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Abstract

Quantum bits have technological imperfections. Additionally, the capacity of a com-
ponent that can be implemented feasibly is limited. Therefore, distributed quantum
computation is required to scale up quantum computers able to solve usefully large
problems.

This dissertation presents the design of components of quantum CPUs and of quan-
tum memories taking into account imperfections. Quantum CPUs employ a quantum
error correcting code which has faster logical gates and quantum memories employ a
code which is superior in space resource requirements. This new quantum computer
architecture aimed to realize distributed computation by connecting quantum computer
each of which consists of multiple quantum CPUs and multiple quantum memories.

This dissertation focuses on quantum error correcting codes, giving a practical,
concrete method for tolerating static losses such as faulty devices for the surface code. To
validate this method, I analyzed the resource consumption of cases where faulty devices
exist and quantified the increase of resource consumption by numerical simulation with
practical assumptions. I found that a yield of functional qubits of 90% is marginally
capable of building large-scale systems, by culling the poorer 50% of chips during post-
fabrication testing. Yield 80% is not usable even when discarding 90% of generated
lattices.

For the internal connections between quantum CPU and memory components in a
quantum computer and for connections of quantum computers, this dissertation gives
a fault-tolerant method to connect quantum components that employ heterogeneous
quantum error correcting codes. I have validated this method and quantified the resource
consumption of the error management by numerical simulation. I found that the scheme,
which discards any quantum state in which any error is detected, always achieves an
adequate logical error rate regardless of physical error rates in exchange for increased
resource consumption.
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Additionally, this dissertation gives a new extension of the surface code suitable for
quantum memories. This code is shown to require fewer physical qubits to encode a
logical qubit than conventional codes. This code achieves the reduction of 50% physical
qubits per a logical qubit.

Collectively, the elements to construct distributed quantum computation by connect-
ing quantum computers are brought together to propose a distributed quantum computer
architecture.
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Quantum error correction, Surface code quantum computation, faulty qubit, quantum
error correction code interoperability
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要旨

量子ビットの原理的・技術的な不完全性を解決するには，量子計算リソースが必要
である．しかし，一つの部品に実装可能な計算リソース量は限られている．した
がって，量子コンピュータが規模や性能において飛躍的な発展を遂げるためには，
量子コンピュータによる分散処理を実現しなければならない．
本研究では，多数の量子 CPUや量子メモリを耐不完全性を考慮して設計・接

続し，分散処理により計算リソースを確保して，実用的な規模の問題を解ける量
子コンピュータアーキテクチャを構築する．本アーキテクチャでは，計算リソース
を節約するために部品毎の役割を明確化し，各役割に適切な量子エラー訂正符号
を採用する．
本研究は以下に述べる三つの成果から構成される．まず，エラー訂正符号に着

目し，未解決の不完全性だった不良量子ビットへの対応手法を開発した．シミュ
レーションにより本手法のエラー訂正能力を検証し，消費計算リソースの増加量
を明らかにした．この結果，量子ビットの正常動作率が九割の環境では，生産した
計算チップの 50%が実用可能であると判明した．また，動作率八割では，10%も
実用できない事が分かった．
次に，異なる量子エラー訂正符号を用いる部品間を，耐不完全性を考慮して繋

ぐ接続手法を開発した．本手法は，単一量子コンピュータ内の量子部品の接続に
加えて，異なる量子エラー訂正符号を用いる量子デバイス間の相互接続を実現す
る．本手法の有効性を検証するため，シミュレーションにより，必要な計算リソー
ス量を明らかにした．この結果，エラーを訂正するよりも，エラーが発見された通
信リソースを廃棄するエラー管理方法が，本接続手法に適している事が分かった．
さらに，メモリ向きの新しい量子エラー訂正符号を開発した．計算の結果，本

符号は，従来のエラー訂正符号の二倍の空間効率で量子メモリを構成出来る事が
分かった．
これらの研究により，量子コンピュータの相互接続によるネットワーク型分散

コンピュータを構成する要素が整った。これらを組み合わせ，実現可能な分散量
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子コンピュータアーキテクチャを提案する．
キーワード: 量子コンピュータアーキテクチャ,分散量子計算,量子エラー訂正

符号, Surface Code量子計算,不良量子ビット,量子エラー訂正符号変換
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Chapter 1

Introduction

The presence of Information Technology today is ubiquitous. Every individual and
organization has computer devices, many connected via the Internet. The Internet, hence
the IT world, covers the entire planet today. Sometimes individuals and organizations
communicate one-on-one and sometimes they communicate as a group on the Internet
immediately and easily, even if they are on the opposite sides of the planet. Thanks to
the IT infrastructure, many everyday activities such as commerce are transferred from
the physical world to the IT world. This power accelerates human lives and increases
their flexibility.

While the Internet connects everyone and every place, local networking can also
aggregate large numbers of individual, powerful computers to create scalable distributed-
memory systems capable of solving large problems [40]. However, there still remains
problems we cannot solve even with such aggregated computational power. Feynman
initially conceived of quantum computation to execute quantum simulation, a problem
that conventional computers find impossible to solve efficiently as the size of the problem
grows [58].

1.1 Importance of quantum computation

Quantum computation is important for two key reasons. The first is the limit of the
improvement of the classical computation’s fabrication. The development of classical
CPU technology has obeyed Moore’s Law and the number of transistors in a chip doubled

1
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every two years for several decades [117]. However, the semiconductors used in classical
computation face fundamental physical limitations as features approach atomic size. For
example, they suffers from leakage currents caused by quantum tunneling, resulting in
heating since the devices implemented on the semiconductor have thickness of only tens
of atoms today. Classical CPU developers are making efforts to suppress such quantum
effects, however, it is clear that there will be a limit. The ultimate solution to this problem
is computation utilizing the quantum effect.

The second is the lure of quantum algorithms [116]. There exist many problems
which can not be solved by conventional computation based on classical physics. Quan-
tum computing is a promising technology that may give new computational power to
human beings and open the door to a new scientific world. The archetypal quantum
algorithm is Shor’s algorithm, found in 1994 [149]. Shor’s algorithm factors large
numbers N in O(log3N) time, while classical algorithms require superpolynomial time.
The most popular influence of Shor’s algorithm is that some of the encryption systems
used today will be broken; the most common public key sharing algorithm depends on
the fact that efficient classical algorithms have not been found yet and hence on the
difficulty of factoring large numbers [16]. The number of states of a quantum system
increases exponentially with the number of particles hence simulation is not scalable on
classical computers [24, 32, 66]. Efficient quantum simulation will contribute to chem-
istry, materials, high-energy physics, superconductivity and nanotechnologies. Grover’s
algorithm is for unstructured search [17, 68]. It is applied to problems such as mini-
mum value search including the minimum of an unknown functions, graph connectivity
determination and pattern matching and SAT problems [55, 56, 115, 139].

There are other useful quantum algorithms. The Quantum Algorithm Zoo cites 314
papers at the time of writing this dissertation [89].

1.2 Problems

Though many useful quantum algorithms have been found, there is still a ways to go to
construct a quantum computer which can solve large problems practically. For example,
there is no quantum bit (qubit) implementation which can sustain a state with sufficient
fidelity from the start of a long computation to the end. DiVincenzo summarized the
physical conditions necessary for building a practical quantum system in 2000 [50],
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1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state, such as
|000...⟩

3. Long relevant decoherence times, much longer than the gate operation time

4. A“ universal”set of quantum gates

5. A qubit-specific measurement capability

6. The ability to interconvert stationary and flying qubits

7. The ability faithfully to transmit flying qubits between specified locations.

The first five are for a quantum computer and the last two are for quantum communication.
Obviously some items of those criteria include compromises; are coherence times much
longer than the gate times but much shorter than the computation time actually enough?
Though many teams are working hard to realize any of several physical systems to be
the fundamental technologies of quantum computing systems, the coherence times range
from nanoseconds to seconds [31, 103].

Accepting compromises on such factors can be justified by the introduction of fault-
tolerant quantum computation achieved by special quantum error correcting codes. Fault-
tolerant quantum computation makes the quantum computation tolerant against the very
fragile quantum states by encoding a logical qubit in a large number of physical qubits
without the necessity of decoding during the computation [2, 42, 67, 69, 70, 96, 97, 138,
150, 153, 154, 155, 156, 159]. In fact, DiVincenzo’s first five criteria only guarantee
that the fault-tolerance system itself can be run. The fault-tolerant quantum computation
has large overhead both in space and in time, hence the five criteria do not guarantee the
ability to solve problems of practically meaningful sizes. Processing Shor’s algorithm
to factor a number described with N bits requires a quantum register with at least 2N + 2
high-quality qubits [11, 60, 133, 149, 162, 171, 176]. If the resource requirements to
represent 2N + 2 high-quality qubits in a fault-tolerant fashion are too high, we cannot
even start, let alone finish, the computation. Therefore, fully scalable quantum computers
are required [33, 38, 64, 126, 170, 181].

Topological quantum computation, especially the surface code (introduced in Chapter
2) extended originally from Kitaev’s toric code, has been developed as a fully scalable
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fault-tolerant quantum computation mechanism [18, 44, 49, 62, 94, 140, 142, 143]. The
surface code qubits are grouped in “plaquettes” which consist of four neighboring qubits
in the lattice. Each plaquette is associated with a stabilizer measurement (quantum parity
check). There are two types of stabilizers – Z stabilizers and X stabilizers – enabling the
correction of arbitrary errors. Error syndromes are associated with pairs of sequential
stabilizer measurements that differ.

The surface code has two advantages compared to other quantum error correct-
ing codes: its high feasibility because it requires operations only between nearest-
neighboring qubits and its higher physical state error rate threshold, nearly 1%, allowing
it to work with a broad range of physical technologies and achieve an arbitrary logical
error rate by using longer code distances [63]. It has been shown that the fault-
tolerant quantum computation including the surface code can tolerate several quantum
imperfections besides unintended quantum state changes, such as leakage errors [3, 108],
losses [67, 98, 144, 175] including dynamic losses [151, 152, 179] and static losses [122].
A leakage error is the change of a physical state from the computational space to unused
space e.g. if the qubit zero and one states are defined as energy levels of an atom, then
leakage is finding the atom in a third energy level. Leakage errors can be corrected by
building dedicated units on each qubit [109]. Dynamic loss is such as photon generation
failure and dynamic loss of other qubit carriers. Whiteside and Fowler numerically
revealed that the threshold of dynamic loss rate is between 0.1% and 1% with practical
assumptions [179]. Static loss, where qubits are lost from the beginning of the computa-
tion to the end, may be tolerated by methods similar to ones for dynamic loss. However,
precise analysis for static loss has not been achieved prior to this dissertation.

Those characteristics make the surface code quantum computation the most promis-
ing form of fault-tolerant quantum computation. However, there are still several problems
which prevent us from building the surface code for a practical quantum computer that
should be solved at the computer system level.

1.2.1 Imperfections caused in fabrication

Static loss is the presence of imperfections such as devices incapable of trapping single
electrons for use as qubits, incapable of high-fidelity gates, etc. In some fixed physical
systems, fabrication imperfections could result in static losses. For example, DiVincenzo
offered an architecture for superconducting hardware for the surface code [49], in which
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a superconducting loop which does not show the appropriate quantum effect will be a
missing site in the qubit layout. Likewise, Jones et al. proposed an architecture for
scalable quantum computation with self-assembled quantum dots used to trap electrons,
which are used as qubits [87]. There very likely will be defective quantum dots which
cannot trap a single electron, leaving holes in the code. During initial boot stage, qubits
are calibrated; if qubits cannot be tuned to hold a single quantum, or if they cannot be
tuned to match their neighbors, they can be declared not working.

To tolerate static loss, we have two choices: design a microarchitecture to work
around missing qubits, or adapt the syndrome collection and processing to tolerate loss.
Van Meter et al. proposed a system in which the microarchitecture can create the regular
2-D lattice even when some qubits are faulty [172]. However, this requires the ability to
couple qubits across a distance spanning several qubit sites. Stace et al. showed that qubit
loss is acceptable when performing the surface code and that there is a trade-off between
the loss rate and the state error rate. Theoretically, if no errors occur in the qubits during
the syndrome extraction process, the logical state can be repaired after loss of less than
ploss = 50% of the qubits. They introduced the concept of a “superplaquette”, which
consists of several plaquettes that surround defective qubits. They showed that, under
the assumption that the superplaquette operators can be measured perfectly, a threshold
error rate existed for qubit loss rates below 50%. Barrett et al. showed that dynamic
loss in the 3-D topological quantum computation is acceptable up to ploss = 24.9% [9].
This latter approach, however, cannot be used if a device (used to bond together qubits
the 3-D topological lattice) in the quantum computer is permanently faulty, leading to a
column in time of lost qubits. We measure the six face qubits in a unit cell for syndrome
extraction in the 3-D topological computation because the six qubits are the output of
Πi Xi ⊗qj∈ngbr(qi) Z j where qi are the face qubits. A lost qubit merges Πi Xi ⊗qj∈ngbr(qi) Z j

of two unit cells [106, Chapter 20]. A column in time of lost qubits from the beginning
of the computation to the end works as a logical qubit because we do not have stabilizer
X0 ⊗qj∈ngbr(q0) Z j on the first 2-D surface of the 3D cluster state where the lost column
starts from q0 and X′

0 ⊗qj∈ngbr(q′
0) Z j on the last 2-D surface, therefore the merged

Πi Xi ⊗qj∈ngbr(qi) Z j of the merged unit cells is not closed. Hence another solution is
required for faulty devices in 3D topological code. And therefore a practical method
and an estimation for tolerance against static loss is required to complete our toolkit of
strategies against the full set of quantum imperfections.
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1.2.2 Excessive resource consumption

The most complete architecture proposed for the surface code requires at least 4.57×107

physical qubits and 10.81 hours to solve 1024-bit factorization [158], even with some
ideal assumptions in a simplified flat qubit placement design. In fact, such a design
is also practically difficult because of the size of the chip and because of integration
challenges such as control lines [74, 86]. It is not clear yet whether this number of
qubits is feasible. For architectures such as shown in [64], which fits 84 flux qubits in a
12mm by 5mm area, if we assume that a chip is limited to 84 qubits, then a full system
could require 5.44 × 105 chips, a fabrication challenge perhaps beyond our technical
capabilities. Resource reduction even by a few percent will increase the feasibility,
and advance the construction of the first quantum computer. Reduction of the number
of required qubits would be a valuable contribution to the construction of a practical
quantum computer.

1.2.3 Requirement of architectural support for internal/external

heterogeneously encoded fault-tolerant quantum communica-

tion

To build a large quantum computer from small components having limited abilities,
quantum communication and an efficient design of networking to connect such compo-
nents are required. The purpose of a quantum connection is to create quantum states
known as Bell pairs shared between two subsystems to enable quantum teleportation [13]
moving data around to support large scale computation. Bell pairs are discussed in Sub-
section 2.1.3.

The design of connections between internal components is related to the computer
architecture. Oskin et al. and Copsey et al. assumed the existence of internal connections
between different components in their hierarchical memory architectures, but did not
focus on the creation of those internal connections [39, 130]. Components for the
optical interconnection and some simple architectures utilizing them have been proposed
[1, 91, 114]. Photonic implementations that fulfill DiVincenzo’s 6th and 7th criteria can
be employed as the flying qubits carried in the internal connections [30, 101, 124]. The
advantage of optical connections is the ability to distribute photons; qubits can go to
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wherever fibers are connected as long as the conversion is realized between a photonic
qubit and the computational qubit [72, 81].

The design of the connections of computers is distributed quantum computation
[23, 27, 28, 29, 34, 41, 114]. To achieve distributed quantum computation, we need
quantum networks, quantum internetworks and a new quantum computer architecture.
Quantum networks and quantum internetworks consist of quantum nodes that correspond
to classical switching hubs or routers and deliver quantum information between two
arbitrary quantum computers [5, 6, 7, 46, 72, 81, 93, 119, 168, 169]. The new quantum
computer architecture must support networking and then must support internal routing
among components [80].

Due to again the vulnerability of quantum states to noise and the lossy pho-
tonic channel, quantum communications must support error correction for both in-
ternal connections of a quantum node and connections between quantum nodes
[22, 53, 65, 82, 83, 105, 120, 182].

1.3 Contribution of this dissertation

The primary contribution of this dissertation is a practical quantum computer archi-
tecture which tolerates quantum imperfections with efficient computational resource
requirements and can be built from computational components that can feasibly built,
solving the problems and requirements stated in Section 1.2.

My contributions to working around static losses and overhead of the estimation are

• A method for constructing the circuits for error correction to give practical adaption
to static losses to “superplaquettes” proposed but treated ideally in [9, 151, 152].
Both statically lost data qubits and ancilla qubits are tolerable.

• Analysis of tolerable yield of functional qubits by numerical simulation, showing
that yield 90% is marginally capable of building large-scale systems, by culling the
poorer 50% of chips during post-fabrication testing, assuming randomly distributed
nonfunctional qubits. Yield 80% is not usable even when discarding 90% of
generated lattices.

• Correlations between the logical error rate and a dozen characteristics of the
lattice, which contribute to guiding the construction of an ensemble of quantum
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computation chips good enough to compose a large scale fault-tolerant quantum
computer [23, 27, 28, 29, 34, 41, 114]. The deepest depth of parity check circuits
and the biggest number of data qubits owned by a parity check unit have largest and
the next largest correlation with the logical error rate of the lattice, respectively.

My contributions to new denser packed surface code with the universal set of logical
gates are

• Denser packing of logical qubits of the surface code, good for quantum memories,
with the reduction of 50% physical qubits per logical qubit.

• Analysis based on error chain comparison with conventional surface code qubits.

• An universal set of logical gates for more densely packed logical qubits and direct
conversion from other surface code qubits.

My contributions to fault-tolerant quantum switched backplane supporting network-
ing are

• A practical architecture for fault-tolerant quantum internal communication
supporting heterogeneously encoding with scalable switching, extended from
[1, 91, 114].

• Numerical analysis of three possible schemes with assumptions based on experi-
mental results.

• Demonstration that the scheme in which any error detected in a resource state gets
discarded always achieves about a certain logical error rate regardless of physical
error rates in exchange for resource consumption.

1.4 Contents and Structure

This dissertation is divided into eight chapters. This first chapter is the overview of this
dissertation. Chapter 2 is a brief summary of basics of quantum computation, quan-
tum error correction, especially the surface code, and the existing quantum computer
architectures. Chapter 3 describes the mechanism for tolerating static losses. Chapter
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4 demonstrates the dense packing of the deformation-based surface code with logi-
cal universal gates. Chapter 5 shows the fault-tolerant Bell pair creation schemes for
heterogeneously encoded Bell pairs between quantum components connected optically.
Chapter 6 describes the quantum computer architecture for scalable distributed quantum
computation. Chapter 7 shows the performance of the components proposed in this
dissertation. Chapter 8 is the conclusion.



Chapter 2

Quantum Computing Systems

The advantages and motivation of quantum computation were covered in Chapter 1.
The criteria to achieve quantum computation, DiVincenzo’s criteria were also covered
in Chapter 1. This Chapter summarizes the background knowledge necessary to read
dissertation. The basic concepts of quantum information processing; imperfections in
qubits and technologies to protect against them; related quantum computer architecture;
quantum networking, and distributed quantum computer architecture are explained.

2.1 Quantum Information Basics

In this Section, basic descriptions, characteristics and operations of quantum informa-
tion are summarized. Superposition, interference, entanglement and unitarity are key
characteristics for quantum computation. Especially universal gate set, entanglement
swapping and quantum teleportation are the key characteristics for this dissertation.

2.1.1 Qubit description

Researchers have been unlocking the secrets of quantum mechanics for about one hundred
years, and determined that energy comes in discrete amounts, rather than continuous, and
that the measured value of a sufficiently small object will be determined in a probabilistic
fashion and the state of such a matter is described with a wave amplitude that gives the
probability, where the amplitude can be a complex number. Such a small matter is called

10
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a “quantum”. “Quantum” is a collective term to describe matters which obey quantum
mechanics.

When a quantum is measured, its value is determined by the axis of measurement we
execute, depending on the probability amplitudes. This probabilistic process results in
that a quantum state cannot be reproduced from the observed value, because we cannot
infer the original probability amplitudes from the observed value. Such characteristics
are utilized to define a quantum bit, or a qubit.

A qubit utilizes two states of quantum observables. For example, the energy levels
are one type of observable of an electron. Two levels of the energy levels can be used
to describe a qubit, such as, the ground state |g⟩ for |0⟩ and the first excited state |e⟩ for
|1⟩. Another example is the polarization of a photon. Horizontal polarization |H⟩ and
the vertical polarization |V⟩ can be used for the two states to define a qubit.

For a qubit encoded on such a quantum state, the wave function of the qubit can be
described using the state vector, or Dirac ket, notation,

|Ψ⟩ = cos
θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩ =

(
cos θ

2
eiϕ sin θ

2

)
=

(
α
β

)
. (2.1)

Here, our two basis vectors are |0⟩ ≡
(
1
0

)
, |1⟩ ≡

(
0
1

)
. Note that the basis states are

orthogonal, ⟨ϕ|ψ⟩ = 0 for any two basis vectors |ϕ⟩ and |ψ⟩. This quantum state has two
degrees of freedom, called the value and the phase, which are parameterized by θ and
ϕ. This equation describes an important characteristic of a qubit: both basis vectors can
exist together in this generalized state. This characteristic is called the superposition,
and the coefficients cos θ

2 and eiϕ sin θ
2 describe the probability amplitudes of the basis.

Figure 2.1 shows the visualization of the state space of a single qubit. A quantum state
is a point on the surface of the sphere, called the Bloch sphere. In real 3-space, orthogonal
states are at right angles, but in the space where the Bloch sphere is described, orthogonal
states show up at opposite points. Because each point on the surface represents a quantum
state, the number of states a qubit can be in is infinite. We can choose any axis to measure
a qubit, though by convention we limit our choice to one of the three axes, X, Y or Z,
without loss of generality. When we measure a qubit along an axis, a value which
corresponds to the maximum or minimum value of the axis in the state space will be
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Z

X

Y

Figure 2.1: The visualization of the state space of single qubit, known as the Bloch
sphere. The X-Z plane is the real plane and the Y axis is the imaginary axis. Any two
vectors pointing in the opposite directions are the orthogonal states. θ determines the
real value and ϕ determines the imaginary value.

measured probabilistically. There are three matrices, one corresponding to each axis.

X =
(
0 1
1 0

)
, (2.2)

Y =
(
0 −i
i 0

)
, (2.3)

and
Z =

(
1 0
0 −1

)
. (2.4)

The eigenvectors and corresponding eigenvalues of Z are

|0⟩ =
(
1
0

)
(2.5)

for +1 eigenvalue and

|1⟩ =
(
0
1

)
(2.6)
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for −1 eigenvalue. When we “measure” |Ψ⟩, the probability that an eigenvalue is
observed can be formulated as

⟨Ψ|M†M |Ψ⟩ (2.7)

where M is |0⟩⟨0| for the +1 eigenvalue and |1⟩⟨1| for the −1 eigenvalue. Therefore, the
probability to observe the +1 eigenvalue is

⟨Ψ|0⟩⟨0|Ψ⟩ = | cos
θ

2
|2, (2.8)

and the probability to observe the −1 eigenvalue is

⟨Ψ|1⟩⟨1|Ψ⟩ = |eiϕ sin
θ

2
|2 (2.9)

Each base can be described with other two basis. X and Z are chosen generally.
Obviously those coefficients have a relationship, | cos θ

2 |2 + |eiϕ sin θ
2 |2 = 1. To

maintain this relationship, all qubit operations must be unitary. However, the quantum
measurement operation just described is not unitary, sometimes the sum appears not to
be 1. In such case, the coefficients are renormalized to make the sum 1.

2.1.2 Multiple qubits notation

To think about the description of multiple qubits, let’s start from the description of two
qubits. Similar to classical computation, two qubits have four orthogonal basis states,
|0a0b⟩, |0a1b⟩, |1a0b⟩ and |1a1b⟩ in a 22 dimension space where a is the first qubit and
b is the second qubit. The orthogonal basis vector constraint ⟨ϕ|ψ⟩ = 0 still holds.
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Therefore the two qubit state is formulated as

|Φ⟩ = α |0a0b⟩ + β |0a1b⟩ + γ |1a0b⟩ + δ |1a1b⟩ (2.10)

= α
©­­­«
1
0
0
0

ª®®®¬ + β
©­­­«
0
1
0
0

ª®®®¬ + γ
©­­­«
0
0
1
0

ª®®®¬ + δ
©­­­«
0
0
0
1

ª®®®¬ (2.11)

=

©­­­«
α
β
γ
δ

ª®®®¬ . (2.12)

As with the one qubit description, the absolute value of the square of each coefficient is
the probability of the state being measured. The total probability of the states must be 1.
For example, one possible state is written as

|Φ⟩ = 1
√

2
(|0a⟩ + |1a⟩) ⊗

1
√

2
(|0b⟩ + |1b⟩)

=
1
2
|0a0b⟩ +

1
2
|0a1b⟩ +

1
2
|1a0b⟩ +

1
2
|1a1b⟩

=
1
2

©­­­«
1
1
1
1

ª®®®¬ ,
(2.13)

with the possible measured values and the corresponding probabilities are shown in table
2.1.

Similar to the two qubit case, n qubits have 2n basis from |000...000⟩ to |111...111⟩.

Table 2.1: An example of the state and probability table of two qubits.
state probability
|00⟩ 25%
|01⟩ 25%
|10⟩ 25%
|11⟩ 25%
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The n-qubit state can be generalized as

|Ψ⟩ = α0 |000...000⟩ + α1 |000...001⟩ + α2 |000...010⟩ + ... (2.14)

+αn2−2 |111...110⟩ + αn2−1 |111...111⟩. (2.15)

and

|ψ⟩ = Σ2n−1
i=0 αi |i⟩ (2.16)

Σ
2n−1
i=0 |αi |2 = 1 (2.17)

where αi ∈ C. Equation 2.17 is the normalization condition.

2.1.3 Entanglement

We can discover from the notation of two qubits that the probability amplitudes hence
the probabilities of the two qubits can be dependent, e.g. in a state such as:

|Φ+⟩ = 1
√

2
|0a0b⟩ + 0|0a1b⟩ + 0|1a0b⟩ +

1
√

2
|1a1b⟩, (2.18)

Table 2.2 shows the probabilities corresponding to this state. In this state, 0 must be
observed on the second qubit if 0 is already observed on the first qubit and 1 must
be observed on the second qubit if 1 is already observed on the first qubit. So is the
opposite order of measurements. This characteristic of qubits is called entanglement.
Entanglement is one of the critical effects which distinguish quantum systems from
classical ones. Entangled states cannot be represented as products of single qubit states

Table 2.2: State and probability table of two qubits in a entangled state, |Φ+⟩.
state probability
|00⟩ 50%
|01⟩ 0%
|10⟩ 0%
|11⟩ 50%
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such as in equation 2.13. Such inseparablility tells that the states of qubits in the multiple
qubits state are dependent. Compared to the entangled state, a multiple qubit state which
can be described as a product of single qubit states is called separable state.

Maximally entangled two qubits are often called a Bell pair. There are four types of
Bell states:

|Φ+⟩ = 1
√

2
|0a0b⟩ +

1
√

2
|1a1b⟩ (2.19)

|Φ−⟩ = 1
√

2
|0a0b⟩ −

1
√

2
|1a1b⟩ (2.20)

|Ψ+⟩ = 1
√

2
|0a1b⟩ +

1
√

2
|1a0b⟩ (2.21)

|Ψ−⟩ = 1
√

2
|0a1b⟩ −

1
√

2
|1a0b⟩. (2.22)

These four states can be used as a basis for two-qubit states.
More and more qubits can be connected by entanglement, as Equation 2.15 and

obeying Equation 2.17.

2.1.4 No-cloning theorem

Unfortunately, in contrast to the classical states, quantum states cannot be copied. To
prove the quantum no-cloning theorem, let’s assume an unitary operator U which copies
any quantum state to an ancilla qubit |a⟩ as

U |ψ⟩|a⟩ = |ψ⟩ ⊗ |ψ⟩ (2.23)

and

U |ϕ⟩|a⟩ = |ϕ⟩ ⊗ |ϕ⟩. (2.24)

Then if we take the inner product of Equations 2.23 and 2.24,

⟨a|⟨ϕ|U−1U |ψ⟩|a⟩ = ⟨ϕ| ⊗ ⟨ϕ|ψ⟩ ⊗ |ψ⟩ (2.25)

⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩2 (2.26)
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Obviously, Equation 2.26 holds only if ⟨ϕ|ψ⟩ = 0 or ⟨ϕ|ψ⟩ = 1. Therefore, our quantum
“copy machine” only works for the cases, |ϕ⟩ ⊥ |ψ⟩ or |ϕ⟩ ∥ |ψ⟩. Hence U can copy
specific two states, but cannot copy arbitrary state. An example of the U and the specific
two states are CNOT gate and |0⟩ and |1⟩. After applying CNOT(c, a) between the
copied qubit and an ancilla qubit |0⟩,

CNOT(c, a)|0c⟩ ⊗ |0a⟩ = |0c⟩ ⊗ |0a⟩ (2.27)

CNOT(c, a)|1c⟩ ⊗ |0a⟩ = |1c⟩ ⊗ |1a⟩ (2.28)

are achieved. Qubit c and qubit a are separable and |0⟩ and |1⟩ are copied as desired.
Apparently another arbitrary state α |0⟩ + β|1⟩ cannot be copied since an arbitrary two
qubit state

CNOT(c, a)(α |0c⟩ + β|1c⟩)|a⟩ = α |0c0a⟩ + β |1c1a⟩ (2.29)

other than |0⟩ and |1⟩ hence other than α , 0 and β , 0 is not separable and the two
qubits are entangled.

