tion of the malicious application, the procedures on how to build
a new dataset, and determining the compliance of cybersecurity.
Among the factors preventing evaluation and comparison are a
lack of proper documentation, a lack of comparison technology,
a lack of crucial features such as ground-truth labels, and a
publicly available, and real-world environment. Two require-
ments are needed to overcome this. The content requirements
focus on the produced dataset, such as complete capture of the
traffic, payload, anonymity, ground-truth, up-to-date, labeled
dataset, and encryption information. The process requirements
focus on how the dataset is built. These requirements produced
the HIKARI-2021 dataset and enables future dataset develop-
ment, which assists security researchers in evaluating network
intrusion detection systems.

Existing approaches such as Deep Packet Inspection require
traffic decryption and hence potentially breach privacy. Further-
more, the key finding was that the malicious application tends to
use weak encryption, offers fewer extensions, and has a specific
pattern that differs from the others. The method called TLS2Vec
analyzed TLS handshake and the payloads which can be used
to take immediate action before the conversation is finished. The
evaluation revealed that the detection performance using only
TLS handshake information to distinguish between Malicious
and Benign with two public datasets reached 99%. The average
detection rate was 82% of the total multiclass target. In order
to have a comprehensive view in terms of preventing malicious
applications, measuring cybersecurity compliance is needed.
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The evaluation was carried out to identify the potential risk of
the data center using COBIT and vulnerability assessment to
measure the current condition of the data center. The evaluation
focuses on the monitor the infrastructure for security-related
events.
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1
I N T R O D U C T I O N

Network traffic nowadays is mainly encrypted for communi-
cation security and privacy. The existing security applications,
such as traditional Network Intrusion Detection Systems (NIDS),
cannot handle cyber-attacks associated with encrypted traffic.
There is a lack of methods to deal with encryption traffic, which
malicious applications use to avoid detection from NIDS sys-
tems. Therefore, NIDS that can handle encrypted traffic is crucial
for the advanced protection of networks.

1.1 problem statement

A NIDS is a significant part of the toolkit that use organizations
to monitor their network perimeter. Although it has been widely
studied for more than 30 years, this research area remains a
hot topic. The development of NIDS becomes more complex
as researchers realize that existing systems and architectures
are not good enough. The systems and architecture will always
change along with the new threats and new attack vectors.

1.1.1 Irrelevant and Obsolete Dataset

A NIDS always deals with massive data that has features that
may be irrelevant or redundant. A NIDS has high computational
demands that may affect the quality of training and accuracy.
To address the irrelevant or redundant data, selecting subsets of
data by finding the optimal features is needed [116]. In several
cases, using the optimal set of features might reduce training
time at the cost of accuracy. An intrusion dataset is multidimen-
sional [112] and includes fields such as timestamp, protocol type,
packet size, communication duration between the server and
the client, and packet loss ratio, etc., which are very complex.

1.1.2 Lack of Publicly Available Datasets

Estimating how much malicious detection methods have im-
proved in the NIDS field has been challenging. The training of
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2 introduction

NIDSs that employ machine learning depends on the available
datasets, but obtaining a reliable dataset for comparison is diffi-
cult. Among the factors that make it difficult to compare datasets
are a lack of proper documentation of the methods [137], a lack
of comparison methodology [11], and a lack of important fea-
tures, such as ground-truth labels, and publicly available and
real-world environment traffic. The report [126] showed that
from 2010 to 2015, 125 published papers performed NIDS eval-
uation using the KDD99 [136] dataset which is obsolete and
irrelevant with the current situation.

The main problem is that the dataset is not up-to-date with
the current situation and attack vectors. Furthermore, the recent
network traffic is mainly being encrypted for communication
security and privacy, and only very few datasets reflect this
situation. Most of the existing research that employs encrypted
traffic explains more on different scopes, such as traffic classi-
fication and analysis [143]. Although there exist a lot of such
research [32], the dataset is not publicly available, due to its sen-
sitivity to the data. Therefore, requirements for making a dataset
which can be produced practically to serve as the basis to build
the comprehensive model for the detection of new attacks are
needed.

1.1.3 Low Reliability and Privacy

The major shortcoming of NIDS is that its detection and per-
formance cannot easily adapt to changing attacks and envi-
ronments. Most of the Internet traffic is encrypted, as can be
seen from the number of active certificates issued by Let’s En-
crypt [76], Firefox Telemetry [44], and Google transparency
report [50]. In 2020, VMWare [138] had estimated that 70% of
15 attacks would leverage encryption and were predicted to
increase in the following year. Along with this change, malware
authors have started to leverage TLS to hide their malicious
activities. They share their information by receiving, sending
instructions, and retrieving sensitive data from the infected
machines.

The encrypted traffic analysis has several approaches such as,
port-based, payload-based, and statistical-based. Port-based ap-
proach deduces application types by assuming that most of the
applications use standard TCP or UDP port numbers, however,
this approach has the drawback which loses its effectiveness
in the presence of proprietary applications or protocols that
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use the non-standard port number, port tunneling, etc. Subse-
quently, the payload-based approach cannot deal 100% with
encrypted traffic due to the content being opaque and requires
additional methods such as Deep Packet Inspection (DPI) to
inspect. However, DPI has a high computational overhead and is
not privacy-friendly. Statistical-based approaches might handle
the issues, whereas port-based and payload-based cannot. How-
ever, they still have some problems, such as time constraints, the
obsolete dataset, etc.

1.2 dissertation contributions

This dissertation contributes to several key areas of Network
Intrusion Detection Systems. This section briefly summarizes
the various contributions of this dissertation as pinpointed in
the followings:

(1) To find the optimal set of features, I present a Genetic Al-
gorithm based on optimized feature selections for network
intrusion detection systems. I used a one-point crossover
for the Genetic Algorithm (GA) parameters instead of the
two-point crossover used in the previous research.

(2) I proposed new requirements for creating new datasets.
Furthermore, I created a new NIDS dataset that covers
the network traffic with encrypted traces. The new NIDS
dataset I call HIKARI-2021 was a mix of real-traffic and
synthetic attack traffic. This dataset contains labeled traffic
data, such as brute force login and probing, with more
than 80 features.

(3) I proposed a privacy-preserving method that used Deep
Learning techniques which I call TLS2Vec. The goal was
to detect encrypted malicious traffic that utilized SSL/TLS
communication from the TLS handshake and the payloads
without waiting for the conversation to finish.

(4) I proposed a method to assess the compliance of the data
center at Sleman Regency using the COBIT framework in-
corporated with a vulnerability assessment. The objective
was to assess the data center in terms of the process of
securing the environment and the monitoring applications
such as NIDS. Therefore, the organization might recog-
nize the potential risk and how to handle incidents in the
future.
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1.3 software and dataset released

I have released the tools on how to produce a synthetic dataset.
The tools are available to download on
https://github.com/andreysfc/generating-encrypted-network.
Meanwhile, the HIKARI-2021 datasets were available at
https://zenodo.org/record/5199540. Both the tools and the
HIKARI-2021 datasets were contributions from section (1).

1.4 dissertation structure

This dissertation consists of seven chapters. The first chapter
is the overview of this dissertation. Chapter 2 is a background
and brief summary of Non-Encrypted and Encrypted NIDS and
the evolution of NIDS to the current state. Chapter 3 describes
a method to improve classification of NIDS. Chapter 4 demon-
strates the process on how to make a new dataset based on
the encrypted network traffic. Chapter 5 shows how to detect
encrypted malicious application running in the network. Chap-
ter 6 describes a measurement on how to evaluate of the NIDS
using COBIT, and chapter 7 is the conclusion.



2
B A C K G R O U N D

This chapter introduces the description of IDS classification,
the detection type, and then the current state of the art of the
NIDS in the encrypted network. This chapter summarizes the
background knowledge of various topics that will be discussed
further in the rest of the dissertation.

2.1 attack lifecycle

There are several attack lifecycle frameworks introduced by re-
searchers such as Threat Genomic [39] with ten components
of a sequence defined as Base Type of Action: reconnaissance,
commencement, entry, foothold, lateral movement, acquiring
control, acquiring the target, implementation/execution, con-
cealing and maintaining, and withdrawal. Mandiant Targeted
Attack Lifecycle [88] has eight sequences: initial reconnaissance,
initial compromise, establishing a foothold, escalating privileges,
internal reconnaissance, moving laterally, maintaining a pres-
ence, and completing a mission. Lockheed Martin: Kill Chain
Phases [58] consists of seven stages: reconnaissance, weaponiza-
tion, delivery, exploitation, installation, command, and control
(C2), and actions on objectives. National Cyber Security Cen-
tre [95] adopted and simplified the Lockheed Martin Kill Chain
phase with four main stages: Survey, Delivery, Breach, and Af-
fect. Referring to [97], the intrusion activity must include several
processes such as reconnaissance, penetration, attack, and ex-
ploitation.

However, the framework I offered is slightly different. In my
definition, a network attack is a part of a multi-stage attack that
starts from Reconnaissance, Attack, Exploit, Breach, and Control.
The significant point of my framework is how to deliver the
attack and maintain the application vulnerability. My framework
summarizes all the above frameworks and simplifies the process.
Figure 1 illustrates the stages of attack in a subsequent order.
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Figure 1: Network Attack Lifecycle.

In reconnaissance, the intruder probes and finds which port is
open and the possibility of the vulnerable application. Probing
will contain stealth probes like stealth scan by transmitting SYN
packet over the target server or transmitting FIN packet [16],
without encrypted traffic. Closed ports response from target
server means that probing fail to discover open ports or vul-
nerable software. If the target server responds, the subsequent
step is checking the vulnerable application. This process is en-
closed with encryption if running on an encryption protocol (e.g.
HTTPS). In the third stage, the intruder transmits the exploit
containing a payload to the target server. If the traffic flows
on the encrypted network, no traditional NIDS or Network In-
trusion Prevention System (NIPS) can detect this attack. The
firewall cannot block it because these look like legitimate traffic
(protocol mimicry). In the fourth stage, the target is breached if
the intruder successfully executes malicious code and escalates
their privilege through credential harvesting. In the last part,
the intruder implants a persistent backdoor or downloading
additional utilities to maintain the access.



2.2 network intrusion detection systems 7

2.2 network intrusion detection systems

The intrusion activity is increasing along with the growth of
the network. Internet Security Threat Report [1] shows that
in the last 8 years, more than 7.1 billion identities have been
exposed in data breaches. It is unavoidable that besides im-
plementing security in software and designing hardware, IT
systems must continuously monitor the environment to ensure
well function, noticing any sign of intrusion, attack, or anoma-
lies. NIDS becomes an additional line of defense to protect the
critical network infrastructure and its systems. Thus, the NIDS
and Intrusion Prevention System (IPS) is crucial in network se-
curity. A NIDS monitors a host or a network and analyzes any
signs of intrusion, malicious behavior, or anomalies. Its goal
to detect any potential attempt to bypass the security mecha-
nism, which will compromise the confidentiality, integrity, and
availability of information. The NIDS will generate alerts from
detected malicious host or network. Figure 2 depicts a generic
deployment of NIDS.

Figure 2: The generic deployment of NIDS.

The following section explains the most common classification
of NIDS and its definitions.
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2.2.1 Deployment Position

In regard to the deployment, NIDS can be divided into host-
based and network-based. Host-based detects intrusion on a
host machine by analyzing events and behavior of users in a
single computer (single host). The deployment requires a sensor
to audit the information and responds to occurring events. The
sensor allows for collecting detailed information. However, it
requires the deployment of sensors on every host. In contrast
with the network-based, it might protect partial or the entire
network. In the recent works of NIDSs, researchers introduce sev-
eral approaches, such as wireless-based [17], hybrid-based [67,
79], IoT-based [151], SDN-based [134], and even cloud-based
approaches [24].

2.2.2 Detection Based Approach

NIDSs can be categorized further based on their detection
such as signature-based (misuse-based) and anomaly-based.
Signature-based detection monitors known attacks and detect
their occurrence in the network. The main advantage of this
approach is the minimum false alarm, whereas the main draw-
back is its unsuitability for identifying novel attack behavior
and unknown intrusions. Such detection is due to their prede-
termined rules in the system. However, this NIDSs detection
are the most common for monitoring the network due to its
high precision in detection. Examples of signature-based NIDSs
include Suricata [4] and Snort [111].

Anomaly-based detection monitors and analyzes any devia-
tions from normal activity. The system initially learns the normal
state from the activity and afterward defines the deviations as
an intrusion [23]. The anomaly-based detection does not require
any signature or rule for detection. The main advantage of this
approach is the system can detect unknown attacks. However,
this mechanism is costly and comes up with high false posi-
tives. The effect is due to the difficulty in finding the boundary
between normal and abnormal activity for intrusion. Normal
and abnormal activity can be trained using machine learning
approaches. NIDSs generate responses based on the intrusion
symptoms. There are two types of response: active and passive.
Traditional NIDSs are passive monitoring. The passive response
goal is to inform any intrusion and take further action by notify-
ing the system administrator about the intrusion. The passive
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response needs human involvement to respond to the intrusion.
Human involvement might damage the system due to the time
gap between notifying and action. The active response produces
an automated action to reduce the intrusion effects without
human involvement [90].

