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Abstract 
 

Intestinal microbiota and their synthetized-metabolites are strongly associated with host physiology. Advances 
in DNA sequencing and mass spectrometry have enabled accumulation of large amounts of data on the 
interactions among microbiota, metabolites, and the host. However, there is no well-developed strategy to 
analyze these datasets. This study aimed to develop an original analytical strategy, metabologenomics, that 
involves integrated analysis of capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based 
metabolome data and high-throughput-sequencing-based microbiome data to evaluate perturbations in 
environmental factors, such as diet, which influence the intestinal environment. First, the fecal metabolome 
profiles obtained using eight methods differing in fraction, homogenization solvent, extraction solvent, and the 
requirement of bacterial cell disruption were compared for comparison using CE-TOFMS-based metabolome 
analysis. The results suggested that metabolomic profiles could differ based on the extraction method, thereby 
highlighting the importance of selecting a method suitable for the specific analysis. Second, we conducted a 
metabologenomic analysis of the metabolome and microbiome data. This analysis revealed that feces of mice 
fed an American diet, that formulated to match the average daily human nutritional intake in the United State, 
contained higher levels of butyrate and higher relative abundances of butyrate producers, such as Oscillospira 
and Ruminococcus, compared with those of the control diet-fed mice. Additionally, the predicted gene 
abundance of butyryl CoA:acetate CoA transferase positively correlated with butyrate levels. Finally, human 
intestinal microbiome and metabolome profiles under three dietary conditions were investigated to evaluate 
the robustness of the human intestinal environment in response to daily dietary fluctuations. The results 
suggested that intestinal metabolome and microbiome profiles are different for each individual and are not 
affected by daily dietary fluctuations in most individuals. Thus, our metabologenomic approach can be utilized 
to evaluate the intestinal environment and gain insights into complex microbial ecosystems. 
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Chapter 1 
Introduction  
Intestinal microbiota, which consists of a large 
number of bacteria, archaea, viruses, and fungi, 
inhabit the gastrointestinal tracts of animals, 
including humans [1]. These microbial communities 
have been shown to contribute to food digestion, 
nutrient absorption, and development of the host 
immune system. Previous studies have reported that 
disruption of the microbial structure and/or 
host-microbial interactions, known as "dysbiosis", 
could be a risk factor for several diseases, including 
colon cancer [2, 3], hepatic cancer [4], obesity [5-7], 
diabetes[8-10], atherosclerosis [11-13], immune 
system disorders [14, 15], and brain function 
disorders [16-20].  

On the other hand, recent studies have found 
that intestinal microbiota produces a range of 
low-molecular-weight metabolites such as 
short-chain fatty acids (SCFAs) [21, 22], 
trimethylamine [12], indole metabolites (e.g., indole 
propionate, indole-3-acetaldehyde) [23, 24], 
vitamins [25, 26], polyamines [27, 28], and 
secondary bile acids [29]. These molecules play 
direct and/or indirect roles in maintaining good 
health and suppressing various diseases. 

Intestinal microbiota-derived metabolites are as 
important as the composition of intestinal 
microbiota; characterization of these metabolites is 
required to understand the relationship between the 
intestinal ecosystem and human health. 
Developments in DNA sequencing and mass 
spectrometry technologies have allowed researchers 
to obtain data that enhance our understanding of the 
interactions among the microbiota, metabolites, and 
host. However, the strategies used for multi-omics 
measurement from the same samples and analysis of 
these datasets are not well-developed. Therefore, 
this thesis was conducted to develop an analytical 
method for evaluating the intestinal environment 
based on both high-throughput-sequencing-based 
microbiome and capillary electrophoresis 
time-of-flight mass spectrometry 
(CE-TOFMS)-based metabolome analyses [30, 31], 
and to apply the method for examining the effects of 
diet on the murine and human intestinal 
environment (Figure 1).  



 1 

 
Figure 1 Overview of this thesis 
In Chapter 2, CE-TOFMS-based fecal metabolite profiles 
obtained using 8 methods differing in fraction methods, 
homogenization solvents, extraction solvents, and 
requirement for bacterial cell disruption were compared 
to determine the impact of varying extraction methods on 
the fecal metabolite profiles (yellow shading). In Chapter 
3, a novel metabologenomic analysis method, which 
integrates CE-TOFMS-based metabolome and 
high-throughput-sequencing-based microbiome analyses, 
was developed and applied to compare the intestinal 
environment of C57BL/6J mice fed an American diet and 
mice fed a control rodent diet (orange shading). In 
Chapter 4, this method was applied to investigate the 
robustness of the human intestinal environment in 
response to daily dietary fluctuations under 3 different 
dietary phases (pink shading). 