2.1.5 Quantum gates

The quantum gates that we use in quantum computation are described by unitary opera-
tions. For our purposes, we will need one- and two-qubit gates.
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Single qubit gate

The three matrices in Equations 2.2, 2.3 and 2.4 also act as basic operations on a single
qubit.

X |Ψ⟩ =
(
0 1
1 0

)
(α |0⟩ + β|1⟩)

= β |0⟩ + α |1⟩ (2.30)

Y |Ψ⟩ =
(
0 −i
i 0

)
(α |0⟩ + β |1⟩)

= −iβ|0⟩ + iα |1⟩ (2.31)

= β |0⟩ − α |1⟩ (2.32)

Z |Ψ⟩ =
(
1 0
0 −1

)
(α |0⟩ + β |1⟩)

= α |0⟩ − β |1⟩ (2.33)

In the derivation from Equation 2.31 to Equation 2.32, the global phase i is removed.
Since only relative phase between the two basis vector is observable and important,
we can remove global phase which is applied to both basis vector. By removing the
global phase i, Y rotation becomes the product of Z rotation and X rotation. Because X
exchanges the coefficients of |0⟩ and |1⟩ such as |0⟩ → |1⟩ and |1⟩ → |0⟩, this is also
called a NOT gate. X , Y , Z and I are called Pauli matrices. I is the identity gate,

I =
(
1 0
0 1

)
. (2.34)



Chapter 2. QUANTUM COMPUTING SYSTEMS 19

An interesting extentions of X , Y and Z rotations are rotations of arbitrary degrees.

Rx(θ) = e−θX/2 (2.35)

= cos
θ

2
I − i sin

θ

2
X (2.36)

=

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
(2.37)

Ry(θ) = e−θY/2 (2.38)

= cos
θ

2
I − i sin

θ

2
Y (2.39)

=

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
(2.40)

Rz(θ) = e−θZ/2 (2.41)

= cos
θ

2
I − i sin

θ

2
Z (2.42)

=

(
e−iθ2 0

0 eiθ/2

)
(2.43)

Actually, any two of those three arbitrary rotations can be used to achieve an arbitrary
unitary change to one qubit state.

While we can achieve any rotation, especially S gate and T gate often appear in
quantum computation.

S =
(
1 0
0 i

)
(2.44)

T =
(
1 0
0 eiπ/4

)
(2.45)

S gate is square root of Z gate and T gate is square root of S gate, hence

T4 = S2 = Z . (2.46)

Another basic gate known as the Hadamard gate is

H =
1
√

2

(
1 1
1 −1

)
. (2.47)
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The basis vectors in the X basis are |+⟩ = 1√
2

(
1
1

)
and |−⟩ = 1√

2

(
1
−1

)
. With this H and

the eigenvalues of Z and X ,

H × (α |0⟩ + β|1⟩) = (α |+⟩ + β |−⟩) (2.48)

is derived. H swaps the relative relationships of the state with Z axis and with X axis.

Two qubit gate

The most basic two qubit gate is the controlled-not (CNOT) gate,

CNOT =
©­­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬ . (2.49)

This gate exchanges the coefficient of |0⟩ and |1⟩ of the second, target qubit, only if
the first, control qubit is |1⟩. Table 2.3 is the truth table of the CNOT gate. In this
dissertation I use the notation CNOT(a, b) to describe a CNOT gate in which qubit a is
the control qubit and qubit b is the target qubit.

Table 2.3: The truth table of the CNOT gate. Qubit a is the control qubit and qubit b
is the target qubit.

ain bin aout bout

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0
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CZ gate and
√

SW AP gate also often appear,

CZ =

©­­­«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

ª®®®¬ (2.50)

√
SW AP =

©­­­«
1 0 0 0
0 1

2 (1 + i) 1
2 (1 − i) 0

0 1
2 (1 − i) 1

2 (1 + i) 0
0 0 0 1

ª®®®¬ . (2.51)

CNOT , CZ and
√

SW AP gates are (potentially) entangling gates and can be converted
to one another.

√
SW AP can occur in some physical systems, but is not often used at the

logical level.
The SWAP gate is a two-qubit gate which also often appears to change the physical

location of qubits.

SW AP =
©­­­«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ª®®®¬ (2.52)

This operation swaps the state of the first qubit and the second qubit completely.

Universal gate set

An universal quantum gate set is a fixed set of quantum gates, with which the universal
quantum computation is enabled. Solovay-Kitaev decomposition showed that any quan-
tum gates can be approximated with a small fixed set of quantum gates, such as, H gate
and T gate [43, 88, 135, 147, 148]. With a two-qubit gate for multiple qubit control
such as entanglement, let’s say CNOT gate, an universal quantum gate set is achieved.
Additionally, a fixed set of gates is more suitable to fault-tolerant quantum computation.
Therefore CNOT gate, H gate and T gate is a convenient universal set.

2.1.6 Interference

Quantum computation proceeds by the creation of interference among probability am-
plitudes of basis states in superposition. One of the simplest example of the interfer-



Chapter 2. QUANTUM COMPUTING SYSTEMS 22

ence can be seen with the Hadamard gate. Let’s consider how Hadamard gate affects
|Ψ⟩ = 1√

2
(|0⟩ + |1⟩),

H |Ψ⟩ = 1
√

2

(
1 1
1 −1

)
1
√

2
(|0⟩ + |1⟩) (2.53)

=
1
2

(
1 1
1 −1

) (
1
1

)
(2.54)

=

(
1
0

)
(2.55)

= |0⟩. (2.56)

As above, by the Hadamard gate, the probability amplitudes of |0⟩ and |1⟩ interfere.
Constructive interference occurs at the |0⟩ component in the state vector and deconstruc-
tive interference occurs at the |1⟩. Thanks to the existence of the phase component, eiϕ

in Equation 2.1, there will happen more complex interference. Quantum algorithms are
designed to manipulate the terms in the state vector to take advantage of interference and
leave the probability amplitude of the solution to the problem high when they finish.

2.1.7 Quantum teleportation

Quantum teleportation is a protocol to transfer a quantum state to a remote place, by
consuming a Bell pair [13]. First we have a qubit to transfer at station A, α |0qA⟩+ β|1qA⟩,
and a Bell pair is shared at station A and B, 1√

2
(|0Bell A0BellB⟩ + |1Bell A1BellB⟩).

|ϕ′⟩ = (α |0qA⟩ + β|1qA⟩) ⊗
1
√

2
(|0Bell A0BellB⟩ + |1Bell A1BellB⟩)

=
1
√

2
(α |0qA0Bell A0BellB⟩ + α |0qA1Bell A1BellB⟩ +

β |1qA0Bell A0BellB⟩ + β|1qA1Bell A1BellB⟩). (2.57)
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We begin by applying a CNOT gate between A’s two qubits, hence CNOT(qqA, qBell A),

|ϕ′′⟩ = 1
√

2
(α |0qA0Bell A0BellB⟩ + α |0qA1Bell A1BellB⟩ +

β|1qA1Bell A0BellB⟩ + β |1qA0Bell A1BellB⟩)

=
1
2
(α | +qA 0Bell A0BellB⟩ + α | −qA 0Bell A0BellB⟩ +

α | +qA 1Bell A1BellB⟩ + α | −qA 1Bell A1BellB⟩ +
β| +qA 1Bell A0BellB⟩ − β| −qA 1Bell A0BellB⟩ +
β| +qA 0Bell A1BellB⟩ − β| −qA 0Bell A1BellB⟩) (2.58)

Here, measuring XqA and ZBell A, then we get one of the following state corresponding
to the measured values.

+, 0 → α |0BellB⟩ + β|1BellB⟩
+, 1 → α |1BellB⟩ + β|0BellB⟩
−, 0 → α |0BellB⟩ − β|1BellB⟩
−, 1 → α |1BellB⟩ − β|0BellB⟩ (2.59)

Hence, apply XBellB if we get 1 from ZBell A and apply ZBellB if we get − from XqA, then
we deterministically get

α |0BellB⟩ + β |1BellB⟩. (2.60)

This is the quantum teleportation.

2.1.8 Entanglement swapping

Entanglement swapping connects two Bell pairs into one. This operation is often
executed when there are linearly connected distant three stations and raw Bell pairs can
be directly created only between two neighboring stations, as depicted in Figure 2.2. In
this dissertation, entanglement swapping is used to create Bell pairs between arbitrary
two components.
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Station A

quantum 
memory 

（　）

Station B

quantum memories
（　）

Station C

quantum
memory

（　）（　）
Entanglement 0 Entanglement 1

Figure 2.2: Entanglement Swapping. There are two sets of entangled pairs, between
Station A and Station B and between Station B and Station C. By entanglement swapping,
an entangled pair between Station A and Station C remains afterwards.

|ψA0,B0,B1,C1⟩ =
1
√

2
(|0A00B0⟩ + |1A01B0⟩) ⊗

1
√

2
(|0B10C1⟩ + |1B11C1⟩)

=
1
2
(|0A00B00B10C1⟩ + |0A00B01B11C1⟩ + |1A01B00B10C1⟩ + |1A01B01B11C1⟩), (2.61)

where A, B and C indicate stations and 0 and 1 indicate two entangled pairs, respectively.
Then the qubits B0 and B1 are measured in the Bell state basis by a CNOT gate and two
measurement in X basis and Z basis. Applying CNOT (B0, B1), then get

|ψA0,B0,B1,C1⟩ =
1
2
(|0A00B00B10C1⟩ + |0A00B01B11C1⟩ +

|1A01B01B10C1⟩ + |1A01B01B10C1⟩)
(2.62)

=
1

2
√

2
(|0A0 +B0 0B10C1⟩ + |0A0 −B0 0B10C1⟩ +

|0A0 +B0 1B11C1⟩ + |0A0 −B0 1B11C1⟩ +
|1A0 +B0 1B10C1⟩ − |1A0 −B0 1B10C1⟩ +
|1A0 +B0 0B11C1⟩ − |1A0 −B0 0B11C1⟩). (2.63)
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Measuring B0 in the X basis and B1 in the Z basis, we get one of the following results:

+, 0 → 1
√

2
(|0A00C1 + |1A01C1)⟩

+, 1 → 1
√

2
(|0A01C1 + |1A00C1)⟩

−, 0 → 1
√

2
(|0A00C1 − |1A01C1)⟩

−, 1 → 1
√

2
(|0A01C1 − |1A00C1)⟩. (2.64)

By applying X and Z depending on the measured values, we get

1
√

2
(|0A00C1 + |1A01C1)⟩ (2.65)

hence a desired Bell pair between station A and C is achieved.

2.1.9 Quantum circuit

Figure 2.3 shows a quantum circuit. Each horizontal line represents a qubit. Gates on
the lines are sequentially executed on corresponding qubits from the left to the right, like
the music notation. Gates on multiple qubits are multiple qubit gates. Characters and
numbers in the most left of this Figure are qubit identifiers, there sometimes are initial
states of qubits. Gates in the same lateral coordinates are executed simultaneously. The
symbols of gates used in this research are described in Figure 2.3. Gates bounded with a
square are single qubit gates. Gates which crosses several qubits are two or more qubit
gates.

2.1.10 Single qubit gate supported by an ancilla qubit

For environments where rotations for non-Clifford gates are difficult to implement, single
qubit gates supported by ancilla gates have been developed [62].
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q1

q2

q3

q4

q5

q7

q8

q9

q10

0

0

q6

(2)

|0>

(1) (3) (4)

H

(6)(5) (7)

Figure 2.3: An example of quantum circuits. q1, q2, ... q10 are qubits. Time goes
from the left to the right. (1) The initialization in |0⟩ in this dissertation. (2) The
general description of initialization in |0⟩. (3) The CNOT gate. The dot represents the
control qubit and the circle represents the target qubit. (4) The SWAP gate. (5) The
measurement in Z axis. To describe a measurement in another axis, the axis is represented
as a subscript. (6) The Hadamard gate. Other single qubit gate is represented such as
X in the box instead of H for the X gate. (7) Classical information is often represented
with double lines.

S gate supported by an ancilla qubit

The S gate is a non-Clifford gate, the square root of the Z gate. The |Y⟩ ancilla state
where

|Y⟩ = 1
√

2
(|0⟩ + i |1⟩) (2.66)

is used to execute the S gate. Figure 2.5 shows the circuit for applying an S gate to an
arbitrary state |ψ⟩. The first state is
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Figure 2.4: S gate supported by an ancilla qubit. Eventually |Y⟩ is kept and can be
reused.

|Ψ⟩ = |ψq⟩ ⊗ |Yy⟩ (2.67)

= (α |0q⟩ + β|1q⟩) ⊗ ( 1
√

2
(|0y⟩ + i |1y⟩)) (2.68)

=
1
√

2
(α |0q0y⟩ + iα |0q1y⟩ + β |1q0y⟩ + iβ|1q1y⟩). (2.69)

Apply CNOT(q, y), then get

|Ψ′⟩ = 1
√

2
(α |0q0y⟩ + iα |0q1y⟩ + iβ|1q0y⟩) + β |1q1y⟩. (2.70)

Applying H(y),

|Ψ′′⟩ = 1
√

2
((α + iα)|0q0y⟩ + (α − iα)|0q1y⟩ + (iβ + β)|1q0y⟩ + (iβ − β)|1q1y⟩).

(2.71)

Applying CNOT(q, y),

|Ψ′′′⟩ = 1
√

2
((α + iα)|0q0y⟩ + (α − iα)|0q1y⟩ + (iβ − β)|1q0y⟩ + (iβ + β)|1q1y⟩).

(2.72)
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Figure 2.5: T gate supported by an ancilla qubit. Eventually |A⟩ is consumed and the
desired state appears where |A⟩ was.

Applying H(y),

|Ψ′′′′⟩ = 1
√

2
(α |0q0y⟩ + iα |0q1y⟩ + iβ |1q0y⟩ − β |1q1y⟩) (2.73)

= (α |0q⟩ + iβ|1q⟩) ⊗
1
√

2
(|0y⟩ + i |1y⟩) (2.74)

= S |ψq⟩ ⊗ |Yy⟩. (2.75)

Eventually we get S |ψ⟩ and |Y⟩ as separable states. This |Y⟩ can be reused for other S
gates.

T gate supported by an ancilla qubit

The T gate is a non-Clifford gate, the square root of the S gate. The |A⟩ ancilla state
where

|A⟩ = 1
√

2
(|0⟩ + eiπ/4 |1⟩) (2.76)

is used for the T gate. The first state is

|Ψ⟩ = |ψq⟩ ⊗ |Aa⟩ (2.77)

= (α |0q⟩ + β|1q⟩) ⊗
1
√

2
(|0a⟩ + eiπ/4 |1a⟩) (2.78)

=
1
√

2
(α |0q0a⟩ + αeiπ/4 |0q1a⟩β|1q0a⟩ + βeiπ/4 |1q1a⟩). (2.79)
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Applying CNOT(a, q),

|Ψ′⟩ = CNOT(a, q) 1
√

2
(α |0q0a⟩ + αeiπ/4 |0q1a⟩β |1q0a⟩ + βeiπ/4 |1q1a⟩) (2.80)

=
1
√

2
(α |0q0a⟩ + αeiπ/4 |1q1a⟩β |1q0a⟩ + βeiπ/4 |0q1a⟩). (2.81)

(2.82)

By measuring Zq and finding +1 eigenvalue, we get

|Ψ′′
+1⟩ = α |0a⟩ + βeiπ/4 |1a⟩, (2.83)

so the desired state. If we find −1 eigenvalue at the Zq measurement, we get

|Ψ′′
−1⟩ = β|0a⟩ + αeiπ/4 |1a⟩ (2.84)

By applying Za XaSa,

|Ψ′′′
−1⟩ = Za XaSa(β|0a⟩ + αeiπ/4 |1a⟩) (2.85)

=

(
1 0
0 −1

) (
0 1
1 0

) (
1 0
0 i

)
(β|0a⟩ + αeiπ/4 |1a⟩) (2.86)

=

(
1 0
0 −1

) (
0 1
1 0

)
(β |0a⟩ + αeiπ/2eiπ/4 |1a⟩) (2.87)

=

(
1 0
0 −1

) (
0 1
1 0

)
(β |0a⟩ + αei3π/4 |1a⟩) (2.88)

=

(
1 0
0 −1

)
(αei3π/4 |0a⟩ + β |1a⟩) (2.89)

=

(
1 0
0 −1

)
(α |0a⟩ + βe−i3π/4 |1a⟩) (2.90)

= (α |0a⟩ + βeiπe−i3π/4 |1a⟩) (2.91)

= (α |0a⟩ + βeiπ/4 |1a⟩). (2.92)

Hence, the desired state is achieved.
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2.1.11 Density matrix

The density matrix is another notation for describing quantum states. A single qubit
state |ψ⟩ = α |0⟩ + β|1⟩ is described with density matrix denoted by ρ is

ρ = |ψ⟩⟨ψ | =
(
α
β

) (
α∗ β∗

)
(2.93)

=

(
αα∗ αβ∗

α∗β ββ∗

)
. (2.94)

The power of density matrix is that it can describe not only quantum probability
amplitudes but also classical probability amplitudes of being in different states. Let’s
think of a quantum state |ψ⟩ = 1

2 |0⟩ +
√

3
2 |1⟩ in which the superposition consists of a

probability amplitude corresponding to a 25% chance of observing |0⟩, and an amplitude
corresponding to a 75% chance of observing |1⟩.

ρpure = |ψ⟩⟨ψ | (2.95)

=

(
1
2√
3

2

) (
1
2

√
3

2

)
(2.96)

=

(
1
4

√
3

4√
3

4
3
4

)
(2.97)

Actually the density matrix can be considered as a frequency distribution, hence we
can denote a classically probabilistic state. For example, a classically probabilistic state
where |0⟩ occupies classically 25% and |1⟩ occupies classically 75% is

ρmixed1 =
1
4
|0⟩⟨0| + 3

4
|1⟩⟨1| (2.98)

=
1
4

(
1
0

) (
1 0

)
+

3
4

(
0
1

) (
0 1

)
(2.99)

=

( 1
4 0
0 3

4

)
. (2.100)

Combination of quantum probabilities and classical probabilities is also possible,
such as, where 1√

2
(|0⟩ + |1⟩) occupies classically 50% and |1⟩ occupies classically 50%.
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The density matrix is

ρmixed2 =
1
2

( 1√
2

1√
2

) (
1√
2

1√
2

)
+

1
2

(
0
1

) (
0 1

)
(2.101)

=

( 1
4

1
4

1
4

3
4

)
. (2.102)

The diagonal elements of the density matrix describe population of the basis in the
state. Hence Tr(ρ) = 1 is always satisfied.

For all three of the states in Eq. 2.97, Eq. 2.100 and Eq. 2.102, the state has a 25%
chance of being measured in the +1 eigenvalue and has a 75% chance of being measured
in the −1 eigenvalue. However, the physical states and the processes of the observation
differ. States consisting of only quantum probabilities may occur during some quantum
algorithms. States consisting of only classical probabilities are just a “junk” state from
the point of view of quantum computation. States consisting of combination of quantum
and classical probabilities may be happening as a result of some errors which we might
be able to correct. However, it will not generate interference effects so that the algorithm
may run properly. From the density matrix, we can distinguish the existence of classical
probabilities by calculating Tr(ρ2).

Tr(ρ2
pure) = Tr(

(
1
4

√
3

4√
3

4
3
4

)2

) (2.103)

= Tr(
(

1
4

√
3

4√
3

4
3
4

)
) (2.104)

= 1 (2.105)

Tr(ρ2
mixed1) = Tr(

( 1
4 0
0 3

4

)2

) (2.106)

= Tr(
( 1

16 0
0 9

16

)
) (2.107)

=
5
8

(2.108)
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Tr(ρ2
mixed2) = Tr(

( 1
4

1
4

1
4

3
4

)2

) (2.109)

= Tr(
( 1

8
1
4

1
4

5
8

)
) (2.110)

=
3
4

(2.111)

As exemplified above, Tr(ρ2) = 1 indicates that there only are quantum probability
amplitudes hence the qubit is in a “pure” state, and Tr(ρ2) < 1 indicates that the state
includes classical probabilities and the state is so called “mixed” state. The off-diagonal
elements of the density matrix describe quantum coherence of this state; |0⟩⟨1| shows
evolution of the state from |1⟩ to |0⟩ and |1⟩⟨0| shows evolution of the state from |0⟩
to |1⟩. Classical probabilities do not have this evolution, hence ρ which has classical
probabilities results in Tr(ρ2) < 1.

The density matrix of a state which is in |ψi⟩ for classical probability pi is

ρ ≡
∑

i

pi |ψi⟩⟨ψi | (2.112)

where |ψi⟩ is the i-th possible pure state. Therefore the pure state is a specific case of
the mixed state, only 1 pure state exists classically, some p j = 1 and all pi = 0, i , j.

To describe a mixed state with the Bloch sphere, from Eq. 2.1,

|ψ⟩ = cos
θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩ (2.113)

= cos
θ

2
|0⟩ + (cos ϕ + i sin ϕ) sin

θ

2
|1⟩ (2.114)

= cos
θ

2
|0⟩ + (cos ϕ sin

θ

2
+ i sin ϕ sin

θ

2
)|1⟩ (2.115)
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is derived and its density matrix is described as

|ψ⟩⟨ψ | =
(

cos( θ2 )
cos ϕ sin( θ2 ) + i sin ϕ sin( θ2 )

) (
cos( θ2 ) cos ϕ sin( θ2 ) − i sin ϕ sin( θ2 )

)
(2.116)

=

(
cos2( θ2 ) cos( θ2 ) sin( θ2 )(cos ϕ − i sin ϕ)

(cos ϕ + i sin ϕ) sin( θ2 ) cos( θ2 ) cos2 ϕ sin2( θ2 ) + sin2 ϕ sin2( θ2 )

)
(2.117)

=

(
cos2( θ2 ) cos( θ2 ) sin( θ2 )(cos ϕ − i sin ϕ)

(cos ϕ + i sin ϕ) sin( θ2 ) cos( θ2 ) sin2( θ2 )

)
(2.118)

=
1
2

(
1 + cos θ sin θ(cos ϕ − i sin ϕ)

(cos ϕ + i sin ϕ) sin θ 1 − cos θ

)
(2.119)

=
1
2

(
1 + cos θ sin θ cos ϕ − i sin θ sin ϕ

cos ϕ sin θ + i sin ϕ sin θ 1 − cos θ

)
(2.120)

=
1
2
(I + X sin θ cos ϕ + Y sin θ sin ϕ + Z cos θ). (2.121)

(sin θ cos ϕ, sin θ sin ϕ, cos θ), the coefficients for X , Y and Z respectivelly, tells the
coordinate of the state on the Bloch sphere. For a mixed state, the density matrix is
described as

ρ =
∑

i

pi
1
2
(I + X sin θi cos ϕi + Y sin θi sin ϕi + Z cos θi) (2.122)

=
I
2
+

X
2

∑
i

pi sin θi cos ϕi +
Y
2

∑
i

pi sin θi sin ϕi +
Z
2

∑
i

pi cos θi

(2.123)

where
∑

i pi = 1 and we can find a vector

r = ©­«
∑

i pi sin θi cos ϕi∑
i pi sin θi sin ϕi∑

i pi cos θi

ª®¬ . (2.124)

This vector is called the Bloch vector. The norm of the Bloch vector satisfies | |r | | ≤ 1.
| |r | | = 1 is satisfied only when the state is a pure state. Hence the vector of a mixed state
in the Bloch sphere ends inside the sphere.

To calculate the effects of a quantum gate on a density matrix, apply the quantum
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gate from both sides of the density matrix, such as

Xρmixed2X =

(
0 1
1 0

) ( 1
4

1
4

1
4

3
4

) (
0 1
1 0

)
(2.125)

=

( 3
4

1
4

1
4

1
4

)
. (2.126)

Measurement of a density matrix ρ can be described with a measurement operator
Mm such as M0 = |0⟩⟨0| to find 0. The probability to observe m can be described with
the posterior probability p(m|i) that m is measured after i-th pure state of the mixed state
is chosen,

p(m|i) = ⟨ψi |M†
mMm |ψi⟩ (2.127)

= Tr(M†
mMm |ψi⟩⟨ψi |) (2.128)

p(m) =
∑

i

pi p(m|i) (2.129)

=
∑

i

pi ⟨ψi |M†
mMm |ψi⟩ (2.130)

=
∑

i

piTr(M†
mMm |ψi⟩⟨ψi |) (2.131)

= Tr(M†
mMm

∑
i

pi |ψi⟩⟨ψi |) (2.132)

= Tr(M†
mMmρ) (2.133)

The preserved density matrix after the measurement is described with the posterior
probability p(i |m) which is the probability that the i-th pure state gets chosen after m is
observed,

ρm =
∑

i

p(i |m)|ψm
i ⟩⟨ψm

i | (2.134)

=
∑

i

p(i |m) Mm |ψi⟩√
⟨ψi |M†

mMm |ψi⟩

⟨ψi |M†
m√

⟨ψi |M†
mMm |ψi⟩

(2.135)

=
∑

i

p(i |m)Mm |ψi⟩⟨ψi |M†
m

⟨ψi |M†
mMm |ψi⟩

. (2.136)
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Then by the Bayes’ theorem p(i |m) = p(m|i)
pm

, Equ. 2.136 is

ρm =
∑

i

p(m|i)
pm

Mm |ψi⟩⟨ψi |M†
m

⟨ψi |M†
mMm |ψi⟩

(2.137)

=
∑

i

p(m|i)
pm

Mm |ψi⟩⟨ψi |M†
m

p(m|i) (2.138)

=
∑

i

Mm |ψi⟩⟨ψi |M†
m

pm
(2.139)

=
MmρM†

m

pm
(2.140)

=
MmρM†

m

Tr(M†
mMmρ)

. (2.141)

2.2 Nearly perfect quantum computation on imperfect

systems

Mainly, four types of imperfections are addressed in the quantum computation research
field today: state errors, dynamic losses, static losses and leakage errors. First, state
errors received the bulk of researchers’ attention and means to tolerate state errors have
been proposed [126, 150, 153, 154]. Those codes utilize redundancy to correct quantum
errors. Those codes uses gate-based circuits to extract error syndromes, projecting
states to find whether the states have errors or not. Then after classically analyzing
syndromes, error corrections are applied. Here I first show the basics of the state errors
and quantum error correcting codes for state errors, which are later extended to tolerate
other imperfections.

Readers interested in quantum error correction are referred to [47, 67, 106, 164]

2.2.1 State errors

The decoherence changes the state of a qubit, so the probabilities that the bases observed.
Thus, quantum errors should be analog. State errors have been modeled to several
ways [126]. The depolarizing channel is the most thoroughly investigated error model.
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In the depolarizing channel, an qubit may stochastically get depolarized to the completely
mixed state I

2 . Hence an arbitrary state ρ through a depolarizing channel is changed as

ρ→ p
I
2
+ (1 − p)ρ (2.142)

where p is the error rate.

p
I
2
+ (1 − p)ρ = (1 − 3p

4
)ρ + 1

4
XρX +

1
4

ZρZ +
1
4

Y ρY (2.143)

since
I
2
=

1
4
ρ +

1
4

XρX +
1
4

ZρZ +
1
4

Y ρY . (2.144)

This formula implies that a depolarizing error can be factored into three types of errors:
an X error, a Z error and aY error. Quantum error correcting codes are designed to detect
those errors. Meanwhile, decoherence practically occurs in analog fashion. Such an
analog quantum error can be treated as a discrete X error, Z error or Y error. A quantum
error correcting code “projects” the system into either a correct state or a discrete errored
state. Therefore a quantum error correcting code which works with the depolarizing
error model can correct any quantum errors.

2.2.2 Stabilizer code

The stabilizer code is the most major quantum error correcting code group which utilizes
abelian group [67]. There are operators U which do not change certain states, such as

|ψ⟩ = U |ψ⟩. (2.145)

Such operators are called stabilizers of the state. Products of stabilizers are also sta-
bilizers, hence, the most simplest set of stabilizers including I⊗n are called stabilizer
generators. A full set of stabilizer generators, including the same number of stabilizer
generators with the number of qubits, specifies a qubit state so that it can be used as a
compact notation to describe a quantum state. The simplest example is that X does not



Chapter 2. QUANTUM COMPUTING SYSTEMS 37

change 1√
2

(
1
1

)
:

X × 1
√

2

(
1
1

)
=

(
0 1
1 0

)
× 1
√

2

(
1
1

)
=

1
√

2

(
1
1

)
(2.146)

However, this simplest example cannot be used for quantum computation. Only 1√
2

(
1
1

)
is allowed by an X stabilizer on a qubit, hence there is no degree of freedom available to
serve as a variable computational qubit.