2.3 the evolution of intrusion detection systems

The two published reports by Anderson [99] and Denning [33]
were the start of researches on Intrusion Detection Systems
(IDSs). Anderson discussed ways to improve security auditing
using audit trails. His work described classified internal hack-
ers into three different groups: legitimate, masquerader, and
clandestine users. Denning’s research became an inspiration
for future researchers. The prototype called Intrusion Detection
Expert System (IDES) uses a rule-based expert system to detect
known malicious activities. Table 1 describes the history from
the beginning of the IDS.

Table 1: The evolution of IDS since 1980s

Year Type of Attacks Method

1980-1989

User behavior,
masquerading,
penetration, leakage.

Anomaly, single host

1990-1999

User behavior,
worm.

Anomaly, network-based,
distributed, AI

2000-2009

User activity,
Probing,
Denial of Service (DoS),
Remote to Local (R2L),
User to Root (U2R).

Host, Anomaly,
Machine Learning (ML)

2010-2022

SQL Injection, XSS,
Fuzzers, Analysis,
Backdoors, DoS,
Exploits, Shell-code,
Sinkhole, Hello Flood,
Wormhole.

Host, Anomaly, ML,
Deep Learning (DL)
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2.3.1 Taxonomy and State of the Art

The detection of encrypted malicious traffic has gained attention
in the network security fields. While many research topics are
related to traffic classification with different techniques, only
a few studies focus on encrypted malicious traffic. To present
the current state of research on encrypted traffic, I introduce
a taxonomy that provides details of use cases, traffic category,
and techniques. Figure 3 depicts a comprehensive manner in an
encrypted traffic research to distinguish my research from the
others.

Figure 3: A taxonomy of encrypted network traffic is categorized by
use cases, traffic category, and techniques.

In 2015, Velan et al. [143] proposed multi-level taxonomy for
the encrypted traffic methods. Their survey differentiates traffic
classification based on (i) the input (e.g., traffic properties, traffic
payload, and hybrid), (ii) the techniques (e.g., payload inspec-
tion, graphical, statistical, machine learning, and hybrid), (iii)
the output, and (iv) the dataset used. The signature-based ap-
proach proposed by [40] relies on Snort [128] to detect encrypted
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malicious traffic. While Snort is capable of a Deep Packet In-
spection (DPI), the pattern matching rules are inadequate to
handle malicious traffic, especially the encrypted. Papadogian-
naki et al. [100] proposed a fast signature-based NIDS, detecting
malicious traffic even if it is encrypted. While the detection in
signature-based is swift for known attacks, its rules must be
updated regularly to keep up with all available attack signatures.

Callegati et al. and Sen et al. proposed man-in-the-middle
(MITM) and DPI [20, 119]. MITM and DPI must decrypt traffic
using a key for inspections, hence they are expensive and not
applicable without the key and potentially breach privacy. That
is why traffic analysis is preferred [9], but analysis without de-
cryption has its challenges due to conversations over encrypted
channels.

Wala and Cotton [144] studied traffic analysis with finger-
printing by aggregating several pieces of information from Zeek-
IDS [152], such as operating system and the version, open ports
on a host, and types of browsers. Prasse et al. [103] proposed
how to detect malware traffic on client computers based on
HTTPS traffic analysis based on statistical patterns in the timing
and the sequence of the network flows from and to the client.

Anderson and McGrew [10] analyzed the network flow with
a feature set involving domain experts in supervised learning.
The analysis was based on millions of TLS encrypted sessions
from a commercial malware sandbox for more than one year.
Shekhawat et al. [123] proposed a method to detect malicious
traffic by performing feature analysis on several logs generated
from Zeek-IDS. This analysis determined the relative importance
of these features from three of the logs. Zheng et al. [157] pro-
posed two-layer detection to identify malicious TLS flow. Their
method used two different layers. In the first layer, a set of TLS
handshake features was employed and trained to distinguish
between benign and malicious TLS. The second layer was then
used to identify malware families using TLS handshake features
and statistical features. The authors claimed that their method
could reach 99.45% of accuracy. Dai et al. [29] proposed mali-
cious traffic of detection based approach on multi-view features.
They extracted the features from multiple views such as flow
statistics, SSL handshake field, and certificate key. While their
methods are comprehensive, using flow statistics requires com-
munication to finish between client and server. At the same time,
it will affect the delay of the action because it requires some-
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times to wait for the session to finish communicating between
parties.

Several works have been carried out in unsupervised learn-
ing to detect anomalies within network flow. The work of [8]
proposed an unsupervised NIDS to detect unknown network
attacks in encrypted networks. Su et al. [132] implemented a
hierarchical clustering algorithm to extract huge training data.
At the same time, Li et al. [78] proposed a clustering algorithm
with a combination of K-Nearest Neighbors (KNN) for detecting
anomalies. The advantage of unsupervised learning is to detect
unknown malicious traffic within an encrypted network. How-
ever, without adequate information to determine the ground
truth, there is a possibility that a high false alarm may occur.
Furthermore, the algorithm might take time to analyze any
possibilities.

2.3.2 Machine Learning Methods

Many survey papers provide implementation details on the
NIDS. In NIDS incorporated with machine learning, feature
extraction and feature selection play an essential part to increase
the detection of the attack. Feature extraction transforms the
data into a new feature space while feature selection tries to
find the subset of the original features. Applying proper tech-
niques in both might significantly improve classification and
processing times. In some cases of feature selection, the accu-
racy might increase by removing noise in the dataset. However,
researchers need to carefully implement it, especially between
studies on datasets versus real-world implementation. Detailed
implementation of feature selection is provided in chapter 3.

Zaman et al. [150] proposed feature selection in NIDS using
three different types of evolution algorithms: Genetic Algorithm
(GA), PSO (Particle Swarm Optimization), and Differential Evo-
lution (DE). They compared the performance of these algorithms
and validated them with Neural Network and Support Vector
Machine using KDD Cup 99 dataset. From 41 features in the
dataset, the optimal features selected by GA, PSO, and DE were
16, 15, and 13, respectively. They found that DE was the best
with 99.75% classification accuracy with 1.62 seconds in training
time.

Ahmad et al. [2] proposed an NIDS using a feature selection
with Genetic Principal Components (GPC) by selecting a subset
of features with optimal sensitivity and the highest discrimina-
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tory power. They implemented SVM with Radial Basis Function
Kernel (RBF) to evaluate the features selection method. The
implementation of this method with only 10 features from the
KDD Cup 99 could achieve 99.96% accuracy. Unfortunately, the
training time was averagely high compared to the others.

Pervez and Farid [102] proposed a feature selection with a
filter method and used SVM to classify. The goal was to reduce
input features from the training data. In the training phase, they
used training data and 10-fold cross-validation. Their experi-
ment showed that with three features, the classification accuracy
managed up to 91% and with 36 up to 41, the classification
accuracy was 99%. However, their experiment did not mention
anything about training time.

It is important to understand that many papers experiment
with obsolete datasets (even recent studies). Newer attacks can
be totally different from the old attacks in terms of technical
implementation and their characteristics. A new attack class
cannot be detected using obsolete research datasets and might
not relevant for the future study. However, there is a technical
challenge in terms of computation process. Applying feature
selection to a dataset, which changes rapidly, might hinder the
detection. Finding the optimized features takes a considerable
amount of time in computing process.

2.3.3 Natural Language Processing Based NIDS

Natural Language Processing (NLP) is a subset of Artificial In-
telligence (AI) to understand human language using the input
from the texts or voice. Specifically, NLP learns and extracts
features from a sample consisting of sentences or words. NLP
is used nowadays in cybersecurity areas to process the unstruc-
tured data generated from security events.

Huang et al. [57] used NLP to automatically detect malicious
domains based on the analysis of discussions on a technical mail-
ing list. They designed a system named Gossip which extracted
the features from email threads, participation of the users in the
discussions, and content keywords. The system detects the mali-
cious domains without directly crawling the suspect websites.
The results show that Gossip produces high accuracy.

Zhuo et al. [158] used word embeddings to learn syntactically
and the semantic relationships from a large amount of network
log data. Their works apply to non-textual data which is treated
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as a string. Their proposed method demonstrates high accuracy
with a small training sample.

Word embeddings are techniques that convert words or sen-
tences into vector representations. It does this by tokenizing
each word or sentence and converting it into vector space. Word
embedding aims to capture the semantic meaning of words in
a sequence of text. Similar words or sentences will have high
score representations.

Word2Vec is one way to implement word embeddings. De-
veloped by Tomas Mikolov, Word2Vec used the cosine sim-
ilarity metric to find similarities among words or sentences.
Word2Vec has two different architectures, Continuous Bag-of-
Words (CBOW) and Skip-gram. Detail explanation and imple-
mentation of Word2Vec are presented in the proposed method
in chapter 5.

Based on Baroni et al. [14], the implementation of Word2Vec
has proven to be successful in different areas. In non-network
areas, Baek and Chung [12] used Word2Vec to build a multi-
media recommendation system based on trust relationships by
encoding the sentiment words in related comments into word
vectors. At the same time, Chuan et al. [26] adopted Word2Vec
to capture the relationship between harmonic and meaningful
tonal in music. Ring et al. [110] proposed a similarity measure
between IP Addresses using Word2Vec, where the idea is to ex-
tract available context information from the network connection.
Goodman et al. [49] proposed translated packets into vectorized
representations then formed a sequence of words. In contrast,
Li et al. [77] used Word2Vec to deal with the semantic gap in
the anomalous HTTP traffic.
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F E AT U R E S E L E C T I O N U S I N G G E N E T I C
A L G O R I T H M

This chapter presents the construction of optimal features using
NSL-KDD dataset. In this chapter, I address the irrelevant or
redundant feature problem by selecting the optimal features and
processing offline [116] data packets to find the most optimal
features. With the optimal features, I may reduce training time
with the cost of accuracy. This chapter used the NSL-KDD
dataset as well as its modified versions to reflect the recent
attack types in order to determine and measure performance in
my NIDS. NSL-KDD dataset is multi features data which has
been summarized into 41 features. From several metaheuristic
approaches, GA was chosen because it can approximate solution
from high dimensional data and solve complex optimization
problem [38]. During feature selection process with GA, I chose
Correlation-based Feature Selection (CFS) for my fitness value
because CFS does not induce into high computational resource
and does not crave for any specific threshold.

3.1 dataset modification

I used NSL-KDD dataset for the experiments, which is the most
frequently used by security researchers for testing the network
intrusion detection system performances and identify between
intrusion and normal connections. NSL-KDD dataset contains
41 features with 125,973 instances. Each instance represents a
connection between server and client and is labeled as either
normal or attack. There are 22 attacks features in total, catego-
rized into four groups: Denial of Service (DoS), Probing (Probe),
Remote to Local (R2L), and User to Root (U2R).

The advantage of using NSL-KDD dataset is that it does not
contain any redundant instances in the training set. However,
based on my survey findings, NSL-KDD dataset suffers from
irrelevant attacks features. I looked into each attack and based
it on the recent incidents of such attacks in 2017 [85] I deter-
mined 12 attacks features that are irrelevant nowadays, such as
back, ftp_write, imap, land, multihop, neptune, phf, pod, satan,
smurf, teardrop, and loadmodule. There were 58,630 instances

15
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in these 22 attacks, and by eliminating the 12 irrelevant attacks,
I obtained 9,011 instances in the remaining 10 attacks.

With the attack categorization according to their relevance, I
modified the NSL-KDD dataset and came up with three datasets.
(1) Training data where all instances with irrelevant attack fea-
tures were labeled as normal instances. (2) Training data con-
taining only instances with relevant attack features. In addition,
(3) training data where instances with irrelevant attack features
were labeled as “other_attack”. Table 2 shows the attacks and
the instance counts of the original NSL-KDD dataset along with
the three modified datasets.

3.2 experiments

After I created three different datasets, I performed feature selec-
tions to the three training datasets using GA to find the optimal
features. The efficiency and the result from GA are dependent
on its tuning parameters. There are several best practices of
configuration parameters for GA, such as [150], [31] and [51].
I compared configuration parameters from [150] and [31] with
two-point for crossover operator with the same configuration,
I using one-point crossover only. Table 3 shows the difference
between parameters from GA.

3.2.1 Parameters for GA

3.2.1.1 Individual Representation

Each instance in the dataset is an individual representation for
GA, and modeled as a 41-bit vector. Each bit in the vector stands
for a feature, where 1 means the feature exists, and vice versa.
Instances were randomly selected in the initialization of the
feature selection.

