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Abstract

The big issue of systems biology is how to extract biological significance in omics datasets.

In this thesis, I describe an algorithm to detect oscillating molecules in omics datasets for

the study of circadian rhythms, and enzyme characterization of the orphan enzyme YhhY

in Escherichia coli (E. coli) by mass spectrometry. In Chapter 1, I present a historical

overview of research on circadian rhythms and show that it is essential to adopt a systematic

approach in the research on circadian rhythms. In Chapter 2, I describe maximal information

coefficient-based oscillation prediction (MICOP), which is an oscillation prediction method

using mutual information coefficient. Owing to the development of parallel sequencers and

mass spectrometers, classical methods are not suitable for omics datasets that have a low

sampling rate and contain noise. From the results of numerical experiments, I show that

MICOP demonstrates excellent performance for data with a low sampling frequency and

noise, such as time-series omics data. Furthermore, upon the application of MICOP to a

plurality of published mouse proteome data, novel oscillating molecules were identified, with

the results being shown to be roughly in agreement with the transcriptome results. From

these results, I assert that MICOP is an excellent oscillating molecule detection method.

In Chapter 3, I describe a functional identification of the E. coli function-unknown gene

yhhY. Although YhhY was predicted to be an acetyltransferase from its amino acid sequence,

identification of the substrate and the obtainment of experimental proof of its function have

not been conducted. Therefore, in this study, I aimed to clarify the function of YhhY by

combining biochemical experiments and metabolome analysis using a mass spectrometer.



iii

The results suggested that YhhY is an enzyme that specifically acetylates some essential

amino acids and that it is involved in metal stress in vivo. Finally, in Chapter 4, I summarize

the contents of this paper.
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要旨

システムズバイオロジーにおいて、オミクスデータから生物学的知見をいか

にして得るかは重要な課題である。本論文の前半部分では概日リズム研究におい

てオミクスデータから振動している分子を検出するためのデータ解析技術につい

て、後半では質量分析計を用いた大腸菌機能未知酵素 YhhYの機能同定について

記述する。第1章では、概日リズム研究の歴史を俯瞰し、概日リズムが複数のレ

イヤーをまたいだ分子のネットワークから構成されていることが明らかになって

きたこと、それに伴い概日リズム研究にシステムバイオロジー的アプローチが必

要になってきたことについて述べる。第2章では相互情報量を用いた振動推定法

であるMaximal information coefficient-based oscillation prediction (MICOP)について

述べる。並列シーケンサーや質量分析計の発展によって、従来の統計手法では対

応できない事例が増えている。それに対して、MICOPは時系列オミクスデータの

ような、サンプリング頻度が低くノイズが多いデータに対して優れたパフォーマ

ンスを発揮することを数値実験の結果から示した。さらに、公開されている複数

のマウスプロテオームデータにMICOPを適用したところ、新規振動分子が同定

され、かつそれらの結果はトランスクリプトームの結果と概ね一致していること

が分かった。これらの結果から、MICOPは優れた振動推定法であることを主張す

る。第3章では大腸菌機能未知酵素 YhhYの機能同定について述べる。YhhYはそ

のアミノ酸配列からアセチル基転移酵素であることが予測されていたが、基質の

同定やその機能の実験的証明は行われていない。本研究では、生化学実験と質量

分析計によるメタボローム解析を併用することで、YhhYの機能を明らかにするこ

とを目指した。その結果、YhhYはいくつかのアミノ酸を特異的にアセチル化す

る酵素であること、さらに生体内においては金属ストレスに関与していることが

示唆された。第4章では、本論文の内容を総括する。

キーワード:概日リズム、時系列データ、質量分析計、YhhY
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Chapter 1

General introduction

1.1 What is systems biology

Large-scale experiments such as genome sequencing or expression profiling using a parallel

sequencer and functional screening by mass spectrometry have produced huge data. The

growing demands for interpretation of these datasets and for their integration to obtain a

deeper understanding of life have created the systems biology. The big issue of systems

biology is how to connect large-scale data to a comprehensive understanding of life. The mass

spectrometry or parallel sequencer output complex data, but there are still many problems to

make efficient use of the data. Thus, how to extract biological significance in large datasets

measured by mass spectrometry or parallel sequencer is a big issue of systems biology. In this

thesis, I describe the development of an oscillation detection method and the establishment

of enzyme characterization system using mass spectrometry data.
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1.2 Circadian rhythms and systems biology

1.2.1 Historical overview of circadian rhythms

The ability to adapt to the light-dark cycle on the Earth provided a survival advantage to many

organisms. These endogenous 24 hour rhythms were named circadian ("about" and "a day")

rhythms [1]. The first arrhythmic mutants were found in Drosophila melanogaster by ethyl

methanesulfonate-induced mutant screening [2]. Some groups identified that period gene,

which would be the best known later, was responsible for their arrhythmic behavior at almost

the same time [3–5]. In mammals, the destruction of the suprachiasmatic nucleus (SCN)

located in the hypothalamus was also shown to abolish behavioral and hormonal rhythms,

whereas the rescue of SCN led to a recovery of circadian rhythms; these findings revealed

that SCN is the master clock in mammals [6, 7]. Moreover, the screening of mutant mice

using N-ethyl-N-nitrosourea revealed arrhythmic mutants, followed by identification of the

first clock gene circadian locomotor output cycle kaput (Clock) in mammals [8–10].

1.2.2 Systems biology and circadian rhythms

Mammalian circadian rhythms are good examples of systems biology because it is a typical

model system which is complex and dynamic. The circadian clock was defined using the

following three general criteria [11].

The rhythms are endogenous and oscillatory with an approximately 24-hour period.

The rhythms persist under constant conditions such as constant darkness with an

approximately 24-hour period.

The rhythms are entrainable to external environmental changes.

The rhythms are reset by environmental stimulation such as light and dark. This

criterion confers the ability to adapt to the environment and jet lag, for example.
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The rhythms are temperature-compensatory.

Many organisms live at a broad range of temperatures, but the circadian rhythms are

always approximately 24 hours. The mechanism behind this remained unclear, and

many issues about this were still unresolved. However, recent work has described that

this system can be explained by enzyme kinetics, without the need for transcription

and translation mechanisms to be involved [12].

The characteristics mentioned above are achieved by multilayered mechanisms, which are

difficult to clarify without systematic approaches (Fig. 1.1).



1.2 Circadian rhythms and systems biology 4

Gene

Protein

mRNA

Metabolite

Per1, Clock, Bmal1

PER1, CLOCK, BMAL1 (KaiABC)

Melatonin, Cortisol

Per1, Clock, Bmal1

A

B

Fig. 1.1 Multilayered mechanisms to construct circadian rhythms
(A) In mammals, the transcriptional/translational feedback loop is a core part of the
architecture of circadian rhythms. (B) Typical regulation of circadian rhythms by the
transcriptional/translational negative feedback loop.
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1.2.3 Molecular timetable to predict internal body clock

Circadian rhythms control many physiological functions and metabolic processes [13]. For

example, hormone secretion is under the control of the circadian rhythms. The abundances of

melatonin and cortisol in the blood, for example, oscillate in a circadian manner to regulate

the daily functions of peripheral organs [14–18]. There is increasing evidence that dosing

time affects drug efficacy and toxicity in humans [19–24]. For example, appropriately timed

administration of two anticancer drugs in ovarian cancer patients (adriamycin at 6:00 AM and

cisplatin at 6:00 PM) resulted in lower toxicity than arrhythmic administration [25]. However,

it has been reported that individual internal body times can vary by up to 5–6 hours among

healthy humans and even by 10–12 hours for night-shift workers [26–29]. The conventional

method to estimate body time is to measure the blood level of melatonin or cortisol over

24 hours because of the abundance of these hormones fluctuates in a circadian manner

[14, 17, 18]. However, this requires periodic blood sampling in a controlled environment,

which severely restricts patients’ activity. A simpler method is needed to measure patients’

body time in order to optimize drug efficacy [19–21, 23, 30]. Ueda et al. previously

demonstrated that a molecular metabolite timetable inspired by Linnaeus’ flower clock could

resolve these issues [14, 31]. In Linnaeus’ flower clock, the pattern of opening or closing

of different flowers indicated the time of day. Likewise, they constructed a timetable of

physiological molecules (e.g., metabolites) at particular times of the day and showed that

this timetable could accurately estimate body time.

For constructing the timetable, they used metabolome techniques to profile hundreds

to thousands of molecules in a sample. Metabolome profiling by mass spectrometry has

previously been used in other research fields including studies of bacteria, plants, and

mammals [32, 33]. The recent integration of capillary electrophoresis and mass spectrometry

(CE-MS) has achieved a high resolution with short measurement time [32, 34]. CE-MS is

capable of identifying several hundred metabolites in a small sample volume (on the order
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of nL). However, CE-MS is not suited to the measurement of neutral metabolites such as

fatty acids and sugars because the technique is optimized for ionic molecules. Instead, liquid

chromatography-MS (LC-MS) fills the gaps left by CE-MS [32].

1.3 Statistics to detect rhythms in chronobiology

A major issue in the field of circadian rhythms is how to detect circadian periodicity, for which

the c square periodogram is the golden standard for circadian rhythm studies [35, 36]. This

approach has been widely used for circadian cycle analysis of behavior, such as a locomotor

activity of mouse and rat or electric activity of cultured neurons/tissues. The c square

periodogram was applied for time-series data using the following procedures (Fig. 1.2).

1. Detrending by removing the head of the time-series data

2. Separating the time-series data by assumed periods P

3. Calculating the mean data yh at each time point by superimposing each section

4. Testing the periodicity by calculating QP, which was the normalized square error of yh

and y, and comparing with the significance level

QP is calculated using the following formula,

QP=

KN
P

Â
h=1

(yh � y)2

N

Â
i=1

(yi � y)2

(1.1)

where P is the period of samples, yh are the means of column after arranging the series (of

n elements) in an array of P columns, and K is the row number of the resulting array. QP

follows a c2 distribution with as many degrees as cycles in each section.
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QP becomes smaller when the assumed period P is out of the period of the actual time-

series, and it is maximized when it coincides with each other. It is expected that QP will

follow the c2 distribution whose degree of freedom is P� 1, if the time-series data are

long, and it is assumed that each point is independent of the same mother distribution. The

common procedure is that QP is calculated when changing the assumed period P (14–34

hours in this study), and QP is plotted with statistically significant levels (Fig. 1.2).
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Fig. 1.2 Procedure of c2 periodogram
(A) Time-series data were separated with an assumed period P = 24. (B) Time-series data
were separated with an assumed period P= 30, and they were overlaid. (C) QP was calculated
with gradual change of the assumed periods. The red line indicates the significance level.



Chapter 2

MICOP: Maximal information

coefficient-based oscillation prediction

to detect biological rhythms

2.1 Background

The circadian rhythm, which involves oscillations over a cycle lasting 24 hours, plays a

critical role in biological systems [37]. Transcriptional negative feedback loops composed of

clock genes are a key component of this mechanism [37–39]. These clock genes regulate

downstream gene expression, leading to the 24-hour rhythms of various physiological

phenomena such as cell division, energy metabolism, blood pressure, and sleep [17, 18].

Many molecules are involved in these systems, so comprehensive and multilayered

approaches are required to clarify the complex systems. Thus, it is crucial to obtain a deep

understanding of the circadian rhythms in order to understand biological systems.

The availability of biological time-course data is key to elucidating circadian rhythms,

but there are several difficulties in analyzing biological time-series data. In particular, the

accumulation of time-series omics data via the technological innovation of mass spectrometry
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and DNA sequencers has led to the following problems: (1) low sampling frequency and (2)

unstable oscillation. The first problem is derived from the generally low sampling frequency

of omics datasets because comprehensive approaches such as proteomics and transcriptomics

are often expensive and laborious. Several omics studies collected time-course data every 2–4

hours per day and estimated periodicity using 12 to 24 points [14, 31, 40, 41]. This sampling

frequency of omics data was relatively low compared with those for locomotor activity or

tissue luminescence, which were provided every minute [42]. The second problem is the

amplitude decay of time-course experimental values. There are various types of unstable

oscillations in the expression patterns of genes and proteins. For example, previous reports

assumed unstable oscillations such as cosine with outlier time points, cosine with a linear

trend, cosine with an exponential trend, and decaying cosine as possible natural oscillation

phenomena [42, 43]. These unstable oscillations hamper oscillation detection, in particular

for amplitude decay, which is often observed in experimental systems, and is caused by

degradation of the metabolic activity of cells and degradation of fluorescent proteins [44].

Therefore, the novel computational method that functions over the time course of omics

studies with limited sampling points and amplitude decay should be developed.

Many analytical approaches to predict molecules with oscillating levels from time-series

data have been developed. These algorithms were classified into time-domain and

frequency-domain methods [12]. Typical time-domain methods are based on cosine

curve-based pattern matching, and their simple algorithms help biologists to evaluate their

analytical results [45]. For example, chi-squared periodogram is algorithms employing

curve fitting and autocorrelation, respectively [46]. Hughes et al. developed

Jonckheere-Terpstrz-Kendall algorithm (JTK) which is a nonparametric approach using rank

by the nonparametric Jonckheere-Terpstra test and obtained the strength of correlation by

Kendall’s tau test [47]. However, they have disadvantages, such as sensitivity to noise and

outliers, and being able to detect only cosine wave-like curves; as such, there is a need for a
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novel algorithm that can overcome these obstacles. Meanwhile, frequency-domain methods

based on spectral analysis are strongly noise-resistant and model-independent; however, the

results are difficult for biologists to interpret [45]. Fisher’s G-test estimates periodicity by

calculating the periodogram of experimental data and calculating the P-value using Fisher’s

G-statistic [48]. Autoregressive spectral analysis (ARS) is an approach combining

time-domain and frequency-domain methods, used to identify molecules with rhythmically

oscillating levels in large-scale time-resolved profiles by autoregressive spectral analyses

[49, 50]. Similarly, an approach combining autocorrelation and spectral analysis after

removing noise from raw data with a digital filter was also proposed [51]; however,

frequency-domain methods are limited by the low sampling frequency and short period in

omics experiments, which means that they are often insufficient to predict the periodicity of

large-scale omics datasets [52]. Therefore, developed approaches to characterize oscillating

molecules in biological data have been used with success and have contributed to our

understanding of biological systems; meanwhile, it has been shown that each method

sometimes produces inconsistent results because of noise, sampling rate, and waveform [53].

A novel oscillation prediction method compatible with omics experiments, having a low

sampling frequency, was required, for which a quantitative evaluation of the performance

could also be achieved.

This study developed the maximal information coefficient (MIC)-based oscillating

prediction (MICOP) for analyzing time-series omics datasets with high-level noise and

possible decay. MICOP offers unsurpassed performance to identify and characterize

oscillating molecules in omics datasets.
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2.2 Materials and methods

2.2.1 Datasets

Time-resolved data from biological samples are generally obtained every 2–6 hours per day

[14, 31, 40, 41]. Therefore, I simulated time-series data containing 6–24 points for two cycles

for a performance test. Half of these artificially simulated data did not feature oscillation,

while the other half did. For oscillating data, to mimic experimental data, noise according

to the normal distribution (average = 0, the standard deviations = 0–0.6) was added to the

sine curve. The decaying time-series datasets were designed so that the value of the peak in

the second cycle is one-third of the value of the peak in the first cycle. The non-oscillating

data were random numerical data. Proteomics datasets of C57BL/6J and C57BL/6 were

downloaded from journal websites [40, 41]. The simulated data released by Wu et al. are

included in MetaCycle, as described below [53, 54].