 
Chapter 2 
Comparison of extraction methods for 
analyzing fecal metabolites  
It has been reported that intestinal microbiota 
produces a range of low-molecular-weight 
metabolites play direct and/or indirect roles in 
maintaining good health and development of various 
diseases. Thus, microbiome-produced metabolites 
impact the human phenotype and regulate host 
metabolism, and the importance of investigating 
intestinal metabolites has gained attention. In 
previous studies, metabolome analysis of intestinal 
and/or fecal samples was conducted mainly using 
nuclear magnetic resonance (NMR) [32-39], gas 
chromatography-mass spectrometry (GC-MS) 
[40-44], and/or liquid chromatography-mass 
spectrometry (LC-MS) [45-50]. In comparison with 
previous technologies, capillary 
electrophoresis-mass spectrometry (CE-MS) is a 
suitable technique for measuring polar and ionic low 
weight metabolites because these metabolites can be 
separated by CE according to their ionic mobilities 
[30, 31]. Therefore CE-MS is useful as a 
complementary tool for measuring ionic metabolites 
that cannot be easily analyzed by GC-MS or LC-MS 
[51]. Thus, CE-TOFMS based-metabolome analysis 

may improve the understanding of intestinal 
metabolome profiles. 

 However, methods for preparing fecal 
samples for CE-TOFMS-based metabolome analysis 
have not been standardized because a few studies 
have utilized this method for fecal metabolome 
analysis. Therefore, in this study, CE-TOFMS-based 
fecal metabolite profiles obtained from 8 methods 
using different fractions (i.e., supernatant, 
precipitate, and whole sample), homogenization 
solvents (i.e., 0.1 × PBS and methanol), extraction 
solvents (i.e., 0.1 × PBS, Methanol: 0.1 × PBS (1:1 
(v/v)) (50% methanol), and 
methanol:chloroform:water (5:5:2 (v/v/v)) (MCW)), 
and requirement of bacterial cell disruption were 
compared to determine the impact of varying 
extraction methods on fecal metabolite profiles 
(Figure 2.1). Additionally, fecal metabolome 
profiles spiked with standard metabolites were 
investigated to compare the recovery rate of the 
standard metabolites in each metabolite extraction 
method. 

 

 
Figure 2.1 Schematic representation of 
experimental design 
The workflow of the 8 extraction methods is shown in the 
figure. The same color indicates the same condition in 
each step. 

 
A total of 220 fecal metabolites were detected 

by CE-TOFMS. Statistical analysis of these 
metabolome profiles indicated that metabolites 2, 8, 
and 51 were significantly changed depending on the 
method of cell disruption, homogenization solvent, 
and extraction solvent, respectively (detailed data 
not shown in this summary). The z-scores of all 
detected metabolites are shown in the heatmap and 
overall fecal metabolome profiles were compared by 
Hierarchical clustering analysis (HCA) and 
K-means clustering (Figure 2.2). The heatmap 
showed that the amounts of global metabolites were 
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low when they were extracted from the precipitate. 
In contrast, metabolites extracted from the 
supernatant and whole fecal sample using the same 
solvent were clustered together. These results 
suggest that the fecal metabolites were mainly 
present outside of the cells, as supported by the 
result that only 2 metabolites significantly differed 
with or without cell disruption. The metabolome 
extracts obtained from 3 different extraction 
solvents including 0.1 × PBS, 50% methanol, and 
MCW were also compared by HCA. The profiles 
clearly differed depending on the presence or 
absence of organic solvents used for extraction. 
Form the results of statistical analysis and HCA, it 
was suggested that the extraction solvent greatly 
influences the results as compared to other factors 
involved in the process of fecal metabolome 
profiling.  

 

 
Figure 2.2 Overview of fecal metabolome profiles 
obtained by using 8 extraction methods 
Heatmap showing the z-scores of quantified metabolites 
using a blue-red scheme. Gray indicates the 
concentrations of metabolites below the detection limit. 
Extraction methods are shown on the top colored bar on 
the heatmap. Samples were clustered by HCA based on 
Pearson correction coefficients. Fecal metabolites were 
categorized into 3 groups by K-means analysis. PBS; 
phosphate-buffered saline, MeOH; methanol, MCW; 
methanol/chloroform/water. 

In conclusion, our results suggest that the 
metabolome profile can be altered by varying the 
extraction method. This study provides valuable 
basic information for fecal CE-TOFMS-based 
metabolome profiling. 

 
Chapter 3 
A metabologenomic approach reveals 
changes in the intestinal environment 
of mice fed on American diet 
As described in Chapter 1, previous studies have 
indicated that intestinal microbiota-derived 
metabolites are as important as the composition of 
intestinal microbiota; characterization of these 
metabolites is needed to fully understand the 
relationship between the intestinal ecosystem and 
human health. A multi-omics approach combining 
the metabolome and microbiome analysis could be a 
valuable tool for understanding the entire intestinal 
ecosystem, including the relationships among 
microbiota, metabolites, and host. To gain new 
insight and knowledge from omics data, the data 
analysis process is highly important. However, 
analytical pipelines for multi-omics dataset are not 
well developed. Therefore, it is necessary to 
combine existing methods, or develop original 
methods to comprehensively analyze the 
relationships between the intestinal microbiome and 
metabolome. 