3.2.1.2 Fitness Value

I used Correlation-based Feature Selection (CFS) for the fitness
value. The GA evaluates the fitness from individuals where each
population is called generation. CFS [54] uses a heuristic ap-
proach to score subsets of feature by evaluating the importance
of features. It evaluates the worth of a subset of feature by con-
sidering the individual predictive ability of each feature and the
degree of redundancy between them. High correlation feature
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Table 2: Attack features and their instance counts for the NSL-KDD
dataset (ORI), normal-labeled irrelevantattack-feature dataset
(ON), removed irrelevant-attack-feature dataset (RM), and the
dataset where the irrelevant attacks are labeled as other attack
(OA).

Attack Features ORI ON RM OA Category Attack

normal 67343 116942 67343 67343 -
other attack - - - 49599 OA
neptune 41214 MTN Removed OA DoS
warezclient 890 890 890 890 R2L
ipsweep 3599 3599 3599 3599 Probe
portsweep 2931 2931 2931 2931 Probe
teardrop 892 MTN Removed OA DoS
nmap 1493 1493 1493 1493 Probe
satan 3633 MTN Removed OA Probe
smurf 2646 MTN Removed OA DoS
pod 201 MTN Removed OA DoS
back 956 MTN Removed OA DoS
guess passwd 53 53 53 53 R2L
ftp write 8 MTN Removed OA R2L
multihop 7 MTN Removed OA R2L
rootkit 10 10 10 10 U2R
buffer overflow 30 30 30 30 U2R
imap 11 MTN Removed OA R2L
warezmaster 20 20 20 20 R2L
phf 4 MTN Removed OA R2L
land 18 MTN Removed OA DoS
load module 9 MTN Removed OA U2R
spy 2 2 2 2 R2L
perl 3 2 3 2 U2R

Total
Instances

125,973 125,973 76,374 125,973

Table 3: Difference between parameters of GA.

Parameters Zaman Mod-Zaman Dejong Mod-Dejong

Crossover type two-point one-point two-point one-point
Crossover rate 0.7 0.7 0.6 0.6
Generation 50 50 1000 1000

Population 20 20 50 50

Mutation 0.024 0.024 0.001 0.001
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with the attack feature and yet uncorrelated with each other are
preferred. After completing each generation, the GA considers,
if an upcoming generation like the most fit individuals (based
on fitness value) from the previous generation can be included.
This selection method of inviduals uses tournament selection
to make sure that the best fitness individuals are selected for
crossover. Subsequently, the GA determines how bits is swapped
among the pairs.

Using CFS for the fitness value, I performed feature selections
with Mod-Zaman and Mod-Dejong on the ON, RM, and OA
datasets. The Mod-Zaman parameters resulted in 17 features
for ON, 21 features for RM, and 11 features for OA. Meanwhile,
the Mod-Dejong parameters obtained in 16, 16, and 21 for the
respective datasets. I used this configuration to apply feature
selection in two different parameters of GA. Tables 4 and Tables 5

show the feature selection results for both parameters.

3.2.2 Evaluation

Five classification algorithms (e.g., Random Forest, Bayesian
Net, Naive Bayes, K-Nearest Neighbor (KNN), and C4.5) were
applied to the three different datasets. The experiments environ-
ment was conducted by means of GNU/Linux Lubuntu with 3.6
GHz Intel Core i7 with 8-cores and 32GB of RAM. I performed
the evaluations in two steps. First, I applied the classifiers with-
out GA to find the best performance in training time (TT) and
classification rate (C) among the classifiers without any feature
selection. Second, I applied the classifiers to the three different
datasets after feature selection with Mod-Zaman parameters
and Mod-Dejong parameters. To avoid overfitting, I used 10-fold
cross validation and repeated the process 3 times and took a
mean for classification accuracy. The results without GA are
presented in Table 6 for evaluation with ORI, ON, RM, and OA
using five different classifiers.

Based on Table 6, in general I see improvements in classifica-
tion rate on the modified datasets, and in particular, it removes
irrelevant attacks from the dataset reduces the training time by
more than half without any significant decrease in accuracy. The
incorrect classification using Random Forest on the ORI dataset
was 0.1326%, and thus, 167 instances were falsely detected, while
the ON, RM and OA datasets were 0.0937% (118), 0.1139% (87),
and 0.01199% (151), respectively. The Random Forest classifier
outperformed the other classifiers in terms of classification rate
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(C), but K-Nearest Neighbor showed the best performance for
training time (TT). Hence, I only used Random Forest classifier
for the evaluations after feature selections.

Several noteworthy points can be drawn from Table 7. The
first is the fact that my Mod-Zaman and Mod-Dejong configura-
tions performed better in the classification rate compared to the
original ones, while the training time gave mixed results. Mean-
while, I did not see any patterns in the number of features across
the configurations. This result is in line with [25], where feature
selection can improve classification accuracy but it depends on
the right feature not instead of the whole or subset of features.
My configurations performed better in the training time except
for the Mod-Dejong on OA dataset when compared with the
results without feature selections. Furthermore, while reduced
classification rate was expected after feature selection, I saw
significant drops of more than 0.2 point percent compared to
that without feature selection, in the configurations that resulted
in fewer than 17 features.

3.3 summary

I performed feature selections using GA to find the optimal fea-
tures from NSL-KDD dataset. NSL-KDD dataset suffers from ir-
relevant attack features, where out of the 22 attacks features only
10 are still relevant now. Hence, I created three more datasets
based on the NSL-KDD by removing the irrelevant attack fea-
tures, converting them into the normal and into a single attack. I
believe these three datasets can be employed by other researches
in the future. In evaluating the feature selection, I used five
classifiers againts the datasets without feature selection and I
found that Random Forest gave the best results both in the train-
ing time and classification rate and it performed better on the
modified datasets compared to the original NSL-KDD dataset. I
then evaluated my feature selections, where I used one crossover
instead of two in the previous research, using Random Forest
and I found that my parameters, in general, gave better results
even though they experienced classification rate drops in several
cases. I believe that these warrants require further investigations
in the future.
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Table 4: ON, RM and OA results using Mod-Zaman parameters.

Feature Information ON RM OA

1 duration - ✓ -
2 protocol_type - - ✓

3 service - ✓ ✓

4 flag - - ✓

5 src_bytes ✓ ✓

6 dst_bytes ✓ ✓ ✓

9 urgent - - ✓

10 hot - - ✓

11 num_failed_logins ✓ ✓ -
12 logged_in ✓ - ✓

13 num_compromised - ✓ ✓

14 root_shell ✓ - ✓

15 su_attempted ✓ - ✓

16 num_root - ✓ -
17 num_file_creations ✓ ✓ -
20 num_outbound_cmds ✓ - -
21 is_host_login ✓ - -
22 is_guest_login ✓ - -
25 serror_rate - ✓ -
26 srv_serror_rate - ✓ -
28 srv_rerror_rate ✓ - -
30 diff_srv_rate - ✓ -
31 srv_diff_host_rate - ✓ ✓

33 dst_host_srv_count ✓ ✓ -
34 dst_host_same_srv_rate - ✓ -
36 dst_host_same_src_port_rate - - ✓

37 dst_host_srv_diff_host_rate ✓ ✓ -
38 dst_host_serror_rate - ✓ -
40 dst_host_rerror_rate - ✓ -
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Table 5: ON, RM, and OA results using Mod-Dejong parameters.

Feature Information ON RM OA

1 duration - - -
2 protocol_type - ✓ -
3 service - ✓ ✓

4 flag ✓ - ✓

5 src_bytes ✓ ✓ ✓

6 dst_bytes ✓ - ✓

7 land - - ✓

8 wrong_fragment - - ✓

9 urgent - - ✓

10 hot - ✓ -
11 num_failed_logins - ✓ ✓

12 logged_in - ✓ -
13 num_compromised - ✓ -
14 root_shell - - ✓

15 su_attempted - - ✓

16 num_root ✓ - -
17 num_file_creations ✓ - ✓

18 num_shells - ✓ ✓

19 num_access_files ✓ ✓ ✓

20 num_outbound_cmds - ✓ ✓

21 is_host_login - - ✓

22 is_guest_login ✓ - -
23 count - ✓ -
25 serror_rate ✓ - ✓

26 srv_serror_rate - - ✓

27 rerror_rate - ✓ ✓

28 srv_rerror_rate ✓ ✓ -
30 diff_srv_rate - - ✓

31 srv_diff_host_rate ✓ - -
32 dst_host_count ✓ ✓ -
33 dst_host_srv_count ✓ - -
34 dst_host_same_srv_rate ✓ ✓ ✓

35 dst_host_diff_srv_rate - ✓ ✓

37 dst_host_srv_diff_host_rate - - ✓

39 dst_host_srv_serror_rate - - ✓

40 dst_host_rerror_rate ✓ - -
41 dst_host_srv_rerror_rate ✓ - -
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Table 6: Evaluation from ORI, ON, RM, and OA before feature selec-
tion.

ORI ON RM OA

Classifiers
TT

(sec)
C

(%)
TT

(sec)
C

(%)
TT

(sec)
C

(%)
TT

(sec)
C

(%)

Random Forest 26.41 99.86 25.86 99.9 18.7 99.85 26.17 99.88

Bayesian Net 2.53 97.37 2.04 95.69 0.83 97.89 2.6 95.19

Naive Bayes 0.66 48.38 0.6 72.46 0.21 58.27 0.47 80.43

KNN 0.03 99.63 0.03 99.77 0.03 99.67 0.01 99.77

C4.5 10.8 99.75 12.84 99.85 4.98 99.74 11.82 99.77

Table 7: Summary from Random Forest classifier with GA using pa-
rameters from Zaman, Dejong, and using modified parame-
ters Mod-Zaman and Mod-Dejong with selected features (F).

ON RM OA

TT
(sec)

C
(%)

F
TT
(sec)

C
(%)

F
TT
(sec)

C
(%)

F

Zaman 28.11 96.61 13 7.89 99.72 14 29.06 99.78 22

Dejong 20.75 99.07 15 15.49 97.8 22 21.3 99.19 19

Mod-Zaman 25.76 99.72 17 9.94 99.82 21 13.62 97.86 11

Mod-Dejong 24.69 99.32 16 8.58 99.17 16 29.54 99.72 21
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G E N E R AT I N G E N C RY P T E D S Y N T H E T I C
AT TA C K T R A F F I C

The dataset is an important part to build machine learning-based
IDS models. The process starts with capturing traffic either as a
packet or flow from the internet. Afterward, the captured traffic
is compiled into a specific type of data containing network-
related features, including labeling. Labeling is a crucial process
for the dataset. Handling ground-truth is a real challenge, es-
pecially when experts cannot determine whether the traffic is
an attack or benign. This is the reason why researchers use syn-
thetic traffic. However, this implies that the generated traffic is
not representative of the real-world environment. In a nutshell,
the process of making a dataset starts with capturing traffic, and
ends with the final preprocessing phase. The final result from
the preprocessing phase is a labeled dataset. Each data point
is classified into malicious or benign. The file contains tabular
data in a human-readable format, such as a CSV file, or binary
form, such as an IDX file. The number of detected malicious or
false alarms can be used to benchmark the dataset.

The existing datasets lack reliably encrypted traces and practi-
cality to produce as the basis to build the comprehensive model
for the detection of new attacks. Most of the existing research
that employs encrypted traffic are focused on different scopes,
such as traffic classification and analysis [143]. Although such
research exists [32], the dataset is not publicly available, due to
the sensitivity of the data.

Benchmark datasets are an important basis to evaluate and
compare the quality among different IDS. Based on the detection
methods, there are three types of IDS: signaturebased, anomaly-
based, and a combination of signature-based and anomaly-
based. These three types of IDS benchmark their systems with
the KDD99 dataset, which is obsolete. The signature-based one
focuses on building automatic signature generation [64], while
the anomaly-based focuses on observing an outlier from the le-
gitimate profile [3]. The signature-based type relies on a pattern-
matching method to identify and attempt to match with the
signatures database. When an attack attempt matches with the
signature, an alert is raised. The signature-based type has the
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highest accuracy and lowest false alarm rate but this type cannot
detect unknown attacks. While the anomaly-based type might
detect unknown attacks by comparing abnormal traffic with the
normal traffic, the ratio of false alarm rates remains high.

I presented a tool and requirements for making a new dataset
created by generating encrypted network traffic in a real-world
environment. I reviewed the existing datasets and provided the
most important features from their dataset, such as the capture
duration of the network traffic, the kind of attack they imple-
mented, and the data format they used. I then described the
dataset generation methodology along with the attack traffic
generation and explained the characteristics of the attack traffic.
Subsequently, I described the network configuration for gener-
ating network traffic, the scenarios, the tools and code I used
to generate, and the capture duration of the network features.
I analyzed the dataset and provided information on how the
labeling worked.

4.1 review of existing datasets

Many researchers have published papers based on generated
IDS datasets, such as ISCX [124], UNSW-NB15 [93], and UGR’16 [86].
In this section, I introduced several IDS datasets with their char-
acteristics and highlighted several important requirements from
their perspective.