Generally, stabilizers are used on two or more qubits, such as

X ⊗ X × (α(|00⟩ + |11⟩) + β(|01⟩ + |10⟩)) = X ⊗ X × (α
©­­­«
1
0
0
1

ª®®®¬ + β
©­­­«
0
1
1
0

ª®®®¬) (2.147)

=

©­­­«
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

ª®®®¬ (α
©­­­«
1
0
0
1

ª®®®¬ + β
©­­­«
0
1
1
0

ª®®®¬)
(2.148)

= α(|00⟩ + |11⟩) + β(|01⟩ + |10⟩).
(2.149)

where α(|00⟩ + |11⟩) + β(|01⟩ + |10⟩) is used as a logical qubit, α and β correspond to
cos θ

2 and eiϕ sin θ
2 in Equation 2.1.

Larger sets of stabilizer generators are possible. For example, Xa Xb and XbXc are
the stabilizer generators of

α(|0a0b0c⟩+ |1a1b0c⟩+ |0a1b1c⟩+1a0b1c⟩)+β(|1a1b1c⟩+ |0a0b1c⟩+ |1a0b0c⟩+0a1b0c⟩).
(2.150)

Another example is Z Z on
α |00⟩ + β |11⟩. (2.151)

Those states can be used as a logical qubit, since they have a degree of freedom for α
and β.

In fact, the degree of freedom of the quantum state, the number of qubits and the
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number of independent stabilizer generators have the relationship,

(the degree of freedom) = 2#qubit−#(stabilizer generator). (2.152)

We can choose arbitrary numbers of qubits and of stabilizer generators depending on the
purpose.

Surprisingly, stabilizers have great power in quantum error correction. Let’s think of
CNOT gates on

|ψ⟩ = α(|0a0b⟩ + |1a1b⟩) + β(|0a1b⟩ + |1a0b⟩) (2.153)

which is stabilized by Xa Xb. IaIb does not change |ψ⟩. Hence, a set of CNOT gates,
CNOT(c, a) and CNOT(c, b), does not change |ψ⟩ because 0c applies IaIb and because
1c applies Xa Xb for an arbitrary qubit c.

Let’s assume qubit c is in 1√
2
(|0⟩ + |1⟩), which is the +1 eigenvalue of the X axis.

Then, the CNOT gates work as below. The first state is

|Ψc,a,b⟩ = |+c⟩ ⊗ |ψa,b⟩ (2.154)

=
1
√

2
(|0c⟩ + |1c⟩) ⊗ (α(|0a0b⟩ + |1a1b⟩) + β(|0a1b⟩ + |1a0b⟩))

(2.155)

=
1
√

2
(α |0c0a0b⟩ + α |0c1a1b⟩ + β|0c0a1b⟩ + β |0c1a0b⟩

+α |1c0a0b⟩ + α |1c1a1b⟩ + β |1c0a1b⟩ + β |1c1a0b⟩).
(2.156)

Applying CNOT(c, a),

|Ψ′
c,a,b⟩ = CNOT(c, a)|Ψc,a,b⟩ (2.157)

=
1
√

2
(α |0c0a0b⟩ + α |0c1a1b⟩ + β |0c0a1b⟩ + β |0c1a0b⟩

+α |1c1a0b⟩ + α |1c0a1b⟩ + β |1c1a1b⟩ + β|1c0a0b⟩).
(2.158)
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Applying CNOT(c, b),

|Ψ′′
c,a,b⟩ = CNOT(c, b)|Ψ′

c,a,b⟩ (2.159)

=
1
√

2
(α |0c0a0b⟩ + α |0c1a1b⟩ + β|0c0a1b⟩ + β |0c1a0b⟩

+α |1c1a1b⟩ + α |1c0a0b⟩ + β|1c1a0b⟩ + β |1c0a1b⟩)
(2.160)

=
1
√

2
(|0c⟩(α(|0a0b⟩ + |1a1b⟩) + β(|0a1b⟩ + |1a0b⟩))

+|1c⟩(α(|0a0b⟩ + |1a1b⟩) + β(|0a1b⟩ + |1a0b⟩))

=
1
√

2
(|0c + |1c⟩) ⊗ (α(|0a0b⟩ + |1a1b⟩) + β(|0a1b⟩ + |1a0b⟩))

= |+c⟩ ⊗ |ψa,b⟩. (2.161)

Let’s think of a Z error on qubit a. Then, the CNOT gates work as below. The first
state is

Za |Ψc,a,b⟩ = |+c⟩ ⊗ Za |ψa,b⟩ (2.162)

=
1
√

2
(|0c⟩ + |1c⟩) ⊗ (α(|0a0b⟩ − |1a1b⟩) + β(|0a1b⟩ − |1a0b⟩))

(2.163)

=
1
√

2
(α |0c0a0b⟩ − α |0c1a1b⟩ + β |0c0a1b⟩ − β|0c1a0b⟩

+α |1c0a0b⟩ − α |1c1a1b⟩ + β|1c0a1b⟩ − β |1c1a0b⟩).
(2.164)

Applying CNOT(c, a),

|Ψ′
c,a,b⟩ = CNOT(c, a)|Ψc,a,b⟩ (2.165)

=
1
√

2
(α |0c0a0b⟩ − α |0c1a1b⟩ + β |0c0a1b⟩ − β |0c1a0b⟩

+α |1c1a0b⟩ − α |1c0a1b⟩ + β |1c1a1b⟩ − β|1c0a0b⟩).
(2.166)
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Applying CNOT(c, b),

|Ψ′′
c,a,b⟩ = CNOT(c, b)|Ψ′

c,a,b⟩ (2.167)

=
1
√

2
(α |0c0a0b⟩ − α |0c1a1b⟩ + β|0c0a1b⟩ − β |0c1a0b⟩

+α |1c1a1b⟩ − α |1c0a0b⟩ + β |1c1a0b⟩ − β |1c0a1b⟩)
(2.168)

=
1
√

2
(|0c⟩(α(|0a0b⟩ − |1a1b⟩) + β(|0a1b⟩ − |1a0b⟩))

−|1c⟩(α(|0a0b⟩ − |1a1b⟩) + β(|0a1b⟩ − |1a0b⟩))

=
1
√

2
(|0c − |1c⟩) ⊗ (α(|0a0b⟩ − |1a1b⟩) + β(|0a1b⟩ − |1a0b⟩))

= |−c⟩ ⊗ Za |ψa,b⟩. (2.169)

Therefore, by measuring Xc after those CNOT gates, we can check the error syndromes
of qubits and can detect Za. Since in fact we also find −c when we have a Z error on qubit
b, hence the Xa Xb stabilizer is used to detect an Z error. By utilizing multiple stabilizers
and by classical processing of error syndromes, we can specify the error location and
correct the error.

Such X⊗n stabilizers which detect Z errors are often called X stabilizers. By sym-
metry, we can detect an X error by a Z stabilizer. We can compose a large quantum
error correcting code by using more qubits and more stabilizer generators, which can
correct multiple errors. Additionally, by repeating these operations, we can detect errors
on qubit c. Those characteristics of quantum information lead to the stabilizer code.

2.2.3 Surface code and the planar code, the simplest form of the

surface code

Surface code quantum computation is regarded as a promising technique for fault tolerant
quantum computation. Briefly, the surface code originally has two advantages:

High feasibility
The surface code requires only nearest neighbor interaction between physical
qubits on the lattice.
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High state error threshold 1%
The surface code is robust against physical quantum state error and it has been
shown that the threshold (a physical error rate where the logical error rate rises
above the physical error rate) is nearly 1%.

and later robustness against dynamic loss is shown:

Tolerance against loss rate less than 50% in ideal environment
With perfect state error extraction and perfect error/loss correction, at state error
rate of 0% loss rate of 50% is tolerable including both of dynamic loss and of static
loss, and at loss rate 0% state error rate of 12% is tolerable [151, 152]. Between
those two points, the relationship between the tolerable state error rate and the
tolerable loss rate changes more or less linearly, except that at loss rates of > 40%
the tolerable state error rates are less than the linear fit.

Tolerance against dynamic loss below 1%
Even with no state errors, the loss rate has to be less than 1% [179]. Otherwise, a
surface code qubit of a longer code distance does not have better logical error rate
than that of a shorter code distance.

The surface code is a means for encoding logical qubits on a form of entangled 2-D
lattice, consisting of many qubits. A surface code lattice can be made on a nearest
neighbor architecture. The nearest neighbor architecture uses quantum interaction only
between nearest neighboring qubits. In a regular lattice, each qubit is entangled with
its neighbors, giving a specific large, entirely entangled state. This fact makes it po-
tencially possible to fabricate devices using planar photolithography, including quantum
dot, superconducting, and planar ion trap structures. It gives the quantum processor
extensibility by adding one more row of qubits and control devices along the outside
edge of the lattice, making it one of the most feasible current proposals for building a
scalable quantum computer.

The surface code is characterized by the method for fixing the physical errors which
occur on physical qubits in the lattice, the logical qubit encoding, and the means of
executing logical gates between logical qubits. In this subsection the surface code is
briefly explained by describing the simplest form of the surface code qubit called planar
code. The defect-based code is following in the next subsection.
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Figure 2.6: Example of a surface code encoding a single logical qubit, describing a
Z stabilizer (red diamond), an X stabilizer (blue diamond), two instances of the Z
operator (red lines) and two instances of the X operator (blue lines). The gray circles
are data qubits, and the white circles are syndrome qubits. Qubits q12, q16, q18 and
q22 are included in the Z stabilizer and qubits q6, q10, q12 and q16 are included in the
X stabilizer. Other qubits are also involved in other corresponding stabilizers. The west
and the east boundaries of the lattice are for the Z operator. Other possible lines between
the west and the east boundaries also have the same Z operator. The blue lines have the
same X operator. The north and the south boundaries of the lattice are for the X operator.
Other equivalent logical operators are formed by multiplying a line by associated X (Z)
stabilizers.

Stabilizers for error correction

The lattice is divided into many plaquettes which indicate stabilizer generators of the
surface code and the state of the lattice is maintained by repeatedly measuring sets of
stabilizers.

The surface code corrects errors in each unit and the code space is protected as a
whole. Figure 2.6 shows the layout of normal unit stabilizers of a planar code, which
is the simplest form of the logical qubit descriptions of the surface code. The lines in
the figure are just a visual guide demarking plaquettes; each syndrome qubit is actually
physically coupled to four neighbors. Table 2.4 and Figure 2.7 show the stabilizer
representation and the circuits of the stabilizers marked in Figure 2.6, respectively. The
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d6(v6)

d10(v10)

d11(v11)

d12(v12)

d16(v16)

d17(v17)

d18(v18)

d22(v22)

0

0

0

H H

Figure 2.7: Circuits for each stabilizer in Figure 2.6 and in Table 2.4. The top half is
an X stabilizer and The bottom half is a Z stabilizer. Each face and vertex of the lattice
has the same stabilizer circuit. All stabilizers are executed concurrently in the absence of
faulty components. The only gates required for stabilizer operation are INIT in Z basis,
CNOT, SWAP and H gates and MEASUREMENT in Z basis. Boxes containing 0 are
the INIT gates.

stabilizers measure the parity of the lattice qubits involved. Normally, in the surface
code, qubits are initialized as the parity is even (+1 eigenstate). When the states of an
odd number of qubits that belong to the stabilizer are flipped, the parity becomes odd
(-1 eigenstate).

Logical operator

A complete lattice has no degrees of freedom; a lattice with N qubits has N independent
stabilizers, and hence is a fully-specified quantum state. The surface code defines a
logical operator, using the degree of freedom introduced at a set of lattice boundaries in
the planar code.

Table 2.4: Stabilizer representation of the stabilizers colored in Figure 2.6. The
upper line is a Z stabilizer and the lower is an X stabilizer.

q6 q10 q12 q16 q18 q22
Z Z Z Z

X X X X
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A lattice boundary is a terminal of a logical operator; hence a pair of boundaries
introduces a logical operator and two pairs of different boundaries can generate a set of
a logical X operator and a logical Z operator so that a single logical qubit is introduced.
The planar code has two pairs of boundaries so that it has a degree of freedom which
encodes a logical qubit on a 2-D lattice. Any path between a pair of boundaries defines
the same logical operator.

In the basic planar code, logical two-qubit operations are performed by transversal
operations, arranging the planes stacked in the third dimension and coupling correspond-
ing pairs of qubits. Lattice surgery improved the planar code, adding the capability to
execute a logical two-qubit gate more easily than transversal operations [78]. It imple-
ments a logical two-qubit gate by connecting and disconnecting two planar code qubits
on a 2-D lattice along an edge.

Logical measurement and redundancy

To measure a logical qubit, take the parity of the measurement results on the physical
qubits composing a logical operator. Parities of measurements on any path should have
the same value, so that the logical measurement has redundancy against measurement
failure. This is shown in Figure 2.6.

A change in the error syndrome of a stabilizer indicates that the stabilizer is the
termination of an error chain. In the normal case, an isolated X (or Z) error, two
neighboring stabilizers will both show -1 eigenstates, and the error is easily isolated
as shown in Figure 2.8 (a). Because two errors on any plaquette cancel and leave the
plaquette in the +1 eigenstate, a series of errors in a neighborhood likely results in two
-1 plaquettes separated by some distance, surrounded by +1 plaquettes. If an error chain
is connected to the boundary of the lattice, the termination will be hidden. So, an error
chain running between the two boundaries will be a logical error.

Applying the same flip operation as the original error it the first method of the error
correction, because it fixes the states of each stabilizer (Figure 2.8 (a)). We have to
identify pairs of error terminations by decoding the detected error information. This
problem can be mapped to the graph theory problem known as “minimum weight perfect
matching”, a common solution for which is the Blossom V algorithm [99].

Many different possible chains can connect two units with -1 eigenvalues, as depicted
in Figure 2.8 (b). Any chain of the two units works as the second method of the error



Chapter 2. QUANTUM COMPUTING SYSTEMS 45

correction and the logical state is corrected. The exact error chain may not be chosen
and then a cycle of errors appears. Such a trivial error cycle does not affect logical states
(Figure 2.8 (c)). Thus, choosing a chain between -1 units is not a problem. The important
problem in the error correction is to pair up the most probable sets of units. Longer
chains of errors occur with lower probability, and the matching algorithm weights such
possibilities accordingly.

The distance between the two boundaries for a operator is the code distance of surface
code, shown in Figure 2.8 (d). The larger the code distance, the higher the tolerance
against errors. In the figure, four errors between the two boundaries for the X operator are
fatal, because the matching algorithm fails to pair them properly. If the two boundaries
were farther apart, more errors would be required to cause the error correction to fail.

A nest is used to prepare a network for minimum weight perfect matching. Figure
2.9 depicts a nest of a perfect lattice of the surface code, output by the Autotune Software
created by Fowler et al. [59]. Each vertex of the nest corresponds to a stabilizer value
and each edge corresponds to a possible error. Edges which do not have two vertices
are at the boundaries of the lattice. As time advances, the nest expands along the Z
axis, creating new vertices and edges when measuring stabilizers. A stabilizer which
measures a different eigenvalue from the last stabilizer measurement creates and holds
a node on the corresponding vertex. Because an ancilla error (or measurement error)
will happen only once, three cycles with an error on the middle cycle would produce
the eigenvalue sequence +1, -1, +1. The two transitions will be recorded in the nest as
two nodes. A data qubit error results in errors on two neighboring stabilizers, so that
an error after the first measurement would give the sequence +1, -1, -1 in two separate
places (or only one if the qubit is on a boundary). In this case, the two transitions result
in the creation of two horizontal neighbor nodes in the nest. The matching algorithm
will match the two vertical nodes of a stabilizer error or the two horizontal nodes of a
qubit error. Lines for the matching between nodes are created with Dijkstra’s algorithm
on the nest [48]. The weight of a line is given by the sum of weights of the edges which
compose the line. Minimum weight perfect matching based on those weights selects the
most probable physical errors, therefore it works as error correction.

In deleting the oldest round of error syndromes, there can be an error syndrome which
is temporally matched to a syndrome which is not to be deleted. If this error syndrome
is deleted, the left pair will be matched to another syndrome, leading to unintended
behaviors. To avoid this behavior, Autotune employs a means that the syndrome to be
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deleted is retained until its pair is deleted.

Non-Clifford gates

The surface code does not support T gate and S gate in transversal and fault-tolerant way.
The realizes fault-tolerant T gate by utilizing an ancilla state, as shown in subsection

2.1.10. The ancilla state required for such T gate is |A⟩ = 1√
2
(|0⟩ + eiπ/4 |1⟩) state. The

surface code cannot directly create |A⟩, since T gate itself is required to create |A⟩, such
as |A⟩ = T |+⟩. So the surface code employs state injection and magic state distillation
for |A⟩ [19, 21]. The state injection encodes a state on a physical qubit into an error
correcting code. This process is not fault-tolerant, hence, the magic state distillation
“distills” the desired state with high fidelity.

Additionally, as shown in subsection 2.1.10, ancilla-supportedT gate probabilistically
requires S gate. The surface code does not support S gate in transversal and fault-tolerant
way, therefore ancilla-supported S gate is also required. The ancilla state for S gate is
|Y⟩ state, which is created via state injection and magic state distillation, too.

2.2.4 The defect-based surface code

The defect-based approach uses the same stabilizer circuits, but treats the surface as
a whole differently. A defect is a region of the lattice where the physical qubits are
measured and not stabilized. A pair of defects works as a pair of boundaries and it
generates a topologically non-trivial loop so that it holds two degree of freedom: one
degree of freedom expressed in the parity of any path of X operators on physical qubits
between the two defects and one degree of freedom in a loop of Z operators on physical
qubits on the boundary circling one of the defects, or any loop of qubits that encircles
one of the defects. Thus, a pair of defects works as a logical qubit. Any X operator chain
between the two defects results in a logical X operation and any loop of Z operators
around either defect results in a logical Z operation. This may be done intentionally to
execute the logical gate, but if a chain of X errors or a loop of a chain of Z errors occurs
undetected, a logical error to the state is caused.

Parities of measurements on any path or non-trivial loop encircling the defect should
have the same value, so that the logical measurement has redundancy against measure-
ment failure.
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Logical CNOT gate for defect-based surface code is achieved by “braiding”. A
sequence of braiding CNOT gates can be merged and executed faster. Figure 2.11 shows
three rough-smooth CNOT gates [61, 132, 136]. Hence if a sequence of CNOT gates is
a bottoleneck of the computation, it can be executed faster by gathering logical qubits in
defect-based area.

2.2.5 Dynamic qubit loss during computation

A dynamic loss is an escape of a quantum on which a qubit is encoded, such as a photon
loss and electron escape from quantum dot [42, 69, 70, 96, 98, 144, 175, 179]. Generally
a dynamic loss is treated as a measurement that we do not know the measured value,
therefore the lost qubit is traced out from the original density matrix. To fix the lost
qubit, initialize a new qubit at the lost location and measuring stabilizers involving the
restored qubit, then the code gets corrected.

2.2.6 Static qubit loss due to fabrication difficulty

There is a possibility that we have faulty devices each of which should but cannot hold
a quantum for encoding a qubit. There also be a chance that we may have qubits which
have too worse fidelity to use than others. Such qubits are treated as static losses during
quantum computation [122, 172, 177]. They are caused by technological difficulty of
fabricating quantum devices.

2.2.7 Physical realization of dynamic and static losses

DiVincenzo offered an architecture of superconducting hardware for the surface
code [49], in which a superconducting loop which does not show the appropriate quan-
tum effect will be a static loss. Jones et al. proposed an architecture for scalable quantum
computation with self-assembled quantum dots used to trap electrons, which are used as
qubits [87]. There very likely will be defective quantum dots which cannot trap a single
electron, leaving static loss on the computation chip.

Lindner et al. shown an approach to creating a linear cluster state via a so-called
“photon machine gun” [107]. Their idea is to have a quantum dot emit photons
continuously followed by certain operations that, if successful, form a cluster state for
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one way quantum computation [140, 141, 143]. If a quantum dot cannot emit a photon,
there will be a static loss in the cluster state. Devitt et al. proposed an efficient design
for constructing photonic topological cluster state with photon-photon coupling. Static
losses may occur in the cluster state because of the less-than-perfect probability/fidelity
of the coupling [45].

Donor-based quantum computation chip is achieved by doping atoms such as phos-
phorus in sillicon [74, 76]. Locations where doping failed will be static losses.

Static losses can be detected before the computation, by scanning the computation
chip.

2.2.8 Leakage errors

The leakage error is that a quantum gets in a state which is not used as the computational
basis [74, 102, 178]. Methods to tolerate leakage errors are suggested which can work
with quantum error correcting codes [3, 67, 108, 109].

2.3 Quantum Computer Architecture

Several quantum computer architectures have been proposed. Some of them are for a
specific physical system and some are more general. Some are derived from classical
computer architectures.

Oskin et al. proposed a quantum computer architecture in which a quantum ALU
and quantum memories are separately implemented [130]. The quantum ALU has the
ability to operate a universal set of quantum gates hence it operates both of the quantum
computation and the quantum error correction. The quantum memories is designed to
be dedicated for keeping quantum data, so it operates the quantum error correction more
efficiently than the quantum ALU but it does not have the ability for universal quantum
gates. Those blocks may employ different quantum error correcting codes. The transfer
of quantum data between those blocks are implemented with the code teleportation that
each half of a Bell pair is sent to each block and encoded into different error correcting
codes then quantum teleportation is operated consuming the heterogeneously encoded
Bell pair.

Copsey et al. proposed a quantum computer architecture which has separated pro-
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cessor, cache and memory each of which employs different concatenated quantum error
correcting code [39]. Generally the concatenated codes have a tradeoff that a code
which encodes more logical qubit on a certain number of physical qubits and holds
a certain robustness against errors has larger computational overhead. The processor
employs a code of less computational overhead and the memory employs a code with
more efficiency of the number of physical qubits.

Metodi et al. proposed the Quantum Logic Array (QLA) architecture, a 2-D mi-
croarchitecture of tiled logical qubits separated by data paths in which qubits (ions) go
through, and Thaker et al. extended the architecture to utilize caches which employ the
same error correcting code with the processor to avoid stalls in the processor [111, 165].
Although they target ion trap qubits, the architecture can be partially applied to other
physical technologies. They also showed that key quantum algorithms does not have
large parallelism, hence such architectures which employ heterogeneous scheme on each
component matched to its purpose would be efficient than the homogeneous design of
“sea of computational qubits”.

Whitney et al. evaluated such quantum processor microarchitectures for Shor’s
algorithm with the practical feasibility described by area of the computation circuit,
duration of the circuit and error probability [180]. They found that carry-lookahead
adders may be better than ripple-carry adders in feasibility. They also showed that a
regular allocation of computation area and transfer components, and a regular allocation
of computation area, memory area and transfer components are beaten by variable sized
allocation of those areas and transfer components dependent on the circuit. This result
infers that a dedicated design is superior to a general design for a purpose.

Brun et al. extended the architecture composed from dedicated components; summa-
rized the operations on multi-qubit large block codes for memories, arranged the ancilla
resource factory and analyzed errors precisely [25].

Jones et al. arranged layers of a quantum computer architecture; layer 5: application,
layer 4: logical, layer 3: quantum error correction, layer 2: virtual and layer 1: phys-
ical [87]. Though their analysis targets quantum dots, the physical implementation is
concealed by the virtual layer therefore the layered architecture to manage the quantum
computation to execute applications can be applied to other physical systems.

Van Meter et al. proposed a quantum computer architecture assembled from semi-
conductor nanophotonics and quantum dots [172]. Their architecture are designed
considering static losses and separated qubits can have interaction via optics hence the
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lattice for surface code can be kept static loss-free regardless of the existence of faulty
devices.

Devitt et al. proposed photonic system for measurement-based quantum computation
utilizing chip-based devices as fundamental building blocks [45].

Choi analyzed dual-code quantum computation model, which may partially deter-
mine the quantum computer architecture [36]. It is shown that the dual-code model for
non-topological quantum correcting codes has advantages when the concatenation level
is low and the cost of non-transversal gates are high. This is because the dual-code system
gets free from non-transversal gates which require expensive state distillation but deeper
concatenation in the dual-code model requires more expensive cost for code conversion
which is achieved by quantum teleportation between heterogeneously encoded qubits.

2.4 Quantum Network and Distributed architecture

Quantum network is a computer network for quantum computation [93]. The quantum
repeater is a core infrastructure component of a quantum network, tasked with con-
structing distributed quantum states or relaying quantum information as it routes from
the source to the destination [22, 53, 93, 168]. The quantum repeater creates new
capabilities: end-to-end quantum communication, avoiding limitations on distance and
the requirement for trust in quantum key distribution networks [57, 134, 146], wide-area
cryptographic functions [12], distributed computation [23, 27, 28, 29, 34, 41, 114] and
possibly use as physical reference frames [10, 37, 90, 100]. To protect quantum data
from losses and errors, sending a qubit consists of two steps; first the quantum network
and the end nodes cooperatively create a high fidelity Bell pair between the ends and
secondly the ends execute a quantum teleportation.

Several different classes of quantum repeaters have been proposed [119, 163, 169]
and these class distinctions often relate to how classical information is exchanged when
either preparing a connection over multiple repeaters, or sending a piece of quantum
information from source to destination. The first class utilizes purification and swapping
of physical Bell pairs [51, 83, 145, 167]. First, neighboring repeaters establish raw (low
fidelity) Bell pairs which are recursively used to purify a single pair to a desired fidelity.
Adjacent stations then use entanglement swapping protocols to double the total range of
the entanglement. In purify/swap protocols, classical information is exchanged continu-
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ously across the entire network path to herald both failures of purification protocols and
entanglement swapping. This exchange of information limits the speed of such a network
significantly, especially over long distances. The second class utilizes quantum error cor-
rection throughout the end-to-end communication [65, 82, 97, 105, 120] and limits the
exchange of classical information to either two-way communications between adjacent
repeaters or to ballistic communication, where the classical information flow is unidi-
rectional from source to receiver. These approaches depend on either high probability of
success for transmitting photons over a link with high fidelity, or build on top of heralded
creation of nearest neighbor Bell pairs and purification, if necessary. If the probability
of successful connection between adjacent repeaters is high enough we can use quan-
tum error correcting codes and relax constraints on the technology, especially memory
decoherence times and the need for large numbers of qubits in individual repeaters, by
sending logically encoded states hop by hop in a quasi-asynchronous fashion [118, 120]
or using speculative or measurement-based operations [105, 118, 182].

Several physical channel types have been suggested for quantum entanglement dis-
tribution over long distance, notably, optical fiber, free-space, satellite and sneaker-
net [46, 72, 81, 166].

The distributed quantum computation is the paradigm where many small or medium
scale quantum computers are connected and composes a large cluster which can run
large scale quantum operation [27, 29, 41]. The distributed quantum computation can
be a good solution for the difficulties of integrating quantum devices and for the large
resource requirement for fault tolerant quantum computation. Jiang et al. analyzed
an extreme situation of the distributed quantum computation in which each node holds
only a few (≤ 5) qubits [84]. Van Meter et al. analyzed distributed quantum compu-
tation by evaluating a distributed simple circuit [173, 174]. They revealed that moving
data by quantum teleportation is superior to teleportation-based gates, decomposing a
quantum teleportation into several steps and managing the steps separately improves the
system performance, a linear topology of computation nodes is efficient enough and I/O
bandwidth dominates the performance rather than that a node holds only a few logical
qubits.

Monroe et al. proposed a quantum computer architecture in which there are many
units of logical qubits that are connected to a optical crossbar hence the units can share
a Bell pair via the optical crossbar [114]. They target atomic qubit, however, their
computer architecture can be partially applied to other technologies. This architecture
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allows interactions among logical qubits separately memorized but actually requires
longer execution time than the QLA architecture because of the probabilistic nature of
the photonic network.

Ahsan et al. proposed a quantum computer architecture in which there are many
units each of which has components specialized for either memory, ancilla generation for
non-Clifford gates, error correction or communication and interconnections are achieved
by optical crossbars of two layers [1].