2.2.2 Design

A conceptual diagram of MICOP is shown in Fig. 2.1.
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Scheme of MICOPA

B

Placing a grid whose cell size is less than n0.6

(n is sample size) on a scatter plot of reference sine
curve and experimental data

Calculating the mutual information for two variables

Repeating 1 and 2 to explore the maximum mutual
information

Calculating the Maximal information coefficient by 
normalizing the obtained muximum mutual information

Calculating P-values by numerical simulation

Fig. 2.1 A conceptual diagram of MICOP
(A) Procedure of MICOP. (B) Left boxes: experimental data (red) and reference sine curves
(blue); right boxes: scatter plots between reference sine curve (x-axis) and experimental data
(y-axis); top: typical oscillating data (MIC = 0.1, P < 0.05); middle: non-oscillating data
(MIC = 0.22, P > 0.05); bottom: decaying oscillating data (MIC = 0.94, P < 0.05).
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The MIC belongs to the nonparametric exploration class, and the score indicates the

strength of the linear or non-linear association between variables. First, the mutual

information for a scatter plot of X and Y is calculated as:

I (X ;Y ) = Â
Y

Â
X

p(X ,Y ) log2
p(X ,Y )

p(X)p(Y )
(2.1)

where p(X) and p(Y) are marginal probability distribution functions of X and Y, and p(X,Y) is

joint probability distribution function. Then, to compare the values from different grids and

to obtain normalized values between 0 and 1, MIC is divided by the lesser number of X and

Y bins. MIC is calculated as:

MIC (X ,Y ) = max
X ,Y<na

I(X ;Y )
log2 (min(X ,Y ))

(2.2)

The algorithm calculates the MIC value between the reference sine curve and experimental

data. The same sine curve was used for all input traces. The script for MICOP and its

performance test is provided as an R script. The P-values were calculated from the frequency

of each MIC value of experimental data and the MIC values that were calculated from

the random numbers. The MIC represents the strength of the association between the two

variables. The MIC between the reference sine curve and targeted data, such as experimental

data or simulated data, was calculated using the following steps. Step 1: Grids with different

resolutions are introduced to separate the different areas of the scatter plot of the two variables.

Step 2: Maximized mutual information at each resolution is selected. Step 3: The mutual

information is normalized for each resolution. Step 4: The maximum value among all

division methods is MIC. Step 5: to calculate the P-value, MIC between the reference

curve and 1000 non-oscillating time-series datasets, which comprised random values, was

calculated. I compared MIC values and enumerated the occurrences (k) when the MIC score

exceeded the score calculated. k/1000 was taken as the P-value of the MICOP. Then, I
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compute the P-value as:

P =
1

1000

1000

Â
t=1

I(MIC(X pi,Y pi)> MIC(X ,Y )) (2.3)

where I is the indicator function, and X pi and Y pi is the ith permutated version of X and Y ,

respectively. If the datasets have missing points, MIC is calculated without the point. The

P-values were corrected by the Benjamini–Hochberg method [55].

2.2.3 Performance test

The periodicity of the simulated data was determined by MICOP, JTK, ARS, and

Lomb-Scargle (LS) to test the performance of MICOP. The Matthews correlation coefficient

(MCC) was compared to compare the precision and sensitivity of MICOP. MCC values were

calculated as:

MCC =
T P⇥T N �FP⇥FNp

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(2.4)

where TP is the number of true positives, TN is the number of true negatives, FP is the

number of false positives, FN is the number of false negatives. The false discovery rate (FDR)

is widely used and is calculated from true positive and false positive values. In contrast,

MCC is more informative as a value evaluating the performance of the classification method

because it is calculated from the number of TP, FP, TN, and FN.

2.2.4 Reanalysis of previously reported time-resolved proteomics

datasets

To verify the practicality of MICOP, I reanalyzed the published time-series data [40, 41,

54, 56, 57]. Briefly, these are proteome datasets of C57BL/6, or C57BL/6J liver sampled



2.3 Results 16

every 3 hours for 1–2 days. Except for Robles et al., 2017, mice were bred under the light-

dark condition, and mouse in Robles et al., 2017 were bred under constant dark condition.

Moreover, simulated data which are two cycles containing 20 molecules. The MIC and

P-value were calculated as described in the Design section.

2.2.5 Programming languages and statistical analysis

R language (ver. 3.3.2) was used for all analyses [58]. Three different random seeds were

used; rnorm function was used to generate random numbers according to a normal distribution,

and runif function was used to generate uniform random numbers. The performance of

MICOP was compared to each method by Welch’s t-test. The Benjamini–Hochberg procedure

corrected the P-values for multiple testing. A graphical package named ggplot2 (ver. 2.2.0)

was used to draw figures. The Minerva package (ver. 1.4.3) was used to calculate the MIC

score, and binning range to calculate MIC score was 0.6, which is a default value of the R

library. The MetaCycle package (1.1.0) was used for periodicity judgment by ARS, JTK and

LS [51, 53, 54, 59, 60].

2.3 Results

2.3.1 Parameter search for MICOP

First, I tested gradually changed a to optimize MICOP for time-series analysis (Fig. 2.2).

As a result, MCC values were almost constant without a , indicated that a is not essential for

oscillation prediction. In this paper, a=0.6 which was recommended by the original article

of the MIC was used for the following analysis.
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Fig. 2.2 Optimization of a for time-series analysis
The x-axis indicates a and the y-axis indicates MCC values. MCC values and a have no
units. The error bars indicate standard error (n=3).
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2.3.2 Computation time of MICOP

To evaluate computation time for evaluation of time-series data, I compared CPU time of

MICOP and widely used existing methods (Fig. 2.3). The process times of all methods were

sufficiently shorter than experiment containing mice sampling and proteome analysis by

mass spectrometry. The characteristic point of MICOP was that the calculation cost increased

exponentially as the sampling point increased.

2.3.3 Noise levels of proteome data

To evaluate the actual noise level of proteome datasets, I calculated noise level of published

mouse proteome data (Fig. 2.4) [61]. The average noise levels of detected proteins were

approximately 0.2, and the noise levels of typical clock proteins were between 0.1–0.3.
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Fig. 2.3 Comparison of computation time of MICOP and existing methods for two-
cycle data
The x-axis indicates each method and the y-axis indicates elapsed time (sec). Sampling
intervals are illustrated as color gradation. The error bars indicate the standard deviations
(n=3).
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Fig. 2.4 Noise levels of proteome data
Noise levels of all protein and typical clock proteins were shown. The y-axis indicates noise
level. Noise level has no units. Error bars indicate the standard deviations (n=3).
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2.3.4 Comparison of MICOP and existing methods for decaying data

To test the performance of MICOP, JTK, ARS, and LS for mimicking the decaying time-

resolved data, the MCC values were calculated to differentiate significantly oscillating data

from non-oscillating data using time-series simulation data, including 100 sets of oscillating

data and 100 sets of non-oscillating ones (Figs. 2.5 and 2.6). Two-way ANOVA with

method and sampling frequency as factors revealed significant effects of method (F = 18.14,

P< 8.28⇥10�8), sampling frequency (F = 47.53, P< 1.64⇥10�8) and method ⇥ sampling

frequency interaction (F = 14.55, P < 1.01⇥10�6). MCC values were 0.72 (P < 0.005),

0.40 (P < 0.005), 0.082 (P < 0.005), and 0.00 (P < 0.005) for MICOP, ARS, JTK, and

LS, respectively, when the sampling interval was 4 hours (Fig. 2.5). The MCC values

increased as the sampling frequency increased, and these values became almost equal to 1 in

all methods at 1-hour interval sampling. The MCC values of MICOP were 0.7 or more at

all sampling frequencies and were the highest at sampling intervals of 1–3 hours, followed

by ARS and JTK. LS did not function as a classifier at sampling intervals of 1–3 hours.

Furthermore, Receiver Operating Characteristic (ROC) curves were consistent with these

results (Fig. 2.7).
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Fig. 2.5 MCC values of MICOP, ARS, JTK, and LS for decaying data
Comparison of detection power of MICOP and existing methods for decaying data. (A)
Typical decaying oscillation data, (B) typical non-oscillation data, (C) MCC values from
simulated time-resolved data in which half represent oscillating data, whereas the other half
represent random numerical data, of which half does not oscillate. Noise level was 0.4 (the
standard deviation). The x-axis represents the MCC value, while the y-axis represents the
sampling interval (hours). The color indicates each method: red, MICOP; green, ARS; blue,
JTK; and purple, LS. Error bars indicate the standard deviations (n=3). MCC and noise level
have no units.
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2.3.5 Comparison of MICOP and existing methods for noisy or low-

sampling-frequency

I compared the accuracy of MICOP and existing methods for time-series data containing noise

and having a low sampling frequency without attenuation (Fig. 2.8). Initially, I quantitatively

evaluated the degradation of classification performance due to the noise of MICOP (Fig.

2.8). Two-way ANOVA with method and noise level as factors revealed significant effects of

method (F = 1.09⇥103, P < 2.00⇥10�16), noise level (F = 6.43⇥102, P < 2.00⇥10�16)

and method ⇥ noise level interaction (F = 4.76⇥102, P < 2.00⇥10�16). The MCC values

were 0.8 or more, except for LS, in all conditions, even if the noise was 0.500; however, LS

did not function as a classifier when the noise was 0.375 or more.

The performance of MICOP as a classifier for low-sampling-frequency unattenuated data

was also quantitatively evaluated (Fig.2.8). Two-way ANOVA with method and sampling

frequency as factors revealed significant effects of method (F = 4.24⇥ 102, P < 2.00⇥

10�16), sampling frequency (F = 4.48⇥ 102, P < 2.00⇥ 10�16) and method ⇥ sampling

frequency interaction (F = 1.42⇥ 102, P < 2.00⇥ 10�16). The MCC values increased in

all methods as the sampling interval decreased, and were equal to 1 in all four methods at a

sampling interval of 1 hour. LS did not function as a classifier at sampling intervals of 3–4

hours. The MCC values of MICOP were 0.7 or more under all conditions.
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Fig. 2.8 MCC values for time-series data with different sampling frequencies or
gradually added noise without attenuation
Comparison of MCC values of each method (A) when the noise was added gradually (3-hour
sampling frequency) and (B) when the sampling frequency was changed (noise level was 0.4),
and both simulation datasets were not decaying. The P-value calculated by Tukey-Kramer
test. The error bars indicate the standard deviations (n=3). MCC values and noise have no
unit.
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2.3.6 Comparison of MICOP and existing methods for noisy one-cycle

data

I compared the accuracy of MICOP and existing methods for one-cycle data (Fig. 2.9).

Among all conditions (method, noise, and sampling frequency), determination accuracies

using one-cycle were lower than those using two cycles. All methods did not work under all

conditions at the 4 hours sampling frequency. Meanwhile, MICOP and JTK showed high

performances under sampling conditions 5 3 hours.
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2.3.7 Phase estimation of MICOP and existing methods

I compared the phase estimation accuracy of MICOP and existing methods using time-shifted

data containing noise and having a low sampling frequency without attenuation (Fig. 2.10).

As a result, an absolute time lag of MICOP showed the smallest gaps. ARS, JTK, and LS

showed average 0.75–1 hour, relatively MICOP showed 0.5 hours.
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Fig. 2.10 Phase estimation of MICOP and existing methods for time-shifted data
(A) Histogram of time lags between correct phase and estimated phase. The x-axis indicates
the frequency and the y-axis is a time lag (hours). (B) Absolute time lag (hours) between
correct phase and estimation phase of MICOP and existing methods. P-values were calculated
by Welch’s t-test. The error bars indicate the standard deviations (n=1000).
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2.3.8 Amplitude estimation of MICOP and existing methods

I compared the phase estimation accuracy of MICOP and existing methods using 1000

time-series data having a different amplitude (Fig. 2.11). The r2 values of each method were

more than 0.9, and there are no significant changes in each method.
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2.3.9 Reanalysis of previously reported time-resolved proteomics

datasets

I reanalyzed the time-series proteome data for mouse liver reported by Mauvoisin et al.

using C57BL/6 and those reported by Robles et al. using C57BL/6J, as well as simulated

data released by Wu et al. (Fig. 2.12, Tables 2.1, and 2.2) [40, 41, 54]. The numbers of

significantly oscillating proteins assessed by standard harmonic regression were 9 (the F

test for multilinear regression, P < 0.01), 9 (Fisher’s exact test, P < 0.01), and 3 (P < 0.01)

for biological data in the original work. Meanwhile, 32, 22, and 5 proteins were judged as

being significantly oscillating for C57BL/6J, C57BL/6, and Wu’s simulated data by MICOP,

respectively (P < 0.05). The numbers of proteins judged to be significantly oscillating in

both the original work and MICOP were 2, 8, and 2 for biological data, respectively. The

numbers of proteins judged as being significantly oscillating for the three tests mentioned

above only by MICOP were 30, 14, and 3 for biological data, respectively.
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Fig. 2.12 Venn diagrams of significant molecules the levels of which oscillate
MICOP reanalyzed published time-resolved datasets, and Venn diagrams were constructed
to quantify the overlap between MICOP and the original article. A and B represent mouse
proteomics data: (A) C57BL/6J [41], (B) C57BL/6 [40], and (C) Wu’s simulated data [54].
Blue indicates the original article and red indicates MICOP.
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Table 2.1 Novel oscillating protein candidates detected by MICOP

Gene name Species Condition Tissue Reference
Acot8 - - - -
Acox1 Homo sapiens LL blood [62]

Mus musculus LD liver/SCN [63, 64]
Acsl5 Mus musculus DD/LD liver/SCN [65]

Mus musculus LD SCN [63]
Akr1c14 Mus musculus LD liver [66]

Mus musculus DD cartilage tissue [67]
Cbs Mus musculus DD/LD liver [68–71]

Mus musculus LD SCN [63]
Homo sapiens LL blood [62]

Cct8 Mus musculus LD SCN [63]
Ces1b - - - -
Chid1 Mus musculus DD/LD liver/SCN [72]
Cxadr Mus musculus DD/LD liver/SCN [68]
Cyp4f14 - - - -
Gns Homo sapiens LL blood [62]

Mus musculus DD/LD liver [66]
Golgb1 Mus musculus DD/LD liver/SCN [63, 66, 73]
Gpx3 - - - -
Hars Mus musculus LD liver [66]
Hrg - - - -
Mfap4 - - - -
Mug1 Mus musculus DD liver [68]
Pdcd6 Mus musculus LD liver/SCN [63]
Ptms Mus musculus LD SCN [63]
Safb - - - -
Serpina6 Mus musculus DD/LD liver [68]
Sf3b2 Mus musculus DD/LD telogen epidermis [72]
Slc9a3r1 Mus musculus DD/LD liver [72]
Snrpd3 Mus musculus LD liver [73]
Stk38 Mus musculus DD liver [72]

Mus musculus LD SCN [63]
Tpr Mus musculus DD/LD liver [66, 72]
Txndc15 Mus musculus DD/LD liver [72, 73]

Mus musculus LD SCN [63]
Ubl4a Mus musculus LD SCN [63]

Mus musculus DD liver [72]
Uox Mus musculus DD/LD liver [62, 65, 68, 73]
Ythdf2 Mus musculus LD liver [73]

Light-dark (LD) stands for the daily 24-hour light-dark cycle, light-light (LL) stands for constant lightness,
and dark-dark (DD) stands for constant darkness conditions. Hyphens indicate that I could not find previous
consistent works which prove the mRNA oscillation.
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Table 2.2 Novel oscillating protein candidates detected by MICOP

Gene name Species Condition Tissue Reference
Anp32e Mus musculus DD/LD liver [65, 66]
Anpep - - - -
Cgn Mus musculus LD liver [73]
Csde1 Mus musculus LD liver [65]

Mus musculus DD SCN [63]
Enpp4 Mus musculus LD liver/anagen epidermis [66, 72, 73]
Gnl2 Mus musculus DD hippocampus/liver [65, 74]

Mus musculus LD SCN [63]
Ldhb Homo sapiens LL blood [62]

Mus musculus LD anagen epidermis, SCN [63, 72]
Numa1 Mus musculus LD liver [66]

Mus musculus DD cartilage tissue [67]
Prdx2 Mus musculus LD SCN [63]
Rnf114 - - - -
Slc4a1 - - - -
Slco1b2 Mus musculus DD/LD liver [65, 66, 68]
Tomm70a - - - -
Vps26a - - - -
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Fig. 2.13 Venn diagrams of significant molecules the levels of which oscillate of newly
published datasets
MICOP reanalyzed newly published time-resolved datasets, and Venn diagrams were
constructed to quantify the overlap between MICOP and the original article. (A) Light-
dark condition with C57BL/6J [57], (B) dark-dark condition with C57BL/6 [61]. Blue
indicates the original article and red indicates MICOP.
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2.4 Discussion

Although many algorithms have been developed to extract molecules with rhythmic

oscillation in their levels from large-scale time-series data derived from mass spectrometry

systems or DNA sequencers, it is known that the accuracy and sensitivity of such methods

depend on noise, sampling frequency, and waveform. In particular, the discussion of the

prediction power in conditions of decaying oscillation is beneficial for not only

bioinformaticians but also molecular biologists. In this research, I provide MICOP, which is

classified as a time-domain method, and demonstrate that the algorithm is particularly

effective for detecting decaying oscillation.