4.1.1 KDD99

The KDD99 dataset was created in 1999, using tcpdump, and
was built based on the data captured by the DARPA 98 IDS eval-
uation program [80]. The training data are around four gigabytes
of compressed TCP data from seven weeks of network traffic.
The network traffic contains attack traffic and normal traffic.
The capture of the network traffic was done in a simulated envi-
ronment. The dataset contains a total of 24 attack types, which
fall into four main categories: Denial of Service (DOS), Remote
to Local (R2L), User to Root (U2R), and probing. KDD99 has
been used extensively in IDS research. The report [126] showed
that during 2010–2015, 125 published works performed IDS
evaluation using KDD99. While this dataset is considered inade-
quate for evaluation, since there are a lot of redundant instances
recorded, the main problem is that the dataset is not up to date
with the recent situation and attack vectors. Although many re-
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searchers were already convinced with this information, studies
from another group of researchers argued that this dataset is the
most widely used for benchmarking [98] or for limiting their
study only for KDD99 [83].

4.1.2 MAWILab

MAWI was built in 2001 and consists of a set of labels locating
traffic anomalies in the MAWI archive [46]. This dataset contains
tcpdump packet traces captured from an operational testbed
network in a link between Japan and the United States. The
archive contains 15 minutes of daily traces. This dataset is huge
with a very long period. The labeled MAWI archive is known
as MAWILab, obtained from a graph-based methodology that
combines different and independent anomaly detectors [45].
MAWI archives labeling is based on inferences that results in no
ground-truth traffic that can be used for evaluation. The label
has three classes: anomalous for a true anomaly, suspicious that
indicates that the traffic is likely to be anomalous, and notice
that is assigned as an anomaly but it does not reach a consensus
from all anomaly detectors. Several researchers used MAWILab
for anomaly detection [53] and generated labeled flow [68]. The
limitation of this dataset is that the packet traces are captured
for 15 minutes each day. The header information is available in
the packet traces but the payload is removed.

4.1.3 CAIDA (Center of Applied Internet Data Analysis)

CAIDA has several different types of datasets, categorized as
ongoing, one-time snapshot, and complete [18]. CAIDA collects
the data from different locations, and each of the datasets has
different characteristics, such as Distributed Denial of Services
(DDoS) attack, UDP probing, BGP monitoring, IPv4 census with
passive traffic traces captured from a darknet, an academic ISP,
and a residential BGP with active measurements of ICMP ping,
HTTP GET and traceroutes. Most of the datasets are anonymized
with IP addresses and the payload, which severely reduces their
usefulness. Based on their catalog, during 2017–2020, most of
the papers related to IDS and security focused on Denial of
Service (DoS) [61, 84], Distributed Denial of Service (DDoS) [56],
DNS security [55], Network Telescope Daily Randomly, and
Uniformly Spoofed Denial-of-Service (RSDoS) Attack Metadata.
Each record contains the IP address of the attack victim, the
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number of distinct attacker IPs in the attack, the number of
distinct attacker ports and target ports, the cumulative number
of packets observed in the attack, the cumulative number of
bytes seen for the attack, the maximum packet rate seen in the
attack as the average per minute, the timestamp of the first and
the last observed packet of the attack, the autonomous system
number of target_IP at the time of the attack, and the country
and continent geolocation of target_IP at the time of the attack.
This dataset is updated every day.

4.1.4 SimpleWeb

SimpleWeb is a dataset collected from the network of the Uni-
versity of Twente [13]. This dataset contains packet headers of
all packets that are transmitted over the uplink of access to the
internet. The packets are captured with tcpdump and Netflow
version 5. The payload from the packets is removed because it
contains sensitive information, such as HTTP requests or conver-
sations of instant messaging applications. The labeled dataset
for suspicious traffic is collected by using a honeypot server.
Despite the unavailability of no ground-truth data, researchers
still use it to compare it with the different real-world environ-
ment (e.g., campus network, backbone link) [52], while others
employ it for background traffic for botnet detection [145], and
to evaluate the publicly available dataset for similarity searches
to detect network threats [22].

4.1.5 NSL-KDD

NSL-KDD is an updated dataset that tries to solve some of the
inherent problems in the KDD99 dataset [136]. The NSL-KDD
dataset contains features and labels indicating either normal
or an attack, with specific types of attacks. Every instance in
the training set contains a single connection session, which is
divided into four groups, such as basic features from the net-
work connection, content-related features, time-related features,
and host-based traffic features. Each instance is labeled either as
normal or attack. These attacks are categorized into four groups:
Denial of Service (DoS), User to Root (U2R), Remote to Local
(R2L), and Probing. Many researchers use it as a benchmark
to help them to compare the performance of their network in-
trusion detection systems. Several groups of researchers used
different scopes, such as IoT-based networks [81] and Vehicular
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Ad Hoc Network (VANET) [47]. The former is for SYN flood,
UDP flood, and Ping of Death (PoD) detection, while the latter
is mostly for DDoS detection. Other researchers used different
methods and switched from conventional machine learning to
deep learning based methods [35, 133, 155].

4.1.6 IMPACT

IMPACT is a marketplace of cyber-risk data. The data distri-
bution and tool repository are provided by multiple providers
and stored and accessed from multiple hosting sites [59]. The
datasets related to cyber-attacks, such as the daily feed of net-
work flow data produced by Georgia Tech Information Security
Center’s malware analysis system, are updated once a year.
These datasets are only open for specific countries based on the
approval by the Department of Homeland Security (DHS).

4.1.7 UMass

UMass is a trace repository provided by the University of Mas-
sachusetts Amherst [141]. The network-attack-relevant data are
provided with various types of data, such as traffic flow from the
TOR network [94], a trace of attack simulation on peer-to-peer
data sharing network [15], passive localization attack simulation
with reality mining dataset [37] containing sensor data (prox-
imity, location, location labels, etc.), and survey data (personal
attributes, research group, position, neighborhood of apartment,
and lifestyle).

4.1.8 Kyoto

This dataset was created between 2006 and 2015 by Kyoto Uni-
versity through honeypot servers. This dataset was created using
Bro 2.4 (the former name of Zeek) with 24 statistical features
consisting of 14 features extracted based on the KDD99 dataset
and an additional 10 features, such as IDS_detection, Mal-
ware_detection, Ashula_detection, Label, Source_IP_Address,
Source_Port_Number, Destination_IP_Address,
Destination_Port_Number, Start_Time, and Protocol [73]. The
information is limited to the attack information targeting the
honeypot server. There are no packet traces or information about
the payload. Furthermore, the information on how to label the
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dataset is not found [129]. Several published papers using the
Kyoto dataset focused on anomaly detection, especially on the
feature analysis [127], feature dimensionality reduction and
ensemble classifier [115].

4.1.9 IRSC

This dataset was created by Indian River State College and
consists of network flows and full packet capture [159]. The
dataset represents a real-world environment in which the attack
traffic has two different types: the controlled version, which is
synthetically created by the team, and the uncontrolled version,
which are the real attacks. The flow based traffic was created
with the Silk [69] and the full packet capture was created with
the Snort IDS [128]. The additional source of flow data was
produced from the Cisco firewall using NetFlow version 9. While
the authors stated that the dataset is a complete capture with
payload and flow data, unfortunately, it is not publicly available.

4.1.10 UNSW-NB15

UNSW-NB15 was created using a commercial penetration tool
in the Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS). This tool can generate hybrid synthetically
modern normal activities and contemporary attack behaviors
from network traffic [93]. They collected tcpdump traces for a
total duration of 31 h. From these network traces, they extracted
49 features categorized into five groups: flow features, basic fea-
tures, content features, time features, and additional generated
features. Feature and statistical analyses are the most common
methods used in several published papers employing UNSW-
NB15 [63, 72, 105]. Whereas [105] could obtain 97% accuracy
by using 23 features, [63] incorporated the XGBoost algorithm
for feature reduction, using several traditional machine learning
algorithms for evaluation, such as Artificial Neural Network
(ANN), Logistic Regression (LR), k-Nearest Neighbor (kNN),
Support Vector Machine (SVM) and Decision Tree (DT).

4.1.11 UGR’16

This dataset was created from several NetFlow v9 collectors
located in the network of a Spanish ISP [86]. It is composed of
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two different types of datasets that are split in weeks. First, the
calibration set contains real background traffic data, and second,
the test data contain real background traffic and synthetically
generated traffic data with well-known types of attacks. Due
to the nature of the NetFlow data, payloads from the network
traffic were not included. The types of attacks implemented
in this dataset are Low-rate DoS, Port scanning, and Botnet
traffic. Between 2017 and 2021, I found mixed methods from
several published papers, such as [104, 106], and Rajagopal
et al. [106], who argued that conventional machine learning
methods were ineffective and instead used stacking ensembles
to improve performance and reliable predictions, while [104]
proposed hybridized multi-model system to improve the ac-
curacy of intrusion detection. Ref. [148] addressed imbalanced
data problems by producing synthetic data with the Generative
Adversarial Network (GAN).

4.1.12 CICIDS-2017

This dataset was created by the Canadian Institute for Cyber-
security at University of Brunswick in 2017. The purpose of
CICIDS-2017 was intrusion detection, and it consisted of sev-
eral attack scenarios. In this dataset, the attack profiles were
produced using publicly available tools and codes. Six attack
profiles were implemented, such as brute force, heartbleed, bot-
net, DoS, DDoS, web attack, and infiltration attack. The realistic
background traffic was generated, using a B-Profile system [122].
The B-Profile system extracted 25 behaviors of users based on
several protocols, such as HTTP, HTTPS, FTP, SSH, and SMTP.
The network traffic features were captured with CICFlowMe-
ter [74], which extracted 80 features from the pcap file. The flow
label included SourceIP, SourcePort, DestinationIP, Destination-
Port, and Protocol. Mixed methods were used, incorporating
CICIDS-2017 to detect specific attacks such as DoS attack [71] by
using feature reduction, web-attack detection [70], and anomaly
web traffic [135] with ensemble architecture and feature reduc-
tion. Others were improving the AdaBoost-based method [149]
to counter the imbalance of the training data [130], and com-
bining feature selection and information gain to find relevant
and significant features and to improve accuracy and execution
time.



30 generating encrypted synthetic attack traffic

4.2 dataset requirements

While the authors of ISCX [124], UGR’16 [86], and CICIDS-
2017 [74] introduced a new dataset and provided extensive
requirements about the dataset, their works have different re-
search objectives and scope. In contrast to their earlier dataset,
this work aims to complement the gap in the previous require-
ments.

4.2.1 Requirements for IDS Evaluation Datasets

Generally, different datasets have different assets and require-
ments. Shiravi et al. [124] focused on accurate labeling in the
dataset by building a systematic profile to generate the dataset.
They argued that the network traffic should be as realistic as
possible, so a complete capture in a realistic network must be
satisfied. It will impact anonymity and lead to potential privacy
issues. Fernandez et al. [86] provided only information flow and
focused on the duration of the capturing. Furthermore, a flow
format with only 5-tuple is not enough and needs additional
features if the malicious traffic is delivered via an encrypted
protocol, such as HTTPS. I found that the requirements to build
an IDS dataset from Sharafaldin et al. [122] is extensive. Unfortu-
nately, their generated traffic comes from an emulated network,
which is missing a realistic environment. In addition, the infor-
mation about ground-truth and how the labeling works was not
found in their works and, thus, is likely to be inaccurate and
unreliable for analysis. Cordero et al. [27] created a tool called
ID2T and I found that their requirements are better in practical
terms. They categorized the requirements into functional and
non-functional ones. Functional requirements focus on what is
needed to construct datasets, while the non-functional require-
ments specify several criteria that need to be satisfied to be of
practical use.

All of the requirements share high similarity. However, none
of these works highlighted the importance of encrypted traffic in
the dataset, and this is one of the emphases in my requirements.
I derived my requirements for datasets based on the above works
as well as by reviewing the existing datasets which described
that the quality of the dataset mostly affects the outcome of the
NIDS system. I classified the requirements into content require-
ments and process requirement. The content requirements are
similar to [27], such as functional requirement, which focuses
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on what is needed to construct a dataset, and [124] on complete
network traces and realistic network traffic capture. The process
requirement is similar to that of [86] in the documentation point.
While this is not enough, the information on how to produce a
new dataset and practical implementation is does not exist.

The proposed requirements try to fill the gap of information
from previous datasets. Based on my content requirements, I
found at least four missing points:

(1) Most of the datasets were not anonymized, such as KDD99,
SimpleWeb, NSL-KDD, Kyoto, IRSC, and UNSW-NB15. I
chose to preserve privacy by anonymizing only a specific
part of the background traffic based on the Crypto-Pan
algorithm.

(2) The majority of the datasets were impractical to gener-
ate, such as KDD99, CAIDA, NSL-KDD, IMPACT, UMass,
IRSC, UNSW-NB15, and CICIDS-2017.