Nickerson et al. proposed a quantum computer architecture for the surface code
in which several ancilla qubits are attached to each data qubit and the ancilla qubits
are networked [125]. They first create GHZ state of high fidelity among ancilla qubits
equipped on data qubits of a stabilizer utilizing purification. Next hey use the GHZ state
for the stabilizer. They claim that the fault-tolerant threshold is 0.825%.
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Figure 2.8: Correctable and uncorrectable errors of the surface code. Data qubits
are described with dots and the lines indicate plaquettes. Syndrome qubits are omitted
for visibility. (a) A correctable single error. The red ’X’ indicates that an X error occurs
on the underlying data qubit. The corresponding two Z stabilizers which share the data
qubit return -1 eigenvalues. It is easy to interpret the error chain from the eigenvalues
and the yellow line is the error chain. The errored data qubit is under the expected error
chain. This is correctable. (b) A correctable case with two errors. We can consider
two error chains from the eigenvalues of stabilizer measurement, the yellow one and the
green one. Either of them is valid. Obviously the yellow one is valid, and operating
X gates on qubits underlying the green one generates the trivial error cycle described
in (c). (c) Topologically trivial error cycle. This does not affect the logical state of the
surface code; this does not affect the states of data qubits on boundaries. (d) Example
of a mis-correcting error chain. Four X errors occur in the center of the lattice. The
matching algorithm can pair the two -1 plaquettes, for a distance of 4, or pair each -1
with the neighboring boundary of the X operator, for a total distance of 3. Because three
errors are more probable than four errors, the matching expects that three errors occur
and the yellow error chains are expected. After applying X gates on the data qubits under
the error chains, a logical X operator is generated connecting the two boundaries. This
is a logical error.
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Figure 2.9: The matching nest for the distance 3 surface code. A stabilizer measure-
ment corresponds to a vertex and a qubit error corresponds to a edge. The ends of the
nest correspond to the boundaries of the lattice, hence they do not have measurement
values. If an error occurs on a data qubit, the stabilizers the data qubit is stabilized by will
get a different measurement result than the prior round. Then the corresponding vertices
create and hold nodes for the minimum weight perfect matching. Lines for the minimum
weight perfect matching are created by Dijkstra’s algorithm on this nest, searching from
a node for other nodes [48]. The weight of a line is defined by the weights of edges that
the search goes through to create the line, which corresponds to the possibility of the
errors which result in the line.
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Figure 2.10: Picture of the defect-based surface code. A logical qubit is encoded in
the lattice: there are two defects (gray faces). The degrees of freedom on the boundary
of the defects determine the state of the qubit and the qubits on each four red rectangles
has same parity depending on the degree of freedom. This is the reason why surface
code is robust against measurement error. Physical operation chain on the blue path
between the two defects results in a logical operation. By definition, a logical error is an
unintended logical operation. Logical errors occur due to a change at each site on a path
connecting two defects or the boundary of the lattice. The concept of “code distance” is
shown here. The longer the distances between the defects and boundary are, the more
fault-tolerant the computer is. This is why surface code is robust against memory error
and operation error.
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Figure 2.11: Example of optimazed braiding CNOT gates. CNOT gates between a
rough qubit and three smooth qubits works as a CNOT gate between two smooth qubits.
(a) The first situation. (b) First half expansion of the rough qubit for 8d steps. (c) First
half shrink the rough qubit for 8d steps. (d) Second half expansion of the rough qubit
for 8d steps. (e) Second half shrink the rough qubit for 8d steps. Logical CNOT gates
between the rough qubit and all three smooth qubits are completed. 32d steps in total.



Chapter 3

Surface code on defective lattice

overview

This Chapter describes the adaptation of the surface code to run on defective lattices,
making the surface code capable of tolerating static losses caused by faulty devices. In
the proposed quantum computer architecture, the surface code is employed in quantum
CPUs, memories and would be used in the magic state generation area. By this adaption,
tolerances against quantum imperfections, state errors, dynamic losses and static losses,
are completed.

The difficulty in working around faulty devices arises from the nearest neighbor
architecture and the two separate roles for qubits. Distant qubits have to interact around
faulty devices but the nearest neighbor architecture does not provide the capability for
such qubits to interact directly. SWAP gates are brought in to solve this problem. The
solutions for faulty syndrome qubits and for faulty data qubits differ. To tolerate faulty
data qubits, we introduce the “superunit” that Stace, Barrett and Doherty called the
“superplaquette” [152]. The idea is to maintain error correction by modifying the shape
of stabilizers around lost data qubits (faulty devices). On the other hand, we do not
have to modify the unit of stabilizers when syndrome qubits are faulty. We can gather
error syndromes onto another syndrome qubit instead of the faulty syndrome qubit, by
using SWAP gates. Stabilizers which do not involve faulty devices remain as normal
stabilizers.

57
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(a) (b)

Figure 3.1: Modified stabilizers around a faulty device marked with the black
cross. (a) A pair of Z triangular stabilizers. (b) A superunit Z stabilizer.
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Figure 3.2: Two sets of modified stabilizers which commute. The corresponding
stabilizers are shown in Table 3.1. (a) Superunit stabilizer is adopted both to the Z
stabilizer and to the X stabilizer. (b) Triangular stabilizer is adopted in Z stabilizer and
superunit stabilizer is adopted to the X stabilizer.

3.1 Stabilizer reconfiguration

There are two ways to reconfigure around a faulty device. The first is to introduce
two triangular stabilizers by purging the broken qubit from stabilizers which involve the
broken qubit, leaving two stabilizers composed of three data qubits and one syndrome
qubit, as depicted in Figure 3.1(a). It is impossible to adopt triangular stabilizers
for both stabilizers around a faulty device since neighboring Z triangular stabilizers and
X triangular stabilizers do not commute when they have only one qubit in common, as
shown in Figure 3.3. Note that those four triangles cannot be stabilizers but can be gauge
operators for the subsystem code [8, 20, 137]. We leave this solution for future work.
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Figure 3.3: A set of modified stabilizers which anti-commute. The corresponding
stabilizers are shown in Table 3.2.

The second approach is to generate a superunit stabilizer by merging the two broken
unit stabilizers, depicted in Figure 3.1(b). At least one lattice unit must adopt a superunit
stabilizer. In this paper, we form superunit stabilizers for both stabilizers after Stace
et al. and Barrett et al. [9, 151, 152]. To form superunit stabilizers for both stabilizer
around a faulty device produces a degree of freedom which results in a logical qubit by
code deformation [14], which is also called a “junk qubit” [152]. However, operations
specifically targeted at this qubit are required to execute two qubit gates between this
new logical qubit and the logical qubits of the planar code and defect-based code, so
that the effect of its presence in this dissertation is just reducing the minimum distance
between the boundaries.

Table 3.1: Stabilizers of two sets of modified unit stabilizers. (a) Superunit stabilizers
are adopted both to the Z stabilizer and to the X stabilizer (Figure 3.2(a)). (b) A triangular
stabilizers are adopted to the Z stabilizer and a superunit stabilizer is adopted to the X
stabilizer (Figure 3.2(b)).

(a) 1 2 3 4 5 6 7 8
Z Z Z Z Z Z

X X X X X X

(b) 1 2 3 4 5 6 7 8
Z Z Z

Z Z Z
X X X X X X
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3.2 Stabilizer circuits around faulty devices

Stabilizer-measurement circuits working around faulty devices have different shape and
depth from the circuits of normal stabilizers. Figure 3.4(b) shows the shape of a superunit
in which two units are connected by a faulty device and its circuit. We call a circuit for an
individual stabilizer a “stabilizer circuit” and the circuit for a complete lattice the “whole
circuit”. We define two terms, “qubit device” and “qubit variable”. A qubit device is
the physical structure that holds the qubit variable, such as the semiconductor quantum
dot or loop of superconducting wire. A qubit variable is the information encoded on
a qubit device. This distinction corresponds to the difference between a register or
memory location in a classical computer, and the program variable held in that location.
In Figure 3.4(a), the horizontal lines correspond to qubit devices and qubit devices are
distinguished with the labels (numbers). The labels of qubit variables are tagged to the
label of the qubit device, that is, we distinguish qubit variables with the label of the qubit
device of the qubit variable’s original position.

In Figure 3.4(b), the qubit device labeled d40 is faulty, hence the variable v40 does
not exist. The data qubit variables v58, v48, v50, v32, v22 and v30, initially held
respectively in the qubit devices d58, d48, d50, d32, d22 and d30, are stabilized by the
red stabilizer. The syndrome qubit variable v49 is initialized while residing in d49, then
moves around using SWAP gates to gather error syndromes of those data qubits. After
gathering three error syndromes from v58, v48 and v50, v49 moves into d41 via d50.
The data qubit variable v50 is moved onto d49 by the first SWAP gate between d49 and
d50. After moving v49 from d50 to d41, the data qubit v50 on d49 is moved back to d50
by the second SWAP gate. v41, now in d49, is disentangled from other qubits, hence we
can initialize d49 any time. v49 is eventually moved to d31, finishes gathering all error
syndromes and gets measured. Figure 3.4 (b) summarizes the move of v49 from d49 to

Table 3.2: Stabilizers of four triangular unit stabilizers as in fig 3.3. Some pairs
anti-commute.

1 2 3 4 5 6 7 8
Z Z Z

Z Z Z
X X X

X X X
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d31.
To find the optimized stabilizer circuit, first we search the smallest set of syndrome

qubit devices which are neighbored to all the data qubits of the stabilizer. By moving
a syndrome qubit variable around the syndrome qubit devices in the set, all data qubits
are neighbored to the syndrome qubit variable during the move and error syndromes can
be collected onto the syndrome qubit variable with nearest-neighbor interaction. For
optimization, we solve a traveling salesman problem to find the shortest move of the
syndrome qubit variable of the stabilizer among the syndrome qubit devices. If there
are several smallest sets of syndrome qubit devices, we compare the moves of each set
and adopt the set with the shortest move. This procedure gives the optimized circuit for
single stabilizer reconfiguration.

In Figure 3.4, we see that the superunit circuit is deeper than the normal unit stabilizer
circuit. In general, superunit stabilizers require more steps to gather error syndromes
than normal stabilizers. Obviously, the deeper stabilizer will have more physical errors
during a stabilizing cycle, due to the increased opportunities to accumulate physical
errors over a longer period of time. Thus, an important engineering goal is to create
stabilizer circuits that are as shallow as possible.

We present a basic algorithm to compose a stabilizer circuit shown in Algorithm 1.
A syndrome qubit variable travels one way to gather error syndromes. In this algorithm,
we search for the shortest traversable path in which error syndromes can be gathered
from all data qubits.

In our scheme, a single syndrome qubit is used to collect error syndromes from all
data qubits in a stabilizer. Hence, if a Z (X) error occurs on the syndrome qubit in Z (X)
stabilizer, the error propagates to data qubits whose error syndromes are collected after
the error occurrence. This error propagation is correctly incorporated in our model.

3.3 Building a whole circuit from stabilizer circuits

On a perfect lattice, the stabilizer circuits are highly synchronous and easily scheduled
efficiently. The circuits for a defective lattice must be asynchronous on account of the
different depth of stabilizers. Such asynchronicity introduces a problem when several
stabilizers try to access a qubit at the same time. We have to assign priorities to
stabilizers. Stabilizers with lower priority have to wait for other stabilizers, so that
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Algorithm 1: Stabilizer Circuit Composition
Input: Dat: Set of data qubits belonging to the stabilizer (typically 4 or 6)
Input: Anc: Set of ancilla qubits around the stabilizer (typically 1 or 8)
Input: G: Graph of qubits, describing qubits’ neighbor relationships
Output
:

Stabilizer circuit of shallowest depth

1 MinCost = __INT_M AX__; MinPath = None;
2 /* Search for the smallest set of ancilla qubits which neighbor all data qubits.

*/
3 for n ∈ (1..Num(Anc)) do
4 for ancs ∈ Combination(Anc, n) do
5 if d ∈ Neighbors(ancs), ∀d ∈ Dat then
6 /* Search for the shortest path involving data qubits. */
7 cost, path = SolveTravelingSalesman(ancs);
8 if cost < MinCost then
9 MinCost = cost;

10 MinPath = path;
11 end
12 end
13 end
14 if MinPath , None then
15 break;
16 end
17 end
18 /* Add operations along the path found. */
19 AddOp (Initializations(MinPath.ancillas));
20 for q ∈ MinPath do
21 if q ∈ Anc then
22 foreach d ∈ [d |d ∈ Dat, d ∈ Neighbors(q)] do
23 if IsNotAlreadyGathered (d) then
24 AddOp (GatherSyndrome (d, q));
25 end
26 end
27 end
28 /* SWAP gate which moves the ancilla qubit variable which holds error

syndrome to the next hop in MinPath. */
29 if q.next , Null then
30 AddOp (SWAP(q, q.next));
31 end
32 /* SWAP gate which returns the data qubit variable which was swapped to

the previous hop to the original positions. */
33 if q ∈ Dat then
34 AddOp (SWAP(q.prev, q));
35 end
36 end
37 /* Measure the ancilla qubit which holds error syndrome. */
38 AddOp (Measurement(q));
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they have more opportunities to accumulate physical errors on data qubits and may be
blocked during stabilizing so that they have more opportunities to accumulate physical
errors on ancilla qubits. Therefore we give higher priority to stabilizers which have
deeper stabilizer circuits to avoid error opportunities from concentrating there, since a
shorter error chain is obviously preferred for error correction. The scheduling algorithm
is shown in Algorithm 2.

Algorithm 2: Scheduling algorithm
Input: SC: The set of stabilizer circuits
Input: MaxStep: The number of time steps to output
Output
:

WholeCircuit

1 /* Sort stabilizers in order of depth, longest first. If they tie, stabilizers on
top-left of the lattice have priority. */

2 sortedSC = Sort(SC);
3 deepest = Head(sortedSC);
4 a f terHead = AfterHead(sortedSC);
5 WholeCircuit = NULL;
6 wholeCeil = 0;
7 while wholeCeil ≤ MaxStep do
8 /* wholeCeil is the step when the deepest stabilizer last scheduled

finishes. */
9 deepest .ceil = wholeCeil = Schedule(deepest, WholeCircuit);

10 foreach s ∈ a f terHead do
11 /* schedule every stabilizer once */
12 s.ceil = Schedule(s);
13 end
14 /* loop until every s.Ceil ⟩ wholeCeil */;
15 while Any(s.ceil ≤ wholeCeil |s ∈ a f terHead) do
16 foreach s ∈ a f terHead do
17 if s ≤ wholeCeil then
18 s.ceil = Schedule(s, WholeCircuit);
19 end
20 end
21 end
22 end

The scheduling algorithm is:

1. Sort stabilizers in order of depth, longest first. If they tie, stabilizers in the upper
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left of the lattice have priority. (lines 1-2)

2. The deepest stabilizer is scheduled. The step when the deepest stabilizer finishes
is saved (currentCeil). (line 9)

3. Each non-deepest stabilizer is scheduled once, in order of decreasing depth. (lines
10-13)

4. Each non-deepest stabilizer which does not exceed the currentCeil is scheduled
once again, in order of depth. Short ones may be scheduled twice or more before
the loop terminates. (lines 14-21)

5. If all of the non-deepest stabilizers exceed the currentCeil, return to step 2. Oth-
erwise, return to step 4. (lines 21-22)

Our algorithm must enforce important restrictions, which the completely syn-
chronous circuits of the perfect lattice fulfill without explicitly being stated. Conflicts
may occur in asynchronous scheduling since several stabilizers may attempt to use a
qubit at the same time. Additionally, different types of stabilizers which share an even
number of data qubits must access those qubits in the same order. For example, if we
have two stabilizers X1X2 and Z1Z2 on qubits 1 and 2, we have to execute them as X1X2

then Z1Z2 (or reverse order). X1Z2 then Z1X2 is not allowed because of the stabilizer
commutivity. We postpone stabilizers of low priority to resolve conflicts by simply
adding identity gates.

3.3.1 Example of solving conflicts in scheduling

Figures 3.5 and 3.6 illustrate various conflicts that occur during scheduling and our
solutions. Our scheduling is implemented to allocate “slots” to gates of stabilizer
circuits, as shown in Figure 3.5(a). Each qubit on each step has a slot and only one gate
can operate in a slot. When a gate is set in a slot, the slot gets locked. When a swap
gate is set in the slot of a data qubit, the data qubit is locked until the data qubit variable
returns to the original data qubit device. If conflicts occur, we add identity gates to
resolve any conflicts as shown in Figure 3.5(b) and Figure 3.5(c). This method does not
work for conflict on syndrome qubits. This is because a data qubit may be unlocked after
a single time step but a syndrome qubit may not be unlocked for several steps, as shown
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in Figure 3.5(d). Any sequence of gates on syndrome qubits in a stabilizer starts with
an initialization gate, which removes the error syndromes which have already gathered
by the syndrome qubit, as illustrated in d8-t4 in Figure 3.5(d). If the stabilizer currently
being scheduled (red gates) waits for the syndrome qubit to be unlocked, the initialization
gate deletes the syndrome qubit variable with some error syndromes of the stabilizer as
shown at d8-t4 in Figure 3.6(e). To avoid this problem, the currently scheduled stabilizer
is completely rescheduled after the previously scheduled stabilizer finishes, as shown in
Figure 3.6(f).

3.3.2 Irregular whole circuit on account of a fault

Figure 3.7 show an example of a defective lattice in which the central qubit d40 is faulty.
Figure 3.8 shows the first tens of steps of the whole circuit of the lattice. We can see that
the circuit becomes irregular around the faulty device.

3.4 Adapting matching to asynchronous operation

Irregular stabilizer circuits degrade the parallelism of stabilizer measurements of the
whole circuit, so that the surface code on a defective lattice has irregular error matching
nests, as shown in Figures 3.9 and 3.10. A superunit stabilizer is measured in a longer
cycle than normal stabilizers and a vertex corresponding to a superunit stabilizer has
many edges. These figures are output by Autotune during simulation of our surface code
on a defective lattice [59]. We can see the irregularity of the nest. A superunit stabilizer is
measured in a longer cycle than normal stabilizers and the vertex of a superunit stabilizer
has many edges, some of which are thick. This thickness is proportional to the error
probability. Additionally, the weights of edges are generated by tracing propagation,
along the stabilizer circuits, of virtually created errors on every qubit at every physical
step. Therefore the weights of edges reflect the possibilities of errors accurately, allowing
Blossom V to achieve a result likely to correctly match the error pairs and return the
state to the correct one.
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3.5 System architecture

Figure 3.11 shows the major software components for compiling a circuit for the surface
code and simulating its behavior on a defective lattice. My circuit generator Subaru
produces a whole circuit for a defective lattice and Autotune by Fowler et al. simulates
surface code along the circuit [59]. Subaru performs the tasks described in section 3.
Subaru can have alternative inputs – yield or a lattice. The yield is the probability of
fabricating qubits which work properly. Instead of a yield, a complete lattice can be input
into Subaru. This enables us to investigate particular conditions using hand-constructed
lattices.

3.6 Summary

The surface code has large redundancy of encoded information. This redundancy is
generated by many equivalent logical operators produced by many stabilizers spread
vertically and horizontally. This redundancy is originally designed to tolerate state
errors. Later this redundancy gets proposed to be used to tolerate losses, especially
dynamic losses. This Chapter gives a practical and concrete method to work around
static losses, utilizing the redundancy.

A lost data qubit is worked around by merging stabilizers the lost qubit originally
belongs to into a superstabilizer. This merge causes two overheads. The first is that the
merge may reduce the shortest hops of stabilizers between the boundaries, hence the
error tolerance gets reduced. The second is that the superstabilizer has more data qubits
than normal stabilizers and the data qubits do not neighbor to single ancilla qubits so we
need SWAP gates to move an ancilla qubit to collect error syndromes. This procedure
lengthen the depth of the stabilizer circuit. This lengthened depth increases the chance
to accumulate physical errors during error correction cycle. Therefore those overheads
affect the logical error rate of the lattice worse.

A lost ancilla qubit is worked around by utilizing another ancilla qubit near the
stabilizer, originally prepared to measure another stabilizer. This working around also
requires SWAP gates to move the ancilla qubit to collect error syndromes. Additionally,
the cycle time of the stabilizer the utilized ancilla qubit is originally used for is lengthen.
Those overheads also affect the logical error rate of the lattice worse.
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Those overheads are quantitatively evaluated in Section 7.1 by numerical simulation.
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Figure 3.4: Stabilizers and their circuits. (a) A set of normal Z stabilizer cir-
cuits around d40 for the case where d40 is properly functional. The stabilizers are
Zv58Zv48Zv50Zv40 and Zv40Zv32Zv22Zv30. (b) An example of a superunit stabilizer cir-
cuit. The qubit device d40 is faulty and two units are connected. The new stabilizer is
Zv58Zv48Zv50Zv32Zv22Zv30. The circuit measuring only this stabilizer is shown on the
right. This stabilizer circuit is isolated from the whole circuit shown in Figure 3.8.
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Figure 3.5: Example of the conflict of gates for data qubits in scheduling stabiliz-
ers. (a) Scheduling chart for the six gates comprising a Z stabilizer circuit. Each box
is called a slot and NULL slots are vacant. (b) Example of resource allocation conflict
occurring between two stabilizers, with the higher priority one in black and the lower
priority one in red. d3-t3 is allocated to the black stabilizer. The red stabilizer cannot
lock the slot of d3-t3, as indicated by the light-colored CNOT target. (c) Solution to
the contention for a data qubit. The red stabilizer waits for the slot of d3-t3 to become
unlocked. (d) The slot of d8-t4 is allocated to the black stabilizer. The black SWAP gate
already locks the slot of d8-t4 and the red CNOT cannot lock into it.
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Figure 3.6: Example of the conflict of gates for syndrome qubits in scheduling
stabilizers. (e) Attempting to solve the competition for a syndrome qubit by waiting.
The red stabilizer is split and the former half of its error syndromes are deleted by the
initialization gate in d8-t4. This is invalid. (f) Solution to the competition of a syndrome
qubit. The red gates are all rescheduled after the black stabilizer.
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Figure 3.7: The picture of a lattice corresponding to Figure 3.8. Gray dots are data
qubits and white dots are syndrome qubits. The data qubit labeled (d40) is faulty.
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Figure 3.8: The first sixty steps of a whole circuit for a lattice of d=5 and in which
the qubit device d40 in the center is faulty. The lattice condition is shown in Figure
3.7. We can see swap gates around d40. The detail of the irregular stabilizer circuit is
shown in Figure 3.4.
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Figure 3.9: A top-view of a visualization of an asynchronous nest. Each vertex
describes a syndrome measurement and each edge connects two syndrome measurements
which might be changed by same errors. The two blue circles indicate the positions where
two unit stabilizers originally existed and now they are merged into a superunit stabilizer
placed in the left blue circle.
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Figure 3.10: A frontview of a visualization of an asynchronous nest. The diameter of
the edge indicates the weight of the matching.
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Figure 3.11: Simulation system design. Subaru can have one of two mutually exclusive
inputs – a pair of yield and a lattice size (labeled “A”) or a full description of a lattice
(labeled “B”). With the former input, it randomly generates a defective lattice, then builds
circuits to suit. With the latter input, it builds circuits for the provided defective lattice.
It outputs a whole circuit of the requested number of steps. The circuit and physical error
rate are input into Autotune, and Autotune outputs the logical error rate corresponding
to the inputs.



Chapter 4

Deformation-based surface code

This Chapter presents the construction of the densely packed surface code. In fault-
tolerant quantum computation, there are two potential ways to achieve significant re-
source reduction: develop a new quantum error correcting code with universal logical
gates for fault-tolerant quantum computation, and or utilize multiple quantum error cor-
recting codes as complementary systems in which each can execute some operations
more efficiently than others [36, 39, 130]. The new code presented here packs logical
qubits more densely than other forms of the surface code. It can be realized as an
extension of Bombin’s deformation-based surface code [14].

4.1 Conventional deformation-based surface code and

the new deformation-based surface code

Bombin and Delgado introduced another way to produce a qubit on the surface code, the
deformation-based surface code [14]. The deformation-based code produces a logical
qubit by cutting a hole in a big/infinite regular lattice in which the boundary of the
unused region is composed from both types of boundaries, hence it is like turning a
planar code qubit inside out. They showed Clifford gates and initialization to |0⟩ and
|+⟩. They demonstrated a CNOT gate by braiding, which can be executed between two
logical qubits in the deformation-based code and even between the deformation-based
code and the defect-based code. Since a SWAP gate can be implemented with three

76
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CNOT gates, arbitrary state injection to the deformation-based code can be achieved
utilizing this heterogeneous CNOT gate. First, use the standard state injection method
in the defect-based code, then swap into the deformation-based code. However, this
method is an indirect way to achieve state injection to the deformation-based code.

We find a conversion from the defect-based code to the deformation-based code that
enables the deformation-based code to hold an arbitrary state, and demonstrate that a
crossed pair of an X superstabilizer and a Z superstabilizer produces a deformation-
based qubit, without sacrificing the surface code’s advantages. Far from killing the
advantages, the lattice of my deformation-based surface code is fulfilled by stabilizers
so that denser packing of logical qubits can be achieved. We employ the fault-tolerant
stabilization utilizing a cat state generated by parallel Z Z stabilization. Additionally,
we demonstrate a lattice surgery-like CNOT gate for the deformation-based code [78].
Lattice surgery is a non-transversal hence scalable means of executing a CNOT gate on
the planar code that requires fewer resources than the braiding of the defect-based code.
Our lattice surgery-like CNOT gate for the deformation-based code requires fewer qubits
than the conventional braiding. Nevertheless, the error suppression ability is similar to
conventional surface code since the logical state is protected by normal stabilizers. My
proposals may reduce the resource requirements of the surface code in spatial accounting
hence reducing the size of a practical quantum computer.

4.2 Overview of the new deformation-based surface code

Figure 4.1 shows a distance 3 deformation-based qubit, existing on the surface code
lattice. The surface code uses physical qubits placed on a 2D lattice. The black dots are
data qubits, and the white dots are ancilla qubits. The lattice is separated into plaquettes
as shown by black lines in the Figure. A stabilizer U is an operator which does not
change a state,

U |ψ⟩ = |ψ⟩. (4.1)

An ancilla qubit in the center of a plaquette is used to measure the eigenvalue of a Z
stabilizer such as ZaZbZcZd where a ∼ d denotes the surrounding four data qubits.
Recall that an ancilla qubit on the vertex is used for an X stabilizer.

The number of logical qubits k on a state of n physical qubits is k = n − s where s
is the number of independent stabilizers. In Figure 4.1, there are 48 data qubits, 19 Z
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X operator 

Z operator 

X operator 

Z operator 

X operator 

Figure 4.1: The deformation-based qubit of distance 3. Black dots depict data qubits
and white dots are ancilla qubits. Each red diamond describes a Z stabilizer and each
blue diamond describes an X stabilizer. The gray dot in the center depicts the unused
data qubit, and the two 4-qubit Z stabilizers the unused data qubit originally belonged
to are merged to form the 6-qubit Z stabilizer shown. The two 4-qubit X stabilizers the
unused data qubit originally belonged to are also merged to form the 6-qubit X stabilizer
shown. The thick lines are logical operators of the superstabilizer qubit. Any of the blue
or the red paths serves as a logical X operator or a logical Z operator, respectively.

stabilizers and 28 independent X stabilizers, since any of the X stabilizers is the product
of all the others, leaving a single degree of freedom for one logical qubit.

Two ZL operators of a deformation-based qubit are shown in Figure 4.1, either of
which acts on the logical qubit. Three XL operators are shown in the figure, also
working on the same logical qubit. Two of the XL operators are the same shape as
the described ZL operators, while the third crosses the Z superstabilizer ends at the
boundaries of the lattice. Those two ZL and two XL logical operators surrounding the
superstabilizers correspond to the logical operators shown in Figure 5 (a) in [14], except
that our deformation-based qubit employs superstabilizers. As with other surface code
qubits, the products of a logical operator and stabilizers produce the redundancy for
measurements of logical operators.

Figure 4.1 shows another important characteristic of the deformation-based qubit,
how to count its code distance. Each logical operator consists of operations on three
physical qubits, therefore the code distance of this deformation-based qubit is three. An
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-1

-1

Figure 4.2: Neighboring distance 5 deformation-based qubits. Placement code dis-
tance apart from the boundary of the lattice is assumed. An X error on the marked
qubit results in −1 eigenvalues of the two red Z superstabilizers. The two-defect surface
code cannot correct an X error on a data qubit which belongs to two defects, but the
superstabilizers of the deformation-based code can.

example of a longer code distance is shown in Figure 4.2, which depicts two deformation-
based qubits of distance five.

Figure 4.2 shows an advantage of deformation-based qubits compared to defect-
based surface code qubits. The deformation-based qubit exists at the junction of two
superstabilizers, so that every data qubit alive in the lattice belongs to two X stabilizers
and two Z stabilizers. The two Z superstabilizers find the X error on the marked qubit in
Figure 4.2, hence the deformation-based qubits can be placed close to each other without
being susceptible to logical errors, though other surface code qubits must be placed far
enough away to maintain the code distance.
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4.3 Transformation

We have shown the “four fin” style deformation-based qubits. Figure 4.3 shows two
transformed deformation-based qubits of distance 5. The deformation-based qubit in
Figure 4.3 (a) is extended in the horizontal direction and compressed in the vertical
direction. The perimeter of the Z (X) superstabilizer can be considered to be separated
by the X (Z) superstabilizer. The logical Z (X) operator exists at any path connecting
the separated halves. The deformation-based qubit in Figure 4.3 (b) has a single, skewed
Z superstabilizer. This transformation is achieved with more or less the defect-moving
operations of the defect-based surface code [63]. The only difference is that the defect
that does not have a stabilizer measurement is replaced with the superstabilizer here.

4.4 Conversion from a two-defect-based qubit

Direct conversion from a two-defect surface code qubit to a deformation-based qubit
can be achieved. This conversion works as the state injection for the deformation-
based qubit and e.g. to support networking among multiple quantum computers that
employ heterogeneous error correcting codes [121]. To complete universality of the
deformation-based surface code, we demonstrate the arbitrary state injection in this
section. We first inject an arbitrary qubit to a two-defect surface code following Fowler
et al. [63], as depicted on a fragment of surface code in Figure 4.4. The surface begins
in normal operation, using qubit 5 and measuring all 4-qubit stabilizers,

1 2 3 4 5 6 7 8 9
X X X X

X X X X
Z Z Z Z

Z Z Z Z

(4.2)

where each number corresponds to the number in Figure 4.4. First, we measure qubit 5
in the X basis, disentangling it from the larger state where Mb

a denotes a measured value
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where a is the measurement basis and b is the qubit index.