I compared the detection power of MICOP and previously reported algorithms for

decaying oscillation. I revealed that regarding the power for detection of decaying oscillation,

MICOP outperformed other algorithms (Fig. 2.5). In particular, MICOP showed a clear

advantage when the sampling frequency was low. The reason is the MIC can effectively detect

non-linear associations like associations between decaying oscillation and the reference sine

curve (Fig. 2.1). ARS showed high performance following MICOP because de-trending

at preprocessing seemed to cancel out the decay of time-series data. JTK had the third best

detection power, although high performance was expected because it was based on Kendall’s

tau, which is a measure of rank correlation, and it did not depend on amplitude. The JTK

output overly conservative P-values, therefore, the low threshold should improve performance

evaluated by MCC. These results indicate that MICOP has the excellent performance for

decaying oscillation, and suggests that the MIC-based approach that can detect non-linear

associations is useful to detect decaying oscillation.

Moreover, I compared the MCC values for all methods of data containing gradual

Gaussian noise to test the noise resistance (Fig. 2.8). As a result, MICOP showed equal

performance to JTK and ARS in the range of the standard deviations of 0.125–0.500. This

result indicated that the performance of MICOP for noisy data is equal to that of the existing
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methods. This result suggests that the robustness to noise of MICOP is the same as that of

well-known ARS and JTK, while the high performance of LS was limited to conditions with

a low noise level. This numerical experiment revealed that the noise resistance of MICOP is

the same as that of other widely used methods.

Clarifying the relationship between accuracy and sampling frequency in analyzing omics

data, for which increasing the number of sampling points seems difficult, is important for

determining the experimental design. As expected, with increasing sampling frequencies,

the MCC values tended to increase (Figs. 2.5 and 2.8). The fact that the ARS, JTK, and

LS could characterize oscillation and non-oscillation in almost all cases when the sampling

interval was 2 hours or less is similar to the findings in the original research studies of

various methods and research comparing them [43]. This result suggested that a high

sampling frequency improved accuracy; therefore, sampling frequency should be as high as

experimental constraints allow.

I applied MICOP and existing methods for one-cycle of data (Fig. 2.9). As expected,

accuracy decreased for all methods when one-cycle was used. However, MICOP and JTK

showed high MCC values among methods under this condition. Also, MICOP seems to

outperform JTK under limited conditions which are low sampling frequency and high noise

for one-cycle data (Fig. 2.9). Human omics data often have lower sampling frequencies, high

noise levels, and only one-cycle. Our results suggest that MICOP and JTK have considerable

potential for analyzing human omics datasets.

I reanalyzed the time-series proteomics data of C57BL/6J and C57BL/6 to test the

performance of MICOP and explore additional candidates of proteins with a rhythmic change

in their expression profiles [40, 41]. These datasets include the mouse liver proteome data

obtained by sampling every 3 hours for 2 days, for which the analysis of the peptides was

performed with a mass spectrometer. Approximately, 3000 protein types were detected in

each study. Proteins that were detected in both MICOP and the original studies numbered



2.4 Discussion 40

2 and 8 for C57BL/6J and C57BL/6, respectively (Fig. 2.12). This actual application for

proteomics data suggests that MICOP can obtain results in a manner approximately similar

to the existing methods. Specifically, the MICOP results were consistent with those in the

original articles regarding these commonly identified proteins. Furthermore, the proteins

those were uniquely identified with MICOP were numbered 30 and 14 for C57BL/6J and

C57BL/6, respectively (Tables 2.1 and 2.2). These results strongly suggest that MICOP

is a powerful tool to detect proteins with rhythmic changes in their expression levels from

time-resolved proteomics data.

Although mass spectrometry-based approaches have been used for proteome-level

studies of circadian rhythms, completely measuring mouse proteomes remains difficult. A

comprehensive transcriptome analysis with parallel sequencers has revealed that 15–20 % of

mouse liver mRNA significantly oscillates [75]. However, in these proteome studies of

C57BL/6 and C57BL/6J, significantly oscillating protein are rare (< 1 % of detected total

proteins; FDR < 0.05), a result inconsistent with those of mouse proteome studies. Multiple

factors can explain this pattern. Typical clock proteins known as principle oscillators such as

CRY1, CRY2, PER2, REV-ERBa , and CLOCK have comparatively low expression levels

and are not detected in these studies [38]. Also, non-Gaussian experimental noise which is

specific to MS measurement hampers the application of a statistical test on proteins [76].

These problems may be improved by analyzing higher quality proteome datasets with

modern technologies [57, 61]. Some core circadian proteins such as CRY1, CRY2, PER2,

REV-ERVa , and CLOCK could not be detected in the proteome studies which I refer in this

paper [40, 41]. However, those proteins could be detected in recently published proteome

datasets [57, 61]. Thus, the development of proteome analysis technology may resolve

discrepancies between results of the transcriptome analysis and proteome analysis, and

clarify connections within the circadian rhythm transcription and translation network.



2.4 Discussion 41

I present a new list of proteins that oscillate by MICOP (Tables 2.1 and 2.2). The

accuracy of these estimates is difficult to ascertain. Interestingly, a large fraction of candidates

was presumed to oscillate in a previous transcriptome analysis [75]. Two independent

expression patterns of genes encoding these proteins, I estimated that the proteins studies

which measured both transcriptome and proteome of human samples revealed that only 30 %

of the mRNA-protein correlation had statistically significant [77, 78]. This fact suggested

that even if mRNA abundance is oscillating, protein abundance may not always be oscillating.

However, about 90 % of mRNA-protein correlation showed positive. Hence rhythmic

mRNA expression suggests the possibility of protein oscillation [77]. An overlap between

re-analyzed proteomics data by MICOP and transcriptome analysis showed a consistent

result.

MICOP accuracy tends to be low for data that do not perfectly fit a sine curve. The

periodicity that MICOP can detect is subject to the shape of the reference curve, so changing

the reference curve is necessary to detect asymmetric waveforms including sawtooth-like

shapes like RAIN [76]. Furthermore, adjusting the FDR is essential for accurate prediction,

since MICOP repeats the hypothesis tests. Also, verification with additional data such as

periodic peak wave or overlapping sine wave is necessary in order to evaluate the accuracy

of MICOP more precisely. Judgments of phase and cycle are possible in principle, but I did

not perform them; therefore, this should be considered in future studies. Mutual information

increased when the sample size was small, and a correlation between the two variables

was null, even when the variables were random [79]. I solved this issue in MICOP by

determining the P-value with the Monte Carlo method. When the time points (sample size)

are small, the criterion for calculating the P-value increases, and when the time points are

large, the criterion for calculating the P-value decreases (Fig. 2.14). In this paper, I presented

MICOP, which is the MIC-based algorithm, for predicting periodic patterns in large-scale

time-resolved protein expression profiles. The performance test using artificially generated
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simulation data revealed that the performance of MICOP for decaying data was superior to

that of the existing widely used methods. Additionally, I indicated that MICOP is compatible

with noisy data obtained with a low sampling frequency. Furthermore, the performance test

using actual mouse proteomics data suggested that MICOP may be able to provide novel

findings from proteomics data. Specifically, it can reveal novel findings from time-series data

and may contribute to biologically significant results. This study suggests that MICOP is an

ideal approach for detecting and characterizing oscillations in time-resolved omics datasets.
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Fig. 2.14 Monte Carlo simulation to calculate P-values
MIC values were calculated between random numbers. The x-axis indicates sample number
(n time points) and the y-axis indicates MIC. The box plots show the first quartile and third
quartile range of the data and outliers. The blue color represents random values and the red
color represents the significance threshold (5 %). MIC has no unit.
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2.5 Conclusion

In this paper, I presented MICOP for predicting periodic patterns in large-scale time-resolved

protein expression profiles. The performance test using artificially generated simulation

data revealed that the performance of MICOP for decaying data was superior to that of the

existing widely used methods. Additionally, I indicated that MICOP is compatible with noisy

data obtained with a low sampling frequency. Furthermore, the performance test using actual

mouse proteomics data suggested that MICOP may be able to provide novel findings from

proteomics data. Specifically, it can reveal novel findings from time-series data and may

contribute to biologically significant results. This study suggests that MICOP is an ideal

approach for detecting and characterizing oscillations in time-resolved omics datasets.



Chapter 3

Amino acids acetylation by orphan

enzyme YhhY in Escherichia coli

3.1 Background

Escherichia coli (E. coli) is one of the most studied model organisms. However, even in

E. coli, the function of 30–40 % of all enzymes has not been experimentally demonstrated

[80–86]. Therefore, there is also a large number of metabolites whose responsible enzymes

have not been identified, which are referred to as "orphan metabolites" including some

acetylated amino acids. These molecules create gaps in metabolic maps and represent an

obstacle to understanding the metabolic systems [87].

Many algorithms have been developed to predict the functions of protein from their

amino acid sequences, such as homology-based methods, structure-based methods, and

genomic context-based methods [88–92]. Homology-based methods are based on the logic

that similar sequences have similar functions and represent the most widely used prediction

methods [88]. Structural similarity is a useful index for predicting protein function because

3D structures are sometimes better conserved than sequences are [90]. In prokaryotes,

genes that are physically close on chromosomes have been conserved over the course of
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evolution as operons and often tend to interact with each other [80, 91]. Therefore, the

context-based method called the gene neighbor method using position information in the

genome is particularly useful in prokaryotes such as E. coli [93]. However, these informatics-

based approaches are only estimation methods, and experimental validation is required for

definitive proof of a molecular function. The experimental validation is essential to obtain a

deep understanding of metabolic systems.

Using mass spectrometry, I aimed to identify the activity of an uncharacterized enzyme

of E. coli. In this context, it has been reported 40 years ago that E. coli extract acetylated

phenylalanine, histidine, and alanine dependent on acetyl-CoA [94]. However, despite my

investigations, I have not yet identified enzymes that acetylate these amino acids. I selected

the uncharacterized enzyme YhhY in E. coli, as an example of enzyme characterization

system using mass spectrometry. The function of YhhY was predicted to be acetyltransferase

based on amino acid sequence the similarity, and the growth rate of yhhY knockout strain was

suppressed in the presence of metal ions [95, 96]. However, the substrate of YhhY was not

experimentally identified. Therefore, I aimed to establish enzyme characterization system

with the functionally unknown enzymes YhhY of E. coli by combining a classical acetylation

assay method and mass spectrometry-based metabolome analysis.

3.2 Materials and methods

3.2.1 Strains and culture conditions

The E. coli K-12 BW25113 strain was used as the wild-type, and the yhhY gene deletion

mutants of the wild-type were obtained from the Keio collection [97, 98]. These strains

were used for metabolome analysis. In addition, I used a yhhY-cloned strain obtained from

the ASKA library for protein expression and metabolome analysis [99]. All the procedures

for cultivating the wild-type and DyhhY mutant were performed using M9 medium (4.0 g
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glucose, 6.8 g Na2HPO4, 3.0 g KH2PO4, 0.5 g NaCl, 1.0 g NH4Cl per litter) supplemented

with 2 mM MgSO4, 100 µM CaCl2, 0.01 % thiamine, and with or without 10 µM CoCl2.

The cultivation was carried out at 37 �C in a working volume of 50 mL in a 500 mL flask with

shaking. The cultivation of the yhhY-overexpressing strain was performed with LB medium

(10 g tryptone, 5 g yeast extract, 10 g NaCl per 1 liter). The spectrometer V-530 (JASCO,

Tokyo, Japan) was used to measure OD600 nm for the normalization of cell number.

3.2.2 Expression and purification of recombinant proteins

Six ⇥ histidine-tagged YhhY was purified from ASKA clone [99]. Overnight Autoinduction

System (Novagen, WI, USA) was used to perform the expression of the YhhY protein. Cells

carrying the plasmid including the yhhY gene were inoculated in LB medium containing

chloramphenicol for maintenance and incubated at 37 �C overnight for pre-culture. Two

microliters of the saturated culture were inoculated into 2 ml of fresh LB medium

supplemented with a solution for protein overexpression, following the manufacturer’s

instructions, and was cultured at 37 �C for 16 hours with shaking. Recombinant YhhY

protein was purified using MagneHis Ni-Particles (Promega, WI, USA), following the

manufacturer’s instructions. Glycerol was added to a final concentration of 50 %, and the

sample was stored at �20 �C until use.

3.2.3 The in vitro assay of YhhY

The reaction was performed in reaction buffer (50 mM Tricine, 20 mM KCl, 5 mM MgCl2, 5

mM MnCl, 0.1 mM Ca2+) supplemented with 20 mM acetyl-CoA, 10 mM 20 amino acids as

substrates, 1 mM 2-morpholinoethanesulfonic acid, and 1 mM 3-aminopyrrolidine as internal

standards for the MS analysis. The reaction buffer supplemented with 5 µL of beads with

attached proteins was incubated at 37 �C overnight with shaking.
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3.2.4 Extraction for metabolome analysis

Sample preparation was performed by a method established by Ohashi et al. [100]. An

aliquot of 50 mL of culture broth (OD600 nm⇡0.5) was filtered using a 0.45 µm pore size

filter (GE Healthcare, IL, USA). The cells on the filter were washed twice with 20 mL of

Milli-Q water at 37 �C, and the metabolism was stopped by steeping in 5 mL of methanol

at 4 �C containing 2 µM 2-morpholinoethanesulfonic acid, 2 µM D-camphor-10-sulfonic

acid, and 2 µM methionine sulfone as internal standards (Merck, Darmstadt, Germany).

Sonication separated the cells on the filter. Four milliliters of methanol extract solution

was stored at �80 �C until the next step. A total of 4 mL of chloroform and 1.6 mL of

Milli-Q water were added to 4 mL of methanol extract solution, which was then fully mixed.

The solution was centrifuged at 2,300 g for 5 min at 4 �C, and the 4 mL of the separated

methanol layer was filtered by centrifugation at 2,300 g for 15 min at room temperature

through a 5 kDa cutoff filter to remove high-molecular-weight compounds (Merck, Darmstadt,

Germany). The filtrate was lyophilized and then dissolved in 50 µL Milli-Q water containing

1,3,5-benzenetricarbonyl and 3-aminopyrrolidine as internal standards for migration time

normalization.