(3) They did not have ground-truth data, such as MAWILab,
CAIDA, SimpleWeb, IMPACT, UMass, Kyoto, and CICIDS-
2017.

(4) As for encryption information, most of the datasets con-
tained non-encrypted traffic, except for MAWILab, UGR’16,
and CICIDS-2017. These datasets neither focused on nor
classified encrypted traffic. However, HIKARI-2021 partic-
ularly addressed encrypted traffic.

The content requirements focus on the assets of the dataset to
achieve a practical way to produce a dataset, while the process
requirement specifies the information on how the dataset is
built, so a new dataset can be built in the future using the same
process. These requirements are listed below along with some
descriptions of each item.

4.2.1.1 Content Requirements

(1) Complete capture: complete capture of the network traf-
fic, such as communication between host, broadcast mes-
sage, domain lookup query, and the protocol being used.
The most important thing from complete capture is that
both flow data and pcap should be available.

(2) Payload: payload is not needed for a flow-based approach.
However, having comprehensive information and extract-
ing the most out of the data is important. HIKARI-2021 is
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the dataset that provides labeled encrypted traffic, while
the well-known datasets do not focus on encrypted traffic.
There is a possibility that a full payload captured might
be useful in the future.

(3) Anonymity: synthetic traffic should provide full packet
capture, while real traffic must anonymize certain packets
to preserve privacy.

(4) Ground-truth: the datasets should provide realistic traf-
fic from a real production network, compared with the
synthetic traffic, and ensure no unlabeled attack in the
ground-truth.

(5) Up to date: both packet traces from flow data and pcap
should always be accessible by repeating the capturing
process of the network traffic. Because the data are subject
to change over time, repeating the procedures guarantees
that the dataset always obtains the latest information.

(6) Labeled dataset: correctly labeling data as malicious or be-
nign is important for accurate and reliable analysis. The la-
beling process is a manual task and determined by the flow
with a combination of the source IP address, source port,
destination IP address, destination port, and protocol.

(7) Encryption Information: information on how to establish
benign or malicious traffic must be stated. I focused on
application layer attacks, such as brute force and probing
that employ HTTPS with TLS version 1.2 to deliver the
attacks.

4.2.1.2 Process Requirement

Methods: producing a new dataset with specific requirements
and practical implementation is important. Therefore, the meth-
ods should cover information on how to generate the dataset,
how to generate the benign and attack traffic, how the back-
ground traffic is being captured, how the labeling process works,
and how to implement it in the network. Furthermore, I need to
determine the scenarios and how to deliver the synthetic attack
in the network. In addition, the information of what features
and how many can be extracted from the packet traces should
be declared. Information on how to make a new dataset should
be available in details and practical to generate.
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4.2.2 Comparison of the Existing Datasets against the above Require-
ments

Comparisons between IDS datasets are shown in Table 8, where I
assessed the datasets in Section 4.1, based on the predetermined
requirements in Section 4.2.1.

Table 8: Comparison of IDS datasets based on the requirements
in Section 4.2.1 with Complete Capture (CC), Payload (P),
Anonymity (A), Ground-Truth (GT), Up to Date Traffic (UT),
Labeled (L), Encryption (E), and Practical to Generate (PG).

Dataset CC P A GT UT L E PG

KDD99 [80] Yes Yes No Yes No Yes No No
MAWILab [46] Yes No Yes No Yes Yes Yes Yes
CAIDA [18] Yes No Yes No Yes No No No
SimpleWeb [13] Yes No No No No No No Yes
NSL-KDD [136] Yes Yes No Yes No Yes No No
IMPACT [59] Yes No Yes 1 No Yes No No No
UMass [141] Yes Yes - No No No No No
Kyoto [73] Yes Yes No No No Yes No Yes
IRSC [159] Yes Yes No Yes No Yes No No
UNSW-NB15 [93] Yes Yes No Yes No Yes No No
UGR’16 [86] Yes No Yes Yes Yes Yes Yes Yes
CICIDS-2017 [74] Yes Yes Yes No No Yes Yes 2 No

1 Mix datasets with partial anonymization
2 Mix data between un-encrypted data, such as HTTP,
and encrypted data, such as SSH.

I was unable to find the information regarding the anonymity
of the UMass dataset; therefore, no indicator was given. As for the
IMPACT dataset, this platform has many datasets, some parts of
which are anonymized, while others are not. In the CICIDS-2017

dataset, one part of the traffic has samples for encrypted traffic
with benign and attack profiles.

I highlighted four points from the above comparisons. First,
there is a need to have encrypted samples of benign and attack
traffic. I found that [46] in their dataset have information on
whether the traffic is anomalous or suspicious but it depends
on the anomaly detectors. The payload from the packet traces
was not included. This has limited the capability of IDS because
many attacks cannot be detected only by network flow with only
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5-tuple attributes. In addition, [74] in their datasets included the
traffic from benign and attack profiles from SSH. While this is
beneficial, the diversity of the attack needs to be expanded to
applications, such as browser attacks, or with different protocols,
such as HTTPS, and I did not find that this protocol existed
in their dataset. Second, I discovered that most of the datasets
were not anonymized, which was probably due to the fact that
their testing beds were in a controlled environment or they had
consent with their activity. The former is the best option with
the consequences that the traffic will have more synthetic traffic
while reducing the real traffic. The latter is preferred if they
can preserve privacy. Furthermore, privacy can be maintained
by anonymizing the traffic, but being highly anonymized may
decrease the results of the analysis [65, 124, 142]. Third, I also
highlighted that most of the datasets did not have ground-truth
data and background traffic, which limited the analysis only to
their model. Fourth, there is a need for a methodology on how
to create a new dataset. This is due to the nature of the network
environment that is subject to change over time. How to create
new datasets with the practical implementation is important, so
researchers may make their dataset and evaluate it with their
environment. This methodology can serve as a guideline for IDS
researchers to follow the making of a practical dataset.

4.3 hikari-2021 generation methodology

In this section, I explained my methodology to produce my
dataset, which I called HIKARI-2021. The process started with
creating a victim network, where background traffic was cap-
tured, and attackers generated synthetic benign traffic, using
a benign profile (details in Section 4.3.3), and malicious traffic,
using an attacker profile (details in Section 4.3.4). The attacker
traffic was captured in the attacker network. I did this to dif-
ferentiate between synthetic benign and malicious traffic. Dis-
tinguishing between benign and malicious traffic was based on
several criteria (details in Section 4.3.4). I then processed the
packet traces to anonymize the background traffic and extract
the features. The packet traces and extracted features, as well as
the documentation, constituted the produced dataset.

I focused on application layer attacks that employ HTTPS.
Based on the report from the 2021 Data Breach Investigation,
80% of the attack vectors came from application-layer attacks.
There are many attacks on the internet but this work does
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not examine the number of attacks I can generate. The survey
from netcraft.com and websitesetup.org revealed that Word-
Press, Joomla, and Drupal are among the ten most popular
open-source CMSs, with the combined market share of almost
50%. Based on the information from CVE, more than 300 vul-
nerabilities existed for WordPress from 2006 to 2021, 92 vulner-
abilities for Joomla from 2004 to 2021, and 202 vulnerabilities
for Drupal from 2002 to 2021. More than half of the vulner-
abilities from these three CMSs are part of Brute Force and
Probing. Therefore, this research does not aim to examine the
attack diversity but is more emphasized on the kind of attack
to be delivered in the encrypted network. I decided to focus on
the common application-layer attacks, such as brute force and
probing on this ground. This is done to allow the IDS researcher
to build their script based on my tool to enrich the attack, such
as SQL Injection, Denial of Service, etc.

4.3.1 Network Configuration for Generating Dataset

Figure 4 shows my network configuration, where attackers are
on a separate network from the victims.

Figure 4: Network configuration to generate dataset.

The format of the data I captured is pcap, which provides the
configuration with the following important point:
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(1) The attacker network with two machines was deployed
with CentOS 7 and CentOS 8. There were no specific crite-
ria of the attackers’ machines as long as they can run Bash
and Python scripts. The Python version was 3.8.8 from
Miniconda 3.

(2) In the victim network, three machines were deployed with
one Debian 8 machine running Joomla 3.4.3, and two De-
bian 9 machines running Drupal 8.0 and WordPress 5.0.
There were no specific criteria for the OS version for the vic-
tim network, and the three different Content Management
Systems (CMS) such as Drupal, WordPress, and Joomla
used default themes and plugins. These three open-source
CMSs were chosen based on their popularity. These ma-
chines were used for collecting the background traffic.

4.3.2 Background Profile

Generating realistic data is important. For the background traffic,
I captured all the data without any filter or firewall in the victim
network. Therefore, there is a possibility that the background
traffic may contain malicious traffic or attacks. To preserve pri-
vacy without degrading the result of the analysis, I anonymized
several pieces of information, such as IP address and the pay-
load.

4.3.3 Benign Profile

To generate the benign profile, I considered using a profile
similar to human behavior. To achieve this goal, I used Sele-
nium [118], which runs two headless browsers: Google Chrome
and Mozilla Firefox. These two browsers act like humans by
clicking random links from multiple websites, sign up as a user,
sign in, post an article to the target victim’s server, and sign out.
To behave like a human and to avoid being detected as a bot or
web spider, I used several configurations, such as user-agent and
random delay, for every sequence of action. The addresses of the
websites are from Alexa’s top 1 million visitors [5]. The benign
profile was developed with Python script; this activity simulates
benign traffic. All benign traffic is captured without anonymiz-
ing the payload and this type of traffic generates HTTPS only.
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4.3.4 Attacker Profile

The attack traffic is generated synthetically, by firstly targeting a
specific page for user login of the CMSs, and then by scanning
their vulnerability. Both of the attacks are delivered via the
HTTPS protocol. The attacks are delivered on different days
with different scenarios (details in Section 4.3.5). The types of
attacks are listed as follows:

(1) Brute force attack: this attack is the most famous for crack-
ing passwords. The attacker usually repeatedly tries to
gain the target over and over using all possible com-
binations using a dictionary of possible common pass-
words [30]. I developed a script that mimics a brute force
attack, using a browser to deliver the attack. I intentionally
added a user to the three different CMSs to play a role as
an admin and password, which I took randomly from [30].
The purpose was to make sure that the brute force attack
was delivered successfully.

(2) Brute force attack with different attack vectors: while the
first type of attack uses the browser as the attack vector,
the second attack uses a different attack vector, XMLRPC.
I developed a script that accesses XMLRPC for gaining
valid credential access.

(3) Probing: this is also called vulnerability probing. This
script scans the web applications, such as Joomla, Word-
Press, and Drupal to find their vulnerability. The tools
for vulnerability scanning are publicly available. For this
dataset, the scripts used these probing scripts: droopes-
can [36] for WordPress and Drupal, and joomscan [62] for
Joomla.

I provided the template script to customize the attack profile
so researchers may use it for making custom attacks using differ-
ent vectors. Distinguishing between an attack profile and benign
profile was done based on the source IP address, source port,
destination IP address, destination port, protocol, and the day
both of the profiles being generated. In addition, to determine
benign traffic, any destination addresses in the Alexa list are
considered benign.
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4.3.5 Scenarios

I captured the traffic non-consecutively between 28 March 2021

and 4 May 2021, with each capture session lasting for 3 to
5 hours. In the first scenario, no attack traffic was generated,
and only background traffic was being captured. In the second
scenario, brute force attack traffic was generated for 2 days.
Furthermore, a brute force with different attack vectors was
generated in the third scenario, while the last scenario, generated
the vulerability scanning of WordPress, Joomla, and Drupal.

4.3.6 Dataset Preprocessing

The traces were captured using tcpdump with full packet cap-
ture. As for the background traffic, I fully captured the traffic
but then I anonymized it to maintain privacy. To preserve pri-
vacy, I used a Crypto-PAn based algorithm [41]. The complete
dataset contains several files: pcap files from background traffic,
and synthetic attacks. The flowmeter files with pkl and CSV are
available for downloads [43]. The preprocessing flow from pcap
files into CSV files is presented in Figure 5.

Figure 5: The preprocessing flow of HIKARI-2021 dataset.
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4.3.7 Labeling Process

During background traffic validation, I found malicious traffic
resulted from the Zeek rules, which shows that some traffic
is that of malicious cryptomining, such as XMRIGCC. I then
separated and added it as a new attack, which I categorized
as XMRIGCC CryptoMiner. Labels were applied on a per-flow
basis. In the background traffic, I did not find any attack be-
sides the cryptomining. Other than background, my labeling
was based on the generated synthetic rules, such as source IP
address, source port, destination IP address, destination port,
and protocol. The dataset consists of two labels: traffic_category
and label. The former represents the name of the traffic category,
while the latter is only a single value with 0 representing Benign,
and 1 representing Attack as shown in Table 9.

Table 9: Labeled features information.