1 2 3 4 5 6 7 8 9
X X X X

X X X X
(−1)M5

X X
Z Z Z Z Z Z

(4.3)

If the -1 eigenvalue is measured, apply either Z2Z4Z5Z7 or Z3Z5Z6Z8 to restore X1X2X3

and X7X8X9 to +1 eigenvalues,

1 2 3 4 5 6 7 8 9
X X X

X X X
X

Z Z Z Z Z Z

. (4.4)

Next, qubit 5 is rotated to the arbitrary desired state 1, α(Z) + β(−Z),

α

©­­­­­«
1 2 3 4 5 6 7 8 9
X X X

X X X
+ Z

Z Z Z Z Z Z

ª®®®®®¬
+β

©­­­­­«
1 2 3 4 5 6 7 8 9
X X X

X X X
− Z

Z Z Z Z Z Z

ª®®®®®¬
. (4.5)

1Note: Eqs. 5-9 and 14-21 describe states that are stabilized by the corresponding terms, but do not
correspond directly to stabilizer measurements conducted for error correction purposes. In particular, the
last line of Eq. 8 and 9 represents the newly introduced superstabilizer itself, while the two stabilizers
just above illustrate the degree of freedom representing our logical qubit. The stabilizers demarking the
degree of freedom are labeled in the leftmost column inside the parentheses with + or − as appropriate.
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Then we measure Z2Z4Z5Z7 and Z3Z5Z6Z8,

α

©­­­­­­«

1 2 3 4 5 6 7 8 9
X X X X X X

+ Z
(−1)M2457

Z Z Z Z Z
(−1)M3568

Z Z Z Z Z

ª®®®®®®¬
+β

©­­­­­­«

1 2 3 4 5 6 7 8 9
X X X X X X

− Z
(−1)M2457

Z Z Z Z Z
(−1)M3568

Z Z Z Z Z

ª®®®®®®¬
. (4.6)

If the -1 eigenvalue is measured, apply either X1X2X3 or X7X8X9 to give the desired state.
The two defects exist at X1X2X3X5 and X5X7X8X9, a minimal logical qubit of distance 1,

α

©­­­­­«
1 2 3 4 5 6 7 8 9
X X X X X X

+ Z
Z Z Z Z

Z Z Z Z

ª®®®®®¬
+β

©­­­­­«
1 2 3 4 5 6 7 8 9
X X X X X X

− Z
Z Z Z Z

Z Z Z Z

ª®®®®®¬
. (4.7)

So far we have the logical qubit of the two-defect surface code. Next we start to
convert this logical qubit to the deformation-based surface code.

For pedagogical clarity, we omit writing the stabilizers that do not change over the
course of this operation, depicted in white in the figures, and we write Z2Z4Z5Z7 ⊗
Z3Z5Z6Z8 = Z2Z3Z4Z6Z7Z8, which is a product of two stabilizers and which can be
measured as a stabilizer without breaking the logical state. We again measure qubit 5 in
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the X basis, merging the two minimal defects into one superstabilizer,

α

©­­­­­­­«

1 2 3 4 5 6 7 8 9
X X X X X X

(−1)M5
X X

+ Z Z Z
+ Z Z Z

Z Z Z Z Z Z

ª®®®®®®®¬
+β

©­­­­­­­«

1 2 3 4 5 6 7 8 9
X X X X X X

(−1)M5
X X

− Z Z Z
− Z Z Z

Z Z Z Z Z Z

ª®®®®®®®¬
. (4.8)

If the -1 eigenvalue is obtained, apply either Z2Z4Z5Z7 or Z3Z5Z6Z8 to preserve the
parity of the logical X operator such as X1X2X3X5 into X1X2X3, giving

α

©­­­­­­­«

1 2 3 4 5 6 7 8 9
X X X X X X

X
+ Z Z Z
+ Z Z Z

Z Z Z Z Z Z

ª®®®®®®®¬
+β

©­­­­­­­«

1 2 3 4 5 6 7 8 9
X X X X X X

X
− Z Z Z
− Z Z Z

Z Z Z Z Z Z

ª®®®®®®®¬
. (4.9)

Now Z2Z4Z7 and Z3Z6Z8 share the desired state. We can now begin measuring
Z2Z3Z4Z6Z7Z8 as our superstabilizer. As is common with state injections, because the
process begins with a raw qubit, state distillation on the logical qubit is required after
this process.
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4.5 CNOT gate

A CNOT gate can be performed utilizing lattice surgery [78]. The basic concept of the
CNOT gate by lattice surgery is

1. prepare a control (C) qubit in α |0C⟩+β|1C⟩ and a target (T) qubit in α′|0T ⟩+β′|1T ⟩.

2. prepare an intermediate (INT) qubit in |+I⟩. The initial state is

|ψinit⟩ = (α |0C⟩ + β |1C⟩) ⊗ |+I⟩ ⊗ (α′|0T ⟩ + β′|1T ⟩). (4.10)

3. measure ZC ZI and get

|ψ′⟩ = (α |0C0I⟩ + β |1C1I⟩) ⊗ (α′|0T ⟩ + β′|1T ⟩) (4.11)

by applying XI if the -1 eigenvalue is observed.

4. measure XI XT and get

|ψ′′⟩ = α |0C⟩(α′|0I0T ⟩ + β′|0I1T ⟩ + β′|1I0T ⟩ + α′|1I1T ⟩)
+β|1C⟩(β′|0I0T ⟩ + α′|0I1T ⟩ + α′|1I0T ⟩ + β′|1I1T ⟩)

(4.12)

if the +1 eigenvalue is observed, and get

|ψ′′′⟩ = α |0C⟩(α′|0I0T ⟩ + β′|0I1T ⟩ − β′|1I0T ⟩ − α′|1I1T ⟩)
+β |1C⟩(−β′|0I0T ⟩ − α′|0I1T ⟩ + α′|1I0T ⟩ + β′|1I1T ⟩)

(4.13)

if the -1 eigenvalue is observed. Apply ZC ZI and get Equation 4.12 when -1 is
observed. Merging I and T by the lattice surgery, the Z operators are XORed and
finally we get

|ψ f inal⟩ = α |0C⟩(α′|0m⟩ + β′|1m⟩) + β |1C⟩(β′|0m⟩ + α′|1m⟩)
(4.14)
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where m stands for merged, indicating the merged qubit of I and T .

Figure 4.5 depicts the logical CNOT gate of the deformation-based qubit by lattice
surgery.

To measure ZC ZI , we measure Z5Z6Zi Zii. This is achieved by swapping qubit 7 with
a neighboring ancilla qubit and using the fault-tolerant stabilizer measurement described
in Section 4.6. This measurement is repeated d times for majority voting to correct
errors, where d is the code distance. If the -1 eigenvalue is observed from the ZC ZI

measurement, XI is applied. During the measurement of ZC ZI , we cannot measure the
Z superstabilizers of the intermediate qubit and the control qubit, meanwhile normal Z
stabilizers can be measured. Hence, error chains connecting the two Z superstabilizers,
such as X7 and X6X9Xii, may be caused. (Figure 4.5 shows distance 3 code, therefore
we should not allow an error chain of length 3 to go undetected.) However, those error
chains do not matter since they are stabilizers for Z5Z6Zi Zii.

Next, we measure XI XT and merge the intermediate qubit and the target qubit. Here
we describe the merge operation of deformation-based qubits. The original state is

(α |0C0I⟩ + β|1C1I⟩) ⊗ (α′|0T ⟩ + β′|1T ⟩)
= αα′|0C0I0T ⟩ + αβ′|0C0I1T ⟩
+βα′|1C1I0T ⟩ + ββ′|1C1I1T ⟩. (4.15)

The first term of Equation 4.15 is

αα′|0C⟩

©­­­­­­­­­­­­­«

1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z

X X X X X X
Z Z Z Z Z Z

X X X X X X
Z Z Z Z

Z Z Z Z
+ Z Z Z
+ Z Z Z

ª®®®®®®®®®®®®®¬
(4.16)

where the logical state of two qubits exists in Z1Z2Z3 and ZaZbZc. The two bottom
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lines are the logical operator states. Measure qubit S in the Z basis, giving

αα′|0C⟩

©­­­­­­­­­­­­­­«

1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z

X X X X X X X X X X
Z Z Z Z Z Z

(−1)MS
Z Z Z Z

(−1)MS
Z Z Z Z

(−1)MS
Z Z

+ Z Z Z
+ Z Z Z

ª®®®®®®®®®®®®®®¬
. (4.17)

If -1 eigenvalue is obtained, apply either X2X3X4X5X6XS or XbXc Xd XeX f XS and get

αα′|0C⟩

©­­­­­­­­­­­­­«

1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z

X X X X X X X X X X
Z Z Z Z Z Z

Z Z Z
Z Z Z

Z
+ Z Z Z
+ Z Z Z

ª®®®®®®®®®®®®®¬
. (4.18)

Next, we measure X3XbX6Xe for the third step of lattice surgery. We can measure
X3, Xb, X6 and Xe both to execute our merge and to measure X3XbX6Xe. Measure qubit
3 in the X basis. If -1 is obtained, apply either Z3Z8Zb or Z1Z2Z3Z5Z6Z7.

αα′|0C⟩

©­­­­­­­­­«

1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z Z

X X X X X X X X X
Z Z Z Z Z Z

Z Z Z
+ Z Z Z
+ Z Z Z

ª®®®®®®®®®¬
(4.19)
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Measure qubit b in the X basis. If the -1 is obtained, apply either Z1Z2Z5Z6Z7Z8Zb

or ZaZbZcZeZ f Zg.

αα′|0C⟩

©­­­­­­­«

1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z Z Z Z Z Z

X X X X X X X X
Z Z Z

+ Z Z Z
+ Z Z Z

ª®®®®®®®¬
(4.20)

Measure qubit 6 in the X basis, and apply either Z1Z2Z5Z6Z7Z8ZaZcZeZ f Zg if the
-1 eigenvalue is observed.

αα′|0C⟩
©­­­­­«

1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z Z Z Z Z

X X X X X X X
+ Z Z Z Z
+ Z Z Z

ª®®®®®¬
(4.21)

Measure qubit e in the X basis and apply both Z5Z7Z9 as ZI and Zi Z7Zii as ZC if the
-1 eigenvalue is obtained.

Alternately, we can measure X3, Xb, X6 and Xe in parallel. After the parallel
measurements, if an even number of −1 eigenvalues is observed, as in normal error
correction, a physical Z operator chain connecting the remaining X stabilizers with −1
eigenvalues is executed. If an odd number of −1 eigenvalues is observed, we execute
the physical Z operator chain and there still remains an X stabilizer with −1 eigenvalue.
The X superstabilizer of the merged qubit actually has the −1 eigenvalue in this case,
hence we connect the remaining X stabilizer and the intermediate qubit side of the X
superstabilizer. This operation keeps the eigenvalues of the lattice +1 and works as ZI ,
like Z5Z7Z9 was used in the sequential form above. We execute Zi Z7Zii as ZC when an
odd number of −1 eigenvalue is observed.

Those measurements work for connecting the superstabilizers. Therefore, those
measurements are allowed to be non-fault-tolerant since the remaining stabilizers confirm
the correctness of the measurements; when qubit e is measured in the X basis, regardless
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of whether a measurement error occurs, if the remaining stabilizer X9XgX10 outputs -1
repeatedly, we can conclude the correct measurement of qubit e to be -1.

Now we have code space for only one qubit and the two qubits are merged into a
qubit whose logical operator state is the product of the first two, shown in the bottom
line,

αα′|0C⟩
©­­­«

1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z Z Z Z Z

X X X X X X
+ Z Z Z Z Z

ª®®®¬ . (4.22)

By similar operations, Equation 4.15 is rewritten to

αα′|0C⟩
©­­­«

1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z Z Z Z Z

X X X X X X
+ Z Z Z Z Z

ª®®®¬
+αβ′|0C⟩

©­­­«
1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z Z Z Z Z

X X X X X X
− Z Z Z Z Z

ª®®®¬
+βα′|1C⟩

©­­­«
1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z Z Z Z Z

X X X X X X
− Z Z Z Z Z

ª®®®¬
+ββ′|1C⟩

©­­­«
1 2 3 4 5 6 7 8 9 S a b c d e f g
Z Z Z Z Z Z Z Z Z Z

X X X X X X
+ Z Z Z Z Z

ª®®®¬ .
(4.23)

Using a new definition, we now have

|0m⟩ = Z5Z7Z9Z f Zg (4.24)

|1m⟩ = −Z5Z7Z9Z f Zg (4.25)
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where m stands for merged. Equation 4.23 can be written as

α |0⟩(α′|0m⟩ + β′|1m⟩) + β |1⟩(β′|0m⟩ + α′|1m⟩) (4.26)

therefore now we have a complete CNOT gate. From this point in the operation, we start
to measure the new superstabilizers.

4.6 Arbitrary size stabilizer measurement

We suggest using a cat state of an arbitrary length to measure superstabilizers. In this
section, we first discuss fault-tolerant preparation, then generic use of cat states for
constant-time stabilizer measurement, before addressing superstabilizers in our system.
Finally, we return to the issue of errors.

4.6.1 Arbitrary length cat state preparation

The non-fault-tolerant circuit to prepare an arbitrary length cat state in constant time
is depicted in Figure 4.6. In the circuit, many qubits in |+⟩ are created and entangled
by measuring Z Z of every pair of neighboring qubits. Here, we prepare two qubits in
| +0 +2⟩ and a third qubit in |01⟩,

|ψ012⟩ = | +0 01+2⟩, (4.27)

with this order corresponding to the physical placement. Dispensing with normalization,
as every term has the same amplitude, apply CNOT for Z0Z2 measurement:

|ψ′
012⟩ = CNOT[2, 1]CNOT[0, 1]| +0 01+2⟩
= |000102⟩ + |001112⟩ + |101102⟩ + |100112⟩ (4.28)

where CNOT[a, b] denotes that qubit a is the control qubit and b is the target. Measure
the ancilla qubit 1 in the Z basis and if the −1 eigenvalue is obtained, apply X1 to get

|ψ′′
02⟩ = |0002⟩ + |1012⟩. (4.29)
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We can entangle another qubit in |+⟩ to this state in the same way and we can make a
cat state of arbitrary length. However, this procedure is not fault-tolerant and there is a
chance of getting a problematic state such as |00001111⟩ + |11110000⟩. Using this state
for a stabilizer measurement may produce a logical error because the logical operator of
the deformation-based qubit is a half of a superstabilizer. Therefore we need to confirm
that we have a proper cat state. It is well-known that measuring Z Z of every pair of qubits
comprising the cat state is good enough for this proof [126]. Since measuring Z Z of
every pair of qubits requires many SWAP gates and a lot of steps, we suggest repeating
the Z Z measurement of every pair of neighboring qubits d times, which guarantees
the probability that the state is in a problematic state is O(p⌈ d2 ⌉), where d is the code
distance and p is the physical error rate, which is same as the error rate the fault tolerant
quantum computation achieves. (The state yet could be an imperfect cat state such as
|00100000⟩ + |11011111⟩ due to individual physical errors, which is tolerable.)

4.6.2 Stabilizer measurement in constant time using cat state

A three qubit cat state can be rewritten as

|ψcat⟩ =|000⟩ + |111⟩
=(|+⟩ + |−⟩)(|+⟩ + |−⟩)(|+⟩ + |−⟩)
+ (|+⟩ − |−⟩)(|+⟩ − |−⟩)(|+⟩ − |−⟩) (4.30)

=| + ++⟩ + | + −−⟩ + | − +−⟩ + | − −+⟩. (4.31)

The |000⟩ and |111⟩ are rewritten in symmetric fashion except that the signs of
factors involving an odd number of |−⟩ differs, as shown in Equation 4.30. From this
fact and the binomial expansion, a cat state of any length involves an even number of
|−⟩. Applying a Z to any qubit in the cat state, the state in Equation 4.31 is changed to

|ψ′
cat⟩ = | − ++⟩ + | − −−⟩ + | + +−⟩ + | + −+⟩. (4.32)

Applying a Z to any qubit again, this state returns to the state in Equation 4.31. To
observe whether we have the “even” cat state or the “odd” cat state, we need to measure
all ancilla qubits in the X basis and calculate the product of the measured values.
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Let us assume that we have as many ancillae for the cat state as we have data qubits
to stabilize, and we can assign a qubit in the cat state to each data qubit, then apply
CNOT from each cat state qubit to the corresponding data qubit. This set of CNOTs is
equivalent to the syndrome propagation for the X1X2...Xn stabilizer. The cat state starts
from the “even” state and if an odd number of flips is performed the cat state results
in the “odd” state. The CNOTs can be applied simultaneously and the measurement
can be performed simultaneously, therefore this procedure requires three steps (CNOT ,
Hadamard and measurement in Z basis).

4.6.3 Superstabilizer implementation

To suppress the probability of having an improper cat state to O(p⌈ d2 ⌉), a lin-
ear placement requires d cycles of Z Z stabilizers, but a circular placement re-
quires only ⌈ d

2 ⌉ cycles. Let us assume that an example of the problematic states,
|0001020314151617⟩ + |1011121304050607⟩ has developed. In a linear arrangement, we
have Z Z stabilizers only between neighboring qubits. After d cycles of Z Z stabilizers,
the problematic state generation is caused by p⌈ d2 ⌉ errors at the Z3Z4 stabilizer. In a
circular arrangement, we have another Z7Z0 stabilizer. Hence, after d cycles of Z Z
stabilizers, even though we have p⌈ d2 ⌉ errors at the Z3Z4 stabilizer, d cycles of the Z7Z0

stabilizer tell us that we have an improper cat state. Therefore for instance p⌈ d2 ⌉ errors
at the Z3Z4 stabilizer and p⌈ d2 ⌉ errors at the Z7Z0 stabilizer are required to generate a
problematic cat state after d cycles of Z Z stabilizers, suppressing the improper cat state
generation probability to O(pd). Hence, to suppress the error probability to O(p⌈ d2 ⌉),
circular fashion cat state generation requires only ⌈ d

2 ⌉ cycles of Z Z stabilizers.
Figure 4.7 depicts the placement of two sets of ancilla qubits, each of which is

prepared in a cat state for the X superstabilizer and for the Z superstabilizer. The dashed
lines describe the cat state qubits; red (blue) dots are qubits composing the cat state for
the Z (X) superstabilizer and gray dots are ancilla qubits to create and confirm the cat
state (the ancillas’ ancilla). The qubits under both dashed lines are used for the Z and
X ancilla qubits alternately. Therefore we need d

2 × 2 = d cycles to measure both the Z
superstabilizer and the X superstabilizer. The “thickness” of the deformation-based qubit
in Figure 4.7 is 2 to allow us to have the loop cat state. Greater thickness requires fewer
cycles of repeating Z Z stabilizer to confirm the cat state. We assume that the thickness
is 2 through the rest of this dissertation to show the basic idea of our architecture.
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The depth of the circuit to initialize a cat state is five. A cycle of the following
Z Z measurements for the proof requires four steps. The maximum number of CNOTs
to propagate error syndromes from data qubits to an ancilla qubit is 2, as shown in
Figure 4.7, at the corners of the superstabilizers. The total number of steps to measure
a superstabilizer is the sum of 5 + 4(d − 1) = 4d + 1 steps for cat state creation and the
proof, 1 step for a Hadamard gate for Z superstabilizer, 2 steps for syndrome propagation,
1 step for a Hadamard gate for X superstabilizer, 1 step for measurements, where d is
the code distance. Therefore the number of steps to measure a superstabilizer is 4d + 5.

However, in Figure 4.7, two data qubits neighboring a corner of a loop cat state
execute CNOT gates with the corner qubit so that an error on the corner qubit may
propagate to the two data qubits, which may reduce the error suppression ability of the
code. By judicious use of the unused qubits, we can recover the code distance lost, as
shown in Figure 4.8. In Figure 4.7, for simplicity we show thickness t = 2 employing a
cat state forming a complete loop, in which each corner cat state qubit stabilizes two data
qubits, resulting in reducing the effective code distance by 2. Figure 4.8 shows that, by
utilizing unused physical qubits inside a superstabilizer, we can add more qubits to the
cat state and can allow every cat state qubit to stabilize a data qubit. This improvement
can be applied with code distance 8 or higher. This process is the same as the previous
one, except that only one step is required for propagation. The first SWAP gates overlap
with the measurements, then we add 1 step for the second SWAP gates, 1 steps for
syndrome propagation of ranged pairs, 1 step for a Hadamard gate for X superstabilizer,
1 step for measurements. to replace a corner cat state qubit with one made inside the
superstabilizer, followed by error syndrome propagation and measurement. In total,
4d + 9 steps are required.

4.7 Errors

Though it might be thought that the deep circuit of the superstabilizer measurement
results in a higher logical error rate than another surface code in which any stabilizer
requires 8 steps, we argue that the deformation-based surface code will exhibit a similar
logical error rate with the conventional surface code. Figure 4.9 shows an example of
two deformation-based qubits. Obviously, any single logical operator is protected by
code distance 5, as shown in Figure 4.2. Any single operator is protected by normal
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stabilizers at every 8 physical steps. Therefore conventional error analysis for surface
code can be applied.

The pair of blue lines in Figure 4.9 indicates the product of the two logical qubits’
logical X operators. In order for a logical error to arise undetected, both error chains
must occur. The short fragment of the operator product between (b) and (c) may occur
easily and will be detected only by superstabilizer measurements, which are completed
at every 4d + 5 physical steps. The long fragment of the operator product between
(a) and (d) should occur only rarely, because the long fragment is protected by normal
stabilizers and has a longer length than the code distance. Therefore the probability that
this product operator happens to be executed by errors is strongly suppressed, though (b)
and (c) are close and 4d + 5 physical steps are required to measure superstabilizers.

Figure 4.10 shows a problematic placement of deformation-based qubits. The code
distance of each deformation-based qubit is 10. However, the product of the four logical
X operators of those deformation-based qubits results in the combination of the four
blue lines, each of which exists between two neighboring Z superstabilizers, consisting
of only four physical qubits, reducing our minimum error chain to 4. Deformation-based
qubits must be placed so that their superstabilizers do not form a loop.

In the next section, we present dense packing that meets these constraints, then
continue the discussion of errors.

4.8 Summary

This Chapter gives the mechanism of the new deformation-based code. By utilizing the
combination of triangular stabilizers and superstabilizers, we can design the shapes of
shortest logical operators on the 2-D lattice.

In this Chapter I give the concept of the new deformation-based code and the denser
packing. I also give how to transform and move the new code in the surface code lattice.
State injection by conversion from defect-based code and CNOT gate by lattice surgery
are also described hence a universal gate set is fulfilled. Concrete and practical method
to measure large superstabilizers is demonstrated too.

In Section 7.2, I analyze the resource requirements of the new code and show the
advantages than other surface codes.
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Figure 4.3: Transformation examples of deformation-based qubits. (a) ”Bar form”
deformation-based qubit, which has code distance 5. The Z (X) logical operators exists
between halves of the X (Z) superstabilizer separated by the Z (X) superstabilizer. (b)
A deformation-based qubit of code distance 5, that has “skew fin”. The Z (X) logical
operators exists between halves of the X (Z) superstabilizer separated by the Z (X)
superstabilizer.
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Figure 4.4: Surface code fragment to inject an arbitrary deformation-based
qubit. The lattice has only normal stabilizers at first. The shown superstabilizers are
introduced in several steps, as described in Section 4.4.
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Figure 4.5: An example of lattice-surgery of deformation-based qubits. Three
deformation-based qubits to demonstrate CNOT gate between the control qubit and
the target qubit by lattice-surgery like operations in Section 4.5. The intermediate qubit
is initialized in |+⟩. The code distance for those logical qubits is still 3 during lattice
surgery.
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Figure 4.6: Non-fault-tolerant circuit to make a n-size cat state in 5 steps.
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thickness

Figure 4.7: Implementation of two cat states for the two superstabilizers of a
deformation-based qubit. The red dots are ancilla qubits prepared in a cat state for
the Z superstabilizer. The red dashed loop describes the pairs for Z Z stabilizers to create
and confirm the cat state. The Z Z stabilizer on each pair of neighboring red dots in
this red dashed loop is executed. The gray qubits under the red dashed circle are qubits
with odd indices in Figure 4.6, used to measure Z Z stabilizers. So as the blue dots
and the blue dashed circle for the X superstabilizer. The dots under the crosses of the
dashed circles are used for both cat state creation alternately. The “thickness” of this
deformation-based qubit is 2. The CNOT gates of the Z superstabilizer are shown. Each
ancilla qubit on the corner of the loop handles two data qubits and those along the sides
handle one.



Chapter 4. DEFORMATION-BASED SURFACE CODE 98

thickness

Figure 4.8: Z superstabilizer in which a cat state qubit stabilizes a data qubit. Qubits
on the thick dashed lines are newly added to the cat state qubits. It does not matter that
cat state qubit on the cross of a thick dashed line and a thin dashed line is stabilized
by three stabilizers for the proof of the correctness of the cat state since one cycle of
stabilization for the proof takes four steps. Non-neighbor CNOT gates are executed after
SWAP gates to neighbor the control and the target qubits.
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Figure 4.9: Errors on deformation-based qubits due to the long execution time to
measure superstabilizers. Either (a) or (b) is a half of a Z superstabilizer. A physical
X error chain connecting those halves results in a logical X error for this deformation-
based qubit. So are (c) and (d). The set of blue lines describes the product of logical X
operators of the two deformation-based qubits.
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Figure 4.10: Problematic placement of deformation-based qubits. Each deformation-
based qubit has code distance 10. The shortest combined logical X operator for those
four logical qubits is only 4, the combination of the shown blue lines.



Chapter 5

Scalable Bell Pair delivery with code

interoperability

This Chapter shows the scheme designed to create heterogeneously encoded Bell pairs.
This scheme is utilized at interconnections between components in the proposed quan-
tum computer architecture. As discussed in Chapter 6, quantum CPUs, memories and
other components have different requirements depending on their roles. Hence the most
suitable quantum error correcting code for each component must differ since quan-
tum error correcting codes have different characteristics, advantages and disadvantages.
Heterogeneously encoded Bell pairs are used to establish interoperability.

The scalability of interconnection will hit the performance of a quantum computer.
If communication between a set of components blocks communication between another
set of components, operations in the latter components have to stall. Hence the scalable
method to create heterogeneously encoded Bell pairs between arbitrary two components
is required.

5.1 Overview of the heterogeneously encoded Bell pairs

The optical crossbar switch demonstrated by Kim et al. can be a core module for switch-
ing internal connections of a quantum computer [1, 91, 114]. Such an architecture for
physical systems which have direct interaction with optics or which have conversion via
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several hops, such as optical photon - ferromagnet magnon - microwave photon - super-
conducting qubit [75, 129, 160, 161]. In Kim’s architecture, many logical qubit devices
are connected to a crossbar switch and the crossbar switch switches interconnections
among those logical qubits for multiple-qubit gates. This architecture is scalable since
connections do not block each other and since we can enlarge the crossbar and can install
new chips and new network interface cards.

A concern is that there are components of different error correcting codes. The main
quantum computation chips, the complementary computation chips and the network links
hence the network interface cards may employ different codes. To bridge components of
different codes, either converting a logical qubit from one code to another, or building
entanglement between two logical qubits in separate codes is required. Direct code
conversion transforms an encoded state |ψ⟩L into an encoded state |ψ⟩L ′ where L and L′

indicate two distinct codes. Since this change operates on valuable data, the key point
is to find an appropriate fault-tolerant sequence that will convert the stabilizers from
one code to the other [4, 73, 157]. Entanglement spanning two separate codes allows
us to perform code teleportation. We employ a heterogeneously encoded Bell pair, in
which each half of the pair is encoded in a separate QEC code. Therefore, the key point
is the method for preparing such a state. The concern of this architecture is now the
fault-tolerance of the heterogeneously encoded Bell pairs.

We give the detailed analysis of the generalized approach to create heterogeneously
encoded Bell pairs for interoperability of quantum components of different error cor-
recting codes. We evaluate this approach between the Steane [[7,1,3]] code, a distance
three surface code, and unencoded (raw) physical qubits. We chose those two codes
because they have simple structure, are well-investigated and will clearly demonstrate
the principle of interconnection.

We have studied three possible schemes to increase the fidelity of the heteroge-
neously encoded Bell pairs: purification before encoding, purification after encoding
and purification after encoding with strict post-selection. Purification before encoding
does entanglement purification at the level of physical Bell pairs. Purification after
encoding does entanglement purification at the level of encoded Bell pairs. Purification
after encoding with strict post-selection also does entanglement purification at the level
of encoded Bell pairs. The difference from the previous scheme is that encoded Bell
pairs in which any eigenvalue (error syndrome) of -1 is measured in the purification
stage are discarded and the protocols restarted. (Because stabilizers are only measured
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during logical purification, the fourth combination of physical purification with strict
post-selection does not exist.) We determine the error probability and the resource effi-
ciency of these schemes by Monte Carlo simulation with the Pauli error model of circuit
level noise [104].

5.2 Heterogeneously encoded Bell pairs

There are two methods for building heterogeneously encoded Bell pairs for code tele-
portation. The first is to inject each qubit of a physical Bell pair to a different code [39].
The second is to prepare a common cat state for two codes to check the ZZ parity of two
logical qubits [110, 130, 165]. It has been shown that code teleportation utilizing a cat
state is better than direct code conversion because the necessary stabilizer checking for
the latter approach is too expensive [35]. Direct code conversion and code teleportation
utilizing a cat state are specific for a chosen code pair as the specific sequence of fault-
tolerant operations has to match the two codes chosen. In contrast, code teleportation
by injecting a physical Bell pair can be used for any two codes, and provided encoding
circuits are available for the two codes in question, the protocol can be generalized to
arbitrary codes.