3.2.5 Instruments and conditions for CE-MS analysis

Metabolome analysis was performed using an Agilent CE Capillary Electrophoresis System

equipped with an Agilent 6210 time-of-flight mass spectrometer, Agilent 1100 isocratic

HPLC pump, Agilent G1603A capillary electrophoresis–mass spectrometry (CE-MS) adapter

kit, and Agilent G1607A CE-electrospray ionization-MS sprayer kit (Agilent Technologies,

CA, USA). The system was controlled by Agilent G2201AA ChemStation software for

CE. CE-MS analysis was carried out using a modified version of the method described by

Hirayama et al. [101], with two minor changes: sample solutions were injected at 50 mbar

for 5 seconds, and the flow rate of nitrogen gas was set at 7 psig. All chemical standards
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were dissolved in Milli-Q water, 0.1 M HCl or 0.1 M NaOH to obtain 1, 10, or 100 mmol/L

stock solutions. The standard chemical mixture solution for the analysis was prepared by

diluting with Milli-Q water to 20 µM each.

3.2.6 CE-MS data processing and statistical analysis

The in-house software for the identification and quantification of metabolites was used to

process raw data. The data processing flow consisted of the following five steps: (1) noise

filtering, (2) baseline correction, (3) migration time alignment, (4) peak detection, and (5)

integration of a peak area. Obtained migration times of peaks in multiple samples were

normalized using the dynamic programming-based techniques [102]. All the peak areas were

divided by the area of internal standards for the normalization of sensitivity fluctuation among

multiple measurements. Peaks under a threshold signal-to-noise ratio of 2 were considered

undetected. The peaks derived from metabolites were identified if the measured m/z values

and normalized migration times corresponded to standard compounds with an error tolerance

of 40 ppm and 0.01 min. Processed peak lists were exported for further statistical analysis.

The obtained metabolite concentration was normalized using OD600 nm.

3.3 Results

3.3.1 Amino acids acetylation of YhhY in vitro

My purpose is to reveal YhhY activity by traditional biochemical experiments and recently

established techniques such as MS-based metabolome analysis. First, E. coli carrying a

vector for yhhY gene overexpression was cultured, YhhY was subsequently purified, and

a single band of the expected size was detected, but unsuspected bands were not detected

(Fig. 3.1). Next, purified YhhY, the 20 amino acids, and acetyl-CoA were added as sources

of acetyl groups into the test tube and reacted. Acetylation using acetyl-CoA produces free
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CoA, and Ellman’s reagent can be used to detect the byproducts by staining. Ellman’s reagent

which reacted with the thiol group has a maximum absorption wavelength at OD412 nm.

In this experiment, OD440 nm was measured with a spectrometer to quantify free CoA.

The results showed that free CoA was produced when YhhY was reacted with methionine,

histidine, and phenylalanine (Fig. 3.2).
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Fig. 3.1 SDS-PAGE of purified YhhY
Sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyzed the purity of purified
YhhY. The right column contains markers, and the left contains purified YhhY.



3.3 Results 52

0.0

0.1

0.2

0.3

0.4

Al
a

Ar
g

As
n

C
ys G
ln

G
lu

G
ly

H
is Ile Le
u

Ly
s

M
et

Ph
e

Pr
o

Se
r

Th
e

Pr
od

uc
t c

on
ce

nt
ra

tio
n 

(m
M

)

Tr
p

Ty
r

Va
l

Fig. 3.2 Amino acids screening for YhhY target
The y-axis indicates product concentration, and the x-axis indicates each amino acid.
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3.3.2 Inhibition by thiol reaction reagents, Lineweaver-Burk and

ordination plots

Next, to clarify this acetylation event, an experiment involving inhibitor addition was

performed. The addition of ethylmaleimide or iodoacetamide, well-known thiol reaction

reagents competitively inhibiting acetylation in experimental systems, resulted in inhibition

of the activity of YhhY (Fig. 3.3). Furthermore, a time-series experiment was performed in

order to calculate the reaction rate, a Lineweaver-Burke plot and an ordination plot were

drawn, and the rate of the reaction of YhhY with methionine was calculated (Fig. 3.4, Table

3.1). The Lineweaver-Burk plot revealed that acetylation by YhhY follows a ternary

complex mechanism but not a ping-pong mechanism (Fig. 3.5).
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Fig. 3.3 Inhibition of acetylation event by N-ethylmaleimide and iodoacetamide
YhhY purified from E. coli, acetyl-CoA, and methionine were reacted with (A) iodoacetamide
and (B) N-ethylmaleimide. The x-axis indicates inhibitor concentration (µM). The y-axis
indicates relative activity (%) to that for the experiment without thiol reaction reagent.
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Fig. 3.5 Amino acids acetylation by YhhY
A schematic illustration of methionine acetylation catalyzed by YhhY. This acetylation event
follows a ternary complex mechanism.
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3.3.3 In vitro acetylation by extract of yhhY-overexpressing cells

Next, to prove that purified YhhY catalyzed these acetylation events, and not by a

contaminating enzyme, I performed the in vitro experiment using extracts of

yhhY-overexpressing cells. If a contaminated protein was responsible for the acetylation

events, high-level acetylated products should also be detected in control extracts. The results

showed that high-level acetylated products were detected only in the extract of

yhhY-overexpressing cells (Fig. 3.6). Also, consistent with the purified YhhY experiment,

the results showed different reaction rates for these three amino acids.
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Fig. 3.6 Amino acids acetylation by extract of yhhY-overexpressing cells
Extracts of yhhY-overexpressing cells were incubated with acetyl-CoA and amino acids.
Red bars indicate control and blue bars indicate samples containing extracts of yhhY-
overexpressing cells. Error bars indicate standard deviations (n = 3).
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3.3.4 Acetylated products in yhhY-overexpressing cells

Next, MS-based metabolome analysis of the E. coli strain carrying the yhhY-overexpressing

vector was performed to clarify the intracellular activity of YhhY (Apx. A.1). First,

CE-MS-based metabolome analysis revealed that acetylated amino acids were detected in

yhhY-overexpressing cells only (Fig. 3.7). However, there were no significant changes in

methionine, histidine, and phenylalanine.
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Fig. 3.7 Accumulation of acetylated amino acids in yhhY-overexpressing cells
Accumulation of methionine, histidine, phenylalanine, acetylmethionine, acetylhistidine, and
acetylphenylalanine (n = 3) in control strain and yhhY gene-overexpressing strain. Error bars
indicate standard deviation. The red bar is the control strain, the blue bar is the overexpressing
strain.
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3.3.5 Metabolome analysis of wild-type and yhhY deletion mutants

under 10 µM cobalt conditions

Metabolome analysis of wild-type and yhhY deletion mutants under 10 µM cobalt conditions

was performed to clarify in vivo activity of YhhY (Apx. A.2). The principal component

analysis (PCA) showed metabolome level changes between the wild-type and yhhY deletion

mutants (Fig. 3.8). The metabolome in wild-type cells is similar with and without cobalt in

the medium; however, the metabolome is clearly different from the yhhY deletion mutants.
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Fig. 3.8 PCA result of metabolome analysis with the wild-type and yhhY deletion
mutants
Principal component (PC) analysis of E. coli metabolome. The color indicates genotype,
and the shape indicates medium. Metabolome analysis was performed with CE-MS. WT
indicates wild-type, and DyhhY indicates yhhY deletion mutants. The x-axis indicates PC1,
and the y-axis indicates PC2. The contribution ratios were 72.1 and 21.3 % for PC1 and PC2,
respectively.
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3.4 Discussion

3.4.1 Specific amino acids acetylation by YhhY in vitro

The uncharacterized enzyme YhhY of E. coli was predicted to be as an amino acids

acetyltransferase based on amino acid sequence homology; however, there was no

experimental evidence of the function, and the target amino acids were unknown [87]. The

in vitro screening of the 20 amino acids revealed that YhhY specifically acetylates

methionine, histidine, and phenylalanine with different reaction rates (Fig. 3.2). Next, the

well-known thiol-reactive reagents ethylmaleimide and iodoacetamide were shown to inhibit

the YhhY activity in a concentration-dependent manner (Fig. 3.3). These results indicate that

YhhY requires a free thiol group; thus, the acetylation of YhhY seems to involve a ternary

complex mechanism and not a ping-pong mechanism.

3.4.2 Reaction rate and reaction pattern of YhhY

The time-course experiment to clarify the in vitro activity of YhhY was performed and the

Lineweaver-Burk plot and an ordination plot were created to determine the substrate affinity

of YhhY for acetyl-CoA and methionine, as shown in Fig. 3.4. Table 3.1 shows the Km

and Vmax values. Based on the Lineweaver-Burk plot, when each substrate concentration

is gradually changed, and each approximately straight line did not become parallel, it was

suggested that the acetylation event by YhhY involves a ternary complex. In other words,

YhhY binds to acetyl-CoA and methionine, and these three molecules from a complex;

CoA and acetylated amino acids are then released as products. The fact that YhhY adopted

a ternary covalent complex means that free CoA is necessary for the reaction, consistent

with the inhibition of the reaction by thiol-reactive reagents such as ethylmaleimide and

iodoacetamide. Fig. 3.5 shows a schematic diagram of this reaction model. I showed that

YhhY is an acetyltransferase for methionine, histidine, and phenylalanine with different
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reaction rates and obtained detailed kinetic parameters for methionine. Furthermore, I showed

that this acetylation event follows a ternary complex mechanism.
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Table 3.1 The reaction rate of YhhY with methionine

Km for Met Km for acetyl-CoA Vmax
0.0047 0.29 0.021
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3.4.3 The in vitro assay by E. coli extract

The in vitro assay using the extract of yhhY-overexpressing cells was performed to eliminate

the possibility of a contaminating enzyme having acetylated the amino acids (Fig. 3.6). The

acetylated amino acids were detected in yhhY-overexpressing cells, but not in the control

sample. This result strongly supported that YhhY is responsible for the acetylation event.

3.4.4 In vivo activity of YhhY

Finally, a metabolome analysis was performed to clarify the in vivo function of YhhY in living

cells. The results showed that acetylmethionine, acetylhistidine, and acetylphenylalanine

were detected only from the E. coli carrying the yhhY-overexpressing vector, but not from the

control group carrying the empty vector without the yhhY gene. This result was consistent

with the results of the in vitro reaction and strongly support the possibility that YhhY is

responsible for the acetylation events of three kinds of amino acids in the cell. There

were no large differences in the concentrations of methionine, histidine, and phenylalanine

as substrates in the two groups. This result may have been because the influence of the

reaction involving enzymes other than YhhY was greater than the influence of YhhY on the

accumulation of these amino acids. Additionally, in vitro experiments showed the highest

abundance of acetylmethionine, but the highest abundance was acetylphenylalanine in vivo. I

can assume two possible hypotheses to explain the differences between the results of in vitro

and in vivo. One is the reaction rate inconsistency, and the other is intracellular acetylated

products of living cells. In general, acetylation of amino acids and proteins has mainly been

performed in eukaryotes, and acetylation is considered to be very limited in prokaryotes.

However, in the recent research, more than 100 acetylated proteins were found in E. coli and

Salmonella bacteria [103]. These results suggest that the acetylation events may play some

roles also in prokaryotes. Many of the changes were observed in cells overexpressing YhhY

suggesting that the reactions can occur under physiological conditions.
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The concentrations of several other metabolites were significantly changed in

overexpressing cells although their link to acetylation is not obvious. Some of the changes

may have been indirect and may have been linked to changes in other enzymes triggered by

the YhhY modification of some metabolites. YhhY has previously been shown to be

activated by iron and thus to be part of the ferric uptake regulator (fur) response [104]. Also,

it has been suggested to possibly play a role in revertants of an acetate toxic mutant [105]. It

was reported that YhhY is overexpressed in biofilms (4.3 times) and that its mutation

impaired growth on M63B1 medium (0.4 % glucose) containing thiamine and supplemented

with iron [106]. YhhY appears to be activated by the fur response indirectly. Fur activates

the expression of a small RNA that in turn is a repressor of YhhY. Fur activation thus results

in increased YhhY expression. In a phenotypic screen of over 350 conditions on rich LB

medium, cobalt treatment was shown to have a severe effect on growth and fitness [107]. For

this reason, I chose to apply cobalt treatment as a way of highlighting differences between

the wild-type and the yhhY knockout strain. I did not confirm the expression level of YhhY

expression, but used 10 µM cobalt, a concentration that does not significantly affect growth

compared with that in the wild-type, so that metabolomics can be performed without

concern for growth rate-related effects on metabolite profiles.

3.4.5 Comparison of YhhY activity with previous reports

YhhY is probably the enzyme characterized in the study by Krishna et al. as it was reported

to produce N-acetylphenylalanine and to have properties similar to YhhY [108]. The enzyme

can acetylate both phenylalanine and histidine and has a molecular weight of 24 kDa. Also,

the reported enzymes showed transferase activity for leucine and methionine.

These results were mostly consistent with those obtained by a recently published in

vitro metabolomics approach for the enzyme discovery [109]. Sévin et al. incubated

lysates of YhhY-overexpressing cells with substrates, suggesting that YhhY lysate acetylated
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methionine and phenylalanine and proposed a new annotation for yhhY as an L-amino acid

N-acetyltransferase (aaaT). Here, it should be noted that the acetylation of histidine that

I detected was not previously reported in the study mentioned above. In my results, the

acetylation event of histidine was weaker than the acetylation events of other amino acids.

Also, in the previous work, the purification of YhhY in a soluble state was not achieved, nor

was the function of YhhY estimated by reaction with cell extracts. In the cell extract assay, it

is not possible to directly clarify the relationship between the overexpressed protein and the

actual biochemical reaction. Also, I revealed the reaction mechanism and reaction rate of

YhhY. These findings show that the sensitivity of mass spectrometry is essential for enzyme

discovery by mass spectrometry-based metabolomics.

3.5 Conclusion

I aimed to establish an enzyme characterization system using mass spectrometry and

selected the uncharacterized enzyme YhhY in E. coli as an example. YhhY was predicted to

be an acetyltransferase; however, its substrates were not experimentally proven. In vitro

screening using Ellman’s reagent suggested that YhhY acetylated methionine, histidine, and

phenylalanine. In addition, metabolome analysis using mass spectrometry of in vitro assay

with the E. coli extract and in vivo cells supported the acetylation events by YhhY.

Importantly, this result is consistent with another group’s result [109]. Additionally, in vivo

metabolome analysis of yhhY knockout suggested that YhhY canceled cobalt stress through

a metabolic process. Thus, I established an enzyme characterization system using mass

spectrometry, which can be used to characterize the function of other E. coli enzymes of

unknown function.



Chapter 4

Concluding remarks

4.1 MICOP: Maximal information coefficient-based

oscillation prediction

Circadian rhythms comprise oscillating molecular interactions, and the disruption of the

homeostasis of which can cause various disorders. To understand this phenomenon, an

accurate technique to identify oscillating molecules among omics datasets must be

developed; however, this is still impeded by many difficulties, such as experimental noise

and attenuated amplitude. To address these issues, I developed a new algorithm named

maximal information coefficient-based oscillation prediction (MICOP), a sine

curve-matching method. The performance of MICOP in labeling oscillation or

non-oscillation was compared with those of three reported methods using MCC values. The

numerical experiments were performed with time-series data with (1) mimicking of

molecular oscillation decay and (2) high noise and low sampling frequency. The first

experiment revealed that MICOP could accurately identify the rhythmicity of decaying

molecular oscillation (MCC > 0.7). The second experiment revealed that MICOP was robust

against high-level noise (MCC > 0.8) even upon the use of low sampling frequency data. As
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an application, I utilized MICOP to analyze time-series proteome data of mouse liver.