First, to obtain novel information regarding the 
whole intestinal microbial ecosystem, we designed 
an original approach, Metabologenomics, for 
analysis of the multi-omics dataset. This system 
consists of separate analyses of the intestinal 
metabolome and microbiome, as well as an 
integrated analysis of the combined intestinal 
metabolome and microbiome datasets. An overview 
of the study design is depicted in Figure 3.1. For this 
first example of the use of our metabologenomic 
approach, we obtained fecal samples were obtained 
from male C57BL/6J mice fed control diet or 
American diet (AD) (control diet: n = 6, AD: n = 5), 
that formulated to match the average daily human 
nutritional intake in the United State, from weaning 
at 8, 12, 24, 36, and 52 weeks. These specimens 
were used for the extraction of metabolites and 
DNA.  

For the metabolome approach, amounts and/or 
relative abundances of metabolites could be 
measured comprehensively using mass spectrometry 
and/or NMR. In the present study, CE-TOFMS was 
used to obtain the metabolome dataset. To clarify 
the differences in metabolites between the control 
and AD groups, principal component analysis 
(PCA), discriminant analysis, and statistical analysis 
were used. Additionally, Metabolite Set Enrichment 
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Analysis (MSEA) [52] was used to evaluate 
pathways that differed between the two dietary 
groups.  

For microbiome analysis, V1–V2 regions of 
16S rRNA-encoding genes were sequenced by 
MiSeq (Illumina). Sequence reads that passed the 
quality filters were clustered into Operational 
Taxonomic Units (OTUs) based on a cut-off of 97% 
similarity and assigned to the taxonomy using 
Quantitative Insights into Microbial Ecology 
(QIIME) [53]. To clarify the differences in 
microbiota components between the control and AD 
groups, UniFrac principal coordinate analysis 
(PCoA), discriminant analysis, and statistical 
analysis were used. Furthermore, to consider not 
only the microbiome structure but also the 
microbiome function, we utilized Phylogenetic 
Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt) [54] to predict the 
metagenome profiles based on 16S rRNA gene 
sequence data. To demonstrate the relationships 
between the intestinal metabolome and microbiome, 
Procrustes analyses were used to visualize and 
compare the two datasets. We conducted correlation 
analyses to obtain detailed information about 
relationships among the metabolome, microbiome, 
and predicted metagenome profiles. To simplify the 
complex interactions between metabolites and 
microbes, hierarchical clustering of autocorrelation 
maps was used to identify clusters that share the 
same patterns of changes, and hundreds of 
significant correlations were visualized in a network 
graph. 

 

 
Figure 3.1 Overview of metabologenomic analysis 
workflow  
Steps used for evaluation of metabolome profiles are 
summarized in the top row (yellow shading). This process 
starts with measurement of the amount of fecal 
metabolites to obtain profiles for the 100–200 metabolites. 
These metabolome profiles then are compared using 

Principal Component Analysis (PCA), discriminant 
analysis, and pathway analysis. Steps used for evaluation 
of microbiome profiles are summarized in the bottom row 
(pink shading). This process starts with the sequencing of 
the community’s 16S rRNA-encoding genes to clarify the 
relative abundance of operational taxonomic units 
(OTUs). Microbial memberships and structures are 
compared using UniFrac principal coordinate analysis 
(PCoA) and discriminant analysis. Additionally, 
Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt) is used 
to predict metagenomic profiles. Steps for 
metabologenomic analysis are summarized in the central 
part of the figure (middle row; orange shading). The 
PCoA and/or PCA plots are used for Procrustes analyses. 
The relative abundances of microbial taxonomy and/or 
metagenome profiles and amounts of metabolites then are 
used for correlation analysis and network analysis. 