Traffic
Category

Label
Total Flows
(Flowmeter)

No. Encrypted
Session

Background Benign 170,151 36,782

Benign Benign 347,431 116,309

Bruteforce Attack 5884 5884

Bruteforce-XML Attack 5145 5145

Probing Attack 23,388 23,388

XMRIGCC CryptoMiner Attack 3279 0

4.3.8 Feature Description

HIKARI-2021 features were extracted using Zeek. Table 10

shows the features while Figure 6 displays a statistical descrip-
tion of the features. Most of the features were adopted from
CICIDS-2017, while uid, originh, originp, responh, responp,
traffic_category, and Label were derived from Zeek.
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Table 10: List of features in HIKARI-2021.

No Feature No Feature No Feature

1 uid 36 bwd_pkts_payload.min 71 bwd_bulk_rate
2 originh 37 bwd_pkts_payload.max 72 active.min
3 originp 38 bwd_pkts_payload.tot 73 active.max
4 responh 39 bwd_pkts_payload.avg 74 active.tot
5 responp 40 bwd_pkts_payload.std 75 active.avg
6 flow_duration 41 flow_pkts_payload.min 76 active.std
7 fwd_pkts_tot 42 flow_pkts_payload.max 77 idle.min
8 bwd_pkts_tot 43 flow_pkts_payload.tot 78 idle.max
9 fwd_data_pkts_tot 44 flow_pkts_payload.avg 79 idle.tot
10 bwd_data_pkts_tot 45 flow_pkts_payload.std 80 idle.avg
11 fwd_pkts_per_sec 46 fwd_iat.min 81 idle.std
12 bwd_pkts_per_sec 47 fwd_iat.max 82 fwd_init_window_size
13 flow_pkts_per_sec 48 fwd_iat.tot 83 bwd_init_window_size
14 down_up_ratio 49 fwd_iat.avg 84 fwd_last_window_size
15 fwd_header_size_tot 50 fwd_iat.std 85 traffic_category
16 fwd_header_size_min 51 bwd_iat.min 86 Label
17 fwd_header_size_max 52 bwd_iat.max
18 bwd_header_size_tot 53 bwd_iat.tot
19 bwd_header_size_min 54 bwd_iat.avg
20 bwd_header_size_max 55 bwd_iat.std
21 flow_FIN_flag_count 56 flow_iat.min
22 flow_SYN_flag_count 57 flow_iat.max
23 flow_RST_flag_count 58 flow_iat.tot
24 fwd_PSH_flag_count 59 flow_iat.avg
25 bwd_PSH_flag_count 60 flow_iat.std
26 flow_ACK_flag_count 61 payload_bytes_per_second
27 fwd_URG_flag_count 62 fwd_subflow_pkts
28 bwd_URG_flag_count 63 bwd_subflow_pkts
29 flow_CWR_flag_count 64 fwd_subflow_bytes
30 flow_ECE_flag_count 65 bwd_subflow_bytes
31 fwd_pkts_payload.min 66 fwd_bulk_bytes
32 fwd_pkts_payload.max 67 bwd_bulk_bytes
33 fwd_pkts_payload.tot 68 fwd_bulk_packets
34 fwd_pkts_payload.avg 69 bwd_bulk_packets
35 fwd_pkts_payload.std 70 fwd_bulk_rate
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4.3.9 Performance Analysis

I conducted an examination using a basic performance analysis
by means of four machine learning algorithms. Table 11 dis-
plays the performance of the examination results in Accuracy,
Balanced Accuracy, Precision, Recall, and F1.

Table 11: Basic Performance Analysis.

Algorithm Accuracy
Balanced
Accuracy

Precision Recall F1

KNN 0.98 0.94 0.86 0.90 0.88

MLP 0.99 0.99 0.99 0.99 0.99

SVM 0.99 0.99 0.99 0.98 0.99

RF 0.99 0.99 0.99 0.99 0.99

4.4 comparison of kdd99 , unsw-nb15 , cicids-2017 ,
and hikari-2021

Table 12 shows an analysis comparison among KDD99, UNSW-
NB15, CICIDS-2017, and HIKARI-2021. The table consists of
seven parameters: the number of unique IP addresses, simu-
lation, duration of the data capture, format data, attack cate-
gory, feature extraction tools, and the number of features ex-
tracted from each dataset. The number of unique IP addresses
of CICIDS-2017 and HIKARI-2021 were from the unique destina-
tion IP addresses from the dataset. Partial means that the dataset
is mixed between a simulation or synthetic and real-network
environment.
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Table 12: The dataset comparison of KDD99, UNSW-NB15, CICIDS-
2017, and HIKARI-2021.

Parameters KDD99

UNSW-
NB15

CICIDS-
2017

HIKARI-
2021

Number of unique
IP address

11 45 16,960 7991

Simulation Yes Yes Partial Partial
Duration of the data
being captured

5 weeks 16 h 65 h 39 h

Format of the
data collected

tcpdump,
BSM,
dumpfile

pcap files pcap files pcap files

Number of Attack
categories

4 9 7 4

Feature extraction
tools

Bro-IDS
Argus,
Bro-IDS

CICFlowmeter
Zeek-IDS,
python

Number of features 42 49 80 86

4.5 summary

Publicly available up-to-date datasets to benchmark and com-
pare data among IDS are important, especially as the network
traffic is changing over time. I made a new requirement for build-
ing new datasets, which are lacking in the existing datasets, such
as anonymization, payload, ground-truth, encryption, and a
practical method to implement it. Anonymizing certain data
will prevent privacy issues, while capturing data with the pay-
load will enrich the information that I can collect for detecting
malicious traffic within encrypted traffic. Providing the ground-
truth data is crucial, so no unlabeled attack is recorded in the
dataset. The lack of existing datasets with encrypted traffic,
even though most present-day traffic uses it for delivering at-
tacks, has become my concern. I then generated a new IDS
dataset called HIKARI-2021, which covers the network traffic
with encrypted traces. The datasets were produced with a mix
of ground-truth data, which are missing in the existing IDS
datasets. The datasets are available publicly. I adopted more
than 80 features from CICIDS-2017 and added more features
as a reference, such as a source IP address (originh), source
port (originp), destination IP address, and destination port. I
labeled each flow as benign or attack, where benign has two cate-
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gories (Benign or Background), while attack has four (Bruteforce,
Bruteforce-XML, Probing, and XMRIGCC CryptoMiner).

I want to highlight what makes my dataset different from the
existing IDS datasets based on my proposed ideal requirements.
The first difference is seen from the content requirements, such
as complete capture, for which I provided all traces with pcap
files (e.g., background traffic, benign, and attack); the payload
was provided with the exception that I anonymized the back-
ground traffic, while anonymity is part of a requirement to
preserve privacy. The ground-truth and labeled were manually
evaluated based on the source IP address, source port, desti-
nation IP address, destination port, and protocol. This process
aims to make sure that no unlabeled attack is in the ground-
truth. The last requirement is encryption, which serve as one
of the most important requirements, since unknown malicious
traffic uses these attack vectors to deliver attacks.

The second difference to highlight is process requirement. It
is to ensure that researchers can follow the guidelines to create
their dataset. The information on how to generate the synthetic
attacks and the network configuration should be available. I pro-
vided the scripts on how to capture and generate the synthetic
attacks from the attack profile. The tools for mimicking human
interaction, such as browsing and clicking random links, are
available. These two profiles, the attack profile and benign pro-
file, are important for producing new data if researchers want
to add more attack vectors and update the traffic with their
own needs. The labeling process script to produce ground-truth
data is provided. The process requirement can be implemented
in the controlled environment so that researchers can make
new datasets based on their network configuration. For a basic
evaluation, I examined the performance of the HIKARI-2021

dataset in terms of Accuracy, Balanced Accuracy, Precision, Re-
call, and F1, using four machine learning algorithms.
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E N C RY P T E D M A L I C I O U S T R A F F I C D E T E C T I O N

The traffic encryption prevents traditional NIDS from inspecting
the payload, which is crucial to determine whether the traffic is
benign or malicious. On the other hand, the most well-known
approaches, such as port-based [120] and signature-based ap-
proaches [21], do not work well. A port-based inspection can
classify traffic according to the service name and port num-
ber registry assigned by Internet Assigned Number Authority
(IANA) [121]. However, this approach does not work correctly
if the application changes to a custom port. Signature-based
network intrusion detection system may solve the problem, but
this condition needs a predetermined set of rules and features,
which is unreliable to detect unknown malicious traffic. Many re-
searches have used payload-independent statistical approaches
from 1999 up to today [7, 28, 89, 156]. The use of flow attributes,
such as packet length, inter-arrival time, and flow duration
makes it unnecessary to dissect the payload and avoid a user’s
privacy breach [125].

5.1 dataset description

In this research, I employed two public datasets that contain ma-
licious encrypted traffic. I chose datasets with higher encrypted
malicious traffic than the other publicly available datasets. Nonethe-
less, I did not include datasets, such as [82], as they are not pub-
licly available. TU-Malware-Capture [131] is a dataset produced
from Malware Capture Facility Project [87] responsible for long-
term captures. Following this, I utilized Jason Stroschein public
Github malware samples [60] and Zeus, benign, and Cobalt
from TU-Malware-Capture and Trickbot from Jason Stroschein.
Zeus, Cobalt, and Trickbot were selected based on their commu-
nication, the variety of the activities [154], and how their activity
opens the backdoor for further malicious application [140].

All the datasets were raw PCAP files consisting of TLS pack-
ets and any other packets. I considered only the TLS packets.
Table 13 shows the basic information of label, total packets, to-
tal TLS sessions, and the average number of application data
packets per session (Avg. App Data / Session) from the total
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of the datasets. The Zeus, Benign, and Cobalt are derived from
CTU-Malware-Capture, while Trickbot is from public Github of
Jason Stroschein.

Table 13: Basic information of the datasets.

Label
Total

Packets
Total

TLS Sessions
Avg. App

Data / Session

Zeus 2,201,308 10,581 1.932

Benign 1,601,294 1,461 1.249

Cobalt 1,471,709 250 2.000

Trickbot 895,172 33 1.909

5.2 methodology

The key point of my research is to analyze the TLS session
by identifying the features from the TLS handshake and the
payload. Most of the encrypted network traffic has a specific
format that differs from the others. Thus, using the knowledge
of this format, it is possible to differentiate and identify the
malicious traffic. TLS2Vec has three steps:

1) Feature Extraction: extract features from raw PCAP to
build a corpus.

2) Building Vocabulary and Token Parser: uses tokeniza-
tion technique to extract words from the training dataset
and then applies word embedding technique to represent
words.

3) Training Model: TLS2Vec trains the dataset using LSTM
and BiLSTM.

Our study analyzes whether the TLS handshake and payload
can be used to determine the malicious traffic from benign
before the conversation finishes between client and server. I
want to emphasize that the results from the methods can be
used to take immediate action as soon as I can classify the traffic
as malicious. Since opening and analyzing the encrypted content
without a private key is almost impossible, this leaves us with
the unencrypted content that resides in the header, the TLS
handshake, and the statistical information of payload. I decided
to analyze the TLS handshake and payload and remove the rest.



5.2 methodology 47

I did not include the analysis of the host’s behavior from this
research, since the analysis of the host’s behavior was used to
determine the encrypted communication from remote access
trojan (RAT). The method includes the study of the transmission
multiple session-based using 5-tuple. Thus, the method cannot
run independently but serves as an ensemble with the NIDS
based on host behavior.

5.2.1 Feature Extraction

TLS improves the SSL version 3 protocol that provides transport-
level security over TCP protocol [6]. The TLS consists of a Record
Protocol that acts as an envelope for Application Data [34]. There
has been a limited possibility of extracting information from
encrypted content. However, it is possible to obtain informa-
tion from two ways: the unencrypted and its properties and
the packet length of the payload. I can get information from
the unencrypted phase: the initial handshake and its properties,
and the authentication information exchange identifier from the
client and the server. During the initial TLS handshake, the client
and server are negotiated with both exchanging cipher suites
information and which protocol version is used. Many cipher
suites exist and are not all implemented by the client’s appli-
cation. Usually, the client’s application specifies the supported
cipher suites and which cipher suites are recommended for the
initial handshake. The important thing from this behavior is
to distinguish malicious applications from the client. The next
is the authentication exchange information, such as the exten-
sions [96]. My method mainly considered extensions such as
elliptic_curves and ec_point_formats for the features, while the ma-
licious applications tend to use weak encryption and offer fewer
extensions. Such weak encryption is perhaps because of the lack
of concern with a strong encryption mechanism. Some of the
authors disregarded the encryption mechanism. On the other
hand, the other is only concerned with strong encryption [153].