MICOP identified novel oscillating candidates numbered 14 and 30 for C57BL/6 and

C57BL/6J, respectively. The performance test using artificially generated simulation data

revealed that the performance of MICOP for decaying data was superior to that of widely

used methods. It can reveal novel findings from time-series data and may contribute to

biologically significant results. This study suggests that MICOP is an ideal approach for

detecting and characterizing oscillations in time-resolved omics datasets.

4.2 Amino acids acetylation of orphan enzyme YhhY

Escherichia coli (E. coli) is one of the most studied model organisms. However, even in E.

coli, for 30–40% of all enzymes, the functions have not been experimentally demonstrated.

Therefore, there are also a large number of metabolites whose responsible enzymes have

not been identified, which are known as "orphan metabolites" including some acetylated

amino acids. These molecules create gaps in metabolic maps and have become an obstacle

to understanding metabolic systems. To accelerate filling these gaps, I aimed to develop an

enzyme characterization strategy based on mass spectrometry. I selected the uncharacterized

enzyme YhhY of E. coli to evaluate the enzyme characterization system using a combination

of the classical acetylation assay method and metabolome analysis. Screening using Ellman’s

reagent strongly suggested that YhhY specifically acetylates methionine, histidine, and

phenylalanine. Next, mass spectrometry-based metabolome analysis suggested that YhhY, not

a contaminated enzyme, was responsible for the acetylation event. Also, YhhY potentially has

a relationship with metal-induced stress in vivo. The biochemical experiments revealed that

the kinetic parameters and the acetylation by YhhY follow the ternary complex mechanism

but not the ping-pong mechanism. In this thesis, I developed the enzyme characterization

system using mass spectrometry, and the application of the system for uncharacterized
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enzyme YhhY demonstrated the availability of the enzyme characterization strategy using

mass spectrometry.

4.3 Mass spectrometry for systems biology

Large-scale experiments such as functional screening by mass spectrometry have produced

huge data. The big issue of systems biology is how to extract biological significance in

the large datasets. In this thesis, I aimed to develop new strategies to extract biological

significance in omics data measured by especially mass spectrometry. First, I developed a

novel algorithm to detect rhythmic molecules in omics data, MICOP: Maximal information

coefficient-based oscillation prediction. Next, I established an enzyme characterization

system using mass spectrometry and revealed the activity of uncharacterized enzyme YhhY

in E. coli. These approaches using mass spectrometry data should contribute to a better

understanding of the life systems.
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Appendix A

Metabolome concentration of yhhY

overexpressing and knockout cells

Table A.1 Metabolome concentration of yhhY overexpressing cells (µM, N.D.: not
detectable values).

Metabolite name Ctrl1 Ctrl2 Ctrl3 yhhY1 yhhY2 yhhY3

1-Methyl-2-pyrrolidinone 59.9 28.9 43.6 25.9 41.0 24.0

1-Methylnicotinamide 0.370 0.154 0.150 0.246 0.410 0.325

2-Amino-2-methyl-1,3-propanediol 1.50 1.61 1.21 1.71 2.49 1.52

2-Deoxyglucose 6-phosphate 0.497 0.707 0.894 1.02 1.47 0.932

2-Deoxyribose 1-phosphate 0.508 0.494 1.98 1.47 2.27 1.42

2-Furoate 8.04 9.27 18.3 11.2 13.8 9.86

2-Hydroxyglutarate 0.144 0.165 0.193 0.0609 0.0977 N.D.

2-Hydroxypentanoate 79.5 50.1 74.1 44.0 79.0 49.8

2-Oxoglutarate 1.98 2.40 5.87 3.08 N.D. N.D.

2-Oxoisopentanoate N.D. 1.43 2.84 1.52 1.80 N.D.

2,3-DPG 0.0657 2.10 0.129 1.76 3.14 N.D.

2’-Deoxyguanosine 0.411 0.359 0.621 1.71 2.03 1.74

2’,3’-cCMP 0.122 0.182 0.336 0.215 0.150 N.D.
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Table A.1 Metabolome concentration of yhhY overexpressing cells (µM, N.D.: not
detectable values, continued)

Metabolite name Ctrl1 Ctrl2 Ctrl3 yhhY1 yhhY2 yhhY3

2AB N.D. 0.362 0.605 0.388 0.666 0.452

2PG 2.41 4.46 33.6 30.7 62.6 31.1

3-Acetylacrylate 94.1 78.8 94.3 63.7 105 159

3-Hydroxybutyrate 4.67 3.38 4.63 2.40 4.93 3.47

3-Methylbutanoate 19.6 19.6 22.3 17.1 28.3 16.5

3-Phenylpropionate 9.57 7.09 N.D. N.D. N.D. N.D.

3PG 13.0 26.9 27.2 31.1 63.5 30.3

4-Acetylbutyrate 32.3 23.1 29.7 17.7 34.5 19.1

4-Aminophenylsulfone 0.417 0.846 0.697 1.09 1.36 1.03

4-Methyl-2-oxopentanoate 2.26 2.72 3.83 1.91 3.46 2.08

4-Oxopentanoate 9.49 6.87 10.7 5.45 9.04 6.20

5-Hydroxyindoleacetate N.D. N.D. N.D. 8.30 11.5 4.04

5-Methoxyindoleacetate 0.924 0.290 1.23 0.299 1.55 0.803

5-Methylthioadenosine 1.10 1.40 1.57 3.78 4.32 3.56

5-Oxoproline 6.61 3.41 6.61 6.24 7.33 8.15

5-Oxoproline 16.7 10.2 20.8 17.0 22.4 19.0

6-Hydroxyhexanoate 15.2 13.5 17.1 10.3 17.9 N.D.

6-Phosphogluconate 0.260 0.600 0.534 0.625 0.716 N.D.

Acetanilide 17.4 8.76 14.5 8.20 14.7 11.1

Acetyl CoA 486 260 254 1060 490 341

Adenine 2.17 2.26 3.01 5.07 8.07 6.32

Adenosine 0.422 0.360 0.608 1.70 1.99 1.72

Adenosine 3’,5’-diphosphate 0.113 0.0711 0.181 0.119 0.114 N.D.

Adenylosuccinate 6.80 18.3 30.2 13.1 5.00 N.D.

Adipate 2.44 1.76 3.89 1.21 2.70 2.73

ADP 24.3 34.3 56.7 85.7 102 81.9

ADP-glucose 56.9 107 101 54.5 54.1 57.3

ADP-ribose 6.32 16.5 24.6 16.4 34.6 41.5

Ala 11.6 9.41 15.2 23.7 30.7 20.0

Ala-Ala 1.73 4.63 3.42 4.40 4.91 3.56
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Table A.1 Metabolome concentration of yhhY overexpressing cells (µM, N.D.: not
detectable values, continued)

Metabolite name Ctrl1 Ctrl2 Ctrl3 yhhY1 yhhY2 yhhY3

Allantoin 2.27 9.31 3.89 6.81 9.06 5.86

a-Lipoamide 0.298 0.196 0.106 0.165 1.32 0.685

a-Methylserine 4.66 4.31 4.75 2.66 4.53 2.48

AMP 46.1 60.4 86.3 122 125 101

Anthranilate 0.312 0.184 0.230 0.347 0.502 0.406

Arg 12.8 12.4 11.4 15.2 11.6 14.8

Asn 1.26 1.34 1.04 0.988 1.66 1.06

Asp 4.67 5.77 5.63 8.02 14.6 7.55

Asp 8.27 13.1 12.2 17.0 29.8 12.5

ATP 25.3 51.5 60.5 72.9 58.0 60.3

Azelate 2.07 1.45 2.55 1.19 1.97 1.69

Benzamide 2.63 0.994 1.77 1.30 1.61 1.09

Benzoate 10.5 7.62 11.8 5.31 10.2 5.75

b -Leucine 9.40 8.03 12.6 13.5 17.2 9.38

Betaine 25.8 44.7 32.6 42.6 58.2 30.5

Butanoate 35.9 36.6 31.6 36.0 60.3 24.5

Cadaverine 0.705 0.232 0.458 1.31 1.58 1.43

cAMP 0.273 0.0788 N.D. 1.15 0.614 0.654

Carbachol 45.5 43.3 50.2 58.7 73.2 54.8

Carnitine 0.230 0.0831 0.164 0.0900 0.113 0.0630

CDP 28.7 23.1 37.0 26.2 31.8 25.6

cGMP 0.367 0.475 N.D. 1.30 1.16 0.818

Choline 8.11 12.5 12.8 19.6 34.6 20.8

cis-Aconitate 0.195 0.268 0.288 0.127 0.273 0.173

Citraconate 0.210 0.127 0.165 0.0677 0.139 N.D.

Citrulline 0.279 0.164 0.274 0.245 0.379 0.266

CMP 11.7 14.9 14.7 13.8 14.6 14.4

CoA 0.285 0.325 5.44 29.8 15.0 63.5

Creatine 1.22 0.489 0.787 0.504 0.776 0.669

Creatinine 0.397 0.193 0.365 0.210 0.358 0.349
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Table A.1 Metabolome concentration of yhhY overexpressing cells (µM, N.D.: not
detectable values, continued)

Metabolite name Ctrl1 Ctrl2 Ctrl3 yhhY1 yhhY2 yhhY3

Crotonate 85.5 53.9 94.6 48.3 71.1 43.2

CTP 30.3 30.4 46.2 26.8 28.3 27.2

Cyclohexylamine 1.05 0.27 0.141 0.426 0.194 0.0781

dADP 9.31 6.94 14.2 11.5 14.7 11.0

dAMP 5.17 3.66 3.74 2.88 2.95 3.29

dATP 6.16 4.25 6.79 4.63 5.50 5.48

dCDP 3.80 3.92 5.28 5.69 5.68 5.85

dCMP 0.871 0.948 1.02 0.825 1.18 N.D.

dCTP 1.73 2.65 3.99 4.29 4.55 4.34

Deamido-NAD+ N.D. 2.19 3.59 3.55 3.58 5.11

Decanoate 7.87 16.0 22.9 14.4 21.3 4.45

dGTP 31.1 2.11 74.5 93.9 107 114

DHAP 7.49 10.9 9.04 17.2 12.4 12.2

Diethanolamine 1.41 1.51 1.13 1.61 2.34 1.43

Diethyl-2-phenylacetamide 0.0316 0.0134 0.0169 0.0169 0.0231 0.0130

Dihydrouracil 808 486 723 411 724 523

Dodecanedioate 0.207 0.206 0.228 0.157 0.235 0.200

dTDP 17.3 26.2 37.8 21.3 31.9 35.2

dTMP 5.80 9.79 14.4 5.65 9.20 11.3

dTTP 6.30 5.53 10.7 5.99 6.84 5.96

F1,6P 2.56 6.60 6.24 11.6 4.67 N.D.

F6P 0.600 1.72 4.62 4.05 6.59 3.96

FAD 2.13 2.12 3.00 5.04 4.40 4.23

Fumarate 4.24 6.21 5.31 5.19 5.69 4.80

G1P 1.41 4.79 3.93 3.31 3.54 N.D.

G3P 160 12.9 20.6 15.4 N.D. 15.4

G6P 784 2520 1650 1670 2720 1640

GABA 0.428 0.400 1.82 0.321 0.487 0.324

g-Glu-2AB 0.195 0.168 0.505 0.641 0.883 0.648

GDP 33.6 43.7 56.7 88.6 99.8 85.0
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Table A.1 Metabolome concentration of yhhY overexpressing cells (µM, N.D.: not
detectable values, continued)

Metabolite name Ctrl1 Ctrl2 Ctrl3 yhhY1 yhhY2 yhhY3

Gln 3.05 2.95 2.61 5.81 6.27 3.77

Glu 16.9 20.9 22.9 29.7 43.4 22.9

Glu 40.7 58.2 64.5 75.9 108 56.6

Glu-Glu N.D. 0.275 N.D. 0.351 0.325 0.209

Glucosamine 0.210 0.286 0.249 0.367 0.547 0.288

Glucosamine 6-phosphate 4.49 11.3 6.90 13.3 13.6 N.D.

Glutarate 0.720 0.449 0.906 0.242 0.837 0.465

GSH 1.59 2.73 0.892 1.60 2.35 0.514

GSSG 6.03 11.7 3.88 6.59 9.62 2.39

Gly 7.94 7.26 8.60 7.65 10.7 9.00

Gly-Leu 0.184 0.272 0.185 0.266 0.218 0.181

Glycerophosphate 37.3 19.2 73.1 24.7 31.1 23.1

Glycolate 24.4 20.0 35.3 16.7 31.6 N.D.

GMP 12.6 14.4 17.3 27.8 24.9 33.0

Gramine 6.12 5.92 5.46 7.28 5.57 7.09

GTP 26.9 48.4 56.0 75.6 81.7 71.6

Guanine 1.29 0.923 1.42 0.985 1.59 1.46

Guanosine 2.13 1.13 1.53 1.53 1.37 2.08

Heptanoate 3.94 2.05 13.6 9.61 16.1 9.70

Hexanoate 15.5 11.2 31.2 20.8 35.8 23.7

His 4.19 4.52 5.73 4.22 4.61 2.93

Homoserine 1.56 1.53 1.79 4.05 4.73 3.84

Hypoxanthine 7.96 5.46 6.98 10.3 15.1 13.2

Ile 9.32 3.75 5.01 6.10 8.65 4.40

IMP 0.391 3.68 2.19 2.63 1.13 N.D.

Indole-3-acetamide 5.12 3.13 0.550 2.52 4.57 3.52

Indole-3-acetate 0.369 0.635 0.629 0.414 0.714 0.782

Indole-3-ethanol 1.73 1.56 0.404 0.628 0.541 0.689

Inosine 4.12 2.11 2.60 3.38 2.68 4.51

Isobutyryl CoA 0.387 0.374 0.709 0.505 1.31 1.05
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Table A.1 Metabolome concentration of yhhY overexpressing cells (µM, N.D.: not
detectable values, continued)

Metabolite name Ctrl1 Ctrl2 Ctrl3 yhhY1 yhhY2 yhhY3

Isonicotinamide 4.13 9.54 14.5 9.49 22.6 12.2

Leu 9.54 8.15 12.8 13.7 17.4 9.52

Leu-Leu-Tyr N.D. N.D. N.D. 1.40 1.66 1.11

Lys 105 100 116 136 170 127

Malate 10.7 18.1 16.9 14.8 17.8 15.2

Malonate 1.70 1.59 1.96 0.958 1.60 1.35

Melatonin 0.167 0.619 0.569 0.448 N.D. N.D.

Met 1.75 2.24 2.67 2.97 3.65 2.00

Methyl sulfate 0.329 0.251 0.555 0.215 0.435 0.228

N-Acetylaspartate 0.523 2.57 0.331 0.309 0.675 0.228

N-Acetylglucosamine 1.14 0.490 0.510 0.366 0.794 0.572

N-Acetylglucosamine 1-phosphate 1.01 1.38 1.00 0.691 0.772 N.D.

N-Acetylglucosamine 6-phosphate 1.18 0.939 1.24 0.518 0.466 N.D.

N-Acetylglutamate 0.158 0.445 0.267 0.706 0.870 0.531

N-Acetylhistidine N.D. N.D. N.D. 5.09 9.39 3.92

N-Acetylleucine 0.148 0.159 0.469 22.6 37.9 16.9

N-Acetylmethionine N.D. N.D. N.D. 7.81 12.8 4.86

N-Acetylneuraminate 2.94 2.81 2.65 0.809 1.12 N.D.