 
A total of 184 fecal metabolites were detected 

by CE-TOFMS. These metabolites corresponded to 
various pathways, including the metabolism of 
carbohydrates, energy, lipids, and amino acids 
(Figure 3.2A). Of these 184 fecal metabolites, 84 
metabolites were significantly different between the 
control and AD groups, as assessed by the 
Mann-Whitney U test. Of these 84 metabolites, 74 
showed decreased levels in the AD group. To 
evaluate pathways that are involved in the 84 
metabolites with significantly changed, MSEA was 
conducted. MSEA calculates whether a specific 
pathway is over-represented by chance within an 
arbitrary list of metabolites. MSEA showed that 
metabolites related to methionine metabolism were 
significantly changed between the control and AD 
groups (Table 3.1). To investigate whether 
metabolites contributed to the differences between 
the control and AD groups, multivariate analyses 
were conducted. PCA plots and analysis of 
similarities (ANOSIM) showed that the fecal 
metabolome profiles clustered into 2 groups 
depending on host diet (Figure 3.2B). However, the 
Euclidean distances were not significantly different 
based on host age or individual variability. 
According to the PC2 coefficients of the PCA, the 
amounts of butyrate, propionate, and amino acids 
such as Asp, Glu, Arg, Leu, Ile, and Met were 
higher, and the amounts of creatinine, 
3-hydroxybutyrate, taurine, thiamine, and 
nucleosides were lower, in the AD group (Figure 
3.2C). Additionally, orthogonal partial least squares 
discriminate analysis (OPLS-DA) showed results 
similar to those of PCA. According to the OPLS-DA 
covariance scores, higher amounts of butyrate and 
propionate, and lower concentrations of creatinine, 
3-hydroxybutyrate, thiamine, Ala, and taurine in AD 
contributed to the separation of the two groups 
(Figure 3.2D). The metabolites for which the 
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Figure 1. Overview of metabologenomic analysis workflow. Steps used for evaluation of metabolome
profiles are summarized in the top row (yellow shading). This process starts with measurement of
the amount of fecal metabolites to obtain profiles for the 100–200 metabolites. These metabolome
profiles then are compared using Principal Component Analysis (PCA), discriminant analysis, and
pathway analysis. Steps used for evaluation of microbiome profiles are summarized in the bottom
row (pink shading). This process starts with the sequencing of the community’s 16S rRNA-encoding
genes to clarify the relative abundance of operational taxonomic units (OTUs). Microbial memberships
and structures are compared using UniFrac principal coordinate analysis (PCoA) and discriminant
analysis. Additionally, Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) is used to predict metagenomic profiles. Steps for metabologenomic analysis are
summarized in the central part of the figure (middle row; orange shading). The PCoA and/or PCA plots
are used for Procrustes analyses. The relative abundances of microbial taxonomy and/or metagenome
profiles and amounts of metabolites then are used for correlation analysis and network analysis.

2.2. AD Consumption Alters Intestinal Metabolome Profiles

Fecal samples were obtained from male C57BL/6J mice fed control diet or AD (control diet: n = 6,
AD: n = 5) from weaning at 8, 12, 24, 36, and 52 weeks (Figure S2A). Previous studies have reported
that consumption of Western diets or food containing high concentrations of fat and/or carbohydrate
can lead to intestinal microbial imbalance and induce diseases like colon cancer [2,3], hepatic cancer [4],
obesity [5–7], diabetes [8–10], and atherosclerosis [11–13].

In this study, we used a laboratory chow formulated to match the daily human nutritional content
in the United States [45]; the nutritional contents of AD and the control chow are summarized in
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absolute amount values exceeded the threshold in 
both PC2 coefficients and OPLS-DA covariances 
are shown in the box plots in Figure 3.2E. 
 

 
Figure 3.2 AD consumption alters intestinal 
metabolome profiles in mouse  
(A) Heatmap showing the concentrations of quantified 
metabolites using a rainbow scheme. Gray indicates the 
concentrations of metabolites that fell below the detection 
limit. Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways that each metabolite belongs to are 
shown to the right of the heatmap. Labels at the top of the 
panel indicate dietary group and mouse age (in weeks); 
(B) PCA of the intestinal metabolome profiles normalized 
by Pareto and analysis of similarity (ANOSIM). The 
ellipse denotes the 95% significance limit of the model, 
as defined by Hotelling’s t-test; (C) Bar graph showing 
PC2 values for metabolites that had |PC2 coefficients| > 
0.11 in loading of PCA; (D) Bar graph showing 
OPLS-DA covariance values for metabolites that had 
|OPLS-DA covariance| > 0.16 based on OPLS-DA of 
metabolome profiles of control and AD mice. The model 
resulted in one predictive and one orthogonal four 
components with the cross-validated predictive ability Q2 
(cum) = 0.863 and the total explained variance R2X 
(cum) = 0.791; (E) Box plots indicating fecal amounts of 
metabolites that had |PC2 coefficient values| > 0.11 in 
PCA, |OPLS-DA covariance values| > 0.16 in OPLS-DA, 
and false discovery rate (FDR) < 0.05 based on Mann–
Whitney U test and Benjamini-Hochberg correction when 
comparing between the control and AD groups. 

Significant differences are indicated by * FDR < 0.05, ** 
FDR < 0.01.  

 
Table 3.2 Metabolic pathways significantly 
changed in AD compared to control as assessed 
by MSEA 

 
1 Total numbers of metabolites that corresponded in each 
pathway. 2 Observed numbers of metabolites that derived 
from given dataset in each pathway. 3 Expected observed 
numbers of metabolites that are calculated by given 
dataset in each pathway. 4 Hits/expect. 