In the payload-based inspection, most of the techniques use
the information from the payload of the application layer [66].
My method is different from [119] and [20], which requires
decrypting the traffic using the key. The packet length from
the TCP Application Data is the additional information feature
extracted from encrypted traffic. Although some TLS server com-
munication parameters can be changed over time, the application-
specific profile usually reflects the Application Data’s content
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Figure 7: Overview of TLS2Vec.

size. I considered using the TCP packet length from Applica-
tion Data. While I cannot see into the unencrypted content, the
packet length is directly linked to the payload of the traffic
and usually follows an application-specific profile [75]. Thus, I
can use packet length to determine which traffic is benign or
malicious based on the specific application profile.

The unencrypted communication phase between client and
server complies with TLS protocol, which can be treated as one
sentence in a TLS session. Each sentence has a specific pattern
that can distinguish between malicious and benign. Similar
words with correlation are represented by similar vectors closely
placed in a vector space. In the network, the sequence from
the TLS sessions is textual data that should be encoded into
a numeric representation. In this case, I argue that a numeric
vector can represent the sequence of traffic with similar vectors
in the embedding space. Similar traffic represented by words
will have the same vector space, benign or malicious.

Figure 7 shows the steps from feature extraction to building a
corpus. The single box is a TLS session with two payloads from
a PCAP file with a right arrow representing a client and a left
arrow representing a server with features. The first two arrows
in the left box are handshake while the rest represent TCP
Application Data which I call payload. I collected zero to a total
of two or more payloads from each client and server. Multiple
TLS sessions exist in the PCAP file with the symbol of TLSt. The
arrow in the middle represents features that are being extracted
to a corpus. The document symbol on the right represents a
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corpus containing TLS handshake and two payloads from the
features.

The TLS sessions consist of hundreds of features. Most of
the contents are encrypted except for the handshake contains
handshake protocols like Client Hello, session ID, the version
of the TLS, length, the cipher suites, compression method, and
extensions. The PCAP contains multiple session conversations
between the client and the server, from the three-way handshake
to the TLS sessions. I extracted the features from the raw PCAP
from two datasets and preprocessed the data based on the
session by considering a raw PCAP with multiple TLS sessions
(TLSt, TLSt+1...TLSt+n). For each session, I extracted the TLS
handshake TLS/SSL version (version), Cipher Suites List from
Client Hello or Server Hello (cipher), Extension Length from
Client Hello or Server Hello (ext_len), Elliptic Curves from Client
Hello (elliptic_curves), Elliptic Curve Point Formats from Client
Hello (ec_point_formats), and the payload (len). The extracted
features were then constructed into words. Each record in my
dataset describes one TLS session, which can be viewed as a
sentence.

Our study treated a sentence as a TLS language that follows
TLS protocol. Because I extracted TLS session raw PCAP files,
the decimal representation from the extracted data would cre-
ate a row of numbers representing a communication session
between a client and a server. I then added a symbol on each
feature based on their representation, as shown in Figure 7 in the
document symbol. In the document symbol from Figure 7, C, ET,
EC, ECP, CAPP, or SAPP represents cipher, ext_len, elliptic_curves,
ec_point_formats, and len. The information in the document sym-
bol is a sample of a single TLS session from the client and server
taken from Trickbot malicious traffic. The collection of all these
words is known as a corpus.

5.2.2 Building Vocabulary and Token Parser

In this phase, converting words from the corpus into vector
space models uses Gensim [108] version 4.1.2. Word2vec tech-
nique trains each word in the corpus and converts each into a
300-dimensional vector. I used 300-dimensional based on several
references [91, 92, 107]. In this phase, vocabulary was built using
the tokenization technique to extract words from the training
dataset and to apply word embedding. A token parser then
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used the vocabulary to convert each TLS session in the dataset
into a token sequence.

In general, the Word2Vec technique has two architectures, the
CBOW and Skip-gram. The CBOW tries to predict the target
word based on the surrounding words’ context. On the other
hand, Skip-gram tries to predict the context word from a word.
In CBOW, the word representation is combined to predict the
word in the middle. Both architectures might be used for differ-
ent purposes in the NIDS incorporated with machine learning.
In terms of the training time between CBOW and Skip-gram, the
former is slightly faster and has less computational cost, while
Skip-gram might better predict a large dataset. Skip-gram is
more suitable for anomaly detection, which does not make any
assumption about the malicious traffic instead of on benign traf-
fic. While in CBOW, the prediction of malicious traffic is based
on the surrounding information and its similarity. To determine
which one has a better prediction, I used CBOW and Skip-gram
for evaluation.

5.2.3 Training Model

Two types of Recurrent Neural networks (RNN), LSTM and
Bidirectional LSTM (BiLSTM), were used to evaluate the per-
formance. LSTM and BiLSTM is specialized with their effec-
tiveness in memorizing particular patterns. At the same time,
both algorithms are suitable for detecting malicious traffic with
payloads [109, 147].

5.3 evaluation

This section summarizes the performance of the TLS2Vec by
performing with binary and multiclass targets. I grouped three
malicious traffic such as Zeus, Cobalt, Trickbot into a single
class Malicious for the binary target. The total number of TLS
sessions of Malicious traffic was 10,163 after grouping. The
considered evaluation used 5-fold cross-validation (CV-5). It
is noteworthy that an imbalance of data distribution exists in
this dataset. I used both the categorical_crossentropy and bi-
nary_crossentropy for the loss function. The Adam optimizer
was applied with a learning rate of 0.001. The rest of the hyper-
parameters used their default values. The softmax was used
for the activation function for categorical_crossentropy, while
sigmoid was used for binary_crossentropy. Figure 8 illustrates
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Figure 8: The evaluation procedure.

the evalution procedure. Table 14 provides the hyper-parameters
regarding detection based approach on LSTM and BiLSTM.

In general, the overall accuracy metric might be used to mea-
sure the results in the binary target. However, to rely on the
performance only for accuracy is unfavorable, especially when
involving a class imbalance dataset. I adopted F1-score to give
more insight into the dataset in this research. Based on my
analysis of the datasets, I found that most of the payloads from
the malicious traffic from each session mainly were two pay-
loads, with several sessions having only three and very few
sessions having more than that. From this result, I proceeded
with my analysis using zero payload, one payload, and two or
more payloads. I compared my analysis with a non-TLS2Vec
method. In non-TLS2Vec I used the same features as in TLS2Vec
except when I did not use Word2Vec and removed the symbols
that represents features such as cipher, ext_len, elliptic_curves,
ec_point_formats, and len. I did this because as far as I know, I
did not found any similar methods.
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Table 14: LSTM and BiLSTM hyper-parameter for binary dan
multiclass target

Hyper-parameter Binary Target Multiclass Target

Activation Function sigmoid softmax
Epoch 30 30

Optimizer adam adam
Learning Rate 0.001 0.001

Batch Size 32 32

Loss Function binary crossentropy categorical crossentropy

In the first evaluation, I started with a TLS handshake with
zero, one, and two or more payloads with TLS2Vec with CBOW,
TLS2Vec with Skip-gram, and a Non-TLS2Vec. As illustrated in
Figure 9, both CBOW and Skip-gram with LSTM and BiLSTM
performed similarly well in detection, with the former slightly
better.

Figure 9: The evaluation between TLS2Vec with CBOW, TSL2Vec with
Skip-gram, and Non-TLS2Vec. The x-axis is the payload

from zero, one, and two or more payloads, while the y-axis
is the F1 score.

The better performance was understandable since both can
predict the next words in the input sentence from the TLS.
In a non-TLS2Vec method, the performance significantly de-
creased along with the addition of one to two or more payloads.
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In CBOW-LSTM, the high F1 score started with zero then it
was relatively stable in one to two or more, indicating that the
LSTM could detect almost all the Malicious and Benign with
the default hyper-parameter. Compared with the counterparts,
CBOW-BiLSTM slightly decreased after zero payload and then
increased again in two or more. The primary reason was that
CBOW-BiLSTM needed to fetch more training data to reach
equilibrium with one payload. On the other hand, Skip-gram
BiLSTM was slightly better than Skip-gram LSTM. The figure
showed us that the start from zero which gradually increased
after one payload indicated that having more payload was bet-
ter for improving the performance. The result was coherent as
BiLSTM run inputs in two ways, and this implies that having
more payloads might offer better detection in Benign and Ma-
licious using default hyper-parameters. Based on this result, I
continued to use TLS2Vec with CBOW and Non-TLS2Vec, and
exclude TLS2Vec with Skip-gram. In the subsequent evaluation,
I used a different strategy for detection by using a multiclass
target. The results showed in Figure 10.

The figure illustrated the trend in the increase of detection
for both CBOW-LSTM, CBOW-BiLSTM, and non-TLS2Vec. In
CBOW-LSTM, both Zeus and Cobalt were stable, starting from
zero, one, and two or more. The result indicated that LSTM
could detect all the Zeus and Trickbot starting from the TLS
handshake. However, in the Benign class, the performance
slightly decreased with one payload and then slightly increased
with two or more payloads. The results showed that LSTM
needed to fetch more training data to reach the same perfor-
mance with zero payload for one to two or more. As for the coun-
terpart, Trickbot increased along with payloads. Although the
performance went up, the trend was stable. In a non-TLS2Vec,
the performance decreased along with the addition of the pay-
loads for all classes.

In the following evaluation, I added more parameters for
evaluation using discretization transformation by binning the
payload. Discretization transformation reduced the traffic pat-
terns and discriminated among the traffic by grouping those
with similar payloads [113, 114]. Furthermore, binning reduced
the vocabulary. The payload from the datasets had 872 unique
values.

The problem in the discretization was selecting the intervals
or bins. I used two different methods for selecting the number
of bins: bit-length, which I called Bit-Width, and the Sturges
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Figure 10: The multiclass target with LSTM (top) and BiLSTM
(bottom). The x-axis is the payload from zero to two or

more, while the y-axis is the F1 score.

rule, as this rule was used for constructing histogram and non-
stationary data [139]. For the Bit-Width (BW), I used intervals
from 0 to 63, 64 to 127, 128 to 255, 256 to 511, 512 to 1023, and
equal to more than 1024. The payload in the intervals of six
categories would be converted according to the bins. For the
Sturges rule, I used two different combinations called Sturges-
EqualWidth (SEW) and Sturges-EqualFreq (SEF). SEW ensured
that each bin had an equal range of the original value, while
with SEF, each bin had the same number of samples. For SEW
and SEF, selecting a number of bins followed the Sturges rule
for only one payload. The bins range was resulted from one
payload then was applied to payload two or more.
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Figure 11: The histogram of one-payload length with BW (top), SEW
(middle), and SEF (bottom). The x-axis is the bin range,

while y-axis is the member count.

It is noteworthy that during the binning process with SEW, I
found that several bins had zero members (see Figure 11). The
results were due to SEW’s nature, which grouped members by
their equal range. From this point, if the bin’s range was zero, no
payload existed within the range. In the subsequent evaluation,
I started with the implementation of BW, SEW, and SEF and
then evaluated all four classes.

Figures 12, 13, and 14 showed the results of the multiclass
target using LSTM and BiLSTM with BW, SEW, and SEF, respec-
tively.
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Figure 12: Multiclass target evaluation results using BW-LSTM (top)
and BW-BiLSTM (bottom). The x-axis is the payload from
zero (with no binning), one, and two or more, while the

y-axis is the F1 score.

BW, SEW, and SEF were relatively stable for Zeus and Benign,
whereas for Cobalt, I found a decrease in BW and SEF. Similarly,
Trickbot also decreased in SEW and SEF. The results showed
that binning had no significant effect on detection.

On this basis, I concluded that my methods can be used to
detect encrypted malicious traffic based on my results. I could
tell it from the evaluation using CBOW-LSTM, CBOW-BiLSTM,
then using Skip-gram LSTM, and Skip-gram BiLSTM. I then
continued the evaluation using three different kinds of binnings.
First, I compared CBOW and Skip-gram starting with zero
to two or more payloads, which increased performance. My
method could detect Benign and Malicious with an average
results of 0.999 using only TLS handshake information. Both
models could learn to distinguish between Malicious and Benign.
The TLS handshake consists of a cipher suite produced from
the Malicious, which was different from the Benign, and the
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Figure 13: Multiclass target evaluation results using SEW-LSTM (top)
and SEW-BiLSTM (bottom). The x-axis is the payload from

zero (with no binning), one, and two or more, while the
y-axis is the F1 score.

model could learn and detect data to distinguish information.
The reason is that the TLS handshake from non-malicious traffic
might be produced from the library of the OS. In contrast, the
TLS handshake from the malicious traffic was produced by the
malicious application [48]. From this point, I can generalize my
model using a TLS handshake.

The average detection rate is 0.82 for the score total of Zeus,
Benign, Cobalt, and Trickbot in combination. I then evaluated
the method using three different binnings: BW, SEW, and SEF.
Binning is a way to represent data that has many varieties in
terms of the payloads. The goal of using these three kinds of
binnings is to characterize the traffic better. However, the imple-
mentation of binning will reduce the vocabulary. In general, the
implementation of binning has no significant effect on detecting
malicious traffic.
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Figure 14: Multiclass target evaluation results using SEF-LSTM (top)
and SEF-BiLSTM (bottom). The x-axis is the payload from
zero (with no binning), one, and two or more, while the

y-axis is the F1 score.