N-Acetylornithine N.D. N.D. N.D. 0.216 0.252 0.196

N-Acetylphenylalanine N.D. N.D. N.D. 79.5 87.3 72.0

N-Acetylputrescine 7.07 1.55 4.89 1.38 2.54 1.56

N-Acetylvaline N.D. N.D. N.D. 1.62 3.32 1.21

N-epsilon-Acetyllysine 0.380 0.561 0.381 1.54 2.55 1.38

N-Methylalanine N.D. 0.343 0.574 0.368 0.632 0.428

N6,N6,N6-Trimethyllysine 0.320 0.675 0.665 0.915 1.13 0.738

N8-Acetylspermidine 0.194 0.0702 0.146 0.523 0.225 0.512

NADP+ 152 129 179 242 235 224

Nicotinamide 3.87 8.94 13.6 8.90 21.2 11.4

Nicotinate 0.836 1.27 N.D. 1.40 N.D. 23.1

O-Acetylserine 18.1 22.5 24.7 32.0 46.7 0.312



95

Table A.1 Metabolome concentration of yhhY overexpressing cells (µM, N.D.: not
detectable values, continued)

Metabolite name Ctrl1 Ctrl2 Ctrl3 yhhY1 yhhY2 yhhY3

Octanoate 9.08 6.49 10.7 6.29 9.73 5.20

Octylamine 0.237 0.0771 0.0946 0.125 0.0834 0.0549

Ophthalmate 1.63 4.77 8.41 37.8 47.3 32.6

Ornithine 1.24 0.438 1.13 0.706 0.582 0.638

Pantothenate 0.711 1.63 0.694 0.665 0.839 N.D.

Pelargonate 8.42 5.09 10.9 12.4 11.9 12.3

Pentanoate 24.0 26.3 20.9 12.7 34.7 15.2

PEP 3.65 8.16 7.47 4.94 15.2 4.71

Phe 4.49 3.46 4.59 5.54 6.71 3.87

Phthalate 0.458 0.322 0.517 0.0589 0.336 0.202

Pimelate 0.724 0.428 0.628 0.324 0.594 0.742

Piperazine 188 91.8 151 95.0 145 99.9

Pro 3.41 6.20 4.62 6.09 9.65 4.69

Propionate 25.4 22.8 18.9 19.9 37.3 17.4

Putrescine 3.08 0.914 1.57 0.843 0.794 0.482

Pyridoxamine 5’-phosphate 0.393 0.797 0.658 1.03 1.29 0.973

R5P 1.97 3.49 3.29 3.95 3.97 3.13

Ribulose 1,5-diphosphate 0.264 0.408 0.388 0.232 0.592 N.D.

Ru5P 3.81 5.34 6.13 7.23 6.79 6.09

SAM+ 1.16 0.682 0.726 3.06 2.34 1.47

Sarcosine 32.4 26.3 42.4 66.4 85.8 55.8

Sebacate 0.352 0.344 0.376 0.243 0.447 0.275

Ser 4.74 2.73 4.83 3.00 3.93 4.98

Sorbitol 6-phosphate 2.82 6.82 6.63 2.79 1.95 N.D.

Succinate 10.7 14.5 20.9 14.0 21.8 17.5

Taurine 3.70 1.56 2.79 1.68 1.94 1.97

TDP-glucose 51.5 47.2 50.3 29.5 30.9 27.5

Tetrahydropalmatine N.D. 0.0227 0.0216 0.104 0.0822 0.0606

Thr 4.48 4.14 4.56 2.56 4.36 2.38

threo-beta-methylaspartate 40.1 57.4 62.8 74.5 107 55.9
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Table A.1 Metabolome concentration of yhhY overexpressing cells (µM, N.D.: not
detectable values, continued)

Metabolite name Ctrl1 Ctrl2 Ctrl3 yhhY1 yhhY2 yhhY3

Thymidine 10.9 4.29 6.62 3.68 5.41 6.22

Tiglate 7.05 6.68 6.19 5.76 13.1 N.D.

trans-4-Hydroxy-3-methoxycinnamate 2.29 1.44 2.57 1.10 2.21 1.60

Triethanolamine 1.66 0.312 0.804 0.389 N.D. 0.440

Trp 0.490 0.286 0.357 0.168 0.300 0.175

Tyr 1.17 1.58 1.50 2.36 3.19 1.73

Tyrosine methyl ester 20.6 22.6 27.0 23.9 28.0 22.9

UDP 21.7 25.3 33.8 36.0 48.7 33.4

UDP-glucose 43.7 69.7 54.7 100 84.2 75.3

UDP-glucuronate 3.63 3.83 3.24 2.26 2.09 2.39

UDP-N-acetylglucosamine 36.0 52.5 71.1 48.9 50.1 49.2

UMP 11.3 14.6 13.4 21.0 17.7 21.5

Undecanoate 1.55 1.40 3.69 1.93 3.37 2.12

Urea 26.8 17.8 27.4 15.4 22.7 28.8

Uridine 5.77 3.79 5.30 3.61 6.42 4.62

Urocanate 1.06 0.570 1.09 0.405 0.798 0.881

UTP 16.9 25.1 35.3 26.0 36.4 27.5

Val 6.18 5.89 7.92 10.2 14.3 7.21

XMP 0.301 1.37 0.732 0.824 0.552 0.830



97
Ta

bl
e

A
.2

M
et

ab
ol

om
e

co
nc

en
tr

at
io

n
of

yh
hY

kn
oc

ko
ut

ce
lls

(µ
M

,N
.D

.:
no

td
et

ec
ta

bl
e

va
lu

es
)

M
et

ab
ol

ite
na

m
e

C
trl

1
C

trl
2

C
trl

3
yh

hY
1

yh
hY

2
yh

hY
3

C
trl

+C
o1

C
trl

+C
o2

yh
hY

+C
o1

yh
hY

+C
o2

yh
hY

+C
o3

2-
D

eo
xy

gl
uc

os
e

6-
ph

os
ph

at
e

0.
73

0
1.

05
N

.D
.

N
.D

.
N

.D
.

N
.D

.
3.

02
3.

04
11

.1
17

.2
N

.D
.

2-
D

eo
xy

rib
os

e
1-

ph
os

ph
at

e
1.

96
1.

43
2.

62
2.

41
1.

31
2.

06
1.

68
1.

73
4.

03
2.

80
0.

82
0

2-
Fu

ro
at

e
8.

97
10

.5
11

.4
7.

61
6.

25
9.

36
11

.7
6.

29
6.

60
8.

77
6.

40

2-
H

yd
ro

xy
-4

-m
et

hy
lp

en
ta

no
at

e
1.

31
2.

13
N

.D
.

1.
80

1.
44

1.
38

1.
37

2.
47

N
.D

.
N

.D
.

N
.D

.

2-
H

yd
ro

xy
bu

ty
ra

te
1.

93
3.

06
2.

06
3.

41
N

.D
.

N
.D

.
N

.D
.

1.
92

1.
26

2.
41

4.
75

2-
H

yd
ro

xy
gl

ut
ar

at
e

49
.8

63
.9

10
2

74
.3

20
1

35
6

69
.0

12
7

N
.D

.
53

7
N

.D
.

2-
H

yd
ro

xy
is

ob
ut

yr
at

e
1.

54
2.

45
1.

65
2.

73
N

.D
.

N
.D

.
N

.D
.

1.
54

2.
69

1.
93

3.
74

2-
H

yd
ro

xy
oc

ta
no

at
e

N
.D

.
N

.D
.

0.
46

0
0.

31
0

N
.D

.
N

.D
.

0.
37

0
0.

45
0

N
.D

.
0.

57
0

N
.D

.

2-
H

yd
ro

xy
pe

nt
an

oa
te

10
4

11
7

11
0

98
.6

12
5

11
9

10
1

12
9

98
.9

13
5

11
2

2-
Is

op
ro

py
lm

al
at

e
7.

35
8.

12
8.

53
19

.0
18

.3
28

.0
19

.9
30

.6
N

.D
.

15
7

N
.D

.

2-
O

xo
gl

ut
ar

at
e

48
.2

65
.0

76
.0

64
.5

20
.1

34
.5

50
.2

58
.8

37
3

30
1

N
.D

.

2-
O

xo
is

op
en

ta
no

at
e

9.
72

10
.7

13
.8

14
.4

N
.D

.
8.

78
19

.6
27

.6
94

.0
87

.7
13

.4

2,
4-

D
ih

yd
ro

xy
py

rim
id

in
e-

5-
ca

rb
ox

yl
at

e
12

1
41

.2
65

.4
71

.8
54

.1
32

.6
51

.1
50

.2
22

3
16

1
22

7

2A
B

7.
99

3.
72

11
.8

1.
76

3.
51

5.
72

15
.2

7.
91

17
.3

8.
60

42
.4

3-
H

yd
ro

xy
bu

ty
ra

te
5.

93
5.

93
5.

67
7.

21
7.

79
6.

71
5.

76
6.

06
4.

45
11

.6
7.

21

3-
H

yd
ro

xy
pr

op
io

na
te

N
.D

.
N

.D
.

16
.8

17
.3

11
.0

13
.2

N
.D

.
N

.D
.

55
0

15
.5

10
1

3-
M

et
hy

lb
ut

an
oa

te
32

.1
43

.1
39

.5
38

.0
29

.9
37

.2
41

.4
46

.1
44

.3
74

.2
N

.D
.

3-
Ph

en
yl

pr
op

io
na

te
11

.6
11

.2
15

.0
11

.3
N

.D
.

12
.6

10
.6

11
.3

16
.2

N
.D

.
N

.D
.

3P
G

50
.6

73
.3

21
6

13
2

13
0

80
.5

29
.9

72
.9

N
.D

.
34

2
N

.D
.

4-
A

ce
ty

lb
ut

yr
at

e
47

.4
48

.0
47

.2
41

.4
53

.0
45

.9
45

.1
50

.6
43

.6
54

.3
38

.0

4-
M

et
hy

l-2
-o

xo
pe

nt
an

oa
te

6.
86

7.
64

6.
68

5.
17

5.
11

3.
65

10
.5

20
.1

64
.3

44
.7

N
.D

.

4-
M

et
hy

lb
en

zo
at

e
26

2
25

2
25

0
22

1
28

7
24

8
26

9
28

8
29

0
37

6
27

8

4-
O

xo
he

xa
no

at
e

1.
22

1.
57

0.
84

0
0.

97
0

53
.3

0.
82

0
0.

88
0

1.
02

43
.8

1.
93

38
.2

4-
O

xo
pe

nt
an

oa
te

13
.6

15
.7

15
.2

15
.4

18
.2

16
.6

17
.4

14
.3

14
.6

20
.9

13
.3

5-
M

et
hy

lth
io

ad
en

os
in

e
5.

47
4.

77
7.

46
7.

62
3.

57
2.

00
7.

20
6.

20
23

.8
10

.4
3.

02

5-
O

xo
pr

ol
in

e
20

.0
32

.9
67

.3
63

.5
29

.6
43

.4
34

.8
45

.0
57

.4
75

.7
46

.2

6-
H

yd
ro

xy
he

xa
no

at
e

34
.7

31
.6

43
.0

41
.3

25
.4

30
.8

33
.9

38
.1

19
.8

22
.0

N
.D

.

6-
Ph

os
ph

og
lu

co
na

te
8.

25
4.

17
8.

53
14

.2
21

.9
15

.8
2.

27
2.

75
12

.3
14

.6
2.

51



98
Ta

bl
e

A
.2

M
et

ab
ol

om
e

co
nc

en
tr

at
io

n
of

yh
hY

kn
oc

ko
ut

ce
lls

(µ
M

,N
.D

.:
no

td
et

ec
ta

bl
e

va
lu

es
,c

on
tin

ue
d)

M
et

ab
ol

ite
na

m
e

C
trl

1
C

trl
2

C
trl

3
yh

hY
1

yh
hY

2
yh

hY
3

C
trl

+C
o1

C
trl

+C
o2

yh
hY

+C
o1

yh
hY

+C
o2

yh
hY

+C
o3

A
ce

ty
lC

oA
39

.6
16

8
N

.D
.

2.
04

N
.D

.
0.

56
0

77
.1

16
5

44
.7

N
.D

.
N

.D
.

A
de

ni
ne

10
.1

11
.6

17
.7

18
.4

8.
75

5.
35

12
.0

11
.5

36
.4

66
.7

1.
64

A
de

no
si

ne
2.

70
3.

87
3.

86
5.

20
1.

45
1.

35
5.

64
7.

37
84

.2
44

0
1.

86

A
de

no
si

ne
3’

,5
’-

di
ph

os
ph

at
e

3.
15

N
.D

.
N

.D
.

5.
06

N
.D

.
N

.D
.

N
.D

.
11

.1
23

.3
25

.0
N

.D
.

A
de

ny
lo

su
cc

in
at

e
0.

92
0

0.
96

0
1.

19
1.

37
1.

46
0.

57
0

N
.D

.
1.

03
19

.5
3.

05
N

.D
.

A
di

pa
te

4.
07

3.
95

5.
64

5.
37

3.
39

3.
28

8.
00

5.
02

1.
86

2.
94

N
.D

.

A
D

P
13

2
13

0
17

3
22

8
18

7
14

1
10

3
79

.5
54

9
25

4
7.

23

A
D

P-
gl

uc
os

e
2.

53
1.

39
N

.D
.

N
.D

.
2.

20
N

.D
.

N
.D

.
N

.D
.

1.
48

N
.D

.
N

.D
.

A
D

P-
rib

os
e

14
.5

5.
95

18
.2

5.
19

3.
56

6.
05

6.
85

4.
49

0.
44

0
46

.6
N

.D
.

A
gm

at
in

e
N

.D
.

N
.D

.
0.

40
0

0.
55

0
0.

26
0

0.
35

0
1.

36
0.

72
0

0.
99

0
0.

50
0

3.
46

A
la

43
.9

62
.7

11
7

89
.9

89
.3

14
2

57
.0

62
.2

28
9

15
9

23
1

A
la

-A
la

8.
86

11
.1

18
.4

23
.8

24
.2

27
.4

13
.0

14
.9

23
3

67
.7

22
.5

a
-A

m
in

oa
di

pa
te

N
.D

.
N

.D
.

N
.D

.
N

.D
.

1.
27

0.
69

0
N

.D
.

N
.D

.
2.

79
N

.D
.

1.
36

a
-M

et
hy

ls
er

in
e

36
.1

38
.6

N
.D

.
67

.7
45

3
51

8
36

.8
38

.8
12

.5
3.

30
83

.5

A
M

P
41

.6
47

.8
46

.6
61

.8
72

.8
45

.4
43

.2
29

.9
32

6
13

2
N

.D
.

A
rg

28
.8

36
.2

63
.3

33
.6

42
.6

33
.3

32
.0

29
.5

81
.4

62
.9

25
.2

A
sn

12
.6

16
.6

32
.4

24
.0

28
.1

33
.1

19
.2

18
.3

11
1

57
.9

68
.7

A
sp

10
.9

13
.5

43
.1

36
.5

28
.1

31
.0

17
.3

19
.2

60
.4

50
.2

26
1

A
sp

12
.9

18
.2

40
.4

39
.2

32
.1

36
.7

22
.4

25
.9

99
.4

50
.8

25
6

AT
P

45
1

44
1

64
9

66
9

59
5

48
7

23
7

31
3

89
8

80
5

9.
98

A
ze

la
te

2.
29

1.
98

2.
73

3.
16

1.
92

2.
21

2.
44

2.
35

1.
70

2.
10

1.
14

B
en

zo
at

e
10

.6
16

.2
14

.1
15

.0
N

.D
.

18
.3

14
.8

15
.8

14
.7

N
.D

.
26

.1

b-
A

la
1.

93
2.

08
2.

17
2.

18
1.

34
0.

98
0

2.
02

1.
64

3.
49

4.
36

N
.D

.

b-
A

la
-L

ys
N

.D
.

2.
16

3.
75

2.
31

1.
81

2.
26

N
.D

.
N

.D
.

2.
52

1.
72

N
.D

.