 
To evaluate the impact of AD consumption on 

intestinal microbial composition, 16S 
rRNA-encoding genes were sequenced by MiSeq. A 
total of 880,770 reads of filter-passed 16S rRNA 
gene sequences were clustered into 1666 OTUs 
based on a minimum similarity of 97%. Genus-level 
microbial structures are shown as a bar graph in 
Figure 3.3A. Of 106 genera, 15 differed 
significantly in abundance between the control and 
AD groups. Unweighted and weighted UniFrac 
principal coordinate analyses (PCoAs) and 
ANOSIM were conducted to compare the microbial 
membership and structure. The results of UniFrac 
PCoA and ANOSIM indicated the separation 
between control and AD in both unweighted and 
weighted analyses (Figure 3.3B,C). The distances 
between samples within the same dietary group 
were significantly shorter than the distances between 
different dietary groups, based on both unweighted 
and weighted UniFrac distances. However, there 
was no significant difference in the distances 
between samples within the same age and of 
different ages, and samples within the same subject 
and of different subjects. These results indicated that 
dietary condition has a bigger impact on intestinal 
microbial membership and structure than host age 
and individual variability. To identify the bacterial 
taxa that may contribute to this separation, 
OPLS-DA was performed [55-57]. The bacterial 
taxa that contribute to the separation are shown in 
Figure 3.3D. Additionally, as another method of 
discriminant analysis, we also conducted LEfSe 
analysis [58]. LEfSe results showed that 39 taxa 
contributed to the separation between the control 
and AD groups. The taxa that were present at higher 
proportions in the AD group were distributed across 
a wide range of taxa that included the Bacteroidetes, 
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Firmicutes, and Proteobacteria; in contrast, the taxa 
that were present at higher proportions in the control 
group were only belonging to Firmicutes. The 
relative abundance of the taxa which the absolute 
amount values exceeded the threshold in both PC2 
coefficients and OPLS-DA covariances are shown in 
the box plots in Figure 3.3E. These results indicated 
that microbial memberships and structure differed 
between the control and AD groups; however, there 
were no significant differences in alpha diversity 
scores between the microbiota present in the two 
dietary groups. Furthermore, to investigate the 
functions of the microbial community, predicted 
metagenome profiles were generated by PICRUSt 
based on the observed 16S rRNA gene sequences. 
PICRUSt showed that several Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways were 
significantly different between the control and AD 
groups, although the overall compositions were 
similar.  
 

 
Figure 3.3 AD consumption alters intestinal 
microbiome profiles  
(A) Bar graph showing the relative abundance of top 10 
most-abundant genera (average abundance in all samples 
>1%) in control and AD mice; (B) Unweighted and (C) 
weighted UniFrac PCoA and ANOSIM comparing the 
intestinal microbiome profiles of control and AD mice; 
(D) Bar graph showing bacterial genera that had 
|OPLS-DA covariance| > 0.11 based on OPLS-DA of the 
microbiome profiles of control and AD mice. The model 

resulted in one predictive and one orthogonal four 
components with the cross-validated predictive ability Q2 
(cum) = 0.832 and the total explained variance R2X 
(cum) = 0.918; (E) Box plots indicating relative 
abundance of genera that have |LDA score| > 2.0, 
|OPLS-DA covariance| > 0.11 in OPLS-DA, and FDR < 
0.05 based on Mann–Whitney U test and 
Benjamini-Hochberg correction between the control and 
AD groups. Significant differences are indicated by * 
FDR < 0.05, ** FDR < 0.01. 
 

To clarify the relationship between intestinal 
metabolome and microbiome profiles in the control 
and AD groups, Procrustes analysis combining PCA 
of the metabolome profiles and weighted UniFrac 
PCoA of the microbiome profiles were conducted to 
co-visualize the data. Procrustes analyses revealed 
that plots of both the metabolome and microbiome 
separated into 2 groups depending on dietary 
conditions (Figure 3.4A). This result suggested that 
both metabolome and microbiome profiles are 
affected by dietary components, consistent with the 
results shown in Figures 3.2B and 3C. Additionally, 
Procrustes analyses showed the similarity between 
the metabolome and microbiome plots, suggesting 
that there were some associations between intestinal 
microbial structure and metabolome profile. 

We next performed correlation and network 
analysis to comprehensively understand the 
crosstalk between microbes and metabolites. To 
simplify the complex relationships among intestinal 
microbiome abundance, gene sets, and metabolites, 
autocorrelation maps and hierarchical clustering 
analysis (HCA) were used to construct clusters that 
had the same patterns of changes. The metabolites, 
genera, and gene sets were clustered into 7 (cluster 
M1–M7), 5 (cluster G1–G5), and 3 (cluster P1–P3) 
clusters, respectively (Figure 3.4B–D).  

To obtain more detailed information about the 
entire interactions between each bacterial taxon, 
gene set, and metabolite, especially those that 
differed significantly between the control and AD 
groups, Spearman's rank correlation coefficients 
were calculated, and significantly correlated pairs 
(FDR < 0.05) were plotted in the form of a network 
graph (Figure 3.4E). The genera belonging to cluster 
G2 tended to show positive correlation with clusters 
P1, M2, M4, M5, M6, and M7 (containing 
parameters that were more abundant in control 
mice), and to show negative correlations with 
clusters M1, M3, and P3. Similar correlation 
patterns were observed for the genera in cluster G1 
and clusters P1 and P3, however there were a few 
positive correlations with metabolites. Clusters G3 
and G4 consisted predominantly of taxa that were 
present at higher proportions in the AD group, and 
these clusters typically exhibited positive 
correlations with metabolites of cluster M1, and 
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negative correlations with metabolites of clusters 
M2, M5, and M6. However, clusters G3 and P3 
showed positive correlations with M3; in contrast, 
cluster G4 showed negative correlations with M4 
and M7.  
 