Putting things together, heterogeneous Bell pairs of long distance can be created by
entanglement swapping (physical or logical) or a method appropriate to each network,
allowing an arbitrary quantum state encoded in some code to be moved onto another
code by teleportation [65, 82]. In a single computer, code conversion has been proposed
for memory hierarchies and for cost-effective fault tolerant quantum computation [4, 36,
39, 85, 131, 165].

Figure 5.1 shows the basic procedure for creating a heterogeneously encoded logical
Bell pair. Each dot denotes a physical qubit and thin blue lines connecting those dots
demark the set of physical qubits comprising a logical qubit. Each qubit of a Bell pair
is processed separately and encoded onto its respective code through non-fault-tolerant
methods to create arbitrary encoded states.

Figure 5.2 shows the circuit to encode an arbitrary quantum state in the Steane[[7,1,3]]
code [153, 155]. Figure 5.3 shows the circuit to encode an arbitrary quantum state in the
surface code [44].

The KQ of a circuit is the number of qubits times the circuit depth, giving an estimate
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 ① prepare
a physical Bell pair

②Encode to 

surface code 

②Encode to

Steane[[7,1,3]] 

Figure 5.1: Procedure for encoding a Bell pair heterogeneously. A qubit of a Bell pair
is encoded onto Steane[[7,1,3]] on the left side of the figure, adding 6 ancilla qubits..
The other qubit of the Bell pair is encoded onto the surface code of distance 3, adding
24 ancilla qubits. on the right side of the figure. Eventually, a heterogeneously encoded
logical Bell pair is achieved.

of the number of opportunities for errors to occur [153]. Note that those circuits are
not required to be fault-tolerant because the state being purified is generic, rather than
inreplaceable data. If the fidelity of the encoded Bell pair is not good enough (e.g. as
determined operationally using quantum state tomography), entanglement purification
is performed [19, 95].

5.3 Three Methods to Prepare a Heterogeneously En-

coded High Fidelity Bell Pair

Entanglement purification is performed to establish high fidelity entanglement [52,
54]. Entanglement purification can be viewed as a distributed procedure for testing a
proposition about a distributed state [169].

Figure 5.4 shows the circuit for the basic form of entanglement purification where
|ϕ⟩ is a noisy Bell pair. The input is two low fidelity Bell pairs and on success the
output is a Bell pair of higher fidelity. One round of purification suppresses one type of
error, X or Z. If the initial Bell pairs are Werner states, or approximately Werner states,
then to suppress both types, two rounds of purification are required. The first round
makes the resulting state into a binary state with only one significant error term but not a
significantly improved fidelity. The second round then strongly suppresses errors if the
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Figure 5.2: Circuit to encode an arbitrary state to the Steane [[7,1,3]] code [26]. |ψ⟩
is the state to be encoded. This circuit is not fault-tolerant. The KQ of this circuit is 42
because some gates can be performed simultaneously.

gate error rate is small. Thus, the overall fidelity tends to improve in a stair step fashion.
After two rounds of purification, the distilled fidelity will be, in the absence of local gate
error,

F′′ ∼ F2

F2 + (1 − F)2
(5.1)

where the original state is the Werner state

ρ = F |Φ+⟩⟨Φ+ | + 1 − F
3

(|Φ−⟩⟨Φ− | + |Ψ+⟩⟨Ψ+ | + |Ψ−⟩⟨Ψ− |) (5.2)

and F is the fidelity F = ⟨ϕ|ρ|ϕ⟩ if |ϕ⟩ is the desired state. The probability of success
of a round of purification is

p = F2 + 2F
1 − F

3
+ 5

(
1 − F

3

)2
. (5.3)

Table B.1 in the appendix provides the numerical data for this to compare with our
protocols. Our simulation assumptions are detailed in section 7.3.

5.3.1 Purification before encoding

Figure 5.5 shows the overview of the scheme to make heterogeneously encoded Bell
pairs that are purified before encoding. To create an encoded Bell pair of high fidelity,
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Figure 5.3: Circuit to encode an arbitrary state |ψ⟩ to a distance three surface code
[44]. This circuit is not fault-tolerant. The KQ of this circuit is 250 if some gates are
performed simultaneously.

entanglement purification is repeated the desired number of times. Next, each qubit of
the purified Bell pair is encoded to its respective error correcting code. To estimate the
rate of logical error after encoding, we perform a perfect syndrome extraction of the
system to remove any residual correctable errors. After the whole procedure finishes,
we check whether logical errors exist. Table B.2 in the appendix presents the details of
the simulated error probability and resource efficiency of purification before encoding.

5.3.2 Purification after encoding

Figure 5.6 shows the overview of the scheme to make heterogeneously encoded Bell
pairs that are purified after encoding. In this scheme, to create an encoded Bell pair of
high fidelity, heterogeneously encoded Bell pairs are generated first by encoding each
qubit of a raw physical Bell pair to our chosen heterogeneous error correcting codes.
Next, those encoded Bell pairs are purified at the logical level the desired number of
times, via transversal CNOTs and logical measurements. Logical purification is also
achieved by the circuit shown in Figure 5.4, operating on logical rather than physical
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Figure 5.4: Circuit for entanglement purification [53]. The two measured values are
compared. If they disagree, the output qubits are discarded. If they agree, the output
qubits are treated as a new Bell pair. At this point, the X error rate of the output Bell
pair is suppressed from the input Bell pairs. The Hadamard gates exchange the X and
Z axes, so that the following round of purification suppresses the Z error rate. As the
result, entanglement purification consumes two Bell pairs and generates a Bell pair of
higher fidelity stochastically.

qubits. Table B.3 presents the details of the simulated error probability and resource
efficiency of purification after encoding.

5.3.3 Purification after encoding with strict post-selection

Figure 5.7 shows the overview of the scheme to make encoded Bell pairs, purified
after encoding with strict post-selection protocols to detect errors. This scheme uses a
procedure similar to purification after encoding. In this scheme, to create an encoded
Bell pair of high fidelity, heterogeneously encoded Bell pairs are generated first by
encoding each qubit of a raw physical Bell pair to our chosen heterogeneous error
correcting codes. We then run purification protocols at the logical level, similarly to the
previous protocol. However, when we perform a logical measurement as part of this
protocol, we also calculate (classically) the eigenvalues of all code stabilizers. If any
of these eigenvalues are found to be negative, we treat the operation as a failure (in a
similar manner to odd parity logical measurements for the purification) and the output
Bell pair of the purification is discarded. This simultaneously performs purification and
error correction using the properties of the codes. Table B.4 presents the details of
the numerically calculated error probability and resource efficiency of purification after
encoding with strict post-selection.
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raw physical Bell pairs
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②purify

Figure 5.5: Overview of the scheme which purifies physical Bell pairs to generate
an encoded Bell pair of high fidelity. First, entanglement purification is conducted
between physical Bell pairs an arbitrary number of times. Second, each qubit of the
purified physical Bell pair is encoded to heterogeneous error correcting code.

5.4 Summary

In this Chapter I proposed three schemes to create heterogeneously encoded Bell pairs
between arbitrary two components with scalability. The architecture employs a method
that physical Bell pairs are distributed by optical connections and each half of a Bell pair
is encoded into heterogeneous quantum error correcting code at distributed components.
This method suffers from state errors caused at creation of physical Bell pairs and at the
non-fault-tolerant encoding.

To manage such state errors, I propose three schemes to make the method fault-
tolerant, Purification before encoding, Purification after encoding and Purification after
encoding with strict post-selection.

In Section 7.3, I give the numerical analysis of those error management schemes.
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Figure 5.6: Overview of the scheme which purifies encoded Bell pairs to achieve
an encoded Bell pair of high fidelity. In this method, first, raw physical Bell pairs are
encoded into our heterogeneous error correcting code, Secondly, those heterogeneously
encoded Bell pairs are purified directly at the logical level.



Chapter 5. SCALABLE BELL PAIR DELIVERY WITH CODE
INTEROPERABILITY 110
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raw physical 

Bell pairs

③purify with post-selection

②Encode to 

     EC code

②Encode to 

     EC  code

②Encode to 

     EC code

②Encode to 

     EC code 

Classically checked 

    stabilizer values:

if [+1, +1, +1, ... +1, +1] 

                               -> Keep

else (such as [+1,  -1, ... +1] 

    and so on) 

                               -> Discard

Figure 5.7: Overview of the scheme which purifies encoded Bell pairs to achieve
an encoded Bell pair of high fidelity with strict post-selection. First, raw physical
Bell pairs are encoded to heterogeneous error correcting code, same as purification after
encoding. Secondly, at measurement in purification, eigenvalues of each stabilizer are
checked classically. If any eigenvalue of -1 is measured, the output Bell pair is discarded
(in a similar manner to if the overlying purification protocol failed).



Chapter 6

Scalable distributed QC architecture

utilizing benefits of various codes

This chapter proposes the quantum computer architecture for “distributed quantum com-
puting utilizing multiple codes on imperfect hardware”. The most basic requirements to
achieve quantum computation in theory are

• a quantum universal gate set, and

• system size large enough to run quantum algorithms of practical size.

However, physical qubits have error rates higher than we can tolerate, hence

• fault-tolerance

is also required. Quantum error correcting codes which achieve the fault-tolerance
require excessive resource consumption and have limited ability to achieve a quantum
universal gate set. To realize a quantum universal gate set within the limited abilities,
more resources are required. See Chap. 1 and 2 for details of those three elements.

This chapter organizes those problems and requirements for the quantum computer
architecture and proposes a quantum computer architecture, starting from the fault-
tolerance, then the universal gate set and lastly addressing adequate system size.
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6.1 Requirements and means to achieve quantum com-

putation

This section discusses why a distributed quantum computer based on the surface code is
preferred, and the requirements and means to achieve it.

6.1.1 For fault tolerance

Qubits everywhere always suffer from the quantum imperfections discussed in Sec-
tion 2.2. The best solution to the quantum imperfections would be to improve the
quantum engineering technology. The required error rate to successfully complete a
large scale quantum computation properly is 10−15 ∼ 10−16, however, the physical state
error rate today is around 10−2 ∼ 10−3 [31]. Therefore, this solution is impractically far
away.

The second solution to the quantum imperfections is fault-tolerant quantum compu-
tation executed everywhere we use quantum information in the computer. From the point
of view of physical feasibility, the surface code is the most promising quantum error
correcting code. As stated in Subsec. 2.2.3, the surface code has the highest threshold
of physical state error rate in quantum error correcting codes found so far. It requires
interactions only between nearest neighbor qubits on a 2-D lattice and is robust against
dynamic loss. The surface code is robust against static loss, as shown in Chap. 3.

Therefore the proposed architecture employs the surface code as the fundamental
quantum error correcting code.

6.1.2 For universal quantum computation

A universal quantum computer requires a universal set of quantum gates. As noted in
Subsec. 2.1.5, by Solovay-Kitaev decomposition, the set of the CNOT gate, H gate and
T gate is a universal set. No quantum error correcting code which is practically feasible
in 2-D fashion and which produces a universal gate set has been discovered [15].

As shown in Subsec. 2.2.3, since the surface code does not support the T gate
in a transversal, fault-tolerant fashion, the surface code requires an ancilla-supported T
gate utilizing an |A⟩ state. The ancilla-supported T gate problematically requires the
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application of an S gate as a correction and the surface code also does not support S gate
in a transversal, fault-tolerant manner, hence the surface code needs the ancilla-supported
S gate utilizing a |Y⟩ state, too.

There are several ways to generate the ancilla states |A⟩ and |Y⟩ in the surface
code. The first way is state injection from physical qubits followed by the magic state
distillation [19, 21]. Though the magic state distillation guarantees adequate fidelity of
injected |A⟩ and |Y⟩, its process is stochastic and its cost is high both in space and in
time. To achieve a stable supply of the ancilla states generated probabilistically and to
distribute the required number of ancilla states which are generated in groups in a magic
state distillation [21] to the required locations, division of components used to generate
ancilla states from components used to execute quantum gates would be preferred.

The second way is to get support from other error correcting codes by code telepor-
tation (conversion) [25, 36]. The Reed-Muller code can create |A⟩ transversally. The
Steane [[7,1,3]] code can create |Y⟩ transversally. As stated in [36], this approach is
advantageous only when the concatenation level of supporting codes is low and when the
cost of magic state injection and distillation is relatively expensive. Such complementary
code may prefer a different physical architecture, such as physical qubit layout, from the
surface code, hence separated components for the complementary code from those for
the surface code is preferred.

Either way may prefer separated components to generate ancilla states from those
for the surface code. Therefore the proposed architecture employs separate, dedicated
components to generate ancilla states, leaving the selection flexible.

6.1.3 For system size large enough

As mentioned in Chap. 1, Shor’s algorithm to factor a number described with N bits
requires at least 2N + 2 high-quality qubits. Additionally, as noted in Subsec. 2.2.3
and 6.1.1, the surface code requires excessive resource overhead. Installing all quantum
computational resource on a single quantum chip would not be feasible, as noted in
Chap. 1. Hence, to execute quantum algorithms to solve practically meaningful large
problems, we need to connect components of small performance to build up a large scale
quantum computer.

Connecting many components leads to the idea of division of roles among com-
ponents [39, 130]. The roles in computation are broadly divided into logic operations
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and storage. By dividing roles, we can combine the two benefits, executing quantum
operations in fast fashion in quantum CPUs and storing quantum information in space-
saving fashion in quantum memories. Therefore, different choices may be made in
different components, such as choice of physical technologies [31] and error correcting
codes [25, 39]. Unlike the CPUs of the conventional computer of today, quantum logic
gates are not relatively high-level instructions [111, 165, 180]. Quantum CPUs with the
surface code are more like executing logic gates directly on memory than integration of
registers, pipelined devices, ALUs and so on [45, 87, 172]. Hence the first difference of
quantum CPUs and quantum memories is the choice of quantum error correcting code.
The physical implementation of the components will vary depending on the quantum
error correcting code; this dissertation leaves physical technologies employed by each
component flexible. Different quantum error correcting codes have different duration
for quantum logic gates and different resource consumption. Therefore the proposed
architecture employs the defect-based surface code in quantum CPUs and employs the
deformation-based surface code in quantum memories.

Connecting components requires internal quantum connections in a quantum com-
puter. Such connections must support heterogeneous encoding and must be fault-tolerant.
Oskin et al. and Copsey et al. proposed architectures utilizing code teleportation based
on heterogeneously encoded Bell pairs [39, 130]. Their means are not robust against
errors during encoding. Monroe et al. and Ahsan et al. proposed an internal connection
backplane utilizing optical crossbar switches for scalability of parallelism of connec-
tions [1, 114]. Extending their means to involve purification, discussed in Chap. 5, this
system realizes a scalably fault-tolerant interconnection supporting heterogeneous en-
coding. Components need to support quantum teleportation using the Bell pairs shared
by the backplane.

These connections will resemble quantum networks. This architecture can natu-
rally be extended to installing quantum network interface cards hence making possible
distributed quantum computation for more scalability [27, 29, 41].
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6.2 Requirements of building blocks and internal con-

nections of the proposed architecture

In my design, the roles for quantum computation are divided to three types of building
blocks and a backplane, the internal connections of building blocks. The three types
of building blocks are quantum CPUs which execute quantum algorithms, quantum
memories which maintain quantum data that is not operated at that time, and magic state
generation areas which produce magic states for non-Clifford gates.

Table 6.1 summarizes the must-have requirements of building blocks of the quantum
computer architecture for “name will be added”. Other desirable but less critical features
are discussed in the following section.

The requirements for quantum CPUs can be summarized as processing quantum data
without any problems. Therefore, quantum CPUs must tolerate quantum imperfections;
they must support a universal gate set; and they must support transferring quantum data
to and from the internal connection point.

The requirements for quantum memories can be summarized as maintaining quan-
tum data without any problems. Therefore, quantum memories must tolerate quantum
imperfections; and they must support transferring quantum data to and from the internal
connection point.

The requirements for magic state generation area can be summarized as producing
high fidelity magic states for non-Clifford gates. Hence, magic state generation areas
must tolerate quantum imperfections; they must create magic states of high fidelity, such
as |A⟩ and |Y⟩; and they must support transferring quantum data to and from the internal
connection point.

The requirements for internal connections can be summarized as transfer quantum
data from one building block to another with adequate fidelity. Hence, internal connec-
tions must tolerate quantum imperfections; they must support routing of data transfer;
and they must bridge heterogeneous error correcting codes.
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6.2.1 Desired characteristics of building blocks and internal con-

nections

For the division of roles, building blocks and internal connections have different desirable
characteristics. Table 6.2 summarizes the desired characteristics of building blocks and
internal connections.

Quantum CPUs desire fast quantum gates to minimize computation time. When
employing fast gates, high consumption of spatial resources would be an acceptable
compromise as long as the quantum memories are spatially efficient so that the overall
system size is feasible.

Quantum memories desire spatially small resource requirement to minimize the
overall system size. As long as quantum CPUs have fast gates to process the quantum
computation rapidly, slow operations on quantum memories would be an acceptable
compromise; by analogy with classical computers, access time to memories that is
hundreds of times slower than registers in CPU would be acceptable [71].

For the magic state generation area, as noted in Subsec. 6.1.2, there are two candidates
for the design and the better design differs depending on the environment and on the
performance of base technologies. This area should employ the design which prepares
ancilla states more efficiently in terms of the product of space and time, when building
the quantum computer. I leave the design of this area flexible.

Internal connections hopefully have scalable parallelism of connections. With scal-
able parallelism of connections, stall of computation caused by queued data transfer
would be reduced.

6.3 The proposed quantum computer architecture

Figure 6.1 shows the proposed quantum bus architecture, extended from [1, 91]. Colored
lines are optical connections or internal photon path of the optical crossbar. The red
lines are inputs to the crossbar switch. The blue lines are outputs from the crossbar
switch. Each input source component has links with the crossbar and holds a solid qubit
to emit a photon. Two output lines lead to a Bell state analyzer (BSA), which executes
Bell measurement for entanglement swapping [77].

To achieve quantum communication between two components, each of the two
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components emit a photon to the crossbar switch so that we have each stationary qubit
entangled with a photon, leaving a solid qubit behind in the component. The crossbar
switch switches the connections to route the two photons to two links to an assigned
BSA. BSA executes Bell measurement on the two photons for entanglement swapping,
leaving the two stationary qubits in the two components entangled.

Each of the two solid qubits is then encoded to the error correcting code used in
the component. This homo- or hetero-encoded Bell pair is created as the resource for
quantum teleportation at the logical level.

The deformation-based surface code area and the defect-based surface code area
work as quantum memories and as CPUs, respectively. Their physical implementation
may be same. Both of them have physical qubits placed on a 2-D lattice, since the surface
code runs in both area. However, the encoding of logical qubits on the surface code
lattice differs, therefore the way of using the devices differs depending only on software.

6.3.1 Defect-based surface code area

This area employs the defect-based surface code [62]. the CNOT gate by braiding
requires 32d steps, for 8d steps for each of first half expansion, first half shrink, second
half expansion and second half shrink respectively.

6.3.2 Densely packed deformation-based surface code area

This area employs the deformation-based surface code proposed in Chapter 4. The
deformation-based surface code packs logical qubits denser than other surface codes.
Logical X and logical Z can be executed efficiently. However, logical CNOT gate by
lattice surgery requires 4d2 + 9d steps where d is the code distance while 24d steps
are required for the standard planar code. This fact would make the deformation-based
surface code area hundreds of times slower than the defect-based code area. On top of
this, the logical Hadamard gate of the deformation-based qubit is three times slower.
Hence this area should be a storage, or a memory, to keep logical qubits for a long time
in a spatially efficient fashion. A concern is whether the hundreds slower memory than
the CPU is usable or not. In my design, the memory access time is proportional to the
duration of CNOT gate because data transfers are implemented by quantum teleportation.
I would conclude that the much slower memory is acceptable from this fact in classical
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computers [71].
CNOT gate for the deformation-based surface code is expensive, hence teleportation

based on Z Z stabilizer is more preferred to send a logical qubit from this memory. Such
as, the first state is

(α |0q⟩ + β |1q⟩)(
1
√

2
|0b00b1⟩ + |1b01b1⟩)|0a⟩, (6.1)

where qubit q is the state we want to send and qubits b0 and b1 are a Bell pair and qubit
a is an ancilla qubit for the Z Z stabilizer. By applying CNOT(q, a) and CNOT(b0, a),
we get

1
√

2
(α |0q0b00b10a⟩ + β|1q1b01b10a⟩ + α |0q1b01b11a⟩ + β |1q0b00b11a⟩), (6.2)

by measuring Za and applying Xb0Xb1 if −1 eigenvalue is observed, then we get

α |0q0b00b1⟩ + β|1q1b01b1⟩, (6.3)

by measuring Xq and Xb0 and applying Zb1 for each measurement if −1 eigenvalue is
observed, then eventually we get

α |0b1⟩ + β|1b1⟩. (6.4)

6.3.3 Magic state generation area

This area may consist of quantum chips of several codes, such as the Steane [[7,1,3]]
code and the Reed-Muller 15 qubit code. This is because the Steane [[7,1,3]] code can
create an ancilla state for an S gate efficiently and the Reed-Muller 15 qubit code can
create an ancilla state for a T gate efficiently [85].

Another possible implementation is of the surface code, to create logical ancilla states
by magic state distillation [19, 63]. It is not yet sure which is better for this purpose the
defect-based code with braiding of the planar code with lattice surgery.

Created ancilla states are sent to the computation areas by quantum teleportation.
With any codes, the chip must have dedicated design for distillation.
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6.3.4 Network interface card

The network interface card has one or more attachments for optical fibers to connect
to other quantum nodes, after the classical network interface card. By utilizing this
component, the computation chips are enabled to cooperate with computation chips
installed in other machines.

External links have much larger loss/error rate than internal links because of the
environment and the longer fiber [81]. External links can achieve Bell pair creation at
a lower rate than internal links do, hence internal Bell pairs may go unused as we wait
for an external Bell pair. Figure 6.1 has only one network interface card and only one
external link from the card. If more throughput is required, we can employ a network
interface card which has two or more fiber attachments instead and use two or more
fibers for the link. The new fiber should be connected to the same repeater/router as the
first one, then the quantum links are aggregated after the classical link aggregation [79].

Another means to increase throughput is inserting another network interface card.
This means allows the quantum computer to be connected to two quantum re-
peaters/routers/computers. This may be useful for complex use of quantum network.
This work targets the bus architecture and more consideration about network interface
cards is an open problem.

6.4 Hardware and Software of building blocks

Both quantum CPUs and quantum memories employ the surface code, so their physical
implementation are the same; they have 2-D lattice of physical qubits in which nearest
neighbor interactions are implemented; and on the edges of the components, optical-
solid conversion is implemented for internal connections. Therefore the difference of
the two areas will be how the physical qubits are used by software; how logical qubits
are encoded; how logical gates are executed; and how logical qubits are transferred.

If magic state generation area employs the surface code with state injection and
magic state distillation, its hardware implementation will be same as the quantum CPUs
and quantum memories. Then, the software may be the same as the quantum CPUs. If
it employs the other, the hardware implementation will depend on the employed error
correcting code.

The hardware of internal connections are composed from optical fibers, the optical
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cross bar switch and BSAs. The number of optical fibers connected to a component
directly affects the performance of the bandwidth of the internal communication. One
BSA can support one internal connection at a time. Hence the parallelism of internal
connections is determined by the number of BSAs [1, 91].
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Table 6.1: Requirements of building blocks and internal connections of the quan-
tum computer architecture for “Distributed quantum computing utilizing multiple
codes on imperfect hardware”.

element requirements
Quantum CPUs tolerate quantum imperfections

support an universal gate set
support transferring quantum data

Quantum Memories tolerate quantum imperfections
support transferring quantum data

Magic State tolerate quantum imperfections
Generation create magic states of high fidelity, such as |A⟩ and |Y⟩

area support transferring quantum data
Internal connections tolerate quantum imperfections

support routing of data transfer
bridge heterogeneous error correcting codes

Table 6.2: Desired characteristics of building blocks and internal connections of the
quantum computer architecture for “Distributed quantum computing utilizing multiple
codes on imperfect hardware”.

element desired characteristics
Quantum CPUs fast gates

Quantum Memories space-saving design
Magic State space-saving design
Generation fast preparation of magic states

area
Internal connections scalable data transfer
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Figure 6.1: The proposed quantum bus architecture supporting the multiple code
model and networking for distributed computation. Colored lines are optical connec-
tions. The red lines are input to the crossbar switch. The blue lines are output from the
crossbar switch. The BSA stands for Bell state analyzer [77].



Chapter 7

Evaluation

7.1 Performance of the surface code on defective lattice

We assume a circuit-based error model, summarized by Landahl et al. [104]. This circuit-
based error model assumes that each gate acts ideally, followed by a noisy channel, and
that each measurement acts ideally, after a noisy channel. Errors may occur at every
gate in the circuit. Our error channel for a single-qubit gate has error probability p,
meaning that each error (X, Z or Y) occurs with probability p/3. In a similar fashion,
for two-qubit gates, our error model has probability p/15 for each two-qubit error (IX,
IZ, IY, XI, XX, XZ, XY, ZI, ZX, ZZ, ZY, YI, YX, YZ, YY). We assume that the set of
physical gates available includes CNOT, SWAP and Hadamard gates. We assume that
INIT and measurement in Z basis have X error probability p. All operations require one
time step.

Our circuit is asynchronous in the sense that stabilizers are measured at different fre-
quencies. Stabilizers whose circuits have shallower depth may be measured more times
than those whose circuits have deeper depth. To achieve proper syndrome matching, the
surface code requires that the lattice be covered by stabilizers. Otherwise, an unstabilized
area works as a defect-based qubit which may serve as an end of error chains, leading
to undetectable logical errors. Hence, after all stabilizers covering the lattice have been
measured at least once since the last execution of the matching algorithm, the matching
algorithm is re-executed. Typically, this timing is dependent on the deepest stabilizer
circuit. From the result of matching, we make a map of Pauli frames which describes

123
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where Pauli frame corrections should be applied for error correction. Because our circuit
is asynchronous and there might be SWAP gates, we must keep track of the location of
data qubits to combine the error information about data qubits and the map to check the
result of error correction.

We have conducted extensive simulations, beginning with a perfect lattice, then
extending to imperfect ones. First we show the numerical result of several basic test
cases: only a single faulty device exists, in the center of the lattice; only a single faulty
device exists, in the west of the lattice; and only a single faulty device exists, in the
northwest of the lattice for the distances 5, 7, 9 and 13. Our simulation holds d temporal
rounds of measured stabilizer values for error correction. Hence d measurements are
saved for the stabilizer with the deepest circuit and more measurements are saved for
normal stabilizers, because of the scheduling algorithm shown in Subsection 3.3. After
finishing an error correction cycle, the oldest round is discarded, a new round is created
by new measurements and error correction is re-executed. Next, we show the numerical
result for random generated lattices for different yields, 80%, 90% and 95%. We
generated 30 lattices for each pair of yield and code distance of 5, 7, 9, 13, 17 and 21.
Some defective lattices cannot encode a logical qubit for the code distance becomes 0
as a result of merging stabilizers, so that eventually we simulate 478 lattices (details
described in subsection 7.1.3) for each physical error rates of 0.1%, 0.2%, 0.3%, 0.4%,
0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1% and 2%. It is hard to collect enough logical errors in
Monte Carlo simulation as the logical error rate is exponentially suppressed, therefore we
choose 0.1% as the lowest physical error rate for our simulation. Therefore we simulated
5258 parameter combinations.

The computational resource devoted to circuit simulation, excluding chip generations
and circuit constructions, was more than 100,000 CPU days, executed on the StarBED
project testbed [112]. Each preparation of stabilizer circuits which solves the traveling
salesman problem required up to 1 CPU day. After construction of the nest, for example,
the simulation of d = 5 of single-faulty-northwest for p = 10−3 consisted of 370945
rounds of error correction to find 500 logical X errors in 1424.98 seconds. The simulation
of d = 13 of single-faulty-northwest for p = 10−3 consisted of 315550 rounds of error
correction in 5.8 days but found 0 logical X errors.

Peak memory sizes are estimated to be 30GB for 320 lattices, 63GB for 133 lattices
and more than 100GB for 25 lattices. The greatest memory consumption is during nest
building, shown in Figure B5, B6 and B7. To give accurate weights to the edges of
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the “nests”, Autotune virtually creates errors on every qubit at every physical step, and
traces their propagation. Roughly speaking, the size of the error structure is 136 bytes.
A lattice includes 1089 qubits for distance 17. Let us assume: 200 physical steps per
error correction cycle due to the asynchronous stabilizers; each error propagates to 10
physical qubits on average; each error remains for 100 physical steps on average. Then
memory consumption is 136 ∗ 1089 ∗ 200 ∗ 10 ∗ 100 = 29620800000 bytes, roughly
30 GB. Several factors affect this rough estimate. Faulty devices reduce the number of
qubits and other structures generated to create the nests, but the memory consumption
remains on the order of tens giga bytes.