B
et

ai
ne

4.
91

4.
34

20
.6

4.
88

3.
28

3.
92

5.
35

3.
54

4.
02

N
.D

.
6.

00

B
ut

an
oa

te
46

.5
80

.2
68

.2
60

.8
69

.1
83

.8
71

.0
91

.4
87

.4
12

3
40

.5

C
ad

av
er

in
e

N
.D

.
N

.D
.

1.
31

0.
58

0
2.

96
0.

58
0

1.
19

0.
94

0
0.

35
0

1.
58

3.
79

cA
M

P
0.

65
0

2.
01

9.
25

N
.D

.
0.

60
0

N
.D

.
0.

90
0

2.
15

0.
22

0
0.

54
0

N
.D

.



99
Ta

bl
e

A
.2

M
et

ab
ol

om
e

co
nc

en
tr

at
io

n
of

yh
hY

kn
oc

ko
ut

ce
lls

(µ
M

,N
.D

.:
no

td
et

ec
ta

bl
e

va
lu

es
,c

on
tin

ue
d)

M
et

ab
ol

ite
na

m
e

C
trl

1
C

trl
2

C
trl

3
yh

hY
1

yh
hY

2
yh

hY
3

C
trl

+C
o1

C
trl

+C
o2

yh
hY

+C
o1

yh
hY

+C
o2

yh
hY

+C
o3

C
ar

ba
m

oy
la

sp
ar

ta
te

10
7

10
4

12
1

13
1

72
.7

54
.0

72
.1

47
.8

69
8

45
8

78
.3

C
D

P
30

.5
35

.7
37

.1
33

.4
52

.0
39

.7
31

.3
17

.3
11

0
36

.7
2.

08

C
ho

lin
e

1.
25

1.
08

2.
04

0.
96

0
1.

04
1.

36
2.

91
3.

52
0.

87
0

2.
26

N
.D

.

ci
s-

A
co

ni
ta

te
3.

27
2.

80
4.

60
3.

94
5.

85
5.

80
3.

24
4.

40
32

.2
16

.9
N

.D
.

C
itr

ac
on

at
e

N
.D

.
0.

78
0

0.
93

0
N

.D
.

0.
79

0
0.

99
0

N
.D

.
N

.D
.

6.
46

1.
71

N
.D

.

C
itr

at
e

75
.5

71
.5

13
0

10
6

18
9

17
0

50
.9

10
6

N
.D

.
N

.D
.

37
.5

C
itr

ul
lin

e
7.

87
9.

12
14

.0
18

.3
9.

63
11

.1
12

.7
13

.6
76

.2
58

.6
14

.3

C
M

P
23

.9
26

.6
30

.3
19

.1
37

.2
30

.6
27

.3
24

.8
90

.3
55

.3
1.

22

C
M

P-
N

-a
ce

ty
ln

eu
ra

m
in

at
e

24
.8

28
.0

59
.6

59
.3

43
.5

57
.8

27
.0

24
.8

17
6

89
.6

8.
29

C
oA

N
.D

.
0.

16
0

N
.D

.
N

.D
.

6.
14

6.
47

N
.D

.
N

.D
.

1.
17

0.
28

0
N

.D
.

C
TP

10
7

11
7

17
9

12
1

15
8

14
3

60
.0

71
.3

15
5

13
5

8.
35

C
yt

id
in

e
N

.D
.

0.
78

0
0.

66
0

1.
03

N
.D

.
N

.D
.

1.
21

1.
60

11
.9

79
.4

N
.D

.

C
yt

os
in

e
0.

98
0

1.
09

N
.D

.
N

.D
.

N
.D

.
N

.D
.

N
.D

.
N

.D
.

1.
23

1.
25

N
.D

.

dA
D

P
12

.8
12

.9
16

.9
25

.4
21

.1
15

.6
7.

41
5.

97
47

.4
23

.2
N

.D
.

dA
M

P
1.

95
2.

85
4.

06
3.

48
3.

90
2.

16
1.

32
1.

26
11

.5
4.

61
N

.D
.

dA
TP

30
.2

30
.6

48
.8

53
.2

42
.3

33
.8

11
.2

13
.9

51
.1

52
.2

0.
47

0

dC
D

P
4.

70
5.

57
6.

87
5.

90
6.

62
4.

75
3.

76
2.

21
24

.3
9.

87
N

.D
.

dC
M

P
0.

77
0

0.
92

0
1.

81
0.

89
0

0.
86

0
N

.D
.

0.
70

0
0.

78
0

4.
42

2.
18

N
.D

.

dC
TP

15
.1

15
.3

23
.1

16
.8

17
.5

16
.2

8.
33

8.
55

17
.6

19
.2

1.
76

D
ec

an
oa

te
30

.3
22

.0
25

.6
23

.9
21

.0
22

.5
25

.8
22

.2
N

.D
.

3.
62

N
.D

.

dG
TP

14
.2

19
.9

19
.4

26
.8

9.
43

10
.1

5.
08

7.
61

43
5

9.
98

N
.D

.

D
H

A
P

22
.0

18
.1

14
.8

20
.8

35
.1

32
.3

23
.1

24
.1

28
.6

38
.4

59
.3

D
ie

th
an

ol
am

in
e

11
.5

20
.7

9.
99

14
.7

27
.0

8.
54

17
.7

15
.0

14
.5

15
.1

12
.7

D
ih

yd
ro

or
ot

at
e

19
.0

22
.6

34
.6

37
.9

19
.6

15
.5

23
.5

15
.8

37
0

17
7

92
.6

dI
TP

N
.D

.
N

.D
.

N
.D

.
N

.D
.

N
.D

.
4.

62
N

.D
.

3.
28

4.
90

7.
95

N
.D

.

D
od

ec
an

ed
io

at
e

0.
39

0
0.

34
0

0.
40

0
0.

30
0

N
.D

.
0.

38
0

0.
24

0
0.

38
0

N
.D

.
0.

34
0

N
.D

.

D
O

PA
N

.D
.

3.
52

5.
89

6.
07

3.
65

3.
24

2.
67

1.
73

13
.1

9.
52

2.
68

dT
D

P
12

.5
13

.8
19

.9
16

.8
22

.2
17

.5
8.

99
6.

20
45

.8
19

.8
N

.D
.



100
Ta

bl
e

A
.2

M
et

ab
ol

om
e

co
nc

en
tr

at
io

n
of

yh
hY

kn
oc

ko
ut

ce
lls

(µ
M

,N
.D

.:
no

td
et

ec
ta

bl
e

va
lu

es
,c

on
tin

ue
d)

M
et

ab
ol

ite
na

m
e

C
trl

1
C

trl
2

C
trl

3
yh

hY
1

yh
hY

2
yh

hY
3

C
trl

+C
o1

C
trl

+C
o2

yh
hY

+C
o1

yh
hY

+C
o2

yh
hY

+C
o3

dT
M

P
7.

19
5.

15
25

.3
12

.2
9.

81
11

.6
8.

59
4.

14
69

.4
16

5
N

.D
.

dT
TP

36
.0

36
.3

63
.6

37
.0

52
.0

46
.9

17
.0

19
.0

50
.5

42
.4

2.
12

dU
D

P
0.

53
0

0.
40

0
0.

39
0

0.
61

0
0.

64
0

0.
26

0
0.

49
0

0.
28

0
1.

59
1.

37
N

.D
.

dU
M

P
0.

94
0

1.
21

0.
22

N
.D

.
N

.D
.

N
.D

.
1.

73
5.

21
3.

20
0.

80
0

N
.D

.

dU
TP

2.
28

2.
02

2.
55

1.
43

1.
71

1.
33

1.
24

1.
03

1.
47

1.
36

N
.D

.

F1
,6

P
59

.5
58

.6
55

.5
10

2
97

.3
77

.2
7.

15
14

.1
N

.D
.

4.
57

N
.D

.

Fu
m

ar
at

e
26

.4
24

.8
46

.0
49

.5
23

.3
16

.5
41

.7
42

.1
N

.D
.

14
2

N
.D

.

G
1P

4.
57

4.
81

3.
86

N
.D

.
N

.D
.

0.
18

0
11

.0
11

.2
28

.4
90

.4
2.

85

G
A

BA
5.

20
6.

74
15

.3
14

.2
16

.4
20

.4
6.

93
6.

12
56

.7
48

.3
4.

98

g�
G

lu
-2

A
B

1.
88

2.
57

3.
94

1.
21

3.
48

3.
24

8.
05

4.
20

5.
67

4.
13

9.
66

g�
G

ua
ni

di
no

bu
ty

ra
te

N
.D

.
0.

39
0

N
.D

.
N

.D
.

0.
29

0
N

.D
.

0.
48

0
0.

65
0

0.
99

0
1.

00
N

.D
.

G
D

P
52

.6
61

.0
62

.2
90

.0
76

.3
56

.6
41

.3
33

.7
27

7
76

.0
N

.D
.

G
ln

12
.3

16
.2

62
.0

92
.4

47
.9

99
.2

39
.1

36
.3

30
0

19
4

37
5

G
lu

58
9

75
4

16
90

21
00

81
7

15
00

83
4

73
5

55
50

41
30

46
10

G
lu

-G
lu

0.
91

0
N

.D
.

2.
23

2.
01

1.
43

1.
80

N
.D

.
N

.D
.

1.
29

N
.D

.
N

.D
.

G
lu

co
sa

m
in

e
1.

25
1.

36
2.

39
1.

68
1.

62
1.

39
3.

43
3.

23
3.

70
4.

42
1.

89

G
SH

4.
81

7.
12

N
.D

.
2.

27
26

.0
34

.2
2.

23
N

.D
.

1.
44

3.
76

N
.D

.

G
SS

G
23

1
28

8
59

7
62

8
48

5
60

0
31

0
30

1
15

50
11

30
49

9

G
ly

50
.3

65
.4

12
4

82
.0

73
.2

79
.6

78
.2

14
8

28
6

19
4

14
7

G
ly

ce
ra

te
8.

64
6.

17
10

.2
18

.8
6.

21
8.

29
N

.D
.

6.
54

21
.8

29
.9

N
.D

.

G
ly

ce
ro

ph
os

ph
at

e
13

.0
13

.9
19

.5
20

.3
24

.2
23

.4
13

.5
11

.6
55

.3
29

.8
10

.6

G
TP

14
2

16
0

17
7

23
6

21
1

15
5

63
.7

84
.0

32
5

27
2

N
.D

.

G
ua

ni
ne

N
.D

.
4.

40
8.

12
3.

51
5.

35
2.

27
2.

35
5.

12
1.

67
4.

42
N

.D
.

G
ua

no
si

ne
5.

55
7.

77
13

.1
6.

05
4.

00
3.

10
4.

88
6.

60
55

.3
14

0
N

.D
.

H
ep

ta
no

at
e

24
.4

23
.6

24
.8

20
.5

22
.9

21
.8

23
.2

24
.4

23
.5

39
.5

N
.D

.

H
ex

an
oa

te
21

.2
17

.5
21

.0
19

.0
N

.D
.

16
.9

19
.7

N
.D

.
50

.1
35

.5
N

.D
.

H
is

7.
59

11
.4

22
.6

15
.3

15
.2

13
.0

5.
63

8.
42

12
.1

11
.8

7.
81

H
is

tid
in

ol
0.

18
0

N
.D

.
0.

83
0

0.
62

0
1.

3.
0

0.
60

0
N

.D
.

N
.D

.
0.

26
0

N
.D

.
N

.D
.



101
Ta

bl
e

A
.2

M
et

ab
ol

om
e

co
nc

en
tr

at
io

n
of

yh
hY

kn
oc

ko
ut

ce
lls

(µ
M

,N
.D

.:
no

td
et

ec
ta

bl
e

va
lu

es
,c

on
tin

ue
d)

M
et

ab
ol

ite
na

m
e

C
trl

1
C

trl
2

C
trl

3
yh

hY
1

yh
hY

2
yh

hY
3

C
trl

+C
o1

C
trl

+C
o2

yh
hY

+C
o1

yh
hY

+C
o2

yh
hY

+C
o3

H
om

os
er

in
e

8.
13

7.
81

12
.2

11
.8

27
.9

31
.1

11
.0

12
.2

26
.2

19
.3

28
.0

H
yp

ox
an

th
in

e
15

.3
22

.7
55

.7
25

.6
25

.3
9.

68
12

.1
20

.6
7.

45
27

.1
N

.D
.

Ile
2.

58
2.

82
6.

80
5.

06
8.

88
11

.5
4.

28
45

.9
11

0
16

.6
10

.2

In
os

in
e

12
.4

3.
43

27
.2

11
.1

8.
03

5.
25

N
.D

.
4.

73
5.

84
18

.5
N

.D
.

Is
ob

ut
yr

yl
C

oA
1.

14
2.

68
0.

43
0

1.
80

N
.D

.
N

.D
.

0.
77

0
2.

85
0.

24
0

N
.D

.
N

.D
.

Is
oc

itr
at

e
16

0
N

.D
.

N
.D

.
0.

87
0

40
5

N
.D

.
0.

67
0

22
5

N
.D

.
N

.D
.

22
5

Is
on

ic
ot

in
am

id
e

39
.0

15
.0

67
.5

45
.6

16
.1

19
.9

19
.0

14
.0

12
2

21
8

5.
15

Ita
co

na
te

N
.D

.
0.

61
0

N
.D

.
0.

77
0

0.
73

0
0.

55
0

0.
78

0
N

.D
.

N
.D

.
N

.D
.

N
.D

.

IT
P

48
.6

46
.4

70
.1

69
.3

57
.6

50
.8

25
.9

34
.7

83
.0

85
.9

1.
19

La
ct

at
e

40
4

32
6

36
4

37
7

36
4

35
5

44
6

73
9

36
6

60
5

69
8

Le
u

11
.4

14
.7

20
.0

27
.0

19
.2

16
.3

23
.0

46
.2

11
1

84
.4

35
.0

Ly
s

10
4

13
4

22
6

14
1

88
.6

10
9

15
5

18
7

49
0

39
4

N
.D

.

M
al

at
e

48
.5

48
.0

77
.9

78
.9

66
.4

50
.4

62
.6

84
.3

N
.D

.
23

5
33

.2

M
al

on
at

e
3.

21
3.

91
5.

11
4.

03
4.

12
3.

83
3.

99
3.

29
N

.D
.

8.
38

N
.D

.

M
an

no
sa

m
in

e
N

.D
.

N
.D

.
N

.D
.

N
.D

.
1.

58
N

.D
.

N
.D

.
N

.D
.

1.
20

4.
22

3.
34

M
et

9.
05

11
.4

23
.7

11
.7

7.
12

6.
16

28
.2

44
.3

14
0

62
.1

19
.6

M
et

ha
ne

su
lfo

na
te

2.
10

3.
95

3.
05

4.
44

2.
96

3.
57

4.
21

4.
23

N
.D

.
N

.D
.

N
.D

.

N
-A

ce
ty

la
sp

ar
ta

te
43

.8
45

.3
42

.3
12

8
48

.8
25

.0
60

.8
62

.9
N

.D
.

34
4

N
.D

.

N
-A

ce
ty

lg
lu

co
sa

m
in

e
1-

ph
os

ph
at

e
N

.D
.

1.
74

2.
27

N
.D

.
0.

48
0

N
.D

.
N

.D
.

N
.D

.
4.

23
19

.5
N

.D
.

N
-A

ce
ty

lg
lu

co
sa

m
in

e
6-

ph
os

ph
at

e
1.

59
2.

00
2.

34
2.

34
1.

34
1.

24
0.

77
0

0.
64

0
1.

46
1.

13
N

.D
.

N
-A

ce
ty

lg
lu

ta
m

at
e

0.
53

0
0.