 
Figure 3.3 Metabologenomic approach reveals 
the interactions among abundances of microbial 
genus, predicted gene set, and metabolite 
concentration 
(A) Procrustes analysis combining PCA of intestinal 
metabolome profiles (end of white line) and weighted 
UniFrac PCoA of microbiome profiles (end of orange 
line). The fit of Procrustes transformation over the first 
three dimensions is reported as the M2 value; 
Autocorrelation maps of (B) metabolites, (C) bacterial 
genera, and (D) predicted bacterial gene sets (KEGG 
pathway) based on Spearman’s rank correlation 
coefficients. Red and blue indicate positive and negative 
correlation, respectively. Hierarchical clustering based on 
Euclidean distance was used to separate each 
metabolite/genus/gene set into clusters shown as side bars 
(to the right of the respective panels); (E) Bacterial genera, 
predicted gene sets, and metabolites that differed 
significantly between control and AD were assessed by 
network analysis. The pairs that yielded significant 
correlation between each bacterial genus, predicted gene 
set, and metabolites based on Spearman’s rank correlation 
coefficients (FDR < 0.05) are portrayed in this network 
graph. Node shapes denote the type of dataset (circle, 

metabolites; triangle, genera; square, predicted gene set). 
Green and red outline colors of nodes denote significantly 
higher abundance in control or AD group, respectively. 
Inside color of nodes indicate the clusters defined in 
Figure 4B-D. Pink and light blue lines denote positive 
and negative correlation, respectively. Positive 
correlations (F) between relative abundances of 
Oscillospira/Ruminococcus and butyrate amount (r = 
0.638, FDR < 0.001 for Oscillospira; r = 0.622, FDR < 
0.001 for Ruminococcus), (G) between relative 
abundance of Oscillospira/Ruminococcus, and abundance 
of genes associated with butyrate metabolism (r = 0.894, 
FDR < 0.001 for Oscillospira; r = 0.805, FDR < 0.001 for 
Ruminococcus), and (H) between abundance of genes 
associated with butyrate metabolism and butyrate 
concentration (r = 0.587, FDR < 0.001).  
 

While a large number of potential pairs yielded 
significant correlations, we focused on the 
relationships between the microbiome and butyrate, 
a metabolite that is known to be produced by 
intestinal microbiota [59]. In the present work, the 
amount of butyrate showed significant positive 
correlation with the relative abundances of bacteria 
belonging to the genus Oscillospira and 
Ruminococcus (Figure 3.4F). Additionally, the result 
of PICRUSt showed that predicted abundances of 
genes associated with butyrate metabolism 
correlated significantly with the proportion of 
Oscillospira and Ruminococcus, and with fecal 
butyrate concentration (Figure 3.4G,H). Moreover, 
there was significant positive correlation between 
amount of butyrate and predicted gene abundance of 
butyryl CoA:acetate CoA transferase that converts 
between butyryl-CoA and butyrate. It has been 
reported that some bacterial genera belonging to the 
Clostridiales, including Oscillospira, produce 
butyrate from dietary fiber [60], suggesting that our 
metabologenomic approach could be used for the 
detection of the possible interactions between 
intestinal microbiota and metabolites. 

Taken together, these results suggested that our 
metabologenomic approach has the potential to 
screen the intestinal microbiota-metabolites 
interactions based on analyses of metabolome, 
microbiome, and metagenome datasets. For the 
future studies, we could integrate a shotgun 
metagenome dataset from intestinal microbiome 
instead of predicted metagenome profiles from 16S 
rRNA-encoding gene sequences. Moreover, it is 
better to be conducted transcriptome and/or 
proteome analysis to prove the microbiome activity. 
Additionally, for metabolome datasets, other 
technologies such as liquid chromatography and/or 
gas chromatography mass spectrometry could be 
utilized as a complementary tool to obtain in-depth 
profiles of metabolites that are known to be 
associated with the function of gut microbiota such 
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as lipids, bile acids, and sugars. Our original 
integrated approach has the potential to be expanded 
by including other powerful analytical techniques to 
yield more detailed and comprehensive information 
about the intestinal environment. Therefore, the 
metabologenomic approach is expected to provide 
new insights into the function of the intestinal 
microbiota, especially for the investigation of the 
effects of small alterations in the intestinal 
environment. The detailed information about this 
Chapter is available in published paper [61]. 

 
Chapter 4 
Ecological robustness of human 
intestinal environment in response to 
fluctuations in daily diets 
With the expansion of intestinal microbiome 
research, studies have revealed that microbes and 
their resulting metabolic alterations (>600 microbial 
metabolites) are related to multiple diseases (>35), 
dietary interventions, exposure to metals, and/or 
antibiotic treatment [62]. Using this accumulated 
knowledge, studies of the health state of the gut 
microbiome and/or host phenotyping based on 
intestinal environment factors such as microbiome 
and/or metabolome profiles have gained increased 
attention. For example, the intestinal microbiome is 
an important factor in the development of 
inflammatory bowel disease and colorectal cancer. 
Recent studies showed that the relative abundance 
of several specific bacterial species could modulate 
the efficacy of immune checkpoint inhibitors 
[63-65]. Other previous studies showed that human 
gut microbiome profiles are associated with the area 
of residence [66-70] and long-term dietary pattern 
[71, 72]; and that metagenomic features based on 
the intestinal microbiome could be used for 
identification of the owners of intestinal microbial 
community, because the >80% of individuals of 50 
subjects could still be uniquely identified up to a 
year later based on their metagenomic features of 
intestinal microbiome [73].  