Those peak memory sizes are big, however, they do not affect the quantum compu-
tation in practice. This is because the heavy operations that Autotune virtually creates
errors on every qubit at every physical step, and traces their propagation by the circuits
to give accurate weights to the edges of the nests can be executed preliminarily. To avoid
redundant execution of heavy creation of nests, all 11 physical gate error rates for a single
lattice are simulated in parallel on a single simulation node, allowing us to share a single
in-memory copy of the nest. We attempted to simulate distance 21, but failed because
we cannot accumulate enough logical errors to have valid data points, for one of several
reasons: good lattices have strong tolerance against errors; even bad lattices have strong
error tolerance at lower physical error rate; at higher physical error rates, simulating an
error correction cycle takes too much computation time because many physical errors
occur in our extended asynchronous error correction cycle, taxing the scalability of the
matching algorithm; or because the simulation requires more than 128GB memory, the
maximum available in our system.

7.1.1 perfect lattice

Figure 7.1 depicts the results of simulation of perfect lattices, used as our baseline for
comparison. Each curve represents a set of simulations for a lattice of a particular code
distance, for varying physical gate error rates. Points below the break-even line are
conditions in which the logical error rate in the logical state is below that of a bare,
unencoded physical qubit. The break-even line indicates whether the error correcting
code bears fruit at the physical error rate in the sense of the error probability, with
lengthening the execution time of the quantum computation since a logical gate consists
of many physical gates. Distance 9 achieves break-even at p = 0.3%. The crossing
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point of the curves, each of which describes a code distance, is called the threshold, the
physical error rate below which the larger code distance has the lower logical error rate.
Above the threshold, the error correction process introduces more errors than it corrects,
and the higher code distance has the higher logical error rate.

The threshold indicated by this simulation is around 0.58%, similar to the 0.60%
reported in [63]. This related work employs the assumptions most similar to our perfect
lattice simulation, other than the asynchronous scheduling of stabilizers. Our error
correction circuits are designed to omit identity gates to shrink the asynchronous circuit
depth, whereas circuits of related work achieve perfect synchronization and parallelism
through careful insertion of identity gates. For example, identity gates on the qubit d17
in Fig 2.6 (b) between the initialization and the CNOT gates or between the CNOT gates
and the measurement are omitted in our simulation. We infer that our baseline simulation
follows the related work, our baseline simulation is valid and the effect of asynchronicity
to the perfect lattice is small.

7.1.2 lattice with a single faulty device

Figure 7.2(a), (b) and (c) depict the results of simulations to investigate the effect of a
single faulty device in the center, on the west edge and on the northwest corner of the
lattice, respectively. The plots show that our approach works properly because the larger
code distance has the lower logical error rate at lower physical error rates.

Each single-fault residual error rate is worse than that of the corresponding perfect
lattice. The slope of each code distance of single-fault chips is lower than that of the
corresponding perfect lattice. The gap grows slightly as the physical error rate is reduced,
visible as the less-steep curve for the defective lattice.

There are differences depending on the single-fault location. Comparing the points
d = 9 of the perfect lattice with those of single-faulty-center, single-faulty-west and
single-faulty-northwest at p = 0.1%, faulty lattices are 10.9×, 7.60× and 7.20× worse
than the perfect lattice, respectively. Single-faulty-northwest has a lower residual error
rate than the others. This may be because the big stabilizer which causes asynchronous
scheduling of stabilizers is on the periphery, so that the number of stabilizers which are
close to the big stabilizer and hence which have stronger scheduling restrictions than
more remote stabilizers is smaller than other single-faulty chips. Across the range of our
simulations, the negative impact is 6× ∼ 11× depending on location, distance and error
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Figure 7.1: Results of baseline simulations of perfect lattices of code distance 5, 7,
9, 13 and 17. The average number of steps per error correction cycle for every code
distance is 8.1, 8.0, 8.0, 8.0 and 8.0 respectively. The black line is the break-even
line. The threshold seems to be around 0.58%. Each data point has 50 ∼ 1500 logical
errors. The irregularity of the point at p = 0.6% of distance 9 may come from statistical
variance.

rate.
From the point of view of absolute logical error rate, the penalty for having a defect

is greater at lower physical error rates. An “effective” code distance is the code distance
at the same physical error rate of the perfect lattice which has the closest logical error
rate to the defective lattices. For single-faulty-center, at p = 0.3%, faulty d = 9 is 1.5×
worse than perfect d = 5, hence the effective code distance of faulty d = 9 at p = 0.3%
is ≈ 5. The effective code distance is useful when considering the resource overhead of
modifications. In the example above, to achieve a logical error rate equivalent to that of
d = 5 on the perfect lattice at p = 0.3%, we at least need d = 9 for the defective lattice.
This indicates that 3.5× the number of physical qubits are required.

From the point of view of the effective code distance, the penalty for having a defect
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is smaller at lower physical error rates. At p = 0.3%, faulty d = 9 is 1.5× worse than
perfect d = 5, and at p = 0.1%, faulty d = 9 is 14.9× better than perfect d = 5 while
faulty d = 7 is 1.4× worse than perfect d = 5. Hence, to exceed the effective code
distance 5, p = 0.3% requires us to use d = 11 while p = 0.1% only requires us to use
d = 9. The trend of the penalty of the effective code distance and that of the absolute
logical error rate differ. This difference is caused by the difference of slopes of each
code distance of each lattice. We have to be mindful of those trends when designing a
quantum computer to achieve an adequate logical error rate.

Because the proportional impact of a single fault should lessen as the code distance
increases, the crossing point of the curves is not a good measure of performance here.
Figure 7.2 shows that the crossing points of two distances would differ. The crossing
point of distance 9 and 13 appears to be around 0.6% which is the threshold for the
perfect lattice as shown in Figure 7.1, whereas the crossing point of distance 5 and 7 is
around 0.8%.

Table 7.1 shows the data of the single-faulty lattice simulations. The reduced code
distance is the minimum distance between corresponding boundaries shortened by merg-
ing stabilizers. The naive hypothesis would be that reduced code distance is a good metric
to predict the logical error rate of the lattice, since the number of physical errors required
to cause a logical error is a minimum on the shortest logical operator, which is the mini-
mum distance between corresponding boundaries. However, the effect is more complex.
We will explore this further in Section 7.1.3 and Chapter 8.
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(a)

(b)

(c)

Figure 7.2: Results of simulations of defective lattices which have a single faulty
device (a) in the center of the lattice, (b) in the west of the lattice and (c) in the northwest
of the lattice respectively. Dashed lines are of the perfect lattices for reference. The code
distances are 5, 7, 9 and 13. The average numbers of steps per error correction cycle are
all 32.5 for every code distance of every fault location.
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7.1.3 Random multiple faulty devices

We generated 30 randomly defective lattices for each combination of three yields, 80%,
90% and 95% and of 5 code distances, 5, 7, 9, 13, 17, so that we generated 450 lattices.
Table 7.2 shows the number of defective lattices generated and simulated. On some
defective lattices, by chance the faulty qubit placement results in a lattice for which
we are unable to build an effective circuit for encoding a logical qubit, so they are not
simulated. Our software successfully built circuits for almost all lattices at y = 0.90 and
above, but only about two-thirds at y = 0.80.

This unencodable condition occurs when a defective data qubit chain stretches from
a boundary of the lattice to the other boundary of the same type (south and north for
Z stabilizer boundary, or west and east for X stabilizer boundary). For instance, if a
faulty qubit is on a boundary, say, the qubit1 which is stabilized by Z1 of the stabilizer
Z1Z2Z3Z4 and the qubit is not stabilized by another Z stabilizer, then Z1Z2Z3Z4 cannot
be merged with another stabilizer to work around Z1. Hence we remove Z1Z2Z3Z4

with qubit1 and eventually qubit2, qubit3 and qubit4 become a part of the boundary
instead. In general, this adaptation reduces the code distance (shown in Tables 7.4 and
7.5). Therefore, a lattice of lower yield and of lower code distance may be unencodable
with higher probability. Though only 30 instances for each condition are too few to
get explicit statistics, table 7.2 shows this trend at yields of 90% and 95%. Y = 80%
might be saturated in encodable rates because the code distances do not show meaningful
differences.

Figure 7.3 shows the geometric mean of sets of encodable lattices, plotting physical
error rates versus logical error rates. Appendix A.2 shows the scatter plots of raw data.

Table 7.2: The number of defective lattices generated and simulated.
yield 0.80 0.90 0.95

code distance 5 7 9 13 17 5 7 9 13 17 5 7 9 13 17
#encodable 20 24 22 19 19 29 29 30 30 30 28 30 30 30 30

#unencodable 10 6 8 11 11 1 1 0 0 0 2 0 0 0 0
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Table 7.3: The average number of faulty qubits in all generated lattices, in 50%-
culled lattices and in 90%-culled lattices, respectively. The numbers of qubits of
perfect lattice of distance 5, 7, 9, 13 and 17 are 81, 169, 289, 625 and 1089, respectively.

y 0.80 0.90 0.95
d 5 7 9 13 17 5 7 9 13 17 5 7 9 13 17
all 13.9 29.7 54.0 122.6 215.6 8.4 16.2 29.6 61.0 107.3 3.8 8.0 14.7 31.3 53.7

50% 13.2 28.9 55.1 122.6 214.5 7.3 14.2 26.7 56.3 101.7 2.9 7.1 11.9 28.5 51.3
90% 12.3 29.0 55.0 121.3 221.7 5.7 9.3 23.7 48.0 96.0 1.7 4.7 9.0 25.3 51.3
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The left column in Figure 7.3 show the graphs of y = 95%, describing the geometric
mean of all encodable lattices, of the better 50%, and of the best 10% of generated
lattices, from the top, respectively. Note that those cull percentages are based on the
original set of 30 generated lattices, not the smaller number of the encodable lattices.
Some points of longer distance at lower physical error rate are not plotted since not
enough logical errors are accumulated because of the very low logical error rates.

At 95% functional qubit yield, we see many chips beating break-even at p = 10−3.
The threshold is about 0.3%, about half of the threshold error rate for a perfect lattice.
The significant penalty in both threshold and residual error rate can be dramatically
reduced by culling poorer chips and discarding them. At 50% cull at p = 10−3, the
residual error rate for d = 7 is about that of d = 5 with a perfect lattice, and d = 13 is
about that of a perfect d = 7.

Naturally, the logical error rates get better as we discard more of the poorest lattices.
At p = 0.2%, unculled y = 95% shows that even distance 17 is just on the break-even
line and 90%-culled (c) shows that all 5 distances exceed break-even. The steepness of
the slope of the curves of culled defective lattices exceeds that of the curves of lower
code distances on the perfect lattice, though it does not match the perfect lattice of the
same distance. Thus, an appropriate culling strategy reduces the penalty for a 5% fault
rate to a manageable level, allowing us to achieve a desired level of error suppression by
using a slightly larger code distance. At p = 0.1%, by culling 90%, the penalty against
the perfect lattices changes from 12.0× to 1.2× at d = 5, from 39.0× to 6.1× at d = 7,
and from 119.9× to 14.2× at d = 9. We do not have data points for 90%-culled of d = 13
and of d = 17 since not enough logical errors are accumulated on their best 10% of the
lattices. The smaller code distance gets closer to the perfect lattice because it has fewer
qubits, therefore good outliers may be generated with higher probability, as shown in
Table 7.3. Table 7.3 summarizes the average number of static losses on all the generated
lattices, on the 50%-culled lattices and on the 90%-culled lattices. The remaining 3
lattices of 90%-culled distance 5 have 1, 2 and 2 static losses respectively. Table 7.3
also allows us to see that the importance of static loss placement because the numbers
of static losses of longer distances do not decrease much but all the logical error rates
gets better.

The middle column in Figure 7.3 is the graphs of y = 90%, under the same conditions
with those of y = 95%. The threshold is about 0.15%, about a quarter of the threshold
for a perfect lattice. At 90% cull (in the middle-bottom of Figure 7.3), at p = 10−3, the
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residual error rates for d = 7, d = 9 and d = 17 are about twice those of d = 5 with
a perfect lattice. d = 13 would be better than that of perfect d = 5, but it is missing
since the logical error rate may be too low to accumulate enough number of logical
errors. At p = 0.1% of y = 90%, unculled (middle-top) shows that only distance 13
exceeds the break-even, but 90%-cull (middle-bottom) shows all five distances exceed
the break-even.

The right column in Figure 7.3 is the graphs of y = 80%. At y = 80%, we have
already seen that only two-thirds of the chips can even be encoded. Our simulations
indicate that even those chips for which we could create a circuit are unusable. Even at
p = 10−3, there is no evidence of a correctable threshold, and although residual error
rates do decline as the physical error rate is reduced, only a single data point reaches
break-even. We conclude that y = 80% is not good enough to build a computer.

Unculled y = 95% shows that distances 13 and 17 are approximately identical at
p = 0.2%, while other distances show that longer is better. Unculled distance 13 and
17 for y = 90% do not show that longer is better, though other distances do. Unculled
y = 80% shows that distance 7 exceeds distance 5 at p = 0.1%, while other distances do
not show an improvement for the longer distance. Those indicate that the longer code
distances cross at lower physical error rate. We need to consider this fact when deciding
the code distance to use.

7.1.4 Metrics for selecting good chips

Both to improve our understanding of the root causes of the error rate penalty and to
provide a simple means of selecting good chips, we evaluated the correlation between a
set of easy-to-calculate metrics and the simulated residual error rate. Tables 7.4 and 7.5
describe the correlations between eighteen metrics and logical error rates or log(logical
error rates), respectively, for p = 0.002 for each combination of yield and code distance.

The simplest possible metrics, just counting numbers of qubits in various categories,
show only modest correlation.

Steane’s KQ metric is the space-time product of a circuit: the number of qubits Q
involved, multiplied by the circuit depth K [156].

The CDQ and CQ is the product of the “cycle”, which is the average number of
steps in a stabilizer measurement and the number of data qubits or the total number
of qubits including ancillae involved in the stabilizer, respectively. The CDQ and CQ
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reflect the total probabilities of possible physical errors which occur in a measurement
of the stabilizer. Both Tables 7.4 and 7.5 indicate that the average of the CDQ and the
average of the CQ of Z stabilizers have the strongest and the second strongest correlations
with the logical X error rate. The average number of qubits in a Z stabilizer and the
average “cycle” of Z stabilizers show the next strongest correlations. Those mean that the
accumulation of possible errors in a stabilizer may be the factor most strongly correlated
to the logical error rate.

Somewhat to our surprise, both the KQ of the largest stabilizer and the average across
the entire lattice do not have good correlations. This may be because this form of KQ
does not correctly capture the total probabilities of possible physical errors which occur
in a measurement of the stabilizer.

Table 7.3 implies that the number of faulty devices is correlated with the logical
error rate. By culling bad lattices, Table 7.3 shows that the average number of faulty
devices on a lattice is reduced and Figure 7.3 shows that the logical error rate gets better.
However, the average CDQ of Z stabilizers has significantly higher correlation with
logical X error rate, 0.76, than that of the number of faulty devices, 0.43. We calculated
the cross-correlation of elements for y = 0.95 and d = 9. The correlation between the
number of faulty devices and the average CDQ of Z stabilizers is 0.79.

The number of faulty ancilla qubits is the most weakly correlated to the logical error
rate. This fact indicates that even if the number of faulty ancilla qubit increases, the
logical error rate does not decline rapidly. For a given yield, the placement of faults
matters more than the exact number.
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7.2 Dense Placement

Because of the restrictions described in Section 4.7, we locally set four deformation-
based qubits as a box, as shown in Figure 7.4, and globally place the boxes apart to
maintain fault-tolerance and to have free space available for routing intermediate qubits
as shown in Figure 7.5. This local placement actually achieves dense packing, however,
placing the logical qubits close together in this fashion results in error paths that shorten
the effective distance.

To qualitatively analyze this effect, we define a hierarchy of distances: First, do is the
original code distance of a single logical qubit, corresponding to the length around one
of the arms, as in Fig. 1. Next, ds is the shortened code distance, where the presence
of neighboring superstabilizers may result in an error path of fewer hops. Finally, de

is the effective code distance: the superstabilizers’ longer cycle time results in higher
vulnerability to errors, so we downgrade their ability to protect our data in this analysis
by creating this artificially shortened distance. We want this final de to give us protection
equivalent to or better than the protection of a planar code qubit of distance d, leading
to the relation

do ≥ ds ≥ de ≥ d. (7.1)

In the rest of this section, we explore this relationship in detail by comparing the number
of error paths of the minimum length in several scenarios.

In Figure 7.4, the path labeled ds crosses two superstabilizers, one laterally and the
other longitudinally. An error chain can cross a superstabilizer in a single hop. Thus,
although the path ds covers more ground than do, the number of errors in an undetected
error chain is ds = do − t + 1, where t is the thickness of the superstabilizer crossed
laterally.

Worse, the deeper circuit of the superstabilizer increases the likelihood of error, so
we choose to treat the superstabilizers as having no positive effect on error suppression.
Removing them, our effective distance is de = ds − 2 = do − t − 1.

Finally, setting t = 2, this leads us to this relationship for the dense packing of Figure
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7.4,

de = d (7.2)

ds = de + 2 (7.3)

do = ds + 1 = de + 3 = d + 3. (7.4)

With this layout, our four-fin logical qubits begin with a distance three longer than the
defect-based qubits to achieve comparable logical error rates. As a result, (5de+17)2

4 =
25d2

e+170de+289
4 physical qubits are required for a logical qubit.

The global placement is shown in Figure 7.5. The transformed qubit indicated with
(A) is being routed. (A) is transformed during moving from one crossroads to another.
Since the surface code places data qubits and ancilla qubits alternately, 2d columns/rows
are required to have code distance d. To avoid the situation shown in Figure 4.10,
(I) + (I I) + (I I I) ≥ 2d must be satisfied to guarantee code distance d of (B) and (C).
Since (III) is d, (I) + (I I) needs to be d or more hence each of (I) and (I I) must be d

2 or
more. Therefore (A) is transformed.

This placement design requires (5do+3t−4
2 )2 = 25d2

o+30dot+9t2−40do−24t+16
4 physical

qubits per logical qubit for enough large n. Choosing t = 2, (5ds+7
2 )2 = (5de+17

2 )2 =
25d2

e+170de+289
4 physical qubits are required for a logical qubit, including ancilla qubits.

In contrast, the planar code’s placement for lattice surgery-based operation, shown
in Figure 7.6, requires (4d − 2)2 = 16d2 − 16d + 4 physical qubits per logical qubit.
As a result the deformation-based surface code requires 50% fewer physical qubits than
the planar code. Horsman et al. showed that the number of required qubits for the
defect-based surface code is similar to that of the planar code in large scale quantum
computation, so deformation-based surface code also requires fewer physical qubits than
the defect-based surface code [78].

The complex interactions during syndrome extraction and the difficulties of the error
matching processing make direct calculation of residual logical error rates infeasible,
but we can make a qualitative comparison by examining the number of redundant logical
operators, each of which may be potentially a logical error. For a code of distance d,
logical operators of length d dominate. A planar code qubit has d redundant logical
operators of length d, for each type of logical operator. A defect-based code qubit
has d

4 redundant logical operators of length d between the two defects. In contrast,
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a deformation-based qubit which is distant from the lattice boundary and distant from
other logical qubits has exactly two redundant logical operators of length do for each
type. Hence the isolated deformation-based code has fewer potential error operators.
With the placement shown in Figure 7.4, because of the presence of a superstabilizer of
a neighboring logical qubit, the number of potential logical error operators increases to
d3
e−11d2

e+35de−25
8 redundant logical operators of length de. This is because, for example,

a horizontal error chain on the top-left of the lattice and a horizontal error chain on the
bottom-right do not result in a logical error since they would be distant if the surface
consisted only of normal stabilizers. But, if there is a vertical long superstabilizer in
the middle of the lattice which makes the error chains close, those two error chain may
cause a logical error.

For distance 9, 19 and 29, the deformation-based code may have 2, 23 and 70 times
as many potential logical error operators of length de as the planar code. (Obviously
a deformation-based code of effective code distance de does not have error operators
of geometric length de, since the shortened code distance ds is the geometric distance
and de = ds − 2; hence we counted error operators by the shortened code distance
corresponding to the effective code distance we want.) The effective code distance de

is defined stringently therefore we may not need to be concerned about this overhead
to compare the deformation-based qubit and other surface code qubits. Otherwise, this
overhead can be tolerated by employing one greater code distance.

A surface code qubit utilizing the rotated lattice requires only 2d2 − 1 physical
qubits to encode a logical qubit [78]. However, since the rotated planar code does not
directly support lattice surgery because of its irregular boundaries, either transversal
CNOT gate or conversion to a standard planar code is required to achieve practical
quantum computation. Implementing transversal CNOT gate may kill the surface code’s
advantage on feasibility. Conversion to the standard planar code requires a memory area
large enough for the standard planar code and requires the paths for logical qubit transfer
wide enough to transfer standard planar code qubits, eventually killing the rotated lattice
qubit’s advantage on the resource requirement. Therefore we focus on the standard planar
code for comparison rather than the rotated lattice planar code.

We employed the thickness t = 2 in this example for simplicity. Using thickness t = 3
instead will shorten the columns and the rows of a deformation-based qubit. Because
an even code distance has the same error suppression capability as the odd distance just
below it, a t = 2 logical qubit and a t = 3 logical qubit should have 2d + 1 or 2d − 1
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columns/rows, respectively. This allows us to slightly narrow the inter-block channels in
Figure 7.5.

As in the defect-based code, the Hadamard gate is executed by isolating the logical
qubit from the rest of the surface, exchanging X and Z stabilizers, then reconnecting it to
the surface. With the dense packing, there is not room around the qubit to disconnect it
from the surface, so the qubit first should be moved out into the channel before performing
the Hadamard.

7.3 Performance of creating heterogeneously encoded

Bell pairs in fault-tolerant way

We calculate the error probability and estimate resource requirements by Monte Carlo
simulation. The physical Bell pairs’ fidelity is assumed to be 0.85; the state is assumed
to be, following Nölleke et al. [127],

ρ = 0.85|Φ+⟩⟨Φ+ | + 0.04|Φ−⟩⟨Φ− | + 0.055|Ψ+⟩⟨Ψ+ | + 0.055|Ψ−⟩⟨Ψ− |. (7.5)

We have chosen to model our interface-to-interface coupling as an optical coupling, based
on the experimental values of Nölleke et al. [127]. This organization corresponds to a
classical Internet router architecture in which separate network interface cards connect
to each other through a crossbar switch on a backplane as shown in figure 8.1, which
in our case is assumed to be an intermediate-fidelity optical connection [92]. Although
the exact numerical results will of course vary, the principles described in this paper are
independent of the exact numbers. For comparison, Tables B.7-B.9 in Appendix B.2
present results of simulations in which raw Bell pairs are created using local gates, an
approach that could be used with a simpler but less scalable repeater architecture.

Our error model is the Pauli model of circuit level noise [104]. This model consists
of memory error, 1-qubit gate error, 2-qubit gate error, and measurement error each of
which occurs with the error probability p. Memory, 1-qubit gates and measurement are
all vulnerable to X, Y and Z errors and we assume a balanced model, where probabilities
are p

3 respectively. Similarly, 2-qubit gates are vulnerable to all fifteen possibilities, each
with a probability of p

15 . Errors propagate during all circuits after the initial distribution
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of Bell pairs.
Figure 7.7 shows a baseline homogeneous simulation creating logical Bell pairs of

Steane [[7,1,3]] code using our physical-to-logical mechanism. The figure plots the
number of consumed raw physical Bell pairs versus logical error rate in the output state.
Figure 7.8 shows a similar baseline homogeneous simulation for surface code distance
3. The difference between purification before encoding and purification of physical Bell
pairs indicates how many logical errors are introduced during the encoding process.
Purification after encoding may show that the surface code distance 3 is more suitable
than the Steane [[7,1,3]], however, because those local gate error rates are greater than
the threshold of the Steane [[7,1,3]] code it is hard to judge fairly.

Figure 7.9 plots the number of consumed raw physical Bell pairs versus logical
error rate in the output state for the heterogeneous Steane [[7,1,3]]-surface code dis-
tance 3 case. This heterogeneous result falls near the average of those two baseline
homogeneous simulations above. The max

��� heterogeneous result
average of homogeneous result − 1

��� is 0.086. The

average
��� heterogeneous result
average of homogeneous result

��� is 1.007. Since the depth of the circuit of the hetero-
geneous simulation is aligned to the longer depth of the two codes, the heterogeneous
result is a bit higher than the average of the homogeneous simulations.

The numbers of raw Bell pairs consumed declines as the local gate error rate is
lowered. This is because the influence of the local gate error rate shrinks relative to the
infidelity of generated raw Bell pairs. If the system is free from local gate error, the
numbers of raw Bell pairs consumed by the three schemes must converge. At p = 10−5,
the required number of raw Bell pairs of the schemes are essentially identical and they
require about 26 raw Bell pairs to achieve four rounds of purification. Higher efficiency
would require improving the initial fidelity of F = 0.85.

At any error rate and with any number of rounds of purification from 0 to 4, pu-
rification before encoding and purification after encoding result in fidelity worse than
simple purification of physical Bell pairs. This suggests that errors accumulated during
encoding are difficult to correct. On the other hand, purification after encoding with
strict post-selection gives better results than simple purification, at the expense of con-
suming more raw physical Bell pairs. This difference is noticeable at p = 10−3; 49 raw
physical Bell pairs are used to create an encoded Bell pair purified four rounds. The
local gate error rate is so high that an eigenvalue of -1 is often found at the measurement
in purification and the output Bell pair is discarded. For purification after encoding with
post-selection, the residual error rate after n rounds of purification is similar at any p,
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but resource demands change. It converts local errors into “loss”, or discarded states.
Therefore purification after encoding with post-selection is dominated by the original
raw Bell pair infidelity. At p = 10−3, purification after encoding also requires more raw
physical Bell pairs than the other schemes, because the error rate after purification is so
high that the success probability of purification is poor.

Though more rounds of purification are supposed to result in smaller logical error
rate, three rounds of purification of purification after encoding at p = 10−3 give an error
rate larger than that of two rounds. The local gate error rate is too high and purification
introduces more errors than it suppresses on odd-numbered purification rounds.

Purification after encoding with strict post-selection gives similar results for the
two local gate error rates p = 10−4 and p = 10−5. The difference is a small number
of consumed raw physical Bell pairs. Even at p = 10−3, we see that four rounds of
purification drives the residual error rate down almost to 0.1%. From this fact we
conclude that p = 10−3 will be a good enough local gate error rate to allow us to create
heterogeneously encoded Bell pairs, suitable for many purposes, from raw physical Bell
pairs of F=0.85.
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ds

do

Figure 7.4: Local placement of the deformation-based surface code. There are four
logical qubits of distance 10 (do), however, since the thickness of superstabilizers shorten
others’ code distance by 1, the shortened code distance ds is 9. This placement enables
the four logical qubits to have lattice surgery-like CNOT with other logical qubits. For
thickness t = 2, each row and column has 3ds + 8 physical qubits and (3ds + 8)2 =
9d2

s + 48ds + 64 physical qubits are required for four logical qubits. The dashed box
corresponds to the dashed box in Figure 7.5. The blue lines describe minimal X error
chains from the point of view of do and ds respectively, for the top-right logical qubit. To
downgrade the error tolerance in this analysis because of the two superstabilizers which
have longer cycle time, we introduce the effective code distance de where de = ds − 2
and (3ds + 8)2 = (3de + 14)2 = 9d2

e + 84de + 196 physical qubits are required for four
logical qubits.
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(III)

Figure 7.5: Global placement of the deformation-based surface code. Each dashed
box is the dashed box shown in Figure 7.4. The spaces between the boxes are paths to
move logical qubits and intermediate qubits. The deformation-based qubits outside of
the dashed boxes are examples of intermediate qubits. There are n by n sets of the local
placement. The lengths include both data qubits and ancilla qubits, hence 2d in this
figure corresponds to the code distance d. The stretched qubit indicated with (A) is being
routed from location to location. To retain the fault-tolerance of (B) and of (C), (I)+ (I I)
needs to be d

2 or more, therefore (A) is transformed. The qubits on the boundary between
a local placement set and a path are included both in 3(do+ t)−1 and 2do−1, hence there
are (5do+3t−4)n+2do−1 rows and (5do+3t−4)n+2do−1 columns. The total number of
physical qubits is ((5do+3t−4)n+2do−1)2, for 4n2 logical qubits excluding intermediate
qubits. This placement requires (5do+3t−4

2 )2 = 25d2
o+30dot+9t2−40do−24t+16

4 physical qubits
per logical qubit for large enough n. This corresponds to (5de+17

2 )2 = 25d2
e+170de+289

4
physical qubits are required for a logical qubit for t = 2.
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Figure 7.6: Planar code placement for comparison, after Figure 12 in [78]. Each
shaded area holds a logical data qubit and blank areas are available for intermediate
qubits for CNOT gate by lattice surgery. Each area has 2d − 1 by 2d − 1 physical qubits,
including ancillae.
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Figure 7.7: Results of a baseline simulation of creation of a Steane [[7,1,3]]-Steane
[[7,1,3]] homogeneous Bell pair, showing residual logical error rate versus physical
Bell pairs consumed. The three schemes plus the baseline case of purification of physical
Bell pairs are each represented by a line. Each point along a line corresponds to the
number of rounds of purification. The leftmost point represents no purification, the
second point is one round of purification, and the rightmost point represents four rounds
of purification a.-c. Improving values of local gate error rate. d. The three cases with
residual error rate of 10−3 or less.
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Figure 7.8: Results of a baseline simulation of creation of a surface code distance
3-surface code distance 3 homogeneous Bell pair, showing residual logical error
rate versus physical Bell pairs consumed. Other conditions and definitions are as in
Figure 7.7.
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Figure 7.9: Results of simulation of creation of a Steane [[7,1,3]]-surface code dis-
tance 3 heterogeneous Bell pair, showing residual logical error rate versus physical
Bell pairs consumed. Other conditions and definitions are as in Figure 7.7.



