Keio University

Thesis Abstract

				<u>No. 1</u>
Registration	□ "KOU" □ "C)TSU"	Name:	Chiharu Ishii
Number:	No.	*Office use only		
Title of Thesis:				
The development and application of metabologenomic analysis for the evaluation of intestinal				
environment				
Summary of Thesis:				
Intestinal microbiota and their synthetized-metabolites are strongly associated with host physiology.				
Advances in DNA sequencing and mass spectrometry have enabled accumulation of large amounts of				
data on the interactions among microbiota, metabolites, and the host. However, there is no				
well-developed strategy to analyze these datasets. This study aimed to develop an original analytical				
strategy, metabologenomics, that involves integrated analysis of capillary electrophoresis time-of-flight				
mass spectrometry (CE-TOFMS)-based metabolome data and high-throughput-sequencing-based				
microbiome data to evaluate perturbations in environmental factors, such as diet, which influence the				
intestinal environment. First, the fecal metabolome profiles obtained using eight methods differing in				
fraction, homogenization solvent, extraction solvent, and the requirement of bacterial cell disruption				
were compared for comparison using CE-TOFMS-based metabolome analysis. The results suggested				
that metabolomic profiles could differ based on the extraction method, thereby highlighting the				
importance of selecting a method suitable for the specific analysis. Second, we conducted a				
metabologenomic analysis of the metabolome and microbiome data. This analysis revealed that feces of				
mice fed an American diet, that formulated to match the average daily human nutritional intake in the				
United State, contained higher levels of butyrate and higher relative abundances of butyrate producers,				
such as Oscillospira and Ruminococcus, compared with those of the control diet-fed mice. Additionally,				
the predicted gene abundance of butyryl CoA:acetate CoA transferase positively correlated with				
butyrate levels. Finally, human intestinal microbiome and metabolome profiles under three dietary				
conditions were investigated to evaluate the robustness of the human intestinal environment in response				
to daily dietary fluctuations. The results suggested that intestinal metabolome and microbiome profiles				
are different for each individual and are not affected by daily dietary fluctuations in most individuals.				
Thus, our metabologenomic approach can be utilized to evaluate the intestinal environment and gain				
insights into complex microbial ecosystems.				

Keywords: intestinal microbiota; metabolome; metabologenomics; diet; multi-omics analysis