5.4 summary

This work contributed to the literature by providing a method
for detecting malicious traffic using a TLS session before the
conversation between client and server finishes. To achieve this,
I extracted meaningful information from the TLS handshake
and some portion from the TCP length of Application Data,
which I call payload, and then created a corpus of traffic. I
then predicted malicious traffic based on the TLS session and
payload.

The advantage of TLS2Vec is that it can detect the binary
target and the multiclass target using the payload. However, I
also found that using my method has disadvantages over the
minority class when combined with the binnings. This research
revealed that it is sufficient to use only a TLS handshake to
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detect encrypted malicious traffic. The additional payloads from
one and two or more can increase the performance. However,
the effect depends on the TLS handshake.





6
C Y B E R S E C U R I T Y C O M P L I A N C E

Encrypted malicious applications pose a risk to organizations.
In the previous chapter, my method focused on technical detec-
tion to handle encrypted malicious traffic. Besides the technical
method regarding detecting encrypted malicious applications,
additional research with broader view is necessary. In this re-
gard, cybersecurity compliance can be measured to determine
the organizational risk. According to [117], to obtain compre-
hensive system security, it is necessary to assess and evaluate
all aspects of security from a computer network, application,
operating system, database, physical, and environment. In this
research, cybersecurity compliance measurement was carried
out in the data center of the Indonesian local government at
Sleman Regency.

6.1 ict compliance at sleman regency

Sleman Regency is an Indonesian regency located in the north
of the Yogyakarta Special Administrative Region, Indonesia.
Figure 15 shows the position of Sleman Regency.

Figure 15: Sleman Regency in the Special Region of Yogyakarta [146].

Sleman is an advanced regency in terms of the use of infor-
mation technology. The data center has more than 30 servers
and several network equipment, which are managed by the
ICT (Information and Communications Technology) unit. Each
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server has a different purpose, such as providing services for
the public and internal departments, an email service for every
local government staff, a hosting server for other departments
and units, and a web server for public information regarding
Sleman Regency. Several incidents occurred during the develop-
ment of the infrastructure and the network systems, including
the defacement of several subdomains, Distributed Denial of
Service (DDoS) attacks on the VoIP server, and remote security
holes in the server, where management authority is not from
the ICT unit. However, the server is located in the data center of
Sleman Regency.

The evaluation is typically only performed when an incident
happens since this government organization does not have a
standard evaluation planning and a standard concept in safety
evaluation. One of the measurements to assess the condition of
the governance data center is the COBIT (Control Objectives for
Information and Related Technology) framework. The COBIT
framework is widely adopted and used as one of the standards
in researching the assets associated with information technology.

6.2 aligning cobit framework with cybersecurity

An integrated framework is necessary to ensure the business
goals are aligned with IT goals. This research was using COBIT
4.1 [19] and the sub-domain deliver and support (DS) 5, which
ensure system security. IT managers or any part of the organiza-
tion responsible for security should follow this guideline. The
DS5 consists of eleven: management of IT security (DS5.1), IT se-
curity plan (DS5.2), identify management (DS5.3), user account
management (DS5.4), security testing, surveillance, and moni-
toring (DS5.5), security incident definition (DS5.6), protection
of security technology (DS5.7), cryptographic key management
(DS5.8), malicious software prevention, detection, and correction
(DS5.9), network security (DS5.10), exchange of sensitive data
(DS5.11).

Each sub-domain can be implemented and evaluated within
the organization. COBIT is not a technical framework. The gen-
eral guideline shows that it can be integrated with other frame-
works. Monitoring the infrastructure for security-related events
can be applied by network monitoring tools such as NIDS. In
this regard, the research focus on DS5.
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6.3 methodology

Two methods were applied in this research. The first method is
checking the compliance using COBIT. The second is perform-
ing vulnerability assessment. COBIT has a particular method
to calculate maturity model to see the extent of the security
implementation in the data center by looking at the security
management process. It is thus aimed at measuing the level of
efficiency of security management. The standard score of the
COBIT range between levels of 0 to 5.

6.3.1 Questionnaires and Data Collection

The survey was conducted in 2013. The technical documentation
and information about applications installed on the servers were
collected, such as IP addresses, type of operating system, UNIX-
like or Windows, the version of the operating system, and what
applications were installed on the servers. Questionnaires were
compiled from the DS5 sub-domain and distributed to the staff.
Table 15 shows a questionnaire sample.

Table 15: Ensure System Security (DS5)
No Activity Answer

0 1 2

1 The organization do not recognize the need of IT security.
2 There are no clear accountability and responsibility for ensuring system security.
3 IT security management measures are not implemented.
4 There are no security reports and response related to IT security.
5 There is a lack of recognizing the process of security administration system .

Each staff should answer the questionnaire based on their
knowledge. Based on [42, 101], the answer from column 0 means
"No" with the value 0, column 1 means "Not Sure" with the value
0.5, and column 2 means "Yes" with the value 1.

6.3.2 Data Reliability

Cronbach Alpha was applied to the results of the questionnaire
to ensure the data reliability using the scale from 0 to 1. If the
result of the formula is equal to or more than 0.6, the data is
considered reliable. The result from the scale is used to calculate
the maturity model. Furthermore, a tool to calculate the maturity
model and vulnerability assessment is needed.
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6.3.3 Implementation

Implementation of the maturity model tool consisted of a reli-
ability test and analysis of maturity. The reliability test deter-
mined the level of reliability of measurement before continuing
to maturity model calculations. Meanwhile, the maturity score
was generated after obtaining the questionnaire results from the
respondents. The tool used CVE for the vulnerability knowl-
edge base. Implementation of a vulnerability tool consisted of
collecting binary versions from all servers. The tool parsed every
binary application system from the servers. If the binary version
matched the CVE list, then it was considered a vulnerability.

6.4 maturity model analysis

Maturity model analysis was performed to assess the scale of
capability and maturity. The maturity analysis has 6 levels. Level
0 is Non-existent: the department has not even recognized there
is an issue to be addressed. Level 1 is Initial: there is evidence
that the department has recognized the issues and need to be
addressed. However, no standardized processes. The overall
approach to management is disorganized. Level 2 is Repeatable:
processes have developed to the stage where similar procedures
are followed by different people undertaking the same task.
There are no formal communications or standard procedures,
and responsibility is left to the individual. Level 3 is the Defined
process: procedures have been standardized and documented
and communicated through training. The procedures are not so-
phisticated. Level 4 is Managed and measurable: the department
monitors and measures compliance with procedures. Processes
are under constant improvement and provide good practice.
Level 5 is Optimised: all the processes have been refined to a
level of good practice and continuous improvement. IT is used
as an integrated way to automate the workflow.

The All Questions column is the total questions from each
level. The Total Questions column is the total answer collected
from all the staff of the department. The Maturity Value column
is the results from Total Questions divided by All Questions.
The Maturity Value Normalization column is each Maturity
Value divided by a total number of Maturity Value from all
levels. The Maturity Model column is level times Maturity Value
Normalization. Table 16 shows that the value of the maturity
model is 2.852. Based on the ISACA and IT Governance Insitute
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(ITGI), the value of 2.852 is between the value 2.51 and 3.50

from the maturity level criteria indicating that at level 2. The
results show that there was no security plan, no security test-
ing, surveillance, and monitoring, and malicious applications
prevention and detection such as NIDS was never found.

Table 16: The results of maturity model
Maturity

Level
All

Questions
Total

Question
Maturity Value

Maturity Value
Normalization

Maturity Model

Non-Existent 5 7.5 1.5 0.044 0

Initial 6 35.5 5.917 0.175 0.175

Repeatable 8 60 7.5 0.222 0.444

Defined Process 7 46.5 6.643 0.197 0.591

Managed and
Measureable

12 66 5.5 0.163 0.652

Optimised 10 67 6.7 0.198 0.99

Total 33.76 1 2.852

6.5 summary

The result of the experiment shows that the maturity model
from DS5 was 2.852 for the Department of Transportation, Com-
munication, and Information. The maturity level reached by
the ICT unit was at level 2 or Repeatable for current conditions
meaning there are no standard procedures, and responsibility is
left to the individual. Furthermore, the potential risk from the
results was no clear information, planning, or implementation
of security tools such as NIDS.





7
C O N C L U S I O N

In this dissertation, my research theme is NIDS focusing on
detecting malicious traffic in encrypted network. Until nowa-
days, many researchers still used the obsolete dataset which
is irrelevant and cannot be used for detecting new attacks. I
have showed this in the previous chapter that I have to re-
move irrelevant data which is unusable or is no longer catego-
rized as an attack, such as neptune, teardrop, satan, smurf, pod,
back, ftp_write, multihop, imap, phf, land, and load_module.
The other issue was several attack data such as load_module,
ftp_write, multihop, phf, perl, and spy were underrepresented.
This will have an impact on accuracy. To handle the irrelevant
data, I proposed modifications of the dataset using three meth-
ods and used GA to find the optimal features.

Because network traffic changes over time, the publicly avail-
able datasets represented by the current network situation are
essential. This week’s traffic might be different from the previ-
ous month. That is why the concept of up-to-date datasets is
necessary. The missing requirement from the current dataset is
encryption information and a practical method to implement it.
I proposed two requirements for building a dataset: content and
process requirements. These two are a foundation for building
high-quality data. Through a better method of constructing a
dataset, a security researcher might produce their dataset and
improve it. In the future, I would like to extend HIKARI-2021

dataset observation with the background traffic and add an
evaluation. Because background traffic is uncertain and not la-
beled in the data, the possible approach for evaluation is using
machine learning with unsupervised learning. Furthermore, I
would like to compare performance of the existing datasets and
proceed with the analysis of application identification, which
is important because malicious traffic may be disguised using
reserved ports to bypass firewalls or IDS and blend with normal
network activity.

Nowadays, many malicious applications use TLS to hide their
malicious activities. I found that some applications, such as
Zeus, and Trickbot still become a threat, especially when the
author of the application shares the source code with the public.

67
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The method I proposed, TLS2Vec, provided a promising result
in detecting encrypted malicious traffic with higher accuracy,
especially those malicious applications that use their own TLS
library instead of a library available on the host. However, the
accuracy of detection is dependent on the TLS handshake. I
found that the malicious applications used short sessions.

TLS2Vec cannot run independently and can be used as an
ensemble with other methods such as host behavior analysis.
During the analysis, I encountered a class imbalance within
the data for the multiclass targets with one class being a small
minority compared to others such as Trickbot. Having a mi-
nority class will affect in the performance of detection. In a
non-TLS2Vec, I did not use Word2Vec and removed the sym-
bols that represent some features such as cipher, ext_len, ellip-
tic_curves, ec_point_formats, and len. I also found that TLS2Vec
performed better than Non-TLS2Vec, which use neither symbols
nor Word2Vec embedding. Binning the payload length in order
to reduce the vocabulary does not improve the performance, but
rather gave worse performance for the minority class. Further-
more, I would like to highlight the points that differentiate my
solution from others. Using my method, TLS2Vec could detect
encrypted malicious traffic by using the TLS handshake and a
portion of the payload. As a result, I did not need to dissect
the traffic to maintain the user’s privacy. There are three areas
in this work that might be worth exploring. In terms of traffic
analysis and NIDS, malicious applications used shorter sessions.
However, does it apply to the other than Zeus, Cobalt, and
Trickbot? Next is related to the possibility of operating NIDS in
real time given the encrypted traffic. In terms of Deep Learning,
future research is suggested to address the possibility to use the
corpus to detect the variants of malicious traffic, such as Zeus.

Further research may be extended from this research by
adding an analysis of the compliance of cybersecurity. In chap-
ter 6 the assessment was performed at data center in Sleman
Regency. The study aimed to assess the current condition of
the data center and assess the maturity level of security as well
as provide solutions in particular on IT security. Identifying
weaknesses can help evaluate and provide solutions for a better
future. I found that on a scale of 0 to 5, the data center is at level
2 or Repeatable. Since there was no comprehensive planning, I
found that there was no implementation of NIDS to monitor ma-
licious traffic. Hence, I concluded that further maturity model
testing should be carried out periodically. In the management
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scope, information regarding responsibility and accountability
must also be clear. Then, the NIDS should be installed in the
gateway to monitor malicious traffic.

NIDS will remain as a hot topic in the future given the in-
creasingly encrypted traffic and the progressively sophisticated
attacks. In the current situation of the increasingly complex
cyber-attacks, a general-purpose NIDS is incapable of solving
specific problems. As an example, IoT-based networks are sub-
ject to different kinds of attacks. Thus, in the future, researchers
certainly need new techniques, detection algorithms, and a new
way to solve several problems in privacy, the massive data com-
ing from multiple sensors, and the collaboration of multiple
threat intelligence information.
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