Chapter 8

Conclusion

In this Chapter, the conclusion of this dissertation is stated. First the overview of
the discussion is summarized. Next the problems, the proposed architecture, and the
difficulties to solve the problems are stated. Finally the future work, extendability and
importance of this work is summarized.

In this dissertation, a practically scalable distributed quantum computer architecture
is proposed in which quantum imperfections including state errors, dynamic losses and
static losses are tolerated by quantum error correction, space-efficient error correcting
code is employed in memories, and fault-tolerant internal and external data transfer is
designed to connect components. Numerical analysis of overhead to tolerate imper-
fections is completed by analyzing overhead of static losses in this work. It is shown
that static losses are tolerable. However, the required resource increase emphasizes
the importance of division of computation chip like classical multi-CPU computer and
quantum distributed computation. To alleviate the obvious problem of expensive re-
source requirement, space-saving error correcting code is developed, which should be
employed in quantum memories. To connect components such as memories, com-
putation area and network interface, the overhead of fault-tolerant communication of
components is numerically analyzed. The importance of parallelism and scalability of
internal communication are shown.

To realize a quantum computer, tolerance against imperfections and its overhead is
the first thing we have to consider. Fabrication technology for quantum computation is
rapidly developing, however, there still large possibility to have problematic devices on

151
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the computation chip and it may be difficult to completely get rid of them in the future.
Analysis based on ideal assumptions was done, in which concrete methods to deal with
static losses are not given.

To realize a quantum computer which is large enough to execute quantum algorithm to
solve meaningful problems, resource efficiency is important. Quantum error correcting
code requires much computational resource. A logical qubit of the typical surface code,
the planar code, consists of (2d − 1)2 physical qubits where d is the code distance.
Factoring N bits requires 2N + 2 logical qubits, excluding ancilla qubits for gates and
resources for communication. Integration of quantum devices depends on the physical
system employed and is limited yet. It is actually infeasible to implement everything on
a computation chip, maybe in a machine. Quantum error correcting code which has high
error threshold and has small resource requirement has not been found yet.

To realize a quantum computer which has multiple quantum components, fault-
tolerant internal networking between any components supporting code conversion is
required. Employing multiple error correcting codes had been proposed Scalable internal
routing by optical crossbar had been proposed. Concrete means to bridge components
which employ heterogeneous error correcting codes and analysis of its overhead are
required.

We propose a scalable distributed quantum computer architecture, which tolerates
quantum imperfections, has several areas for several purposes in which each area con-
sists of an array of same components of the feasible size to adapt to the overheads
caused by tolerating imperfections, and has a core routing module of an optical crossbar
which routes photons from components to create entanglement between arbitrary pair of
components where imperfections are managed by purification with post-selection after
encoding entangled qubits to arbitrary codes. The purposes are computation, memory,
ancilla state generation for complex gates and computer networking.

8.1 Difficulties in solving problems

In the analysis of an adaptation of the surface code for static losses, which are manifested
as faulty devices on quantum computation chips occurring during fabrication. With this
fundamental analysis of static loss and its influence, independent analysis has now been
conducted for the three major imperfections of quantum computation for the surface
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code: state error, dynamic loss, and static loss. The ultimate goal of investigating faulty
devices is to support collection of a large pool of sufficiently fault-tolerant quantum
computation chips which will be the arrays of components in the computation/memory
areas of distributed quantum computers. The method we employ to work around static
losses is the code deformation; merging stabilizer units by removing the lost qubits.
The surface code on the perfect lattice has complete regularity, but in our case, there
come many size of stabilizers in which the order of error syndrome collection is not
unified and whose duration differ. To achieve a practical method, we need new two
algorithms which is adapted to the quantum error occurrence nature. We determined the
order of error syndrome collection by solving traveling salesman problem. There would
be a difficulty that solving for big stabilizers may not finish in realistic time, however,
later by simulation it is shown that the size of the biggest stabilizer has the strongest
correlation with the logical error rate of the defective lattice so that lattices holding
such big stabilizers should be discarded anyway; hence this difficulty can be ignored.
Another difficulty is how to schedule stabilizers of heterogeneous duration. We solved
this difficulty by focusing on the fact that stabilizers of lower frequency may accumulate
more physical errors and are easy to lengthen error chains. Therefore we give priority to
larger stabilizers hence schedule larger stabilizers first and then schedule small stabilizers
repeatedly when member qubits are free.

To develop the space-saving surface code, we have shown an extension of the
deformation-based surface code which is capable of close placement by measuring
superstabilizers which produce deformation-based qubits. The universality of gates
largely influences the flexibility of an error correcting code, which is required for quan-
tum CPU and is useful for quantum memory to realize read and store operations. The
space-saving characteristics is the most important factor of this new code, we have to
have both characteristics in the same time. We solve this difficulty by a lattice surgery-
like CNOT gate for the deformation-based qubits which requires fewer physical qubits
than the braiding CNOT gate. Meanwhile we achieve direct conversion from the defect-
based surface code to the deformation-based surface code, which can be used as state
injection for the deformation-based surface code, then we achieve arbitrary single qubit
gate by combining CNOT gate and the arbitrary state injection, hence a universal gate
set is completed. The acceptability of close placement and the space-saving CNOT gate
allow deformation-based qubits to be packed more tightly than planar code qubits and
defect-based qubits.
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We have proposed and analyzed a generalized method for creating heterogeneously
encoded Bell pairs that can be used for interoperability between encoded quantum com-
ponents. This is the first step in examining the full design of interconnection of quantum
computers/routers/repeaters utilizing different error mitigation techniques. Acquired en-
coded Bell pairs must have reasonably high fidelity. The fidelity of raw physical Bell
pairs are determined by the implementation of components, optical fibers and BSA hence
it is physically limited. Hence the method how to increase the fidelity is important and to
find the means in which the achievement and resource consumption meets is the difficult
thing. To solve this problem, we considered three ways of entanglement purification,
purification before encoding, purification after encoding and purification after encoding
with strict post-selection and we investigated the relationship of the achieved fidelity and
the resource consumption of those three by numerical simulation .

8.2 Quantitative results and overheads

We analyzed our approach against faulty losses by simulation to investigate the rela-
tionship between the logical error rates and lattice characteristics of simulated defective
lattices. Our approach is to merge stabilizers broken by faulty data qubits to a super-
stabilizer and to work around faulty ancilla qubits using SWAP gates, without changing
the original role of the qubits. Our simulation with single faulty device revealed that
faulty qubits at the periphery reduce the logical error rate less than those in the center.
Even a single fault has a large impact on the residual error rate. Our simulation with
randomly placed faulty devices showed that at 95% yield, the impact on net error rate
is significant but many of the chips still achieve break-even by p = 10−3, and therefore
could be used in a real-world setting. At 90% yield, very few chips achieve break-even.
At 80% yield, almost no chips are usable. Those facts establish the goals for experimen-
tal research to build the surface code quantum computer. The simulation of randomly
placed faulty devices also showed that discarding bad lattices makes the ensemble better,
showing the trade-off between the cost by discarding and the strength of fault-tolerance
of an ensemble. Discarding makes the effective code distance of the defective lattice
ensemble result in two more longer effective code distance at distance 9 and 13 at 95%
yield. 90% yield shows error suppression at obviously practical physical error rates, at
around p = 0.1%, and discarding works for 90% yield. With a low physical error rate,
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90% yield may be sufficient to build a quantum computer. At 80% yield, only very weak
error suppression is observed even at p = 0.1%. Even 90%-discarding does not show
enough error suppression and distance 17 has the highest error rate. We conclude that
80% yield is not suitable for building quantum computer, using the surface code without
addtional architectural support. The randomly faulty lattice simulation also revealed that
the average of the CDQ and the average of the CQ of Z stabilizers show the strongest
correlations to simulated residual error rate among a set of proposed metrics for chip
evaluation. The CDQ and CQ is the product of the “cycle” which is the average steps the
stabilizer is measured by and the number of data qubits/the number of qubits involved in
the stabilizer, respectively. Therefore the accumulated error possibilities in a stabilizer
may be the most correlated factor to the logical error rate.

We have shown theoretical basic concepts of the deformation-based surface code but
have not calculated the error suppression ability since that of the surface code has been
investigated well. The superstabilizers which compose deformation-based qubits require
4de + 9 steps for stabilizer measurements where de is the effective code distance. Our
placement design preserves logical qubits as any logical operator passes through a chain
of normal stabilizers that compose the effective code distance, de. Hence, by adding 3
to the original code distance, the long stabilizer measurement does not degrade the error
suppression efficiency. The deformation-based surface code should have residual error
rate similar to the conventional surface code of code distance three shorter, and hence
conventional error analysis for the surface code can be applied to the deformation-based
surface code. Our design requires 25d2

e+170de+289
4 physical qubits for a logical qubit,

compared to the 16d2 −16d +4 physical qubits required in the conventional design. Our
design would halve the resource required to build a large scale quantum computer.

Our purification simulations have shown that purification after encoding with strict
post-selection is a better preparation method than our other two candidates. Strict post-
selection of two rounds of purification results in better fidelity than error correction of
four rounds of purification at all error rates, and better physical Bell pair efficiency.
Since the threshold of the error rate of the Steane [[7,1,3]] code is around 10−4, our
simulations of purification before encoding and purification after encoding of ∼ 10−4

do not show an advantage compared to simple physical purification; however, strict
post-selection does. Purification after encoding with strict post-selection has a higher
threshold than the normal encoding and purification do. With initial F = 0.85, we can
almost reach a residual error rate of 10−3 using 4 rounds of purification, for physical
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Bell pairs at p = 10−5 or post-selected heterogeneous pairs at p = 10−4. QEC generally
corrects up to e ≤ ⌊ d−1

2 ⌋ errors per block, and detects but mis-corrects d−1
2 < e < d

errors. Post-selection eliminates this mis-correction possibility, leaving only groups of
d errors or errors that occur after syndrome extraction in the state. The structure of CSS
codes is so self-similar that we expect that the analysis will be useful for evaluating other
hardware models and CSS codes.

8.3 Future work

We have shown solutions to three problems and analyzed the overhead of them sepa-
rately. Hence the biggest future work should be the all-in-one analysis of the proposed
architecture.

8.3.1 Better way to tolerant against static losses

Faulty data qubits result in merging plaquettes and deepen the stabilizer circuit hence
lengthen the “cycle”. Faulty ancilla qubits result in requiring more SWAP gates to walk
through data qubits and ancilla qubits surrounding the faulty ancilla qubits. However,
our data also shows that the number of faulty ancilla qubits has weak correlation to the
residual error rate. Therefore, utilizing an ancilla qubit to substitute for neighboring
faulty data qubit and keeping stabilizer sizes at four qubits (three qubits at boundaries)
may be an effective solution against static losses.

There is a range in the degree of problems a quantum device has. Some of problematic
devices do not work at all. Some of them work but their error rate is higher than regular
ones. Some of them execute most gates properly but have problem for some gate. The
definition of the problems for a quantum device depends on its purpose. If the definition
is fulfilled, it should be a problem. To consider such difference would help designing
high performance quantum computer.

8.3.2 More denser placement of the deformation-based code

We have shown the placement in which four logical qubits are grouped to be a unit for the
global placement. This design is to enable lattice surgery both on the smooth boundaries
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Figure 8.1: Architecture of a scalable quantum repeater supporting routing. Each
red line describes a photonic connection. The crossbar switch switches interconnections
of network interface cards. Each network interface card is connected to another quantum
repeater or computer at the open ends of the red lines. By using a crossbar switch,
interconnections do not interrupt each other so that this architecture is scalable. The first
step to create a heterogeneously encoded Bell pair is the creation of a physical Bell pair
via the optical crossbar switch. Next step is encoding each half of the physical Bell pair
via local gates within the respective NICs.

and on the rough boundaries. By restricting this flexibility, more space-saving placement
may be found.

8.3.3 Combination of purification methods

We employed and simulated purification before encoding, purification after encoding
and purification after encoding with strict post-selection separately. Purification before
encoding actually works as increase the fidelity of source Bell pairs for encoding, hence
there is a possibility that the combination of Purification before encoding and purification
after encoding with strict post-selection would result in better balance between the
achievement and the resource consumption.

8.4 Diversion of the architecture

Meanwhile, the crossbar switch can be the core module of a quantum router architecture
as shown in Figure 8.1 [121]. This router architecture is derived from the architecture
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of conventional classical router and it has several network interface cards connected
to the crossbar switch. Combining the quantum computer architecture and the router
architecture and exchanging the logical qubit units with quantum computation chips of the
surface code and of other complemental codes, a quantum computer architecture which
supports networking and utilizes the benefit of the multiple code model is achieved.

The analysis presented here is useful not only in the abstract, but also serves as a
first step toward a hardware design for a multi-protocol quantum router (the boxes in
Figure 8.1). Such a router may be built on a quantum multicomputer architecture, with
several small quantum computers coupled internally via a local optical network [84, 92,
128, 172]. This allows hardware architects to build separate, small devices to connect
to each type of network, then to create Bell pairs between these devices using the
method described in this paper. In addition, this method can be used within large-scale
quantum computers that wish to use different quantum error correcting codes for different
purposes, such as long-term memory or ancilla state preparation.

This scheme is internal to a single repeater at the border of two networks, and will
allow effective end-to-end communication where errors across links are more important
than errors within a repeater node. It therefore can serve as a building block for a
quantum Internet.

8.5 The importance of this work

The feasibility of the quantum computer strongly depends on the error management
scheme and on how to get the required computation power from small components
available with technologies at that time. This work shows how to get the computation
power by connecting such components with limited power, with tolerating quantum im-
perfections. My architecture and the way to design will be referred from any future work
to design quantum computer architectures dedicated to specific fundamental physical
technologies.
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Appendix A

Supplemental graphs for the defective

lattice analysis

This appendix shows supplemental graphs to visualize the effect of culling and raw data
of the surface code on the defective lattice.

A.1 Graphs to compare culled pools

Figure A.1 shows the graphs between yields and logical error rates at specific physical
error rates.
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A.2 Scatterplots of randomly defective lattices

Figures A.2, A.3, A.4, A.5 and A.6 show the scatter plots of raw data of randomly
defective lattices. Figure A.3 shows an outlier chip. Actually the lattice on the chip
has 40× worse logical Z error rate as logical X error rate. The lattice by chance has
faulty devices which deform the left and the right boundaries to be close with preserving
the top and the bottom boundaries apart. Because of the largely deformed shape of the
lattice, the usable area of the lattice is narrow and there are only few faulty devices on the
usable area which increase logical error rates. Hence the chip exhibits stronger tolerance
against logical X error than others.
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Figure A.2: Scatterplot of d = 5 with one dot per chip. Green dots are of y = 95%,
red dots are of y = 90% and blue dots are of y = 80%. Blue and green data are offset
from the vertical line for visibility.
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Figure A.3: Scatterplot of d = 7 with one dot per chip. Green dots are of y = 95%,
red dots are of y = 90% and blue dots are of y = 80%. Blue and green data are offset
from the vertical line for visibility.



Appendix A. SUPPLEMENTAL GRAPHS FOR THE DEFECTIVE LATTICE
ANALYSIS 182

Figure A.4: Scatterplot of d = 9 with one dot per chip. Green dots are of y = 95%,
red dots are of y = 90% and blue dots are of y = 80%. Blue and green data are offset
from the vertical line for visibility.
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Figure A.5: Scatterplot of d = 13 with one dot per chip. Green dots are of y = 95%,
red dots are of y = 90% and blue dots are of y = 80%. Blue and green data are offset
from the vertical line for visibility.
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Figure A.6: Scatterplot of d = 17 with one dot per chip. Green dots are of y = 95%,
red dots are of y = 90% and blue dots are of y = 80%. Blue and green data are offset
from the vertical line for visibility.



Appendix B

Supplemental data in encoding Bell

pairs heterogeneously

B.1 Simulation data for F = 0.85 raw Bell pairs on multi-

NIC router architecture

Table B.1 shows our baseline simulation results using physical entanglement only with
no encoding. Table B.2 shows the simulated results of purification before encoding for
a Bell pair of a single layer of the Steane [[7,1,3]] code and a distance 3 surface code.
Table B.3 shows the simulated results of the scheme purification after encoding of the
same codes. Table B.4 shows the simulated results of the scheme purification after
encoding with strict post-selection. Since purification at the level of encoded qubits
consists of logical gates, purification before encoding has a much smaller KQ than the
other two schemes. Purification after encoding with strict post-selection discards more
qubits than purification after encoding does to create a purified encoded Bell pair, so
that purification after encoding with strict post-selection also results in a larger KQ.
Table B.5 shows the simulated results of the scheme purification after encoding with
strict post-selection between the Steane [[7,1,3]] code and the non-encoded physical
half. Table B.6 shows the simulated results of the scheme purification after encoding
with strict post-selection between the distance three surface code and the non-encoded
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physical half.

B.2 Simulation data for Bell pair creation via local gates

Data in this appendix is of simulations in which raw Bell pairs are created by local gates,
two initializations, an Hadamard gate, an identity gate and a CNOT gate. Table B.7 shows
the simulated results using physical entanglement only with no encoding. Table B.8
shows the simulated results of the scheme purification after encoding for a Bell pair of a
single layer of the Steane [[7,1,3]] code and a distance 3 surface code. Table B.9 shows
the simulated results of the scheme purification after encoding with strict post-selection
for a Bell pair of a single layer of the Steane [[7,1,3]] code and a distance 3 surface code.

The fidelity of raw Bell pairs created via local gates is much better than 0.85, lowering
the need for purification. However, architectures that can use this method are more limited
in scalability. Thus, this method may be used for standalone code converters, but will
not be the preferred method when building scalable quantum internetworking repeaters.
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Table B.1: Our baseline case, discrete simulation using physical entan-
glement purification only. The merged error rate is the probability that ei-
ther X error or Z error occurs. The physical Bell pair inefficiency is
(# created raw Bell pairs)/(# puri f ied Bell pairs). KQ is #qubit × #steps. In
this simulation, KQ is the number of chances that errors may occur.

(a)The local gate error rate is 10−3.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.113 0.1 0.156 1.0 88 86 1
1 0.096 0.0197 0.106 2.5 98 91 5
2 0.0247 0.0154 0.036 6.0 122 103 14
3 0.0248 0.00498 0.0275 12.6 167 125 32
4 0.00753 0.00523 0.0103 26.4 262 173 70

(b)The local gate error rate is 10−4.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.109 0.0968 0.151 1.0 88 86 1
1 0.0915 0.0151 0.0988 2.5 98 91 5
2 0.0183 0.0104 0.0271 6.0 122 103 14
3 0.0183 0.000796 0.0189 12.4 166 125 32
4 0.00125 0.000796 0.00182 25.7 258 171 68

(c)The local gate error rate is 10−5.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.112 0.0963 0.152 1.0 88 86 1
1 0.0928 0.0152 0.101 2.5 98 91 5
2 0.0177 0.0102 0.0262 6.0 121 103 14
3 0.0176 0.000381 0.0179 12.4 166 125 32
4 0.000633 0.000371 0.000975 25.6 257 171 68
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Table B.2: Simulation results of purification before encoding for a Bell pair of a single
layer of the Steane [[7,1,3]] code and a distance 3 surface code. Other conditions and
definitions are as in Table B.1.

(a)The local gate error rate is 10−3.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.128 0.12 0.188 1.0 5402 4130 636
1 0.111 0.0379 0.135 2.5 5412 4135 640
2 0.0402 0.0355 0.0674 6.0 5436 4147 649
3 0.0421 0.0258 0.061 12.6 5481 4170 667
4 0.0231 0.0251 0.0424 26.4 5576 4217 705

(b)The local gate error rate is 10−4.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.114 0.0976 0.155 1.0 5402 4130 636
1 0.0927 0.0173 0.102 2.5 5412 4135 640
2 0.02 0.0136 0.0315 6.0 5436 4147 649
3 0.0201 0.00293 0.0224 12.4 5480 4169 667
4 0.00298 0.0029 0.00529 25.7 5572 4215 703

(c)The local gate error rate is 10−5.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.11 0.0953 0.152 1.0 5402 4130 636
1 0.0922 0.015 0.0999 2.5 5412 4135 640
2 0.0183 0.0106 0.0273 6.0 5436 4147 649
3 0.0177 0.000598 0.0182 12.4 5480 4169 667
4 0.000797 0.000583 0.00132 25.6 5571 4215 703
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Table B.3: Simulation results of the scheme purification after encoding between
the Steane [[7,1,3]] code and the distance three surface code. Other conditions and
definitions are as in Table B.1.

(a)The local gate error rate is 10−3.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.126 0.115 0.181 1.0 5402 4130 636
1 0.131 0.0311 0.146 2.6 6892 5477 722
2 0.0412 0.039 0.0726 7.2 10967 9159 956
3 0.0693 0.0137 0.079 16.1 19068 16480 1425
4 0.0278 0.031 0.0559 37.6 38536 34071 2550

(b)The local gate error rate is 10−4.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.11 0.0983 0.154 1.0 5402 4130 636
1 0.0958 0.0159 0.104 2.5 6776 5370 716
2 0.0198 0.0125 0.0303 6.1 10061 8335 907
3 0.0213 0.0012 0.0222 12.7 16134 13814 1262
4 0.00222 0.00237 0.00442 26.5 28864 25300 2005

(c)The local gate error rate is 10−5.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.108 0.0957 0.148 1.0 5402 4130 636
1 0.0931 0.015 0.101 2.5 6759 5355 715
2 0.018 0.01 0.0264 6.0 9961 8244 901
3 0.0178 0.000395 0.0182 12.4 15880 13584 1247
4 0.000729 0.000515 0.00123 25.7 28149 24652 1965



Appendix B. SUPPLEMENTAL DATA IN ENCODING BELL PAIRS
HETEROGENEOUSLY 190

Table B.4: Simulation results of the scheme purification after encoding with strict post-
selection between the Steane [[7,1,3]] code and the distance three surface code. Other
conditions and definitions are as in Table B.1. The values at p = 10−4 and 10−5

demonstrate that the residual error rate saturates after more than one round of purification.
(a)The local gate error rate is 10−3.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.13 0.118 0.184 1.0 5402 4130 636
1 0.114 0.0146 0.121 3.0 7173 5732 737
2 0.018 0.0113 0.0276 9.3 12748 10774 1053
3 0.0193 0.000387 0.0196 21.2 23398 20403 1661
4 0.000776 0.000414 0.00118 48.8 47963 42611 3063

(b)The local gate error rate is 10−4.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.108 0.0981 0.152 1.0 5402 4130 636
1 0.0948 0.0149 0.102 2.5 6797 5389 717
2 0.0177 0.0104 0.0267 6.2 10173 8437 913
3 0.0176 0.000343 0.0179 13.1 16442 14094 1278
4 0.000545 0.000326 0.00087 27.3 29540 25912 2042

(c)The local gate error rate is 10−5.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.109 0.0917 0.146 1.0 5402 4130 636
1 0.0921 0.0153 0.0996 2.5 6766 5361 715
2 0.0181 0.0101 0.0268 6.0 9968 8251 902
3 0.0176 0.000333 0.0179 12.4 15913 13614 1249
4 0.000572 0.000317 0.000887 25.8 28213 24710 1968
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Table B.5: Simulation results of the scheme purification after encoding with strict
post-selection between the Steane [[7,1,3]] code and non-encoded physical half. Other
conditions and definitions are as in Table B.1.

(a)The local gate error rate is 10−3.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.116 0.107 0.166 1.0 4260 3660 300
1 0.103 0.0171 0.111 2.6 5367 4709 330
2 0.022 0.013 0.0325 6.9 8234 7425 409
3 0.0227 0.00142 0.0236 15.0 13692 12595 559
4 0.0028 0.00155 0.00386 32.5 25548 23825 884

(b)The local gate error rate is 10−4.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.11 0.0951 0.151 1.0 4260 3660 300
1 0.0948 0.0154 0.103 2.5 5281 4627 328
2 0.0179 0.0103 0.0266 6.1 7713 6929 395
3 0.0181 0.000438 0.0184 12.6 12201 11179 518
4 0.00077 0.000429 0.00115 26.2 21554 20033 775

(c)The local gate error rate is 10−5.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.11 0.097 0.152 1.0 4260 3660 300
1 0.0929 0.0155 0.101 2.5 5274 4620 328
2 0.0182 0.0101 0.0267 6.0 7659 6878 393
3 0.0176 0.00035 0.0179 12.4 12069 11053 515
4 0.000577 0.000334 0.000904 25.7 21200 19697 766
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Table B.6: Simulation results of the scheme purification after encoding with strict
post-selection between the distance three surface code and non-encoded physical
half. Other conditions and definitions are as in Table B.1.

(a)The local gate error rate is 10−3.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.13 0.113 0.181 1.0 1188 914 137
1 0.116 0.0172 0.125 2.8 1985 1611 202
2 0.0224 0.0135 0.0334 8.2 4321 3652 393
3 0.0227 0.00145 0.0236 18.3 8739 7511 755
4 0.0028 0.00154 0.00386 40.9 18625 16148 1566

(b)The local gate error rate is 10−4.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.114 0.0959 0.154 1.0 1188 914 137
1 0.0943 0.0157 0.102 2.5 1864 1504 193
2 0.0179 0.0105 0.0267 6.2 3481 2915 328
3 0.018 0.000445 0.0184 12.9 6482 5533 580
4 0.000808 0.000438 0.0012 26.9 12728 10982 1104

(c)The local gate error rate is 10−5.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.108 0.0934 0.147 1.0 1188 914 137
1 0.091 0.0152 0.0988 2.5 1848 1490 192
2 0.0179 0.0105 0.0267 6.0 3410 2853 323
3 0.0176 0.000336 0.0179 12.4 6294 5368 565
4 0.000589 0.00033 0.000911 25.8 12266 10578 1067
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Table B.7: Results of simulation in which raw Bell pairs are created using local gates,
and using physical entanglement purification only. Other conditions and definitions
are as in Table B.1.

(a)The local gate error rate is 10−3.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.00444 0.00447 0.00736 1.0 88 90 1
1 0.00777 0.0047 0.0101 2.0 96 98 4
2 0.00629 0.00452 0.00858 4.1 112 115 10

(b)The local gate error rate is 10−4.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.000445 0.00045 0.000731 1.0 88 90 1
1 0.000768 0.000456 0.000995 2.0 96 98 4
2 0.000644 0.000468 0.000875 4.0 112 114 10

(c)The local gate error rate is 10−5.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 4.46e-05 4.64e-05 7.5e-05 1.0 88 90 1
1 7.79e-05 4.57e-05 0.000101 2.0 96 98 4
2 6.35e-05 4.38e-05 8.51e-05 4.0 112 114 10
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Table B.8: Simulation results of purification after encoding for a Bell pair of a single
layer of the Steane [[7,1,3]] code and a distance 3 surface code. Raw Bell pairs are
created using local gates. Other conditions and definitions are as in Table B.1.

(a)The local gate error rate is 10−3.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.0221 0.0255 0.0419 1.0 5402 4134 636
1 0.0371 0.00451 0.0399 2.2 6521 5148 702
2 0.00697 0.0102 0.0162 5.0 9147 7526 857

(b)The local gate error rate is 10−4.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.00217 0.00263 0.00426 1.0 5402 4134 636
1 0.00354 0.000246 0.00369 2.0 6380 5018 695
2 0.000249 0.00041 0.000617 4.1 8369 6818 814

(c)The local gate error rate is 10−5.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.000214 0.000251 0.000413 1.0 5402 4134 636
1 0.000351 2.2e-05 0.000364 2.0 6366 5005 694
2 2.24e-05 3.56e-05 5.44e-05 4.0 8296 6751 810
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Table B.9: Simulation results of purification after encoding with post-selection for a
Bell pair of a single layer of the Steane [[7,1,3]] code and a distance 3 surface code.
Raw Bell pairs are created using local gates. Other conditions and definitions are as in
Table B.1. Note that one round of purification at p = 10−5 finds only 4 residual Z errors
in 100 million output Bell pairs and that two rounds of purification at p = 10−5 find only
1 residual X error and only 2 residual Z errors in 100 million output Bell pairs.

(a)The local gate error rate is 10−3.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.0203 0.0251 0.0402 1.0 5402 4134 636
1 0.0303 0.000142 0.0304 2.4 6705 5316 712
2 0.000323 0.000246 0.000556 6.3 10230 8511 917

(b)The local gate error rate is 10−4.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.0021 0.00261 0.00418 1.0 5402 4134 636
1 0.00301 1.41e-06 0.00301 2.0 6395 5033 696
2 2.69e-06 2.18e-06 4.81e-06 4.2 8446 6888 819

(c)The local gate error rate is 10−5.

#purifi- X error Z error Merged Phys. KQ #single #two
cation rate rate error Bell Pair qubit qubit

rate Ineff. gate gate
0 0.000203 0.000251 0.000405 1.0 5402 4134 636
1 0.000298 4e-08 0.000298 2.0 6367 5007 694
2 1e-08 2e-08 3e-08 4.0 8304 6758 811
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