90
0

2.
69

13
.7

6.
59

3.
37

2.
77

1.
83

79
.2

29
.5

18
.3

N
-A

ce
ty

lm
et

hi
on

in
e

0.
67

0
0.

50
0

N
.D

.
0.

44
0

N
.D

.
N

.D
.

0.
32

0
N

.D
.

0.
41

0
N

.D
.

N
.D

.

N
-A

ce
ty

lm
ur

am
at

e
0.

81
0

0.
81

0
1.

14
1.

30
N

.D
.

N
.D

.
0.

53
0

1.
23

N
.D

.
N

.D
.

N
.D

.

N
-A

ce
ty

lo
rn

ith
in

e
3.

17
4.

28
16

.8
23

.3
20

.6
16

.4
2.

84
N

.D
.

36
.0

17
.8

6.
53

N
-A

ce
ty

lp
ut

re
sc

in
e

1.
37

1.
20

4.
83

3.
07

1.
72

1.
59

2.
12

2.
46

6.
77

6.
16

3.
07

N
6 ,

N
6 ,

N
6 -

Tr
im

et
hy

lly
si

ne
N

.D
.

N
.D

.
0.

70
0

N
.D

.
0.

51
0

0.
40

0
N

.D
.

0.
68

0
1.

25
1.

17
N

.D
.

N
8 -

A
ce

ty
ls

pe
rm

id
in

e
0.

29
0

0.
64

0
0.

92
0

0.
89

0
0.

31
0

0.
42

0
1.

09
0.

61
0

2.
19

0.
92

0
1.

10

N
A

D
+

N
.D

.
N

.D
.

27
1

19
8

21
1

17
2

13
0

14
0

N
.D

.
21

7
N

.D
.



102
Ta

bl
e

A
.2

M
et

ab
ol

om
e

co
nc

en
tr

at
io

n
of

yh
hY

kn
oc

ko
ut

ce
lls

(µ
M

,N
.D

.:
no

td
et

ec
ta

bl
e

va
lu

es
,c

on
tin

ue
d)

M
et

ab
ol

ite
na

m
e

C
trl

1
C

trl
2

C
trl

3
yh

hY
1

yh
hY

2
yh

hY
3

C
trl

+C
o1

C
trl

+C
o2

yh
hY

+C
o1

yh
hY

+C
o2

yh
hY

+C
o3

N
A

D
PH

1.
42

2.
30

0.
82

0
3.

33
N

.D
.

0.
81

0
0.

83
0

1.
66

2.
53

8.
55

0.
97

0

N
ic

ot
in

am
id

e
31

.4
12

.0
54

.2
36

.6
13

.0
16

.0
15

.3
11

.2
98

.3
17

5
4.

14

o-
H

yd
ro

xy
be

nz
oa

te
N

.D
.

1.
63

1.
36

N
.D

.
N

.D
.

0.
49

0
N

.D
.

1.
56

N
.D

.
N

.D
.

N
.D

.

O
-P

ho
sp

ho
se

rin
e

3.
47

2.
25

2.
87

4.
47

3.
03

4.
67

2.
96

2.
92

21
.9

13
.0

33
.8

O
ct

an
oa

te
13

.5
12

.3
12

.9
10

.8
11

.2
13

.0
12

.4
12

.2
5.

09
20

.2
N

.D
.

O
ph

th
al

m
at

e
87

.9
77

.7
11

9
25

.4
96

.3
14

6
18

7
11

6
26

9
17

9
15

9

O
rn

ith
in

e
4.

39
11

.0
20

.6
11

.5
7.

84
7.

83
9.

82
11

.8
37

.5
19

.4
13

.6

P1
,P

4-
D

i(a
de

no
si

ne
-5

’)
te

tra
ph

os
ph

at
e

1.
44

1.
75

3.
09

2.
55

N
.D

.
2.

59
1.

26
1.

10
0.

32
0

2.
07

N
.D

.

Pa
nt

ot
he

na
te

N
.D

.
N

.D
.

2.
92

2.
98

N
.D

.
N

.D
.

0.
20

0
N

.D
.

N
.D

.
18

.3
N

.D
.

Pe
la

rg
on

at
e

35
.0

30
.2

33
.0

29
.6

32
.7

32
.0

31
.5

32
.6

32
.6

55
.0

N
.D

.

PE
P

15
.4

26
.0

82
.2

38
.0

31
.4

21
.5

19
.1

29
.2

N
.D

.
N

.D
.

0.
94

0

Ph
e

9.
35

9.
47

17
.4

16
.7

12
.9

11
.9

9.
68

11
.8

47
.7

39
.3

15
.9

Ph
en

yl
py

ru
va

te
1.

29
1.

67
1.

48
N

.D
.

N
.D

.
N

.D
.

N
.D

.
N

.D
.

2.
30

0.
51

0
N

.D
.

Ph
th

al
at

e
0.

76
0

0.
77

0
1.

09
0.

84
0

0.
72

0
0.

75
0

0.
85

0
1.

09
0.

26
0

0.
51

0
N

.D
.

Pi
m

el
at

e
1.

58
1.

92
1.

93
1.

53
1.

28
1.

52
2.

08
1.

61
N

.D
.

2.
79

N
.D

.

Pr
o

16
.7

13
.8

33
.8

26
.2

21
.0

16
.2

15
.0

20
.0

52
.3

45
.9

34
.9

Pr
op

io
na

te
18

.2
31

.0
28

.6
25

.3
26

.6
31

.0
23

.4
34

.2
32

.2
58

.2
N

.D
.

Pt
er

in
9.

61
12

.0
20

.7
22

.4
13

.9
14

.7
23

.0
38

.3
17

4
68

.8
25

.2

Pu
tre

sc
in

e
12

1
17

5
26

9
19

6
26

5
21

3
52

6
35

8
88

1
61

0
N

.D
.

Py
rid

ox
am

in
e

5’
-p

ho
sp

ha
te

3.
78

4.
35

7.
30

8.
46

8.
95

6.
40

3.
62

5.
09

25
.5

10
.8

10
.0

R
5P

19
.4

16
.0

14
.7

N
.D

.
N

.D
.

N
.D

.
15

.8
26

.1
59

.9
N

.D
.

4.
17

R
ib

ul
os

e
1,

5-
di

ph
os

ph
at

e
3.

38
5.

62
9.

06
6.

49
8.

50
6.

23
1.

13
3.

54
N

.D
.

5.
44

N
.D

.

R
u5

P
40

.3
30

.9
41

.8
35

.8
45

.8
65

.3
23

.9
23

.6
63

.5
61

.8
19

.7

S7
P

11
.7

9.
69

13
.3

14
.2

N
.D

.
22

.7
12

.8
13

.1
62

.0
52

.9
2.

50

SA
M

+
5.

53
8.

51
8.

03
9.

24
6.

40
3.

36
10

.5
10

.3
29

.7
10

.7
16

.6

Se
ba

ca
te

0.
49

0
0.

46
0

0.
63

0
0.

53
0

0.
48

0
0.

58
0

0.
54

0
0.

59
0

0.
66

0
0.

54
0

0.
31

0

Se
r

26
.0

45
.9

87
.5

57
.4

21
.9

37
.3

35
.0

44
.4

11
0

95
.8

39
.8

So
rb

ito
l6

-p
ho

sp
ha

te
11

.8
10

.3
12

.6
27

.1
23

.4
17

.3
13

.4
14

.9
52

.6
79

.1
4.

21



103
Ta

bl
e

A
.2

M
et

ab
ol

om
e

co
nc

en
tr

at
io

n
of

yh
hY

kn
oc

ko
ut

ce
lls

(µ
M

,N
.D

.:
no

td
et

ec
ta

bl
e

va
lu

es
,c

on
tin

ue
d)

M
et

ab
ol

ite
na

m
e

C
trl

1
C

trl
2

C
trl

3
yh

hY
1

yh
hY

2
yh

hY
3

C
trl

+C
o1

C
trl

+C
o2

yh
hY

+C
o1

yh
hY

+C
o2

yh
hY

+C
o3

Sp
er

m
id

in
e

1.
19

0.
70

0
1.

40
1.

67
1.

10
0.

75
0

1.
60

1.
01

N
.D

.
5.

45
N

.D
.

Su
cc

in
at

e
45

.7
36

.2
95

.5
69

.8
34

.4
31

.4
48

.1
38

.0
22

3
18

7
3.

56

Su
cc

in
yl

C
oA

N
.D

.
N

.D
.

N
.D

.
0.

54
0

N
.D

.
0.

54
0

N
.D

.
N

.D
.

0.
41

0
2.

24
N

.D
.

TD
P-

gl
uc

os
e

2.
18

1.
96

N
.D

.
6.

34
4.

19
2.

45
3.

15
N

.D
.

N
.D

.
N

.D
.

N
.D

.

Te
re

ph
th

al
at

e
0.

27
0

N
.D

.
N

.D
.

N
.D

.
1.

14
0.

27
0

0.
15

0
0.

14
0

N
.D

.
N

.D
.

N
.D

.

Th
r

40
.4

43
.1

58
.1

75
.6

50
6

57
9

41
.2

43
.4

13
9

11
5

93
.3

th
re

o-
be

ta
-m

et
hy

la
sp

ar
ta

te
44

7
59

3
12

30
14

70
66

9
12

00
61

9
54

0
N

.D
.

31
90

38
00

Ti
gl

at
e

20
.7

21
.2

25
.2

21
.2

20
.4

18
.3

19
.2

23
.5

28
.0

45
.1

N
.D

.

tra
ns

-C
in

na
m

at
e

N
.D

.
27

.0
50

.9
67

.8
25

.1
41

.2
24

.3
21

.2
N

.D
.

N
.D

.
N

.D
.

Tr
eh

al
os

e
6-

ph
os

ph
at

e
N

.D
.

N
.D

.
N

.D
.

N
.D

.
N

.D
.

1.
19

1.
17

0.
90

0
3.

54
1.

55
N

.D
.

Tr
ie

th
an

ol
am

in
e

N
.D

.
2.

22
2.

33
2.

09
1.

91
2.

35
2.

01
1.

89
1.

15
1.

40
2.

66

Tr
im

et
hy

la
m

in
e

N
-o

xi
de

0.
87

0
1.

11
1.

04
1.

09
1.

10
1.

32
1.

64
1.

56
1.

48
1.

01
1.

83

Tr
p

2.
37

2.
35

4.
85

3.
14

3.
34

3.
51

2.
07

1.
97

9.
48

5.
70

2.
87

Ty
r

6.
86

8.
37

19
.4

10
.7

16
.2

13
.3

7.
05

6.
63

30
.9

19
.3

6.
87

Ty
ra

m
in

e
N

.D
.

N
.D

.
N

.D
.

N
.D

.
1.

24
N

.D
.

1.
79

0.
95

0
1.

46
N

.D
.

7.
94

U
D

P
N

.D
.

N
.D

.
16

2
10

8
12

7
87

.2
77

.5
86

.1
39

2
98

.4
0.

46
0

U
D

P-
gl

uc
os

e
39

8
40

8
55

8
41

2
38

2
35

7
42

4
30

0
66

1
46

8
22

3

U
D

P-
gl

uc
ur

on
at

e
32

.8
34

.0
50

.0
56

.9
57

.3
45

.7
38

.4
32

.5
12

7
65

.7
0.

71
0

U
D

P-
N

-a
ce

ty
lg

lu
co

sa
m

in
e

16
1

15
6

22
3

13
6

11
4

N
.D

.
14

2
12

0
27

0
22

9
15

.0

U
M

P
25

.4
23

.3
72

.9
35

.2
33

.6
23

.8
33

.8
24

.8
18

6
22

3
0.

79
0

U
nd

ec
an

oa
te

2.
60

2.
14

1.
67

2.
72

N
.D

.
2.

00
N

.D
.

N
.D

.
3.

52
N

.D
.

N
.D

.

U
TP

24
4

27
9

49
5

24
3

27
1

22
5

12
5

23
4

38
6

30
7

11
.4

Va
l

31
.2

37
.1

87
.3

35
.3

49
.2

69
.6

56
.6

73
.6

28
7

17
8

15
2

X
M

P
1.

64
1.

74
1.

96
2.

59
1.

06
0.

77
0

2.
73

2.
90

4.
61

4.
78

N
.D

.



Acknowledgements

These works were supported by the Taikichiro Mori Memorial Research Fund and the

research funds from Yamagata Prefectural government and the City of Tsuruoka.

I thank my sincere gratitude to Professor Masaru Tomita for the support from bachelor

to doctor course. I express my deep appreciation to Project Professor Masahiro Sugimoto

for his valuable comments. Dr. Martin Robert always kindly taught me scientific thinking

and writing in the master’s course. Associate Professors Yasuhiro Naito and Hiroki Kuroda

carefully checked this thesis and gave me many useful comments. I express my sincere

gratitude to Professors Mitsuhiro Itaya, Akio Kanai, and Tomoyoshi Soga. They always gave

me valuable advice and led the direction of the study.


	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 General introduction
	1.1 What is systems biology
	1.2 Circadian rhythms and systems biology
	1.2.1 Historical overview of circadian rhythms
	1.2.2 Systems biology and circadian rhythms
	1.2.3 Molecular timetable to predict internal body clock

	1.3 Statistics to detect rhythms in chronobiology

	2 MICOP: Maximal information coefficient-based oscillation prediction to detect biological rhythms
	2.1 Background
	2.2 Materials and methods
	2.2.1 Datasets
	2.2.2 Design
	2.2.3 Performance test
	2.2.4 Reanalysis of previously reported time-resolved proteomics datasets
	2.2.5 Programming languages and statistical analysis

	2.3 Results
	2.3.1 Parameter search for MICOP
	2.3.2 Computation time of MICOP
	2.3.3 Noise levels of proteome data
	2.3.4 Comparison of MICOP and existing methods for decaying data
	2.3.5 Comparison of MICOP and existing methods for noisy or low-sampling-frequency
	2.3.6 Comparison of MICOP and existing methods for noisy one-cycle data
	2.3.7 Phase estimation of MICOP and existing methods
	2.3.8 Amplitude estimation of MICOP and existing methods
	2.3.9 Reanalysis of previously reported time-resolved proteomics datasets

	2.4 Discussion
	2.5 Conclusion

	3 Amino acids acetylation by orphan enzyme YhhY in Escherichia coli
	3.1 Background
	3.2 Materials and methods
	3.2.1 Strains and culture conditions
	3.2.2 Expression and purification of recombinant proteins
	3.2.3 The in vitro assay of YhhY
	3.2.4 Extraction for metabolome analysis
	3.2.5 Instruments and conditions for CE-MS analysis
	3.2.6 CE-MS data processing and statistical analysis

	3.3 Results
	3.3.1 Amino acids acetylation of YhhY in vitro
	3.3.2 Inhibition by thiol reaction reagents, Lineweaver-Burk andordination plots
	3.3.3 In vitro acetylation by extract of yhhY-overexpressing cells
	3.3.4 Acetylated products in yhhY-overexpressing cells
	3.3.5 Metabolome analysis of wild-type and yhhY deletion mutants under 10 µM cobalt conditions

	3.4 Discussion
	3.4.1 Specific amino acids acetylation by YhhY in vitro
	3.4.2 Reaction rate and reaction pattern of YhhY
	3.4.3 The in vitro assay by E. coli extract
	3.4.4 In vivo activity of YhhY
	3.4.5 Comparison of YhhY activity with previous reports

	3.5 Conclusion

	4 Concluding remarks
	4.1 MICOP: Maximal information coefficient-based oscillation prediction
	4.2 Amino acids acetylation of orphan enzyme YhhY
	4.3 Mass spectrometry for systems biology

	References
	Appendix A Metabolome concentration of yhhY overexpressing and knockout cells