Additionally, gut microbiome-derived 
metabolites such as deoxycholate (DCA), 
trimethylamine (TMA), trimethylamine N-oxide 
(TMAO), and 4-ethylphenylsulfate are associated 
with development of hepatic cancer [4], 
atherosclerosis [11-13], and neurodevelopmental 
disorders [16], respectively. Therefore, fecal 
metabolome profiles are thought to be useful for 
reflecting the intermediate phenotype promoting 
microbial effects on the host [74]. Previous studies 
have been conducted to investigate the differences 
in fecal metabolome profiles between people living 
in different areas and with different lifestyles [68, 
70], and between those of healthy subjects and 

patients [39]. The results suggested that the fecal 
metabolome profiles are altered by environmental 
factors such as dietary habits, residence, and health 
state. However, in these studies, only one time point 
of sample was examined, and the number of studies 
reporting inter- and intra-individual differences of 
fecal metabolome profiles in healthy baseline 
conditions was quite limited.  

Therefore, this study was conducted to 
investigate the robustness of the human intestinal 
environment including metabolome profiles in 
response to daily dietary fluctuations. A total of 206 
fecal samples were obtained from 30 healthy 
Japanese subjects under 3 different dietary phases. 
According to the comparison of Euclidian distance 
between each metabolome profiles and UniFrac 
distance between each microbiome profiles, the 
distances between samples from the same 
individuals were significantly less than those from 
other individuals. Additionally, there were no 
significant intra-individual changes across the 
phases in microbiome profiles of all subjects, and in 
metabolome profiles of 6 out of 7 subjects. The 
α-diversity of microbiome profile of the subject 
whose intestinal metabolome profiles were 
significantly changed across the phases was the 
lowest in these 7 subjects. These results indicated 
that human intestinal metabolome and microbiome 
profiles are unique in individuals and are robust 
against daily dietary fluctuation in many cases. 
 
Chapter 5 
Concluding remarks  
Intestinal microbiota are a complex community that 
inhabits the gastrointestinal tract of animals. They 
are strongly associated with host physiology and 
have received increased attention as a new target for 
the prevention and/or treatment of various diseases. 
Because the development mechanisms of some 
diseases involve metabolites produced by the 
intestinal microbiome, studies on metabolites 
present in the intestine are important for determining 
the microbiome structure.  

Recent advances in high-throughput 
molecular biology techniques, including 
high-throughput DNA sequencing and mass 
spectrometry, coupled with advancements in the 
field of computer science, have caused a large shift 
in systems biology and in intestinal microbiology. 
The advancements in technology have enabled 
scientists to conduct large-scale data-driven studies 
to provide novel insights into processes such as 
those described in Chapter 1. Additionally, this has 
created numerous research problems to be solved, 
such as how to obtain a dataset and analyze the 
obtained data.  

Therefore, in this study, I aimed to 
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develop an analytical method for evaluating the 
intestinal environment based on both 
high-throughput-sequencing-based microbiome and 
capillary electrophoresis time-of-flight mass 
spectrometry (CE-TOFMS)-based metabolome 
analyses. We compared extraction methods for fecal 
metabolome analysis based on CE-TOFMS. Next, 
we developed a computational analytical strategy for 
metabologenomics involving integrated analysis of 
mass spectrometry-based metabolome and 
high-throughput-sequencing-based microbiome data. 
Using this method, the effects of diet on the murine 
and human intestinal environment were investigated.
 Firstly, in Chapter 2, the 
CE-TOFMS-based fecal metabolite profiles 
obtained from 8 different extraction methods, which 
differed in fraction, homogenization and extraction 
solvents, and requirement of bacterial cell disruption, 
were compared to investigate the effects of different 
extraction methods on fecal metabolite profiles. 
Statistical analysis of these metabolome profiles 
indicated that metabolites 2, 8, and 51 were 
significantly changed depending on the method of 
cell disruption, homogenization solvent, and 
extraction solvent, respectively. Our results 
suggested that the metabolome profile is altered 
depending on the extraction methods, and thus 
selecting an extraction method suitable for an 
application is a major factor in the metabolome 
analysis of fecal samples. A part of the results 
described in Chapter 2 was published [75], which 
was then re-examined under additional extraction 
conditions in this study. During recent years, studies 
on fecal metabolome analysis have increased; 
however, when I began the fecal metabolome 
analysis in 2010, only a few studies were conducted 
in this field. The CE-TOFMS-based fecal 
metabolome approach has been described in a recent 
review article [76]; although this approach is 
considered as the choice for fecal metabolome 
analysis, to the best of my knowledge, this is the 
first study to compare the effects of extraction 
method on CE-TOFMS-based fecal metabolome 
[75].  

In Chapter 3, we present the 
metabologenomic analysis developed, which is a 
method for integration analysis of fecal metabolome 
profiles and intestinal microbiome profiles [61]. 16S 
rRNA-encoding gene-sequencing data are frequently 
used for predicting the intestinal microbiome 
structure, such as the type and level of microbes. 
Metagenomic analysis based on whole genome 
sequencing data is advantageous for determining the 
microbial structure and the gene abundance of the 
microbiome. Determining the type of enzymes 
present in microbes requires expensive sequencing 
and computational analysis methods to compare 16S 
rRNA amplicon sequences. Phylogenetic 

Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt) is a useful tool for 
predicting the metagenomic dataset from amplicon 
sequencing of the 16S rRNA-encoding gene dataset. 
PICRUSt predictions showing a Spearman's 
correlation coefficient of more than 0.8 with 
metagenome sample abundances across all body 
sites were investigated in the Human Microbiome 
Project [54]. However, the metagenomic dataset 
does not reveal how enzymes in the microbiota 
function in the intestine. To determine the activities 
of enzymes derived from microbiota, transcriptomic 
and/or proteomic approaches are needed. 
Furthermore, after determining the microbial 
composition and gene expression datasets and/or 
abundance of enzymes, a metabolome analysis is 
required to investigate the factors that directly 
modulate host physiology. Intestinal metabolome 
profiles reflect the total condition affected by 
intestinal microbiome activity, host digestion, and 
absorption, as well as the components of diet 
consumed by a host. The results described in 
Chapter 4 suggest that fecal metabolome profiles 
reflect the resulting metabolome conditions that are 
modulated by intestinal microbiota and/or the host 
rather than directly derived from food residues, as 
the fecal metabolome profiles of healthy human tend 
to differ among individuals even when they 
consumed the same meals. Additionally, the 
metabolites that were expected to be directly 
affected by host dietary conditions accounted for 
less than 25% of the total detected metabolites. It is 
expected that utilizing germ-free and/or gnotobiotic 
animals will help distinguish between the effects of 
the host and intestinal microbiota on the fecal 
metabolome. 

Our metabologenomic approach indicated 
that the feces obtained from mice that were fed an 
American diet (AD) contained higher amounts of 
butyrate and propionate and higher relative 
abundance of Oscillospira and Ruminococcus than 
those in mice that were fed a control diet. The 
amount of butyrate was positively correlated with 
the abundance of these bacterial genera. 
Furthermore, the integrated analysis of the 
metabolome and predicted metagenomic data from 
PICRUSt indicated that the predicted gene 
abundance of butyryl CoA:acetate CoA transferase, 
which facilitates the conversion of butyryl-CoA and 
butyrate, was positively correlated with the fecal 
butyrate amount.  

In Chapter 4, we present the 
metabologenomics approach applied to determine 
the effects of daily diets on human fecal 
metabolome and intestinal microbiome profiles to 
validate the robustness of each profile. The results 
suggested that the human intestinal metabolome and 
microbiome profiles were unique in individuals and 
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robust against daily dietary fluctuations in most 
subjects. The stability of intestinal metabolome 
profiles was verified in individuals and predicted to 
be associated with the diversity of the intestinal 
microbial community. Our findings emphasize that 
not only human intestinal microbiome profiles, but 
also fecal metabolome profiles have unique features, 
which may contribute to the evaluation of health 
status and in-depth understanding of intestinal 
ecosystems. 

Metabologenomic approach is an 
integrated analysis that combines microbiome and 
metabolome analyses. These two methods 
correspond to the upper and bottom layers of a 
series of steps involved in multi-omics analysis from 
genomics to metabolomics. Although how a 
microbiome works and which organisms are 
involved in the production and utilization of 
metabolites are still unclear, a metabologenomic 
approach can reveal the intestinal conditions and 
organisms that are likely associated with the 
production and/or utilization of metabolites. Thus, 
the metabologenomic approach is a relatively rapid 
and easy method for evaluating the intestinal 
environment. This method may be useful for 
evaluating the host condition and diagnosing 
diseases, possibly via health monitoring systems, 
including devices that have access to the internet, in 
the future. Additionally, this analytical strategy can 
be expanded by utilizing other omics-analysis 
including metagenome analysis, other 
mass-spectrometry-based metabolome analysis, 
transcriptome analysis, and proteome analysis to 
clarify the black box mechanisms underlying 
host-microbiome crosstalk. 

Finally, the analytical approach 
combining microbiome and metabolome analyses 
developed in this study can facilitate further 
analyses of the microbiome in the intestinal and 
other environments. I hope that the data described 
here can become a cornerstone in the field of 
intestinal microbiome studies via multi-omics 
analysis to enhance our understanding of the 
intestinal environment. 
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